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ABSTRACT

Let R be a complete local Gorenstein ring of dimension one, with maximal ideal m.

We show that if M is a maximal Cohen-Macaulay R-module which begins an Auslander-

Reiten sequence, then this sequence is produced by an endomorphism of m, which we call a

Frobenius element, corresponding to a minimal prime ideal. We also observe that Frobenius

elements can be easier to identify when R is a graded ring, instead of complete local. We

give an example application, determining the shape of some components of Auslander-Reiten

quivers, in Section 5.3. (An Auslander-Reiten quiver organizes the indecomposable maximal

Cohen-Macaulay R-modules into a directed graph, with arrows corresponding to irreducible

R-homomorphisms.)

In Chapter 4, we adapt results due to Zacharia and others, from the setting of Artin

algebras. This allows us to list the potential shapes of the components of AR quivers in our

setting. It also has an application to special cases of a well-known conjecture in commutative

algebra (Section 4.2). The appendix contains some lemmas concerning connected graded

rings of Krull dimension one, used in Chapters 2 and 5.
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Chapter 1

Introduction

Notation 1.0.1. Throughout this thesis, all rings are assumed noetherian. A ring which

is described with any subset of the words {reduced, Cohen-Macaulay, Gorenstein, regular}

is implicitly a commutative ring. By a graded ring we shall mean a Z-graded ring, that

is, a ring A =
⊕

i∈ZAi satisfying AiAj ⊆ Ai+j. If A has not been referred to as a graded

ring, J (A) will denote the Jacobson radical of A; but if we have introduced A as a graded

ring, then J (A) will denote the intersection of all maximal graded left ideals of A (in our

situations this will always coincide with the intersection of all maximal graded right ideals).

Similarly, but when A is commutative, if A is not given a grading then Q(A) will denote the

localization A[nonzerodivisors]−1 (the total quotient ring of A), whereas if A is graded then

we will set Q(A) = A[homogeneous nonzerodivisors]−1. If A is any commutative ring, minA

will denote its set of minimal primes.

If A/J (A) is a division ring, we will say that A is local, unless A is graded, in which case

we will say that A is graded-local. By a connected graded ring we shall mean a commutative

N-graded ring R =
⊕

i>0Ri such that R0 is a �eld. In this case R̂ will denote the m-adic

completion of R, where m =
⊕

i>1Ri. If we introduce a local or graded-local ring as a pair

(R,m) this will indicate that m = J (R), the unique maximal (graded) ideal of R.

We will say that an R-module M has rank (speci�cally, rank n), if M ⊗R Q(R) is a free

1



CHAPTER 1. INTRODUCTION 2

Q(R)-module (of rank n). We write R for the integral closure of R in Q(R).

When R is Gorenstein (de�ned next section), and M is an R-module, we will use M∗ to

denote HomR(M,R).

1.1 The Basic Objects

Now we give a brief introduction to the objects studied in this thesis, namely maximal

Cohen-Macaulay modules and Auslander-Reiten (AR) sequences of such.

1.1.1 Cohen-Macaulay modules and Gorenstein rings

Let (R,m) be a commutative local ring and M a �nitely generated R-module. A sequence

of elements x1 . . . , xn ∈ m is called an M -regular sequence provided x1 is a nonzerodivisor

on M and for each i > 2, xi is a nonzerodivisor on M/(x1, . . . , xi−1)M . The length of the

longest M -regular sequence is independent of choice of sequence and is called the depth of

M denoted depthRM . A �nitely generated module M is called maximal Cohen-Macaulay

if depthRM = dimR, the Krull dimension of R. A ring R is called Cohen-Macaulay if it is

maximal Cohen-Macaulay as a module over itself.

If (R,m) is a Cohen-Macaulay local ring, let CM(R) denote the category of �nitely

generated maximal Cohen-Macaulay R-modules, and (following [3]) let Lp(R) denote the

full subcategory of CM(R) whose objects M have the property that Mp is Rp-free for all

prime ideals p 6= m. If R is instead a Cohen-Macaulay connected graded ring, we de�ne

CM(R) and Lp(R) in the same way except we restrict to graded modules.

Assume (R,m) is a commutative ring which is either local or connected graded. Then

R is Gorenstein if and only if it is Cohen-Macaulay and dimk(ExtdimR
R (k,R)) = 1. If R is

Gorenstein, and M ∈ CM(R), then ([7, Theorem 3.3.10]): ExtiR(M,R) = 0 for all i > 1,

and the map M −→ HomR(HomR(M,R), R) given by m 7→ (f 7→ f(m)) is a natural

isomorphism. We will denote Hom(M,R) by M∗.
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We will have occasion to use the following basic lemma.

Lemma 1.1.1. Let (R,m) be a Gorenstein local ring of dimension one. Let k = R/m. Then

the cokernel of the natural inclusion R↪→m∗ is isomorphic to k.

Proof. To begin with, we have a natural short exact sequence 0 −→ m −→ R −→ k −→ 0.

Applying (_)∗, we get an exact sequence 0 −→ k∗ −→ R∗ −→ m∗ −→ Ext1
R(k,R) −→

Ext1
R(R,R). Since depthRR = 1, k∗ = 0, so this exact sequence can viewed as 0 −→

0 −→ R −→ m∗ −→ Ext1
R(k,R) −→ 0. Moreover, dimk(Ext1

R(k,R)) = 1 since R is one-

dimensional Gorenstein.

1.1.2 Auslander-Reiten sequences

In this subsection, assume that (R,m) is a complete (or graded-) local Cohen-Macaulay ring.

De�nition 1.1.2. Let N be an indecomposable in CM(R). Then (cf. [27, Lemma 2.9′]) we

may de�ne an Auslander-Reiten (AR) sequence starting from N to be a short exact sequence

0 // N
p // E

q //M // 0 (1.1.1)

in CM(R) such that M is indecomposable and the following property is satis�ed: Any map

N −→ L in CM(R) which is not a split monomorphism factors through p. Equivalently, N is

indecomposable and any map L −→ M in CM(R) which is not a split epimorphism factors

through q. The sequence (1.1.1) is unique (up to isomorphism of short exact sequences) if it

exists, and is also called the AR sequence ending in M . Given an AR sequence (1.1.1), N is

called the Auslander-Reiten translate of M , written τ(M); and τ−1(N) denotes M .

De�nition 1.1.3. A morphism f : X −→ Y in CM(R) is called an irreducible morphism if

(1) f is neither a split monomorphism nor a split epimorphism, and (2) given any pair of

morphisms g and h in CM(R) satisfying f = gh, either g is a split epimorphism or h is a

split monomorphism.
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Irreducible maps are closely related to AR sequences: see Lemma 3.2.5.

Theorem 1.1.4. ([27, Theorem 3.4], [3, Theorem 3]) Let M � R be an indecomposable in

CM(R). Then M ∈ Lp(R) if and only if there exists an AR sequence ending in M .

Notice also that if R is Gorenstein, applying (_)∗ shows that there exists an AR sequence

ending inM if and only if there exists an AR sequence starting fromM . The appendix of [1]

contains a nice proof of Theorem 1.1.4 in a slightly di�erent setting, but one which includes

Gorenstein rings of dimension one.

Lemma 1.1.5. Assume dimR = 1, and let N ∈ CM(R). Then N ∈ Lp(R) if and only if

N ⊗R Q is a projective Q-module, where Q = Q(R).

Proof. The prime ideals of Q correspond to the prime ideals of R not equal to m. Now use

the fact that, since Q is noetherian, a Q-module is projective precisely when it is free at all

maximal ideals of Q (cf. [10, Exercise 4.11]).

1.1.6. For the remainder of this section assume furthermore that R is Gorenstein of dimen-

sion one, and M � R is an indecomposable in Lp(R). Then (ignoring a graded shift, in

the graded case; it will not concern us) τ(M) = syzR(M) (cf. [27, 3.11]), where syzR(M)

denotes the syzygy module of M , which is de�ned to be the kernel of a minimal surjection

onto M by a free R-module. The module τ−1(M) = syz−1
R (M) ∈ Lp(R) is determined by

syzR(syz−1
R (M)) ∼= M , and can be computed via syz−1

R M ∼= (syzR(M∗))∗.

De�nition 1.1.7. Given a ring A, and A-modules X and Y , HomA(X, Y ) denotes

HomA(X, Y )/{maps factoring through projective A-modules}, and EndA(X) denotes HomA(X,X).

An A-homomorphism is said to be stably zero if it factors through a projective A-module.

Lemma 1.1.8. [27, Lemma 3.8] Let A be a commutative ring, and let X and Y be �nitely

generated A-modules. The sequence

HomA(X,A)⊗A Y
µ // HomA(X, Y ) // HomA(X, Y ) // 0
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is exact, where µ : HomA(X,A)⊗A Y −→ HomA(X, Y ) is given by f ⊗ y 7→ (x 7→ f(x)y).

Lemma 1.1.9. EndR(M) ∼= Ext1
R(syz−1

R (M),M) as left EndR(M)-modules.

Proof. Let N = syz−1
R (M). By applying HomR(_,M) to a short exact sequence 0 −→

M −→ F −→ N −→ 0 where F is free, we have an exact sequence HomR(F,M) −→

HomR(M,M) −→ Ext1
R(N,M) −→ Ext1

R(F,M) = 0. It only remains to observe that the

image of HomR(F,M) −→ HomR(M,M) consists of all endomorphisms factoring through

projectives, which simply follows from the de�nition of projective.

Remark 1.1.10. LetM ∈ Lp(R) be a nonfree indecomposable. Then EndRM is a (graded-)

local ring (cf. [3, Proposition 8]), and therefore so is EndRM . It follows from Lemma 1.1.9

and Theorem 1.1.4 that the ring EndRM has a simple socle when considered as a left module

over itself, and that if h : M −→ M generates this socle then the AR sequence starting

from M is obtained as the pushout via h of the short exact sequence 0 −→ M −→ F −→

syz−1
R (M) −→ 0 where F is free. In particular, if ι denotes the given injective mapM −→ F ,

and 0 −→ M −→ X −→ N −→ 0 is the AR sequence starting from M , then X ∼=

(M ⊕ F )/{(−h(m), ι(m))|m ∈M}.

1.2 Summary of Results

This thesis consists of �ve chapters, and an appendix. Our main setting has R as a complete

local Gorenstein ring of dimension one, but R can be connected graded instead of complete

local. The main goal of Chapter 2 is to show that there exists a set of elements (we call them

Frobenius elements) of EndRm, corresponding to the minimal primes of R, which produce

the Auslander-Reiten (AR) sequences in a concrete way. In Section 2.3 we observe some

added conveniences that arise when R is graded. In Chapter 3 we provide background about

AR quivers. The AR quiver of R is essentially the directed graph with vertices the inde-

composables in Lp(R), and arrows corresponding to the irreducible maps. We also establish

criteria for con�rming that AR components have certain desirable properties� for example,
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properties which are hypotheses in classical theorems such as Riedtmann's Structure Theo-

rem and the Brauer-Thrall Theorem. The main ideas in Chapter 3 come from [1], but we

provide more details and correct an error.

In Section 4.1, we adapt results from Green-Zacharia [12] and Kerner-Zacharia [19], from

the context of sel�njective Artin algebras, to our context of Gorenstein rings of dimension

one. This allows us to list the potential shapes of the components of AR quivers in our

setting, when we specialize slightly to assume that R is a complete intersection ring. We

do not know if any result such as this had been previously known for nonartinian rings.

The results of 4.1 also have applications to special cases of the Huneke-Wiegand conjecture,

which we describe in 4.2.

In Chapter 5, we compute some `Frobenius elements' (a pivotal concept in Chapter 2). In

5.3, we give an application of Theorem 2.2.14, to establish the shapes of some AR components

(namely, so-called �tubes") over a graded hypersurface of the form k[x, y]/((bxp+yq)f) where

f ∈ k[x, y] is an arbitrary homogeneous polynomial.



Chapter 2

AR sequences and Frobenius Elements

The main goal of this chapter is to prove Theorem 2.2.14, which gives a concrete description

of how to compute AR sequences in the setting of a Gorenstein ring (R,m) of dimension

one, using an element of EndRm. In the case when R is reduced, we get a succinct de�nition

of such an element, and we call it a Frobenius element for R (De�nition 2.2.15). There are

nice equivalent de�nitions when R is furthermore connected graded (Section 2.3).

Notation 2.0.1. In this chapter, an unadorned Q will only be used when we have introduced

some ring R, and Q will always denote Q(R), de�ned in Notation 1.0.1.

2.0.1 Trace lemmas

We establish some preliminary lemmas regarding trace. Observations of this general type

have certainly been made before; see [2, Proposition 5.4]. First, we de�ne the trace of an

endomorphism of an arbitrary �nitely generated projective module, as in [15].

De�nition 2.0.2. Let A be a commutative ring, and let P be a �nitely generated projective

A-module. Then the map µP : HomA(P,A)⊗AP −→ EndA P given by f⊗x 7→ (y 7→ f(y)x)

is an isomorphism, by Lemma 1.1.8. Let ε : HomA(P,A)⊗A P −→ A denote the map given

by f ⊗ x 7→ f(x). For h ∈ EndA P , we de�ne trace(h) = ε(µ−1
P (h)). If e1, . . . , en and

ϕ1, . . . , ϕn ∈ HomA(P,A) are such that µP (
∑n

i=1 ϕi ⊗ ei) = idP , then trace(h) furthermore

7
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equals
∑n

i=1 ϕi(h(ei)). From this, and using that P =
∑

iAei, it follows that trace is

symmetric, in the sense that trace(gh) = trace(hg) for all g, h ∈ EndA P .

Remark 2.0.3. We can see that the above de�nition of trace specializes to the usual one

when P is free, by taking the aforementioned {ei, ϕi}i to be a free basis and the corresponding

projection maps. If A = k1 × . . . × ks is a product of �elds ki, then by a similar argument

we see that for any h ∈ EndA P , we have trace(h) = (trace(h⊗A k1), . . . , trace(h⊗A ks)).

Recall that if R is an ungraded reduced ring, then Q is the product of �elds Rp = Q(R/p)

where p ranges over minR. In particular, each Rp is an ideal of Q, and a Q-algebra.

Lemma 2.0.4. Let R be a reduced ring (possibly graded), letM a �nitely generated R-module

such that M ⊗R Q is Q-projective, and let h ∈ EndRM . Then trace(h ⊗R Q) ∈ R. (In the

ungraded case, the condition that M ⊗R Q is Q-projective is automatically satis�ed, since Q

is semisimple.)

Proof. First suppose the graded case. LetQ′ = R[nonzerodivisors]−1; thusQ′ is a localization

of Q is a localization of R, and R ⊆ Q ⊆ Q′. As M ⊗R Q is Q-projective, there exists a

�nite set {ei ∈M ⊗RQ}i and corresponding {ϕi : M ⊗RQ −→ Q}i such that y =
∑

i ϕi(y)ei

for all y ∈ M ⊗R Q. Then the images of the ei in M ⊗R Q′ have the property that y =∑
i(ϕi ⊗Q Q′)(y)ei for all y ∈ M ⊗R Q′. Therefore trace(h ⊗R Q) =

∑
i ϕi((h ⊗R Q)(ei)) =∑

i(ϕi ⊗Q Q′)((h⊗R Q′)(ei)) = trace(h⊗R Q′). Since R is equal to the integral closure of R

in Q′ by [17, Corollary 2.3.6], we are thus reduced to the ungraded case.

Since R =
∏

p∈minRR/p, we see by Remark 2.0.3 that it su�ces to show trace(h⊗RRp) ∈

R/p, for each p ∈ minR. As h ⊗R Rp = (h ⊗R R/p) ⊗R/p Rp, we may assume R is a

domain. By [23, Theorem 2.1], h satis�es a monic polynomial with coe�cients in R, say

f(X) ∈ R[X]. Let H = h ⊗R Q, and let µ(X) ∈ Q[X] denote the minimal polynomial of

H. Let χ(X) ∈ Q[X] denote the characteristic polynomial of H, and take a �eld extension

L ⊇ Q over which χ(X) splits, say χ(X) = (X − α1)(X − α2) · · · (X − αs), αi ∈ L. Each αi

is also a root of µ(X), and therefore of f(X). Therefore R[α1, ..., αs] is an integral extension
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of R. Thus R ⊇ Q ∩ R[α1, ..., αs], which contains the coe�cients of χ(X). This proves the

lemma, since trace(H) is the degree-(s− 1) coe�cient of χ.

Lemma 2.0.5. In the situation of the previous lemma, assume that dimR = 1 and that

(R,m) is either a complete local ring or a connected graded ring. If some power of h lies in

mEndRM , then trace(h⊗R Q) ∈ J (R).

Proof. As J (R) =
∏

p∈minR J (R/p), we may again assume R is a domain. In the connected

graded case, we have J (R̂) ∩ R = J (R) by Lemma 6.0.4, and we can therefore assume the

complete local case. We can also assume M ⊆ M ⊗R Q, i.e., replace M by its image in

M ⊗R Q. Now let MR denote the R-module of M ⊗R Q generated by M . Note that MR is

a free R-module, since all torsion-free R-modules are free. Since R is local, we can choose a

basis forMR which consists of elements ofM , say e1, ..., en. (Indeed, setting n = rank(MR),

Nakayama's lemma allows us to �nd a set {e1, ..., en} ⊂ M such that MR =
∑

iRei. Then

we have a surjective endomorphism of MR, equivalently an automorphism, mapping a basis

onto {e1, ..., en}.) By �xing this basis, we can identify EndRM as an R-subalgebra of the

ring of n × n matrices Matn×n(R), in the obvious way. By assumption on h, some power

of h lies in mMatn×n(R) ⊆ J (R) Matn×n(R). Thus the image of h in Matn×n(R/J (R)) is

nilpotent. The lemma now follows from the fact that over a �eld, any nilpotent matrix has

zero trace.

2.1 Testing stable-vanishing with trace

In this section, let R simply be a commutative ring, and let M be a �nitely generated

R-module such that M ⊗R Q is a projective Q-module. Let (_)∗ denote HomR(_, R).

Notation 2.1.1. Given an R-algebra B, let DB(_) denote HomR(_, B). Let νB denote

DB((_)∗) = DB ◦DR(_), and let λB denote the Hom-Tensor adjoint isomorphism

λB : DB(M∗ ⊗R _) −→ HomR(_, νBM).
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We also let µM denote the natural transformation µM : M∗ ⊗R _ −→ HomR(M,_ ) given

by f ⊗ x 7→ (m 7→ f(m)x). For future reference, we note that for a given R-module X, the

map λB ◦ (DBµM) : DB HomR(M,X) −→ HomR(X, νBM) is given by the rule

[λB ◦DBµM ](σ)(x)(f) = σ(µM(f ⊗ x)) , for all σ ∈ DB HomR(M,X), x ∈ X, f ∈M∗.

(2.1.1)

Let E = Q/R. The exact sequence 0 // R ι // Q
q // E // 0 induces the exact

commutative diagram

0 // DR HomR(M,_ ) //

λR◦DRµM
��

DQ HomR(M,_ )
q∗ //

λQ◦DQµM
��

DE HomR(M,_ )

λE◦DEµM
��

0 // HomR(_ , νRM)
ι∗ // HomR(_ , νQM) // HomR(_ , νEM)

. (2.1.2)

We now show that DQµM is an isomorphism on the category of �nitely generated R-

modules, so that the second map in the composable pair

DR HomR(M,_ )
λR◦DRµM // HomR(_ , νRM)

q∗(λQ◦DQµM )−1ι∗// DE HomR(M,_ ) (2.1.3)

is well-de�ned.

Lemma 2.1.2. [1, Appendix]

(1) The map DQµM is an isomorphism on �nitely generated R-modules, and the sequence 2.1.3

is exact.

(2) If R is Gorenstein of dimension one, and bothM and the input module X lie in CM(R),

then the image of λR ◦DRµM consists of the stably zero maps X −→ νRM .

Proof. Note that µM⊗RQ can be identi�ed with µM⊗Q : HomQ(M⊗RQ,Q)⊗Q(_⊗RQ) −→

HomQ(M⊗RQ,_⊗RQ), which is an isomorphism becauseM⊗RQ is a projective Q-module.

Thus DQµM is an isomorphism, since it can be viewed as DQ(µM ⊗R Q). The exactness

of 2.1.3 is seen by chasing the diagram 2.1.2.
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Now we assume the hypotheses of (2). Take a short exact sequence

0 // syzR(M) // F
p //M // 0 ,

where F is a free R-module. Consider the commutative diagram

(HomR(F,X))∗

��

// (F ∗ ⊗R X)∗

��

// HomR(X,F ∗∗)

��

HomR(X,F )

��

oo

(HomR(M,X))∗
DRµM // (M∗ ⊗R X)∗

λR // HomR(X,M∗∗) HomR(X,M) ,oo

(2.1.4)

where the vertical maps are induced by p : F −→ M , and the horizontal maps on the right

are the isomorphisms induced by M ∼= M∗∗ and F ∼= F ∗∗. It is easy to see that the image

of the rightmost vertical map consists of the stably zero maps X −→ M , and it follows

that the third vertical map consists of the stably zero maps X −→ M∗∗. Let H denote

the map HomR(M,X) −→ HomR(F,X) induced by p. Since the top row of diagram 2.1.4

consists of isomorphisms, establishing surjectivity of the leftmost vertical map, namelyDRH,

is su�cient for proving (2). Let N = cokH. By left-exactness of Hom, we have a left-exact

sequence

0 // HomR(M,X) H // HomR(F,X) // HomR(syzR(M), X) ,

and therefore N embeds into HomR(syzR(M), X). Thus N ∈ CM(R), so Ext1
R(N,R) = 0.

Therefore the sequence 0 // N∗ // HomR(F,X)∗
DRH // HomR(M,X)∗ // 0 is exact,

so (2) is proved.

Lemma 2.1.3. Assume R is Gorenstein of dimension one, and M ∈ CM(R). Then a

given endomorphism h : M −→ M is stably zero if and only if trace(hg ⊗ Q) ∈ R for all

g : M −→M . (Recall the de�nition of trace, De�nition 2.0.2.)

Proof. Let η denote the isomorphism EndRM −→ HomR(M,M∗∗) induced by M ∼= M∗∗,

and let θ = (λQ ◦ DQµM)−1 ◦ ι∗ : HomR(M,M∗∗) −→ HomR(EndRM,Q). It follows from

Lemma 2.1.2 that h is stably zero if and only if [θ(ηh)](g) ∈ R for all g : M −→ M . So
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we aim to show that [θ(ηh)](g) = trace(hg ⊗ Q). Let σ : EndRM −→ Q denote the

map sending g ∈ EndRM to trace(hg). Thus, we wish to show θ(ηh) = σ; equivalently,

ι∗(ηh) = (λQ ◦DQµM)(σ).

Take a �nite collection of maps {ϕi : M ⊗R Q −→ Q}i and elements {ei}i ∈ M ⊗R Q,

such that w =
∑

i ϕi(w)ei for all w ∈M⊗RQ; thus trace(h⊗Q) =
∑

i ϕi((h⊗Q)(ei)), as we

mentioned in De�nition 2.0.2. Given m ∈ M , and f ∈ M∗, let g denote the endomorphism

µM(f ⊗m). By equation 2.1.1, (λQ ◦ DQµM)(σ)(m)(f) = σ(g) = trace(hg) =
∑

i ϕi((h ⊗

Q)((g⊗Q)(ei))). Now using �rstly that g⊗Q is given by w 7→ (f ⊗Q)(w)m, and then that

f ⊗Q and the ϕi's have output in Q, we have

(λQ ◦DQµM)(σ)(m)(f) =
∑

i ϕi((h⊗Q)((f ⊗Q)(ei)m)) =
∑

i(f ⊗Q)(ei)ϕi(h(m))

= (f ⊗Q)(
∑

i ϕi(h(m))ei) = f(h(m)) = ι∗(ηh)(m)(f).

2.2 Main Result

In this section we prove Theorem 2.2.14, which is really a formula for the AR sequence ending

in M , cf. Remark 1.1.10. For this section, let (R,m) be a one-dimensional Cohen-Macaulay

ring which is either a complete local ring or a connected graded ring. (We will assume R is

Gorenstein from 2.2.6 onwards.) Throughout this section, (_)∗ will denote HomR(, R).

Notation 2.2.1. For a commutative ring A, and A-modules N ⊆M , we will sometimes use

the standard notation (N :A M) to denote the ideal {a ∈ A|aM ⊆ N} = AnnA(M/N).

Recall that for a commutative ring A, ifM and N are �nitely generated A-submodules of

Q(A), andM contains a faithful element w, i.e. (0 :A w) = 0, then HomA(M,N) is naturally

identi�ed with (N :Q(A) M).

Notation 2.2.2. If R is reduced, let F(R) denote (R :Q J (R)) = J (R)∗. Let Icd denote

the conductor ideal, Icd = (R :R R).
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Lemma 2.2.3. We have EndRm ⊆ R. Moreover, EndRm = m∗ if R is not regular.

Proof. It follows from [23, Theorem 2.1] that EndRm ⊆ R. For m∗ = EndRm, it su�ces

to show that every homomorphism m −→ R has image in m, equivalently m has no free

summand (since any epimorphism onto R must split). But any proper direct summand of

an ideal has nonzero annihilator; and if m itself were free, then m ∼= R and R would be

regular.

Lemma 2.2.4. Assume R is reduced. Then

(1) F(R) ⊆ m∗. If R is not regular, then F(R) ⊆ EndRm.

(2) Assume R is not regular, and further that either (a) R is a domain, or (b) R is

Gorenstein. Then F(R) * R.

Proof. As m ⊆ J (R), we have F(R) ⊆ m∗, so we get (1) by Lemma 2.2.3.

Case 2a: R is a domain. Then (R,mR) is a discrete valuation ring in the complete local

case, and a polynomial ring over a �eld in the connected graded case (Lemma 6.0.5). Let π

denote a generator for mR, and let n denote the positive integer such that Icd = πnR. Then

πn−1R ⊆ F(R), while πn−1R * R.

Case 2b: R is Gorenstein. Consider the family of �nitely generated R-submodules X ⊂ Q

such that X contains a faithful element. It is well-known and readily-checked that the

application of (_ )∗ to such modulesX is an inclusion reversing operation satisfyingX∗∗ = X.

So, the observation that R * J (R) implies F(R) * R.

Lemma 2.2.5. Let I ⊂ R be a (homogeneous) radical ideal of height zero. Then we have

an R-algebra isomorphism Q/IQ ∼= Q(R/I).

Proof. If x ∈ R is a (homogeneous) nonzerodivisor, we have Rx = Q. To see this, it su�ces

to check that a given (homogeneous) nonzerodivisor y ∈ R becomes a unit in Rx. As Ry is

m-primary, we have xi = ry for some i > 1 and some r ∈ R. Therefore y is a unit in Rx;

hence Rx = Q. As R/I is reduced, its associated primes are all minimal; namely they are
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the images of those minimal primes of R which contain I. So x remains a nonzerodivisor

modulo I, since in general the set of zerodivisors equals the union of the associated primes.

Therefore Q(R/I) = (R/I)x = Rx ⊗R (R/I) = Q⊗R (R/I) = Q/IQ.

2.2.6. For the remainder of this section, adopt the further assumption on R that it is

Gorenstein and not regular. Let I ⊂ R be a radical ideal of height zero, and assume I

is homogeneous in the case that R is connected graded. Let R′ = R/I, and Q′ = Q(R′),

which we identify with Q/IQ by Lemma 2.2.5. After the upcoming Proposition 2.2.8, we

will assume the following condition, which is automatically satis�ed if I is prime or R′ is

Gorenstein; see Proposition 2.2.8 and Remark 2.2.9.

Condition 2.2.7. There exist (homogeneous) elements z ∈ R and γ′ ∈ F(R′) \R′ such that

(1) I = AnnR(z), and

(2) For some (equivalently, every) γ̃′ ∈ Q such that γ̃′ + IQ = γ′, we have γ̃′z /∈ R.

Proposition 2.2.8. If I ∈ minR, then Condition 2.2.7 is satis�ed.

Proof. By Lemma 2.2.4, we can pick (homogeneous) γ′ ∈ F(R′)\R′; any such γ′ will do. Let ω

denote the ideal AnnR(I). Now ω ∼= HomR(R′, R) is, up to a graded shift, a canonical module

for R′ ([7, Theorem 3.3.7] and [7, Proposition 3.6.12]), and therefore we have EndR′ ω ∼= R′

(cf. [7, Theorem 3.3.4] and the proof of [7, Proposition 3.6.9b]). We will also use that

I = AnnR(ω) = AnnR(z) for each nonzero z ∈ ω, which is true because all associated

primes of R are minimal (since R is Cohen-Macaulay), so that any ideal strictly larger than

I contains a nonzerodivisor.

Now let γ̃′ be a lift of γ′ to Q. Regarding ω as a subset of Q via ω ⊂ R ⊂ Q, suppose

that γ̃′ω ⊆ ω. Then the action of γ̃′ on ω agrees with the multiplication on ω by some r ∈ R,

so γ̃′ − r ∈ AnnQ(ω) = IQ. But then γ′ ∈ R′ is a contradiction. So there must exist z ∈ ω

such that γ̃′z /∈ ω; any such z will do. As AnnQ(I) ∩R = ω, we thus have γ̃′z /∈ R.
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Remark 2.2.9. In Proposition 2.2.8, the hypothesis I ∈ minR can replaced by the assump-

tion that R′ is Gorenstein; the proof is similar. In this case zR = AnnR(I), and one may

obtain part (1) of Condition 2.2.7 by observing that, since R′ ∈ CM(R) and R is Gorenstein,

AnnR(HomR(R′, R)) = AnnR(R′) = I.

Notation 2.2.10. For the remainder of this section we assume Condition 2.2.7, and �x such

z, γ′, and γ̃′; and we set γ = zγ̃′.

Lemma 2.2.11. We have γ ∈ EndRm.

Proof. From Lemma 2.2.4 we have γ′mR′ ⊆ R′. Since zR ∼= R′, it follows that γ̃′zm ⊆ zR,

thus γ ∈ m∗ = EndRm (Lemma 2.2.3).

Lemma 2.2.12. LetM ∈ Lp(R), and h ∈ EndRM . Then trace(h⊗Q′) = trace(h⊗Q)+IQ.

Proof. Take {ϕi : M ⊗R Q −→ Q}i and {ei}i ∈ M ⊗R Q such that w =
∑

i ϕi(w)ei for all

w ∈M ⊗R Q. If ϕ′i = ϕ⊗R R′ : M ⊗R Q′ −→ Q′ and e′i denotes the image of ei in M ⊗R Q′,

then w′ =
∑

i ϕ
′
i(w
′)e′i for all w

′ ∈ M ⊗R Q′. Now trace(h ⊗ Q′) =
∑

i ϕ
′
i((h ⊗ Q′)(e′i)) =∑

i ϕi((h⊗Q)(ei)) + IQ = trace(h⊗Q) + IQ.

Notation 2.2.13. Assume M ∈ Lp(R) has no free direct summands. Then there exists no

surjection M −→ R, so M∗ = HomR(M,m), hence M ∼= HomR(M,m)∗ is a module over the

ring EndRm. Therefore γ induces an endomorphism of M , by Lemma 2.2.11. Denote this

endomorphism by γM . Denote by [γM ] the class of γM in the stable endomorphism ring.

Theorem 2.2.14. AssumeM ∈ Lp(R) is a nonfree indecomposable. Then [γM ] ∈ soc(EndRM),

for γ as in Notation 2.2.10. Let M ′ = M ⊗R R′, and suppose that either

(1) M ′ has rank (that is, M ⊗R Q′ is Q′-free), and rank(M ′) is a unit in R; or

(2) For some minimal prime p of R′, dimR′p(M ⊗R R′p) is a unit in R, and pγ′ = 0.

Then, [γM ] generates soc(EndRM). Thus, it produces the AR sequence beginning in M , in

light of Remark 1.1.10.
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Proof. First we show [γM ] ∈ soc(EndRM), which by Lemma 2.1.3 is equivalent to having

trace(γh⊗Q) ∈ R for an arbitrary nonisomorphism h : M −→M . As EndRM/(mEndRM)

is an artinian local ring, there exists some i > 1 such that hi ∈ mEndRM , and thus hi⊗RR′ ∈

mEndR′(M
′). So trace(h ⊗ Q′) ∈ J (R′), by Lemma 2.0.5. Now using Lemma 2.2.12,

γ̃′ trace(h⊗Q) + IQ ∈ γ′J (R′) ⊂ R + IQ, whence γ trace(h⊗Q) ∈ zR + zIQ = zR ⊂ R.

It remains to show that γM is not stably zero. By Lemma 2.1.3, it su�ces to show

trace(γM ⊗ Q) /∈ R. Assume condition (1). Then the desired statement is a consequence

of Lemma 2.2.12 together with the observation that γIQ = 0 (since zI = 0). Namely, we

have trace(γM ⊗Q) = γ trace(1M⊗Q) ∈ γ(rank(M ′) + IQ) = γ rank(M ′) /∈ R. Now, assume

condition (2). Let n = dimR′p(M ⊗R R′p), and let P = p ∩ R (standard notation for the

preimage of p with respect to R � R′). Since pγ′ = 0 by assumption, we have γ̃′P ⊆ IQ,

and therefore γP = zγ̃′P ⊂ zIQ = 0. The argument is �nished as in the �rst case.

De�nition 2.2.15. If (R,m) is a reduced one-dimensional Gorenstein ring which is either

a complete local ring or a connected graded ring, we will say that an element γ ∈ Q(R) is a

Frobenius element for R if γ ∈ F(R) \R.

Note that a Frobenius element satis�es Notation 2.2.10, by Remark 2.2.9 (setting I = 0).

Example 2.2.16. Let k be a �eld and let R be a numerical semigroup ring, R = k[ti1 , ..., tin ]

(or R = k[|ti1 , ..., tin|]). Let F denote the Frobenius number of the numerical semigroup

Ni1 + · · ·+Nin, which means F = max{j ∈ N|j /∈ Ni1 + · · ·+Nin}. (This de�nition is from

the numerical semigroup literature.) Then tF is a Frobenius element for R.

2.3 Frobenius elements in the graded case

In this section, assume (R,m) is a reduced connected graded Gorenstein (but not regular)

ring of dimension one, and set k = R0.

Lemma 2.3.1. The set {i|Ri 6= Ri} is �nite.
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Proof. It is enough to check that length(R/R) <∞. Equivalently, R/R is a �nitely generated

R-module annihilated by some power of m. We know that R (and thus R/R) is �nitely

generated by Lemma 6.0.3; let {r1/s1, . . . , rn/sn} be generators (with ri and si ∈ R, and

each si a nonzerodivisor). Then s = s1s2 · · · sn is a nonzerodivisor such that s(R/R) = 0.

But as R is one-dimensional, we have mi ⊆ sR for some i > 1, and thus mi(R/R) = 0.

Recall the notion of the graded-shift of a graded module M : For i ∈ Z, the i-th shift

M [i] has M [i]j = Mi+j for all j ∈ Z.

De�nition 2.3.2. The a-invariant ofR, denoted a(R), is the integer such that Ext1
R(k,R[a(R)]) ∼=

k (sitting in degree zero). (See Section 3.6 of [7].)

Proposition 2.3.3. The a-invariant a(R) equals sup{i|Ri 6= Ri}.

Proof. Let s = sup{i|Ri 6= Ri}. As in Lemma 1.1.1, we have that m∗/R ∼= k[i] for some

i ∈ Z, and from the short exact sequence 0 −→ R −→ m∗ −→ k[i] −→ 0 we get that

i = −a(R). Since Rsm ⊆
⊕

i>sRi ⊂ R, we have Rs ⊆ m∗. In particular, (m∗/R)s 6= 0, and

therefore s = −i = a(R).

Recall that minR denotes the set of minimal primes of R.

Proposition 2.3.4. Let γ be a homogeneous element in R. The following are equivalent:

(1) γ is a Frobenius element for R;

(2) γ ∈ Ra(R) \Ra(R);

(3) γ ∈ m∗ \R.

Proof. The implication (1) ⇒ (3) is immediate, since m ⊆ J (R) implies F(R) ⊆ m∗. We

have (3)⇒ (2) because m∗ ⊆ R (see Lemma 2.2.3) and (m∗/R)i = 0 for i 6= a(R). Finally, for

(2)⇒ (1), we wish to show Ra(R) ⊆ F(R), i.e. Ra(R)J (R) ⊆ R. In view of Proposition 2.3.3,

it su�ces to show J (R) ⊆
⊕

i>1Ri. (In fact this holds with equality.) In the domain

case, this follows immediately from Lemma 6.0.4 (a). The general case follows, since R =∏
p∈minRR/p and J (R) =

∏
p∈minR J (R/p).
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Remark 2.3.5. Proposition 2.3.4, together with Proposition 2.3.3, gives a criterion for

determining the Frobenius number of a symmetric numerical semigroup
∑e

i=1 diN, though

it is presumably already known in some formulation. Namely, F is the Frobenius number of∑e
i=1 diN if and only if tF ∈ m∗ \R for (R,m) = (k[td1 , . . . , tde ], (td1 , . . . , tde)), where k is any

�eld.

Proposition 2.3.6. Assume R is generated, as a k-algebra, by graded nonzerodivisors. Then

R is a semigroup ring k[ti1 , . . . , tin ] if (and only if) Ra(R) = 0.

Proof. Let a = a(R), and assume Ra = 0. We may assume gcd({i|Ri 6= 0}) = 1. Let

x1, . . . , xs be graded nonzerodivisors generating R as a k-algebra, and let di = deg xi, i =

1, . . . , s. Then {i|Ri 6= 0} = Nd1 + · · · + Nds = {i|(R/p)i 6= 0}) = 1 for each minimal

prime p, and in particular gcd({i|(R/p)i 6= 0}) = 1. Therefore, we can apply Lemma 6.0.4

to each R/p, to see that the k-vector spaces (R/p)i are nonzero for each p and each i > 0,

and so dimk Ra is at least |minR|, since R =
∏

p∈minR (R/p). But when Ra = 0, we have

dimk(Ra) = 1 since Ra/Ra ⊆ m∗/R ∼= k[−i], so |minR| = 1, i.e. R is a domain. Moreover,

R is isomorphic to the standard-graded polynomial ring over R0 (see Lemma 6.0.4), so that

the condition dimk(Ra) = 1 implies that R0 = k. Thus R is a graded k-subalgebra of a

polynomial ring, i.e., is a semigroup ring over k.

Corollary 2.3.7. Assume k is algebraically closed, and that R is generated, as a k-algebra,

by graded nonzerodivisors. Then R is a semigroup ring over k ⇔ Ra(R) = 0 ⇔ R is a

domain.

Proof. Since k is algebraically closed, R is a domain if and only if it is a semigroup ring over

k (see Remark 6.0.6). So the result is immediate from Proposition 2.3.6.
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2.4 Syzygy of [γM ]

In this section, assume R is a reduced complete local Gorenstein (but not regular) ring of

dimension one, and �x a Frobenius element γ, and a module M satisfying the hypothesis

of Theorem 2.2.14. Notice that syzR gives us a well-de�ned isomorphism of R-algebras

syz : EndRM −→ EndR(syzRM). So in view of Theorem 2.2.14, it may be natural to ask

how exactly syz([γM ]) relates to [γsyzM ]. We give an answer in Proposition 2.4.7. Let MR

denote that R-submodule of M ⊗R Q generated by M , and assume the following: MR is a

free R-module which possesses a basis consisting of elements in M . This is true if R is a

domain, since R is in that case a DVR, and MR is a torsion-free R-module.

Notation 2.4.1. Fix γ ∈ F(R)\R, and �x elements e1, ..., en ∈M forming a free R-basis for

MR. Given h ∈ EndRM , let h denote the unique R-linear endomorphism of MR extending

h. We regard h is an n-by-n matrix with entries in R. Recall that Icd denotes the conductor

ideal, (R :R R).

Lemma 2.4.2. We have γMR ⊆M , and Icd(MR) ⊂
⊕

iRei.

Proof. As γJ (R) is an ideal of both R and R, we have γJ (R) ⊆ Icd. Therefore (Rγ)m ⊆

(Rγ)J (R) ⊆ Icd ⊆ m, which says that Rγ ⊆ EndRm. Since M ∼= HomR(M,m)∗ is an

EndRm-module (cf. Notation 2.2.13), we obtain (Rγ)M ⊆ M , equivalently γMR ⊆ M .

That Icd(MR) ⊂
⊕

iRei is clear, since I
cdRei = Icdei ⊂ Rei.

We have the following immediate consequence.

Lemma 2.4.3. Let A ∈ EndR(MR), i.e. A is an n×n matrix with entries in R (recall that

we have a �xed basis, {e1, ..., en}). If each entry of A lies in γR, then A sends M into M .

If each entry of A lies in Icd, then A|M : M −→M is stably zero.

Lemma 2.4.4. There exists f ∈ EndRM satisfying the following conditions:

(i) [f ] generates soc(EndRM);

(ii) all nonzero entries of f lie in Rγ.
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(iii) the �rst column of f is its only nonzero column.

(iv) f 1,1 = γ.

Proof. If we take an n × n matrix A with A1,1 = γ and all other entries zero, then by

Lemma 2.4.3, A = h for some endomorphism h ∈ EndRM . As trace(h ⊗ Q) = trace(h) =

γ /∈ R, h is stably nonzero by Lemma 2.1.3. Therefore by essentiality of the socle of EndRM ,

there exists g ∈ EndRM such that [gh] generates soc(EndRM). By Lemma 2.1.3, there exists

h′ ∈ EndRM such that trace(ghh′ ⊗R Q) /∈ R, i.e. trace(h′gh⊗R Q) /∈ R. As h′gh is stably

nonzero by Lemma 2.1.3 once more, [h′gh] generates soc(EndRM). Let f = h′gh. Now

trace(f ⊗R Q) = trace(f) = f 1,1 ∈ (γR) \ R. Therefore f 1,1 = uγ for some unit u ∈ R.

Finally, replacing f by u−1f , the result still sends M into M , by Lemma 2.4.3.

For the remainder, assume R is a domain, and assume k = R/m is algebraically closed.

Proposition 2.4.5. If f ∈ EndRM and g ∈ EndR(syzRM) are given such that [f ] ∈

soc(EndRM) and [g] = syzR([f ]), then trace f + trace g ∈ R.

Proof. By Lemma 2.1.3, trace induces well-de�ned maps EndRM −→ R/R and EndR(syzRM) −→

R/R. As syzR gives an isomorphism of R-algebras EndRM −→ EndR(syzRM), it restricts to

an isomorphism on socles, which are R-simple due to k being algebraically closed. Because

of these remarks, we can take our pick of f and g, as long as [f ] 6= 0 and [g] = syzR([f ]); we

will choose f as in Proposition 2.4.4. Let n = rank(M), and ν > n be the minimal number of

generators of M . Let ξ1, ..., ξν be a set of generators for M , such that {e1 = ξ1, ..., en = ξn}

is an R-basis for MR. For each ξj we have an equation ξj =
∑n

i=1wi,jei, for wi,j ∈ R.

Since R = R + J (R) (due to k being algebraically closed), we may assume (after possibly

modifying some of ξn+1, . . . , ξν) that for each j > n, and for each i, we have wi,j ∈ J (R) and

therefore wi,jγ ∈ R.

Take a free cover π : F −→ M sending i-th basis element to ξi. Since f ∈ EndRM is

as in Proposition 2.4.4, there is a ν × ν matrix A : F −→ F such that πA = fπ, with the

following properties:
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� Columns 2 through n of A are zero;

� Aij = w1jf i1 for (i, j) ∈ {1, ..., n} × {n+ 1, ..., ν}; and

� Aij = 0 for (i, j) ∈ {n+ 1, ..., ν} × {n+ 1, ..., ν}.

Set N = ker(π), and let ~r = [r1, ..., rν ]
T ∈ N , that is,

∑ν
j=1 rjξj = 0. Recalling that

MR is free, and projecting onto the basis element e1, we get r1 +
∑ν

j=n+1 rjw1,j = 0. If

we set f i1 = 0 for i > n, then by de�nition of A we have that the i-th entry of A~r is

Ai1r1 +
∑ν

j=n+1w1jf i1rj = Ai1r1 + f i1
∑ν

j=n+1 rjw1,j, and by the above equation this equals

(Ai1− f i1)r1. In other words, A~r = r1~v where ~v = [v1, ..., vν ]
T ∈ F is given by vi = Ai1− f i1.

So if we let g ∈ EndRN be the restriction of A, we see that the image of g has rank

1 (i.e., im g ⊗ Q ∼= Q). We also see that the A2~r = A(r1~v) = r1v1~v, so that v1, which

equals A1,1 − γ, is an eigenvalue for g. Our goal is to show that trace(g) + γ ∈ R. Since

trace(g) = trace(g ⊗R Q) and im(g ⊗R Q) ∼= Q, the following lemma �nishes the proof.

Lemma 2.4.6. If ϕ : F −→ F is an endomorphism of a free module over a domain D, with

im(ϕ) ∼= D, and λ is an eigenvalue for ϕ, then λ = trace(ϕ).

Proof. Let ~x = [x1, ..., xs]
T ∈ F generate the image of ϕ. It is easily checked that ϕ(~x) = λ~x.

Let y1, ..., ys ∈ D such that ϕ·,j = yj~x. Then λ~x = ϕ(~x) =
∑s

j=1 xjϕ·,j =
∑s

j=1 xjyj~x. So

λ =
∑s

j=1 xjyj =
∑

j ϕj,j = trace(ϕ).

Proposition 2.4.7. We have rank(syzRM) · syz([γM ]) + rank(M) · [γsyzM ] = 0.

Proof. Since soc EndR(M) is R-simple, the map soc EndR(M) −→ R/R, induced by trace,

is injective. We also know that [γM ] ∈ soc EndR(M), by Theorem 2.2.14. Therefore [γM ] =

rank(M) · [f ] if we take f ∈ EndRM as in Lemma 2.4.4; and Proposition 2.4.5 implies

[γsyzM ] = − rank(syzRM) · syz([f ]). The result follows.

Corollary 2.4.8. If rank(syzM) is a unit, then syz([γM ]) = − rank(M)

rank(syzM)
[γsyzM ].



Chapter 3

Background on AR Quivers

In this chapter we collect results on stable AR quivers of Cohen-Macaulay rings. Throughout

this chapter, (R,m) will be assumed to be a Cohen-Macaulay complete local ring. But in

the �rst section there will be no mention of rings, as we provide de�nitions and the classical

background on stable translation quivers more generally. Then, largely following [1], we

provide criteria for con�rming that stable AR components are in�nite (Lemma 3.2.22), and

that there are no loops (Lemma 3.2.18). In Section 3.3 we give criteria for con�rming that a

component is a tube. This chapter is in general more detailed than [1], and in Lemma 3.2.18

we give a corrected version of [1, Lemma 1.23], the proof of which contained an error.

3.1 Stable translation quivers

The following de�nitions generally agree with [1] and [6], although the meaning of �valued�

is di�erent in [6].

De�nition 3.1.1. A quiver is a directed graph Γ = (Γ0,Γ1), where Γ0 is the set of vertices

and Γ1 is the set of arrows. A morphism of quivers ϕ : Γ → Γ′ is a pair (ϕ0 : Γ0 → Γ′0, ϕ1 :

Γ1 → Γ′1) such that ϕ1 applied to an arrow x→ y is an arrow ϕ(x)→ ϕ(y). For x ∈ Γ0, x
−

denotes the set {y ∈ Γ0|∃arrow y → x in Γ1}; and x+ = {y ∈ Γ0|∃arrow x→ y in Γ1}. Γ is

22
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locally �nite if x+ and x− are �nite sets for each x ∈ Γ0. A loop is an arrow from a vertex to

itself. A multiple arrow is a set of at least two arrows from a given vertex to another given

vertex.

A valued quiver is a quiver Γ together with a map v : Γ1 → Z>1 × Z>1. By a graph we

mean an undirected graph. A valued graph is a graph G together with speci�ed integers

dxy > 1 and dyx > 1 for each edge x�y .

De�nition 3.1.2. A stable translation quiver is a locally �nite quiver together with a quiver

automorphism τ called the translation, such that:

� Γ has no loops and no multiple arrows.

� For x ∈ Γ0, x
− = τ(x)+.

Given a stable translation quiver (Γ, τ) and a map v : Γ1 → Z>0×Z>0, the triple (Γ, v, τ)

is called a valued stable translation quiver if v(x→ y) = (a, b)⇔ v(τ(y)→ x) = (b, a).

A stable translation quiver is connected if it is non-empty and cannot be written as

disjoint union of two subquivers each stable under the translation.

De�nition 3.1.3. Let C be a full subquiver of a quiver Γ which satis�es De�nition 3.1.2

except possibly for the no-loop condition. We call C a component of Γ if:

(1) For all vertices x ∈ C, we have τx ∈ C and τ−1x ∈ C .

(2) C is a union of connected components of the underlying undirected graph of Γ.

(3) There is no proper subquiver of C that satis�es (1) and (2).

De�nition 3.1.4. By a directed tree we shall mean a quiver T , with no loops or multiple

arrows, such that the underlying undirected graph of T is a tree, and for each x ∈ T , the set

x− has at most one element.

Given a directed tree T , there is an associated stable translation quiver ZT de�ned as

follows. The vertices of ZT are the pairs (n, x) with n ∈ Z and x a vertex of T . The arrows

of ZT are determined by the following rules: Given vertices x, y ∈ T , and n ∈ Z,
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� (n, x)→ (n, y) ∈ ZT ⇔ x→ y ∈ T ⇔ (n, y)→ (n− 1, x) ∈ ZT ;

� If n′ /∈ {n, n− 1}, there is no arrow (n, x)→ (n′, y).

Remark 3.1.5. Let T be a valued quiver which is also a directed tree. Then there is a unique

extension of v to ZT such that the latter becomes a valued stable translation quiver. Namely,

if v(x→ y) = (a, b), then v((n, x)→ (n, y)) = (a, b), and v((n, y)→ (n− 1, x)) = (b, a).

Lemma 3.1.6. Let T and T ′ be (valued) directed trees. Then ZT ∼= ZT ′ as (valued) stable

translation quivers if and only T ∼= T ′ as (valued) graphs.

Proof. See [6, Proposition 4.15.3].

A group Π of automorphisms (commuting with the translation) of a stable translation

quiver Γ is said to be admissible if no orbit of Π on the vertices of Γ intersects a set of the

form {x} ∪ x+ or {x} ∪ x− in more than one point. The quotient quiver Γ/Π, with vertices

the Π-orbits of Γ0, and with the induced arrows and translation, is also a stable translation

quiver. A surjective morphism of stable translation quivers ϕ : Γ → Γ′ is called a covering

if, for each x ∈ Γ0, the induced maps x− → ϕ(x)− and x+ → ϕ(x)+ are bijective. Note that

if Π is an admissible group of automorphisms of Γ,

the canonical projection Γ→ Γ/Π is a covering. (3.1.1)

Theorem 3.1.7. (Riedtmann Structure Theorem; see [6, Theorem 4.15.6] ) Given a con-

nected stable translation quiver Γ, there is a directed tree T and an admissible group of auto-

morphisms Π ⊆ Aut(ZT ) such that Γ ∼= ZT/Π. In particular, we have a covering ZT → Γ.

The underlying undirected graph of T is uniquely determined by Γ, up to isomorphism.

The underlying undirected graph of T is called the tree class of Γ.

Remark 3.1.8. Formally, the tree class T of Γ is constructed as follows (as in the proof of

Theorem 3.1.7, which we will not reproduce here). Choose any vertex x ∈ Γ, and de�ne the

vertices of T to be the set of paths
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(x = y0 → y1 → · · · → yn) (n > 0)

for which no yi = τ(yi+2). The arrows of T are

(x = y0 → y1 → · · · → yn−1) −→ (x = y0 → y1 → · · · → yn) .

Remark 3.1.9. Suppose Γ is a valued stable translation quiver, and let ϕ : ZT → Γ be a

covering, which exists by the Theorem. Now ZT becomes a valued stable translation quiver,

by setting v(x→ y) = v(ϕ(x→ y)). In particular, T becomes a valued quiver.

De�nition 3.1.10. The valued tree class of a stable translation quiver Γ is a valued graph

(T, v) where T denotes the tree class of Γ, and v : {edges of T} → Z>0 × Z>0 is given as in

Remark 3.1.9.

De�nition 3.1.11. Let (Γ, v) be a valued, locally �nite quiver without multiple arrows. For

x → y in Γ, we write v(x → y) = (dxy, dyx). If there is no arrow between x and y, we set

dxy = dyx = 0. Let Q>0 be the set of positive rational numbers.

(i) A subadditive function on (Γ, v) is a Q>0-valued function f on the set of vertices of Γ

such that 2f(x) >
∑

y∈Γ dyxf(y), for each vertex x.

(ii) An additive function on (Γ, v) is a Q>0-valued function f on the set of vertices of Γ

such that 2f(x) =
∑

y∈Γ dyxf(y), for each vertex x.

De�nition 3.1.12. The following valued graphs are called the in�nite Dynkin diagrams:

A∞ · · · B∞ · · ·

C∞ · · · D∞

· · ·

A∞∞
· · · · · ·

In these pictures, the plain edges x�y indicate dxy = dyx = 1, and the edges x⇒ y indicate

that dxy = 2 and dyx = 1.
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Lemma 3.1.13. [6, Theorem 4.5.8] Let (Γ, v) be a connected valued quiver without loops or

multiple arrows. Suppose f is a subadditive function on Γ, and assume Γ has in�nitely many

vertices. Then:

(1) The underlying valued graph of Γ is an in�nite Dynkin diagram.

(2) If f is unbounded, or if f is not additive, then the underlying valued graph of Γ is A∞.

3.2 The Cohen-Macaulay setting

For the remainder of this chapter, we assume (R,m) is a Cohen-Macaulay complete local

ring. (But the same results hold when R is connected graded instead of complete local.)

De�nition 3.2.1. If M and N are indecomposables in CM(R), let Irr(M,N) denote the

module of nonisomorphisms M −→ N modulo those which are not irreducible. Let kM

denote the division ring (EndRM)/J (EndRM). Thus Irr(M,N) is a right kM -space, and a

left kN -space.

De�nition 3.2.2. The Auslander-Reiten quiver of R is the valued quiver de�ned as follows:

� Vertices are isoclasses of indecomposables in CM(R).

� There is an arrowM → N if and only if there exists an irreducible morphismM → N ,

i.e. Irr(M,N) 6= 0. The value v(M → N) of the arrow M → N is (a, b) where a is the

dimension of Irr(M,N) as a right kM -space, and b is the dimension of Irr(M,N) as a

left kN -space.

Recall that we use τ to denote the AR-translate (de�ned at the end of De�nition 1.1.2).

Lemma 3.2.3. Let M and N be indecomposables in Lp(R).

(1) If 0 → τN → E → N → 0 is an AR sequence, the number of copies of M appearing

in a decomposition of E equals the dimension of Irr(M,N) as a right kM -space.
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(2) If 0 → M → E ′ → τ−1M → 0 is an AR sequence, then the number of copies of N

appearing in a decomposition of E ′ equals the dimension of Irr(M,N) as a left kN -space.

Proof. See [27, Lemmas 5.5 and 5.6].

Remark 3.2.4. Suppose that k = R/m is algebraically closed. Then in the notation of

Lemma 3.2.3, we have k = kM = kN , and it therefore follows from Lemma 3.2.3 that the

number of copies of N appearing in a decomposition of E ′ equals the number of copies of M

appearing in a decomposition of E.

Lemma 3.2.5. LetM,N be indecomposables in Lp(R), and let 0 //M
f // X

g // τ−1M // 0

and 0 // τN h // Y k // N // 0 be AR sequences. Given θ ∈ HomR(M,N), the fol-

lowing are equivalent:

� θ is irreducible;

� there exists a split epimorphism p ∈ HomR(X,N) such that θ = pf ;

� there exists a split monomorphism q ∈ HomR(M,Y ) such that θ = kq.

Proof. See [27, Lemma 2.13].

Notationally, we allow τ to be a partially-de�ned morphism on the AR quiver of R; τx

is de�ned precisely when the vertex x corresponds to a non-projective module in Lp(R), by

[27, Theorem 3.4]. The following fact is used in [1], and the proof essentially follows that of

[4, VII 1.4].

Lemma 3.2.6. Let x→ y be an arrow in the AR quiver of R, and let (a, b) = v(x→ y). If

τy is de�ned, then v(τy → x) = (b, a). If τx and τy are both de�ned, then v(τx → τy) =

v(x→ y).

Proof. We need not prove the last sentence, as it follows from the previous. Let M and

N ∈ CM(R) be the modules corresponding to x and y respectively. We �rst show kN and
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kτN are isomorphic k-algebras, where k = R/m. Let 0 // τN
p // E

q // N // 0 be an AR

sequence. Given h ∈ EndRN , there exists a commutative diagram

0 // τN
p //

h′

��

E
q //

��

N //

h
��

0

0 // τN
p // E

q // N // 0 .

(3.2.1)

Indeed, note that hq is not a split epimorphism, because if h is surjective, then h is an

isomorphism, and thus hq is not a split epimorphism because q is not. Therefore, by De�ni-

tion 1.1.2, there exists u : E −→ E such that hq = qu, and the existence of h′ follows.

By the dual argument, any given h′ ∈ EndR(τN) can be �t into a commutative diagram

of the same form.

We wish to show that h 7→ h′ induces a well-de�ned map kN → kτN . If so then it is

a surjective ring map from a division ring, hence an isomorphism, so we will be done. It

su�ces to show that, given any commutative diagram 3.2.1 such that h is a nonisomorphism,

it follows that h′ is also a nonisomorphism. Suppose, to the contrary, that h is an noniso-

morphism and h′ is an isomorphism. We may assume h′ is the identity map, since we could

certainly compose the diagram 3.2.1 with a similar diagram which has (h′)−1 on the left.

As h is not a split epimorphism, it factors through q. But then the top sequence in 3.2.1

splits, cf. [21, Ch. III, Lemma 3.3]; and this of course is a contradiction. Thus kN ∼= kτN as

k-algebras.

In particular, dimk(kN) = dimk(kτN). As dimkM Irr(M,N) = dimkM Irr(τN,M) is an im-

mediate consequence of Lemma 3.2.3, our aim is to show dimkN Irr(M,N) = dimkτN Irr(τN,M).

By the former, we have dimk Irr(M,N) = dimk Irr(τN,M). Thus, dimkN Irr(M,N)

= dimk Irr(M,N)/ dimk(kN) = dimk Irr(τN,M)/ dimk(kτN) = dimkτN Irr(τN,M).

De�nition 3.2.7. If R is Gorenstein, the stable Auslander-Reiten (AR) quiver of R is the

valued quiver de�ned as in De�nition 3.2.2, except that the vertices are only the isoclasses

of nonfree indecomposable modules M ∈ Lp(R). By a stable AR component, we shall mean
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a component (De�nition 3.1.3) of the stable AR quiver.

De�nition 3.2.8. Let (Γ, τ) be a translation quiver, and x a vertex of Γ. If x = τn(x) for

some n > 0, we say that x is τ -periodic. A module M ∈ CM(R) is said to be τ -periodic

if it corresponds to a τ -periodic vertex in the AR quiver of R, i.e., M ∼= τnM . When R is

Gorenstein of dimension one, we will omit the pre�x �τ -� and just say M is periodic.

The following is well-known.

Lemma 3.2.9. If (Γ, τ) is a connected translation quiver containing a τ -periodic vertex,

then all of its vertices are τ -periodic.

Proof. If x is a vertex in Γ and τnx = x, then τn induces a permutation on the �nite set

x−, and so some power of τn stabilizes x− pointwise. Thus each vertex in x− is τ -periodic;

likewise for x+, so every vertex in Γ is τ -periodic by induction.

De�nition 3.2.10. We say that a connected translation quiver is periodic if one, equivalently

all, of its vertices is τ -periodic.

A so-called �tube" is a common example of a periodic translation quiver:

De�nition 3.2.11. A valued stable translation quiver Γ is called a tube if Γ ∼= ZA∞/〈τn〉

for some n > 1. If n = 1, Γ is called a homogeneous tube.

Remark 3.2.12. Let Γ be a connected periodic stable translation quiver, and suppose the

valued tree class of Γ is A∞. Then Γ is a tube. To see this, let Π be an admissible group of

automorphisms of ZA∞ such that Γ ∼= ZA∞/Π. Note that every automorphism of the stable

translation quiver ZA∞ is of the form τn for some n > 0. Thus Π = 〈τn〉 for some n > 0;

and the periodicity implies n > 1.

Notation 3.2.13. If R is Gorenstein of dimension one, and M is an indecomposable in

Lp(R), de�ne an R-module push(M) as follows. If M is free, let push(M) = 0. Otherwise

let push(M) denote the unique module (up to isomorphism) such that there exists an AR
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sequence 0 −→ M −→ push(M) −→ syz−1
R (M) −→ 0. More generally, if M =

⊕n
i=1Mi

with each Mi in Lp(R), then we set push(M) =
⊕n

i=1 push(Mi).

Notation 3.2.14. (See, e.g., [23, 14.1-14.6].) For an R-module M , let e(M) denote the

multiplicity of M . This can be de�ned as e(M) = limn→∞
d!
nd

length(M/mnM), where d =

dimR, but the reader may ignore this de�nition; we use only the following properties:

� If 0 −→M ′ −→M −→M ′′ −→ 0 is exact, then e(M) = e(M ′) + e(M ′′).

� For all M ∈ CM(R), e(M) is a positive integer.

Notation 3.2.15. De�ne a function eavg from τ -periodic maximal Cohen-Macaulay R-

modules to Q>0 as follows: If M is τ -periodic of period n, let eavg(M) = 1
n

∑n−1
i=0 e(τ

i(M)).

Lemma 3.2.16. Assume R is Gorenstein of dimension one, and M ∈ Lp(R) is indecom-

posable and periodic. If pushM = X ⊕ F where X has no free direct summands and F is a

(possibly zero) free module, then X is periodic, and eavg(pushM) 6 2eavg(M).

Proof. We know X is periodic from Lemma 3.2.9. Note that if N ∈ CM(R) is periodic, then

for any j ∈ Z, and n ∈ N a multiple of the period of N ,
∑n+j−1

i=j e(τ iN) = neavg(N). For

each integer i, we have by Lemma 3.2.6 an AR sequence 0 −→ τ i+1M −→ Fi ⊕ τ iX −→

τ iM −→ 0, where Fi is a (possibly zero) free module. So e(τ iX) 6 e(τ i+1M) + e(τ iM),

hence
∑n

i=1 e(τ
iX) 6

∑n
i=1 e(τ

i+1M) +
∑n

i=1 e(τ
iM) for each n ∈ N. This inequality gives

the desired result by taking n to be a common multiple of the periods of M and X, and

dividing both sides by n.

The following goes back at least to [14] (in a slightly di�erent setting).

Lemma 3.2.17. Let C be a connected τ -periodic valued stable translation quiver which is a

(not necessarily full) subquiver of the stable AR quiver of R. Then the valued tree class of C

admits a subadditive function (De�nition 3.1.11).
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Proof. Let T denote the valued tree class (De�nition 3.1.10) of Γ. By de�nition of T , we

have a value-preserving covering ϕ : ZT → C. De�ne a function f : ZT → Q>0 by the rule

f(x) = eavg(ϕ(x)). We claim that the restriction of f to T is a subadditive function. That

is, 2f(x) >
∑

y∈T dyxf(y), for each vertex x of T . By Lemma 3.2.6, dyx = d(τ−1y)x for all

x, y ∈ C, hence for all x, y ∈ ZT . In what follows, for any x ∈ T , the sets x− and x+ will

always be taken with respect to ZT ; to signify the predecessors of x with respect to T we

can use x−∩T . If x ∈ T , then x+ equals the disjoint union of x+∩T and τ−1(x−∩T ). Now,

we have ∑
y∈T

dyxf(y) =
∑

y∈x−∩T

dyxf(y) +
∑

y∈x+∩T

dyxf(y)

=
∑

y∈x−∩T

dτ−1yxf(τ−1y) +
∑

y∈x+∩T

dyxf(y) =
∑
y∈x+

dyxf(y).

So subadditivity of f is equivalent to 2f(x) >
∑

y∈x+ dyxf(y). Since ϕ is a covering,∑
y∈x+ dyxf(y) =

∑
y∈ϕ(x)+ dyϕ(x)eavg(y), which is bounded by 2eavg(ϕ(x)) by Lemma 3.2.16.

So f is subadditive.

Lemma 3.2.18. Assume R is Gorenstein, let M ∈ Lp(R) be a nonfree indecomposable, and

suppose there exists an irreducible map from M to itself. Let C denote the component of the

stable AR quiver containing M , and assume C is in�nite. Then C is a homogeneous tube

with a loop at the end:

M = X0 X1 X2 X3 · · ·

In particular, τXi
∼= Xi for all Xi ∈ C.

Proof. First we show that M ∼= τM . If not, then the AR sequence ending in M is 0 −→

τM −→ M ⊕ τM ⊕N −→ M −→ 0 for some N ∈ CM(R). Then e(N) = 0, hence N = 0.

Now Miyata's Theorem [24, Theorem 1] says that the given AR sequence splits, which is a

contradiction. So τM ∼= M .

Since C has a loop, it does not satisfy the de�nition of stable translation quiver (De�nition

3.1.2). But removing the loops in C (and keeping all vertices and all non-loop arrows), we



CHAPTER 3. BACKGROUND ON AR QUIVERS 32

get a τ -periodic connected stable translation quiver; call it Γ, and let T denote valued tree

class of Γ. Now T admits a subadditive function given by eavg, as in the proof of 3.2.17.

From the fact that Γ is not a full subquiver of the AR quiver of R, it follows that eavg is

strictly subadditive (i.e., not additive). As Γ is in�nite and τ -periodic, T must be in�nite.

Therefore T ∼= A∞ by Lemma 3.1.13, and Γ ∼= A∞/〈τ〉, by Remark 3.2.12. So Γ has the

form

X0 X1 X2 X3 · · · .

Suppose M = Xi for some i > 0. Then we have an AR sequence 0 −→ Xi −→ Xi ⊕Xi−1 ⊕

Xi+1 ⊕ F −→ Xi −→ 0, for some free module F . Then e(Xi) > e(Xi−1) + e(Xi+1). But

consideration of the AR sequences ending in Xi−1 and Xi+1 yields 2e(Xi+1) > e(Xi) and

2e(Xi−1) > e(Xi). These inequalities contradict the previous one, so M = X0.

The following �Maranda-type result� corresponds to Lemma 1.24 in [1]. In our setting,

namely that of a Cohen-Macaulay complete local ring, this result is well-known (but possibly

has only been stated for the case when the ring is an isolated singularity). The following

proof can be found, for example, in [20, Proposition 15.8] and its corollaries.

Lemma 3.2.19. LetM and N be nonisomorphic indecomposables in Lp(R), and let x ∈ m be

a nonzerodivisor. Then there exists i > 1 such that M/xiM and N/xiN are nonisomorphic

indecomposable modules.

Proof. SinceM lies in Lp(R), Ext1
R(M,N) has �nite length (since for any nonmaximal prime

p, we have 0 = Ext1
Rp

(Mp, Np) = Ext1
R(M,N)p). Therefore we may assume, after replacing

x by a suitable power of itself, that xExt1
R(M,N) = 0. By applying HomR(M,_) to the

commutative exact diagram

0 // N x2 //

x

��

N // N/x2N //

��

0

0 // N
x // N // N/xN // 0

,
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we obtain a commutative exact diagram

HomR(M,N) // HomR(M,N/x2M) //

��

Ext1
R(M,N)

x
��

HomR(M,N) // HomR(M,N/xM) // Ext1
R(M,N)

. (3.2.2)

Consider the maps θ : HomR(M,N)→ HomR(M/xM,N/xN) and θ2 : HomR(M/x2M,N/x2N)→

HomR(M/xM,N/xN) given by tensoring all maps with R/(x). Notice that in diagram 3.2.2,

the horizontal and vertical maps into HomR(M,N/xM) can be identi�ed with θ and θ2 re-

spectively, while the rightmost vertical map is zero. Therefore a diagram chase yields

im(θ) = im(θ2). (3.2.3)

We claim i = 2 will su�ce. Suppose M/x2M is not indecomposable. Then there exists a

nontrivial idempotent e ∈ EndR(M/x2M). Consider the equation 3.2.3 in the case M = N ;

now θ and θ2 are of course ring homomorphisms. Since EndRM is (noncommutative-) local,

so is im θ, and therefore θ2(e) is either 0 or 1. Since 1 − e ∈ EndR(M/x2M) is also a

nontrivial idempotent, we may assume θ2(e) = 0, i.e. im e ⊆ xM/x2M . But then e2 = 0 is

a contradiction.

Now suppose ϕ : M/x2M −→ N/x2N is an isomorphism, with inverse ψ : N/x2N −→

M/x2M . By 3.2.3, there exist ϕ̃ : M −→ N such that ϕ̃ ⊗R (R/x) = ϕ ⊗R (R/x), and

ψ̃ : M −→ N such that ψ̃ ⊗R (R/x) = ψ ⊗R (R/x). By Nakayama's Lemma, ϕ̃ and ψ̃ are

surjective. Thus ψ̃ϕ̃ is a surjective endomorphism, equivalently, an isomorphism; and thus

ϕ̃ is an isomorphism.

Lemma 3.2.20. Assume dimR = 1, and let M be an arbitrary indecomposable in CM(R).

Then there exists an irreducible morphismM −→ R if and only ifM is isomorphic to a direct

summand of m. If R is Gorenstein, then there exists an irreducible morphism R −→ M if

and only if M is isomorphic to a direct summand of m∗.
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Proof. Write m as a direct sum of indecomposables, m =
⊕

imi. Let ιi denote the inclusion

map mi↪→R. To see that ιi is irreducible, take a factorization ιi = hg in CM(R), where h

is not a split epimorphism. Then h is not onto, so imh ⊆ m. Then if h′ denotes the map

into m given by x 7→ h(x), and pi denotes the projection m� mi, we have that pih
′g = 1mi ,

so g is a split monomorphism; hence ιi is irreducible. Now let M be an indecomposable in

CM(R) and let f : M −→ R be an irreducible morphism. Let ι denote the inclusion map

m↪→R. Since f is not a split epimorphism, im f ⊆ m, hence f = ιg for some g : M −→ m.

As ι is certainly not a split epimorphism, g is a split monomorphism.

For the last sentence of the statement, note that the irreducible maps from R are obtained

by dualizing the irreducible maps into R.

We recall the Harada-Sai Lemma:

Lemma 3.2.21. [4, VI. Cor. 1.3] Let Λ be an artin algebra (e.g. a commutative artinian

ring). If fi : Mi → Mi+1 are nonisomorphisms between indecomposable modules Mi for

i = 1, ..., 2n − 1 and length(Mi) 6 n for all i, then f2n−1 · · · f1 = 0.

Lemma 3.2.22. [1, Proposition 1.26] Assume R is Gorenstein of dimension one, and m

is indecomposable; and suppose R has a stable AR component C which is �nite. Then C

consists of all isoclasses of non-projective indecomposables in CM(R).

Proof. As C is �nite, Lemma 3.2.19 implies that we can take x ∈ m such that for each pair

M � N in C, M/xM and N/xN are nonisomorphic indecomposable modules.

We may assume R is not regular, and therefore m is not free. Now �rst we show m ∈ C.

Suppose not; then there are no irreducible maps to R from any module in C (Lemma 3.2.20).

Therefore if N ∈ C and N → N ′ is any irreducible map in CM(R), N ′ must lie in C (since

Lp(R) is closed under syz−1
R , and therefore under irreducible maps by consideration of AR

sequences). Pick a module M ∈ C. By replacing x by a power of itself if necessary, we

can choose f : M → R such that f(M) * xR, i.e. f ⊗R (R/x) 6= 0. Since f is not a split

monomorphism, and there exists an AR sequence beginning in M , f equals a sum of maps
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of the form gh, where h is an irreducible map between modules in C. Since g ∈ HomR(N,R)

for some N ∈ C, g is not a split monomorphism, and can in turn be written as a sum of maps

of the form kl where l is an irreducible map in C; now f =
∑
klh. Continue this process

until we have written f as a sum
∑

i gih2n−1,i · · ·h1,i where each hj,i is an irreducible map in

C, and n = max{length(N/xN)|N ∈ C}. Note that each hj,i⊗R (R/x) is a nonisomorphism

by our assumption on x together with Lemma 3.2.18. Therefore, Lemma 3.2.21 implies

f ⊗R (R/x) = 0, contradiction. Thus m ∈ C.

Now just suppose C omits some indecomposable nonfree M ∈ CM(R). Again choose

f : M → R such that f ⊗R (R/x) 6= 0. Note that any map to R which is not a split epimor-

phism factors through m. Whereas in the previous paragraph we reached a contradiction

via Lemma 3.2.21, by �stacking irreducible maps while moving forwards through C�, we

now obtain a contradiction by �stacking irreducible maps while moving backwards through

C ∪ {R}�.

Remark 3.2.23. Assume R is Gorenstein and let C be a stable AR component without

loops. Then C is a valued stable translation quiver (by Lemma 3.2.6) and therefore has

a valued tree class T (De�nition 3.1.10). Then T carries the information of how many

nonfree direct summands push(M) and push(push(M)) (in general, pushi(M)) have for

modules M ∈ C. Let us explain further. Let x be the vertex in C corresponding to M ,

and let n =
∑

(x→y)∈C

dyx. Then n is the number of nonfree summands in push(M); that is,

push(M) = F ⊕
⊕n

i=1Xi where F is a (possibly zero) free module, and the Xi are (not

necessarily nonisomorphic) nonfree indecomposables in Lp(R). We have a value-preserving

covering ϕ : ZT → C, and after possibly composing ϕ with a power of τ , we have x ∈ ϕ(T ),

say x = ϕ(u). Since ϕ : ZT → C is a covering,
∑

(x→y)∈C

dyx =
∑

(u→w)∈ZT

dwu, and by de�nition

of ZT this equals
∑
w∈T

dwu. Thus n =
∑
w∈T

dwu. Likewise,
∑
w,z∈T

dzwdwu is the number of nonfree

direct summands in push(push(M)).

Proposition 3.2.24. (cf. [1, Lemma 1.23 and Theorem 1.27]) Assume that R is Goren-
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stein of dimension one, m is indecomposable, and CM(R) has in�nitely many isoclasses of

indecomposables. Let C be a periodic component of the stable AR quiver of R, and suppose

that either R is a reduced hypersurface and C has no loops, or that there exists some M ∈ C

such that push(push(M)) = X ⊕ Y ⊕ F for some indecomposables X and Y , and some

possibly-zero free module F . Then, C is a tube.

Proof. If C has a loop, then by Lemma 3.2.18, for every M ∈ C, the module pushM has

two nonfree indecomposable summands, and therefore push(push(M)) has four. So we may

assume C has no loops. Thus C is a valued stable translation quiver, and we have a valued

directed tree T and a value-preserving covering ϕ : ZT → C. Let the function f : ZT → Q>0

be given by f(x) = eavg(ϕ(x)). As seen in Lemma 3.2.17, f restricts to a subadditive function

on T . Since ϕ is surjective, every vertex of C lies in the τ -orbit of a vertex in ϕ(T ). Note

also that C has in�nitely many vertices, by Lemma 3.2.22. Therefore T is in�nite, so it

is an in�nite Dynkin diagram by Lemma 3.1.13. If R is a reduced then {e(M)|M ∈ C}

is unbounded (see [27, Theorem 6.2]); and so if R is a reduced hypersurface (and thus all

modules in C have period 2) then f is unbounded. Then T ∼= A∞, by Lemma 3.1.13. If the

alternate condition holds, we get T ∼= A∞ by eliminating the other in�nite Dynkin diagrams

(which are pictured in De�nition 3.1.12), in light of Remark 3.2.23. Thus C is a tube, by

Remark 3.2.12.



Chapter 4

AR Quivers over C.I. rings of dimension

one

In this chapter we assume that (R,m) is a complete (or graded-) local complete intersection

ring of dimension one, and let k = R/m. (Recall that complete intersection implies Goren-

stein.) The unadorned symbols syz and syz−1 will stand for syzR and syz−1
R , respectively.

4.1 AR quivers and syz- and cosyz-perfect modules

In this section, we adapt results from Green-Zacharia [12] and Kerner-Zacharia [19]. In

particular, we will see that the tree class of any stable AR component must be Dynkin or

Euclidean, and further prune down this list of possibilities when the modules in a given

component are �eventually cosyz-perfect" (De�nition 4.1.11).

De�nition 4.1.1. Let · · ·F2 −→ F1 −→ F0 −→ M −→ 0 be a minimal free resolution of a

�nitely generated R-module M . Then the i-th Betti number βi(M) denotes the rank of Fi.

We say that the complexity of M is at most n, and write cxM 6 n, if there exists b ∈ Q>0

such that βi(M) 6 bin−1 for all i � 0. We say that the complexity of M is n, and write

cxM = n, if cxM 6 n and cxM � n− 1.

37
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Remark 4.1.2. Several of the lemmas in this section do not require that R be a com-

plete intersection, but we use it to prove the main statements. The properties of complete

intersections which we use are as follows: If M is a �nitely generated R-module, then

(a) βn(M) 6 βn+2(M) for all n� 0 (see [9, 3.1]);

(b) {βn(M)}n>0 is unbounded, provided M is not eventually periodic ([9, 4.1]);

(c) cxM <∞ ([5, Theorem 8.1.2]).

Notation 4.1.3. (1) Let M be an indecomposable in Lp(R), and consider the AR sequence

ending in M , 0 −→ syzM −→
⊕n

i=1Xi ⊕ F −→ M −→ 0 where F is free, and each Xi is

indecomposable and nonfree. Then we de�ne α(M) to be n.

(2) If C is a component of the stable AR quiver of R, de�ne

α(C) = sup{α(M)|M ∈ C}.

Notation 4.1.4. Let M,N ∈ CM(R), and f ∈ HomR(M,N). By extending f to a map

between the minimal free resolutions of M and N , we get induced maps syzn f : syznM −→

syznN . These are not uniquely determined, but in the stable category they are; i.e.,

[syzn f ] ∈ HomR(syznM, syznN) is well-de�ned.

De�nition 4.1.5. We say that a module M is stable if M has no free direct summands.

Lemma 4.1.6. [25, Proposition 2.8] Let M and N be R-modules, and assume M is stable.

Let Λ = EndRM .

(a) If f : M −→ N is stably zero, then f(M) ⊆ mN .

(b) If g ∈ EndRM satis�es g(M) ⊆ mM , then g ∈ rad Λ.

Proof. (a) Since M is stable, any homomorphism h : M −→ F must satisfy h(M) ⊆ mF if

F is free. Part (a) follows.

(b) Given such g, together with any h ∈ EndR(M), we have that (idM −hg)⊗Rk = idM⊗k,

and therefore idM −hg is surjective by Nakayama's Lemma, and therefore it is in fact an

isomorphism. This proves (b).
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The following proof is essentially from [25, Theorem 3.1], but we give a simpler and more

direct version.

Lemma 4.1.7. Let M and N be stable modules in CM(R), and let f ∈ HomR(M,N). If f

is irreducible, then so is any choice of syz f .

Proof. It su�ces to show that a map g ∈ HomR(M,N) is split mono (resp. epi) if and only

if every choice of syz g is split mono (resp. epi). By Gorenstein duality it is therefore enough

to show that g being split mono implies every choice of syz g is split mono. Take p : N −→M

such that pg = idM . Let g′ and p′ be choices for syz g and syz p, respectively. Then, as idsyzM

and p′g′ are valid choices of syz idM , we have that idsyzM −p′g′ is stably zero, and therefore

lies in rad EndR(syzM), by Lemma 4.1.6. Therefore p′g′ is an isomorphism, and g′ is split

mono.

Lemma 4.1.8. If f : M −→ N is an irreducible map in CM(R), then f must be either a

monomorphism or an epimorphism.

Proof. Since dimR = 1, a submodule of a Cohen-Macaulay R-module is again Cohen-

Macaulay. If f : M −→ N is neither a monomorphism nor an epimorphism, then the

factorization M � im f↪→N shows that f is not irreducible.

Lemma 4.1.9. If 0 // X
[f1,f2]T// Y1 ⊕ Y2

[g1,g2] // Z // 0 is any short exact sequence of abelian

groups, then f1 is an epimorphism if and only if g2 is an epimorphism. If it is an AR sequence

in CM(R), then f1 is a monomorphism if and only if g2 is a monomorphism.

Proof. The �rst statement is straightforward, and the second statement then follows from

Lemma 4.1.8.

The following is an important notion in [12] and [19], where it is called Ω-perfect.

De�nition 4.1.10. Given M,N ∈ Lp(R), an irreducible map f : M −→ N is said to be

syz-perfect if M and N are stable and syzn f , for n > 0, are either all monomorphisms or

all epimorphisms. If M is a nonfree indecomposable in Lp(R), then M is called syz-perfect
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if every irreducible map X −→ M and every irreducible map syzM −→ Y are syz-perfect.

M is called eventually syz-perfect if syznM is syz-perfect, for some n > 0.

We will also use the dual notion:

De�nition 4.1.11. Given M,N ∈ Lp(R), an irreducible map f : M −→ N is cosyz-perfect

if M and N are stable and syzn f , for n 6 0, are either all monomorphisms or all epimor-

phisms. IfM is a nonfree indecomposable in Lp(R), then say thatM is cosyz-perfect if every

irreducible map M −→ X and every irreducible map Y −→ syz−1M are cosyz-perfect. Call

M eventually cosyz-perfect if syznM is cosyz-perfect, for some n 6 0.

Our arguments in this section are essentially those given in [12] and [19]; the adjustments

are relatively minor, Lemma 4.1.14 being an exception. The notion of cosyz-perfect seems

better suited to proving results about possible shapes of AR components; see Theorem 4.1.30,

which we do not have a proof for if we assume syz-perfect instead. (Although most of our

arguments remain valid when dualized, Lemma 4.1.29 does not.) In Section 4.2 we use the

notion of syz-perfect as well.

Our �rst goal here is to prove Proposition 4.1.12. We will later address the case when all

modules in a given stable AR component are eventually cosyz-perfect.

Proposition 4.1.12. (cf. [19, Theorem 2.11]) Assume M ∈ Lp(R) is a nonfree, nonperiodic

indecomposable which either fails to be eventually syz-perfect, or fails to be eventually cosyz-

perfect. Then the stable AR component containing M admits an additive function, and R

has some ideal which is a periodic module.

Lemma 4.1.13. Let 0 // X // Y
g // Z // 0 be a short exact sequence in CM(R).

Then syz g is an epimorphism if and only if dimk(Y/mY ) = dimk(X/mX) + dimk(Z/mZ).

Proof. By taking free modules F andH of ranks dimk(X/mX) and dimk(Z/mZ) respectively,

the Horseshoe Lemma gives a commutative exact diagram
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0

��

0

��

0

��
0 // syzX

f ′ //

��

P ⊕ syzY
g′ //

��

syzZ //

��

0

0 // F //

��

F ⊕H //

��

H //

��

0

0 // X //

��

Y
g //

��

Z //

��

0

0 0 0

(4.1.1)

for some (possibly zero) free module P . Note, furthermore, that the map g′ : P ⊕ syzY −→

syzZ has the form g′ = [l syz g] for some l ∈ HomR(P, syzZ). Write f ′ = [f ′1 f ′2]T for some

f ′1 : syzX −→ P and f ′2 : syzX −→ syzY . Now suppose syz g is an epimorphism. Then by

Lemma 4.1.9 f ′1 is also an epimorphism, so that P is isomorphic to a summand of syzX, and

therefore P = 0, which implies dimk(Y/mY ) = dimk(X/mX) + dimk(Z/mZ). Conversely, if

dimk(Y/mY ) = dimk(X/mX) + dimk(Z/mZ) then P = 0 and syz g = g′ is onto.

Lemma 4.1.14. (cf. [12, Lemma 2.1]) Let

0 // X
f // Y

g // Z // 0

be a short exact sequence in CM(R) with g irreducible, and suppose that syz g is a mono-

morphism. Then X is isomorphic to an ideal of R.

Proof. It is part of the general (Auslander-Reiten) folklore that if f ′ : X −→ Y ′ is any map

in CM(R), then either f factors through f ′ or f ′ factors through f . To see this, assume that

f ′ does not factor through f . This says that the pushout of 0 // X
f // Y

g // Z // 0

by f ′ does not split. Therefore, the irreducibility of g implies that the middle map in the

diagram

0 // X

f ′

��

f // Y

��

g // Z // 0

0 // Y ′ //W // Z // 0
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is a split monomorphism, and it follows that f factors through f ′.

Now assume that X is not isomorphic to an ideal. Then if f ′ ∈ HomR(X,m∗), f ′ cannot

be injective (since m∗ may be viewed as a �nitely generated submodule of Q(R), and therefore

embeds into R), and therefore f does not factor through f ′. So any f ′ : X −→ m∗ factors

through f , by the above. In other words, HomR(f,m∗) : HomR(Y,m∗) −→ HomR(X,m∗)

is surjective. Using the surjection m∗ −→ k from the exact sequence 0 −→ R −→ m∗ −→

k −→ 0 (Lemma 1.1.1), we have a commutative square

HomR(Y,m∗) //

��

HomR(Y, k)

��
HomR(X,m∗) // HomR(X, k)

. (4.1.2)

Note that the horizontal maps in 4.1.2 are surjective since Ext1
R(Y,R) = Ext1

R(X,R) = 0.

Therefore, the right-hand vertical map is surjective since the left-hand map is. Therefore

dimk(HomR(Y, k)) = dimk(HomR(X, k)) + dimk(HomR(Z, k)). But for any R-module M ,

we have HomR(M,k) = Homk(M/mM,k) and dimk(M/mM,k) = dimk(M/mM). Now

Lemma 4.1.13 �nishes the proof.

Recall that multiplicity, e(_), is additive along short exact sequences.

Lemma 4.1.15. ForM ∈ CM(R), we have µ(M) 6 e(M) 6 µ(M)e(R), where µ(_) denotes

minimal number of generators.

Proof. The inequality µ(M) 6 e(M) is well-known. For e(M) 6 µ(M)e(R), note that the

short exact sequence 0 −→ syzM −→ R(µ(M)) −→ M −→ 0 implies e(M) = µ(M)e(R) −

e(syzM).

Lemma 4.1.16. (cf. [20, 15.25]) For any irreducible map X −→ Y between indecomposable

modules, we have that e(X)e(R) > e(Y ) and e(Y )e(R) > e(X).

Proof. By consideration of the AR sequence ending in Y , we have e(X) 6 e(Y ) + e(syzY ),

which in turn equals µ(Y )e(R) 6 e(Y )e(R). To get the other direction, we may dualize
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X −→ Y to get an irreducible map Y ∗ −→ X∗, and use that e(X) = e(X∗) and e(Y ) =

e(Y ∗).

Lemma 4.1.17. (cf. [12, Proposition 2.4]) Let 0 // X // Y
g // Z // 0 be a short

exact sequence in CM(R), such that g is irreducible.

(a)If g is not eventually cosyz-perfect, there exists n 6 0 such that ker(syzn g) is isomor-

phic to a periodic ideal.

(b)If g is not eventually syz-perfect, there exists n > 0 such that ker(syzn g) is isomorphic

to a periodic ideal.

Proof. (a) For each i 6 0 we can apply a dualized Horseshoe Lemma to obtain a short exact

sequence 0 // syziX // P i ⊕ syzi Y
[l,syzi g]// syzi Z // 0 for some free module P i, and

l ∈ HomR(P i, syzi Z). When syzi g is surjective, we see as in the proof of Lemma 4.1.13 that

P i must be zero. Now since g is not eventually cosyz-perfect, Lemma 4.1.14 shows that there

exist in�nitely many negative values of i such that syzi g is surjective and ker(syzi g) ∼= syziX

is isomorphic to an ideal. For each such i, we have βi(X) 6 e(R) by Lemma 4.1.15, and

therefore βi+1(X) 6 (e(R))3 by Lemma 4.1.16. Noting that βi(M) = β−i(M
∗) for all i ∈ Z,

we see that {βi(X∗)}i>0 is bounded, by Remark 4.1.2 (a). ThereforeX∗ is eventually periodic,

by Remark 4.1.2 (b). But in the setting of Cohen-Macaulay modules over a Gorenstein ring,

this is the same as saying that X∗ is periodic, and the same as saying that X is periodic.

Part (a) follows.

(b) By making the dual argument, we see that there exist in�nitely many positive values

of i such that syzi g is surjective and ker(syzi g) ∼= syziX is isomorphic to an ideal; and

{βi(X)}i>0 is bounded, and X is periodic.

For W ∈ CM(R), de�ne dW : CM(R) −→ N by dW (M) = dimk HomR(M,W ). The

following lemma is dual to [11, Lemma 3.2]. As the proof is also simply the dual, we omit it.

Lemma 4.1.18. Let 0 −→ syzM −→ E −→M −→ 0 be an AR sequence.

(a) If M is not a summand of W then dW (M) + dW (syzM) > dW (E).
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(b) If in addition syzM is not a direct summand of W , then equality holds in (a).

Proof of Proposition 4.1.12. Let C denote the stable AR component containingM . In order

to show that the tree class of C admits an additive function, it now su�ces to �nd W ∈

CM(R) such that: (1) dW (M) = dW (syzM) for all M ∈ C, (2) no direct summand of W

occurs in C, and (3) dW is not zero on C.

By Lemma 4.1.17 and the assumption that C contains a module which is either not

eventually syz-perfect, or not eventually cosyz-perfect, we can �nd an irreducible epimor-

phism g : Y −→ Z such that ker g is a periodic ideal and either Y or Z lies in C (the

other then being a direct sum of modules in C). Now let W =
⊕n−1

i=0 syzi(ker g) where

n is the period of ker g (actually n = 2 since R is a complete intersection). Recall that

HomR(X ′, Y ′) ∼= HomR(syzX ′, syzY ′) for all X ′, Y ′ ∈ CM(R). Therefore W satis�es (1),

since W ∼= syzW . Note that W satis�es (2) since we are assuming C is not periodic. Lastly,

(3) follows from the identity HomR(X ′, Y ′) ∼= Ext1
R(X ′, syzY ′) and the nonsplit extension

0 −→ ker g −→ Y −→ Z −→ 0.

In Theorem 4.1.30 we will address the case when all modules in a given stable AR com-

ponent are eventually cosyz-perfect. We �rst set about proving Lemmas 4.1.20 and 4.1.21.

Notation 4.1.19. In order to avoid some repetitious verbiage, let us for the remainder of

this section use C to denote a nonperiodic stable AR component such that every module in

C is eventually syz-perfect, and use C ′ to denote a nonperiodic stable AR component such

that every module in C ′ is eventually cosyz-perfect.

Lemma 4.1.20. (cf. [19, Proposition 2.2]) Assume M ∈ C ′ is cosyz-perfect. (a) If α(M) =

1 or 2, then the AR sequence beginning in M has one of the following shapes:

X ** **
M
( �

55

syz−1M

X ** **
M
( �

55

)) ))
syz−1M

Y
& �

44

X � x
**

M
( �

55
� v

))
syz−1M

Y
& �

44

(1) (2a) (2b′)
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(b) If α(M) = 3 or 4, then the AR sequence beginning in M has one of the following

shapes:

X � x
**

M
55 55
// //
)) ))
Y �
� // syz−1M

Z
& �

44

X � x
**

M
( �

55
// //
)) ))
Y �
� // syz−1M

Z
& �

44

W � u

((X � y ++
M

44 44
// //
** **

99 99

Y �
� // syz−1M

Z
% �

33

(3a) (3b′) (4)

Dually,

Lemma 4.1.21. Assume M ∈ C is syz-perfect. (a) If α(M) = 1 or 2, then the AR sequence

ending in M has one of the following shapes:

X
)) ))

syzM
' �

44

M

X
)) ))

syzM
' �

44

** **
M

Y
( �

55

X
)) ))

syzM
44 44

** **
M

Y
55 55

(1) (2a) (2b)

(b) If α(M) = 3 or 4, then the AR sequence beginning in M has one of the following

shapes:

X � v
))

syzM
44 44
// //
** **
Y �
� //M

Z
( �

55

X
)) ))

syzM
44 44
// //
** **
Y �
� //M

Z
( �

55

W � s

&&X � w
**syzM

33 33
// //
++ ++

77 77

Y �
� //M

Z
' �

44

(3a) (3b) (4)

These will be proven via 4.1.15- 4.1.28.

Remark 4.1.22. We mentioned earlier, but re-emphasize, that not all statements in CM(R)

�are dualizable"; see Lemma 4.1.29, for example.

Lemma 4.1.23. (cf. [12, Proposition 3.2] and [12, Lemma 3.4]) Assume that M ∈ C ′ is

cosyz-perfect, and let 0 //M
[f1,f2,...,fr]T //

⊕r
i=1Ei

[g1,g2,...,gr] // syz−1M // 0 be an

AR sequence where each Ei is nonzero but not necessarily indecomposable. Suppose r > 3.

Then

(a) At most one of the fi's is mono.

(b) If fi is mono, then gi is mono.
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Proof. (a) Suppose f1 and f2 are both monomorphisms. Since f1 is mono, so is [g2, . . . , gr] : E2⊕

· · · ⊕ Er −→ syz−1M , by Lemma 4.1.9. Therefore e(syz−1M) > e(E2) + · · · + e(Er) >

e(E2) + e(E3) > e(M) + 1
e(R)

e(M), using Lemma 4.1.16. Then since M is cosyz-perfect,

induction gives e(syz−nM) > e(M)(1 + 1
e(R)

)n for all n > 1. This implies cxM∗ = ∞ (in

view of Lemma 4.1.15), which is a contradiction to the assumption that R is a complete

intersection.

(b) By considering the AR sequences beginning atM and syz−1M , we see that
∑r

j=1(e(Ej)+

e(syz−1Ej)) = e(M) + 2e(syz−1M) + e(syz−2M). On the other hand, consideration of the

AR sequence beginning at the summands of the Ej's gives inequalities e(Ej)+e(syz−1Ej) >

e(syz−1M) for each j, so we have
∑r

j=2(e(Ej) + e(syz−1Ej)) > (r − 1)e(syz−1M) >

2e(syz−1M). Therefore, e(E1)+e(syz−1E1) 6 e(M)+e(syz−2M). This implies e(syz−1E1) 6

e(syz−2M), provided f1 : M −→ E1 is mono. But then syz−1 g1 : syz−1E1 −→ syz−2M can-

not be epi, so syz−1 g1 is mono, and therefore g1 is mono (since g1 is cosyz-perfect).

Lemma 4.1.24. Assume that M ∈ C is syz-perfect, and let

0 // syzM
[f1,f2,...,fr]T //

⊕r
i=1 Ei

[g1,g2,...,gr] //M // 0 be an AR sequence where

each Ei is nonzero but not necessarily indecomposable. Suppose r > 3. Then

(a) At most one of the gi's is epi.

(b) If gi is epi, then fi is epi.

Proof. Dual to the proof of Lemma 4.1.23.

Lemma 4.1.25. (cf. [12, Lemmas 3.4 and 3.5]) Assume that M ∈ C ′ is cosyz-perfect,

and let 0 //M
[f1,f2,...,fr]T //

⊕r
i=1Ei

[g1,g2,...,gr] // syz−1M // 0 be an AR sequence

where each Ei is nonzero but not necessarily indecomposable. If r > 4, then each fi is epi.

Proof. Let B = E4 ⊕ · · · ⊕ Er, and let f ′T = [f4, . . . , fr]
T : M −→ B and g′ : B −→

syz−1M be the induced irreducible maps. Suppose that f1 is a monomorphism. Then so is
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[f1, f2]T : M −→ E1 ⊕ E2. Then [g1, g2] : E1 ⊕ E2 −→ syz−1M is a mono by Lemma 4.1.23

(b), which in turn implies that [f3, f
′]T is mono (Lemma 4.1.9). So e(M) 6 e(E3) + e(B).

But on the other hand, since f1 is mono, so is [g2, g3, g
′], so that e(E2) + e(E3) + e(B) 6

e(syz−1M). Putting these inequalities together, and employing Lemma 4.1.16, we get (1 +

1
e(R)

)e(M) 6 e(syz−1M). Then induction gives (1+ 1
e(R)

)ne(M) 6 e(syz−nM) for each n > 1,

which (in view of Lemma 4.1.15) implies cxM∗ =∞, contradiction.

Lemma 4.1.26. Assume that M ∈ C is syz-perfect, and let

0 // syzM
[f1,f2,...,fr]T //

⊕r
i=1 Ei

[g1,g2,...,gr] //M // 0 be an AR sequence where

each Ei is nonzero but not necessarily indecomposable. If r > 4, then each gi is mono.

Proof. Dual to the proof of Lemma 4.1.25.

Proposition 4.1.27. (cf. [12, Lemmas 3.4 and 3.5]) For M ∈ C, we have α(M) 6 4.

Proof. We may assume M ∈ C is syz-perfect. Let

0 // syzM
[f1,f2,...,fr]T //

⊕r
i=1Ei

[g1,g2,...,gr] // syz−1M // 0

be the AR sequence ending in M , each Ei 6= 0, and assume to the contrary that r > 5. Let

B1 = E1 ⊕ E2 and B2 = E3 ⊕ · · · ⊕ Er and rewrite the AR sequence as

0 // syzM
[h1,h2]T // B1 ⊕B2

[k1,k2] //M // 0

where h1 = [f1, f2], h2 = [f3, . . . , fr], k1 = [g1, g2] and k2 = [g3, . . . , gr]. Since B2 has at least

3 direct summands, Lemma 4.1.26 implies that k1 is a mono. If k2 is also mono then so is

hT1 , which we can compose with k1 to get a monomorphism syzM↪→M . Therefore we get an

in�nite chain of monomorphisms . . . ↪→ syz2M↪→ syzM↪→M , implying e(M) > e(syzM) >

e(syz2M) > . . . . Then Lemma 4.1.15 implies that cxM 6 1, contrary to assumption. So k2

must be epi. But since k1 is a mono, so is hT2 , and we get a contradiction to Lemma 4.1.24,

since B1 has at least 2 direct summands.

Proposition 4.1.28. For M ∈ C ′, we have α(M) 6 4.
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Proof. May be proved as the dual of the proof of Proposition 4.1.28. (One has the option of

slightly shortening the argument by using Lemma 4.1.29 instead of appealing to complexity.)

Proof of Lemma 4.1.21. Let us write the AR sequence as

0 // syzM
[f1,f2,...,fr]T //

⊕r
i=1 Ei

[g1,g2,...,gr] //M // 0 ,

where the Ei's are nonzero indecomposables, and r 6 4 by Proposition 4.1.27. There is

nothing to prove if r = 1. Assume r = 2. By Lemma 4.1.9, it su�ces to show that

the maps f1 and g1 cannot both be mono. But if they were, we would have an in�nite

chain of monomorphisms . . . ↪→ syz2M↪→ syzM↪→M , and a contradiction as in the proof of

Proposition 4.1.27.

Now assume r = 3. By Lemma 4.1.24 (a), at most one of the gi's is epi. Note that fi is

epi whenever gi is mono, as we saw in case r = 2. So the classi�cation of the r = 3 case is

�nished by Lemma 4.1.24 (b). In the case r = 4, all gi's are mono by Lemma 4.1.26, and

therefore all fi's epi.

Proof of Lemma 4.1.20. May be proved as the dual of the proof of Lemma 4.1.21.

Note that the dual of the following lemma does not hold. (The dual proof fails because,

while CM(R) is closed under kernels, it is not closed under cokernels.)

Lemma 4.1.29. Any chain of epimorphisms X0 � X1 � . . .� Xn � . . . in CM(R) must

eventually terminate.

Proof. Recall e(X) > 0 for every X ∈ CM(R). Therefore, the additivity of e( ) along short

exact sequences implies that any epi X � Y in CM(R) which is not an isomorphism must

satisfy e(X) > e(Y ).

Our next goal is the following.
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Theorem 4.1.30. (cf. [19, Theorem 2.1]) Let C ′ be a nonperiodic stable AR component of

R such that every module in C ′ is eventually cosyz-perfect, assume also that k is algebraically

closed. Then C ′ is of type Z∆, where ∆ is either a Euclidean diagram of type Ãn, D̃n, Ẽi

(i = 6, 7, 8) or a Dynkin diagram of type Ei (i = 6, 7, 8), A∞, A
∞
∞ or D∞.

Lemma 4.1.31. (cf. [12, Lemma 2.6]) Let f : X −→ Y be an irreducible epimorphism,

where X and Y are indecomposables in Lp(R). If X is cosyz-perfect, then so is Y .

Proof. Let 0 // Y
f // syz−1X ⊕ Z g // syz−1 Y // 0 be the AR sequence beginning

at Y . If Z = 0, then f and g are cosyz-perfect since X is; and then Y is cosyz-perfect. So

assume Z 6= 0, and write f = [f1 f2]T and g = [g1 g2]. As syzn g1 is epi for each n 6 0,

so is syzn f2 (Lemma 4.1.9). If f1 were epi, then the compositions (syzn g1)(syzn f1) would

give an in�nite sequence Y � syz−1 Y � . . .� syzn Y � syzn−1 Y � . . . of epimorphisms,

contradicting Lemma 4.1.29. So f1 is a mono, and therefore g2 is a mono, by Lemma 4.1.9.

Let Z ′ be a direct summand of Z. Then since g2 : Z −→ syz−1 Y is mono, so is the induced

map Z ′ −→ syz−1 Y . Likewise, since f2 is epi, so is the induced map Y −→ Z ′. Since

our hypotheses are preserved by syz−1, the maps Z ′ −→ syz−1 Y and Y −→ Z ′ are thus

cosyz-perfect. It remains to consider irreducible maps involving syz−1X ⊕ Z ′. Now since

g1 : syz−1X −→ syz−1 Y is not mono, the map syz−1X ⊕ Z ′ −→ syz−1 Y induced by g

must also not be mono; so it is epi, and thus cosyz-perfect (again, because our hypotheses

are preserved by syz−1). Since f1 : Y −→ syz−1X is not epi, the map Y −→ syz−1X ⊕ Z ′

induced by f must also not be epi; it is mono, and cosyz-perfect.

Lemma 4.1.32. (cf. [19, Lemma 2.3]) Let 0 //M
[f1,f2]T// X ⊕ Y [g1,g2] // syz−1M // 0 be

the AR sequence beginning at a cosyz-perfect module M , and assume that the module X is

indecomposable and f1 is an epimorphism. Then X is cosyz-perfect, and either α(X) = 1,

or α(X) = 2 and the AR sequence beginning with X is of type (2a).

Proof. X is cosyz-perfect by Lemma 4.1.31, and we have an irreducible epimorphism syz−1M �

syz−1X. So we are done by consideration of the list in Lemma 4.1.20.
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Lemma 4.1.33. (cf. [19, Cor. 2.4]) If the AR sequence beginning at a cosyz-perfect module

M has the form 0 //M
[f1,f2]T// X1 ⊕ Y

[g1,g2] // syz−1M // 0 with X1 indecomposable, and

f1 an epimorphism, then there exists a �nite chain of irreducible epimorphisms X1 � X2 �

. . .� Xr with r > 1, α(Xr) = 1, and α(Xi) = 2 for all 1 6 i < r.

Proof. The existence of the chain X1 � X2 � . . . follows from Lemma 4.1.32, and it

terminates by Lemma 4.1.29.

Recall that if k is algebraically closed, the AR quiver of R is symmetric in the sense of

Remark 3.2.4.

Proposition 4.1.34. (cf. [19, Prop. 2.5]) Assume k is algebraically closed, and let

0 //M
[f1,f2,...,fr]T //

⊕r
i=1Xi

[g1,g2,...,gr] // syz−1M // 0 be the AR sequence be-

ginning at module M ∈ C ′, where each Xi is a nonfree indecomposable (which is automatic

if M is cosyz-perfect). Then, for all i 6= j, Xi � Xj, unless r = 2 and C ′ is of type ZÃ1.

Proof. For simplicity, assume X1 = X2, and call it simply X. By multiplicity considerations,

either f1 and f2 are both mono or they are both epi. But we may also assume that syzX is

cosyz-perfect. Then by consideration of the AR sequence beginning at syzX, in the context

of Lemma 4.1.20, we see that f1 and f2 are both mono. But we can also assume M is cosyz-

perfect, and therefore the AR sequence beginning at M must be of type (2b′), and r = 2.

Since we have irreducible maps g1 : X −→ syz−1M and g2 : X −→ syz−1M , X satis�es

exactly what we assumed of M at the outset of this proof, so these are the only irreducible

maps coming from X. Therefore the tree class (recall Remark 3.1.8) of C ′ is just a single

arrow connecting two vertices, i.e. A2. Then C ′ = ZA2 when we ignore multiple arrows;

and if we take multiple arrows into account then we clearly just need to double all arrows in

ZA2, which gives ZÃ1.

Lemma 4.1.35. (cf. [19, Lemma 2.7]) Assume k is algebraically closed, and α(C ′) = 2. If

there exists a cosyz-perfect module M ∈ C ′ with α(M) = 2 and AR sequence
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0 //M
[f1,f2]T// X1 ⊕ Y1

[g1,g2] // syz−1M // 0 such that f2 is an epimorphism, then C ′ is

of type ZA∞. If there does not exist such M , then C ′ is of type ZA∞∞ or ZÃn for some n > 1.

Proof. Assume there exists such M . By Lemma 4.1.33, we have a �nite chain of irreducible

epimorphisms Y1 � Y2 � . . .� Yr, where α(Yr) = 1 and α(Yi) = 2 for all 1 6 i < r. Since

there is an irreducible monoM↪→X1, we must have α(X1) > 2, and therefore α(X1) = 2 since

we are assuming α(C ′) = 2. Since syzn g1 : syznX1 −→ syzn−1M is an epimorphism for all

n 6 0, the AR sequence beginning in syznX1 is of type (2a) for all n << 0 (namely those n for

which syznX1 is cosyz-perfect). Therefore if 0 −→ X1 −→ X2⊕ syz−1M −→ syz−1X −→ 0

is the AR sequence beginning atX1, we must have α(X2) = 2, and the AR sequence beginning

in syznX2 is of type (2a) for all n << 0. By induction, we obtain an in�nite chain of

irreducible maps M
h1=f1 // X1

h2 // X2
h3 // X3

// . . . (where each hi is �eventually mono"

in the sense of syzn(hi) being mono for all n << 0). Therefore the tree class of C ′ is A∞.

Since any proper admissible quotient of ZA∞ is periodic (namely a tube), C ′ is of type ZA∞.

Now assume there does not exist M as above, but take M ∈ C ′ such that α(M) = 2.

We may take M to be cosyz-perfect, and the sequence beginning at M is of type (2b′). So

we have irreducible monomorphisms M↪→X1 and M↪→Y1 and α(X1) = α(Y1) = 2, and the

AR sequences beginning at X1 and Y1 are also of type (2b′) (after su�cient application of

syz−1). Arguing as above, we therefore get in�nite chains M −→ X1 −→ X2 −→ . . . and

M −→ Y1 −→ Y2 −→ . . . , and the tree class of C ′ is A∞∞. Now, C ′ has the form ZA∞∞/G

where G is an admissible group of automorphisms of ZA∞∞. Note that any automorphism

ρ : ZA∞∞ −→ ZA∞∞ is determined by the image of a vertex and one of its immediate successors,

and it follows that ρ is either a translation or a translation followed by a re�ection.

To �nish the proof, it su�ces to rule out the latter case. Suppose to the contrary

that G contains ρ = rt where r is a re�ection and t is a translation. We naturally

draw ZA∞∞ so that syz-orbits form horizontal lines extending in�nitely in both directions,

and the immediate successors y and z of a vertex x lie on horizontal lines immediately

(let us say �by one unit") above and below that of x. So we might write height(y) =
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height(x) + 1 and height(z) = height(x) − 1. Since we can choose where height = 0,

we can assume that r simply �negates heights". Now if t has vertical component vt, we

have height(ρ(x)) = −(height(x) + vt), hence height(x) − height(ρ(x)) = 2 height(x) + vt.

So we can choose x such that height(x) − height(ρ(x)) ∈ {0, 1}. Now it follows that x

is a successor of τ−1x in ZA∞∞/〈ρ〉 and thus that there is a chain of irreducible maps

syz−1M −→ . . . −→M in C ′, forM in C ′ corresponding to x. However, we may assumeM is

cosyz-perfect, and therefore that we have an in�nite sequence of irreducible monomorphisms

. . . ↪→ syznM↪→ . . . ↪→ syzn+1 ↪→ . . . ↪→ syz−1M↪→ . . . ↪→M . Then e(M) > e(syz−1M) > . . . ,

which implies that cxM∗ = 1 (in view of Lemma 4.1.15). But then M∗ is periodic, and then

M is periodic, contrary to assumption.

Lemma 4.1.36. (cf. [19, Lemma 2.8]) Assume k is algebraically closed, and α(C ′) = 3. Let

M ∈ C ′ be cosyz-perfect with AR sequence

0 //M
[f1,f2,f3]T// X ⊕ Y ⊕ Z [g1,g2,g3] // syz−1M // 0 .

(a) If f1, f2, f3 are epimorphisms, then C ′ is of type ZEi or ZẼi, i ∈ {6, 7, 8}.

(b) If f1 is a mono, then C ′ is either of type ZD∞, or of type ZD̃n for some n > 5.

Proof. (a) By Lemmas 4.1.20 and 4.1.33, the tree class of C ′ is a rooted tree T with three

�nite branches. It is either Dynkin or Euclidean: see Section 1 of [19]. Now it only remains

to remark that if G is a nontrivial group of automorphisms of ZT , then ZT/G is periodic.

Let ρ be a nontrivial automorphism and let x ∈ T be the root of T , i.e., take x corresponding

to M . Clearly, ρ(x) = τnx for some integer n, and since C ′ is nonperiodic we may therefore

assume that ρ(x) = x. But it is easy to check that any admissible automorphism �xing a

vertex is the identity map.

(b) Now the AR sequence beginning in M is of type (3b′). Applying Lemma 4.1.33 to

Y1 = Y and Z1 = Z, we obtain chains of irreducible epimorphisms Y1 � Y2 � . . .� Yr and

Z1 � Z2 � . . . � Zs, with α(Yr) = α(Zs) = 1, and α(Yi) = α(Zj) = 2 for 1 6 i < r and

1 6 j < s. First we show that r = s = 1. We may assume that X is cosyz-perfect. Let
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0 −→ X −→ syz−1M ⊕ V −→ syz−1X −→ 0,

0 −→ Y1 −→ Y2 ⊕ syz−1M −→ syz−1 Y1 −→ 0,

and

0 −→ Z1 −→ Z2 ⊕ syz−1M −→ syz−1 Z1 −→ 0

be AR sequences, and let us show that Z2 = 0. By consideration of these AR sequences as

well as those beginning atM and syz−1M , we can obtain e(M)+e(syz−2M) = e(syz−1M)+

e(V ) + e(Y2) + e(Z2) and in particular

e(M) + e(syz−2M) > e(syz−1M) + e(V ) + e(Z2). (4.1.3)

Note that X −→ V is a monomorphism since syz−1M −→ syz−1X is such. So we have

monomorphismsM↪→X↪→V andM↪→X↪→ syz−1M (since the AR sequence beginning inM

is of type (3b′)), and therefore e(M) 6 e(V ) and e(M) 6 e(syz−1M). Now the inequal-

ity 4.1.3 gives e(syz−2M) > e(M) + e(Z2). Then we have e(syz−2M) > e(M)(1 + ( 1
e(R)

)2)

by Lemma 4.1.16. But then e(syz−2nM) > e(M)(1 + ( 1
e(R)

)2)n for all n > 1, by induction.

Then cxM∗ =∞, which is a contradiction. So we have r = s = 1.

Let X1 = X and let 0 −→ X1 −→ syz−1M ⊕X2 −→ syz−1X1 −→ 0 be the AR sequence

beginning at X1. If α(X1) = 3 then both summands of X2 have α = 1, by the above. In this

case the tree class T of C ′ is D̃5 (six vertices). Now assume the other case: α(X1) = 2. We

may assume that X1 and X2 are cosyz-perfect. Lemma 4.1.20 implies that the AR sequence

beginning in X1 is of type (2b
′), and that the AR sequence beginning in X2 is either of type

(2b′) or (3b′). If the latter then T is D̃6. By continuing this process, we see that T is either

D∞ or D̃n for some n > 5. If T = D∞, then we see that C ′ = ZT for the same reasons used

in part (a). If T = D̃n, then we may argue as follows. If T has an even number of vertices,

then there are two vertices, x and y, which are closest to the center of T (as opposed to the

ends of T , where the vertices have α = 1). Now any automorphism ρ of ZT must send x
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to τnx or τny for some integer n. But if ρ 6= 1 and ZT/〈ρ〉 is not periodic, then we must

have ρ(x) = τny (some n). We may assume that x → y ∈ T . Then ρ(y) = τn−1(x), and

ρ2(x) = τ 2n−1x implies that ZT/〈ρ〉 is periodic, since 2n− 1 6= 0. So C ′ = ZT . If T has an

odd number of vertices then we have the easier argument as in (a).

Lemma 4.1.37. ([19, Lemma 2.9]) Assume that k is algebraically closed, and that C ′ con-

tains a module M such that α(M) = 4. Then C ′ is of type ZD̃4.

Proof. By Lemmas 4.1.20 and 4.1.33, the tree class T of C ′ is a �nite rooted tree with four

arms. But it is either Dynkin or Euclidean, by Section 1 of [19], so it must be D̃4. Thus

C ′ = ZD̃4.

Proof of Theorem 4.1.30. The theorem follows from Lemmas 4.1.35, 4.1.36, and 4.1.37.

4.2 Application to the Huneke-Wiegand Conjecture

Conjecture 4.2.1. ([18]) Let D be a Gorenstein local domain of dimension one and M

a nonzero �nitely generated torsionfree D-module, that is not free. Then M ⊗D M∗ has a

nonzero torsion submodule.

As shown in [16, Theorem 5.9], the above condition on M ⊗D M∗ may be replaced by

the condition that Ext1
D(M,M) 6= 0. In turn, this is equivalent to HomD(syzDM,M) 6= 0.

We continue to assume R is a complete (or graded-) local complete intersection ring

dimension one. We can con�rm special cases of the conjecture, as follows.

Proposition 4.2.2. Let M ∈ Lp(R) be a nonfree indecomposable with α(M) > 3, which is

either eventually syz-perfect or eventually cosyz-perfect. Then Ext1
R(M,M) 6= 0.

Proof. Recall that Ext1
R(M,M) ∼= HomR(syzM,M) ∼= HomR(syzi+1M, syziM) for all i ∈ Z.

In particular, we may replace M by some syznM to assume that M is syz- or cosyz-perfect.
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By Lemma 4.1.6 (a), it su�ces to �nd a map M −→ syz−1M whose image is not contained

in m syz−1M . Suppose �rst that M is cosyz-perfect, and let

0 //M
[f1,f2,...,fr]T //

⊕r
i=1Ei

[g1,g2,...,gr] // syz−1M // 0

be the AR sequence beginning in M . Since [g1, g2, . . . , gr] is surjective, there exists some i

such that im(gi) * m syz−1M . Therefore if each fi is an epimorphism, some composition

gifi : M −→ syz−1M has the desired property. Therefore we are done ifM has AR sequence

of type (3a) or (4). Similarly, we are done if M is syz-perfect and has AR sequence of type

(3a), (3b), or (4).

To �nish this proposition, it remains to consider the case when M is cosyz-perfect with

AR sequence of type (3b′); now r = 3, and f2 and f3 are epimorphisms. As we saw in

Lemma 4.1.36, we have in this case α(E2) = α(E3) = 1. Now we have an AR sequence

0 // E2
g2 // syz−1M

p // syz−1E2
// 0 . By applying syz−1 if necessary, we may as-

sume m � syzE2, so that the free module does not occur in the AR sequence beginning in

syzE2, and therefore the application of syz to the latter sequence yields again an AR se-

quence. In particular, syz p is epi, and Lemma 4.1.13 thus implies that g2(E2) * m syz−1M .

The map g2f2 : M −→ syz−1M satis�es the desired property g2f2(M) * m syz−1M .

Proposition 4.2.3. Let M be nonfree indecomposable in Lp(R), with α(M) = 2. Suppose

that either M ends an AR sequence of type (2b) or that M is cosyz-perfect and begins an

AR sequence of type (2a). Then Ext1
R(M,M) 6= 0.

Proof. In case (2b) we have a surjection syzM �M , which is stably nonzero by Lemma 4.1.6,

so we are done.

Let

0 //M
[f0,g0]T// X1 ⊕ Y

[g1,f ′0]
// syz−1M // 0

be the AR sequence beginning inM , with f1 an epimorphism. By Lemma 4.1.33 there exists

a �nite chain of irreducible epimorphisms X0 = M � X1 � X2 � . . . � Xr with r > 1,
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α(Xr) = 1, and α(Xi) = 2 for all 0 6 i < r. In fact we can take irreducible epimorphisms

fi : Xi � Xi+1, 0 6 i < r, and f ′i : syz−1Xi−1 −→ syz−1Xi (1 6 i 6 r), together with

irreducible monomorphisms gi : Xi −→ syz−1Xi−1, to form AR sequences

0 // Xi
[fi,gi]

T

// Xi+1 ⊕ syz−1Xi−1

[gi+1,f
′
i ]// syz−1Xi

// 0 ,

for 1 6 i < r. (Given such an AR sequence for a given i, we know that we have an AR

sequence beginning with 0 // Xi+1
[fi+1,gi+1]T// · · · for some fi+1 by Lemma 3.2.5.)

As argued in case (3b′), gr(Xr) * m syz−1Xr−1. As fr−1 is epi and grfr−1 = −f ′r−1gr−1,

we get gr−1 * syz−1Xr−2. Continuing in this way, we see that g1(X1) * m syz−1M , and by

composing with the epi f0 we get a stably nonzero map g1f0 : M −→ syz−1M , as desired.



Chapter 5

Examples

The basic example of a Frobenius element is Example 2.2.16. In the following two sections,

we compute some other examples. Then we calculate the shape of some components of AR

quivers.

5.1 Frobenius elements for hypersurfaces

In this section, let (R,m) be a domain hypersurface ring R = k[|x, y|]/(f) over an alge-

braically closed �eld k. We assume f is an irreducible power series lying in (x, y)2. Let

S = k[|x, y|], and let mS denote the maximal ideal of S. Let m and n denote the integers

such that f is regular in x (see below) of order m and regular in y of order n.

De�nition 5.1.1. For f ∈ S, we say that �f is regular in x of order m� if m is the smallest

among those integers j satisfying: f has a term of the form axj where a ∈ k×. We have the

analagous de�nition for y.

Note 5.1.2. We will use without proof ([13, Theorem 3.3], or [8]), the following facts: the

integral closure of R is a power series ring k[|t|], and v(x) = n, v(y) = m, where v denotes

the valuation (on k[|t|]).

The following lemma does not require that f be irreducible, only that y - f .

57
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Lemma 5.1.3. We have xm−1/y ∈ R \R.

Proof. We can write f = uxm + yg, for some unit u ∈ S and some g ∈ mS (since we assume

f ∈ m2
S). In R we have (xm−1/y)x = xm/y = −gu−1 ∈ m and (xm−1/y)y = xm−1 ∈ m, so

xm−1/y ∈ EndR(m) ⊆ R. That xm−1/y /∈ R is also clear (that is, there exists no h ∈ S such

that xm−1 − hy ∈ fS).

Proposition 5.1.4. Assume gcd(m,n) = 1. Then the conductor ideal (R :R R) equals

t(m−1)(n−1)R, using the notation of Note 5.1.2.

Proof. It is well known (see for instance, [17, Example 12.1.1]) that (m − 1)(n − 1) − 1 =

max{i ∈ Z|i /∈ Nm + Nn} is the Frobenius number of the semigroup Nm + Nn. Let v(R)

denote the value semigroup of R, that is, v(R) = {v(r)|r ∈ R \ 0}. Since m = v(y) and

n = v(x) are elements of v(R) , we have that v(R) ⊇ {i ∈ Z|i > (m − 1)(n − 1)}, and it

follows that t(m−1)(n−1)R ⊆ R. It remains to check that (m− 1)(n− 1)− 1 /∈ v(R).

Fix g ∈ R and an expression for g, g =
∑

i,j gi,jx
iyj where gi,j ∈ k. Note that v(xiyj) =

in + jm. Notice also that if in + jm = i′n + j′m < mn, then i = i′ and j = j′; to see

this, use the equation (i − i′)n = (j′ − j)m, and recall that gcd(m,n) = 1 by assumption.

Therefore if gi,j 6= 0 for some pair (i, j) satisfying in+ jm 6 (m− 1)(n− 1)− 1, then among

the nonzero terms gi,jx
iyj of g, there is a unique term of minimal valuation. In this case,

v(g) = min{v(xiyj)|gi,j 6= 0} < (m − 1)(n − 1) − 1. On the other hand, if gi,j = 0 for all

pairs (i, j) satisfying v(xiyj) 6 (m− 1)(n− 1)− 1, then v(g) > (m− 1)(n− 1).

Corollary 5.1.5. Assume gcd(m,n) = 1 for f . Then xm−1/y and yn−1/x are Frobenius

elements for R.

Proof. For z ∈ J (R), we have v(z) > 1, and therefore v(zxm−1/y) > 1 + (m − 1)n −m =

(m− 1)(n− 1), and therefore zxm−1/y is contained in the conductor ideal, and in particular

in R. So xm−1/y ∈ J (R)∗ = F(R). Moreover, xm−1/y /∈ R by Lemma 5.1.3. Of course the

same reasoning applies to yn−1/x.
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Remark 5.1.6. In Corollary 5.1.5, the condition that gcd(m,n) = 1 cannot be ommitted.

Consider the map ϕ : k[|x, y|] −→ k[[t]] sending x 7→ t4 + t17, y 7→ t6, and let R = imϕ. We

know from Note 5.1.2 that the generator f of kerϕ has m = 6, n = 4, hence v(xm−1/y) = 14.

If γ = xm−1/y, then the conductor ideal would be t15R. But clearly t15 /∈ R.

5.2 Frobenius elements for some binomial rings

Next we consider some graded reduced complete intersections. For some n > 2, choose

integers a2, ..., an and b2, ..., bn, such that ai > 2 and bi > 2 for each i. Let k be a �eld of

characteristic zero, and let A = k[t1, ..., tn]/(ta21 − tb22 , ..., tan1 − tbnn ). Let d1, ..., dn be positive

integers such that setting deg(ti) = di results in each binomial ta11 − t
bi
i being homogeneous;

this choice is unique if we insist that gcd{i|Ai 6= 0} = 1.

Lemma 5.2.1. A is a complete intersection, and each ti is a nonzerodivisor on A.

Proof. Let s denote the sequence ta21 −tb22 , ..., tan1 −tbnn . Recall that the sum of a nonzerodivisor

and a nilpotent is a nonzerodivisor (since the nonzerodivisors are precisely the elements

contained in no associated primes, and the nilpotent elements are precisely the element

contained in all associated primes). From this it is easy to see that t1, s is a regular sequence,

and that for each j ∈ {2, ..., n} there is a shu�ing s′j of s (namely, move t
aj
1 − t

bj
j to the

beginning) such that the sequence tj, s
′
j is a regular sequence. The desired results follow

from permutability of regular sequences.

Lemma 5.2.2. A is reduced.

Proof. Let I = (ta21 − tb22 , ..., t
an
1 − tbnn ). Since I is a binomial ideal such that each ti is a

nonzerodivisor on the quotient k[t1, ..., tn]/I = A, I is a so-called lattice ideal ([26, Theo-

rem 8.2.8]). Futhermore, in characteristic zero, every lattice ideal is radical ([26, Theorem

8.2.27]).

Proposition 5.2.3. The element
∏n
i=2 t

bi−1
i

t1
∈ Q(A) is a Frobenius element for A.
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Proof. Let γ =
∏n
i=2 t

bi−1
i

t1
. By Proposition 2.3.4, it su�ces to show that γ ∈ m∗ \ R. It is

clear that γti ∈ R for i = 1, . . . , n, which says that γ ∈ m∗. If we work in the polynomial

ring k[t1, ..., tn], the monomial
∏n

i=2 t
bi−1
i does not appear in any polynomial of the form t1f

or
∑n

i=2(tai1 − t
bi
i )fi, and it follows that

∏n
i=2 t

bi−1
i /∈ t1R, i.e. γ /∈ R.

Corollary 5.2.4. A is a semigroup ring over k if and only if −d1 +
∑n

i=2 di(bi − 1) /∈∑n
i=1Ndi. (These conditions are equivalent to A being a domain if k is algebraically closed,

see Remark 6.0.6.)

Proof. We have a(A) = −d1 +
∑n

i=2 di(bi− 1) by Propositions 2.3.3 and 5.2.3. Since {i|Ai 6=

0} =
∑n

i=1Ndi, the result follows from Proposition 2.3.6.

Here is another example. Let α1, ..., αn−1 and β2, ..., βn be integers > 2 such that αi > βi

for all i ∈ {2, ..., n− 1} . Let I be the ideal of S = k[t1, ..., tn] generated by {tαii − t
βi+1

i+1 }n−1
i=1 ,

and set B = S/I. Arguing as before (and keeping the assumption char k = 0), B is a reduced

complete intersection of dimension 1.

Proposition 5.2.5. The element
∏n
i=2 t

βi−1
i

t1
∈ Q(B) is a Frobenius element for B, and B is

a semigroup ring if and only if −d′1 +
∑n

i=2 d
′
i(βi − 1) /∈

∑n
i=1Nd′i, where d′i = deg(ti).

Proof. Similar to the previous proposition and corollary.

5.3 A quiver computation

In this section, we apply Theorem 2.2.14 and Proposition 3.2.24 to determine the shape

(namely, a tube) of some components of the Auslander-Reiten quiver of the hypersurface

ring R̂ de�ned in 5.3.4, below.

5.3.1. Let S be a regular (graded-) local ring, and f ∈ S a nonzero element. Let R = S/fS.

A matrix factorization of f is a pair of matrices (ϕ, ψ), with entries in S, such that ϕψ =
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ψϕ = f idl×l for some l > 0. As consequences of the de�nition, we have cokϕ ∼= cok(ϕ⊗SR),

and ([27, 7.2.2])

im(ϕ⊗S R) = ker(ψ ⊗S R) and im(ψ ⊗S R) = ker(ϕ⊗S R). (5.3.1)

In particular, cokϕ and cokψ are periodic R-modules, of period two.

Remark 5.3.2. Let (ϕ, ψ) and (ϕ′, ψ′) be matrix factorizations of f . Let n1 and n2 be the

integers such that ϕ is n1-by-n1 and ϕ′ is n2-by-n2. Given h : cokϕ −→ cokϕ′, there of

course exist α : S(n1) −→ S(n2) and β : S(n1) −→ S(n2) making the diagram

S(n1) ϕ //

β
��

S(n1) //

α
��

cokϕ //

h
��

0

S(n2) ϕ′ // S(n2) // cokϕ′ // 0

(5.3.2)

commute. Then
(ϕ′ −α

0 ψ

 ,

ψ′ β

0 ϕ

) is a matrix factorization of f .

If (ϕ, ψ) is a matrix factorization such that ϕ and ψ each contains no unit entry, then

it is called a reduced matrix factorization. If (ϕ, ψ) is a reduced matrix factorization, then

neither cokϕ nor cokψ contains a free summand (cf. [27, 7.5.1]).

Let us from now on assume, furthermore, that dimR = 1, and that R is either a complete

local ring or a connected graded ring.

5.3.3. Let (ϕ, ψ) be a reduced matrix factorization for f , and let γ be as in Notation 2.2.10.

LetM = cokϕ, and pick α and β lifting γM ∈ EndRM in the sense of Remark 5.3.2. One may

check that the valid choices for α are precisely those choices such that ψα = γψ after passing

to R. Now assume M satis�es the conclusion of Theorem 2.2.14, namely that [γM ] generates

the socle of EndRM . By Remark 1.1.10, push(M) ∼= (im(ψ ⊗S R) ⊕ R(n))/{(−γc, c)|c ∈

im(ψ ⊗S R)}, where n denotes the side length of the matrices ϕ and ψ. Then we see that
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push(M) ∼= cok

ϕ −α

0 ψ

 .

5.3.4. Let k be a �eld, of characteristic not equal to 2, and let us set up a connected

graded hypersurface (R,m) as follows. Let p and q be relatively prime integers > 3, and let

S = k[x, y] be the graded polynomial ring such that S0 = k, deg x = q, and deg y = p. Let

f ∈ S be a homogeneous polynomial which is not divisible by x. Let g = (bxp + yq)f , where

b ∈ k, and b is allowed to be zero. Now, let R = k[x, y]/(g). The m-adic completion of R

is R̂ = k[|x, y|]/(g). Let v = deg(f)/p, which is an integer because x - f . We assume that

f − yv ∈ xS. Lastly, assume that there are in�nitely many isoclasses of indecomposables in

CM(R).

Now �x an ideal of R of the form I = (xm, yn), where 1 6 m < p− 1 and 2 6 n < q. We

will show that stable AR component containing Î is a tube, by showing that push(push(Î))

has only two indecomposable summands, and applying Proposition 3.2.24. However, we will

work over R:

Remark 5.3.5. Let C be a component of the stable AR quiver of R. Now consider the valued

translation quiver C ′ obtained from C by identifying vertices x and y when they correspond

to modules which are merely graded-shifts of one another. (We de�ned �graded-shift" above

De�nition 2.3.2.) By [3, Theorem 3], C ′ is naturally identi�ed with a component of the

stable AR quiver of R̂. Therefore we might as well work over R, and just not try to keep

track of the grading on M and the grading on push(M) simultaneously.

Notation 5.3.6. Let γ = yq−1f/x ∈ Q. If b 6= 0, set R′ = S/(bxp + yq)S; if b = 0, set

R′ = S/yS ∼= k[x]. In either case, R′ is a domain:

Lemma 5.3.7. If b 6= 0, then S/(bxp + yq)S is a domain.

Proof. As S is factorial, it su�ces to show bxp+yq is irreducible. Since a product ss′ fails to

be homogeneous if either s or s′ does, bxp + yq is either irreducible or equal to a product of

homogeneous nonunits. Let s and s′ be homogeneous elements satisfying ss′ = bxp + yq, and
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s a nonunit. Then s has a term of the form αxi for α ∈ k \ {0}, so that q| deg s. Likewise

p| deg s, and thus deg s = deg(bxp + yq), hence deg s′ = 0, so s′ is a unit.

We will use the following piece of arithmetic several times. We omit the easy proof.

Lemma 5.3.8. If b1 < q and b2 < 0, or if b1 < 0 and b2 < p, then b1p+ b2q /∈ pN+ qN.

Lemma 5.3.9. Let (ϕ, ψ) be a reduced matrix factorization of g and such that each indecom-

posable direct summand of cokϕ has rank, and char k does not divide any of these ranks. Let

α be a matrix such that ψα = γψ after passing to R. Then, push(cokϕ) = cok

ϕ −α

0 ψ

.

Proof. By 5.3.3 we only need to check that γ satis�es agrees with Notation 2.2.10, and the

indecomposable summands of cokϕ satisfy the hypotheses in Theorem 2.2.14. If b 6= 0 then

R′ = S/(bxp + yq)S and we set z = f (see Remark 2.2.9 and γ′ = yq−1/x, which lies in

HomR′(mR′ , R
′). As deg(yq−1/x) = p(q − 1)− q /∈ pN+ qN by Lemma 5.3.8, we have γ′ is a

Frobenius element for R′ by Proposition 2.3.4. So γ = yq−1f/x agrees with Notation 2.2.10.

If b = 0, then R′ = S/yS and we set z = yq−1f and γ′ = 1/x ∈ (R′ :Q′ J (R′)) \ R′. Again

γ = yq−1f/x agrees with Notation 2.2.10. It only remains to note that M ⊗R Q′ is a free

Q′-module of rank equal to that of M ⊗R Q, by Lemma 2.2.5.

In preparation for what immediately follows, let us observe that g−yq+v ∈ xmS. Indeed,

we have by assumption f − yv ∈ xS, and deg f = deg(yv) = pv. So if xiyj is a monomial

occurring in f − yv, then we have i > 0, and qi+ pj = pv. Since gcd(p, q) = 1, i is therefore

a positive multiple of p; in particular, i > m. Thus, if ≡ denotes congruence modulo xm, we

have f − yv ≡ 0, and g − yq+v = (bxp + yq)f − yq+v ≡ yq(f − yv) ≡ 0.

Let

ϕ =

(g − yq+v)/xm −yn

yq+v−n xm

 , and ψ =

 xm yn

−yq+v−n (g − yq+v)/xm

 ; (5.3.3)
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then I ∼= cokϕ, and (ϕ, ψ) is a matrix factorization of g. Let

α =

 0 −bxp−m−1yn−1f

xm−1yq−n−1f 0

 , (5.3.4)

and note that ψα = γψ after passing to R. Therefore if we let ξ =

ϕ −α

0 ψ

, it follows

from Lemma 5.3.9 that cok ξ = push(I).

By Remark 5.3.2, we can pick a matrix β, with entries in S, such that

αϕ = ϕβ. (5.3.5)

In fact

β =

 yq−1(f − yv)/x −xm−1yn−1

yq−n−1(bxp−m−1yvf + (f − yv)(g − yq+v)/xm+1) −yq−1(f − yv)/x

.

We will never need to refer to the actual entries of β, though we will use that β has no unit

entries. By equation 5.3.5, the pair

(ξ, η) forms a matrix factorization of g, where ξ =

ϕ −α

0 ψ

 , and η =

ψ β

0 ϕ

 . (5.3.6)

Furthermore, (ξ, η) is a reduced matrix factorization.

��Regarding all of these matrices, and all other matrices to be introduced in this section,

we from now on abuse notation: we will always take the entries as living in R rather than

S, unless stated otherwise!!��
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The reader can check directly that αϕ = −γϕ. In other words,

ϕβ = −γϕ. (5.3.7)

De�nition 5.3.10. We choose a matrix W such that ηW = γη. Such W exists by 5.3.3.

Let Z and Z ′ be 2-by-2 matrices such that W =

α Z ′

0 −β + ψZ

.

We explain why W can be chosen to be of this form. To begin with, let W be an

arbitrary matrix such that ηW = γη, and let A, B, C and D be 2-by-2 matrices such that

W =

A B

C D

. The equation

ψ β

0 ϕ


A B

C D

 =

γψ γβ

0 γϕ

 implies ϕD = γϕ, which

equals −ϕβ (equation 5.3.7). Therefore ϕ(D + β) = 0, and this implies D + β = ψZ for

some matrix Z. That we may choose

A
C

 to be

α
0

 follows from the equation ψα = γψ.

Now, let θ denote the 8-by-8 matrix θ =

ξ −W
0 η

. As rank(cok η) = rank(cok ξ) =

rank(push(I)) = 2, Lemma 5.3.9 gives cok θ = push(cok ξ) = push(push(I)). By Proposi-

tion 3.2.24, in order to show the stable AR component containing I is a tube, it su�ces to

show that cok θ = X ⊕ Y ⊕ F , for some indecomposables X and Y and some possibly-zero

free module F . It su�ces to do this for im θ instead of cok θ. The term �indecomposable� is

unambiguous:

Lemma 5.3.11. [3, Lemma 1] Given an indecomposable N in Lp(R) (i.e., N has no proper

graded direct summand), we have that N̂ is indecomposable in Lp(R̂). In particular, N is

indecomposable as an R-module.

We state the above discussion as a lemma.

Lemma 5.3.12. In order to establish that the component of the AR quiver containing Î is

a tube, it su�ces to show that im θ = X ⊕ Y for some graded modules X and Y each having

no proper graded direct summand.
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We begin by multiplying θ on the left and on the right by invertible matrices. Let id

denote the 2-by-2 identity matrix, and let H =

1
2

0

0 1

. Let P ′ denote the 8-by-8 matrix

P ′ =



0 id − id 0

id 0 0 0

0 H H 0

0 0 0 id


, which is invertible with inverse



0 id 0 0

1
2

id 0 1
2
H−1 0

−1
2

id 0 1
2
H−1 0

0 0 0 id


; and

let

P =



0 id 0 0

1
2

id 0 id 0

−1
2

id 0 id −Z

0 0 0 id


, which is invertible with inverse P−1 =



0 id − id −Z

id 0 0 0

0 1
2

id 1
2

id 1
2
Z

0 0 0 id


.

Now P ′θ =



0 id − id 0

id 0 0 0

0 H H 0

0 0 0 id





ϕ −α −α −Z ′

0 ψ 0 β − ψZ

0 0 ψ β

0 0 0 ϕ


=



0 ψ −ψ −ψZ

ϕ −α −α −Z ′

0 Hψ Hψ H(2β − ψZ)

0 0 0 ϕ


,

and

P ′θP =



0 ψ −ψ −ψZ

ϕ −α −α −Z ′

0 Hψ Hψ H(2β − ψZ)

0 0 0 ϕ





0 id 0 0

1
2

id 0 id 0

−1
2

id 0 id −Z

0 0 0 id


=



ψ 0 0 0

0 ϕ −2α αZ − Z ′

0 0 2Hψ 2H(β − ψZ)

0 0 0 ϕ


.

Let cj denote the j-th column of P ′θP , j = 1, ..., 8. and let M =
∑8

j=3Rcj. It remains

to show that M is an indecomposable module.

The module M is graded if we take the following degrees for its generators. We omit the

slightly tedious justi�cation.

deg(c3) = (v − n)p−mq, deg(c4) = −pq, deg(c5) = (v − n− 1)p− q,

deg(c6) = (v − 1)p− (m+ 1)q, deg(c7) = (2v − n− 2)p− (m+ 2)q + pq,

deg(c8) = (v − 2)p− 2q.
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Assume M = M ′ ⊕ M ′′ for some nonzero graded summands M ′ and M ′′; now, by

Lemma 5.3.12, producing a contradiction will complete our overall argument. Note that

deg c4 < deg cj for all j > 3 di�erent from 4. Since R is connected, it follows that c4 lies in

eitherM ′ orM ′′; let us assume c4 ∈M ′. Let π : M⊕(Rc1+Rc2)→M ′′ denote the projection

map onto M ′′, with the goal of showing that π = 0. We have π(c1) = π(c2) = π(c4) = 0.

Also immediate is π(c3) = 0 since xmc3 = yq+v−nc4 and x is a nonzerodivisor.

Let r3, ..., r8 ∈ R be homogeneous elements such that
∑8

j=3 rjcj = π(c5) and deg(rj) =

deg(c5)−deg(cj). Then each of deg(r6) = −np+mq, deg(r7) = (−v+1)p+(m+1−p)q, and

deg(r8) = (−n+ 1)p+ q does not lie in Np+ Nq by Lemma 5.3.8, and so r6 = r7 = r8 = 0.

For a brief moment let us consider matrices with entries in S. Namely let W̃ denote a

�lift to S� of the matrixW , and let θ̃ be the lift of θ, θ̃ =

ξ −W̃
0 η

. By the same reasoning

used for the matrix factorization (ξ, η), we know that θ̃ is part of a matrix factorization

(θ̃, θ̃′) where θ̃′ =

η W̃ ′

0 ξ

 for some 4-by-4 matrix W̃ ′. Let θ′ = θ̃′ ⊗S R.

As θθ′ = 0, each column of matrix P−1θ′ is a syzygy relation for the columns of P ′θP . We

can compute that the last four entries of the column P−1θ′·,4 are, in order, −1
2
yn, 1

2
xm, 0, 0.

Therefore 1
2
xmc6 ∈ 1

2
ync5 +

∑4
j=1Rcj. Then, π(c6) = yn

xm
π(c5) =

∑5
j=3(yn/xm)rjcj. In partic-

ular Rmust contain the fourth entry of this column: yn

xm
(r3y

q+v−n+r4x
m−2r5x

m−1yq−n−1f) ∈

R. Therefore, since yq+v/xm ∈ R, we have 2r5y
q−1f/x ∈ R. Since r5 ∈ k and we are assum-

ing char k 6= 2, this implies that either r5 = 0 or yq−1f/x ∈ R. If the latter were true, then

rx = yq−1f for some r ∈ R, and lifting r to a preimage s ∈ S we would have sx−yq−1f ∈ gS.

But sx− yq−1f has nonzero yq+v−1-term, whereas deg g = deg yq+v > deg yq+v−1, so this is a

contradiction. Hence r5 = 0. Therefore π(c5) = r3c3 + r4c4 ∈ ker(π), hence π(c5) = 0 as π is

idempotent; and π(c6) = (yn/xm)π(c5) = 0.

Now we simply repeat the argument in order to show that π(c8) = π(c7) = 0. For

r′3, ..., r
′
8 ∈ R homogeneous such that

∑8
j=3 r

′
jcj = π(c8) and deg(r′j) = deg(c8) − deg(cj),

each of deg(r′5) = (n−1)p− q, deg(r′6) = −p+ (m−1)q, and deg(r′7) = (−v+n)p+ (m−p)q
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does not lie in Np + Nq by Lemma 5.3.8, so r′5 = r′6 = r′7 = 0. The last two entries

of P−1θ′·,7 are xm and −yq+v−n, so we obtain xmc7 ∈ yq+v−nc8 +
∑

j66Rcj, and therefore

π(c7) = (yq+v−n/xm)π(c8) = (yq+v−n/xm)(r′3c3 + r′4c4 + r′8c8), whose �fth entry is

−r′8(yq+v−n/xm)W34. If r
′
8 = 0 then π(c7) ∈ kerπ whence 0 = π(c7) = π(c8); so, showing

r′8 = 0 is the last step. If r′8 6= 0 then it is a unit, and therefore (yq+v−n/xm)W34 ∈ R. Then

the lemma below would imply yq+v−1/x ∈ R, and the reader can check that this is false.

Lemma 5.3.13. W34, the (3,4)-th entry of the matrix W , lies in kxm−1yn−1 \ {0}.

Proof. Recall that ηW = γη by de�nition of W . As η4,4 = xm, we get γxm = η4,·W·,4 =

yq+v−nW34 + xmW44. As x is a nonzerodivisor and γ /∈ R, we have W34 6= 0. We naturally

choose W so that deg ηij + degWjj′ = deg(γηij′) for each i, j, j
′. Setting i = 4, j = 3, j′ = 4,

we have deg(W34) = deg(γη4,4) − deg η4,3 = deg(γxm) − deg(yq+v−n) = deg(yq−1fxm−1) −

deg(yq+v−n) = (n − 1)p + (m − 1)q. Since p and q are coprime, it follows that W34 ∈

kxm−1yn−1.

Thus π = 0, so that M is indecomposable and the given AR component is a tube by

Lemma 5.3.12.
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Appendix

In this appendix we record some lemmas for reduced connected graded rings of dimension

one. The following theorem is well-known.

Theorem 6.0.1. Let B be one-dimensional, noetherian, local domain with integral closure

B and mB-adic completion B̂. Then the following are equivalent.

(1) B̂ is a domain. (�B is analytically irreducible.�)

(2) B is local and B̂ is reduced. (�B is unibranched and analytically unrami�ed.�)

(3) B is local and �nitely generated as a B-module.

Notation 6.0.2. If R is a connected graded ring, let R̂ denote the completion of R with

respect to its graded maximal ideal, m.

Lemma 6.0.3. Let R be a reduced connected graded ring. Then:

(1) The integral closure of R in R[nonzerodivisors]−1 coincides with the integral closure of

R in Q = R[graded nonzerodivisors]−1, our de�nition of R. Moreover, R =
⊕

i>0Ri is

an N-graded subring of Q.

(2) We have R̂ =
∏

i>0Ri.

(3) The completion, R̂, is also reduced. If R is a domain, then R̂ is a domain.
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(4) The integral closure, R, is �nitely generated as an R-module.

(5) The integral closure of the completion, R̂, is �nitely generated as an R̂-module.

Proof. Statement (1) is [17, Corollary 2.3.6]. Statement (2) can be checked by noting that

{mi}i is co�nal with {
⊕

j>iRj}i, and checking that the completion of R with respect to the

latter �ltration is isomorphic to
∏

i>0Ri. From (2) we see that R̂ is reduced, resp. a domain,

if R is such. As R is a �nitely generated algebra over the �eld R0, (4) is a consequence

of [22, Theorem 72]. The last assertion is a consequence of Theorem 6.0.1 (alternatively, it

follows from (4)).

Lemma 6.0.4. Let D be a connected graded domain of dimension one, and let q =
⊕

i>1Di,

and n =
⊕

i>1Di. Then

(a) D0 is a �eld, and

(b)
∏

i>0Di = D̂
n

= D̂
q

= D̂.

Proof. The notation Di means (D)i, and makes sense due to Lemma 6.0.3, as does D̂. Since

D is an N-graded domain, n is a prime ideal, and is thus maximal since dimD = dimD = 1.

So D0 is a �eld. Now
∏

i>0Di = D̂
n

by Lemma 6.0.3. Note that Xn 6= 0 for all graded

D-modules X 6= 0. Now Dn/(qDn) is an artinian local ring, so there exists i > 1 such

that ((ni + qD)/qD)n = 0, hence (ni + qD)/qD = 0. Thus {ni}i and {qiD}i are co�nal,

so D̂
n

= D̂
q

. Lastly we show D̂
q

= D̂. Note that D↪→D̂, and since D̂ is complete by

Lemma 6.0.3, we have D̂ ⊇ D̂
q

⊇ D̂. It remains to observe that D̂
q

is normal. But any

I-adic completion of an excellent, normal ring, such as D, is normal ([22, Theorem 79]).

Lemma 6.0.5. Let D be a connected graded domain of dimension one , and let l = min{i >

0|Di 6= 0}. Let t be any nonzero element of Dl. Then D =
⊕

i>0D0t
i is the polynomial ring

over the �eld D0 in the variable t; and D̂ =
∏

i>0Dit
i is the power series ring.

Proof. By the previous lemmas, D is connected graded, so we may assume D = D to improve

notation. Then the previous lemma also shows that D̂ =
∏

i>0Di is a normal domain. Thus
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it is a DVR; let π ∈ D̂ be a uniformizing parameter. So πD̂ =
∏

i>1Di. Then t = uπi for

some unit u ∈
∏

i>0Di, and it follows that i = 1, hence t is a uniformizing parameter for D̂.

It follows that Di = 0 for i /∈ Nl, and Di = D0t
i/l for i ∈ Nl. The lemma follows.

Remark 6.0.6. Note that if D0 is algebraically closed, Lemma 6.0.4 shows that D is just a

semigroup ring k[ti1 , ..., tin ].

Lemma 6.0.7. Let R be a reduced connected graded ring which is integrally closed. Then R

is isomorphic to a polynomial ring over R0.

Proof. As R = R =
∏

pR/p, where p ranges over the minimal primes of R, the assumption

that R is connected implies that R has only one minimal prime, and therefore R is a domain

(since we are assuming it is reduced). Now apply Lemma 6.0.5.
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