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ABSTRACT

We envision that in the near future, just as Infrastructure-as-a-Service (IaaS), radios and

radio resources in a wireless network can also be provisioned as a service to Mobile Virtual

Network Operators (MVNOs), which we refer to as Radio-as-a-Service (RaaS). In this

thesis, we present a novel auction-based model to enable fair pricing and fair resource

allocation according to real-time needs of MVNOs for RaaS. Based on the proposed model,

we study the auction mechanism design with the objective of maximizing social welfare.

We present an Integer Linear Programming (ILP) and Vickrey-Clarke-Groves (VCG) based

auction mechanism for obtaining optimal social welfare. To reduce time complexity, we

present a polynomial-time greedy mechanism for the RaaS auction. Both methods have

been formally shown to be truthful and individually rational.

Meanwhile, wireless networks have become more and more advanced and complicated,

which are generating a large amount of runtime system statistics. In this thesis, we also

propose to leverage the emerging deep learning techniques for spatiotemporal modeling

and prediction in cellular networks, based on big system data. We present a hybrid deep

learning model for spatiotemporal prediction, which includes a novel autoencoder-based

deep model for spatial modeling and Long Short-Term Memory units (LSTMs) for tem-

poral modeling. The autoencoder-based model consists of a Global Stacked AutoEncoder

(GSAE) and multiple Local SAEs (LSAEs), which can offer good representations for input

data, reduced model size, and support for parallel and application-aware training.

Mobile wireless networks have become an essential part in wireless networking with

the prevalence of mobile device usage. Most mobile devices have powerful sensing capa-

bilities. We consider a general-purpose Mobile CrowdSensing(MCS) system, which is a

multi-application multi-task system that supports a large variety of sensing applications.

In this thesis, we also study the quality of the recruited crowd for MCS, i.e., quality



of services/data each individual mobile user and the whole crowd are potentially capable

of providing. Moreover, to improve flexibility and effectiveness, we consider fine-grained

MCS, in which each sensing task is divided into multiple subtasks and a mobile user may

make contributions to multiple subtasks. More specifically, we first introduce mathematical

models for characterizing the quality of a recruited crowd for different sensing applications.

Based on these models, we present a novel auction formulation for quality-aware and fine-

grained MCS, which minimizes the expected expenditure subject to the quality requirement

of each subtask. Then we discuss how to achieve the optimal expected expenditure, and

present a practical incentive mechanism to solve the auction problem, which is shown to

have the desirable properties of truthfulness, individual rationality and computational effi-

ciency.

In a MCS system, a sensing task is dispatched to many smartphones for data collections;

in the meanwhile, a smartphone undertakes many different sensing tasks that demand data

from various sensors. In this thesis, we also consider the problem of scheduling different

sensing tasks assigned to a smartphone with the objective of minimizing sensing energy

consumption while ensuring Quality of SenSing (QoSS). First, we consider a simple case

in which each sensing task only requests data from a single sensor. We formally define the

corresponding problem as the Minimum Energy Single-sensor task Scheduling (MESS)

problem and present a polynomial-time optimal algorithm to solve it. Furthermore, we

address a more general case in which some sensing tasks request multiple sensors to re-

port their measurements simultaneously. We present an Integer Linear Programming (ILP)

formulation as well as two effective polynomial-time heuristic algorithms, for the corre-

sponding Minimum Energy Multi-sensor task Scheduling (MEMS) problem.

Numerical results are presented to confirm the theoretical analysis of our schemes, and

to show strong performances of our solutions, compared to several baseline methods.
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1

CHAPTER 1

INTRODUCTION

1.1 Motivations

Virtualization, inspired by the success of application of Virtual Machines (VMs) in cloud

computing, has been introduced to wireless networking recently [47], enabling support for

multiple Mobile Virtual Network Operators (MVNOs) via isolated slices over a shared

wireless substrate.

We envision that in the near future, just as Infrastructure-as-a-Service (IaaS), radios

and radio resources in a wireless network can also be provisioned as a service to multiple

MVNOs, which we refer to as Radio-as-a-Service (RaaS). In an RaaS cloud, Base Stations

(BSs) are operated by the cloud service provider, which can lease radio resources of BSs

to MVNOs for profit. For an MVNO, similar to a tenant in an IaaS cloud, it pays the cloud

service provider to use radio resources to serve its own users. Usually, multiple MVNOs

share common radio resources in an RaaS cloud. For wide adoption of RaaS, on one hand,

the cloud service provider needs to be able to collect a fair amount of payment from each

MVNO for radio resources it leases; on the other hand, an MVNO needs to be able to

obtain sufficient resources from the cloud service provider to well serve its users at a fair

cost. In an IaaS cloud (such as Amazon EC2), resources are given to tenants in the format
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of VM and storage space, which has guaranteed capabilities/capacities for computing and

storage respectively. However, in an RaaS, bandwidth (i.e., transmission capability) of a

wireless link is time-varying. An MVNO, which rents a certain amount of radio resources

beforehand, may not have sufficient bandwidth for its users in certain periods of time.

Hence, it is very important to study incentive mechanisms and fairness for allocating radio

resources among MVNOs to support RaaS.

Meanwhile, wireless networks have become more and more advanced and complicated,

which are generating a large amount of runtime system statistics (such as traffic load, re-

source usages, etc) every second. For example, In [20], Ding et al.showed the volume

of spectrum state data could be in the order of zettabytes (ZBs, 1 ZB = 1021 Bytes) in a

100 ∗ 100 km2 area, during one week, on a spectrum ranging from from 0 to 5 GHz. We

can call such data big system data.

Tremendous research efforts (e.g., [85, 86]) have been made to develop algorithms

and protocols for wireless networks to utilize their resources efficiently and effectively.

However, most of them aimed at optimizing resource allocation, assuming that some key

factors (such as traffic load, spectrum usages, computing resource usages, etc) are given as

input. Limited work has been done to model and predict the pattern of these key factors,

which are highly time and location varying. Instead of treating big system data as an

unwanted burden, we should leverage them as a great opportunity for better understanding

user demands and system capabilities such that we can optimize resource allocation to

better serve mobile users.

Mobile wireless networks have become an essential part in wireless networking with

the prevalence of mobile device usage. However, some mobile users haven’t realized that

their smartphones have powerful sensing capabilities. Most smartphones are equipped with

various embedded sensors, including microphone, camera, GPS, accelerometer, gyroscope,

WiFi/3G/4G interfaces, etc. Moreover, booming wearable devices (such as Google Glass,

Smart Watches, Fitbit, Sensordrone [75], etc.) can be connected to smartphones via net-
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work interfaces, such as Bluetooth, to extend their sensing capabilities. Embedded sensors

and wearable devices can enable applications and services in various domains, such as

environmental monitoring, social networking, healthcare, transportation and safety.

Sensor Data

Sensing Task

Service Users

Web Portal

Sensing 

Task

Sensor 

Data

Cloud Operator (Buyer)

Mobile Users

(Bidders and Sellers)

Sensing

Task
Sensor

Data

Fig. 1.1: An MCS System

Recently, Mobile CrowdSensing(MCS) have been gaining increasing popularity. As

shown in Fig. 1.1, we consider a general-purpose MCS system [79], such as PRISM [19]

and Medusa [68]. A service user can make a sensing service request via a web portal. The

request is then analyzed by the cloud operator, which will use an incentive mechanism to

recruit a sensing crowd (a set of mobile users) and distribute the request to them. Then

their smartphones will perform the corresponding sensing activities and report sensor data

to the cloud operator. The cloud operator will aggregate and analyze sensor data, and then

send results back to the service user through the web portal.

The success of a crowdsourcing application highly depends on whether a quality crowd

can be recruited to undertake the corresponding tasks. Recent research has been focused

on incentive mechanisms [22, 97] for mobile crowdsourcing, which determine how to re-

cruit a crowd mainly based on their prices/costs. However, limited research efforts have

been made to quantify the quality of the recruited crowd, i.e., quality of services/data each

individual mobile user and the whole crowd are potentially capable of providing, which is
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a very meaningful topic to study.

Moreover, it can be energy-consuming to collect data from smartphone sensors. If sen-

sor activities are not carefully managed in an energy-efficient manner, the energy-limited

battery of a smartphone may be drained quickly. Specifically, it consumes energy to ac-

tively perform a scan to obtain a measurement for some sensors (such as WiFi interface);

meanwhile, it also consumes energy to spawn a thread to obtain readings for some other

sensors (such as accelerometer), even if they are always working. Moreover, it has been

shown by [55, 91, 106] that some sensors, such as GPS, are power hungry.

To minimize energy consumption, several related works [55, 69, 91, 106] presented

application-specific algorithms that determine how to control sampling and energy usages

of particular sensors (such as GPS) for particular applications. In addition, a few recent

works studied how to engage and select a proper subset of smartphones to participate in

sensing activities [22, 97, 105], and how to generate and assign sensing tasks to partici-

pating smartphones [58, 78, 93] in a general MCS system. However, scant attention has

been paid to the problem of scheduling sensing tasks on a smartphone with the objective of

minimizing sensing energy consumption while guaranteeing Quality of SenSing (QoSS),

which is an important topic to explore.

1.2 State of the Art and Literature Gap

1.2.1 Radio-as-a-Service in Wireless Networks

Cloud-based wireless networking and wireless virtualization have been studied recently.

In [14], the framework CloudIQ was proposed to partition BSs into groups that are si-

multaneously processed on a shared homogeneous compute platform, and to schedule BSs

to meet real-time processing requirements. A similar cloud-based wireless system, Flu-

idNet, was introduced in [83]. In [33], Cudipati et al. introduced SoftRAN, a software

defined centralized control plane for RANs that abstracts all BSs in a local geographical
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area as a virtual big BS. In [47], Kokku et al. described the design and implementation

of a Network Virtualization Substrate (NVS) for effective virtualization of wireless re-

sources in cellular networks. In [62], the authors proposed AMPHIBIA, which enables

end-to-end slicing over wired and wireless networks and exploits the advantages of virtu-

alization and cognitive radio technology. In [111], Zhu et al. introduced the first TDD

WiMAX-based SDR implementation on a commodity server, in conjunction with a novel

design of a remote radio head. In [54], the authors presented a software defined cellular

network architecture that supports flexible slicing of network resource. Unlike the cloud-

based RANs introduced in [14, 83], SoftRAN [33] and the proposed CogCloud employs

centralized control but still processes wireless signals at BSs (rather than in a data center) in

a distributed manner. However, it does not support virtualization or multiple MVNOs, and

moreover, the corresponding paper [33] did not present any resource allocation algorithms

to enable the proposed architecture. More wireless virtualization works can be found in

[13, 101, 94, 100, 41, 54, 111]. All these related works studied how to enable virtualization

in specific wireless networks. We, however, present a general auction-based model and

mechanisms for resource sharing among MVNOs in a wireless network, assuming virtu-

alization is enabled on BSs. Most related works (except [59, 80]) on virtualization were

focused on a single BS. We, however, aim to support RaaS for MVNOs over a network

with multiple BSs.

The auction theory has been studied for decades. Vickery (1961) [89] proposed the no-

tion of truthful bidding in a sealed-bid auction, and introduced the second-price auctions.

Clarke and Groves extended his work, yielding the famous Vickery-Clarke-Groves (VCG)

mechanism [65]. It has been proved in [65] that every VCG mechanism is truthful (incen-

tive compatible). In the meanwhile, to mitigate high time complexity of VCG, some works

were focused on proposing fast greedy heuristic algorithms without sacrificing truthfulness

[8, 98].

Recently, efforts have been made to apply the auction theory to support network vir-
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tualization. In [28], Gandhi et al. proposed a real-time spectrum auction framework to

distribute spectrum among a large number wireless users under interference constraints.

Their approach achieves conflict-free spectrum allocations that maximize auction revenue

and spectrum utilization. Sengupta et al. [74] presented a winner determining sealed-bid

knapsack auction mechanism that dynamically allocates spectrum to the wireless service

providers based on their bids. The proposed dynamic pricing strategy is based on game the-

ory to capture the conflict of interest between wireless service providers and end users, both

of whom try to maximize their respective net utilities. In [110], based on a non-cooperative

game model, Zhou et al. presented a bandwidth allocation scheme with Nash Equilibrium

for a virtualized network environment. However, these works have not considered truthful-

ness, which is one of the major design goals of our work.

In [27], the interactions among Service Providers (SP) and Network Provider (NP)

were modeled as a stochastic game; each stage of the game is played by SPs (on behalf

of end users) and is regulated by the NP through a VCG mechanism. In [108], a truthful

and computationally efficient spectrum auction named VERITAS was proposed to support

eBay-like dynamic spectrum market with the objective of maximizing spectrum utilization.

In [109], a general framework for truthful double spectrum auctions named TRUST is

proposed. TRUST takes as input any reusability-driven spectrum allocation algorithm, and

applies a winner determination and pricing mechanism to achieve truthfulness and other

economic properties while improving spectrum utilization. Our work represents the first

work to study the auction design for RaaS, which is mathematically different from the

problems considered in these related works.

1.2.2 Modeling and Prediction in Wireless Networks

Research efforts have been made for modeling and prediction in communication networks.

Specifically, time series analysis methods have also been applied for predicting traffic load.

In [81], Shu et al. showed that seasonal ARIMA models could be used to model and predict
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wireless traffic. In [107], Zhou et al. proposed a network traffic prediction model, which is

a combination of linear time series ARIMA model and non-linear GARCH model. Hong

et al. applied SVR for short-term traffic load forecasting, and proposed a simulated an-

nealing algorithm and a genetic algorithm to optimize the selection of SVR parameters

in [40]. Spatial modeling and estimation methods have been proposed for traffic load in

wireless networks [9, 88]. To predict the self-similar network traffic with high burstiness,

the authors of [95] proposed a new hybrid method based on the combination of the covaria-

tion orthogonal prediction and the artificial neural network. A spatiotemporal compressive

sensing framework was proposed for modeling Internet traffic matrices in [104]. Moreover,

a very recent work [77] was focused on spatiotemporal analysis for application usages in

wireless networks.

In addition, Akbar et al. proposed to model and predict the spectrum occupancy of li-

censed radio bands with Hidden Markov Models (HMMs) [7]. They introduced a Markov-

based channel prediction algorithm for dynamic spectrum allocation in cognitive radio net-

works, when the channel state occupancy of primary are assumed to be Poisson distributed.

In [87], Tumulus et al. designed two adaptive channel status predictor using a neural net-

work based on multilayer perceptron and the hidden Markov model. A priori knowledge

of the statistics of channel usage is not required in the prediction schemes. Chen et al.

presented a detailed study [17] with first and second order statistics of collected data, in-

cluding channel occupancy/vacancy, channel utilization and temporal, spectral and spatial

correlation. A 2-dimensional frequent pattern mining algorithm was developed to predict

channel availability based on past observations.

Unlike these works, we are the first to propose a deep learning model for spatiotemporal

prediction in cellular networks.
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1.2.3 Incentive Mechanisms in Mobile Crowdsensing Systems

There have been quite a few mobile phone/crowdsensing projects in different domains [51].

Recently, efforts have been made to develop general-purpose systems to support various

mobile phone/crowdsensing applications, including PRISM [19], Medusa [68], the bubble

sensing system [56], AnonySense [18] and Micro-blog [29].

Incentive mechanism design has been addressed in the context general MCS systems

recently. Yang et al. introduced two models for MCS: platform-centric and user-centric;

and designed an incentive mechanism using a Stackelberg game for the platform-centric

model as well as an auction-based incentive mechanism for the user-centric model in [97].

Duan et al. proposed a reward-based collaboration mechanism in [22], in which collab-

orators share a total reward announced by the client. In addition, they investigated how

the client can design an optimal contract by specifying different task-reward combinations

for different user types. In [105], Zhao et al. considered the scenario where mobile users

arrive one by one online in a random order. They presented two online incentive mecha-

nisms, in which mobile users submit their private types to the crowdsourcer when arrive

and the crowdsourcer aims to select a user subset for maximizing a utility function with a

budget constraint. Feng et al. presented a reverse auction framework named TRAC in [24]

to model location based auction interactions between a cloud and smartphones, which min-

imizes the social cost. In [25], the authors presented two truthful incentive mechanisms for

both the offline and online cases, given dynamic smartphones, uncertain arrivals of tasks,

strategic behaviors and private information of smartphones. In [103], the authors first de-

signed an incentive mechanism, EFF, which eliminates dishonest behavior with the help

from a trusted third party for arbitration. They then designed another mechanism DFF,

which, without the help from any third party, discourages free-riding and false-reporting.

Recently, several research works have addressed incentive mechanism design with qual-

ity considerations. In [49], Koutsopoulos et al. seeked a mechanism for user participation

level determination and payment allocation which minimizes the total cost of compensat-
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ing participants, while delivering a certain quality of experience to service requesters. They

designed a mechanism that optimally solves this problem. In [36], the authors presented

an approximation mechanism to find an efficient task allocation with quality of sensing re-

quirements as well as a pricing mechanism based on bargaining theory. Luo et al. designed

an incentive mechanism [57] based on all-pay auctions to attract contributions from mo-

bile users. In [43], Jin et al. designed a truthful, individually rational and computationally

efficient mechanism that approximately maximizes the social welfare for single-minded

combinatorial models, which was shown to have an approximation ratio, assuming a linear

quality model. Moreover, they designed an iterative descending mechanism with individual

rationality for multi-minded combinatorial models.

We summarize the differences between our work and these related works in the follow-

ing: 1) Unlike most related works, we consider fine-grained MCS, in which a sensing task

consists of multiple subtasks and a mobile user may make contributions to multiple sub-

tasks. 2) Many related works, such as [22, 24, 25, 97, 105, 103], have not offered careful

consideration for QoC and quality requirements of subtasks, which, however, is one of the

main topics in this thesis. 4) The auction formulation here (with the objective of minimizing

the expected expenditure subject to quality requirements) is mathematically different from

those in related works [36, 43, 49, 57]. 5) Unlike some previous works mainly focusing on

a specific quality model [36, 43] (such as the linear model), we conduct a comprehensive

study for QoC models.

1.2.4 Task Scheduling in Mobile Crowdsensing Systems

Sensing task scheduling and optimization have been addressed in the context of both gen-

eral and application-specific mobile phone/crowdsensing. In [91], the authors presented an

Energy Efficient Mobile Sensing System (EEMSS), which uses hierarchical sensor man-

agement strategy to recognize user states as well as to detect state transitions. They pro-

posed to power only a minimum set of sensors and use appropriate sensor duty cycles
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for energy savings. The paper [106] presented an adaptive location-sensing framework

that significantly improves the energy efficiency of smartphones running location-based

applications. The underlying design principles of the proposed framework involve substi-

tution, suppression, piggybacking, and adaptation of application location-sensing requests

to conserve energy. In [55], Lin et al. studied energy-accuracy trade-off for continuous

mobile device location, and designed and prototyped an adaptive location service for mo-

bile devices, a-Loc, which helps reduce this battery drain. In [69], Rachuri et al. proposed

SociableSense, a smart phone based platform that captures user behaviors in office envi-

ronments, while providing the users with a quantitative measure of their sociability and that

of colleagues. The system provides an adaptive sampling mechanism as well as models to

decide whether to perform computation of tasks, such as the execution of classification and

inference algorithms, locally or remotely. In [58], the authors presented analytical results

on the rate of information reporting by uncontrolled mobile sensors needed to cover a given

geographical area. In [93], the authors introduced mechanisms for automated mapping of

urban areas, which provide a virtual sensor abstraction to applications. They also proposed

spatial and temporal coverage metrics for measuring the quality of acquired data. In [78],

Sheng et al. presented algorithms for energy-efficient sensing scheduling and showed that

significant power savings can be achieved by collaborative sensing via simulations.

We summarize the differences between our work and these related works in the follow-

ing: 1) Unlike research works targeting at energy-efficient sensing scheduling or optimiza-

tion for specific applications, such as [55, 69, 91, 106], we aim to address task scheduling

in general MCS systems. 2) Most related works on general MCS, such as [58, 78, 93],

essentially studied the problem of determining how to assign tasks to a group of partici-

pating smartphones. We, however, consider the problem of scheduling different sensing

tasks assigned to a smartphone, which is mathematically different from their problems. 3)

Task scheduling problems on a smartphone are also mathematically different from incen-

tive mechanism design [22, 97, 105].
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1.3 Contributions and Thesis Organization

In this thesis, we study the modeling and resource allocation in mobile wireless networks.

Specifically, we make the following contributions.

• we present a novel auction-based model to enable fair pricing and fair resource al-

location according to real-time needs of MVNOs for RaaS. Based on the proposed

model, we study the auction mechanism design with the objective of maximizing so-

cial welfare. We present an Integer Linear Programming (ILP) and Vickrey-Clarke-

Groves (VCG) based auction mechanism for obtaining optimal social welfare. To

reduce time complexity, we present a polynomial-time greedy mechanism for the

RaaS auction. Both methods have been formally shown to be truthful and individu-

ally rational. Two papers ([1] and [2]) have been published for this work.

• We propose to leverage the emerging deep learning techniques for spatiotemporal

modeling and prediction in cellular networks, based on big system data. A hy-

brid deep learning model is presented for spatiotemporal prediction, which includes

a novel autoencoder-based deep model for spatial modeling and Long Short-Term

Memory units (LSTMs) for temporal modeling. The autoencoder-based model con-

sists of a Global Stacked AutoEncoder (GSAE) and multiple Local SAEs (LSAEs),

which can offer good representations for input data, reduced model size, and support

for parallel and application-aware training. Moreover, we present a new algorithm

for training the proposed spatial model. One paper ([3]) has been published for this

work.

• We introduce mathematical models for characterizing the quality of a recruited crowd

for different sensing applications. Based on these models, we present a novel auction

formulation for quality-aware and fine-grained MCS, which minimizes the expected

expenditure subject to the quality requirement of each subtask. Then we discuss how
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to achieve the optimal expected expenditure, and present a practical incentive mech-

anism to solve the auction problem, which is shown to have the desirable properties

of truthfulness, individual rationality and computational efficiency. One paper ([4])

has been published for this work.

• We consider the problem of scheduling different sensing tasks assigned to a smart-

phone with the objective of minimizing sensing energy consumption while ensuring

Quality of SenSing (QoSS). First, we consider a simple case in which each sensing

task only requests data from a single sensor. We formally define the corresponding

problem as the Minimum Energy Single-sensor task Scheduling (MESS) problem

and present a polynomial-time optimal algorithm to solve it. Furthermore, we ad-

dress a more general case in which some sensing tasks request multiple sensors to re-

port their measurements simultaneously. We present an Integer Linear Programming

(ILP) formulation as well as two effective polynomial-time heuristic algorithms, for

the corresponding Minimum Energy Multi-sensor task Scheduling (MEMS) prob-

lem. Two papers ([5] and [6]) have been published for this work.

The rest of the thesis is organized as follows. We study modeling and resource alloca-

tion of Radio-as-a-Service in Chapter 2. In Chapter 3, we investigate the emerging deep

learning techniques for spatiotemporal modeling and prediction based on cellular network

big system data. We design quality-aware and fine-grained incentive mechanisms for MCS

in Chapter 4. In Chapter 5, we investigate task scheduling models and algorithms in MCS.

The conclusions of this thesis is presented in Chapter 6.
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CHAPTER 2

RADIO-AS-A-SERVICE IN WIRELESS

NETWORKS: MODELING AND

RESOURCE ALLOCATION

2.1 Overview

BS3

MVNO1 (Bidder)

MVNO2 (Bidder)

BS2

BS1

Cloud Service 

Provider (Seller and

 auctioneer)

Fig. 2.1: The RaaS auction

In this chapter, we introduce a novel auction-based model to achieve the goal of en-
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abling fair pricing and reasonable resource allocation for RaaS. In our model as illustrated

in Fig. 2.1, cloud service provider (i.e., seller) sells its radio resources to MVNOs. MVNOs

(i.e., bidders or buyers) participate in the auction, bid the resources according to their real-

time needs and make payment to the cloud service provider. Moreover, the cloud service

provider plays the role of auctioneer so that it will determine the winners among MVNOs

and clear prices MVNOs should pay.

To support RaaS, we allow each MVNO to bid for a combination of demanded re-

sources on each BS. This auction can be related to a combinatorial auction [65], with

the difference lying in the fact that the demanded resources could be only a fraction of

the available resources on each BS. So its resources are actually shared among multiple

MVNOs. While in a conventional combinatorial auction, a bidder expresses its valuation

of a combination of items, and the auction does not allow item sharing.

Auction mechanism design is crucial for supporting RaaS, because it directly deter-

mines the trading rules between the seller (cloud service provider) and bidders (MVNOs);

furthermore, it implicitly defines the behaviors of bidders. Specifically, truthfulness (a.k.a

incentive capability or strategy-proofness) [65] and individual rationality [50] are highly

desirable in RaaS auction mechanisms. An auction mechanism is truthful if a bidder will

not increase its payoff by making any other bid instead of the true value. Revealing the true

private value is every participating bidder’s dominant strategy no matter what strategies

other bidders are doing [96]. An auction lacking truthfulness could be vulnerable to market

manipulation and produce very poor outcomes [46]. In addition, an auction mechanism is

individually rational if the payoff of every bidder is non-negative.

To the best of our knowledge, we are the first to develop an auction-based model and

auction mechanisms with provably-good properties for RaaS. We summarize our contribu-

tions of this chapter in the following:

• We formally define the RaaS auction mechanism design problem with the objective

of maximizing social welfare.
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• We present an Integer Linear Programming (ILP) and Vickrey-Clarke-Groves (VCG)

based auction mechanism for obtaining optimal social welfare. To reduce time com-

plexity, we present a polynomial-time greedy auction mechanism. Moreover, we

show that the proposed mechanisms are both truthful and individually rational.

• To prevent winning bidders from making 0 payment, we introduce reserve prices and

present auction mechanisms with reserve prices, which are shown to be both truthful

and individually rational too.

• We present extensive simulation results to show the proposed greedy mechanism

achieves significant running time savings and produces close-to-optimal solutions.

Moreover, we justify effectiveness of the proposed auction mechanisms with reserve

prices via simulation results.

2.2 Problem Formulation

First of all, we summarize major notations in Table 2.1

Table 2.1: Major Notations
Notation Explanation
i, N and I The index of BSs, the total number of BSs and the set of BSs
j, M and J The index of MVNOs, the total number of MVNOs and the set of

MVNOs
ri and R Available dynamic resources of BS i and the corresponding vector
vj and wj True valuation and declared valuation of MVNO j
Yj and Zj True demanded dynamic resource vector and declared dynamic re-

source vector of MVNO j
bj and B Bid of MVNO j and the corresponding bid vector
xj and x Winner selection variable and the corresponding vector
pj and p Payment of MVNO j and the corresponding vector
ui and U Price of BS i and the corresponding vector
fj and F Reserve price of bid bj and the corresponding vector

We consider an RaaS cloud with N BSs and M MVNOs. We adopt the resource-based
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provisioning model [47] for resource sharing among MVNOs: for a BS i, an MVNO j

demands a slice (in terms of percentage) of its resources so that j can provide wireless

service to its mobile users that are associated with BS i. In our model, resources of BSs are

allocated to MVNOs in a hybrid way (both statically and dynamically). In a statical manner,

an MVNO j reserves certain percent of the total resources at each BS i (denoted by rij) for

a long period of time (e.g., a month or a quarter) and makes the corresponding payment in

advance according to a long-term forecasting for user traffic demands based on historical

data. These resources are called static resources and are guaranteed to be available for

MVNO j. However, since both user traffic demands and link data rates are time-varying,

static resources may not be sufficient for an MVNO for a certain short period of time. So

we need to provide a way for MVNOs to request more resources from BSs according to

its real-time needs. The remaining resources of BS i can be given by ri = 1 −∑M
j=1 rij ,

which are referred to as available dynamic resources of BS i. R = (r1, ..., ri, ..., rN)

is a vector for available dynamic resources at each BS. Dynamic resource allocation is

conducted periodically (e.g., once every 30min). Then the real-time demand of MVNO j

at BS i can be given by yij = max(dij−rij, 0), where dij is the fraction of resources needed

by MVNO j at BS i, which can be estimated according to current link data rates and user

traffic demands. Yj = (y1j, ..., yij, ...yNj) denotes the demanded dynamic resource vector

of MVNO j.

RaaS can be formulated as an auction mechanism design problem. In the RaaS auction,

the seller (i.e., the cloud service provider) sells available dynamic resources to bidders or

buyers (i.e., MVNOs) who bid for them. Each MVNO j is asked to declare a bid bj =

(wj,Zj), where wj is the valuation and Zj = (z1j, ..., zij, ..., zNj) is the declared dynamic

resource vector. Note that the true valuation vj and the true demanded dynamic resource

vector Yj are private information only known to MVNO j. So wj and Zj could be different

from vj and Yj respectively. Each MVNO j is a “single-minded bidder [65]” in the sense

that valuation is vj if it gets dynamic resource no less than Yj and 0 otherwise. B =
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(b1, ...,bj, ...,bM) is the bid vector. We use B−j to denote the bids of all bidders except j,

so B = (bj,B−j).

RaaS auction takes B and R as input, and the output includes a winner vector x(B,R) =

(x1, ..., xj, ..., xM) and a payment vector p(B,R) = (p1, ..., pj, ..., pM). xj = 1 if bidder

j wins and is allocated the declared dynamic resources Zj; xj = 0, otherwise. pj is the

payment bidder j will make to the seller. The dynamic resource allocation must satisfy the

following constraints:
∑M

j=1 zijxj ≤ ri,∀i ∈ I. Based on the output of the auction, the

payoff [65] of bidder j is defined as

uj =


vj − pj, xj = 1;

0, xj = 0.

(2.1)

The social welfare [65] is defined as the total valuation of all winning bidders, i.e.,
∑M

j=1 vjxj .

When designing an auction mechanism, it is desirable to have the following three prop-

erties [65]:

• Individual Rationality: an auction mechanism is individually rational if for any

bidder j, the payoff is non-negative when bidder j bids its true value (vj,Yj).

• Truthfulness: an auction mechanism is truthful if and only if for every bidder j and

B−j, bidder j will not increase its payoff by making any other bid (wj,Zj) instead of

its true value (vj,Yj); i.e., bidder j’s payoff for bidding (vj,Yj) is at least its payoff

for bidding any other bid (wj,Zj).

• Computational Efficiency: an auction mechanism is computationally efficient if the

outcome can be computed in polynomial time.

Among these three properties, truthfulness is the most challenging one to achieve. In

order to design a truthful auction mechanism, we introduce the following definitions.
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Definition 2.1 (w-Monotonicity). If bidder j wins by bidding (w∗j , (z
∗
1j, ..., z

∗
ij, ..., z

∗
Nj)),

then it also wins by bidding (w′j, (z
∗
1j, ..., z

∗
ij, ..., z

∗
Nj)) with any w′j ≥ w∗j .

Definition 2.2 (z-Monotonicity). If bidder j wins by bidding (w∗j , (z
∗
1j, ..., z

∗
ij, ..., z

∗
Nj)),

then it also wins by bidding (w∗j , (z
′
1j, ..., z

′
ij, ..., z

′
Nj)) with all z′ij ≤ z∗ij .

Definition 2.3 (Critical Payment [65]). The payment pj for winning bidder j is set to the

critical value cj such that bidder j wins if wj > cj , and loses if wj < cj .

Lemma 2.1. In an RaaS auction mechanism, if w-Monotonicity, z-Monotonicity and Crit-

ical Payment are satisfied, a bidder will not increase its payoff by bidding (vj,Zj) =

(vj, (z1j, ..., zij, ..., zNj)) instead of (vj,Yj) = (vj, (y1j, ..., yij, ..., yNj)), where Yj 6= Zj.

Proof. We examine two possible cases:

1) zij < yij for one or more i. In this case, by bidding (vj,Zj), the payoff is non-

positive since the valuation is 0 when single-minded bidder j’s resource demand Yj cannot

be met. However, the payoff of bid (vj,Yj) is non-negative because if (vj,Yj) is a losing

bid, the payoff is 0; if (vj,Yj) is a winning bid, the payoff will be non-negative.

2) zij ≥ yij for every i. Denote the Critical Payment for bidding (vj,Yj) by p, and

denote the Critical Payment for bidding (vj,Zj) by p∗. Based on z-Monotonicity, we know

that if a bidder loses by bidding (vj,Yj), it will also lose by bidding (vj,Zj). Or equiva-

lently, for any vj < p, we have vj < p∗. So p∗ ≥ p. We have two sub-cases: a) (vj,Zj) is

a losing bid. In this sub-case, the payoff of bid (vj,Yj) is non-negative because if (vj,Yj)

is a losing bid, the payoff is 0; if (vj,Yj) is a winning bid, the payoff will be non-negative.

b) (vj,Zj) is a winning bid. In this sub-case, a bidder with (vj,Yj) will also win and the

payment will not increase.

Theorem 2.1. An RaaS auction mechanism is truthful, if it satisfies w-Monotonicity, z-

Monotonicity and Critical Payment.

Proof. According to the above definition of truthfulness, we will show that a bidder will not

increase its payoff by bidding any other bid (wj,Zj) = (wj, (z1j, ..., zij, ..., zNj)) instead of
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(vj,Yj) = (vj, (y1j, ..., yij, ..., yNj)). We will first show that a bidder will not increase its

payoff by bidding (wj,Zj) instead of (vj,Zj), where vj 6= wj . Denote the Critical Payment

for bidding (vj,Zj) by p. We have two cases:

1) (vj,Zj) is a losing bid. In this case, vj < p. If a bidder with (wj,Zj) loses, it would

not be more beneficial than bidding (vj,Zj). If a bidder with (wj,Zj) wins, it makes the

same payment p because the Critical Payment is independent of wj; since p > vj , the

payoff of bidding (wj,Zj) is negative.

2) (vj,Zj) is a winning bid. If wj > p, a bidder with (wj,Zj) wins with the same

payment p. If wj < p, a bidder with (wj,Zj) loses with 0 payoff.

The above two cases show that a bidder will not increase its payoff by bidding (wj,Zj)

instead of (vj,Zj). Furthermore, in Lemma 2.1, we have proved that a bidder will not

increase its payoff by bidding (vj,Zj) instead of (vj,Yj). Therefore, a bidder will not

increase its payoff by bidding any other (wj,Zj) instead of (vj,Yj). This completes the

proof.

2.3 Auction Mechanism with Optimal Social Welfare

In this section, we present a VCG-based (Vickery-Clarke-Groves[65]) auction mechanism

that can achieve optimal social welfare.

2.3.1 Optimal RaaS Auction Design (Optimal-RaaS)

The RaaS auction design problem consists of two subproblems: Winner Selection and Price

Determination. The Winner Selection problem can be formulated as the following Integer

Linear Programming (ILP) problem:

ILP-Winner
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max
∑
j∈J

wjxj (2.2)

Subject to:

∑
j∈J

zijxj ≤ ri, ∀i ∈ I; (2.3)

xj ∈ {0, 1}, ∀j ∈ J; (2.4)

The objective is to maximize the social welfare. Constraints (2.3) ensure that for each

BS, the sum of demanded dynamic resources does not exceed its available dynamic re-

sources. Denote the optimal value of the ILP by Ψ(B). Next, we present an auction

mechanism that can achieve optimal social welfare, which is referred to as Optimal-RaaS.

(1) Winner Selection: select winners x∗ by solving ILP-Winner;

(2) Price Determination: pj := Ψ(B−j) − (Ψ(B) − wj) if x∗j = 1 and pj := 0 otherwise.

Ψ(B−j) is the optimal value of ILP-Winner with bid bj removed.

2.3.2 Proof of Properties

Although Optimal-RaaS is VCG-based, the proofs of properties are non-trivial because the

bids in RaaS model are multidimensional[50]. In order to prove the truthfulness of Optimal-

RaaS, we show that the Winner Selection satisfies w-Monotonicity and z-Monotonicity.

Furthermore, the Critical Payment condition is satisfied by the Price Determination.

Lemma 2.2. w-Monotonicity is satisfied in the Winner Selection of Optimal-RaaS.

Proof. Suppose that bidder j wins by bidding b∗j = (w∗j , (z
∗
1j, ..., z

∗
ij, ..., z

∗
Nj)). Let x be the

winner vector. We will prove that it also wins by bidding b′j = (w′j, (z
∗
1j, ..., z

∗
ij, ..., z

∗
Nj))

with anyw′j > w∗j by contradiction. Suppose it will lose by bidding b′j. Then Ψ((b′j,B−j)) =
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Ψ(B−j). Since bidder j wins by bidding b∗j , Ψ(B−j) < Ψ((b∗j ,B−j)). Therefore Ψ((b′j,B−j)) <

Ψ((b∗j ,B−j)). Having the same winner vector x, the social welfare with (b′j,B−j) would

be greater than the social welfare with (b∗j ,B−j), because w′j > w∗j ; this contradicts the

statement that Ψ((b′j,B−j)) < Ψ((b∗j ,B−j)). Hence the supposition is false, and bidder j

will also win by bidding b′j. This completes the proof.

Lemma 2.3. z-Monotonicity is satisfied in the Winner Selection of Optimal-RaaS.

Proof. Suppose that bidder j wins by bidding b∗j = (w∗j , (z
∗
1j, ..., z

∗
ij, ..., z

∗
Nj)). Let x be the

winner vector. We will prove that it also wins by bidding b′j = (w∗j , (z
∗
1j, ..., z

′
ij, ..., z

∗
Nj))

with any z′ij < z∗j by contradiction. Suppose it will lose by bidding b′j. Then Ψ((b′j,B−j)) =

Ψ(B−j). Because bidder j wins by bidding b∗j , Ψ(B−j) < Ψ((b∗j ,B−j)). Therefore

Ψ((b′j,B−j)) < Ψ((b∗j ,B−j)). Having the same winner vector x, the social welfare with

(b′j,B−j) is equal to (b∗j ,B−j); this contradicts the statement that Ψ((b′j,B−j)) < Ψ((b∗j ,B−j)).

Hence the supposition is false, and bidder j will also win by bidding b′j. This completes

the proof.

Lemma 2.4. pj = Ψ(B−j)− (Ψ(B)− wj) is a critical value for each winning bidder j in

Optimal-RaaS.

Proof. In Optimal-RaaS, the payment of each winning bidder is calculated based on the

opportunity cost [65], which is introduced to all the other bidders by the presence of the

winning bidder. Therefore, if the bidder bids less than this price, it will not be selected as a

winner, which leads to higher social welfare [97].

Theorem 2.2. Optimal-RaaS is truthful.

Proof. According to Lemmas 2.2, 2.3, 2.4 and Theorem 2.1, Optimal-RaaS is truthful.

Theorem 2.3. Optimal-RaaS is individually rational.

Proof. For any bidder j bidding its true value (vj,Yj), we consider two possible cases:

1) Bidder j is a winner. Its payoff is uj = vj − pj = vj − (Ψ(B−j) − (Ψ(B) − vj)) =
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Ψ(B) − Ψ(B−j) ≥ 0, where the last inequality follows from the optimality of Ψ(B). 2)

Bidder j is not a winner. Its payoff is 0. This completes the proof.

2.4 Greedy Auction Mechanism

Although Optimal-RaaS is both individually rational and truthful, it is not computationally

efficient since solving ILP-Winner may take exponential time. In this section, we present

an auction mechanism, called Greedy RaaS Auction Design (GRAD), which has all the

three desirable properties.

2.4.1 Greedy RaaS Auction Design (GRAD)

GRAD consists of two phases too: Winner Selection and Price Determination. In the

Winner Selection (Algorithm 2.1), the basic idea is to keep adding the bidder with the

largest weight to the solution. We adopt the following weight αj as the metric for sorting

bidders and selecting winners:

αj =
wj∑
i∈I

zij
ri

. (2.5)

In each iteration, the bidder with the maximum weight αj is selected as the winner. Then

we update R by subtracting the corresponding demanded dynamic resource vector Zj of

the selected winner from it. All the bidders who demand more dynamic resources than

the available resources in the updated R will be eliminated from the auction. This process

iterates until the bidder list is empty.

In the Price Determination (Algorithm 2.2), to find the payment for a winning bidder

j, we remove j from the bidder list, do the Winner Selection as above with the rest bidders

until a winning bidder k is found such that its selection can disqualify j from winning the

auction and determine the price accordingly (lines 9–10 in Algorithm 2.2).
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Algorithm 2.1: Winner Selection of GRAD
Input : Bid vector B and Available dynamic resource vector R
Output: Winner vector x

1 xj := 0, ∀j ∈ J;
2 αj :=

wj∑
i∈I

zij
ri

, ∀j ∈ J;

3 Sort the bidders in the non-increasing order of αj and store the sorted list of their
indices into L;

4 while L 6= ∅ do
5 Let j be the next bidder in L;
6 xj := 1;
7 L := L \ {j};
8 R := R− Zj;
9 forall m ∈ L do

10 if ∃i ∈ I s.t. zim > ri then
11 L := L \ {m};

12 return x;

Algorithm 2.2: Price Determination of GRAD
Input : Bid vector B, Available dynamic resource vector R, Winner vector x,

Sorted bidder list L and weight αj,∀j ∈ J
Output: Payment vector p

1 forall j ∈ L do
2 pj := 0;
3 if xj = 1 then
4 L′ := L \ {j}; R′ := R;
5 while L′ 6= ∅ do
6 Let k be the next bidder in L′;
7 L′ := L′ \ {k};
8 R′ := R′ − Zk ;
9 if ∃i ∈ I s.t. zij > r′i then

10 pj := (αk
∑

i
zij
ri

); break;
11 forall m ∈ L′ do
12 if ∃i ∈ I s.t. zim > r′i then
13 L′ := L′ \ {m};

14 return p;



24

2.4.2 Proof of Properties

Lemma 2.5. w-Monotonicity is satisfied in the Winner Selection of GRAD.

Proof. Suppose that bidder j wins by bidding (w∗j ,Z
∗
j ) = (w∗j , (z

∗
1j, ..., z

∗
ij, ..., z

∗
Nj)). We

prove that it will also win by bidding (w′j,Z
∗
j ) = (w′j, (z

∗
1j, ..., z

∗
ij, ..., z

∗
Nj)) with any w′j >

w∗j . Let L∗ and L′ denote the sorted lists when j bids (w∗j ,Z
∗
j ) and (w′j,Z

∗
j ) respectively.

The positions of j in L∗ and L′ are denoted by q∗ and q′ respectively. Since α′j =
w′j∑N
i=1

zij
ri

>

α∗j =
w∗j∑N
i=1

zij
ri

, it is clear that q′ ≤ q∗. Furthermore, at lines 9–11 in Algorithm 2.1, since j

has not been eliminated at q∗, it will not be eliminated at q′ neither. Therefore, j will still

win with bid (w′j,Z
∗
j ).

Lemma 2.6. z-Monotonicity is satisfied in the Winner Selection of GRAD.

Proof. Suppose that bidder j wins by bidding (w∗j ,Z
∗
j ) = (w∗j , (z

∗
1j, ..., z

∗
ij, ..., z

∗
Nj)). We

prove that it will also win by bidding (w∗j ,Z
′
j) = (w∗j , (z

∗
1j, ..., z

′
ij, ..., z

∗
Nj)) with any z′ij <

z∗ij . Let L∗ and L′ denote the sorted lists when j bids (w∗j ,Z
∗
j ) and (w∗j ,Z

′
j) respectively;

the positions of j in L∗ and L′ are denoted by q∗ and q′ respectively. For the sake of

presentation, denote
∑N

i=1
zij
ri

by s(Zj). With z′ij < z∗ij , we have s(Z′j) < s(Z∗j ). So

α′j =
w∗j
s(Z′j)

> α∗j =
w∗j
s(Z∗j )

; thus q′ ≤ q∗. Furthermore, at lines 9–11 in Algorithm 2.1, since

j has not been eliminated at q∗, it will not be eliminated at q′ neither. Therefore, j will still

win with bid (w∗j ,Z
′
j).

Lemma 2.7. The payment pj is set to a critical value for each winning bidder j in GRAD.

Proof. Let k be the first bidder in the list, whose selection can disqualify j. Let cj =

αk
∑N

i=1
zij
ri

. If bidder j bids wj < cj , then αj < αk, meaning j will be placed behind k in

the sorted list and thus will be eliminated from the auction. If bidder j bids wj > cj , then

αj > αk, meaning j will be placed ahead of k. j is ahead of any bidder that can disqualify

j, because k is the first of such bidders. Therefore j will be selected as a winner and cj is

the critical value for winning bidder j. Since the payment pj is set to cj in the algorithm,

we prove the lemma.



25

Theorem 2.4. GRAD is truthful.

Proof. According to Lemmas 2.5, 2.6, 2.7 and Theorem 2.1, GRAD is truthful.

Theorem 2.5. GRAD is individually rational.

Proof. We consider two possible cases: 1) Bidder j is not a winner. From Algorithm 2.2, j

pays 0. Therefore its payoff is 0. 2) Bidder j is a winner. Since GRAD satisfies the Critical

Payment property as shown in Lemma 2.7, we havewj > cj = pj . In a truthful mechanism,

wj = vj . Hence we have vj − pj > 0. Therefore the payoff is always non-negative. This

completes the proof.

Theorem 2.6. GRAD is computationally efficient.

Proof. In Algorithm 2.1, calculating α (line 2) takes O(MN) time. Furthermore, the

while-loop (lines 4–11) takes O(M2N) time. Hence time complexity of Algorithm 2.1

is O(M2N). In Algorithm 2.2, the for-loop takes O(M3N) time, since the for-loop (lines

1–13) runs M iterations, and in each iteration, while-loop (lines 5–13) takes O(M2N)

time. So the time complexity of Algorithm 2.2 is O(M3N). Therefore, the overall time

complexity of GRAD is O(M3N). This completes the proof.

2.5 Auction Mechanisms with Reserve Prices

Optimal-RaaS and GRAD are both individually rational and truthful. Moreover, Optimal-

RaaS can achieve optimal social welfare and GRAD is computationally efficient with sub-

optimal social welfare. However, there is an issue that the Price Determination of Optimal-

RaaS and GRAD might end up with 0 payment for some winners. To be more specific,

in Optimal-RaaS with more available dynamic resources, for some winning bidders, it

turns out that Ψ(B−j) = (Ψ(B)−wj), yielding 0 payment. In GRAD, with more available

dynamic resources, there is a higher chance that for some winning bidders, the if condition

of line 9 will not be satisfied; therefore line 10 will not be executed, resulting in 0 payments.
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In order to mitigate this problem and grant more right to the seller to determine the

payment, we introduce the following definition [50]:

Definition 2.4 (Reserve Price). The seller reserves the right not to sell the declared dy-

namic resource of Zj if the payment determined is lower than some threshold price. Such a

threshold price is called a reserve price, denoted by fj .

It is desirable to have reserve prices, whose values are closely related to declared dy-

namic resources of each BS. There may be multiple options to calculate such reserve prices.

We choose to use the following formulation:

fj =
∑
i∈I

uizij,∀j ∈ J; (2.6)

where ui is the price of BS i, i.e., the price of allocating 100% of the resources of BS i.

Next, we present the auction mechanism with reserve prices.

2.5.1 RaaS Auction with Reserve Prices (RaaS-RP)

The RaaS auction mechanism design problem with Reserve Prices (RaaS-RP) consists of

three subproblems: Bidder Screening, Winner Selection and Price Determination.

(1) Bidder Screening: use Algorithm 2.3;

(2) Winner Selection: solve the Winner Selection problem of Optimal-RaaS or GRAD with

J′ (instead of J);

(3) Price Determination: pj := max{fj, p∗j}, if x∗j = 1 and pj := 0 otherwise. p∗j is the

payment determined by Optimal-RaaS or GRAD.

Note that we have integrated the reserve prices fj in the Bidder Screening and Price

Determination. In the Bidder Screening, those bidders with declared valuation wj < fj ,

will be screened out of the auction. In the Price Determination, pj = max{fj, p∗j}, ensuring
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Algorithm 2.3: Bidder Screening of RaaS-RP
Input : Bid vector B, Bidder set J and BS price vector U
Output: Remaining bidder set J′ and Reserve price vector F

1 fj :=
∑

i∈I uizij , ∀j ∈ J;
2 forall j ∈ J do
3 if fj > wj then
4 xj := 0;
5 J := J \ j;
6 J′ := J;
7 return J′, F;

the payment pj is no less than the reserve price fj . Note that RaaS-RP is designed on the

basis of Optimal-RaaS or GRAD, so RaaS-RP could be either Optimal-RaaS with reserve

prices (Optimal-RaaS-RP) or GRAD with reserve prices (GRAD-RP).

2.5.2 Proof of Properties

In order to prove the truthfulness of RaaS-RP, we will prove that w-Monotonicity, z-

Monotonicity and Critical Payment condition will all be satisfied.

Lemma 2.8. w-Monotonicity is satisfied in RaaS-RP.

Proof. Suppose that bidder j wins by bidding b∗j = (w∗j , (z
∗
1j, ..., z

∗
ij, ..., z

∗
Nj)). We will

prove that it also wins by bidding b′j = (w′j, (z
∗
1j, ..., z

∗
ij, ..., z

∗
Nj)) with any w′j > w∗j . Let

f ∗j be the reserve price of b∗j and f ′j be the reserve price of b′j. In the Bidder Screening,

since j wins by bidding b∗j , it is clear that f ∗j ≤ w∗j . By bidding b′j, the reserve price

f ′j = f ∗j ; therefore w′j > f ′j . Bidder j will not be screened out by bidding b′j. In the Winner

Selection, from Lemma 2.2 and Lemma 2.5, if bidder j wins by bidding b∗j , it also wins by

bidding b′j in Optimal-RaaS or GRAD. This completes the proof.

Lemma 2.9. z-Monotonicity is satisfied in RaaS-RP.

Proof. Suppose that bidder j wins by bidding (w∗j ,Z
∗
j ) = (w∗j , (z

∗
1j, ..., z

∗
ij, ..., z

∗
Nj)). We

prove that it will also win by bidding (w∗j ,Z
′
j) = (w∗j , (z

∗
1j, ..., z

′
ij, ..., z

∗
Nj)) with any z′ij <
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z∗ij . Let f ∗j be the reserve price of (w∗j ,Z
∗
j ) and f ′j be the reserve price of (w∗j ,Z

′
j). In the

Bidder Screening, since j wins by bidding (w∗j ,Z
∗
j ), it is clear that f ∗j ≤ w∗j . By bidding b′j,

the reserve price f ′j < f ∗j ; therefore w∗j > f ′j . Bidder j will not be screened out by bidding

b′j. In the Winner Selection, from Lemma 2.3 and Lemma 2.6, if bidder j wins by bidding

(w∗j ,Z
∗
j ), it also wins by bidding (w∗j ,Z

′
j) in Optimal-RaaS or GRAD. This completes the

proof.

Lemma 2.10. pj = max{fj, p∗j} is a critical value for each winning bidder j in RaaS-RP.

Proof. Let cj = max{fj, p∗j}. We now examine the following two cases:

1) If bidder j bids wj < cj , then we have either wj < fj or wj < p∗j . We now

discuss these two cases: 1) wj < fj . In this case, bidder j will be screened out in the

Bidder Selection of RaaS-RP. 2) wj < p∗j . In this case, since p∗j is the critical value for

winning bidder j in Optimal-RaaS or GRAD, j will not be selected as a winner according

to Lemma 2.4 and Lemma 2.7. Therefore in either of the cases, bidder j will not win if

wj < cj .

2) If bidder j bids wj > cj , it is clear that wj > fj and wj > p∗j . Hence j will not be

screened out of the auction in the Bidder Screening, and furthermore, it will be selected as

a winner according to Lemma 2.4 and Lemma 2.7.

Therefore, cj is the critical value for winning bidder j. Since the payment pj of RaaS is

set to cj , we prove the lemma.

Theorem 2.7. RaaS-RP is truthful.

Proof. According to Lemmas 2.8, 2.9, 2.10 and Theorem 2.1, RaaS-RP is truthful.

Theorem 2.8. RaaS-RP is individually rational.

Proof. For any bidder j bidding its true value (vj,Yj), we consider two possible cases:

1) Bidder j is a winner. Its payoff is uj = vj − pj = vj − max{fj, p∗j}. For a winning

bidder, wj > fj; in a truthful mechanism, wj = vj . Hence we have vj > fj . Meanwhile,
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in Theorem 2.3 and Theorem 2.5, we have proved vj > pj for a winning bidder. Therefore

uj = vj −max{fj, p∗j} > 0. 2) Bidder j is not a winner. Its payoff is 0. This completes the

proof.

2.6 Performance Evaluation

The simulation runs were conducted on a computer with a 2.5GHz Intel i5 CPU and 4GB

memory. The social welfare is given in terms of credits, whose monetary worth can be

determined by the cloud service provider (seller). In the simulation, there were 40 BSs in

total.

2.6.1 Performance Evaluation of Optimal-RaaS and GRAD

We evaluated the performance of Optimal-RaaS and GRAD in terms of running time and

social welfare by varying the number of MVNOs (bidders), the demanded dynamic re-

sources and the available dynamic resources. Specifically, we came up with the following

3 scenarios for our simulation. All the numbers presented in the figures are averages over

20 runs.

1) In Scenario 1, the demanded dynamic resources were uniformly distributed in [0%, 5%];

the available dynamic resources followed a uniform distribution in [50%, 70%]. The num-

ber of MVNOs was increased from 10 to 90 with a step size of 20. The corresponding

results are presented in Figs. 2.2 (running time) and 2.3(a) (social welfare).

2) In Scenario 2, the number of MVNOs was fixed to 50; the available dynamic re-

sources and demanded dynamic resources were uniformly distributed in [50%, 70%] and

[0%, u1] respectively, where u1 was increased from 3% to 7% with a step size of 1%. The

corresponding results are presented in Fig. 2.3(b).

3) In Scenario 3, the number of MVNOs was fixed to 50; the demanded dynamic

resources and available dynamic resources were uniformly distributed in [0%, 5%] and
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[50%, u2] respectively, where u2 was increased from 50% to 90% with a step size of 10%.

The corresponding results are presented in Fig. 2.3(c).
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Fig. 2.2: Running time
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(c) Scenario 3

Fig. 2.3: Social welfare

We can make the following observations from these results:

1) Fig. 2.2 shows the running times of the proposed mechanisms with various numbers

of MVNOs. The running time of GRAD is 1
78

of that of Optimal-RaaS on small cases

with only 10 MVNOs. Running time savings become more and more significant when

the number of MVNOs becomes larger and larger. Specifically, when it turns to 90, the

running time of GRAD is about 1
10,000

of that of Optimal-RaaS. This leads us to believe that

substantial running time savings can be achieved by using GRAD.

2) Fig. 2.3 shows the performance of the the proposed methods with regard to social

welfare. Social welfare values given by GRAD are always lower than (as expected), but

close to the optimal ones. On average, by varying the number of MVNOs, the maximum
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demanded dynamic resource and maximum available dynamic resource, GRAD achieves

97.1%, 97.0% and 97.2% of optimal social welfare, respectively.

3) Monotonicity can be observed in Figure 2.3. Specifically, in Scenario 1, with more

MVNOs to choose from, both methods lead to higher social welfare. In Scenario 2, more

demanded dynamic resources result in fewer winning bidders (MVNOs), yielding lower

social welfare. In Scenario 3, with larger available dynamic resource, more bidders are

selected as winners, resulting in higher social welfare.

2.6.2 Performance Evaluation of RaaS-RP

With respect to RaaS-RP, we came up with 2 scenarios for our simulation. Scenario 4 is

to reveal the fact that there may exist some winners with 0 payment in Optimal-RaaS and

GRAD. Scenario 5 was developed to evaluate the performance of RaaS-RP in terms of

running time and social welfare by varying BS prices. All the numbers presented in the

figures are averages over 20 runs.

1) In Scenario 4, the number of MVNOs was fixed to 30; the demanded dynamic re-

sources were uniformly distributed in [0%, 5%]; and the available dynamic resources were

increased from 50% to 90% with a step size of 10%. The corresponding results are pre-

sented in Fig. 2.4.

2) In Scenario 5, the number of MVNOs was fixed to 50; the demanded dynamic

resources and available dynamic resources were uniformly distributed in [0%, 5%] and

[50%, 90%] respectively; the prices of BSs were uniformly distributed in [0, u3], where u3

was increased from 0 to 12 with a step size of 3. The corresponding results are presented

in Figs. 2.5 and 2.6.

We can make the following observations from these results:

1) Fig. 2.4 shows that for Optimal-RaaS and GRAD, in which there are no reserve

prices, monotonicity can be observed between the number of winners with 0 payment and

available dynamic resources. Specifically, with more available dynamic resources, both
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Fig. 2.4: Number of Winners with 0 Payment

methods lead to more winners with 0 payment.
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2) Fig. 2.5 shows that the running times of Optimal-RaaS-RP and GRAD-RP decrease

with the increment of BS prices. The reason is, with higher BS prices, more bidders will

be screened out of the auction in Bidder Screening of RaaS-RP because their declared

valuation wj is lower than the reserve price fj . Moreover, the comparison of Optimal-

RaaS-RP and GRAD-RP shows that running time savings are more significant when the

BS price becomes lower. Specifically the running time of GRAD-RP is 1
1123

of that of

Optimal-RaaS-RP in the case of 0 price and 1
76

with the maximum BS price of 12.

3) Fig. 2.6 shows the performance of Optimal-RaaS-RP and GRAD-RP with regards
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Fig. 2.6: Social Welfare of RaaS-RP

to social welfare. With the increment of BS prices, more bidders will be screened out of

the auction, yielding lower social welfare. Furthermore, as expected, social welfare values

given by GRAD-RP are always lower than but close to the Optimal-RaaS-RP; on average,

GRAD-RP achieves 98.6% of optimal social welfare.

2.7 Summary

In this chapter, we proposed a novel auction-based model for RaaS. Based on the proposed

model, we studied the auction mechanism design with the objective of maximizing social

welfare. First, we proposed Optimal-RaaS, which is an ILP and VCG based auction mech-

anism that can achieve optimal social welfare. To reduce time complexity, we proposed

GRAD, which is a polynomial-time greedy mechanism for the RaaS auction. Both meth-

ods have been formally shown to be truthful and individually rational. Extensive simulation

results show that GRAD can quickly produce close-to-optimal solutions. Furthermore, to

prevent winning bidders from making 0 payment, we introduced reserve prices and pre-

sented Optimal-RaaS-RP and GRAD-RP, which were designed based on Optimal-RaaS

and GRAD respectively. We have showed that both mechanisms are truthful and individu-

ally rational too.
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CHAPTER 3

SPATIOTEMPORAL MODELING AND

PREDICTION IN WIRELESS NETWORKS

3.1 Overview

Quite a few models and methods [16] have been proposed for time series analysis with

wireless system data. AutoRegression Integrated Moving Average (ARIMA) and Support

Vector Regression (SVR) are two most widely used methods, which have been applied to

wireless networks. For example, ARIMA has been used in [81, 107] to predict the future

traffic load. However, the limitation of ARIMA lies in their natural tendency to concen-

trate on the mean values of the past series data, which makes it unable to capture the rapid

variational process underlying traffic load [40]. SVR model is also limited for the reason

that the users need to determine some key parameters for the model, and it lacks a struc-

tured way for determining best values for these parameters [40]. More importantly, these

methods use only historical data of the target for prediction without taking into account

spatial dependency (i.e., neighboring BSs), which, however, is very important in a wireless

network.

In this chapter, we propose a novel deep learning approach for spatiotemporal model-
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ing and prediction in cellular networks, using big system data. Deep learning is a multi-

layer representation learning method [53], which aims to automatically discover a simple

but proper representation for the given raw data. Each layer is a non-linear module that

transforms the representation of the previous layer into a more compact representation.

Deep learning has been shown to dramatically improve the state-of-art on many applica-

tion domains, including image/video processing, natural language processing, etc [53]. It

is particularly suitable to infer information from large datasets and requires very little do-

main knowledge and engineering by hand. This work aims to show how deep learning can

be utilized to model time series data collected from a cellular network and make accurate

prediction.

First, we perform a preliminary analysis for a big dataset from the largest wireless car-

rier in China, China Mobile, and use traffic load as an example to show non-zero temporal

autocorrelation and non-zero spatial correlation among neighboring Base Stations (BSs),

which motivate us to discover both temporal and spatial dependencies in our study. We

then present a hybrid deep learning model for time series prediction, which includes a

novel autoencoder-based deep model for spatial modeling and Long Short-Term Memory

units (LSTMs) for temporal modeling. The autoencoder-based model consists of a Global

Stacked AutoEncoder (GSAE) and multiple Local SAEs (LSAEs), which can offer good

representations for input data, reduced model size, and support for parallel and application-

aware training. Moreover, we present a new algorithm for training this autoencoder-based

spatial model. In addition, we conducted extensive experiments to evaluate the perfor-

mance of the proposed model using the China Mobile dataset. The results show that our

model significantly improves prediction accuracy compared to two commonly used base-

line methods, ARIMA and SVR. We also show some results to justify effectiveness of the

autoencoder-based spatial model. To the best of our knowledge, we are the first to lever-

age the emerging deep learning techniques for spatiotemporal modeling and prediction in

wireless networks by developing a new hybrid deep model, and showing its effectiveness
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and superiority with real data from a major wireless carrier.

3.2 Preliminary Data Analysis

In this section, we first describe the dataset used for analysis and evaluation, and then we

perform a preliminary analysis for the data, which motivates our design.

3.2.1 Dataset

Fig. 3.1: Locations of BSs in our dataset

The dataset consists of data collected from a large LTE network of China Mobile at

Suzhou, a major city located in the southeastern part of China. The data was collected

from 2, 844 BSs, roughly covering an area of 6, 500 km2. Locations of all the BSs are

shown in the map given by Fig. 3.1. Here, our analysis is performed based on the downlink

and uplink traffic load. However, the proposed model (Section 3.3) can be applied to other

features. The dataset includes average traffic load of each BS in every hour during the
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period from 00:00 05/01/2015 to 23:00 09/30/2015. To facilitate data analysis, we divide

the target area into a grid, with each cell covering a square of 500×500 m2. Then every BS

can be mapped into a cell in the grid. If a cell includes more than one BS, then its traffic

load is the aggregated load. Note that unlike traditional cellular networks, current dense

small cell networks do not have a hexagon-based layout. A tuple (m,n) is used to uniquely

identify each cell. We denote D = {dm,n,t},∀m,n, t, which is the downlink/uplink traffic

load of cell (m,n) at timeslot t. Since uplink and downlink can be considered separately,

without abusing the notation, we use this to denote both of them. In addition, we denote

dm,n = {dm,n,t},∀t.

For each cell (m,n), we normalize the data into the range [0, 1]. We adopt the tanh

estimator method, a robust and efficient method for normalizing time series data [35],

which calculates the normalized values as follows:

d̂m,n = 0.5(tanh(
0.01(dm,n − d̄m,n)

σdm,n

) + 1), (3.1)

where d̄m,n and σdm,n are the average and standard deviation of dm,n respectively.

3.2.2 Data Analysis

In our preliminary analysis, we try to explore data dependency in both the temporal and

spatial domains. dm,n can be treated as a collection of a random process samples at cell

(m,n). So we can examine data dependency in terms of temporal autocorrelation and

spatial correlation in the temporal and spatial domains respectively. We summarize our

main findings in the following:

Observation 1: Dataset D exhibits non-zero autocorrelation in the temporal domain.

The sample AutoCorrelation Function (sample ACF) [16] is a widely used method

for discovering data dependency in the temporal domain, which describes the dependency

between the values of a sample process as a function of time lag h. The definition of the
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sample ACF at cell (m,n) can be given as follows (for the sake of readability, we omit the

notations of m, n in this definition):

ρ(h) =

T−|h|∑
t=1

(dt+|h| − d̄)(dt − d̄)

T∑
t=1

(dt − d̄)2

,−T < h < T ; (3.2)

where T and d̄ are the total count and mean value of data in the temporal dimension,

respectively. The autocorrelation value lies in the range [−1, 1]. ρ(h) = 1 indicates total

positive autocorrelation between data with a time lag of h; while ρ(h) = −1 means total

negative autocorrelation. Note that ρ(h) = 0 denotes no autocorrelation.
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Fig. 3.2: Temporal autocorrelation

Fig. 3.2 shows a sample ACF at time lag h = 0, 1, · · · , 200 for both downlink and

uplink data. We can see that when the time lag equals one or multiple of 24 (hours), the

autocorrelation is relatively high. This shows that the traffic load at a cell follows a clear

daily pattern. For example, the traffic load peak and off-peak hours are similar on each day.

Therefore, dataset D exhibits non-zero autocorrelation in the temporal domain.

Observation 2: Dataset D reveals non-zero correlation in the spatial domain.

We examine the data correlation in the spatial domain by calculating a widely used

metric [17] for a pair of cells (m,n) and (m′, n′):
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ρ =
cov(dm,n,dm′,n′)

σdm,nσdm′,n′

, (3.3)

where cov(·) is the covariance operator, and σ is the standard deviation. Similarly, this

correlation coefficient ranges in [−1, 1] as well.

Table 3.1: Spatial Correlation
Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7

Cell 1 1.000 0.167 0.435 0.130 0.040 0.341 0.307
Cell 2 0.396 1.000 0.338 0.129 0.084 0.310 0.222
Cell 3 0.345 0.541 1.000 0.159 0.162 0.697 0.536
Cell 4 0.437 0.439 0.458 1.000 0.104 0.131 0.114
Cell 5 0.360 0.471 0.492 0.508 1.000 0.163 0.080
Cell 6 0.286 0.491 0.550 0.432 0.535 1.000 0.603
Cell 7 0.284 0.506 0.526 0.459 0.535 0.577 1.000

We examine the correlation among cells for both downlink and uplink data, and present

the results among 7 closely located cells in Table 3.1. Each cell is subsequently located on

the east side of the previous one. Note that the upper triangular part of Table 3.1 shows

the correlation for uplink data, while the lower triangular part is for downlink data. We

can clearly observe none-zero correlation among these cells from the table. Actually, more

than 50% of the correlation values are greater than 0.300. In addition, we can see that

the correlation values among cells vary a lot. For instance, downlink data in Cell 1 and

Cell 2 have a correlation value of 0.396; while Cell 5 and Cell 6 have a correlation value

of 0.535, even though Cell 2 and Cell 6 are of the same spatial relationship to Cell 1 and

Cell 5, respectively. This property indicates that the spatial correlation is highly location-

dependent.
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3.3 Spatiotemporal Modeling and Prediction

3.3.1 Overview

As mentioned above, simple temporal modeling that uses only historical data of the target

may not work well here due to strong spatial correlation observed from the data. Moti-

vated by the observations described above, we design a novel hybrid deep learning model

to perform spatiotemporal modeling and prediction for each cell (m,n), which leverages

historical data collected from both the target cell and its neighboring cells surrounding it.

The proposed model consists of three major components: Local Stacked AutoEncoders

(LSAEs), a Global Stacked AutoEncoder (GSAE) and Long Short-Term Memory units

(LSTMs). As illustrated by Fig. 3.3, the proposed model works as follows:
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Fig. 3.3: The proposed deep learning model

1) Data of the cell of interest (marked red) and its neighboring cells form a data patch

(marked blue), which can include values of one or multiple features of interest (such as

downlink/uplink traffic load). The GSAE takes such a data patch as input, producing an

encoded representation (called global representation). Note that there is only one GSAE,

which is applied to all patches.

2) After being encoded by the GSAE, each patch will be fed to the corresponding LSAE

to generate another representation (called local representation). The global representation

and local representation will then be concatenated (⊕) to represent each patch.
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3) The concatenated representations will then be passed to LSTMs for prediction.

For spatial modeling, we choose autoencoder [11] as a starting point in our design be-

cause it has been shown to be a simple and effective model for providing a good represen-

tation of input data with much smaller size. We come up with a new hybrid structure based

on autoencoders by introducing GSAE and LSAE, whose benefits are explained in Sec-

tion 3.3.2. However, existing training methods do not work for the proposed hybrid model.

Hence, we also present a new training algorithm in Section 3.3.2. Note that one way to

select neighboring cells for a target cell is to choose all those surrounding it and falling into

a square box as shown in Fig. 3.3. However, the proposed model is not restricted to this

method. This can be determined according to actual networks and applications.

In addition, we choose an RNN, particularly LSTM, for temporal modeling and predic-

tion because gated RNNs (such as LSTM), use gates to control how to update hidden states

and specify how much past information should be let through, which have been shown to

be effective on modeling long-term dependencies [30].

We summarize major notations in Table 3.2

Table 3.2: Major Notations
Notation Description
(m,n) Index of cell and the corresponding data patch
t and T Index and total number of data points

in the temporal domain
i and I Index and total number of GSAE layers
j and J Index and total number of LSAE layers

Wgi and W′
gi

Weights of encoder and decoder in layer i of GSAE
Wlj and W′

lj
Weights of encoder and decoder in layer j of LSAE

bgi and b′gi Biases of encoder and decoder in layer i of GSAE
blj and b′lj Biases of encoder and decoder in layer j of LSAE
hgi and hlj Hidden units in GSAE and LSAE
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3.3.2 Spatial Modeling

Here, we describe the proposed model for spatial modeling, which is a combination of a

GSAE and multiple LSAEs.

An autoencoder is a model (usually a one-hidden-layer neural network) trained to re-

construct its input, which can be used to obtain a different representation (i.e., hidden layer)

of the input with a much smaller size [12, 52]. The process to obtain a different represen-

tation is referred to as encoding, while the process to reconstruct its input is referred to

decoding. In our implementation, we adopt the denoising autoencoder, which is an ex-

tension of a classic autoencoder [90]. It was designed to make the learned representation

robust by reconstructing partially corrupted input. Autoencoders can be stacked to form a

deep network [90]. Stacked autoencoders have been shown to be able to effectively extract

further non-linear representation [11, 90].

A global representation (i.e., hidden layer of an autoencoder) can be obtained, given

the data patch of a cell and a trained GSAE. However, as discussed above, there exists

location-dependent spatial correlation for a data patch. Therefore, it is necessary to obtain

a better representation with less reconstruction loss. To achieve this goal, we propose to use

an LSAE together with the trained GSAE to capture the local location-dependent spatial

correlation and yield a better representation.

Wg

Wl

Wl

GSAE
LSAE 

for (m, n)

11

Wg3

2

*

2
Wg*

*

Data Patch

(m, n)

hg3

h l1

h l2

hg1

hg2

Fig. 3.4: The proposed autoencoder-based spatial model
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An example of the LSAE for cell (m,n) with the GSAE is given in Fig. 3.4. Note that

superscript (∗) indicates they are trained variables. So W∗
gi

are trained weights of layer i

of GSAE. For the sake of readability, notations for bias variables blj , b′lj , b∗gi and b′∗gi are

omitted in both figures. Note that for either GSAE or LSAEs, the layer number can be 1,

resulting in a single-layered autoencoder.

Given a trained GSAE, we use an LSAE to further reduce the reconstruction loss of a

data patch. The layer 1 weights of the LSAE can be trained to reduce reconstruction loss of

layer 1 in the GSAE. Then higher layers of the LSAE are trained to learn a different repre-

sentation of the lower layers. Finally, the highest representation of the GSAE concatenated

by the highest representation of the LSAE generates a better representation of a local data

patch.

The proposed hybrid (global + local) model leads to the following benefits:

• Better Representation: Different cells share some common characteristics, which are

captured by the GSAE. However, as discussed above, each cell also has its specific

location-dependent characteristics, which are captured by the corresponding LSAE.

Hence, compared to the GSAE-only model, the proposed hybrid model can provide

a better presentation for the given data, which has been validated by results presented

later.

• Reduced Model Size: An SAE with Hi hidden units in layer i has
∑I

i=1Hi−1 ∗ Hi

weight variables (whereH0 is the input dataset size), and (H0 +
∑I−1

i=1 2Hi+HI) bias

variables. The number of variables will get very large, when the dataset size is big.

A large model is usually difficult to train. With the proposed hybrid structure, we

have one global, and multiple local SAEs, which both have moderate sizes. Training

such models is much easier and faster.

• Support for Parallel Training: Given a trained GSAE, training LSAEs is independent

of each other. Therefore, they can be trained in parallel.
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• Support for Application-aware Training: LSAEs can be trained according to the

needs of applications. For some applications, we may not be interested in all the

cells in the cellular network. If so, we can only train those LSAEs corresponding to

cells of interest.

Training the hybrid model in Fig. 3.4 is not straightforward. A well-known work [90]

introduced a greedy layer-wise algorithm for effectively training SAE. GSAE can be trained

using this algorithm. However, the next step is to train an LSAE with a trained GSAE, for

which the existing algorithm [90] cannot be directly applied.
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Fig. 3.5: The unrolled GSAE and LSAE

For training and fine-tuning, we need to unroll the GSAE and LSAE, which are shown

in Fig. 3.5. Next, we formally define the encoding function qlj(·) and decoding function

qlj(·) for each layer i of an LSAE.
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plj(Xlj) = Ylj = δ(WljXlj + blj)

qlj(Ylj) =


δ(W′∗

g1
(W∗

g1
Xl1 + b∗g1) + b′∗g1

+ W′
l1
Yl1 + b′l1),

j = 1

δ(W′
lj
Ylj + b′lj), otherwise.

Here, δ(·) is the activation function (we used the sigmoid function in our implementa-

tion). Xlj is the input of layer j, which will be encoded. Ylj is the encoded result of layer

j, which can be decoded for reconstruction. However, Ylj can also be encoded by upper

layer to obtain a more abstract representation. That is to say, Xlj+1
= Ylj . Wlj , W′

lj
,

blj and b′lj are the weights for encoding, weights for decoding, bias for encoding and bias

for decoding, respectively, in the LSAE. W∗
g1

, W′∗
g1

, b∗g1 and b∗g1 are the trained weights

for encoding, trained weights for decoding, trained bias for encoding and trained bias for

decoding, respectively, in the GSAE. Note that ql1(·) establishes the connection between

the GSAE and LSAE.

We use tied weights [90] for the GSAE and LSAE: the weight matrix in a decoding

function is the transpose of the weight matrix in the encoding function, i.e.,W′
gi

= WT
gi

,

W′
lj

= WT
lj

. Note that if Wl1 = 0 and b′l1 = 0, the proposed model degenerates into a

GSAE, because in this case, ql1(Yl1) = δ(W′∗
g1

(W∗
g1

Xl1 +b∗g1)+b′∗g1) is actually the recon-

structed result of the GSAE. We can initialize Wlj = 0 and b′l1 = 0 as the starting point

for training an LSAE. We formally present the LSAE training algorithm as Algorithm 3.1,

which consists of two phases: pre-training and fine-tuning.

In this algorithm, patch(dm,n,t) gives input data corresponding to Cell (m,n) and its

neighboring cells (surrounding Cell (m,n)) at timeslot t. X̃i is the corrupted version of

Xi. Lines 1–3 generate the input data for the first layer in the LSAE. As discussed above,

Line 4 initializes b′l1 = 0 and line 5 initializes the weights Wlj = 0. Line 6 pre-trains the
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Algorithm 3.1: Training the LSAE with J layers for cell (m,n)

Input : Dataset D, the trained GSAE with weights W∗
gi

, bias b∗gi , b′∗gi
Output: W∗

lj
, b∗lj , b′∗lj

1 Xl1 := ∅;
2 forall t do
3 Xl1 := Xl1 ∪ patch(dm,n,t);

4 b′l1 = 0;
5 Wlj := 0, ∀j;
6 Wl1 ,bl1 ,b

′
l1

:= arg minWl1
,bl1 ,b

′
l1
L(Xl1 , ql1(pl1(X̃l1)));

7 Xl2 := pl1(Xl1), j := 2;
8 while layer j ≤ J do
9 Wlj ,blj ,b

′
lj

:= arg minWlj
,blj ,b

′
lj
L(Xlj , qlj(plj(X̃lj)));

10 Xlj+1
:= plj(Xlj));

11 j := j + 1;

12 unroll the GSAE and LSAE as in Fig. 3.5;
13 W∗

lj
,b∗lj ,b

′∗
lj

:= arg minWlj
,blj ,b

′
lj
L(X̃l1 ,X

′), ∀j ∈ {1, 2, ..., J};
14 return W∗

lj
, b∗lj , b′∗lj ;

first layer with a partially corrupted input. The reconstruction loss is defined to be the cross

entropy as in [11, 52]:

L(X,Z) =
∑

xlog(z) + (1− x)log(1− z). (3.4)

In our implementation, Stochastic Gradient Descent (SGD) [45] algorithm is applied to

minimize the reconstruction loss. Other methods, such as RMSProp and AdaGrad [45],

can also be applied here to train the model. Line 7 generates the input Xl2 for the second

layer with uncorrupted Xl1 . Lines 8–11 show the pre-training process for layer 2 up to

layer J . After layer j is pre-trained, the input Xlj+1
for (j + 1)-th layer can be obtained

from Xlj+1
= plj(Xlj). Note that the uncorrupted input Xlj is fed to the encoder. After

all the layers have been pre-trained, we unroll the trained GSAE and LSAE as shown in

Fig. 3.5 for fine-tuning (Line 13), where all weight matrices and bias variables are updated.

X′ is the reconstructed input.

An LSAE cannot be trained without the GSAE because the decoding function of LSAE
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relies on the trained GSAE. The first layer of the LSAE is pre-trained and fine-tuned dif-

ferently from other (upper) layers, which takes the trained layer 1 of GSAE as input. Given

the pre-trained and fine-tuned layer 1, layers 2 to J of the LSAE are pre-trained and fine-

tuned independently from the GSAE. Note that, given a trained GSAE, all LSAEs can be

trained in parallel. In addition, it is not required to have the same structure for the GSAE

and LSAE: GSAE and LSAEs can have different numbers of layers; and the number of

hidden units in each layer can also be set differently. Moreover, the structures of LSAEs

do not have to be the same.

3.3.3 Temporal Modeling and Prediction

As mentioned above, we propose to use an RNN for temporal modeling and prediction,

which takes the representations learned from the hybrid spatial model as input.

An RNN is a generalization of the feed forward neural network for modeling sequence

(time series) data [71]. However, a well-known problem with standard RNNs is that it

can be difficult to model long-term dependencies [38]. Long Short-Term Memory (LSTM)

was proposed in [37], which is known to be able to capture long-term temporal depen-

dencies [30, 31]. LSTM incorporates gates, which allow the model to learn how to forget

previous hidden states and how to update the current states. A diagram of the LSTM unit

from [102] is shown in Fig. 3.6, which is a slight simplification of [32].
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Fig. 3.6: LSTM unit [102]
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it = σ(Wxixt + Whiht−1 + bi)

ft = σ(Wxfxt + Whfht−1 + bf )

ot = σ(Wxoxt + Whoht−1 + bo)

gt = φ(Wxcxt + Whcht−1 + bc)

ct = ft � ct−1 + it � gt

ht = ot � φ(ct)

The LSTM unit consists of a single memory cell ct, an input and output modulation gate

(gt and ht) and three gates (input it, output ot and forget ft). σ(·) is the sigmoid function;

and φ(x) is the hyperbolic tangent function φ(x) = 2σ(2x) − 1. � and ⊕ denote the dot

product and sum of two vectors, respectively. The W terms denote the weight matrices.

For example, Whf is the hidden-forget weight matrix; while the b terms are the biases.

The memory cell combines the previous cell states, current input and previous output,

to update hidden states. The forget gate determines if the information should forgotten or

remembered. The output gate learns how the memory cell should affect the hidden states.

To predict the future value dm,n,t′+1 for a cell (m,n), the data patches corresponding

to the past T timeslots are taken as the input. They will be encoded by the GSAE and

the LSAE. For each timeslot t ≤ t′, the following three values will be concatenated as

a vector: dm,n,t, and GSAE and LSAE representations of patch(dm,n,t). In this way, we

obtain a temporal sequence of vectors, as shown in Fig. 3.7. Then the LSTM unit processes

this sequence as described above and predict dm,n,t′+1.
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Fig. 3.7: Temporal modeling and prediction

3.4 Performance Evaluation

3.4.1 Settings

We compared our approach with two widely used methods for time series analysis. The

first approach is ARIMA [39], which is one of the most popular linear models for time

series forecasting and has been applied to wireless networks [92, 107]. The second base-

line approach is SVR, which is a variant of Support Vector Machine (SVM) proposed for

regression [21, 84]. It has been also applied for time series analysis in many applica-

tions [60, 72]. In the experiments, we used the implementation of ARIMA and SVR in two

libraries [45] and [73], respectively. These two baselines were compared with the proposed

model in terms of three commonly used performance metrics [26]: Mean Squared Error

(MSE), Mean Absolute Error (MAE), and Log Loss (also known as binary cross-entropy).

For neighboring cell selection in spatial modeling, we chose to use data from all cells

located within a 11× 11 square box that is centered at the location of a target cell. That is

to say, we considered data from 120 neighboring cells for modeling Cell (m,n).

We chose the commonly used sigmoid function as the activation function in each layer
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of both the GSAE and LSAEs. Regarding the corruption process in autoencoders, we

adopted a stochastic method proposed in [90]. In our implementation, the corruption level

was set to 0.1. The GSAE has two layers (unrolled), and the lower layer has 20 hidden

units, and second layer has 2 hidden units. All the LSAEs has a single layer with 2 hidden

units.

We randomly chose 15 cells for testing. For each cell (m,n), we split the data into

training set and test set. We presented the corresponding results in the following.

3.4.2 Prediction Results

First, we present the experimental results to show the overall prediction performance of the

proposed model.

Fig. 3.8 shows a comparison between prediction results and the actual values (from the

dataset) for both downlink and uplink traffic load at a randomly chosen cell. We can see that

the prediction results well match the trend of actual values. Specifically, the MSE, MAE

and Log Loss are 0.042, 0.165 and 0.583, respectively for downlink traffic load; while,

they become 0.031, 0.137, 0.556 respectively for uplink. Moreover, prediction results are

very close to the actual values around the major transition points, when the traffic load falls

below or rises above 0.4.

Fig. 3.9 shows a comparison among ARIMA, SVR and the proposed model for both

downlink and uplink traffic load in terms of MSE, MAE and Log Loss for one of the chosen

locations, while Fig. 3.10 presents the average errors over all the chosen locations. From

these two figures, we can see that the proposed model consistently outperforms ARIMA

and SVR in terms of all the metrics. Specifically, in Fig. 3.10, the proposed model offers

about 30.8%, 20.5%, 33.1% less error than SVR on average in terms of MSE, MAE and

Log Loss, respectively. Moreover, it leads to around 40.4%, 28.4%, 18.5% less error than

ARIMA on average in terms of MSE, MAE and Log Loss, respectively. These results

well justify effectiveness of the emerging deep learning models on cellular network data
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analysis and more importantly, the superiority of our design that takes into account data

dependencies in both the temporal and spatial domains.
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Fig. 3.8: Prediction results VS. actual values
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Fig. 3.10: Average prediction errors

3.4.3 Spatial Modeling

In this subsection, we present the results to justify the effectiveness of the proposed hybrid

model for spatial modeling approach.
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Data patches are encoded by both the GSAE and LSAEs. The decoders can reconstruct

them so that we can take an in-depth look to make sure the encoded results are indeed good

representations of the original data. Fig. 3.11 (downlink) and Fig. 3.12 (uplink) show the

reconstructed results of data patches corresponding to 9 cells. Each image corresponds to a

data patch; and each tiny block (i.e., pixel) in an image corresponds to a cell. Hence, each

image has 11 ∗ 11 blocks. Brightness of a pixel indicates how heavy the traffic load of the

corresponding cell is (the brighter, the heavier).

Fig. 3.11: Reconstructed downlink traffic load

Fig. 3.12: Reconstructed uplink traffic load

In both figures, the first rows are the original data patches of the 9 randomly chosen

cells; The second rows are the corresponding patches reconstructed by the GSAE. The last

rows are data patches reconstructed by The proposed hybrid model (GSAE+LSAE). Note

that multiple LSAEs were trained since the original data patches came from different cells.

From these two figures, we can see that the reconstructed results given by the GSAE

is relatively “blurry" but somehow still captures the patterns of the original data; while the

final reconstructed results given by the proposed hybrid model are very close to the original

data. These results confirm that the proposed hybrid model does offer good representations

for the original data.
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Fig. 3.13: Prediction performance improvement (Left: Downlink, Right: Uplink)

Now we show how LSAEs can help improve the prediction performance. In this ex-

periment, the number of hidden units of our single-layered LSAEs, k, was changed from

0 to 4, with 0 corresponding to the case without LSAEs. The second layer of GSAE was

then set to have (4− k) hidden units. All other settings remain the same. In this way, even

though the value of k is changed, the GSAE and a LSAE together had a representation

with a constant length of 4, which ensures a fair comparison. Fig. 3.13 shows how the

performance improvement ratio changes with k, which is defined as follows:

M(0)−M(k)

M(0)
∗ 100%,

where M(k) denotes the prediction error (MSE, MAE or Log Loss) corresponding to k

(M(0) then corresponds to the case without LSAEs).

From Fig. 3.13, we can see that the prediction performance improvement rises mono-

tonically with k. Specifically, in terms of MSE for downlink, the improvement ratio goes up

from 1.96% to 5.54%, when n increases from 1 to 4. This observation validates our claim

that learning local characteristics is essential and learning more helps improve prediction

performance. However, the tradeoff is that more complicated local models may lead to

much longer training time. Determining the best configurations for the GSAE and LSAEs

is task dependent. It depends on the nature of input data, available computing resources

and the number of cells of interest.
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3.5 Summary

In this chapter, we first performed a preliminary analysis for a real dataset from China Mo-

bile to show temporal and spatial dependencies. Then we presented a hybrid deep learn-

ing model for spatiotemporal prediction, which includes a novel autoencoder-based deep

model for spatial modeling and LSTMs for temporal modeling. The autoencoder-based

model consists of a GSAE and multiple LSAEs, which can offer better representations

for input data (compared to the GSAE-only model), reduced model size, and support for

parallel and application-aware training. Moreover, we presented a new algorithm for train-

ing the proposed spatial model. The experimental results show that, compared to ARIMA

and SVR, the proposed deep model significantly improves prediction accuracy; and the

autoencoder-based spatial model is effective and efficient.
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CHAPTER 4

QUALITY-AWARE AND FINE-GRAINED

INCENTIVE MECHANISMS IN MOBILE

CROWDSENSING SYSTEMS

4.1 Overview

Mobile wireless networks have become an essential part in wireless networking with the

prevalence of mobile device usage. However, some mobile users haven’t realized that their

smartphones have powerful sensing capabilities. Most smartphones are equipped with var-

ious embedded sensors, including microphone, camera, GPS, accelerometer, gyroscope,

WiFi/3G/4G interfaces, etc. Moreover, booming wearable devices (such as Google Glass,

Smart Watches, Fitbit, Sensordrone [75], etc.) can be connected to smartphones via net-

work interfaces, such as Bluetooth, to extend their sensing capabilities. Embedded sensors

and wearable devices can enable applications and services in various domains, such as

environmental monitoring, social networking, healthcare, transportation and safety.

Recently, Mobile CrowdSensing (MCS) have been gaining increasing popularity. We

consider a general-purpose MCS system [79], as shown in Fig. 1.1. While participating in
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MCS, there is usually a cost occurring to a mobile user. For example, performing sensing

activities consumes energy from a smartphone. So the mobile user may want to earn certain

credits (e.g., money) to compensate for his/her energy loss. Most sensing tasks are location-

dependent, which may require mobile users to travel to or around certain areas, leading to

certain costs such as transportation. Furthermore, mobile users usually won’t be willing to

share their privacy while undertaking sensing tasks if there are no satisfactory rewards.

Therefore, we are motivated to consider a reverse auction based incentive mechanism

to enable fair pricing between the cloud operator and mobile users in MCS. As illustrated

in Fig. 1.1, after receiving a sensing task from a service user, the cloud operator (the buyer

of sensor data) announces it to mobile users. Mobile users (bidders, sellers and service

providers) offer their bids for undertaking the task and selling their sensor data. Based on

the bids, the cloud operator will selectively determine winners and after collecting sensor

data from winners, it will make payments to them. Auction mechanism design is crucial for

supporting MCS, because the trading rules between the buyer (the cloud operator) and the

sellers (mobile users) heavily depend on it. Specifically, among all the behavior character-

istics of bidders, truthfulness [65] and individual rationality [50] are of special interest and

most desirable in MCS. An auction mechanism is truthful if a bidder will not increase its

payoff by submitting any other bids instead of his/her true values. An auction without truth-

fulness will be vulnerable to market manipulation and produce very poor outcomes [44].

An auction mechanism is individually rational if the payoff of every bidder is not negative

by bidding his/her true values.

We aim to develop mathematical models to characterize the quality of a recruited crowd

(a set of mobile users). We believe the models for Quality of Crowd (QoC) should be

application-dependent and we introduce several such models to serve various applications.

Furthermore, Unlike [22, 97], in our auction formulation, the bids are two-dimensional,

which means the proof of mechanism properties in [22, 97] cannot be directly applied

here; and we follow the Bayesian setting [65] (See Section 4.3), which is a more realistic
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model.

We consider fine-grained MCS, in which each sensing task consists of multiple subtasks

and a mobile user may make contributions to multiple subtasks. For example, if the goal

of a sensing task is to cover a target area, then each subtask may corresponds to a sub-

area. In this way, the recruited crowd may provide a better coverage for the target area. In

addition, a sensing task may even include a set of heterogeneous subtasks. For example,

subtask 1 may request the sensing crowd to collect WiFi signal strengths, while subtask 2

may request for signal strengths of cellular networks. Fine-grained MCS can lead to a better

quality of service and allow a service user to specify a sensing task more flexibly. However,

it also introduces additional complexity for crowd selection because a mobile user may be

a good candidate for multiple subtasks, but may contribute differently to different subtasks.

Existing incentive mechanisms [49] select the crowd for a single task, ignoring benefits

that can be brought by sharing service/data with other tasks/subtasks. However, we aim

to select a crowd to undertake a sensing task, while meeting a certain quality requirement

(explained in Section 4.2) for each of its subtasks. We summarize our contributions in the

following:

• We introduce mathematical models for characterizing QoC for different sensing ap-

plications.

• Based on these models, we present a novel auction formulation for quality-aware and

fine-grained MCS, which minimizes the expected expenditure subject to the quality

requirement of each subtask.

• We discuss how to achieve the optimal expected expenditure, and present a practical

incentive mechanism to solve the auction problem, which is shown to be truthful,

individually rational and computationally efficient.

• We conducted trace-driven simulation using the mobility dataset of San Francisco

taxies [67] and compared the proposed incentive mechanism with two well-designed
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baseline methods (rather than trivial random solutions). Extensive simulation results

show the proposed mechanism achieves noticeable expenditure savings compared to

the baselines; moreover, it produces close-to-optimal solutions.

4.2 Quality of Crowd (QoC) Models

We summarize major notations in Table 4.1.

Table 4.1: Major Notations
Notation Explanation
i and M Index of mobile users and the total number of

mobile users
ci and wi True and declared costs of mobile user i respectively
Yi and Zi True and declared quality score vectors of

mobile user i respectively
bi and B Bid of mobile user i and the corresponding

vector
xi and x Winner selection variable of mobile user i

and the corresponding vector
pi and p Payment to mobile user i and the corresponding vector
j and N Index of subtasks and the total number of subtasks
rj and R Quality requirement of subtask j and the corresponding

vector
gj(·) QoC model of subtask j

We focus on a general-purpose MCS system with a sensing crowd of M mobile users.

A subset of mobile users will be recruited to undertake a sensing task includingN subtasks.

For each selected mobile user, there is a cost of ci as explained above. A quality score is

given for mobile user i participating in subtask j (denoted as yij), which quantifies the qual-

ity of services/data the mobile user is potentially capable of providing to that subtask. It is

application-dependent and can be assigned according to various factors such as availability,

accuracy of sensor data, reputation, etc. The cloud operator can calculate quality scores for

mobile users and let them know their own quality scores. We use Yi = [yi1, ..., yij, ..., yiN ]

to denote the quality score vector of mobile user i for all sensing subtasks.
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The Quality of Crowd (QoC) for subtask j, qj , quantifies the quality of services/data

the sensing crowd is potentially capable of providing, which could be given by a function

gj(·) that can satisfy the following properties: 1) gj(·) is a monotonically non-decreasing

function of 〈yij〉 and 〈xi〉, where xi is a binary value indicating whether mobile user i is

recruited or not; and 2) gj(·) returns a value in [0, 1]. The first property reflects the nature

that with a larger population of the recruited crowd and/or higher individual quality scores,

the QoC for the corresponding subtask should not become worse. In order to make it easier

for comparisons and understanding, the value of QoC should be scaled into [0, 1], with

1 indicting the corresponding subtask can be perfectly completed by the recruited crowd.

Note that the auction-based incentive mechanisms presented later are not restricted to any

particular QoC model (function). In the following, we introduce several QoC models that

can cover a large variety of sensing applications.
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Fig. 4.1: QoC models

1) Linear model:

qj =
min(

∑M
i yijxi, qmax)

qmax

. (4.1)

This model simply sums up quality scores of all mobile users as the QoC if a goal qmax has

not yet achieved; otherwise, the QoC remains at qmax. This model is suitable for applica-

tions with a goal/constraint of achieving a certain sensing duration or collecting a certain
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number of samples. Here, yij can be the sensing duration or the number of sensing samples

that mobile user i can potentially provide for subtask j. Linear models have been used

in [36, 43].

2) Probabilistic coverage model:

qj = 1−
M∏
i

(1− yijxi). (4.2)

If yij gives the probability that the target of subtask j (e.g., an area or a set of points of

interest) can by covered by recruiting mobile user i, then qj is the probability that the target

can be covered by the recruited crowd. This model is suitable for sensing applications with

a goal/constraint of covering a target area or a set of target points.

3) Logarithmic model:

qj =
log(1 +

∑M
i log(1 + yijxi))

log(1 +
∑M

i log(1 + yij))
. (4.3)

In the numerator, the inner log term causes the return value to have a diminishing increment

with the quality score, and the outer log term leads to diminishing increment with the

population of the recruited crowd.

4) Hyperbolic tangent model:

qj = tanh(
M∑
i

yijxi). (4.4)

Note that it has been shown by [97] that function (4.3) is submodular, i.e., the increase

of the return value diminishes with the input set. We can easily show that function (4.4) is

submodular too. These two models are suitable for most applications which extract mean-

ingful information from sensor data, because usually given a larger data set, the additional

information that can be obtained diminishes. Fig. 4.1 illustrates how QoC changes with

the population of the crowd according to the three non-linear models. In this example, all
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mobile users have a common quality score of 0.1.

As mentioned above, we consider fine-grained MCS, in which each sensing task con-

sists of multiple subtasks. Each subtask needs to be completed with a minimum quality

requirement, rj . We use R = [r1, ..., rj, ..., rN ] to denote a vector of quality requirements

of all subtasks. The cloud operator recruits mobile users and makes sure qj = gj(Y,X) ≥

rj, ∀j ∈ {1, ..., N}, for the given sensing task, where X = [x1, ..., xi, ..., xM ].

4.3 Auction Formulation

In MCS, incentive mechanism design can be formulated as a reverse or procurement auc-

tion mechanism design problem. In the auction, 1) the cloud operator (the buyer) announces

a sensing task to mobile users (bidders and sellers); 2) each mobile user i submits a bid bi

(defined below); 3) the cloud operator uses an incentive mechanism to select the winners

and determine payments; 4) winners carry out the sensing task and submit results to the

cloud operator; 5) the cloud operator checks the results and makes payments to winners. In

the following, we use mobile user and bidder interchangeably.

Specifically, bi = (wi,Zi), in which wi is mobile user i’s declared cost, and Zi is mo-

bile user i’s declared quality vector. If mobile user i does not want to participate in certain

subtasks, the corresponding declared quality scores can be set to 0. Because mobile user

i’s true cost ci and true quality vector Yi are private and only known to mobile user i him-

self/herself, wi and Zi could be different from ci and Yi, respectively. Different from [1],

mobile users’ private costs, 〈c〉, are assumed to follow a known distribution here. This

assumption is known as Bayesian setting [65], and it is a realistic assumption because such

a distribution can be obtained from historical data of previous auction transactions. fi(c)

denotes the probability density function; and Fi(c) denotes the corresponding cumulative

distribution function. So fi(c) = d
dc
Fi(c). B = [b1, ...,bi, ...,bM ] is the bid vector of

all mobile users. B−i denotes the bids of all mobile users except i, so B = [bi,B−i]. In
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addition, each mobile user i is a single-minded bidder [65], i.e., at a cost of ci, he/she will

participate in those subtasks, to which he/she has non-zero quality scores; or none at a cost

of 0 otherwise.

The cloud operator must complete each subtask j to the required quality rj , ∀j ∈

{1, ..., N}. Moreover, the cloud operator also wishes to conserve money and minimize

its expected expenditure by selectively recruiting mobile users. Specifically, an auction

mechanism takes the bid vector B and the quality requirement vector R as input and re-

turns a winner vector x = [x1, ..., xi, ..., xM ], where xi = 1 if mobile user i wins, and

xi = 0 otherwise; it also returns a payment vector P = [p1, ..., pi, ..., pM ], where pi is the

payment that the cloud operator will make to mobile user i. Based on the output of the

auction, the payoff of mobile user i is defined as

ui =


pi − ci, xi = 1;

0, xi = 0.

(4.5)

The expenditure of a reverse auction is the sum of the payments
∑M

i pi to all mobile users

(bidders).

4.3.1 Desirable Properties

In this section, we describe three desirable properties for an auction mechanism:

• Individual Rationality: an auction mechanism is individually rational if for any

bidder i, the payoff is non-negative when bidder i bids his/her true value (ci,Yi).

• Truthfulness: an auction mechanism is truthful if and only if for every bidder i and

B−i, bidder iwill not increase his/her payoff by making a bid (wi,Zi) that is different

from his/her true value (ci,Yi); i.e., bidder i’s payoff for bidding (ci,Yi) is at least

his/her payoff for bidding any other bid (wi,Zi).
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• Computational Efficiency: an auction mechanism is computationally efficient if the

outcome can be computed in polynomial time.

Of the three properties, truthfulness is the most difficult to achieve. The bid is two-

dimensional because for bidder i, the bid bi contains two parts: bidder i’s declared cost wi

and bidder i’s declared quality vector Zi. As a result, Myerson’s theorem [61] about the

properties of one-parameter truthful mechanisms cannot be directly applied. To design a

truthful auction mechanism with two dimensions, we introduce the following definitions:

Definition 4.1 (w-Monotonicity). If bidder i wins by bidding (w∗i , (z
∗
i1, ..., z

∗
ij, ..., z

∗
iN)),

then he/she also wins by bidding (w′i, (z
∗
i1, ..., z

∗
ij, ..., z

∗
iN)) with any w′i ≤ w∗i .

Definition 4.2 (z-Monotonicity). If bidder i wins by bidding (w∗i , (z
∗
i1, ..., z

∗
ij, ..., z

∗
iN)),

then he/she also wins by bidding (w∗i , (z
′
i1, ..., z

′
ij, ..., z

′
iN)) with all z′ij ≥ z∗ij .

Definition 4.3 (Critical Payment). The payment pi for winning bidder i is set to the critical

value di such that bidder i wins if wi < di, and loses if wi > di.

Lemma 4.1. In an MCS auction mechanism, if w-Monotonicity, z-Monotonicity, and crit-

ical payment are satisfied, bidder i will not increase his/her payoff by bidding (ci,Zi) =

(ci, (zi1, ..., zij, ..., ziN)) instead of (ci,Yi) = (ci, (yi1, ..., yij, ..., yiN)), when Yj 6= Zj .

Proof. We examine two possible scenarios:

1) zij < yij for every j. Let dy, dz denote the critical payments for bidding (ci,Yi)

and (ci,Zi) respectively. We consider two sub-cases: a) bidder i wins by bidding (ci,Zi).

Based on z-Monotonicity, we know that he/she will also win by bidding (ci,Yi). In other

words, for any ci < dz, we have ci < dy. Hence, dy ≥ dz; the payment of bidding (ci,Yi)

will not be decreased. b) bidder i loses by bidding (ci,Zi). In this sub-case, the payoff of

bidding (ci,Yi) is 0 if he/she loses and non-negative if he/she wins.

2) zij > yij for one or more j’s. Before actually making payments to bidder i, the cloud

operator has a quality control that makes sure the actual quality score yij (derived from the
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submitted sensor data) is equal to or greater than zij . If not, no payments will be made to

bidder i, yielding negative payoff for him/her with bidding (ci,Zi).

The above two cases complete the proof.

Lemma 4.2. In an MCS auction mechanism, if w-Monotonicity, z-Monotonicity, and crit-

ical payment are satisfied, bidder i will not increase his/her payoff by bidding (wi,Zi)

instead of (ci,Zi), when ci 6= wi.

Proof. Denote the Critical Payment for bidding (ci,Zi) by d. We consider two cases:

1) (ci,Zi) is a losing bid. In this case, ci > d. We consider two sub-cases: a) (wi,Zi)

is a losing bid. Bidder i would have a 0 payoff, which is not better than bidding (ci,Zi).

b) (wi,Zi) is a winning bid. He/she receives the payment d because the critical payment is

independent of wi; the payoff of bidding (wi,Zi) would be negative, since d < ci.

2) (ci,Zi) is a winning bid. If (wi,Zi) is a winning bid, bidder i receives the same

payment p with (ci,Zi). If (wi,Zi) is a losing bid, he/she receives a payment of 0.

The above two cases complete the proof.

Theorem 4.1. An auction mechanism for MCS is truthful if it satisfies w-Monotonicity,

z-Monotonicity and critical payment.

Proof. Based on the definition of truthfulness, it suffices to show that bidder i will not

increase his/her payoff by bidding any other bid (wi,Zi) instead of (ci,Yi). Lemma 4.2

has shown that bidder i will not increase his/her payoff by bidding (wi,Zi) instead of

(ci,Zi). In Lemma 4.1, we have proved that bidder i will not increase his/her payoff by

bidding (ci,Zi) instead of (ci,Yi). Therefore, bidder i will not increase his/her payoff by

bidding any (wi,Zi) instead of (ci,Yi). This completes the proof.

4.3.2 Virtual Cost

Next, we introduce virtual cost for reverse auctions and show its relationship with the

expected expenditure. The concept of virtual valuation has been introduced for forward
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auctions in [61].

Definition 4.4 (Virtual Valuation). In a forward auction, the virtual valuation of bidder i

with valuation vi is

φi(vi) = vi −
1− Fi(vi)
fi(vi)

, (4.6)

where the hazard rate fi(vi)
1−Fi(vi) is assumed to be monotonically non-decreasing (regularity

assumption).

Theorem 4.2 ([65]). Consider any (forward) truthful mechanism and fix the bids b−i of all

bidders except for bidder i. The expected payment of bidder i satisfies:

E[pi(vi)] = E[φi(vi)xi(vi)]. (4.7)

However, in a reverse auction, the valuation of a bidder can be treated as the negative

of its cost, i.e., vi = −ci. Therefore,

φi(vi) = −ci −
1− Fi(vi)
fi(vi)

Moreover, it can be easily derived that

Fi(vi) = 1− Fi(ci), fi(vi) = fi(−ci) = fi(ci)

Hence, we have

φi(vi) = −(ci +
Fi(ci)

fi(ci)
)

Definition 4.5 (Virtual Cost). In a reverse auction, the virtual cost of bidder i with cost ci
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is

βi(ci) = ci +
Fi(ci)

fi(ci)
(4.8)

where the regularity assumption requires that fi(ci)
Fi(ci)

is monotonically non-increasing. It

is clear that βi(ci) = −φi(vi).

Theorem 4.3. Consider any reverse truthful mechanism and fix the bids b−i of all bidders

except for bidder i. The expected payment to bidder i satisfies:

E[pi(ci)] = E[βi(ci)xi(ci)] (4.9)

Proof. The payment from the buyer to a seller in a reverse auction can be viewed as the

negative of the payment from a buyer to the seller in a forward auction. Therefore:

E[pi(ci)] = E[−pi(vi)] = E[−φi(vi)xi(vi)] = E[βi(ci)xi(ci)]

Because of Theorem 4.3 and the independence of all bidders’ costs, it is fairly easy to

show that the expected expenditure of a reverse truthful mechanism is equal to the total

virtual cost. Therefore, to minimize the expected expenditure, it suffices to minimize the

total virtual cost
∑M

i βi(ci)xi.

4.4 Quality-aware Incentive Mechanisms (QIMs)

In this section, we present quality-aware incentive mechanisms (QIMs). First, we discuss

how to achieve the optimal expected expenditure. Then, we present a practical QIM that is

computationally efficient.
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4.4.1 Optimal Solutions

The QIM design problem consists of two subproblems: Winner Selection and Payment

Determination. Winner selection problem can be formulated as the following Integer Pro-

gramming (IP) problem:

IP-Winner:

min
X

M∑
i=1

βi(wi)xi (4.10)

Subject to:

qj = gj(Z,X) ≥ rj, ∀j ∈ {1, ..., N} (4.11)

xi ∈ {0, 1} (4.12)

The objective (4.10) is to minimize total virtual cost, i.e., the expected expenditure of

the cloud operator. Constraints (4.11) ensure that each subtask’s quality requirement is met.

Let Ψ(B) denote the optimal value of IP-Winner and Ψ(B−i) denote the optimal value of

IP-Winner with bid bi removed. We can achieve the optimal as follows:

1. Winner Selection: Select winners X∗ by solving IP-Winner;

2. Payment Determination: pi := β−1
i (Ψ(B−i)− (Ψ(B)− βi(wi))) if x∗i = 1; pi := 0,

otherwise.

This incentive mechanism(referred to as QIM-Opt) is designed by following the VCG

(Vickrey-Clarke-Groves [65]) auction mechanism. Note that both the Winner Selection and

Payment Determination are different from those in [1].
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4.4.2 Proof of QIM-Opt Properties

Lemma 4.3. w-Monotonicity is satisfied by the Winner Selection of QIM-Opt.

Proof. Suppose mobile user i wins by bidding b∗i = (w∗i , (z
∗
i1, ..., z

∗
ij, ..., z

∗
iN)), or equiv-

alently Ψ(B−i) > Ψ((b∗i ,B−i)). We will prove that mobile user i also wins by bidding

b′i = (w′i, (z
∗
i1, ..., z

∗
ij, ..., z

∗
iN)) with any w′i < w∗i through contradiction. Suppose mobile

user i will lose by bidding b′i. Then Ψ((b′i,B−i)) = Ψ(B−i). Therefore, Ψ((b′i,B−i)) >

Ψ((b∗i ,B−i)). However, with the same winner vector x of (b∗i ,B−i), the total virtual cost

of (b∗i ,B−i) would be greater than (b′i,B−i) because w∗i > w′i; this contradicts the state-

ment that Ψ((b′i,B−i)) > Ψ((b∗i ,B−i)). Hence, the supposition is false and mobile user i

will also win by bidding b′i. This completes the proof.

Lemma 4.4. z-Monotonicity is satisfied by the Winner Selection of QIM-Opt.

Proof. Suppose that mobile user i wins by bidding b∗i = (w∗i , (z
∗
i1, ..., z

∗
ij, ..., z

∗
iN)), or

equivalently Ψ(B−i) > Ψ((b∗i ,B−i)). We will prove that mobile user i also wins by

bidding b′i = (w∗i , (z
′
i1, ..., z

′
ij, ..., z

′
iN)) with all z′ij ≥ z∗ij through contradiction. Sup-

pose mobile user i will lose by bidding b′i. Then Ψ((b′i,B−i)) = Ψ(B−i). Therefore,

Ψ((b′i,B−i)) > Ψ((b∗i ,B−i)). However, with the same winner vector x of (b∗i ,B−i), the

total virtual cost of (b′i,B−i) is equal to the total virtual cost of (b∗i ,B−i); this contra-

dicts the statement that Ψ((b′j,B−i)) > Ψ((b∗i ,B−i)). Hence, the supposition is false and

mobile user i will also win by bidding b′i. This completes the proof.

Lemma 4.5. pi = β−1
i (Ψ(B−i)− (Ψ(B)− βi(wi))) is a critical value for winning mobile

user i in QIM-Opt.

Proof. In QIM-Opt for winning mobile user i, Ψ(B−i) − (Ψ(B) − βi(wi)) is calculated

based on the opportunity cost, which is the increment of total virtual cost of other mobile

users caused by the absence of mobile user i. The opportunity cost in a reverse auction

corresponds to the concept of opportunity cost in a forward auction introduced in [65].
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Because of the regularity assumption, βi(·) is a monotonically increasing function. There-

fore if wi > β−1
i (Ψ(B−i) − (Ψ(B) − βi(wi))), it will result in a virtual cost higher than

the opportunity cost. So mobile user i will not be selected as a winner. Otherwise if

wi < β−1
i (Ψ(B−i)− (Ψ(B)− βi(wi))), it will yield a virtual cost lower than the opportu-

nity cost. So mobile user i will be selected as a winner. This completes the proof.

Theorem 4.4. QIM-Opt is truthful.

Proof. According to Lemmas 4.3, 4.4, 4.5 and Theorem 4.1, QIM-Opt is truthful.

Theorem 4.5. QIM-Opt is individually rational.

Proof. If mobile user i bids true value (ci,Yi), his/her payoff is ui = pi−ci = β−1
i (Ψ(B−i)−

Ψ(B)+βi(ci))−ci. The optimality of Ψ(B) causes Ψ(B−i)−Ψ(B) ≥ 0. Moreover, since

βi(·) is monotonically increasing, we have ui ≥ 0. This completes the proof.

However, solving IP-Winner may take exponentially long time for a large-sized prob-

lem instance. Even for the linear QoC model, IP-Winner is still an Integer Linear Problem

(ILP), which is usually hard to solve. In our simulation, we used an optimization solver to

provide optimal solutions for the linear QoC model. If we consider other QoC models, then

IP-Winner becomes a non-linear integer programming problem, which is even much harder.

In addition to time complexity, it has been shown that truthfulness cannot be preserved by a

VCG-based auction mechanism with an approximation (instead of optimal) algorithm [65].

Therefore, we present a non-VCG-based QIM with computational efficiency.

4.4.3 Computationally Efficient QIM

Here, we present a QIM that is truthful, individually rational and computationally efficient,

which we call QIM-E. Similar to the above method, QIM-E consists of two phases: Winner

Selection and Payment Determination. Winner Selection (Algorithm 4.1) is a heuristic

approach, which keeps selecting the mobile user (bidder) with the smallest weight as a
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winner. We adopt the following metric αi as the weight to assist the selection:

αi =
β(wi)∑N
j=1

vij
rj

, (4.13)

where vij is the marginal quality score mobile user i can contribute to subtask j (according

to a QoC model), given a prior winner set (i.e., crowd) S ′:

vij =


min(gj(S

′ ∪ {i}), rj)− gj(S ′), gj(S
′) < rj;

0, otherwise.

Then the algorithm updates 〈vij〉 and 〈αi〉 because in each iteration, gj(S ′) changes with

the newly selected mobile user. For those remaining mobile users with a marginal quality

score of 0 for all subtasks, they will be eliminated from the auction. The algorithm stops

when there are no mobile users left.

Algorithm 4.1: Winner Selection of QIM-E
Input : Bid vector B, mobile user (bidder) set S, subtask QoC models 〈gj(·)〉 and

quality requirement vector R
Output: Winner vector X

1 xi := 0, ∀i ∈ {1, · · · ,M};
2 S′ := ∅;
3 while S 6= ∅ do
4 αi := β(wi)∑N

j=1

vij
rj

, ∀i ∈ S;

5 k := arg mini∈S(αi);
6 xk := 1;
7 S := S \ {k};
8 S′ := S′ ∪ {k};
9 update 〈vij〉, ∀i ∈ S;

10 forall m ∈ S do
11 if vmj = 0, ∀j ∈ {1, ..., N} then
12 S := S \ {m};

13 return X := [x1, ..., xi.., xM ];

Note that the weight of each remaining mobile user changes in each iteration; so instead
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of maintaining a fixed sorted bidder list, the algorithm updates their weights and makes the

selection based on the updated weights. In Payment Determination (Algorithm 4.2), to

determine the payment for winning mobile user l, the algorithm repeats the above winner

selection for the mobile user set with l excluded. When a winning mobile user k is found

such that his/her selection can disqualify l from winning the auction, the payment is set to

the highest cost that helps l disqualify k or any winning mobile user before k.

Algorithm 4.2: Price Determination of QIM-E
Input : Bid vector B, mobile user (bidder) set S, subtask QoC models 〈gj(·)〉,

quality requirement vector R, winner vector X
Output: Payment vector P

1 forall l ∈ S do
2 pl := 0;
3 if xl = 1 then
4 S∗ := S \ {l};
5 S′ := ∅;
6 calculate 〈vlj〉;
7 while S∗ 6= ∅ do
8 αi := β(wi)∑N

j=1

vij
rj

, ∀i ∈ S∗;

9 k := arg mini∈S∗(αi);
10 S∗ := S∗ \ {k};
11 S′ := S′ ∪ {k};
12 pl := max(pl, β

−1
l (αk

∑N
j=1

vlj
rj

));
13 update 〈vij〉, ∀i ∈ {S∗, l};
14 if vlj = 0, ∀j ∈ {1, ..., N} then
15 break;
16 forall m ∈ S∗ do
17 if vmj = 0, , ∀j ∈ {1, ..., N} then
18 S∗ := S∗ \ {m};

19 return P := [p1, ..., pi, ..., pM ];

4.4.4 Proof of QIM-E Properties

Next, we show that QIM-E is truthful, individually rational and computationally efficient.
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Lemma 4.6. w-Monotonicity and z-Monotonicity are preserved in the Winner Selection of

QIM-E.

Proof. Suppose mobile user i wins by bidding (w∗i ,Z
∗
i ) = (w∗i , (z

∗
i1, ..., z

∗
ij, ..., z

∗
iN)). We

prove that: 1) he/she will also win by bidding (w′i,Z
∗
i ) = (w′i, (z

∗
i1, ..., z

∗
ij, ..., z

∗
iN)) with

any w′i < w∗i ; and 2) he/she will also win by bidding (w∗i ,Z
′
i) = (w∗i , (z

′
i1, ..., z

′
ij, ..., z

′
iN))

with all z′ij > z∗ij .

Let α∗i , 〈v∗ij〉 denote the weight and marginal quality scores respectively when mobile

user i bids (w∗i ,Z
∗
i ). Let α′i and 〈v′ij〉 denote the weight and marginal quality scores respec-

tively when he/she bids (w′i,Z
∗
i ) or (w∗i ,Z

′
i). In either case of (w′i,Z

∗
i ) or (w∗i ,Z

′
i), it is clear

that v′ij ≥ v∗ij and α′i < α∗i ; i.e., the weight becomes smaller in each iteration for him/her.

Moreover, as illustrated in lines 10–12 in Algorithm 4.1, if he/she has not been eliminated

by bidding (w∗i ,Z
∗
i ), he/she will not be eliminated by bidding (w′i,Z

∗
i ) or (w∗i ,Z

′
i) either.

Therefore, he/she will still win with bid (w′i,Z
∗
i ) or (w∗i ,Z

′
i). This completes the proof.

Lemma 4.7. The payment pl is set to a critical value for each winning mobile user (bidder)

l in QIM-E.

Proof. Let k be the index of mobile user with the smallest weight in each iteration until

his/her selection disqualifies mobile user l. Let dl = maxk(β
−1
l (αk

∑N
j=1

vlj
rj

)). Note that

the marginal quality scores 〈vlj〉 are updated in each iteration. If mobile user l bids wl > dl,

then αl > αk,∀k, meaning l does not have the smallest weight in any iteration before

he/she is disqualified by k and thus will be eliminated from the auction. If mobile user l

bids wl < dl, then αl < αk in one or more iterations, meaning l will be chosen as a winner

the first time when αl < αk happens. Hence dl is the critical value for winning mobile user

l. In Algorithm 4.2, the payment pl is set to dl. This completes the proof.

Theorem 4.6. QIM-E is truthful.

Proof. According to Lemmas 4.6, 4.7 and Theorem 4.1, QIM-E is truthful.
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Theorem 4.7. QIM-E is individually rational.

Proof. We examine two possible cases. First, it is clear that the payoff of mobile user l is

0 if mobile user l is not a winner according to Algorithm 4.2. Second, if mobile user l is a

winner, let the critical value be dl and mobile user l’s cost be cl. Since QIM-E preserves the

critical payment property as shown in Lemma 4.7, it is obvious that wl < dl and dl = pl.

Since wl = cl in a truthful mechanism, it is clear that pl − cl > 0. Therefore, the payoff is

always non-negative. This completes the proof.

Theorem 4.8. QIM-E is computationally efficient.

Proof. In Algorithm 4.1, line 4 takesO(MN) time to calculate 〈αi〉 and update 〈vij〉. Note

that finding the mobile user with the minimum weight only takes O(M) in line 5. Since

the while-loop runs M times, the time complexity of Algorithm 4.1 is O(M2N).

However, in Algorithm 4.2, the for-loop (lines 1–18) iterates M times, and the inner

while-loop (lines 7–18) takes O(M2N) time because it has the same complexity with Al-

gorithm 4.1. So Algorithm 4.2 takesO(M3N) time. Therefore, the overall time complexity

of QIM-E is O(M3N), which completes the proof.

4.5 Performance Evaluation

4.5.1 Baseline Methods

For fair comparisons, we chose two well-designed incentive mechanisms (one of them

is truthful and individually rational) as the baselines, instead of trivial random solutions.

The first baseline is a revised version of the greedy method with a fixed list of bidders

(referred to as Fix-L) presented in [98]. Since we deal with a two-parameter auction (cost

and quality score), we use αi = β(wi)∑N
j=1 zij

as the weight to sort the bidders in non-decreasing

order to obtain the fixed list. Then we iterate through the fixed list and select winners

until the quality requirements of all subtasks are met. The winners are paid based on the
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corresponding critical values [98]. Similar as in [98], it can be shown that Fix-L preserves

truthfulness and individual rationality.

In the second baseline approach, all bidders are sorted in the non-decreasing order based

on their virtual cost (referred to as Low-C). The algorithm repeatedly selects the bidder with

the lowest virtual cost among the remaining bidder set. This process stops when quality

requirements of all subtasks are met and winners are paid with critical values. Note that

even though this approach is not truthful, it is still a good baseline to compare with because

the cloud operator tends to directly reduce the expenditure by selecting bidders with low

costs.

4.5.2 Simulation Settings

We conducted trace-driven simulation for performance evaluation using the mobility dataset [67]

of San Francisco taxies, which contains GPS coordinates of approximately 500 taxis col-

lected over 30 days in the San Francisco Bay Area. For the distributions of mobile user

(bidder) costs, we considered the uniform distribution fi(ci) = 0.25 in the range of (0, 4],

the exponential distribution fi(ci) = 0.5e−0.5ci in the range of (0,+∞) and χ2-distribution

with freedom degree of 2. Note that these functions have the same mean value of 2 and the

first two distributions were also used in [42] and [98]. For QoC models of subtasks, we have

implemented the linear model, the probabilistic coverage model and the hyperbolic tangent

model introduced in Section 4.2. In our simulation, each subtask corresponds a sub-area,

each of which is a square-like region with a randomly chosen center, whose left/top and

right/bottom boundaries differ by 0.0005 degrees in both longitude and latitude (about 160

feet). We derived the quality score of each taxi i for a subtask j by dividing the number of

samples of i within sub-area j by the number of weeks i showed up in the dataset, which

captures the availability of the mobile user. Due to non-uniform distribution of samples, to

ensure the quality requirements are satisfied, we normalized them by a large number, 50,

and curved them with an upper and lower bounds of 0.15 and 0.04 respectively.
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We came up with the following scenarios for simulation. Simulation runs were con-

ducted on a computer with a 2.2GHz Intel Core i7 CPU and 16GB memory. When the

linear QoC model was used, the optimal expected expenditures were obtained using the

method presented in Section 4.4.1 (labeled as QIM-Opt), in which Gurobi Optimizer [34]

was employed to solve the corresponding ILP problems. Each number presented here is an

average over 30 runs.

1) In scenarios 1 and 2, the number of subtasks was fixed to 15; quality requirements of

subtasks were set to be uniformly distributed in [0.7, 0.8]. In scenario 1, the linear model

was applied for QoC; the number of mobile users was varied for all the cost distributions

described above. In scenario 2, the above exponential distribution was applied for costs; the

number of mobile users was varied for the three QoC models mentioned above. The results

of scenario 1 are presented in Fig. 4.2 and results of scenario 2 are shown in Fig. 4.2(a) and

Fig. 4.3.

2) In scenario 3, the linear model was applied for QoC; costs of mobile users were

generated by following the above exponential distribution; the number of mobile users was

set to 350. The number of subtasks was increased from 5 to 30 with a step size of 5. The

corresponding results are presented in Fig. 4.4.

3) In scenario 4, we evaluated the running time of proposed mechanisms. The number

of subtasks was fixed to 15; the linear model was applied for QoC; costs of mobile users

were generated according to the above exponential distribution; quality requirements of

subtasks were uniformly distributed in [0.7, 0.8]. The number of mobile users was increased

from 250 to 500 with a step size of 50. The corresponding results are presented in Fig. 4.5.

4.5.3 Simulation Results and Analysis

We can make the following observations from the results.

1) In Fig. 4.2, we show the expected expenditures under different cost distributions,

when the linear model was applied for QoC. In Fig. 4.4, we show how the expected ex-
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(a) Exponential distribution

250 300 350 400 450 500
6

8

10

12

14

16

Number of Mobile Users

E
x
p

e
n

d
it
u

re

 

 

Fix−L
Low−C
QIM−E
QIM−Opt

(b) Uniform distribution
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(c) χ2-distribution

Fig. 4.2: Performance with the linear QoC model and different cost distributions (Scenario
1)
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(a) Probability coverage model
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(b) Hyperbolic tangent model

Fig. 4.3: Performance with different QoC models and the exponential cost distributions
(Scenario 2)
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Fig. 4.4: Performance with different numbers of subtasks (Scenario 3)

penditure changes with the number of subtasks. From these figures, we can see that the

expected expenditures given by QIM-E are consistently close to the optimal values. Specif-

ically, in Fig. 4.2, QIM-E produces only 3.9%, 5.1% and 4.4% more expenditures than the

optimal for the exponential, uniform and χ2-distributions of costs on average respectively.

Moreover, in Fig. 4.4, QIM-E gives only 3.2% more expenditures than the optimal on av-

erage.
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Fig. 4.5: Running time (Scenario 4)

2) From Figs. 4.2–4.4, we can see that QIM-E consistently outperforms Fix-L and

Low-C. The reason is that when selecting winners, Low-C does not carefully consider the

quality scores of the mobile users. Even though Fix-L considers the individual quality

scores, it doesn’t carefully take QoC into consideration . On the contrary, QIM-E favors

those mobile users who contribute the most marginal QoC. Specifically, in Fig. 4.2, QIM-

E produces about 11.9%, 10.7%, 12.6% less expenditures than Fix-L for the exponential,

uniform and χ2-distributions of costs on average respectively. Moreover, in Figs. 4.2(a)

and 4.3, QIM-E produces about 11.9%, 13.2%, 10.6% less expenditures than Fix-L for the

linear, probabilistic coverage and hyperbolic tangent model of QoC respectively. Similar

observations can be made from Fig. 4.4. Note that the performance of Low-C is very close

to Fix-L in all the scenarios.

3) Monotonicity can be observed in Figs. 4.2–4.4. As expected, in Figs. 4.2 and 4.3,

with more mobile users to choose from, all mechanisms yield lower expenditures. On

the contrary, we can see that more subtasks lead to higher expenditures no matter which

mechanism is used according to Fig. 4.4.

4) Fig. 4.5 shows the running time of different mechanisms with various numbers of

mobile users. The running time of QIM-E is only 8.8% of that of QIM-Opt on average,

which shows QIM-E is scalable. The running times of QIM-E, Fix-L and Low-C are fairly

close to each other, which matches the theoretical analyses that suggest they all have a time

complexity of O(M3N).
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4.6 Summary

In this chapter, we have studied incentive mechanism design for quality-aware and fine-

grained MCS. First, we have introduced several models to characterize QoC for different

sensing applications. Based on these models, we have presented a novel auction formula-

tion for quality-aware and fine-grained MCS, which minimizes the expected expenditure

subject to the quality requirement of each subtask. We have discussed how to achieve

the optimal expected expenditure, and presented a practical incentive mechanism to solve

the auction problem, which has been shown to be truthful, individual rational and com-

putational efficient. We have conducted trace-driven simulation using the mobility dataset

of San Francisco taxies. Extensive simulation results have shown the proposed incentive

mechanism achieves noticeable expenditure savings compared to two well-designed base-

line methods, and moreover, it produces close-to-optimal solutions.
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CHAPTER 5

TASK SCHEDULING IN MOBILE

CROWDSENSING SYSTEMS: MODELS

AND ALGORITHMS

5.1 Overview

To minimize energy consumption on smartphones in mobile crowdsensing systems, on one

hand, we can strategically schedule sensor data collection activities for a given set of tasks

without violating their QoSS constraints. On the other hand, since multiple sensing tasks

may request data from common sensors at the same or similar time instants, we can share

sensor data among them to avoid redundant efforts.

In this chapter, we first consider a simple case called single-sensor tasks. In this case,

each sensing task only requests data from a single sensor. In a MCS system, single-sensor

tasks are quite common; for example, many location-dependent applications may just re-

quest smartphones to report their locations. Furthermore, we address a more general case

called multi-sensor tasks. In this case, some sensing tasks request multiple sensors to report

their measurements simultaneously. For example, some applications may request smart-
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phones to report both locations and some other sensor readings (such as microphone and

wireless signals) to create certain maps, such as urban noise map [70] and wireless signal

strength map [76]. Moreover, some sophisticated applications may apply machine learning

techniques to different sensor readings to infer non-trivial information from mobile users

or their environment, such as the mobile social networking application Sociablesense [69].

The main contributions of our work are summarized in the following:

• We formally define the problem of scheduling a set of single-sensor tasks as the

Minimum Energy Single-sensor task Scheduling (MESS) problem and present a

polynomial-time optimal algorithm for this problem.

• We present an Integer Linear Programming (ILP) formulation for the Minimum

Energy Multi-sensor task Scheduling (MEMS) problem, and present two effective

heuristic algorithms to solve it in polynomial time.

• We present extensive simulation results based on real data on sensor energy usages

to show the proposed algorithms achieve significant energy savings, compared to

a widely-used baseline approach, and moreover, the proposed heuristic algorithms

produce close-to-optimal solutions.

To the best of our knowledge, we are the first to conduct a comprehensive study for

sensing task scheduling on a smartphone in the context of a general MCS system and

present provably-good and practically efficient solutions.

5.2 System Model

In this section, we describe our system model, discuss the two cases and formally formulate

the corresponding task scheduling problems. First of all, we summarize major notations in

Table 5.1.
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Table 5.1: Major Notations
Notation Explanation
i and N The index of time instants and N = |Ψ|
j and M The index of sensors and the total number of sensors (on a

smartphone)
Jk The set of indices of sensors in multi-sensor task k

k and K The index of sensing tasks and the total number of tasks
pA(·) The sensing accuracy
qk The QoSS requirement of task k
Sk Sensing task k
wj Energy usage of collecting a reading from sensor j
xij The scheduling variable
Ψ The sequence of time instants, at which sensor data can be

collected.
Ωk The sensing time sequence of task k

As mentioned above, we consider a general multi-application multi-task MCS system

and focus on a participating smartphone that is requested to undertake a set of sensing

tasks involving various sensors. First, we consider a simple case in which each sensing

task only involves a single sensor (i.e., single-sensor tasks). A single-sensor task is given

by a 4-tuple Sk = (k, jk,Ωk, qk), where k is the task ID (that may include information

about the user initiating the request); jk is the index of the sensor (that is requested to take

measurements); Ωk = {t1, · · · , tNk} is a sequence of time instants at which the sensor

readings are requested to be collected, which we call sensing time sequence; and qk is the

Quality of SenSing (QoSS) requirement (which will be explained later). Note that many

applications may simply request a smartphone to collect sensor readings periodically, i.e.,

time instants in Ωk are evenly distributed in the time domain. However, our sensing model

and algorithms are not restricted to this case, i.e., t ∈ Ωk could be any arbitrary time.

For the sake of energy saving, we argue that a sensor measurement may not need to be

taken exactly at the requested time instant because readings of some sensors (such as light,

temperature, etc) may change slowly over time, i.e., they can be collected at time instants

that are slightly different from the requested ones. However, we need to make sure that
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QoSS is maintained at an acceptable level. If a smartphone is requested to collect a reading

from a sensor at time instant t, but it does so at t′ instead, then we say the accuracy of this

sensing action is pA(t, t′) ∈ [0, 1]. Certainly, the closer t′ is to t, the larger the value of

pA(t, t′), i.e., the more accurate. Here, we aim to propose a general model for QoSS so any

method can be applied to estimate the sensing accuracy (as long as it has the property just

mentioned above and it reflects reality). Similar as in [55], a possible solution is to use a

bell-shaped function within a value range between 0 and 1:

pA(t, t′) = e−
(t−t′)2

2σ2 , (5.1)

where different σ′s can be used to model different sensor readings. Here, smaller σ cor-

responds to sensor readings that change quickly over time (such as GPS), while larger σ

corresponds to those that change slowly over time (such as temperature and light). In our

simulation, we used this function to model the accuracy. The model can even be extended

by considering the impact of other factors, such as the current motion state (walking, run-

ning, driving, etc) of the mobile user, on the value of σ.

Suppose that a sensing task Sk = (k, jk,Ωk, qk) requests a smartphone to collect sensor

readings according to a time sequence Ωk = {t1, · · · , tNk}. The phone does so according

to a sensing schedule Γ = {t′1, · · · , t′Nk′}. If ∀t ∈ Ωk, pA(t, t′) ≥ qk (where t′ is the time

instant in Γ that is closest to t, and qk is the QoSS requirement of the sensing task), we say

the sensing schedule Γ meets the QoSS requirement of the sensing task Sk and denote it

by pA(Ωk,Γ) ≥ qk. Note that since different applications may demand different sensing

accuracies, qk is defined to an application-specific parameter that varies with sensing tasks.

With a higher QoSS requirement qk, the actual sensing time instant t′ needs to be closer

to t. A special case is that when qk = 1, the actual sensing time instant t′ need to be exactly

the same as t. However, with a lower QoSS requirement, a relatively larger difference

between t′ and t is allowed. In other words, it will be more flexible to schedule a time
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instant t′ to collect a sensor reading. For a smartphone in a mobile crowd sensing system,

multiple sensing tasks may request data from common sensors at the same or similar time

instants. As a result, with a lower QoSS requirement, there is a better chance that sensor

data can be shared among multiple sensing tasks to reduce energy consumption.

Without loss of generality, we discretize the time domain by evenly dividing a given

sensing scheduling period into intervals (with equal durations) with a sequence of time in-

stants Ψ = {t1, · · · , ti, · · · , tN} and assume that sensor readings can only be taken at those

instants. The finer the granularity, the better the QoSS (i.e., accuracy), but the higher the

computational complexity. The scheduling problem then becomes the problem of finding

the “best" subset of such time instants. Now we are ready to define the scheduling problem

for the single-sensor task case, which is referred to as the Minimum Energy Single-sensor

task Scheduling (MESS) problem and is formally presented below:

Unknown decision variables:

• Scheduling variable xij ∈ {0, 1}: xij = 1 if it is scheduled to collect a reading from

sensor j at ti; xij = 0, otherwise.

MESS:

min
X=〈xij〉

M∑
j=1

wj(
N∑
i=1

xij) (5.2)

Subject to:

pA(Ωk,X) ≥ qk, ∀k ∈ {1, · · · , K}. (5.3)

In this formulation, a set of K sensing tasks Sk are given as input, the output is the
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scheduling matrix X = 〈xij〉, andwj is the energy usage for taking a reading from sensor j.

The objective (5.2) is to minimize the total sensing energy consumption. Without abusing

notations, constrains (5.3) ensure that the sensing schedule X = 〈xij〉 meets the QoSS

requirement of each sensing task.

Next, we address a more general case in which some sensing tasks request a smartphone

to collect readings from multiple sensors simultaneously, i.e., multi-sensor tasks. In this

case, we still use a 4-tuple Sk = (k,Jk,Ωk, qk) to denote a sensing task, where Jk is the

set of indices of sensors from which the task requests data. Note that a unique constraint

here is that if a multi-sensor task requests data from multiple sensors then these sensor

readings must be collected at exactly the same time such that they can be used to generate

some meaningful results. Similar to its counterpart in a single-sensor task, the sensing

time sequence Ωk of a multi-sensor task, is a sequence of time instants at which sensor

readings are requested to be collected. qk is again the QoSS requirement of a multi-sensor

task. Similarly, any functions or methods can be used in this case to model QoSS as long

as they have the properties mentioned above. A feasible solution could still be a bell-

shaped function (5.1), whose σ, however, needs to be properly chosen with consideration

for multiple sensors. A conservative approach is to take the minimum one.

Note that data collected from a sensor j in a multi-sensor task may be used by a single-

sensor task Sk = (k, jk,Ωk, qk) to fulfill its QoSS requirement if j = jk. However, usually

data from a single-sensor task are not sufficient to fulfill the QoSS requirement of a multi-

sensor task unless multiple single-sensor tasks (with the same set of sensors as that of the

multi-sensor task) are scheduled to collect data simultaneously.

Suppose that we are given a multi-sensor task Sk and a feasible scheduling matrix X (to

be feasible, it has to meet the unique multi-sensor scheduling constraint mentioned above).

If we can still use pA(Ωk,X) ≥ qk to denote that a sensing schedule satisfies the QoSS

requirement of task k (which could be a single-sensor task or a multi-sensor task) without

abusing notations, then the Minimum Energy Multi-sensor task Scheduling (MEMS) prob-
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lem can be formally defined in the same way as the MESS problem. We omit the formal

definition due to similarity and space limitation. Even though they can be presented in

the same way, the MESS problem is a special case of the MEMS problem, and the MEMS

problem is much harder since the constraints pA(Ωk,X) ≥ qk,∀k ∈ {1, · · · , K} imply that

if k is a multi-sensor task, then readings from multiple requested sensors must be collected

at the same time, and sensor data can be shared among multi-sensor tasks and single-sensor

tasks.

5.3 Single-Sensor Task Scheduling

In this section, we present a polynomial-time optimal algorithm for the MESS problem

defined above.

For the MESS problem, if two tasks request data from two different sensors, they obvi-

ously don’t interfere with each other; therefore, they can be scheduled independently. The

trouble makers are those tasks that request data from a common sensor, which need to be

scheduled jointly. So we can apply a divide-and-conquer technique here by dividing given

tasks into a collection of non-overlapping subsets of tasks on a sensor-by-sensor basis and

solve a simpler problem of scheduling a subset of sensing tasks that request data from a

common sensor (which we call Simplified MESS (SMESS) problem). Next, we show that

we can pre-process a set of sensing tasks according to their QoSS requirements such that

the SMESS problem can be formulated to an ILP problem with a nice property.

As mentioned above, the scheduling period is discretized to a sequence of time instants

Ψ = {t1, · · · , ti, · · · , tN}. According to the QoSS model, for a given sensing task Sk =

(k, jk,Ωk, qk) and a time instant t ∈ Ωk, we can identify an interval within the scheduling

period (i.e., a subset of continuous time instants in Ψ) such that at least one sensor reading

needs to be collected within the interval to meet the QoSS requirement. Specifically, a time

instant ti ∈ Ψ is in the interval as long as pA(t, ti) ≥ qk. We use l(t, qk) and u(t, qk) to
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denote the indices of starting and ending time instants of the interval respectively. Note

that usually tl(t,qk) ∈ Ψ and tu(t,qk) ∈ Ψ are distributed on the two sides of t. Then we

can formulate the SMESS problem to an ILP problem, which is formally presented in the

following.

Unknown decision variables:

• Scheduling variable xi ∈ {0, 1}: xi = 1 if it is scheduled to collect a reading at ti;

xi = 0, otherwise.

ILP-SMESS(Φj):

min
N∑
i=1

xi (5.4)

Subject to:

u(t,qk)∑
i=l(t,qk)

xi ≥ 1, ∀Sk ∈ Φj,∀t ∈ Ωk. (5.5)

In this formulation, the set Φj of sensing tasks requesting data from sensor j is given

as input and the output is the schedule given by 〈xi〉. The objective (5.4) is to minimize the

total energy consumption. Constraints (5.5) ensure that for each time instant requested by

a task, t, the measurement is taken at least once during the period [tl(t,qk), tu(t,qk)], i.e., the

QoSS requirement of each task is guaranteed to be satisfied. Now we are ready to present

the proposed algorithm for the MESS problem.

The algorithm first divides the given set of sensing tasks into a collection of non-

overlapping subsets Φj according to the sensors requested by them. Then these sensing

task subsets will be fed to the ILP-SMESS as input to calculate the sensor-specific sched-

ules (〈x∗i 〉), which are then combined to form the final solution, i.e., scheduling matrix
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Algorithm 5.1: The Optimal Algorithm for MESS

Input: K sensing tasks {S1, · · · ,SK}
Output: The scheduling matrix X = 〈xij〉

1: Φj := ∅, ∀j ∈ {1, · · · ,M};
2: Φjk := Φjk + Sk; ∀k ∈ {1, · · · , K};
3: xij := 0; ∀i ∈ {1, · · · , N},∀j ∈ {1, · · · ,M};
4: for (j := 1 to M ) do
5: if (Φj 6= ∅) then
6: Solve the LP relaxation of ILP-SMSS(Φj) to obtain the scheduling vector 〈x∗i 〉;
7: 〈xij〉 := 〈x∗i 〉, ∀i ∈ {1, · · · , N};
8: end if
9: end for

10: return 〈xij〉;

〈xij〉. Note that instead of solving ILP-SMESS, we solve its LP relaxation (denoted by

LP-SMESS), which can be done in polynomial time. We will show that doing so always

produces integer optimal solutions to ILP-SMESS and the proposed algorithm solves the

MESS problem optimally in polynomial time. First, we show that a nice property of ILP-

SMESS.

Definition 5.1 (Totally Unimodular (TUM) [66]). A square, integer matrix B is called

UniModular (UM) if its determinant det(B) = ±1. An integer matrix A is called Totally

UniModular (TUM) if every square, nonsingular submatrix of A is UM.

Definition 5.2 (Consecutive-ones Property [63]). if A is (or can be permuted into) a 0− 1

matrix in which for every row, the 1s appear consecutively, then A is TUM.

Lemma 5.1. The constraint matrix of LP-SMESS in its standard form is TUM.

Proof. Let AN̄×N denote the constraint matrix given by (5.5), which is in the canonical

form. N̄ is the total number of constraints in (5.5). According to Definition 5.2, AN̄×N

is TUM since in each row of AN̄×N , 1s appear consecutively. However, LP-SMESS has



88

additional constraints, which are given below:

xi ≤ 1,∀i ∈ {1, · · · , N}. (5.6)

By adding slack variables, we can transform the constraint matrix of LP-SMESS given

by both (5.5) and (5.6) from the canonical form into the standard form [66], which is given

as follows:

G =

 AN̄×N −IN̄×N̄ 0

IN×N 0 IN×N

 ,

where IN×N and IN̄×N̄ are identity matrices. Next, we need to show that G is TUM.

Adding to a TUM matrix with a row or column that is a unit vector will preserve the

total unimodularity [10]. So, without losing the total unimodularity, we can add rows with

unit vectors iteratively to AN̄×N , yielding a TUM matrix:

 AN̄×N

IN×N

 .

Furthermore, more columns with unit vectors will be added with the total modularity pre-

served, resulting in:  AN̄×N IN̄×N̄ 0

IN×N 0 IN×N

 .

In addition, total unimodularity will be preserved by multiplying some columns or rows in

a TUM matrix with −1 [10]. Clearly, if we multiply the columns in the middle part of the

above matrix with−1, we can obtain G, which is still TUM. This completes the proof.

Theorem 5.1. Algorithm 5.1 is a polynomial-time optimal algorithm for the MESS prob-

lem.

Proof. According to Lemma 5.1 and [66], solving the LP relaxation of ILP-SMESS always

produces integer optimal solutions to ILP-SMESS. Moreover, because any two sensing
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tasks requesting data from two different sensors can be scheduled independently, combin-

ing solutions to a series of ILP-SMESS(Φj) can yield an optimal solution to the MESS

problem.

In addition, the pre-processing (lines 1–3) takes O(MN + K) = O(N + K) time

since M (i.e., the number of sensors on a smartphone) can be considered as a small con-

stant. The LP solving (lines 4–9) takes O(MT (LP-SMESS) = O(T (LP-SMESS) time,

where T (LP-SMESS) is the time for solving the LP-SMESS (i.e., the LP relaxation of ILP-

SMESS). Since LP-SMESS includes N variables and at most (KN̂max) + N constraints

(where N̂max = max1≤k≤K |Ωk|). Hence, Algorithm 5.1 is a polynomial-time algorithm.

This completes the proof.

5.4 Multi-Sensor Task Scheduling

In this section, we first show the MEMS problem can be formulated to an ILP problem,

which can be used to provide optimal solutions. Then we present two effective heuristic

algorithms to solve it.

Multi-sensor task scheduling shares some similarities with single-sensor task schedul-

ing: for a given multi-sensor task Sk = (k,Jk,Ωk, qk) and a time instant t ∈ Ωk, an interval

within the scheduling period can also be identified such that the QoSS requirement can be

met if readings are collected from all the sensors in Jk at least once within this interval.

Again, l(t, qk) and u(t, qk) denote the indices of starting and ending time instants of the in-

terval respectively. However, multi-sensor task scheduling differs from single-sensor task

scheduling in the sense that for a multi-sensor task, readings must be collected from all

the sensors in Jk at exactly the same time. Moreover, for multi-sensor task scheduling, we

cannot simply divide all sensing tasks into a collection of non-overlapping subsets of tasks

according to their sensors since it is possible (not necessarily always) for two sensor tasks,

say Sk and Sk′ , to share data if Jk
⋂

Jk′ 6= ∅. We can easily come up with a Non-linear
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Integer Programming (NIP) formulation for the MEMS problem.

NIP-MEMS:

min
X=〈xij〉

M∑
j=1

wj(
N∑
i=1

xij)

Subject to:

u(t,qk)∑
i=l(t,qk)

(
∏
j∈Jk

xij) ≥ 1, ∀k ∈ {1, · · · , K},∀t ∈ Ωk. (5.7)

The objective is again to minimize the total energy consumption. In constraints (5.7),

the non-linear term
∏

j∈Jk
xij takes a value of 1 if and only if xij is 1, ∀j ∈ Jk (i.e., all

the sensors in Jk take measurements simultaneously). Therefore constraints (5.7) ensure

that for each requested time instant t ∈ Ωk of a task k, readings are collected from all

the requested sensors together at least once during the interval [tl(t,qk), tu(t,qk)], in other

words, both the unique multi-sensor task scheduling constraints and the QoSS requirements

are met. Even though we have a mathematical programming formulation for the MEMS

problem, an NIP problem is notoriously hard to solve. Next, we show we can transform

NIP-MEMS to an equivalent ILP problem.

5.4.1 ILP and LP Rounding based Algorithm

The transformation is not trivial. By introducing (u(t, qk)−l(t, qk)+1) new binary variables

for each time instant t ∈ Ωk, ykti =
∏

j∈Jk
xij ∀i ∈ {l(t, qk), · · · , u(t, qk)}, the non-linear

terms in constraints (5.7) can be replaced by newly introduced variables. Furthermore,

since xij takes binary values, we can establish the connections between the new variables

and the scheduling variables by ykti = minj∈Jk xij; i.e., ykti ≤ xij,∀j ∈ Jk. By doing

so, we can ensure if ykti = 1, then xij = 1,∀j ∈ Jk. In this way, we linearize the non-
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linear constraints (5.7). Then we can transform NIP-MEMS to an equivalent ILP problem,

ILP-MEMS, which is presented in the following:

ILP-MEMS:

min
X=〈xij〉

M∑
j=1

wj(
N∑
i=1

xij)

Subject to:

u(t,qk)∑
i=l(t,qk)

ykti ≥ 1, ∀k ∈ {1, · · · , K},∀t ∈ Ωk; (5.8)

ykti ≤ xij, ∀k ∈ {1, · · · , K},∀t ∈ Ωk,

∀j ∈ Jk,∀i ∈ {l(t, qk), · · · , u(t, qk)}. (5.9)

Even though it is easier to solve ILP-MEMS than NIP-MEMS, it may still take expo-

nentially long time for a large-size problem instance. Since we aim to to solve the MEMS

problem in an online manner, we need to design fast polynomial-time algorithms. First,

we come up with a heuristic algorithm based on ILP-MEMS. The basic idea is to solve

the LP relaxation of ILP-MEMS (instead of solving ILP-MEMS directly) and then round

non-integer values to integers. Then the problem boils down to how to round. After an

extensive empirical study and theoretical analysis, we found that the constraint matrix of

the LP relaxation of ILP-MEMS (denoted by LP-MEMS) is unfortunately not (but seems

close to be) TUM. However, an interesting finding is for most problem instances, most of

scheduling variables take integer values if solving LP-MEMS. Therefore, we come up with

a simple LP rounding based algorithm, which is formally presented as Algorithm 5.2.

In this algorithm, we first solve the LP relaxation of ILP-MEMS, which can be done in

polynomial time. However, we may end up with values that are not 0 or 1, but fractional

between 0 and 1. Those values will be simply rounded to 1. In this way, the QoSS require-
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Algorithm 5.2: LP Rounding based Algorithm for MEMS

Input: K sensing tasks {S1, · · · ,SK}
Output: The scheduling matrix X = 〈xij〉

1: Solve the LP relaxation of ILP-MEMS to obtain the scheduling matrix 〈x∗ij〉;
2: for (i := 1 to N ) do
3: for (j := 1 to M ) do
4: if (x∗ij 6= 0 and x∗ij 6= 1) then
5: xij := 1;
6: else
7: xij := x∗ij;
8: end if
9: end for

10: end for

11: return 〈xij〉;

ment of each task is guaranteed to be satisfied. So the solution will certainly be feasible.

This simple rounding algorithm works very well on average cases (since as mentioned

above, most scheduling variables take integer values after solving LP-MEMS), which will

be shown by simulation results. The algorithm is obviously a polynomial-time algorithm.

5.4.2 Greedy Algorithm

Even though Algorithm 5.2 is a polynomial-time algorithm, solving an LP problem may

take a long time in the worst case. So we propose a faster greedy heuristic algorithm that

does not involve LP solving.

The scheduling problem is essentially to determine whether we should take a reading

from sensor j at each time instant ti ∈ Ψ. The basic idea of the proposed greedy algo-

rithm is to keep adding the “best" (explained later) time-sensor pair (i, j) into the solution

(i.e., scheduling sensor j to collect a reading at ti, in other words, set xij := 1) until all

the QoSS requirements are met. The proposed greedy algorithm is formally presented as

Algorithm 5.3.

In the algorithm, Λ is the set of all time-sensor pairs and MAX is a large positive num-
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Algorithm 5.3: Greedy Algorithm for MEMS

Input: K sensing tasks {S1, · · · ,SK}, Λ
Output: The scheduling matrix X = 〈xij〉

1: xij := 0, ∀i ∈ {1, · · · , N}, ∀j ∈ {1, · · · ,M};
2: fmax := MAX;

3: while fmax > 0 do
4: (i∗, j∗) := argmax(i,j)∈Λ f(i, j);
5: xi∗j∗ := 1;
6: Λ := Λ− {(i∗, j∗)};
7: fmax = max(i,j)∈Λ f(i, j);
8: end while

9: return 〈xij〉;

ber. The key issue is to determine which time-sensor pair (i, j) to select in each iteration.

Here, we need to consider two factors: the energy usage associated with scheduling sensor

j at ti (i.e., cost), and the contribution of scheduling sensor j at ti to fulfilling the corre-

sponding QoSS requirements (i.e., profit). Usually it may not result in a good solution if

adding the pair leading to the minimum cost or the maximum profit. We, instead, select

the time-sensor pair that can lead to the maximum profit-to-cost ratio in each iteration.

Specifically, we use the following metric for the time-sensor pair selection:

f(i, j) =
∑
k

∑
t∈Ωk\Ω̂k

g(i, j, k, t)

wj
, (5.10)

where Ω̂k is the set of time instants in Ωk whose QoSS requirements have been fully satis-

fied, which needs to be updated accordingly; wj is the energy usage (cost) for collecting a

reading from sensor j; g(i, j, k, t) is the contribution (profit) that can be made by selecting

(i, j) (scheduling sensor j to collect a reading at ti) to fulfilling the QoSS requirement of

time instant t ∈ Ωk \ Ω̂k in task k. Basically, f(i, j) returns the ratio between the total

profit that can be made by selecting (i, j) and its cost, and the algorithm greedily adds the

time-sensor pair that can lead to the maximum profit-to-cost ratio in each iteration.
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It is desirable to have a profit function, g(·), whose value range is [0, 1], with 1 cor-

responds to the case the corresponding QoS requirement is fully satisfied. There may be

multiple options for such a function. We choose to use the following function:

g(i, j, k, t) =


wj+

∑
j∈Jk

xijwj∑
j∈Jk

wj
, l(t, qk) ≤ i ≤ u(t, qk);

0, otherwise;

(5.11)

where
∑

j∈Jk
xijwj gives the total energy usage of the sensors that have been scheduled

to collect readings at ti; and the denominator is the total energy needed to fully satisfied

the QoSS requirement at ti. For a single-sensor task, it returns either 0 or 1. For a multi-

sensor task k, in an iteration, the QoSS requirement of a time instant t ∈ Ωk may be

partially satisfied because only part (not all) of requested sensors have been scheduled to

work at ti (l(t, qk) ≤ i ≤ u(t, qk)). We use energy usages wj as weights for making

(i, j) selections, which will hopefully lead to less energy consumption for future selections.

This can be shown by a simple example in Fig. 5.1. In this example, there are 3 sensors,

their energy usages w1 < w2 < w3, and the scheduling period is discretized to 9 time

instants. Suppose that a multi-sensor task k requests data collections from all three sensors

at t5, and according to its QoSS requirement, candidate time instants are identified and

circled by a square. The number “1" indicates the corresponding time-sensor pair has been

selected. Consider two time-sensor pairs (that have not yet been selected), (5, 2) and (6, 2)

(marked by two circles), which have the same cost w2. According to our profit function,

g(5, 2, k, t5) < g(6, 2, k, t5), which means selecting (6, 2) is more favorable because after

this selection, selecting (6, 1) with a cost of w1 can fulfill the request, otherwise, we have to

select (5, 3) with a cost of w3 > w1. However, if the following unwieghted profit function

g1(·) is used, g1(5, 2, k, t5) = g1(6, 2, k, t5), which is not desirable.

g1(i, j, k, t) =


1+

∑
j∈Jk

x∗ij
|Jk|

, l(t, qk) ≤ i ≤ u(t, qk);

0, otherwise.
(5.12)
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Sensor1

   w1

Sensor2

   w2

Sensor3

    w3

0          1        0        0        1       0        0        0        1

0          0        0        1        0       0        0        0        1

0          1        0        0        0       1        0        0        1

i =   1        2        3       4       5       6        7       8       9

Time

Fig. 5.1: An example for justifying the profit function g(·)

For each (i, j) pair, evaluating f(i, j) takes O(KN̂max) time. The total number of

(i, j) pairs is (MN), so we can find a (i, j) pair with the maximum profit-to-cost ratio in

O(MNKN̂max) time. This process will be repeated at most (MN) times. Hence the time

complexity of this greedy algorithm is O((NM)2KN̂max) = O(N2KN̂max) since M (i.e.,

the number of sensors on a smartphone) can be considered as a small constant.

5.5 Performance Evaluation

In this section, we present and discuss simulation results to justify the effectiveness of the

proposed algorithms.

We implemented a widely used baseline approach (labelled as “Baseline") for perfor-

mance comparisons. The baseline approach schedules sensors to collect readings exactly at

the requested time instants given by Ωk. For fair comparisons, data sharing is allowed for

the baseline too, i.e., if a common sensor is requested to collect its reading at some time by

multiple tasks, the baseline does it only once for all the tasks. For the MESS problem, we

compared our optimal algorithm (labelled as “Opt-MESS") with the baseline method. For

the MEMS problem, the proposed LP Rounding based algorithm (labelled as “LP-based")

and greedy algorithm (labelled as “Greedy") were compared against the baseline approach

and the optimal solutions provided by solving ILP-MEMS (“Opt-MEMS").

In the simulation, energy consumption was used as the primary metric for performance
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evaluation. We considered 6 frequently used embbed sensors, including GPS, light sensor,

accelerometer, gyroscope, WiFi and 3G. We used real data on power usages of these sensors

obtained from the power profile of a Google Nexus 4 [64] smartphone and multiplied them

by estimated durations to obtain energy usages, which are summarized in the following

table. As mentioned above, we used a bell-shaped function to model QoSS. The values of

σ were set to different values, ranging from 6 minutes to 16 minutes.

Table 5.2: Sensor Energy Usages
Sensor Energy (mAs)

Accelerometer 5
GPS 400

Gyroscope 7
Light sensor 2

WiFi 100
3G 240

The duration of the sensing scheduling period was set to 12 hours (say from 8AM

to 8PM), which is evenly divided into 2 minute intervals. As described in Section 5.2,

we obtained a sequence Ψ of evenly-spaced time instants (within the scheduling period),

at which sensor readings can be collected. The sensing tasks were randomly generated.

Specifically, Ωk in each task k was set to a sequence of evenly-spaced time instants. For

a single-sensor task, the sensor was selected randomly from 6 available sensors mentioned

above. While for a multi-sensor task, the set of sensors were randomly selected from the

following combinations {GPS, WiFi}, {GPS, 3G}, {GPS, light}, {GPS, WiFi, 3G} and

{GPS, accelerometer, gyroscope}. The input of a MEMS problem instance included both

multi-sensor tasks and single-sensor tasks.

We evaluated the performance of the proposed algorithms extensively by varying the

number of tasks, the duration of tasks, and the QoSS requirement of tasks in different

simulation scenarios. Specifically, we came up with 8 scenarios in our simulation: the first

four for MESS and the other four for MEMS. In scenario 1, the duration of each task was
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set to 2 hours with starting time randomly chosen from [1, 10] such that their ending times

do not exceed 12 (the length of the scheduling period). The QoSS requirement was fixed

to 0.8. we changed the number of tasks from 5 to 30 with a step size of 5. In scenario 2,

the number of tasks and the QoSS requirement were fixed to 15 and 0.8 respectively. We

changed the duration of each task from 1 hour to 7 hours with a step size of 1 hour. Similar

to scenario 1, the starting times were randomly generated in certain ranges accordingly such

that their ending times do not exceed 12. In scenario 3, the starting times and durations of

tasks were generated in the same way as scenario 1. The number of tasks was set to 15. We

varied the QoSS requirement of each task from 0.5 to all the way to 1 with a step size of 0.1.

In scenario 4, instead of having a fixed value of 12 hours, the sensing periods varied from 8

hours to 28 hours with a step size of 4 hours. The starting times were randomly generated

in certain ranges accordingly such that their ending times do not exceed the corresponding

sensing periods. The number of tasks, the duration of tasks and the QoSS requirement were

fixed to 15, 2 hours and 0.8 respectively. The settings of scenarios 5, 6, 7 and 8 were the

same as those in scenarios 1, 2, 3 and 4 respectively. But in these scenarios, we tested the

algorithms for the MEMS problem instead of the MESS problem.

The simulation results for MESS and MEMS are presented in Fig. 5.2 and Fig. 5.3

respectively. Note that every number in these figures is the average over 50 runs. From

these simulation results, we can make the following observations:

1) From Fig. 5.2, we can see that the optimal MESS algorithm reduces the sensing

energy consumption significantly by 76.6% on average, compared to the baseline approach.

Furthermore, energy savings become more and more significant when the input size (the

number of tasks or the duration of tasks) become larger and larger. This leads us to believe

that in a MCS system, significant energy savings can be achieved without sacrificing QoSS

too much by strategically scheduling sensor data collections according to the requirements

of tasks.

2) Very similar observations can be made for the multi-sensor task case. Specifically,
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Fig. 5.2: Performance of the MESS algorithms

from Fig. 5.3, we can see that both the LP rounding based heuristic algorithm and the

greedy algorithm achieve substantial energy savings of 77.6% and 75.5% respectively on

average, compared to the baseline. Moreover, the LP rounding algorithm almost always

gives optimal solutions as expected. The greedy algorithm also offers close-to-optimal

solutions. The average difference from optimal is only 13.2%.

3) An interesting observation can be made from Figs. 5.2(c) and 5.3(c) about the trade-

off between energy consumption and QoSS: no matter which algorithm is used (Opt-MESS,

LP-based or Greedy), the energy consumption grows with the QoSS requirement monoton-

ically but very slowly. Increasing the QoSS requirement certainly increases energy con-

sumption since more readings need to be collected at more time instants to fulfill the re-

quirements. However, it turns out it is good to set QoSS requirements to relatively large

values, say 0.8 or 0.9, since doing so does not lead to substantial increase on energy con-

sumption. This finding provides a valuable insight about how to operate a MCS in practice.
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Fig. 5.3: Performance of the MEMS algorithms
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Fig. 5.4: QoSS Loss

When the QoSS requirement becomes 1 for all tasks, our algorithms perform exactly the

same as the baseline approach.

4) From Figs. 5.2(a) and 5.3(a), we can see that no matter which algorithm is used, the

energy consumption grows with the number of tasks monotonically. This is because more
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sensing tasks result in more requested sensing time instants, which certainly lead to higher

energy consumption no matter how sensing activities are optimized. A similar observation

can be made from Figs. 5.2(b) and 5.3(b) about how the duration of sensing tasks affects

the energy consumption.

5) We can see from Fig. 5.2(d) that, compared to the baseline, the optimal MESS algo-

rithm reduces the sensing energy consumption by 66.6% on average; and from Fig. 5.3(d)

that the LP rounding based heuristic algorithm and the greedy algorithm save energy by

72.2% and 70.0% respectively on average. Furthermore, energy savings are more signif-

icant when the sensing period is shorter. This is because with a shorter sensing period, it

becomes more likely for sensing tasks to request data from common sensors at the same or

similar time instants. Therefore, our algorithms can achieve better energy savings.

6) Since QoSS is an important performance metric, we define QoSS loss as (1 −

pA(t, t′)) for a sensing action. In Figs. 5.4(a) and 5.4(b), we show the average QoSS

loss over all sensing actions in all sensing tasks for MESS and MEMS. The simulation

settings were the same as those in scenarios 4 and 8, respectively. From Fig. 5.4, we can

observe that the QoSS loss is always 0 for the baseline approach because the baseline ap-

proach collects sensor readings exactly at the requested time instants. As expected, all the

proposed algorithms introduce certain QoSS losses, which decrease with the QoSS require-

ment. Moreover, the sum of QoSS loss and QoSS requirement should be no greater than

1, which is shown by the results in Fig. 5.4. In addition, we can see from Fig. 5.4(b) that

the greedy algorithm leads to smaller QoSS losses compared to the other two algorithms;

while it offers quite similar performance in terms of energy consumption.

5.6 Summary

In this chapter, we considered the problem of scheduling sensing tasks assigned to a smart-

phone with the objective of minimizing sensing energy consumption while ensuring QoSS.
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First, we considered a simple case in which each sensing task only requests data from

a single sensor and formulated the MESS problem correspondingly. We presented an

polynomial-time optimal algorithm for this problem. Furthermore, we addressed a more

general case in which some sensing tasks request multiple sensors to report their measure-

ments simultaneously, and formulated the MEMS problem correspondingly. We presented

an ILP formulation and two effective heuristic algorithms to solve it. Extensive simulation

results showed that 1) the proposed algorithms achieve over 75% energy savings on aver-

age, compared to a widely-used baseline approach, and 2) the proposed heuristic algorithms

for the MEMS problem produce close-to-optimal solutions.
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CHAPTER 6

CONCLUSIONS

The purpose of this study is to investigate modeling and resource allocation in mobile wire-

less networks. We envision that in the near future, radios and radio resources in a wireless

network can be provisioned as a service to multiple MVNOs, which we refer to as Radio-

as-a-Service (RaaS). So we introduced a novel auction-based model to achieve the goal of

enabling fair pricing and reasonable resource allocation for RaaS. The RaaS auction mech-

anisms we proposed has some desirable properties, including truthfulness and individual

rationality. Moreover, wireless networks have become more and more advanced and com-

plicated, which are generating a large amount of runtime system statistics. Therefore we

proposed to leverage the emerging deep learning techniques for spatiotemporal modeling

and prediction in cellular networks, based on big system data. We presented a hybrid deep

learning model, which includes a novel autoencoder-based deep model for spatial modeling

and LSTMs for temporal modeling. Meanwhile, mobile wireless networks have become

an essential part in wireless networking with the prevalence of mobile device usage. The

success of a crowdsourcing application highly depends on whether a quality crowd can be

recruited to undertake the corresponding tasks. Hence, we studied incentive mechanism

design for quality-aware and fine-grained MCS. The incentive mechanisms also have the

desirable properties of truthfulness and individual rationality. In a MCS system, a smart-
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phone may undertake many different sensing tasks that demand data from various sensors.

It can be energy-consuming to collect data from smartphone sensors. Thus, we consid-

ered the problem of scheduling different sensing tasks assigned to a smartphone with the

objective of minimizing sensing energy consumption while ensuring quality of sensing.

In this thesis, we have explored how to design incentive mechanisms in some systems,

where multiple participates are involved. For example, the participates in RaaS include a

cloud service provider and multiple MVNOs. In MCS, the cloud operator is buying sen-

sor data from mobile users. Incentive mechanisms are crucial in such systems because it

directly determines the trading rules and implicitly defines the behaviors among the partic-

ipates. Inspired by this idea, my work can be extended by studying incentive mechanism

design for other systems in order to motivate participates and determine their behaviors.

In this thesis, we have also investigated a deep learning approach for spatiotemporal

modeling and prediction in wireless networks. It shows deep learning can be utilized to

model cellular network system data and make accurate prediction. Moreover, deep learn-

ing has been shown to dramatically improve the state-of-art on many application domains,

including image/video processing, natural language processing, etc. It is particularly suit-

able to infer information from large datasets and requires very little domain knowledge and

engineering by hand. Inspired by the results of this thesis, it could be an important research

direction to further explore deep learning in the context of mobile wireless networks.
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