
Syracuse University Syracuse University 

SURFACE SURFACE 

Dissertations - ALL SURFACE 

May 2018 

Lelong Numbers and Geometric Properties of Upper Level Sets of Lelong Numbers and Geometric Properties of Upper Level Sets of 

Currents on Projective Space Currents on Projective Space 

James Heffers 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/etd 

 Part of the Physical Sciences and Mathematics Commons 

Recommended Citation Recommended Citation 
Heffers, James, "Lelong Numbers and Geometric Properties of Upper Level Sets of Currents on Projective 
Space" (2018). Dissertations - ALL. 852. 
https://surface.syr.edu/etd/852 

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for 
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact 
surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F852&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=surface.syr.edu%2Fetd%2F852&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/852?utm_source=surface.syr.edu%2Fetd%2F852&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


ABSTRACT

Let T be a positive closed bidegree (p, p) current in Pn. In this thesis, our goal is to

understand more about the geometric properties of the sets of highly singular points of the

current T . Lelong numbers will be the main tool used for determining how singular a point

of a current is. For the first main result of this thesis, we let T be a positive closed current

of bidimension (1, 1) with unit mass on the complex projective space P2. For α > 2/5 and

β = (2− 2α)/3 we show that if T has four points with Lelong number at least α, the upper

level set E+
β (T ) of points of T with Lelong number strictly larger than β is contained within

a conic with the exception of at most one point.

Afterwards, we will let T be a positive closed current of bidimension (p, p) with unit mass

on the complex projective space Pn. Our aim here is to generalize some results of D. Coman

as well as look at the result in the previous paragraph in a more generalized setting. For

certain values of α and β = β(p, α) we show that if T has enough points where the Lelong

number is at least α, then the upper level set E+
β (T ) has certain geometric properties, in

particular it will be contained in either a complex line L except for exactly p points of the

upper level set that are not contained on the line, or the upper level set will be contained in

a p-dimensional linear subspace.
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Chapter 1

Introduction
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Our goal in this thesis is to investigate Lelong numbers of positive closed currents on

projective space, and the geometric properties that the sets of highly singular points have.

Before doing so, we must first motivate the problems, and even before that is the arduous

slog through all of the necessary background information. We open with a discussion on the

foundation upon which the main results of this thesis will be built. First and foremost is

the notion of a plurisubharmonic function, which can be thought of as the higher dimensi-

onal analogy of a subharmonic function. Plurisubharmonic functions were birthed into the

mathematical lexicon by Pierre Lelong and Kiyoshi Oka back in the early 1940’s. These

functions are the central object of study in pluripotential theory, and serve as the heart

of our work, playing an important role as the common link between the various topics we

will discuss. Stepping away from plurisubharmonic functions we will start to investigate the

basics of currents, which are bidegree (p, q) differential forms with distribution coefficients

and have an important connection to plurisubharmonic function, one such connection being

that if u is psh then ddcu is a positive closed bidegree (1, 1) current. A terse discussion on

currents will lead us to the Monge-Ampère operator, that is the operator given by

(ddcu)n = ddcu ∧ · · · ∧ ddcu,

which is a tool that will become pivotal for us when discussing the wedge products of currents.

We will also use this operator in the definition of pluricomplex Green functions, i.e. functions

that solve the Dirichlet problem for the Monge-Ampère equation on some domain Ω. That

is, (ddcu)n = 0 on Ω\S, and has logarithmic poles in S.

After forming the foundation of our work, we will then recall some of the results of Jean
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Pierre Demailly, Pierre Lelong, Yum-Tong Siu, John Erik Fornæss, Nessim Sibony, and Dan

Coman. In this chapter we will start by first discussing what Lelong numbers are, laid out

in the fashion originally presented to us by Pierre Lelong, and then generalized by Demailly.

We can think of a Lelong number as a residue, a measurement of how singular a current is

at a given point, specifically we have that the Lelong number of a positive closed bidegree

(p, p) current T at the point a is given by

lim
r→0

∫
‖z−a‖≤r

T ∧ (ddc log ‖z − a‖)n−p.

We then investigate a plethora of properties of Lelong numbers, from some commonly

known values of Lelong numbers (such as along the regular points of analytic varieties), to

how Lelong numbers relate to the intersection number of varieties, a well known result of P.

Thie, and theorems we can use to compare the values of Lelong numbers, which will allow

us later to get bounds needed to prove some of the results in this thesis. We will also discuss

generic Lelong numbers and a famous decomposition theorem of Siu, which gives us the

structure of currents in terms of currents of integration along varieties and generic Lelong

numbers. We then will investigate a theorem of Demailly that will allow us to consider

smooth approximations of currents while retaining similar bounds on the Lelong numbers.

Finally we close this third chapter by summarizing the works of Dan Coman that relate

to the geometric properties of upper level sets (i.e., the sets of highly singular points of

currents), and looking at some examples to see his theorems in action.

In chapter four, we take our look at the first main theorem of this thesis. We specifically

work in P2, and we attempt to extend the work laid out by Coman by clearly establishing the
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geometric properties of positive closed bidegree (1, 1) currents that have at least four points

of “large” Lelong number, i.e., larger than 2/5. We see that under these conditions we can

find a conic that will contain (with possibly one exception) the upper level set E+
β , where β

is dependent on the smallest Lelong number for the four given points. After we prove this

first result we will then work through some examples to demonstrate the sharpness of the

assumptions of the main theorem of this section, by showing that the theorem fails if we

have less than four points, and that the β value is sharp for this property.

This thesis will come to a close in chapter five, where we move our investigation of these

geometric properties to Pn. First we clean up some loose ends by generalizing a few results

at the end of [2] from bidimension (1, 1) currents to bidimension (p, p). After that we look at

some attempts to generalize the results from chapter four from P2 to Pn. This unfortunately

remains only a partial result, and we will close this thesis by discussing some of the obstacles

in our way of making a succinct generalization of the main theorem from chapter four. We

begin by starting with some preliminaries.
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Chapter 2

Preliminaries
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2.1 Plurisubharmonic Functions

We open by recalling the most basic of definitions:

Definition 2.1.1. [19][21] Let u be an upper semi-continuous function on a domain Ω ⊂ Cn

that is not identically −∞ on any connected component of Ω. Then we say u is subhar-

monic if given B(z, ρ) ⊂ Ω, we have

u(z) ≤ 1

cn

∫
|ζ|=1

u(z + rζ) dσ(ζ)

for any 0 < r < ρ and where cn =
∫
|ζ|=1

dσ(ζ) is the Lebesgue measure on the sphere. If u

is subharmonic on Ω we will write u ∈ SH(Ω).

Definition 2.1.2. [19] Let u be an upper semi-continuous function on a domain Ω ⊂ Cn

such that u is not identically −∞ on any connected component of Ω. The function u is

called plurisubharmonic (or psh for short) if for each a ∈ Ω and b ∈ Cn, the function

ζ → u(a + ζb) is subharmonic or identically −∞ on every component of the set {ζ ∈

C | a+ ζb ∈ Ω}.

In short, the above definition says that a function is plurisubharmonic if its restriction

to any complex line L is subharmonic on L ∩ Ω. If u is plurisubharmonic on Ω we write

u ∈ PSH(Ω). We will now review some basic properties of psh functions before moving on

to how we intend to use them.

Example 2.1.3. Everyone’s favorite plurisubharmonic function is surely log ‖z‖ for z ∈ Cn.

Some other easy to create psh functions would be log |f(z)| for any holomorphic function f .
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Corollary 2.1.4. [19, Corollary 2.9.6] If Ω is an open subset of Cn then PSH(Ω) ⊂ SH(Ω) ⊂

L1
loc(Ω).

Corollary 2.1.5. [19, Corollary 2.9.8] If u, v ∈ SH(Ω) and u = v almost everywhere in Ω,

then u = v everywhere in Ω.

It is also well know that the maximum principle also applies to psh functions, i.e., we

have the following

Corollary 2.1.6. [19, Corollary 2.9.9] If Ω is a bounded connected open subset of Cn and

u ∈ PSH(Ω), then either u is constant or, for each z ∈ Ω,

u(z) < sup
w∈∂Ω

{
lim sup
y→w y∈Ω

u(y)
}
.

Proposition 2.1.7. [19, Proposition 2.9.23] If u ∈ PSH(Cn) and u is bounded above, then

u is constant.

Theorem 2.1.8. [19, Theorem 2.9.14] Let Ω be an open subset of Cn.

i) The family PSH(Ω) is a convex cone.

ii) If Ω is connected and {uj}j∈N ⊂ PSH(Ω) is a decreasing sequence, then u = limj→∞ uj ∈

PSH(Ω) or u = −∞.

iii) If u : Ω→ R and if {uj}j∈N ⊂ PSH(Ω) converges to u uniformly on compact subsets

of Ω, then u ∈ PSH(Ω).

iv) Let {uα}α∈A ⊂ PSH(Ω) be such that its upper envelope u = supα∈A uα is locally

bounded above. Then the upper semicontinuous regularization u∗ ∈ PSH(Ω).
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We also have means of constructing new plurisubharmonic functions out of old ones, as

seen below.

Corollary 2.1.9. [19, Corollary 2.9.15] Let Ω be an open set in Cn, and let ω be a non-empty

proper open subset of Ω. If u ∈ PSH(Ω) and v ∈ PSH(ω), and lim supx→y v(x) ≤ u(y) for

each y ∈ ∂ω ∩ Ω, then the formula

w =


max{u, v} in ω

u in Ω\ω

defines a plurisubharmonic function in Ω.

Another useful result is the following, saying that if a psh function is bounded above off

of some “small” set (we will address this in more rigor shortly), then the function can be

extended across the small set to make a psh function on the whole domain. More precisely,

we have the following.

Theorem 2.1.10. [19, Theorem 2.9.22] Let Ω be an open subset of Cn and let F be a closed

subset of Ω of the form F = {z ∈ Ω | v(z) = −∞} for some v ∈ PSH(Ω). If u ∈ PSH(Ω\F )

is bounded above, then the function ũ defined by the formula

ũ(z) =


u(z) z ∈ Ω\F

lim supy→z y/∈F u(y) z ∈ F

is plurisubharmonic in Ω.

We will now address the matter of the size of sets of the form F .
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Definition 2.1.11. [19] A set P ⊂ Cn is said to be pluripolar (or locally pluripolar) if

for each point a ∈ P , there is a neighborhood Ua of a and a function va ∈ PSH(Ua) such

that P ∩ Ua ⊂ {z ∈ Ua | va(z) = −∞}.

Corollary 2.1.12. [19, Corollary 2.9.10] Pluripolar sets have Lebsegue measure zero.

We call F in the above theorem a complete pluripolar set with Ua := Ω and va = v

for all a ∈ P , and as such is small in the sense that it has a zero Lebesgue measure. We now

introduce a special type of “convexity”. In doing so we first need to go through the following

definition and theorem.

Definition 2.1.13. [16] Let δ be a continuous function on Cn such that

i) δ(z) ≥ 0 and δ(z) = 0 iff z = 0

ii) δ(tz) = |t|δ(z) if t ∈ C

If Ω ⊂ Cn, Ω 6= Cn, we define the distance to the boundary by

dΩ(z) = inf
ζ∈Cn\Ω

δ(z − ζ), z ∈ Ω.

Theorem 2.1.14. [16, Theorem 4.1.19] Let Ω be a domain in Cn. Then the following are

equivalent:

i) There is a plurisubharmonic function u in Ω, with u 6≡ −∞ in any component, such

that

{z ∈ Ω;u(z) ≤ t} ⊂⊂ Ω for every t ∈ R.
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ii) If K is a compact subset of Ω then

K̂ = {z ∈ Ω | u(z) ≤ sup
K
u for all u ∈ PSH(Ω)} ⊂⊂ Ω.

iii) z → − log dΩ(z) is a plurisubharmonic function in Ω for every distance function sa-

tisfying 2.1.13.

iv) z → − log dΩ(z) is a plurisubharmonic function in Ω for some distance function sa-

tisfying 2.1.13.

Definition 2.1.15. [16, Definition 4.1.20] An open set Ω ⊂ Cn is called pseudo-convex if

the equivalent conditions of 2.1.14 are satisfied.

The importance of this notion of pseudo-convexity comes from the connection these

domains have to domains of holomorphy. First we recall the definition of a domain of

holomorphy.

Definition 2.1.16. [19, Definition 4.1.20] An open set Ω ⊂ Cn is called a domain of

holomorphy if there are no open sets Ω1 and Ω2 with the following properties:

i) ∅ 6= Ω1 ⊂ Ω2 ∩ Ω;

ii) Ω2 is connected and Ω2\Ω 6= ∅;

iii) for each f ∈ O(Ω) there exists f̄ ∈ O(Ω2) such that f̄ |Ω1 = f .

It is a well known result of Oka, Bremermann, and Norguet that Ω is a domain of

holomorphy if and only if Ω is pseudo-convex (see [16, Theorem 4.2.8]). So taking this in
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connection with Theorem 2.1.14 part (i), we see that plurisubharmonic functions actually

classify domains of holomorphy. Before leaving this topic of pseudo-convexity, we have one

final definition that we will use in a later theorem:

Definition 2.1.17. [19] An open bounded set Ω ⊂ Cn is called hyperconvex if it is

connected and there is a continuous plurisubharmonic function u0 : Ω→ (−∞, 0) such that

{z ∈ Ω | u0(z) < c} ⊂⊂ Ω

for each c ∈ (−∞, 0).

It is clear that every hyperconvex domain is pseudoconvex (see e.g., [11],[19]). However,

the converse is not true, i.e., there are pseudoconvex domains that are not hyperconvex. An

example can be found due to John Erik Fornæss in [11].

2.2 Currents

We now introduce currents. The subject of currents is a rich and detailed field, of which

we will only give a terse treatment by covering the basic notions and getting right to the

purpose they will serve in this thesis. We first let Ω be an open set in Cn and Dp,q(Ω) be

the C∞ smooth forms of type (p, q) with compact support and the inductive limit topology

(see e.g.[19], [16]).

Definition 2.2.1. [21, Definition 2.8] The elements of the dual space D′p,q(Ω) are the cur-

rents of bidimension (p, q).
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If X is a complex manifold, then the same definition is used with X instead of Ω. In this

thesis we will work only with currents that are in D′p,p, that is p = q.

Definition 2.2.2. [16, Definition 4.4.2] A current T ∈ D′n−p,n−p(Ω) is said to be a positive

current if

∫
Ω

T ∧ i

2
λp+1 ∧ λ̄p+1 ∧ · · · ∧

i

2
λn ∧ λ̄n ≥ 0

for arbitrary λp+1 . . . , λn ∈ D1,0(Ω). We say a current is closed if dT = 0.

Recall the standard Kähler form β given by

β =
i

2

n∑
i=1

dzi ∧ dz̄i

and

βp =
1

p!
βp =

1

p!

( i
2

n∑
i=1

dzi ∧ dz̄i
)p
,

and we now have the following.

Definition 2.2.3. [21, Definition 2.15] Let T ∈ D′p,p(Ω) and σT = T ∧ βp. Then we call σT

the trace measure of the current T .

The trace measure is useful as it bounds the coefficients of the current T [21, Theorem

2.16] and we will make use of the trace of a current in later topics. We note that we can

write our currents as

12



T =
∑
I,J

TI,Jdz
I ∧ dz̄J

where the TI,J are distributions, and I,J are increasing multi-indices with |I| = |J | = n− p.

If I = (I1, I2, . . . , In−p) then dzI = dzI1∧dzI2∧· · ·∧dzIn−p . Thus T has bidegree (n−p, n−p),

which is the same as bidimension (p, p).

An interesting example would be as follows. Given a current T ∈ D′p,p(Ω) with L1
loc

coefficients, and a form ϕ ∈ Dp,p(Ω), we have

〈T, ϕ〉 =

∫
Ω

T ∧ ϕ

Proposition 2.2.4. [19, Proposition 3.3.4] Any positive current of bidegree (p, p) on Ω ⊂ Cn

has measure coefficients, i.e., the TI,J are measures.

We now look at another type of current we will make extensive use of in this thesis, the

current of integration along a pure p-dimensional (where we use complex dimensions, so that

is 2p real dimensions) analytic subvariety A of Ω. Recall pure p-dimensional means that the

dimension of A is p at any point of A. Such a current T is denoted by T = [A] and it behaves

as follows:

〈[A], ϕ〉 =

∫
Areg

ϕ

where Areg is the set of regular points of A and ϕ ∈ C∞p,p(Ω), since A has dimension p, which

means [A] is a bidimension (p, p) (or bidegree (n − p, n − p)) current. We note that [A] is

always a positive current, and that [A] is closed. We have the following results which will

13



make dealing with currents a bit easier.

Proposition 2.2.5. [16, Proposition 4.4.4] If T is the integration current on a p-dimensional

analytic subvariety A of Ω ⊂ Cn, then the trace measure σT of T is the Euclidean surface

measure on A.

Plurisubharmonic functions play an important role in the theory of currents, but first we

should recall the exterior derivative d = ∂ + ∂̄. We will define 2πidc = (∂ − ∂̄) and then we

get from these the operator ddc (which will act on psh functions) given by

ddc =
−i
2π

(∂ + ∂̄)(∂ − ∂̄) =
−i
2π

(−2∂∂̄) =
i

π
∂∂̄

where choosing the 2πi coefficient will be a convenient choice as it clears out pesky 2π factors

from our computations. With this knowledge, we now have a nice theorem that connects

psh functions to currents.

Proposition 2.2.6. [19, Proposition 3.3.5] If u ∈ PSH(Ω), then ddcu is a closed positive

bidegree (1, 1) current with measure coefficient.

A favorite current of any complex analyst would be T = ddc log ‖z−a‖, or more generally

T = ddc log |f | for some holomorphic function f . On occasion, the converse is true, that is

we can often represent a bidegree (1, 1) current locally as ddcu, for some plurisubharmonic

u. Specifically, we have the following, sometimes referred to as the ddc theorem:

Theorem 2.2.7. [23, Theorem A.4.1] If T is a positive closed current of bidegree (1, 1), then

for every z0 ∈ Ω there exists a neighborhood U of z0 and u ∈ PSH(U) such that T = ddcu

in U .

14



If we have that u = log |f | for some holomorphic function f , then we have the Lelong-

Poincaré equation (see e.g. [9]) that states

ddc log |f | = [Zf ]

where Zf is the zero set of f (and since f is holomorphic, Zf is an analytic set).

2.3 Monge-Ampère Operator

Let T be a positive closed current, and we have the following:

Theorem 2.3.1. [9, Proposition 1.2] Let u be a locally bounded plurisubharmonic function.

Then the wedge product ddcu ∧ T is a closed positive current and ddcu ∧ T = ddc(uT ).

Corollary 2.3.2. [9, Corollary 1.10] Let u1, , . . . , uq be locally bounded plurisubharmonic

functions. Then the wedge product ddcu1∧· · ·∧ddcuq∧T is symmetric with respect to the ui,

that is, we can interchange any ui and uj, where we inductively define ddcu1∧· · ·∧ddcuq∧T =

ddc(u1dd
cu2 ∧ · · · ∧ ddcuq ∧ T ).

Definition 2.3.3. [19] Let u ∈ PSH(Ω) be locally bounded. Then we define the operator

(ddcu)n = ddcu ∧ · · · ∧ ddcu

to be the generalized complex Monge-Ampère operator, or just the Monge-Ampère

operator. For any k = 1, . . . , n, given {ui}ki=1 ∈ PSH(Ω) such that they are locally

bounded, then we also call the operator
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(u1, . . . , uk)→ ddcu1 ∧ · · · ∧ ddcuk

the Monge-Ampère operator.

The Monge-Ampère operator can give us a measure even if ui are unbounded (e.g., see

[7]). Of particular interest to us is using the Monge-Ampère operator in conjunction with

closed positive currents. While the above results are a nice start, what we really want are

some results that extend the above statements to unbounded plurisubharmonic functions.

We let u ∈ PSH(Ω) and we let L(u) be the set of points x ∈ Ω such that u is unbounded

in every neighborhood of x. We call L(u) the unbounded locus of u. We now have the

following results that allow us to extend the above statements to unbounded psh functions

provided that their unbounded loci are sufficiently small.

Corollary 2.3.4. [9, Corollary 2.10] Let T be a closed positive current of bidimension (p, p)

and let u be a plurisubharmonic function on Ω such that L(u) ∩ SuppT is contained in an

analytic set of dimension at most p − 1. Then uT has locally finite mass, hence it is well

defined and ddcu ∧ T = ddc(uT ).

Corollary 2.3.5. [9, Corollary 2.11] Let u1, . . . , uq be plurisubharmonic functions on X such

that L(uj) is contained in an analytic set Aj ⊂ Ω for every j. Then ddcu1 ∧ · · · ∧ ddcuq is

well defined as soon as Aj1 ∩ · · · ∩ Ajm has codimension at least m (or dimension at most

n−m) for all choices of indices j1 < · · · < jm in {1 . . . q}.

Example 2.3.6. From the previous theorems we see that (ddc log ‖z − a‖)n is well defined

and in fact we have
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(ddc log ‖z − a‖)n = δa

where δa is the Dirac point mass at a.

Proposition 2.3.7. [9, Proposition 2.12] Suppose that the divisors Zj satisfy the above

codimension condition and let (Ck) k ≥ 1 be the irreducible components of the point set

intersection Z1 ∩ · · · ∩ Zq. Then there exist integers mk > 0 such that [Z1] ∧ · · · ∧ [Zq] =∑
mk[Ck]. The number mk is called the multiplicity of intersection of Z1, . . . , Zq along Ck.

Example 2.3.8. Let [Z1] and [Z2] both be 2-dimensional linear subspace such that Z1∩Z2 =

L, where L is a complex line. Then

[Z1] ∧ [Z2] = [L]

We will make use of this property of intersections later when we start computing Lelong

numbers.

2.4 Pluricomplex Green Functions

We now introduce a special type of plurisubharmonic function, the pluricomplex Green

functions. Pluricomplex Green functions were introduced and studied in bounded domains

in [8] , [18], [20], and [22]. Special cases were considered in [1] and [4]. To start, we let Ω be

a connected domain in Cn.

Definition 2.4.1. [18] We define the pluricomplex Green function of Ω with a pole

at a to be
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gΩ(z, a) = sup{u(z) | u ∈ PSH(Ω, [−∞, 0)) and u(z) ≤ log ‖z − a‖+O(1) as z → a}

We now have the following result of Demailly showing that this function satisfies the

following properties:

Theorem 2.4.2. [8] [19, Theorem 6.3.6] If Ω is a bounded hyperconvex domain, then for

any a ∈ Ω, the function u(z) = gΩ(z, a) is the unique function satisfying the following:

i) u ∈ C(Ω\{a}) ∩ PSH(Ω)

ii) (ddcu)n = δa in Ω where δa is the Dirac delta function at a.

iii) u(z) = log ‖z − a‖+O(1) as z → a

iv) u(z)→ 0 as z → ∂Ω

Now let S = {p1, . . . , pk} ⊂ Cn, and let u ∈ PSH(Cn)∩L∞loc(Cn\S) be such that u = −∞

when restricted to S. Define γu as follows

γu := lim sup
‖z‖→+∞

u(z)

log ‖z‖
.

If γu is finite, we say u has logarithmic growth.

Definition 2.4.3. [4] If u is as above with γu finite and in addition u satisfies the Monge-

Ampère equation (ddcu)n = 0 away from S, then u is an entire pluricomplex Green

function with logarithmic poles in S.
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If for pi ∈ S we have

u(z)− γ log ‖z − pi‖ = O(1) as z → pi

then u has a logarithmic pole of weight γ at pi. Further, let Ẽ(S) ⊂ PSH(Cn)∩L∞loc(Cn\S)

be the class of plurisubharmonic functions that have logarithmic poles of weight one at the

points of S and logarithmic growth. We will use these in proving results in later chapters.

We now end this section and move on to study some topics that will tie into the matter

discussed in this chapter. In particular we will discuss the notion of Lelong numbers and

upper level sets.
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Chapter 3

Lelong Numbers and Upper Level

Sets
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3.1 Lelong Numbers

We will now introduce Lelong numbers as they were initially discussed in [21] by Pierre

Lelong. To start, we let Ω ⊂ Cn be an open set and X a complex manifold. Recall that

D′p,p(Ω) are the bidimension (p, p) currents in Ω. We set

αa = ddc log ‖z − a‖.

First we note that away from the singularity, this form is smooth and:

Proposition 3.1.1. [21, Proposition 2.21] αna = 0 in Cn\{a}.

Now given a positive closed current T of bidimension (p, p), we set

νaT = T ∧ αpa,

and it follows from Corollary 2.3.4 combined with Theorem 2.3.1 that νaT is a positive measure

(note that when p = 1 it is follows directly, then proceed by induction). Once again we recall

the standard Kähler form β given by

β =
i

2

n∑
i=1

dzi ∧ dz̄i

and

βp =
1

p!
βp =

1

p!

( i
2

n∑
i=1

dzi ∧ dz̄i
)p
,

and now we have the following
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Theorem 3.1.2. [21, Theorem 2.23] Let T ∈ D′p,p(Ω) be a positive closed current and

suppose a ∈ Ω. Let σT (a, r) =
∫
‖z−a‖≤r T ∧ βp for r ≤ dΩ(a) and let νaT be as before. Then

r−2pσT (a, r) is an increasing function of r for r < dΩ(a) and

lim
r→0

σT (a, r)

πpr2p/p!
= νT (a)

exists and is non-negative.

Definition 3.1.3. The Lelong number of T at a is νT (a).

Demailly showed that

∫
‖z−a‖≤r

νaT =
σT (a, r)

πpr2p/p!
,

hence, using the notation of Demailly, we have

ν(T, a) := νT (a) = lim
r→0

∫
‖z−a‖≤r

T ∧ (ddc log ‖z − a‖)p = T ∧ (ddc log ‖z − a‖)p({a}).

Example 3.1.4. [9, Remark 3.9] Suppose T = [A], the current of integration along an

analytic subvariety, where A has pure dimension p (i.e. the dimension at anny point of A is

p). Note that

lim
r→0

σT (a, r) = lim
r→0

∫
‖z−a‖≤r

T ∧ βp = lim
r→0

πpr2p/p,

and then for a ∈ Areg we get,
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ν(T, a) = lim
r→0

∫
T ∧ (ddc log ‖z − a‖)p = lim

r→0

σT (a, r)

πpr2p/p!
= 1

.

We now look at some basic results for Lelong numbers. Let ϕ be a plurisubharmonic

function such that eϕ is continuous. Let B(r) = {x ∈ X|ϕ(x) < r}. We now have the

following definitions.

Definition 3.1.5. [9, Definition 3.3] We say that ϕ is semi-exhaustive if there exists a

real number R such thatBϕ(R) ⊂⊂ X. Similarly, ϕ is said to be semi-exhaustive on a closed

subset A ⊂ X if there exists R such that A ∩Bϕ(R) ⊂⊂ X.

Definition 3.1.6. [9, Definition 3.4] If ϕ is semi-exhaustive on SuppT and if R is such that

Bϕ(R) ∩ SuppT ⊂⊂ X, we set for all r ∈ (−∞, R)

ν(T, ϕ, r) =

∫
B(r)

T ∧ (ddcϕ)p,

ν(T, ϕ) = lim
r→−∞

ν(T, ϕ, r).

The number ν(T, ϕ) will be called the generalized Lelong number of T with respect to

the weight ϕ.

We consider now the positive measure µr given by

µr = (ddcmax{ϕ, r})n − 1X\B(r)(dd
cϕ)n, r ∈ (−∞, R).

and is discussed in more detail in [9]. Our reason for caring about this measure is that it
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gives us the following theorem, the famous Lelong-Jensen Formula, and this formula will

give us an important connection between the Lelong numbers and logarithmic poles.

Theorem 3.1.7. [9, Lelong-Jensen Formula (4.5)] Let V be any plurisubharmonic function

on X. Then V is µr-integrable for every r ∈ (−∞, R) and

µr(V )−
∫
B(r)

V (ddcϕ)n =

∫ r

−∞
ν(ddcV, ϕ, t) dt.

Remark 3.1.8. We now let ϕ = log ‖z − a‖, and using the Lelong-Jensen formula we get

µr(V ) =

∫
B(r)

V (ddc log ‖z − a‖)n +

∫ r

−∞
ν(ddcV, log ‖z − a‖, t) dt

which gives us

µr(V ) = V (a) +

∫ r

−∞
ν(ddcV, log ‖z − a‖, t) dt

from which we can deduce (see [9, Example 4.9]) the following: V has a logarithmic pole of

weight γ at a if and only if the Lelong number of the current ddcV at the point a is γ, i.e.,

ν(ddcV, a) = γ. So γ is the largest such value satisfying V (z) ≤ γ log |z − a| + O(1) near a

and by definition ν(V, a) = ν(ddcV, a).

Example 3.1.9. As a simple example, consider V (z) = γ log ‖z‖, and note

ν(ddcγ log ‖z‖, 0) = lim
r→0

∫
‖z‖<r

ddcγ log ‖z‖∧ (ddc log ‖z‖)n−1 = γ lim
r→0

∫
‖z‖<r

(ddc log ‖z‖)n = γ
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Thus we see that the Lelong number is the weight of the logarithmic pole.

We now have the following theorem due to P. Thie [25, Theorem 5.1], but we will use

Demailly’s notation to remain consistent.

Theorem 3.1.10. [9, Theorem 5.8] Let A be an analytic set of dimension p in a complex

manifold of dimension n. For every point x ∈ A, there exist local coordinates z = (z′, z′′), z′ =

(z1, . . . , zp), z
′′ = (zp+1, . . . , zn) centered at x and balls B′ ⊂ Cn, B′′ ⊂ Cn−p of radii r′ and

r′′ in these coordinates, such that A ∩ (B′ × B′′) is contained in the cone |z′′| ≤ r′′

r′
|z′|. The

multiplicity of A at x is defined as the number m of sheets of any such ramified covering

map A ∩ (B′ ×B′′)→ B′. Then ν([A], x) = m.

In particular we have that ν([A], x) will always be an integer. We now want to define the

mass of a positive closed current T on Pn. First we recall the Fubini-Study form ω on Pn.

To start we let (z, t) ∈ Cn × C\{(0, 0)}, and consider the canonical projection

π : Cn+1\{0} → Pn.

So we have Cn = {[1 : z1 : · · · : zn] ∈ Pn}, and the Fubini-Study form is given by

π∗ω = ddc log
√
|t|2 + ‖z‖2,

and when restricted to Cn,

ω|Cn = ddc log
√

1 + ‖z‖2, z ∈ Cn,

and satisfies
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∫
Pn
ωn =

∫
Cn

(ddc log
√

1 + ‖z‖2)n = 1.

The mass of a positive closed bidimension (p, p) current T is given by

‖T‖ =

∫
Pn
T ∧ ωp.

We now look at an example to see that these concepts can be relatively simple in practice.

Example 3.1.11. Let L1 and L2 be complex lines, p the point at which they intersect, and

consider the current T = [L1] + [L2]. We will calculate ‖T‖ and some Lelong numbers. Let

x1 ∈ L1, and x2 /∈ L1 ∪ L2.

Computing the Lelong numbers at x1 and x2 we get:

ν(T, x1) = lim
r→0

σT (B(x1, r))

πr2
= lim

r→0

πr2

πr2
= 1

and

ν(T, x2) = lim
r→0

σT (B(x2, r))

πr2
= lim

r→0

0

πr2
= 0
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If we look look at the point of intersection p, we notice that any ball will intersect both

lines, and we get:

ν(T, p) = lim
r→0

σT (B(p, r))

πr2
= lim

r→0

πr2 + πr2

πr2
= 2

Alternatively we could just note that ν(T, p) = ν([L1], p) + ν([L2], p) = 2 by linearity.

Finally we compute ‖T‖:

‖T‖ =

∫
P2

([L1] + [L2]) ∧ ω =

∫
P2

[L1] ∧ ω +

∫
P2

[L2] ∧ ω = 1 + 1 = 2.

The following theorem of Fornæss and Sibony will help us compute masses of wedges of

currents.

Theorem 3.1.12. [12, Theorem 4.4] Let T be a positive closed current of bidimension (p, p)
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on Pk. Let R1, . . . , Rq be positive closed currents of bidegree (1, 1) on Pk. Assume that

T ∧R1 ∧ · · · ∧Rq is well defined. Then

‖T ∧R1 ∧ · · · ∧Rq‖ = ‖T‖‖R1‖ . . . ‖Rq‖.

In particular T ∧R1 ∧ · · · ∧Rq is non-zero and supp(T ) ∩ supp(R1) ∩ · · · ∩ supp(Rq) 6= ∅.

We now look at a comparison theorem for Lelong numbers of which we will make use of

in the proof of the main results of this thesis.

Theorem 3.1.13. [9, Corollary 5.10] If ddcu1 ∧ · · · ∧ ddcuq ∧T is well defined, then at every

point x ∈ X we have

ν(ddcu1 ∧ · · · ∧ ddcuq ∧ T, x) ≥ ν(ddcu1, x) . . . ν(ddcuq, x)ν(T, x).

Remark 3.1.14. Lelong numbers of plurisubharmonic functions (see Remark 3.1.8) may

increase by restrictions to smaller spaces. More specifically if S is a p dimensional linear

subspace of X and a ∈ S, then

ν(ddcV |S, a) ≥ ν(ddcV, a).

This follows since the Lelong number of V at a is the largest γ satisfying V (z) ≤ γ log |z −

a|+O(1), and when restricted to a smaller space, that inequality remains true.

Example 3.1.15. To see that we can actually get a larger Lelong number by restriction,

consider the function ϕ(z, w) = max{log |z|, 2 log |w|}, (z, w) ∈ C2. Then we note by remark

3.1.8 that ν(ϕ, (0, 0)) = 1, however if S = {(0, w) ∈ C2}, then ν(ϕ|S, (0, 0)) = 2.
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Definition 3.1.16. If T is a closed positive current of bidimesion (p, p) on a complex ma-

nifold X, we call Ec(T ) = {x ∈ X|ν(T, x) ≥ c}, c > 0 an upper level set.

Theorem 3.1.17. [24][9] If T is a closed positive current of bidimesion (p, p) on a complex

manifold X, the upper level sets Ec(T ) = {x ∈ X|ν(T, x) ≥ c}, c > 0, are analytic subsets

of dimension ≤ p.

Definition 3.1.18. If T is a closed positive current of bidimension (p, p) and A is an irre-

ducible analytic set in X, we set

mA = inf{ν(T, x)|x ∈ A}.

We call mA the generic Lelong number of T along A.

Theorem 3.1.19. [9] If T is a closed positive current of bidimension (p, p) and A is an

irreducible analytic set in X, then ν(T, x) = mA for all x ∈ A\(∪A′j), where {A′j} is a

countable family of proper analytic subsets of A.

Proposition 3.1.20. [9, Proposition 6.18] Let T be a closed positive current of bidimension

(p, p) and let A be an irreducible p-dimensional analytic subset of X. Then 1AT = mA[A],

in particular T −mA[A] is positive.

This brings us now to a very nice theorem of Siu’s that looks at the structure of currents.

Theorem 3.1.21. [24][9] If T is a closed positive current of bidimension (p, p), then there

is a unique decomposition of T as a (possibly finite) weakly convergent series

T =
∑
j≥1

λj[Aj] +R, λj > 0,
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where [Aj] is the current of integration over an irreducible p−dimensional analytic set Aj ⊂ X

and where R is a closed positive current with the property that dimEc(R) < p for every c > 0.

We now look at a simple example to see this decomposition in action, as well as generic

Lelong numbers and upper level sets.

Example 3.1.22. Let ϕ = log |z2
1z

3
2 |, and consider the bidegree (1, 1) current T = ddcϕ on

C2. We denote by A1 the set {(0, z2) ∈ C2} and by A2 the set {(z1, 0) ∈ C2}. So we have

that

T = ddcϕ = 2ddc log |z1|+ 3ddc log |z2| = 2[A1] + 3[A2]

where the last equality comes from the Lelong-Poincaré equation. We have that the generic

Lelong number along A1 is mL1 = 2 and that mA2 = 3. We note that ν(T, x) = 2 for every

x ∈ A1 with x 6= 0, and ν(T, 0) = 5. Considering some of the upper level sets, if c = 3 then

E3(T ) = A2 and dimE3(T ) = 1. If c = 4, then E4(T ) = {0} and dimE4(T ) = 0.

3.2 Regularization

In this short section we will look at a pivotal result of J.P. Demailly that helps us approximate

a current with a better behaved current who’s Lelong numbers approximate the ones of

the current being approximated. This is a critical tool which will allow us to do some

computations and get bounds on Lelong numbers. We let X be a compact complex manifold,

but before we can dive into this result, we must introduce the following:

Definition 3.2.1. We say a function is quasiplurisubharmonic if it is locally the sum of

30



a plurisubharmonic functions and a smooth function.

Definition 3.2.2. [13],[3] Consider the set

PSH(X,ω) := {ϕ is quasiplurisubharmonic | ddcϕ ≥ −ω},

where ω is a closed real bidegree (1, 1) form. If ϕ ∈ PSH(X,ω) then we call ϕ ω-

plurisubharmonic (or ω-psh).

Theorem 3.2.3. [6, Proposition 3.7] Let ψ be an ω-psh function on a compact complex

manifold X such that i
π
∂∂̄ψ ≥ γ for some continuous (1, 1)-form γ. Then there is a sequence

of ω-psh functions ψm such that ψm has the same singularities as a logarithm of a sum of

squares of holomorphic functions and

i) ψ < ψm ≤ sup|ζ−x|<rψ(ζ) + C( | log r|
m

+ r +m−1/2) with respect to coordinate open sets

covering X. In particular, ψm converges to ψ pointwise and in L1(X) and

ii) ν(ψ, x)− n
m
≤ ν(ψm, x) ≤ ν(ψ, x) for every x ∈ X;

iii) i
π
∂∂̄ψm ≥ γ − εmω with εm > 0 decreasing to 0.

We say that the functions ψm have analytic singularities. Furthermore, we say that a

positive closed bidegree (1, 1) current R has analytic singularities if R = ddcϕ where ϕ has

analytic singularities and R is smooth wherever R has generic Lelong number 0. We will also

make use of the following proposition which follows from Demailly’s regularization theorem

3.2.3.
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Proposition 3.2.4. Let R be a positive closed current of bidegree (1, 1) on Pn, ν(R, xi) > ai,

i = 1, . . . , N for xi ∈ Pn and ai > 0. Then there exists a positive closed bidegree (1, 1) current

R′ on Pn with analytic singularities such that ‖R′‖ = ‖R‖, ν(R′, xi) > ai for i = 1, . . . , N ,

and ν(R′, x) ≤ ν(R, x) for all x ∈ Pn. In particular, R′ is smooth in a neighborhood of every

point where R has 0 Lelong number.

Proof. By the ddc Theorem (Theorem 2.2.7), we can write R = cω + ddcψ, where c = ‖R‖,

for some cω-psh function ψ. By Demailly’s regularization theorem 3.2.3, there exists a

sequence of quasi-psh functions {ψm} and εm ↘ 0 such that {ψm} have analytic singularities,

ν(ψ, x)− εm ≤ ν(ψm, x) ≤ ν(ψ, x) = ν(R, x) and we have currents Rm = (c+ εm)ω+ ddcψm,

which are positive by part (iii) of Demailly’s result. Let ηm := ‖R‖/‖Rm‖, and then since

εm ↘ 0 as m → ∞, we have that ηm ↗ 1 and ν(ψm, x) = ν(Rm, x) → ν(R, x) from below.

Since ν(R, xi) > ai we can find M such that for all m > M , ν(Rm, xi) > ai. In particular we

can find k large enough such that ηkν(Rk, xi) > ai for i = 1, . . . , N . Let R′ := ηkRk, then

‖R′‖ = ‖R‖, ν(R′, xi) > ai for i = 1, . . . , N and R′ is smooth everywhere that R has Lelong

number 0.

3.3 Geometric Properties

Let T be a positive closed current of bidimension (p, p) on Pn which has mass ‖T‖ = 1,

where

‖T‖ :=

∫
Pn
T ∧ ωpn
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and ωn is the Fubini-Study form on Pn. We consider the following upper level sets of Lelong

numbers ν(T, q) of the current T

Eα(T ) := {q ∈ Pn | ν(T, q) ≥ α},

E+
α (T ) := {q ∈ Pn | ν(T, q) > α}.

It has been shown by Siu [24] that Eα(T ) is an analytic subvariety of dimension at most

p when α > 0. Our goal is to gain more understanding of the geometric properties of these

upper level sets, and we start by first looking over some of the results proven by Coman.

Theorem 3.3.1. [2, Theorem 1.1] Let T be a positive closed current of bidimension (1, 1)

in Pn. If α ≥ 1
2

then there exists a line L such that |E+
α (T )\L| ≤ 1. Moreover, if α ≥ 2/3

then E+
α (T ) ⊂ L.

Example 3.3.2. For an example, consider three complex lines Li, i = 1, 2, 3 in Pn and let

L2 ∩ L3 = {q1}, L1 ∩ L3 = {q2}, and L1 ∩ L2 = {q3}.

Now consider the following current:

T =
1

3

3∑
i=1

[Li]
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and we see that ν(T, qi) = 2
3

for i = 1, 2, 3 and ν(T, x) = 1
3

for x ∈ Li, x 6= qj. Note that for

α ≥ 2
3
, E+

α (T ) = ∅, and if α ∈ [1
2
, 2

3
), then E+

α (T ) = {p1, p2, p3}.

For α ∈ [1
2
, 2

3
), then |E+

α (T )\Li| = 1 for all i. Thus allowing for the omission of one point of

the upper level set is necessary.

The next theorem Coman proves shows that we can contain the upper level set of a

smaller α value in a degree two curve.

Theorem 3.3.3. [2, Theorem 1.2] Let T be a positive closed current of bidimension (1, 1)

in P2. If α ≥ 2
5

then there exists a conic C (possibly reducible) such that |E+
α (T )\C| ≤ 1.

It is interesting to note that this theorem requires us to be in P2 specifically, as opposed

to Pn. The proof of the theorem relies on the fact that in P2, bidimension (1, 1) is the same

as bidegree (1, 1), which is not the case in Pn for n > 2.

Example 3.3.4. [2, Example 3.9]

Let C ⊂ P2 be a conic and {pi}∞i=1 be points on C converging to some p0 on C. Let q be

a point off C and Li the complex line containing q and pi.
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Let εi be such that
∑∞

i=0 εi = 1
5
. Consider the current:

T =
2

5
[C] +

∞∑
i=0

εi[Li]

and observe that ν(T, qi) >
2
5
, and E+

2/5(T ) = {pi}∞i=0 ⊂ C.

Coman then uses 3.3.1 to show that if we have two points where the current T has a

large enough Lelong number, then we can contain a larger upper level set in a complex line.

In particular, we have the following.

Theorem 3.3.5. [2, Theorem 3.10] Let T be a positive closed current of bidimension (1, 1)

in Pn. Assume that α > 1/2 and there are points q1, q2 ∈ Pn so that ν(T, qj) ≥ α, j = 1, 2.

If β = (2− α)/3, then |E+
β (T )\L| ≤ 1 for some complex line L.

We now look at an example to show that there do in fact exist situations in which

E+
α (T ) ⊂ E+

β (T ).

Example 3.3.6. Using Li and qi as in 3.3.2, consider the current:

T =
1

2
[L1] +

1

4
[L2] +

1

4
[L3]
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Computing the Lelong Numbers, we see that ν(T, qi) = 3
4

for i = 2, 3 and ν(T, q1) = 1
2
.

If α ∈ (1
2
, 3

4
), then β = (2− α)/3 < 1

2
, so E+

β (T ) = {L1 ∪ {q1}}

and observe E+
α (T ) = {q2, q3} ⊂ E+

β (T ), showing the containment is proper, and |E+
β (T )\L1| =

1, satisfying the conclusion of the theorem.

In [5], Coman then generalizes some of the above results to bidimension (p, p) currents

on Pn, and we get the following.

Theorem 3.3.7. [5, Theorem 1.2] If T is a positive closed current of bidimension (p, p)

on Pn, 0 < p < n, with ‖T‖ = 1, then the set E+
p/(p+1)(T,P

n) is either contained in a p-

dimensional linear subspace of Pn or else it is a finite set and |E+
p/(p+1)(T,P

n)\L| = p for

some line L.

Theorem 3.3.8. [5, Theorem 1.3] Let T be a positive closed current of bidimension (p, p)

on Pn such that 1 < p < n, ‖T‖ = 1, and the set E+
(3p−1)/(3p+2)(T,P

n) is not contained in a

p−dimensional linear subspace of Pn. If W = Span (E+
(3p−1)/(3p+2)(T,P

n)), then dim W =

p+1 and there exist plane conics Cj ⊂ W and points zj ∈ W , 1 ≤ j ≤ Np, where Np =
(
p+2

3

)
,

such that zj lies in the plane containing Cj and

E+
(3p−1)/(3p+2)(T,P

n) ⊂ C1 ∪ · · · ∪ CNp ∪ {z1, . . . , zNp}.
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We will close this section by looking at an one last example, of 3.3.7.

Example 3.3.9. Let q1, q2, q3, q4 ∈ Pn, n > 2, be linearly independent points. Ai, i =

1, 2, 3, 4 be 2-dimensional linear subspace of Pn such that {qi}j=1,j 6=i ⊂ Ai.

Consider the bidimension (2, 2) current T given by

T =
1

4

4∑
i=1

[Ai]

and we see that ν(T, qi) = 3
4
, and for x 6= qi, ν(T, x) ≤ 1

2
. Thus since p = 2, p/(p+ 1) = 2/3,

and we see that E+
2/3(T ) = {q1, q2, q3, q4}. Since the qi are in general position, they cannot all

be contained in a 2-dimensional linear subspace, and any line L will only be able to contain

two of these points. But note for any such line that is containing two of these points, call it

L, that |E+
2/3(T )\L| = 2 = p.

We have now covered quite a substantial amount of background information! With all

of this in mind we are now ready to advance on the main results of this thesis containing in

the following two chapters. Our first result lies in 2-dimensional complex projective space.
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Chapter 4

Properties of Bidegree (1, 1) Currents

on P2
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4.1 Introduction

Let T be a positive closed current of bidimension (1, 1) in P2 with unit mass. Our goal is to

establish a result analogous to Coman’s result 3.3.5 for conics, i.e. to find β in terms of α

such that given a few points in Eα(T ), we can find a conic that either contains E+
β (T ) or at

most omits one point of E+
β (T ). The results of this chapter are contained within [14]. Coman

showed that we needed two points of “large” Lelong number in his result, and that it fails

if we have less than two such points. Since two points uniquely define a complex line, one

may suspect initially that we would need five points in general position with “large” Lelong

number to make an analogous result for conics, as five points in general position define a

unique conic. However it turns out that we only need four such points, and that the four

points can be in any position. Specifically, we want to prove the following:

Theorem 4.1.1. [14, Theorem 1.1] Let T be a positive closed current of bidimension (1, 1)

in P2, ‖T‖ = 1, α > 2/5 and β = 2
3
(1−α). Let {qi}4

i=1 be points in P2 such that ν(T, qi) ≥ α.

Then there exists a conic C (possibly reducible) such that |E+
β (T )\C| ≤ 1.

After proving this, we will look at several examples to establish that each assumption is

necessary, and that β is sharp for this property. We will also need to use entire pluricomplex

Green functions that we covered in the second chapter in the upcoming result, but for

convenience let us recall the definition. Let S = {p1, . . . , pk} ⊂ Cn, and let u ∈ PSH(Cn) ∩

L∞loc(Cn\S) be such that u = −∞ when restricted to S. Define γu as follows

γu := lim sup
‖z‖→+∞

u(z)

log ‖z‖
.
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If γu is finite, we say u has logarithmic growth. If in addition u satisfies the Monge-Ampère

equation (ddcu)n = 0 away from S, then u is an entire pluricomplex Green function. If for

pi ∈ S we have

u(z)− α log ‖z − pi‖ = O(1) as z → pi

then u has a logarithmic pole of weight α at pi. With this information, we have the following

two propositions by Coman that we will need:

Proposition 4.1.2. [2, Proposition 2.1] Let S = {p1, . . . , pk} ⊂ Cn and let T be a positive

closed current of bidimension (l, l) on Pn. If u ∈ PSH(Cn) has logarithmic growth, it is

locally bounded outside a finite set, and u(z) ≤ αi log ‖z − pi‖ + O(1) for z near pi, where

αi > 0, 1 ≤ i ≤ k, then

k∑
i=1

αliν(T, pi) ≤ γlu‖T‖ .

We define mj(S) := max{|S ∩ C| : C an algebraic curve, degC = j}, i.e. the maximum

number of points of S contained on a degree j algebraic curve.

Proposition 4.1.3. [2, Proposition 2.3] Let S ⊂ C2 be such that |S| = 7 and m2(S) = 5.

Then S has an entire pluricomplex Green function u with γu = 4, such that u has logarithmic

poles of weight 2 at 3 of the points of S, and of weight 1 at the remaining 4 points of S.

Proposition 4.1.4. [2, Proposition 2.4.(i)] Let A ⊂ C2 with |A| = 7, m1(A) ≤ 3, m2(A) = 6,

and let Γ be the conic such that |A ∩ Γ| = 6. Let q /∈ A ∪ Γ. If m1(A ∪ {q}) ≤ 3, then there
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exists u ∈ PSH(C2) with γu = 3 such that u is locally bounded outside a finite set, and

u(z) ≤ log ‖z − p‖+O(1) near each p ∈ A ∪ {q}.

4.2 Setting the Stage

First we prove the following lemmas that will be quite useful to us in the upcoming proofs.

They show that for T , a positive closed current of bidimension (1, 1) on P2, T cannot have

small mass if the points of T with large Lelong number have certain configurations.

Lemma 4.2.1. [14, Lemma 3.1] Let T be a positive closed current of bidimension (1, 1) in P2,

α > 2/5 and β = 2
3
(1− α). Assume that {qi}4

i=1 are points in P2 such that ν(T, qi) ≥ α and

{pi}4
i=1 be points in P2 such that ν(T, pi) > β, let {xi}8

i=1 be a relabeling of {qi}4
i=1∪{pi}4

i=1.

Assume x1, . . . , x4 ∈ L1, where L1 is a complex line, and either

i) there exist complex lines L2 and L3 such that {x1, x5, x6} ∈ L2 and {x2, x7, x8} ∈ L3,

or

ii) there exists an irreducible conic Γ such that x1, x2, x5, x6, x7, x8 ∈ Γ.

Then ‖T‖ > 1.

Proof. Suppose for contradiction that ‖T‖ ≤ 1. Since we already have points where T has

non-zero Lelong number, T 6= 0. Note that the current S := T/‖T‖ has mass 1, and if

ν(T, x) > c, then ν(S, x) > c, so we may assume that ‖T‖ = 1.

(i) By Siu’s decomposition theorem 3.1.21, the current T can be decomposed as follows

T = a[L1] + b[L2] + c[L3] +R
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where R is a positive closed current of bidimension (1, 1), i.e. bidegree (1, 1), on P2, R has

generic Lelong number 0 along each Li, and 0 ≤ a, b, c ≤ 1 are the generic Lelong numbers

along L1, L2, L3 respectively. Thus we now have

R = T − a[L1]− b[L2]− c[L3].

Choose α′ such that α > α′ > 2/5 and ν(T, pi) >
2
3
(1− α′) = β′ > β. Let {xi}8

i=1, be as

they are in the assumptions. Using this new information, we have the following:

ν(R, x1) = ν(T, x1)− a− b, ν(R, x2) = ν(T, x2)− a− c

ν(R, x3) = ν(T, x3)− a, ν(R, x4) = ν(T, x4)− a, ν(R, x5) = ν(T, x5)− b

ν(R, x6) = ν(T, x6)− b, ν(R, x7) = ν(T, x7)− c, ν(R, x8) = ν(T, x8)− c

which gives us that

8∑
i=1

ν(R, xi) > 4α′ + 4β′ − 4a− 3b− 3c

By 3.2.4, we have a current R′, such that ‖R′‖ = ‖R‖, R′ preserves the above inequality,
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and R′ is smooth wherever R has Lelong number 0. Since the set of singularities of R′ is

analytic, and R′ is smooth at generic points of Li, 2.3.4 tells us that R′ ∧ [Li], i = 1, 2, 3 are

well defined measures. Let S := ([L1] + [L2] + [L3]), and thus R′ ∧S is well defined. We now

have

3(1− a− b− c) =

∫
P2

R′ ∧ S ≥
8∑
i=1

R′ ∧ S({xi})

≥
8∑
i=1

ν(R′, xi) > 4α′ + 4β′ − 4a− 3b− 3c

where the first equality comes from 3.1.12 and the second inequality comes from the compa-

rison theorem for Lelong numbers 3.1.13, since

∫
P2

R′ ∧ S ≥
∑

ν(R′ ∧ S, xi) ≥
∑

ν(R′, xi)ν(S, xi)

and ν(S, xi) ≥ 1. So we now have

3(1− a− b− c) > 4α′ + 4β′ − 4a− 3b− 3c =⇒ a >
4α′ − 1

3
.

Consider now just the current Ra := T − a[L1], and Sa := Ra
1−a , note that ‖Sa‖ = 1 and

for xi /∈ L1 we have either

ν(Sa, xi) =
ν(Ra, xi)

1− a
>

α′

1− 4α′−1
3

=
3α′

4− 4α′
>

1

2

or
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ν(Sa, xi) =
ν(Ra, xi)

1− a
>

β′

1− 4α′−1
3

=
2(1− α′)
4(1− α′)

=
1

2

so by 3.3.1, m1({x5, x6, x7, x8}) ≥ 3, which is a contradiction since m1({x5, x6, x7, x8}) = 2.

(ii) Let b be the generic Lelong number of Γ. We use the same argument as above, and

consider the measures R′ ∧ [L1] and R′ ∧ [Γ] to get

3(1− a− 2b) =

∫
P2

R′ ∧ [L1] +

∫
P2

R′ ∧ [Γ] ≥
8∑
i=1

ν(R′, xi) > 4α′ + 4β′ − 4a− 6b

which again gives

a >
4α′ − 1

3
.

Now considering Ra gives us the same contradiction.
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Assumptions (i) and (ii) are unfortunately restrictive and can seemingly limit the situ-

ations in which we can use the result. However, if L1 contains one, two or three of the

qi ∈ Eα(T ), then we can drop the assumptions (i) and (ii) of the previous lemma, which will

simplify arguments in the later proofs.

Lemma 4.2.2. [14, Lemma 3.2] Let T be a positive closed current of bidimension (1, 1) on P2,

α > 2/5, β = 2
3
(1−α), {qi}4

i=1 and {pi}4
i=1 be points in P2 such that ν(T, qi) ≥ α > 2/5 and

ν(T, pi) > β. Assume there exists a complex line L containing either exactly {q1, q2, p1, p2},

exactly {q1, p1, p2, p3}, or exactly {q1, q2, q3, p1} and the four points not on L are in general

position. Then ‖T‖ > 1.

Proof. Arguing as we did at the start of the previous lemma, we may assume ‖T‖ = 1.

We will show that we can construct a conic satisfying the hypothesis of 4.2.1, and then

we are done as 4.2.1 says ‖T‖ > 1. Suppose L is a complex line containing {p1, p2, q1, q2},

and we will let B = {q3, q4, p3, p4}. Then by the hypothesis, m1(B) = 2. Let α′ be such

that α > α′ > 2/5 and ν(T, pi) >
2
3
(1 − α′) > β. Note that either m1({p1, p3, p4}) = 2 or

m1({p2, p3, p4}) = 2, and w.l.o.g. say that p1, p3, p4 are in general position. We will let Ljk

be the line containing pj and pk, and consider the current given by

R =
5α′ − 2

15α′
([L13] + [L14] + [L34]) +

2

5α′
T
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and note ‖R‖ = 1. We have the following inequalities:

ν(R, qi) ≥
2

5α′
α >

2

5
, i = 1, 2, 3, 4

and

ν(R, pi) >
10α′ − 4

15α′
+

4− 4α′

15α′
=

2

5
, i = 1, 3, 4.

Thus by 3.3.3, there is a conic Γ containing at least six of {qi}4
i=1 ∪ {p1, p3, p4}. Note

that Γ cannot contain all seven points, otherwise L would be a component of Γ, which would

mean that Γ is a reducible conic and thus that m1(B) > 2 since the points off of L must also

be collinear. Likewise, the point Γ must omit is one of the points on L, i.e. it must omit one

of q1, q2 or p1. If Γ is irreducible, then we are done. If not, then note Γ must be a reducible

conic consisting of two lines, say Γ = L1 ∪ L2. Since Γ contains all four points of B, it must

be the case that each line Li contains exactly two points of B (since m1(B) = 2), and as no

points of B are on L, we have that each Li also contains a point of L∩ Γ. Finally note that

since Γ contains six points, L1 and L2 cannot share the same point on L, i.e. L1∩L2,∩L = ∅.

So we now have all of the hypotheses of 4.2.1 satisfied, and thus ‖T‖ > 1, a contradiction.
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If we have that L contains {q1, p1, p2, p3}, and B = {q2, q3, q4, p4} is such that m1(B) = 2,

then using the current given by

R =
5α′ − 2

15α′
([L] + [L14] + [L24]) +

2

5α′
T,

we can argue as we did above to get a conic Γ containing six of the points q1, q2, q3, q4, p1, p2, p4

satisfying the conditions of 4.2.1, and we are done.

Finally if we have that L contains {q1, q2, q3, p1}, and B = {q4, p2, p3, p4} is such that

m1(B) = 2, then using the current given by

R =
5α′ − 2

15α′
([L23] + [L24] + [L34]) +

2

5α′
T,

we can argue as we did above to get a conic Γ containing six of the points in q1, q2, q3, q4, p2, p3, p4

satisfying the conditions of 4.2.1, and again, we are done.

Lemma 4.2.3. [14, Lemma 3.3] Let T be a positive closed current of bidimension (1, 1) on

P2, α > 2/5, β = 2
3
(1− α), {qi}4

i=1 and {pi}5
i=1 be points in P2 such that ν(T, qi) ≥ α > 2/5

and ν(T, pi) > β. Assume there exist three distinct complex lines L1, L2, and L3 containing

exactly {q1, q2, q3, p1}, {q1, q4, p2, p3}, and {q3, q4, p4, p5}, respectively. Then ‖T‖ > 1.

Proof. Suppose for contradiction that ‖T‖ = 1. We attack this situation in cases, depending

on how the points p1, p2, p3, p4, p5, q2 (i.e. the points not on the intersections of the three

lines) fall. First note that m1({p2, p3, p4, p5}) = 2. We now break this into cases.
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Case 1: Suppose thatm1({p2, p3, p4, p5, q2}) = 2. Then consider the points q1, q2, p3, p4, p5,

noting that they are in general position, so there is an irreducible conic γ1 containing them.

Now consider the current R = T − a[L1] − b[L2] − c[γ1], where 0 ≤ a, b, c ≤ 1 are the ge-

neric Lelong numbers of T along L1, L2, γ1 respectively. Let α′ ∈ (2/5, α) be as before, i.e.

ν(T, pi) >
2
3
(1 − α′) = β′ > β. Then by using 3.2.4 as we did in Lemma 4.2.1, there is a

current R′ such that ‖R′‖ = ‖R‖, R′ maintains the same lower bounds, and 2.3.4 gives us

that R′ ∧ [Li] and R′ ∧ [γ1] are well defined measures. Define S := ([L1] + [L2] + [γ1]), and

now we have

4(1− a− b− 2c) =

∫
P2

R′ ∧ S ≥
∑

ν(R′, xi)ν(S, xi) ≥

2ν(R′, q2) + ν(R′, q3) + ν(R′, q4) +
5∑
i=1

ν(R′, pi) + ν(R′, p3)

> 4α′ + 6β′ − 4a− 4b− 6c.

Now using the above inequality we get

4− 2c > 4α′ + 6β′ = 4α′ + 4(1− α′) = 4
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which is a contradiction as c ≥ 0. We will use similar techniques to handle the remaining

cases.

Case 2: We have m1({p2, p3, p4, p5, q2}) = 3. That means q2 is on a line with two pi, one

of the pi is on L2 and one on L3, say w.l.o.g. m1({q2, p2, p4}) = 3.

Case 2a: If m1({q2, p3, p5}) = 2, then the same argument as above gets us to a contra-

diction.

Case 2b: We have m1({q2, p3, p5}) = 3 = m1({q2, p2, p4}) and m1({p1, p2, p3, p4, p5}) = 2.

Then note m1({q2, q4, p1, p2, p5}) = 2 = m1({q2, q4, p1, p3, p4}) and there are irreducible conics

γ1 and γ2 containing {q2, q4, p1, p2, p5} and {q2, q4, p1, p3, p4} respectively. Define a current

R = T − a[γ1] − b[γ2], let α′ be as before, and then once again proposition 3.2.4 and 2.3.4

gives a current R′ such that ‖R′‖ = 1− 2a− 2b and

4(1− 2a− 2b) =

∫
P2

R′ ∧ ([γ1] + [γ2]) ≥

2ν(R′, q2) + 2ν(R′, q4) + ν(R′, p1) +
5∑
i=1

ν(R′, pi)

> 4α′ + 6β′ − 8a− 8b
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=⇒ 4 > 4α′ + 6β′ = 4

again giving us a contradiction.

Case 2c: We have m1({q2, p3, p5}) = 3 = m1({q2, p2, p4}), and m1({p1, . . . , p5}) = 3,

so either m1({p1, p2, p5}) = 3 or m1({p1, p3, p4}) = 3. Suppose m1({p1, p2, p5}) = 3 and

m1({p1, p3, p4}) = 2 then note m1({q2, q4, p1, p3, p4}) = 2 and there is an irreducible conic

γ1 containing {q2, q4, p1, p3, p4}. Let l1 be the line containing p1, p2, p5 and l2 be the line

containing q2, q4. Note that by construction, none of the pi can fall on l2 and p2, p5 /∈ γ1,

otherwise either L2 or L3 would be a component of γ1, which cannot be as γ1 is irreducible.

Define a current R = T − a[γ1] − b[l1] − c[l2], let α′ be as before, and then 3.2.4 and 2.3.4

gives a current R′ such that ‖R′‖ = 1− 2a− b− c and

4(1− 2a− b− c) =

∫
P2

R′ ∧ ([γ1] + [l1] + [l2]) ≥

2ν(R′, q2) + 2ν(R′, q4) + ν(R′, p1) +
5∑
i=1

ν(R′, pi)
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> 4α′ + 6β′ − 8a− 4b− 4c

=⇒ 4 > 4α′ + 6β′ = 4

again giving us a contradiction. If m1({q2, p3, p5}) = 3 = m1({q2, p2, p4}), m1({p1, p2, p5}) =

2 and m1({p1, p3, p4}) = 3 , a similar argument gives us a contradiction.

Case 2d: Finally m1({q2, p3, p5}) = 3 = m1({q2, p2, p4}), m1({p1, p2, p5}) = 3 and

m1({p1, p3, p4}) = 3. Consider the seven points subset {q2, q4, p1, p2, p3, p4, p5}, and note

that we have {q4, p2, p3} ∈ L2, {q4, p4, p5} ∈ L3, and we also have lines l1, l2, l3, l4 containing

{q2, p3, p5}, {q2, p2, p4}, {p1, p3, p4}, and {p1, p2, p5} respectively.

Note that m2({q2, q4, p1, p2, p3, p4, p5}) = 5, so we can apply 4.1.3, so there exists an

entire pluricomplex Green function u with γu = 4, and u has weight two logarithmic poles

and three of the seven points, and weight one at the remaining four. First note that we

cannot have weight two poles at both q2 and q4, for if we do, then we also have a weight two

pole at say p1, and 4.1.2 gives us that

4 = γu‖T‖ ≥ 2ν(T, q2) + 2ν(T, q4) + 2ν(T, p1) +
5∑
i=2

ν(T, pi) > 4α + 6β = 4
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a contradiction. So since u cannot have a double pole at both q2 and q4, at least one of the

li or Li will have two points such that u double poles at both points and a third where u

has a single pole, say w.l.o.g. we have l1 with this property, where u has double poles at

x1, x2 ∈ l1and has a single pole at x3 ∈ l1. But now applying 4.1.2, we get

4 ≥
∫
C2

[l1] ∧ ddcu ≥ 2ν([l1], x1) + 2ν([l1], x2) + ν([l1], x3) = 2 + 2 + 1 = 5

an obvious contradiction. However now we have ruled out all of the possible ways in which

p1, p2, p3, p4, p5, q2 fall, thus it must be the case that‖T‖ > 1.

4.3 Proof of the Main Result

We now prove the main result. This is done by proving a few propositions which consider

the various cases that can occur depending on how the four points are positioned. For

the remainder of this section, assume that T is a positive closed current of bidimension

(1, 1) on P2 with ‖T‖ = 1. We review some basic notions before we proceed. Consider

A = {x1, . . . , xp+1}, xi ∈ Pn. By the Span (A), we mean the smallest linear subspace
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V ⊂ Pn that contains A. If p ≤ n and span(A) is a p-dimensional space, then we say {xi}p+1
i=1

are linearly independent. If we have p > n+1 points, then we say they are in general position

if any n+ 1 of them are linearly independent.

We also remind the reader the definition of upper level sets:

Eα(T ) := {q ∈ Pn | ν(T, q) ≥ α},

E+
α (T ) := {q ∈ Pn | ν(T, q) > α},

and we begin by looking at the first of our three cases.

Proposition 4.3.1. [14, Proposition 3.4] Let {qi}4
i=1 be points in P2 such that they are in

general position and ν(T, qi) ≥ α > 2/5. Let β = 2
3
(1 − α). Then there exists a conic C

(possibly reducible) such that |E+
β (T )\C| ≤ 1.

Proof. Let {qi}4
i=1, be as above and let p1 ∈ E+

β (T ), p1 6= qi (noting that if no such p1 exists

then we are done). Since the qi are in general position, we let Γ1 be the unique conic defined

by the qi and p1. If Γ1 satisfies the conclusion, then we are done. If not then we can find

two points, p2 and p3 such that p2, p3 ∈ E+
β (T )\Γ1. Let α′ be such that α > α′ > 2/5

and ν(T, pi) >
2
3
(1 − α′) > β. If the pi are in general position, we will let Ljk be the line

containing pj and pk. Define a current R as follows:

R =
5α′ − 2

15α′

∑
1≤j<k≤3

[Ljk] +
2

5α′
T

and note ‖R‖ = 1. We have the following inequalities:

ν(R, qi) >
2

5α′
α >

2

5
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and

ν(R, pi) >
10α′ − 4

15α′
+

4− 4α′

15α′
=

2

5
.

If instead the pi are all on a line L, then we use the current

R =
5α′ − 2

5α′
[L] +

2

5α′
T

and get the same inequalities as above. In either case, by 3.3.3, there is a conic Γ2 containing

at least six of the {qi}4
i=1 ∪{pi}3

i=1. As Γ1 is uniquely defined by the qi and p1, Γ2 must omit

one of the seven points, and the point omitted must be one of the qi or p1, else Γ1 = Γ2,

which means one or both of p2, p3 would be on Γ1, which is a contradiction. If Γ2 satisfies

the conclusion, then we are done. So suppose Γ2 does not satisfy the conclusion of our

proposition, and then there is p4 ∈ E+
β (T )\Γ2.

We will let A = {qi}4
i=1 ∪{pi}3

i=1, and we will note that |A| = 7, m2(A) = 6, |A∩Γ2| = 6

and p4 /∈ A ∪ Γ2. We will make use of these observations shortly. Define S = A ∪ {p4}. We

now consider the following possibilities for S: m1(S) ≤ 3, m1(S) = 4, and m1(S) ≥ 5.

Suppose m1(S) ≤ 3. Then this means that m1(A) ≤ 3 and by the above observations

about A, we can apply 4.1.4, i.e. there exists u ∈ PSH(C2) such that γu = 3, u is locally

bounded outside of a finite set, and u has logarithmic poles of weight one at each point in

S. Now by 4.1.2, we have that:

3 = γu‖T‖ ≥
4∑
i=1

ν(T, qi) +
4∑
i=1

ν(T, pi) > 4α + 4β =
4

3
α +

8

3
> 3.
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This is a contradiction, thus we cannot have m1(S) ≤ 3.

Suppose m1(S) ≥ 5. Let L be the line such that |S∩L| ≥ 5. If L contains {pi}4
i=1 and one

of the qi, then Γ2 is reducible (as regardless of which point Γ2 omits, it still contains at least

three points on L), and L is a component which implies that p4 ∈ Γ2, which is impossible.

As the qi are in general position, L contains three of the pi and two of the qi. If p1 ∈ L then

we have L is a component of Γ1 and at least one of p2 or p3 is on L, which is a component

of Γ1, and thus impossible as p2, p3 /∈ Γ1. So p1 /∈ L, but now L contains p4 and at least

three points of Γ2, so L is a component of Γ2, which means p4 ∈ Γ2, another contradiction.

As the qi are in general position, this covers all the possible ways that m1(S) ≥ 5.

So if there is p4 ∈ E+
β (T )\Γ2, it must be the case that m1(S) = 4. So there is a line L

containing exactly four points of S. This decomposes into a few more cases depending on

what four points the line L contains. The first and easiest is if L contains {pi}4
i=1 (which

means that none of the qi lie on L as m1(S) = 4). Then consider the current

R =
5α′ − 2

5α′
[L] +

2

5α′
T.

Routine calculations show that ‖R‖ = 1, ν(R, pi) >
2
5
, and ν(R, qi) >

2
5
, so by 3.3.3, we

have that there is a conic containing at least seven points of S, which means L is a component

of this conic, which implies that at least three of the qi are collinear as L cannot contain

more than four points, which is a contradiction.

We will now assume that m1(A) ≤ 3, and consider the remaining cases. Then later we

will consider them for when m1(A) = 4.

If L contains three pi and one qi then note that since m1(A) ≤ 3 it must be the case that
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p4 ∈ L. Suppose that the four points not on L are not in general position so there is a line,

say L1 containing three of the points not on L, and they must be two qi and one pi (as the

three qi not on L are in general position), and L ∩ L1 ∩ A = ∅ as m1(A) ≤ 3. Noting that

|Γ2∩ (L∪L1)| ≥ 5, one of L or L1 is a component of Γ2 by Bezout’s theorem. As L contains

p4, it must be the case that L1 is a component of Γ2. But since L1 contains only three points

of Γ2, and at least two points of Γ2 are on L, it must be the case that Γ2 = L ∪ L1, but this

means p4 ∈ Γ2, which is a contradiction. So the four points not on L must be in general

position.

Note that since the four points off of L must be in general position, and L contains one of

the qi and three of the pi, we have satisfied all of the hypotheses of 4.2.2, and thus ‖T‖ 6= 1,

which is a contradiction.

If L contains two pi and two qi, we let B be the four point set consisting of the two pi

and two qi not contained on L. Since m1(A) ≤ 3, it must be the case that p4 ∈ L, and that

m1(B) ≤ 3. If m1(B) = 3 then we can argue as we did above to get that Γ2 is reducible, and

it contains L as a component, but then p4 ∈ Γ2, which is impossible. So it must be the case

that m1(B) = 2 and again we can apply 4.2.2 to get a contradiction. This finishes the case

where L contains two pi and two qi, and also finishes the case m1(S) = 4 when m1(A) ≤ 3.
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So far we have shown that if there is in fact a point p4 ∈ E+
β (T )\Γ2, then it must be the

case that m1(S) = 4 = m1(A). It only remains to consider the cases where L contains one

qi and three pi or two qi and two pi. We will first consider when L contains three pi, and let

B = S\(S ∩ L), noting that m1(B) < 4 as the qi are in general position. If m1(B) = 2 then

by Lemma 4.2.2, ‖T‖ > 1, a contradiction.

Thus m1(B) = 3 and then m2(S) = 7. After reindexing (if necessary) say that p1 ∈ L.

Let C = L ∪ L1 where L1 contains the three collinear points in B (noting that L1 contains

two qi and one pi, and say q4 is the point ofB not on L1). We will show that C is the

desired conic satisfying the conclusion of the proposition. If not, assume for contradiction

there exists p5 ∈ E+
β (T )\C. If L ∩ L1 ∩ S = ∅, then set A′ = S\{p1} and S ′ = A′ ∪ {p5}.

So note that |A′| = 7, m1(A′) = 3, m2(A′) = 6 (since if m2(A′) = 7, either all four points

in B are collinear or one point of B is on L and neither of those can happen), |A′ ∩ C| = 6,

p5 /∈ A′ ∪C, and m1(S ′) ≤ 4. If m1(S ′) = 3 then we can use 4.1.2 and 4.1.4 as before to get

a contradiction. If m1(S ′) = 4 then since p5 /∈ C, there is a line L2 containing p5 and three

other points from A′. By construction, L2 must contain q4 as well as one point of L∩S ′ and

one point of L1∩S ′. However, L2 contains at least one qi and m1(S ′\L2) = 2 so we can apply

4.2.2 and thus ‖T‖ > 1. If L ∩ L1 ∩ S 6= ∅ then the intersection must be one of the points

contained on L, since otherwise if the intersection was a point on L1, then |L ∩ S| = 5, a

contradiction. Further, it must be one of the pi,w.l.o.g. say pi = p2, as the qi are in general

position. We set A′ = S\{p2}, and argue the same way to get a contradiction. We have

shown that if m1(A) = m1(S) = 4 and there is a line containing three of the pi and one qi,

then there can be no such p5 and C is the desired conic that satisfies the conclusion.
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Finally we consider when L contains two pi, two qi, and m1(A) = 4. Again we let

B = S\S ∩ L and note that m1(B) 6= 4 or else we get that Γ1 = Γ2. Furthermore, if

m1(B) = 2, we can apply 4.2.2 to get a contradiction. Our only remaining consideration is

when m1(B) = 3. Let L1 be the line containing three points from B. We will re-index our

points so that {q1, q2, p1, p4} ∈ L and B = {q3, q4, p2, p3}.

Let C = L∪L1, and again we will show this is the desired conic. Suppose for contradiction

that p5 ∈ E+
β (T )\C. Assume L ∩ L1 ∩ S = ∅. Let A′ = S\{p1} (recalling p1 ∈ L),

S ′ = A∪{p5}, and note that |A′| = 7, m1(A′) = 3, m2(A′) = 6, |A′∩C| = 6, p5 /∈ A′∪C, and

m1(S ′) ≤ 4. If m1(S ′) = 3 then we can use 4.1.2 and 4.1.4 as before to get a contradiction.

If m1(S ′) = 4 then since p5 /∈ C, there is a line containing p5 and three other points from A′,

but now we argue as before using 4.2.2 to reach a contradiction. If instead L ∩ L1 = {pi},

then note it must be some pi ∈ L (otherwise m1(S) > 4), we set A′ = S\{pi} and the same

argument shows that C is the desired conic.

Suppose L ∩ L1 = {qi}, and w.l.o.g. say that point is qi = q1. Then C = L ∪ L1 omits

qk ∈ B, (as the qi are in general position), say that omitted point is q4. We will let L2 be

the line that contains q4 and p5. If L2 ∩C ∩S = ∅, then we can set B′ = {q3, q4, p3, p5}, note

that m1(B′) = 2, and apply 4.2.2 using L and B′ to get a contradiction. If L2 hits exactly
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one point on L∩ S ′ and no points on L1 ∩ S ′, then again we can let B′ = {q3, q4, p3, p5} and

again use 4.2.2. If L2 hits exactly one point on L1 ∩ S ′ and no points on L ∩ S ′, then we

can let B′ = {q2, q4, p1, p5} and again use 4.2.2. If L2 hits two points on C ∩ S ′, then note

at least one of those two points must be a pi (as the qi are in general position) w.l.o.g. say

it is p1 on L, and we can set B′ = {q2, q4, p4, p5}, again m1(B′) = 2. Now using L1, which

contains {q1, q3, p2, p3} (i.e. two qi and two pi) and B′, we argue as before using 4.2.2 to

get a contradiction. This resolves the case of L containing two pi and two qi, the case of

m1(A) = m1(S) = 4, and thus we have finished the proof.

Proposition 4.3.2. [14, Proposition 3.5] Let {qi}4
i=1 be points in P2 such that q1, q2, q3 lie

on a line L1 and q4 does not fall on L1. In addition, ν(T, qi) ≥ α > 2/5. Let β = 2
3
(1− α).

Then there exists a conic C (possibly reducible) such that |E+
β (T )\C| ≤ 1.

Proof. Let {qi}4
i=1, be as described in the assumptions, and let p1 ∈ E+

β (T )\L1, with p1 6= q4

(noting that if no such p1 exists then we are done). We will let l1 be the line that connects

p1 and q4 and let Γ1 = L1 ∪ l1. Now there exist points p2, p3 ∈ E+
β (T )\Γ1, else we are done.
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Before moving on, we will show that we can assume that m1({p1, p2, p3}) = 2. For suppose

that all three pi lie on a line, say l2, then L1 ∪ l2 gives us a conic containing six of the seven

points. Then there is a p4 ∈ E+
β (T )\(L1 ∪ l2). If p4 /∈ l1 then note {p1, p2, p4} are in general

position. If p4 ∈ l1, then note {p2, p3, p4} are in general position. Either way, we will reindex

the set and call the points {p1, p2, p3} where p1 is the point on Γ1. Let α′ be such that

α > α′ > 2/5 and ν(T, pi) >
2
3
(1− α′) > β and let Ljk be the containing pj and pk. Define

a current R as follows:

R =
5α′ − 2

15α′

∑
1≤j<k≤3

[Ljk] +
2

5α′
T

and note ‖R‖ = 1. We have the following inequalities:

ν(R, qi) >
2

5α′
α >

2

5

and

ν(R, pi) >
10α′ − 4

15α′
+

4− 4α′

15α′
=

2

5
.

Thus by 3.3.3, there is a conic Γ2 containing at least six of the {qi}4
i=1 ∪ {pi}3

i=1. As Γ1

is uniquely defined by the qi and p1, Γ2 must omit one of the seven points, and the point

omitted must be one of the qi or p1, else Γ1 = Γ2, which means one or both of p2, p3 would be

on Γ1, which is a contradiction. If Γ2 satisfies the conclusion, then we are done. So suppose

Γ2 does not satisfy the conclusion of our proposition, and then there is p4 ∈ E+
β (T )\Γ2.

We will let A = {qi}4
i=1 ∪{pi}3

i=1, and we will note that |A| = 7, m2(A) = 6, |A∩Γ2| = 6
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and p4 /∈ A ∪ Γ2. We will make use of these observations shortly. Define S = A ∪ {p4}. We

now consider the following possibilities for S: m1(S) ≤ 3, m1(S) = 4, and m1(S) ≥ 5.

Suppose m1(S) ≤ 3. Then this means that m1(A) ≤ 3 and so we can apply 4.1.4, i.e.

there exists u ∈ PSH(C2) such that γu = 3, u is locally bounded outside of a finite set, and

u has logarithmic poles of weight one at each point in S. Now by 4.1.2, we have that:

3 = γu‖T‖ ≥
∑

ν(T, qi) +
∑

ν(T, pi) > 4α + 4β =
4

3
α +

8

3
> 3.

This is a contradiction, thus m1(S) > 3.

Suppose m1(S) ≥ 5. Note that by how the points in A are constructed, it is the case

that m1(A) ≤ 4, and since m1(S) ≥ 5, this means m1(A) = 4, and as the pi are in general

position, the only way that m1(A) = 4 is if there is a line containing {q4, p2, p3, qi} for some

i = 1, 2, 3. Then there is a line L containing at least five points, and it must be the previously

mentioned line with p4 on it as well. However, regardless of what point is omitted from Γ2,

L is a component of Γ2 which means p4 ∈ Γ2, which is a contradiction. Thus m1(S) < 5.

It must be the case that m1(S) = 4, and now we begin our battle with this situation. As

before, we will note that this breaks into cases depending on what points lie on the the line

that contains four points. As the p1, p2, and p3 are not collinear, we cannot have all four pi

on a line, so that removed that case instantly.

Case 1: Suppose L contains three pi and one qi. Suppose that qi = q4. If p1 ∈ L, the

conic Γ3 := L ∪ L1 = Γ1, which is impossible as one of the other two pi on L will be either

p2 or p3, and p2, p3 /∈ Γ1. So it must be that the pi are p2, p3, and p4. Note |Γ3 ∩ Γ2| ≥ 5,

and that any subset of five points from {q1, q2, q3, q4, p2, p3} uniquely defines Γ3 so it must
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be the case that Γ2 = Γ3, which means p4 ∈ Γ2, which is a contradiction. Thus qi 6= q4.

So L contains a qi 6= q4, say L contains q1 (reindexing if necessary). Once again note

that p4 must be one of the points on L as otherwise we would have p1, p2, p3 collinear. Let

B = {q2, q3, q4, pi} be the four points off L. If m1(B) = 2, then we are done as 4.2.2 gives

us a contradiction. So it must be the case that m1(B) ≥ 3, and as q4 /∈ L1, we have

m1(B) = 3. Since pi /∈ L1 (because pi 6= p4), we have a line, L2,that contains {pi, q4, qi}

(w.l.o.g. say q2). Let C := L ∪ L2, we will show C is the desired conic. For contradiction

suppose there is p5 ∈ E+
β (T )\C. Note that if L2 ∩ L ∩ A = ∅, C is uniquely determined by

any five points of {q1.q2, q4, p1, p2, p3}. Also note that |Γ2 ∩ C| ≥ 5, so again we can argue

that Γ2 = C, but again this means p4 ∈ Γ2, a contradiction. If instead L2 ∩ L ∩ A = {p2}

(reindex if necessary), then we consider the set A′ = S\{p2} and S ′ = A′ ∪ {p5}. Note

|A′| = 7, m1(A′) = 3, m2(A′) = 6, |A′ ∩ C| = 6, and p5 /∈ A′ ∪ C. Let L3 be the line

containing p5 and q3. If L3 = L1, i.e. p5 ∈ L1, then note the line L1 and {p1, p3, p4, q4}

satisfy the assumptions of 4.2.2, giving us a contradiction. If p5 /∈ L1 and |L3 ∩ C ∩ S ′| ≤ 1

then m1(S ′) ≤ 3 and we can argue using 4.1.2 and 4.1.4 to get a contradiction. Finally if

|L3 ∩ C ∩ S ′| = 2, then L3 contains one point of L2 ∩ S ′ and one point of L ∩ S ′. But now

note that m1(S ′\(S ′∩L3)) = 2, so those four points and L3 satisfy the assumptions of 4.2.2,
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and again we get a contradiction.

Case 2: Now suppose L contains three qi and one pi. Actually it must be the case that

L = L1 and p4 ∈ L1, as no other pi can be on L1. If m2(S) = 6 then the four points not

on L are in general position, and thus by 4.2.2, we have a contradiction. Since m2(A) = 6,

m2(S) ≤ 7, so it must be the case that m2(S) = 7. Let B be the set containing the four

points not on L, and it must be that m1(B) = 3 (else m2(S) 6= 7). Since m1(B) = 3, p1, p2, p3

cannot be collinear, and p2, p3 /∈ Γ1, there is a line, say L2 containing {p2, p3, q4}. However

it now follows that m1(A) = 4 since if m1(A) = 3, then we would get that Γ2 = L2 ∪ L

which means p4 ∈ Γ2, a contradiction. So there is a line containing p2, p3, q4 and one of

the qi on L (as this is the only way we can have m1(A) = 4), and that line is in fact L2.

Let C = L ∪ L2, and note there must be a p5 ∈ E+
β (T )\C, otherwise we are done. Let

L3 be the line containing p1, p5. If L3 ∩ C ∩ S = ∅, then note m1({p1, p2, p5, q4}) = 2, so

those four points and the line L satisfy the hypotheses of 4.2.2. If L3 ∩ C ∩ S = {pi}, then

we can assume w.l.o.g. that pi is p2 on L2, and now the points p1, p3, p5, q4 are in general

position and none of the fall on L, so again we can apply 4.2.2 to get a contradiction. If

instead L3 ∩ C ∩ S = {qi}, say q1 on L, then note p1, p2, p5, q4 are in general position and
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off L, so again we can use 4.2.2. A similar argument holds if qi falls instead on L2 or on the

intersection L ∩ L2. If |L3 ∩ C ∩ S| = 2 and at least one of the two points is a pi, we can

argue as we did above. If both points are qi, one must be q4 on L2 and say the other is q1

on L, however this is the same configuration that we resolved in Lemma 4.2.3, and thus this

situation cannot happen either. We have have proven that there cannot exist a point p5, and

thus C is the desired conic, resolving the case when our line L contains three qi and one pi.

Case 3: We now move on to our last situation, that the line L contains two pi and two

qi. As m1(S) = 4, one of the qi is q4, and the other is one of the three qi on L1, w.l.o.g.,

say q1, and say the other points are p2 and p3. Let B once again be the four points off of

L, so B = {q2, q3, p1, p4} and either m1(B) = 2 or m1(B) = 3 (if m1(B) = 4, this means

thats Γ1 = Γ2, which is impossible). If m1(B) = 2, then by 4.2.2, we have a contradiction.

If m1(B) = 3, and we have one of the pi on L1 and we are back in case two as now L1

contains three qi and one pi, which we have already argued. So let L2 be the line containing

three points of B and note that it must be both pi and one of the qi on L1, say q2. Let

C := L ∪ L2, and we will show that C s the desired conic. Suppose for contradiction that

there is p5 ∈ E+
β (T )\C. If p5 ∈ L1, and if L ∩ L2 ∩ S = ∅ then note we can use 4.2.2

with p1, p2, p4, q4 as they are in general position, and L1, giving a contradiction. If p5 ∈ L1,

and if L ∩ L2 ∩ S = {pi}, then we can use 4.2.2 again, but using the four point off of L1

that omits {pi}. If p5 ∈ L1, and if L ∩ L2 ∩ S = {qi}, then we we can apply Lemma 4.2.3

to get a contradiction. Thus p5 /∈ L1, and then let L3 be the line containing p5 and q3.

If L2 ∩ L3 ∩ B 6= ∅ then it must that the intersection is one of the pi, say p1, for if the

intersection is q2, then that forces p5 ∈ L1. But now note that m1({q2, q3, p4, p5}) = 2, and

all of the points are off L, so we can apply 4.2.2, and get a contradiction. If L2∩L3∩B = ∅,
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then the same argument holds. Since p5 can neither be on L1 or off L1, no such point can

exist, and thus C is the desired conic that satisfies the conclusion. This resolves the third

case, which finishes the m1(S) = 4 case, and thus, the proof.

Proposition 4.3.3. [14, Proposition 3.6] Let {qi}4
i=1 be points in P2 such that all four points

are collinear and ν(T, qi) ≥ α > 2/5. Let β = 2
3
(1−α). Then there exists a conic C (possibly

reducible) such that |E+
β (T )\C| ≤ 1.

Proof. Let L be the line containing the qi, and suppose |E+
β (T )\L| > 1, (otherwise we are

done), so there exist points p1, p2 ∈ E+
β (T ) not on L, and let L12 be the line they lie on.

We want to generate four points of E+
β (T ) that do not lie on L such that no three are

collinear. If the conic L ∪ L12 does not satisfy the conclusion then we can find two more

point p3, p4 ∈ E+
β (T ) that do not lie on our conic, and let L34 be the line containing these

new points. If the four pi are in general position then we are done, otherwise L34 contains

three of the pi, after reindexing, say it contains p1, p3, p4. If the conic L∪L34 does not satisfy

the conclusion then we can find a point p5 ∈ E+
β (T ) that is not on the new conic. If p5 does

not fall on L2k for k = 3, 4, then take p2, p3, p4, p5 as our four points in general position. If p5

falls on L2k, say w.l.o.g. L23, then we take p1, p2, p4, p5 as our four points in general position.

We will reindex to the points to be p1, p2, p3, p4.

By Siu’s decomposition theorem 3.1.21 we have that
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T = a[L] +R

where a is the generic Lelong number of T along L. Note that ‖R‖ = 1− a and ν(R, qi) ≥

α − a. Let α′ ∈ (2
5
, α) be such that ν(T, pi) = ν(R, pi) >

2
3
(1 − α′) > β for i = 1, 2, 3, 4.

Proposition 2.5 shows that there exists a current R′ such that ‖R′‖ = 1 − a, R′ is smooth

where R has Lelong number 0, and ν(R′, qi) > α′ − a. By 2.3.4, R′ ∧ [L] is a well defined

measure. Now we have

1− a =

∫
P2

R′ ∧ [L] ≥
4∑
i=1

ν(R′ ∧ [L], qi) ≥
4∑
i=1

ν(R′, qi)ν([L], qi) > 4α′ − 4a

where the second inequality follows from 3.1.13 and the final inequality follows as ν([L], qi) =

1. So we have that a > 4α′−1
3

.

Define a new current:

S =
R

1− a

and note ‖S‖ = 1. Now we have:

ν(S, pi) >
2

3

1− α′

1− a
>

2− 2α′

4− 4α′
=

1

2
, i = 1, 2, 3, 4.

Coman’s result, 3.3.1 shows that m1({p1, p2, p3, p4}) ≥ 3 which implies that at least three

of the pi are collinear which is a contradiction as we constructed them to be in general
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position.

Theorem 4.1.1 now follows by combining the previous three propositions, since we only

have three possibilities for the configuration of our four initial points. That is, the {qi} could

be either all collinear, three of the four points collinear, or they are linearly independent (i.e.

in general position).

4.4 Examples

The following examples will show the necessity of allowing for |E+
β (T )\C| = 1 since we can

have E+
β (T ) 6⊂ C for all conics C. Also we will see that that β = 2

3
(1 − α) is sharp for

this property, and that the result fails if we have less than four point with “large” Lelong

number.

Example 4.4.1. Let Li, i = 1, 2, 3, 4 be complex lines such that no three intersect at the

same point. Define a current T = 1
4

∑4
i=1[Li] and let α = 1

2
. Note that there are six points

with Lelong number 1
2
, so we have satisfied the assumptions of the main theorem, and note

that β = 1
3
. As each Li contains exactly three points of E+

1/3(T ), and any pair of the Li

contains exactly five of the points in E+
1/3(T ) it follows that for any conic satisfying the result

of the corollary, we have one point in E+
1/3(T ) not on the conic.
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Example 4.4.2. Let Li, i = 1, 2, 3, be complex lines such that they do not intersect at the

same point. Let L1 ∩ L2 = {q3} , L1 ∩ L3 = {q2} , L3 ∩ L2 = {q1}. Let q4 /∈ L1 ∪ L2 ∪ L3

and let L4, L5, L6 be the lines connecting q4 with q1, q2, q3 respectively. Also L4 ∩L1 = {p1},

L5 ∩ L2 = {p2}, L6 ∩ L3 = {p3}. Note that m1({p1, p2, p3, q4}) = 2. Finally define a current

T = 1
6

∑6
i=1[Li]. Note that ν(T, qi) = 1

2
and ν(T, pi) = 1

3
. Let α = 1

2
, and note that since

β = 1
3
, we have that E+

β (T ) = {q1, q2, q3, q4} which can clearly be contained in a conic, but

Eβ(T ) = {q1, q2, q3, q4, p1, p2, p3}, and m2(Eβ(T )) = 5.

Example 4.4.3. Let Li, i = 1, 2, 3, be complex lines such that they do not intersect at the

same point. Let L1 ∩ L2 = {q3} , L1 ∩ L3 = {q2} , L3 ∩ L2 = {q1} and define a current
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T = 1
3

∑3
i=1[Li]. Note that ν(T, qi) = 2

3
so if we set α = 2

3
, then we have exactly three points

with Lelong number greater than or equal to α, and β = 2
9
, thus then E+

β (T ) contains all

three lines, and |E+
β (T )\C| =∞ for all conics C.

It is even interesting to note that the result fails in the special case where we have only

three points with large Lelong number that are collinear.

Example 4.4.4. Let {qi}3
i=1∪{pi}6

i=1 be points and {Li}3
i=1 be lines such that {q1, q2, q3, p1} ∈

L1, {q1, p2, p3, p6} ∈ L2, and {q3, p4, p5, p6} ∈ L3. Also let {li}4
i=1 be lines such that

{q2, p2, p4} ∈ l1, {q2, p3, p5} ∈ l2, {p1, p2, p5} ∈ l3, and {p1, p3, p4} ∈ l4. Let α = 9
20

, which

means β = 11
30

. We will instead write them as α = 81
180

, β = 66
180

. We now consider the current

given by

T =
46

180
[L1] +

37

180

3∑
i=2

[Li] +
19

180

2∑
i=1

[li] +
11

180

4∑
i=3

[li]
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and note ‖T‖ = 1. Now calculating the Lelong numbers at each points we have:

ν(T, q1) =
83

180
ν(T, q2) =

84

180
, ν(T, q3) =

83

180

ν(T, p1) =
68

180
ν(T, p2) =

67

180
, ν(T, p3) =

67

180

ν(T, p4) =
67

180
ν(T, p5) =

67

180
, ν(T, p6) =

74

180

and note ν(T, qi) > α for i = 1, 2, 3 and α > ν(T, pi) > β for i = 1, . . . , 6. So we have exactly

three points where T has Lelong number larger than α, and these are collinear. However

there are no conics that can contain more than seven of the nine points, i.e. |E+
β (T )\C| ≥ 2

for all conics C.

Example 4.4.5. Let {qi}4
i=1∪{pi}4

i=1 be points and {Li}6
i=1 be lines such that {q1, q2, p1, p2} ∈

L1, {q2, q3, p3, p4} ∈ L2, {q2, q4, p2} ∈ L3, {q4, p1, p3} ∈ L4, {q1, q4, p4} ∈ L5, and {q1, q3} ∈

L6. Let α = 9
20

, which means β = 11
30

. We will instead write them as α = 81
180

, β = 66
180

. We

now consider the current given by
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T =
42

180
[L1] +

40

180
[L2] +

27

180

4∑
i=3

[Li] +
28

180
[L5] +

16

180
[L6]

and note ‖T‖ = 1. Now calculating the Lelong numbers at each points we have:

ν(T, q1) =
86

180
ν(T, q2) =

82

180
, ν(T, q3) =

83

180

ν(T, q4) =
82

180
ν(T, p1) =

69

180
, ν(T, p2) =

69

180

ν(T, p3) =
67

180
ν(T, p4) =

67

180

and note that any conic containing the four qi points (i.e. any potential Γ1) does not satisfy

the conclusion of the theorem. Thus there are situations in which Γ2 exists and is unique

from any Γ1.

As we have seen, the main result is very finely tuned. But one must wonder - can we

generalize this out of P2? It is very limiting to be stuck in this specific space, but to prove
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it, we needed to rely on the fact that bidegree (1, 1) is the same as bidimension (1, 1) in P2,

which is not the case in higher dimensions. Furthermore, the work of Coman used to build

up to my result is also confined to just P2. While it may seem as though this does not bode

well for us, we push on regardless.
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Chapter 5

Properties of Bidimension (p, p)

Currents on Pn
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5.1 Introduction

Let T be a positive closed current of bidimension (p, p) on Pn which has mass ‖T‖ = 1, and

ωn is the Fubini-Study form on Pn. Our goal in this section is to gain more understanding of

the geometric properties of upper level sets by attempting to generalize some of the results

for bidimension (1, 1) currents laid out in [2] and [14] to analogous results for bidimension

(p, p) currents by utilizing the tools given to us by Coman and Truong in [5]. The results

contained in this chapter are from [15]. We start first by generalizing 3.3.5, which states

that given a bidimension (1, 1) positive closed current T , α > 1
2

, β = (2 − α)/3, and two

points q1, q2 ∈ Pn such that ν(T, qi) ≥ α, then E+
β (T ) can be contained in a line, with the

exception of at most one point. In doing so we find that β depends on both p and α to get

the following:

Theorem 5.1.1. [15, Theorem 1.1] Let T be a positive closed current of bidimension (p, p)

on Pn, 0 < p < n, ‖T‖ = 1, α > p
p+1

and β = p2+p−α
p(p+2)

. Let q1, q2 be points in Pn such that

ν(T, qi) ≥ α. Then either E+
β (T ) is contained in a p-dimensional linear subspace or there

exists a complex line L such that |E+
β (T )\L| = p.

The lower bound on α and the fact that we allow for p points to be omitted from the line,

while seemingly an arbitrary choice, comes from the conclusion of 3.3.7, which we will recap

shortly for the convenience of the reader. At the end of the third section, we will investigate

two examples to show that this β value is sharp for this property, and that the assumption

of needing two points q1, q2 where the current has “large” Lelong number is necessary. We

also will generalize [2, Theorem 3.12], in which Coman showed that for a bidimension (1, 1)

current T and α ≥ 1/2, if the set E1−α contained three collinear points on some line L, then
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E+
α (T ) is contained on L with the exception of at most one point.

We then turn our attention to generalizing [14, Proposition 3.6] (4.3.3), which was origi-

nally proved only for bidimension (1, 1) currents on P2, by proving the following:

Theorem 5.1.2. [15, Theorem 1.2] Let T be a positive closed current of bidimension (1, 1)

on Pn with ‖T‖ = 1. Let {qi}4
i=1 be four collinear points in Pn such that ν(T, qi) ≥ α > 2/5.

Let β = 2
3
(1− α). Then there exists two lines L1, L2 such that |E+

β (T )\(L1 ∪ L2)| ≤ 1.

We close by looking at a weak generalization of [14, Theorem 1.1] (4.1.1) from P2 to Pn,

and making some remarks on the difficulties of attempting to make a stronger result.

We now review the tools that will be commonly used in the upcoming proofs for the

convenience of the reader. To show Theorem 5.1.1, we will recall the following result from

the third chapter:

Theorem 5.1.3. [5, Theorem 1.2] If T is a positive closed current of bidimension (p, p)

on Pn, 0 < p < n, with ‖T‖ = 1, then the set E+
p/(p+1)(T,P

n) is either contained in a p-

dimensional linear subspace of Pn or else it is a finite set and |E+
p/(p+1)(T,P

n)\L| = p for

some line L.

We will also make specific use of the previous theorem when p = 1, which we are already

familiar with, see Theorem 3.3.1. We will also be working on generalizing the following result

to Pn:

Theorem 5.1.4. [14, Theorem 1.1] Let T be a positive closed current of bidimension (1, 1)

on P2 with ‖T‖ = 1, α > 2/5 and β = 2
3
(1 − α). Let {qi}4

i=1 be points in P2 such that

ν(T, qi) ≥ α. Then there exists a conic C (possibly reducible) such that |E+
β (T )\C| ≤ 1.
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The proof of the above theorem utilized 3.3.3, but for bidimension (1, 1) currents on Pn,

the only analogous theorem to assist us is the following:

Theorem 5.1.5. [5, Theorem 3.3] Let T be a positive closed current of bidimension (1, 1)

on Pn with ‖T‖ = 1. If |E+
2/5(T )| > 37 then there exists a curve C ⊂ Pn of degree at most 2

such that |E+
2/5(T )\C| ≤ 1.

5.2 Some Generalizations of Coman’s Results

To start with, let us recall some basic definitions. Consider A = {x1, . . . , xp+1}, xi ∈ Pn. By

the Span (A), we mean the smallest linear subspace V ⊂ Pn that contains A. If p ≤ n and

span(A) is a p-dimensional space, then we say {xi}p+1
i=1 are linearly independent. If we have

p > n + 1 points, then we say they are in general position if any n + 1 of them are linearly

independent. Assume ‖T‖ = 1 and we now prove Theorem 5.1.1.

Proof. Suppose {xi}pi=1 are points in E+
β (T )\{q1, q2}, and let A := {q1, q2, x1, . . . , xp−1} and

then V1 = span(A). Suppose that {q1, q2} ∪ {xi}p−1
i=1 are linearly independent and then

V1 := span(A) is a p dimensional linear subspace and xp ∈ E+
β (T )\V1, noting that if no

such points exists, then there is nothing to prove. Let L1 be the line spanned by q1, q2, and

since the points in A are linearly independent, L1 does not contain any other points of A or

xp. Note if E+
β (T )\(A ∪ {xp}) = ∅ then |E+

β (T )\L1| = p, and we are done. Suppose then

that xp+1 ∈ E+
β (T )\(A ∪ L1), xp 6= xp+1. Let V2 be a p-dimensional linear space containing

{xi}p+1
i=1 (observe V2 need not be the only such p-dimensional linear subspace containing these

points). Choose α′ such that p
p+1

< α′ < α and ν(T, xi) >
p2+p−α′
p(p+2)

, and define the current R

as follows:



R :=
(p+ 1)α′ − p

(p+ 1)α′
[V2] +

p

(p+ 1)α′
T.

Note that ‖R‖ = 1 as well as

ν(R, qi) ≥
p

(p+ 1)α′
ν(T, qi) >

p

p+ 1
i = 1, 2

and

ν(R, xi) >
(p+ 1)α′ − p

(p+ 1)α′
+

p

(p+ 1)α′
p2 + p− α′

p(p+ 2)

=
(p+ 2)(p+ 1)− 1

(p+ 2)(p+ 1)
− p

(p+ 2)(p+ 1)α′
>

p

p+ 1
, i = 1, . . . , p+ 1.

Thus by Coman 3.3.7, it must be the case that there is a line containing three points of

{q1, q2, x1, . . . , xp+1}, say L2. We now have to break our argument into two cases, depending

on if xp+1 is contained in V1 or not.

Case 1: Suppose that xp+1 /∈ V1. Note that L2 cannot contain 3 points of the set A as

those points are linearly independent. Thus it must be the case that L2 contains both xp, xp+1

as otherwise if L2 only contains one of them, the other two points would be from the set A,

which means either xp or xp+1 would be in the span of A, which is a contradiction. So L2

contains xp, xp+1 and some y ∈ A. Now note we can find a new point xp+2 ∈ E+
β (T )\(A∪L2),

as otherwise |E+
β (T )\L2| = p and we would be done. Let B := {xi}p+2

i=1 , and let Ui be

a p-dimensional linear space containing B\{xi}. Choose α′ such that p
p+1

< α′ < α and

ν(T, xi) >
p2+p−α′
p(p+2)

for i = 1, . . . , p+ 2. We now consider a new current S given by:
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S :=
(p+ 1)α′ − p

(p+ 1)(p+ 2)α′

p+2∑
i=1

[Ui] +
p

(p+ 1)α′
T

note that ‖S‖ = 1 as well as

ν(S, qi) >
p

p+ 1
i = 1, 2

and

ν(S, xi) >
(p+ 1)α′ − p

(p+ 1)(p+ 2)α′
(p+ 1) +

p

(p+ 1)α′
p2 + p− α′

p(p+ 2)

=
(p+ 1)2α′ − (p+ 1)p+ p2 + p− α′

(p+ 1)(p+ 2)α′
=

p

p+ 1
, i = 1, . . . , p+ 2.

Thus by 3.3.7, there exists a complex line L3 that will contain four points ofA∪{xp, xp+1, xp+2}.

As the points in A are in general position, L3 can only contain at most two points of A. If

L3 contains two points of A, then L3 will also contain at least one of xp or xp+1 which means

that at least one of xp, xp+1 lies in V1, which is impossible. So L3 can only contain one point

of A which means L3 contains xp, xp+1, xp+2. But now that means L3 = L2, and this is a

contradiction as xp+2 /∈ L2. So no such point xp+2 can exist, and L2 is the line that satisfies

the conclusion of the theorem.

Case 2: Suppose that xp+1 ∈ V1. As L2 must contain three points of A ∪ {xp, xp+1},

it must be the case that L2 contains xp+1, xj, xk (note that xj, xk may actually be the qi,

but that is irrelevant) as the points in A are in general position and xp /∈ span(A). After

reindexing, say that L2 contains x1, x2, xp+1. Arguing as we did in the first case, we can find

a new point xp+2 ∈ E+
β (T )\L2 and a line L3 containing four points of A ∪ {xp, xp+1, xp+2}.
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Note L3 ⊂ V1. As the points of A are in general position, and since xp+2 /∈ L2, it must be

the case that L3 contains xp+1, xp+2 and (after reindexing) x3, x4. But now observe that L2

is the line that spans x1, xp+1, L3 is the line that spans x3, xp+1, and L2∩L3 6= ∅, so we have

a 2-dimensional linear space containing x1, x2, x3 and x4, which is a contradiction as they

are linearly independent. Thus we cannot have such a point xp+2, and L2 is the desired line

that satisfies the conclusion of our theorem.

Remark: When p = 1, we have that α > 1/2 and that β = (2− α)/3, which is exactly the

version proved by Coman, 3.3.5.

Consider now a positive closed bidimension (p, p) current T on Pn. We now show that

if T has a “small” Lelong number at a sufficient number of points in a p-dimensional linear

subspace V , then either E+
α (T ) ⊂ V or that the line L satisfying the conclusion of Theorem

5.1.1 is contained in V .

Theorem 5.2.1. [15, Theorem 3.1] Let T be a positive closed current of bidimension (p, p)

on Pn with ‖T‖ = 1, α ≥ p
p+1

and suppose there are points x1, . . . , xp+2 ∈ E1−α
p

such that

{xi}p+2
i=1 span a p-dimensional linear subspace V . Then either E+

α (T ) is contained in V or

there exists a complex line L ⊂ V such that |E+
α (T )\L| = p.

Proof. Let {xi} and V be as stated above, and suppose there exists a point q1 ∈ E+
α (T )\V ,

noting if no such point exists, we are already done. Choose α′ > α such that ν(T, q1) > α′,

and thus ν(T, xi) ≥ 1− α
p
> 1− α′

p
. We consider now the current R given by

R =
(p+ 1)α′ − p

(p+ 1)α′
[V ] +

p

(p+ 1)α′
T
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and observe that ‖R‖ = 1, ν(R, q1) > p
p+1

and

ν(R, xi) >
(p+ 1)α′ − p

(p+ 1)α′
+

p− α′

(p+ 1)α′
=

p

p+ 1
.

Thus by 3.3.7, either {q1, x1, . . . , xp+2} are in a p-dimensional linear subspace or there is a

line L such that |E+
p
p+1

(R)\L| = p. Since {xi}p+2
i=1 uniquely define V , and q1 /∈ V , it must be

the case that there is a line L containing exactly 3 of the p + 3 points. As L must contain

two points in V , it must be the case that L ⊂ V and thus q1 /∈ L, and say after reindexing

that L contains the points x1, x2, and x3.

We now show via contradiction that L is the line satisfying the conclusion of the theorem.

Suppose there is q2 ∈ E+
α (T )\L, q2 6= q1, xi. Choose α′ > α such that ν(T, q1) > α′ and

ν(T, q2) > α′. Using the current R as above we get ν(R, qi) >
p
p+1

and ν(R, xi) >
p
p+1

. Again

we apply 3.3.7 and since we cannot contain the p+ 4 points in V , we get that there is a line

L1 that must contain 4 of the p + 4 points. As two of those points must be in V , L1 ⊂ V

and thus L1 must contain at least three of the xi points. As the xi span V , the only three

collinear points in V are x1, x2, x3, thus it is the case that L1 = L, but then either q2 ∈ L

which cannot happen, or L contains 4 of the xi points, which contradicts the fact that they

span V . Thus no such q2 can exist, and L is the line that satisfies the conclusion.

Remark: When p = 1, the previous theorem is exactly Theorem 3.12 from [2].

We close this section by looking at some examples that will demonstrate the necessity of

the assumptions of Theorem 5.1.1.
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Example: We will first show that we need two points with Lelong number larger than

p
p+1

. To see this, let A := {q, x1, x2, . . . xp+1} be linearly independent points in Pn, and let

Vj := span(A\{xj}). Further, let Lj := ∩p+1
i=1,i 6=jVi, so Lj is the line spanning q and xj.

Consider the following current:

T =
1

p+ 1

p+1∑
i=1

[Vi]

and note ν(T, q) = 1, and that q is the only point where T has Lelong number strictly larger

than p
p+1

. Also note along any line Lj, T has Lelong number p
p+1

and given any Vi, there is

some line Lk not contained in Vi. Since β < p
p+1

, E+
β (T ) is not contained in a p-dimensional

linear subspace, and no matter what line L we consider, |E+
β (T )\L| =∞.

Example: We will now show that the value β is sharp for this property. Let p = 1,

thus β = 2−α
3

. Let Li, i = 1, 2, 3, 4 be complex lines and q1, q2, p1, p2 be points such that

L1 ∩ L3 ∩ L4 = {q1}, L1 ∩ L2 = {q2}, L2 ∩ L3 = {p1}, and L2 ∩ L4 = {p2}. We consider the

following current

T =
7

15
[L1] +

6

15
[L2] +

1

15

4∑
i=3

[Li]

and note ‖T‖ = 1. Now calculating the Lelong numbers at each of the four previously

mentioned points we have:

ν(T, q1) =
9

15
, ν(T, q2) =

13

15
, ν(T, p1) =

7

15
, ν(T, p2) =

7

15
.

Let α = 9
15

= 3
5
, noting that ν(T, qi) ≥ α. Further, β = 7

15
, and we observe that Eβ(T ) =
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L1 ∪ {p1, p2}, and thus |Eβ(T )\L1| = 2 and |Eβ(T )\L| =∞ for any line L 6= L1. Finally we

observe that E+
β (T ) = {q1, q2}, and |E+

β (T )\L1| = 0, showing that the parameter β is the

best it can be.

We now look at one last interesting example. In the statement of 3.3.7, Coman mentions

that if E+
α (T ) is not contained in a p-dimensional linear subspace, then the upper level set

must be finite. This however is no longer true in Theorem 5.1.1 for E+
β (T ), as we see below.

Example: Suppose that Ai, i = 1, . . . , p+2 are p-dimensional linear subspaces of Pn, n > p,

such that L =
⋂p
i=1Ai. Let V be the (p− 1)-dimensional linear space given by Ap+1 ∩Ap+2.

Let {qi} = L∩Ap+i, i = 1, 2, and {xi} = (
⋂p
j 6=i,j=1Aj)∩ V , i = 1, . . . , p. Finally we suppose

the Ai are arranged so that {q1, q2, x1, . . . , xp} cannot be contained in a p-dimensional linear

subspace. Consider now the following current:

T =
1

p+ 1

p∑
i=1

[Ai] +
1

2(p+ 1)
([Ap+1] + [Ap+2]).

It is clear that ‖T‖ = 1, and that ν(T, qi) > p
p+1

. We note then for any α such that

ν(T, qi) ≥ α > p
p+1

, we have β < p
p+1

. We now observe that ν(T, xi) = p
p+1

, and give any

point y ∈ L, ν(T, y) = p
p+1

. Thus we have that E+
β (T ) is not contained in a p-dimensional

linear subspace, |E+
β (T )\L| = p, however E+

β (T ) is not finite.

5.3 Generalizations of Results from P2 to Pn

Our goal in this section is to attempt to generalize 4.1.1 from P2 to Pn. In the original proof,

we relied heavily on 3.3.3, which is only valid in P2. Later attempts to generalize 3.3.3 have
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yielded good results for all bidimensions except bidimension (1, 1), which is sadly the case

we would need (see [5] for more details). If we have the situation in which our current has a

“large” Lelong number at four points that are all on a line, then we can avoid the necessity

of using 3.3.3, and can generalize it to Pn with ease. We now prove Theorem 5.1.2.

Proof. Let L1 be the line containing q1, q2, q3, and q4. By Siu’s decomposition theorem 3.1.21

we have that

T = a[L1] +R,

where a is the generic Lelong number of T along L1. Note that ‖R‖ = 1− a and ν(R, qi) ≥

α−a. By [17] there is a bidegree (1, 1) current S such that ‖S‖ = ‖R‖ and ν(S, x) = ν(R, x)

at all x. Proposition 2.5 shows that there exists a current S ′ such that ‖S ′‖ = 1 − a, S ′ is

smooth where S has Lelong number 0, and ν(S ′, qi) > α− a− ε. By 2.3.4, S ′ ∧ [L1] is a well

defined measure. Now we have

1− a =

∫
Pn
S ′ ∧ [L1] ≥

4∑
i=1

ν(S ′ ∧ [L1], qi)

≥
4∑
i=1

ν(S ′, qi)ν([L1], qi) > 4α− 4a− 4ε,

where the second inequality follows from 3.1.13 and the final inequality follows as ν([L1], qi) =

1. So we have that a ≥ 4α−1
3

as ε↘ 0.

Define a new current:
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R′ =
R

1− a

and note R′ is a bidimension (1, 1) current with ‖R′‖ = 1. Now we have for x ∈ E+
β (T )\L1:

ν(R′, x) >
2

3

1− α
1− a

≥ 2− 2α

4− 4α
=

1

2
.

Theorem 3.3.1 shows that there is a point y and a line L2 such that E+
β (T )\L1 ⊂ L2∪{y},

and the theorem is proven.

Remark: For n ≥ 3, the two lines need not intersect.

Using Theorem 5.1.2 combined with Theorem 5.1.5, we can get the following partial

result:

Theorem 5.3.1. [15, Theorem 4.1] Let T be a positive closed current of bidimension (1, 1)

on Pn with ‖T‖ = 1, α > 2/5 and β = 2
3
(1− α). Assume we have one of the following:

i) α < 1/2 and E+
α (T ) contains 4 collinear points, or

ii) α < 1/2, |E+
α (T )| > 37, or

iii) α ≥ 1/2 and |E+
α (T )| > 4

Then there is a curve C in Pn of degree at most 2 such that |E+
β (T )\C| ≤ 1.

Proof. (i) This follows immediately from Theorem 5.1.2.

(ii) By Theorem 5.1.5, we know that there is a curve C1 such that |E+
α (T )\C1| ≤ 1. If

C1 omits a point of E+
β (T ), call it p1, then we can find a point p2 ∈ E+

β (T )\C1, otherwise
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we are done. If C1 omits no points of E+
α (T ), then again we can find p1, p2 ∈ E+

β (T )\C1,

otherwise we are done. In either case, note that C1 must contain at least 38 points of E+
β (T ).

We consider the cases of if C1 is an irreducible degree 2 curve, or not.

Case 1: First suppose C1 is an irreducible degree 2 curve. Let α′ be such that α > α′ >

2/5, and ν(T, pi) >
2
3
(1−α′) > β, and let L12 be the line spanned by p1, p2. Define a current

R as follows:

R =
5α′ − 2

5α′
[L12] +

2

5α′
T

and note ‖R‖ = 1. We have the following inequalities:

ν(R, q) >
2

5α′
α >

2

5
, q ∈ E+

α (T )

and

ν(R, pi) >
5α′ − 2

5α′
+

4− 4α′

15α′
>

2

5
, i = 1, 2.

So by the Theorem 5.1.5, we can find a conic C2 such that |E+
α (R)\C2| ≤ 1. Since C1 is

irreducible, it is a plane conic by [10, Proposition 0]. If C2 is irreducible as well, then since

|C1 ∩ C2| > 4, Bezout’s theorem show that C1 = C2, which is impossible as this means one

of the pi are now on C1. If C2 is reducible, then it decomposes into two lines, and can only

intersect C1 at most four times, which is a contradiction.

Case 2: If C1 is a reducible conic then C1 = L1 ∪L2, for some pair of complex lines. But

note then that for one of the lines, say w.l.o.g. L1, |L1 ∩ E+
α (T )| > 4, and we have at least
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four collinear points in E+
α (T ), so we are back to situation (i).

(iii) By 3.3.1 there is a line L such that |E+
1/2(T )\L| ≤ 1, so L contains at least four

points of E+
α (T ), and we are done by Theorem 5.1.2.

Closing Remarks: The span of two non-concurrent lines has dimension 3, which is the

reason that the bidimension (1, 1) case did not generalize into Pn (see [5] Theorem 1.3,

Proposition 3.2, and the remarks following Proposition 3.2 for more details). This still

leaves the following open question: Suppose now that T is a positive closed bidimension

(1, 1) current on Pn. If we allow for a pair of non-concurrent lines, does there exist a degree

2 curve C such that |E+
2/5(T )\C| ≤ 1? Perhaps one day we will know, but that day is not

today.
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