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Abstract

In applied linear algebra, the term frame is used to refer to a redundant or linearly
dependent coordinate system. The concept was introduced in the study of Fourier se-
ries and is pertinent in signal processing, where the reconstruction property for finite
frames allows for redundant transmission of data to guard against losses due to noise.
We give a brief introduction to the theory of finite frames in Section 1, including the
major results that allow for the easy construction and description of frames. The sub-
sequent sections relate to the theoretical importance of frames. As a natural extension
of the definition of basis, we are lead naturally to ask the same topological questions
for the space of frames as we do for the space of bases, GLn(R). Two particular ques-
tions are explored in Sections 2 and 3. The reconstruction property for finite frames
leads to a natural generalization in the realm of measure theory. This is the scope of
Section 4, culminating in the approximation theorem for “frame measures”.

2



Executive Summary

The focus of this thesis, Hilbert space frames, is a bridge between pure and applied mathe-

matics, general theory and problem solving, and the formal development of a topic versus

intuitive geometric motivation. The core concept, that of a finite frame, is quite simple—

yet surprising and deep results emerge from their study. Frames motivate important, and

difficult, questions in the range of mathematical disciplines: analysis, topology, linear

algebra, differential geometry, and abstract algebra. At the same time, for the undergrad-

uate they offer an optimal segway into complicated topics such as operator analysis and

measure theory.

Finite frames are motivated by, and have an important role in, robust data transmis-

sion and image processing, and it is immediate in their theoretical treatment how such

applications emerge. As a concrete example, imagine transmitting a signal encoded as

an ordered set of numbers. A noisy transmission might lead to several of these numbers

being altered or even deleted. But just as we can understand a spoken sentence with-

out necessarily hearing every word via context clues, if the transmission is in some sense

“evenly spread out” over the length of the message, the signal may be read accurately

enough even with the loss of some numbers. This is the crucial idea that makes frames so

useful in practice. It has also inspired abstract theoretical developments of significance.

Let’s make this discussion a little more concrete. A signal might be position data in

three-dimensional space sent from a satellite in orbit. In this case, a transmission T will

consist of three coordinates, say x, y, z.
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Figure 1: A point in three dimensions, with coordinate representation

(x, y, z )

These coordinates express the distance of the satellite from some fixed reference point,

along the x, y and z directions, or axes.

It is easy to imagine how hopeless the situation would be if our satellite were only able to

transmit x and y data after some malfunction. One very simple way to avoid the threat

of such a problem is with redundancy: although we cannot express position in space com-

pletely without 3 axes, but we are not limited to only 3 axes. We can simply decide to

measure along more directions and describe the satellite’s position with extra compo-

nents. Lost data from one axis no longer matters (or doesn’t matter as much), since that

data can be replaced by a reading from another axis. We can make as many axes as we

want until we are either confident enough against loss of data, or run out of memory to

store the coordinates. Labeling these axes by ei’s , we get a situation like Figure 2.

Now this is all fine for making sure no data is lost, but the method doesn’t help when

it comes to manipulating it. In the case of the satellite, it isn’t difficult to identify a bad

transmission in some component, and to take compensating steps later on to ignore the

faulty data. But when dealing with transmissions of, say, thousand-dimensional data, au-

tomation is crucial. Algorithms will transform the data, whether or not the transmission

accurately reflects the truth.
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Figure 2: Adding axes to prevent data loss

(x, y, z )
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(x, y, z )
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This is where the theory of frames begins: at the crux of this application. It is already

natural to ask the motivating question of the theory. Is it possible to add axes to our data

transmission in a way that faulty data along one or several axes will not affect results

significantly? The way this is quantified relies on fundamental concepts in linear algebra

and operator theory, but can be summarized with our example of three dimensional data.

Let’s call any choice of 3 axes capable of measuring any position in space a basis. A gen-

eral position, like (x, y, z) from before, will have components with respect to each of the

axes in a basis.

To be clear, there is a mathematical difference between an object’s position, and the co-

ordinates that we measure this position with. The position exists irrespective of how we

choose what axes to use. We sometimes denote this pure position by a boldface symbol,

like v. In order to work with this position concretely though, it is necessary to measure its

coordinates. It might already be apparent that how we choose our axes will affect what

coordinate representation we give a position. The position data of our satellite will cer-

tainly look different if we measure from Cape Canaveral versus Houston. In the broadest

sense, this is what the branch of linear algebra is concerned with. It turns out that relating

how a set of coordinates changes when changing axes is not hard.

However, as mathematicians, we would like to use the abstract boldface description of

position as much as possible - it clarifies proofs and allows for greater generality. We can
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develop an algebra of scaling axes by their components, and adding these axes together.

In this language, our coordinate representation of position, (x, y, z) will look like

xe1 + ye2 + ze3.

It doesn’t look like such a big deal here, because we used the component data that we

assumed we had. In order for the abstract boldface notation to really be useful in a unique

way, we need to be able to express the components x, y, z in terms of the abstract position

v instead of assuming we can measure along the axes. There is no simple mathematical

formula giving the components for a general basis. For a special subset of bases though,

called orthonormal bases, a classic result of linear algebra gives an explicit formula for

these components in terms of the abstract position. We will often refer to this as the

reconstruction formula with respect to an orthonormal basis, since it allows one to compute

the components needed to find a position with a specific set of axes. For clarity, let’s

denote the reconstruction formula with respect to the axes e1, e2, e3 by R(e1, e2, e3). The

reconstruction formula is the key to making redundant sets of axes less sensitive to faulty

data. In particular, for a set of k axes v1, v2, . . . , vk, and an orthonormal basis e1, e2, e3, we

can replace every ei in the reconstruction formula R(e1, e2, e3) with the corresponding vi,

and study how close this new formula is to reconstructing any given signal. In symbolic

terms, we might represent this replacement by

R(e1, e2, e3) R(v1, v2, . . . , vk).

It turns out, remarkably, that some redundant, non orthonormal choices of axes have a

perfect reconstruction formula - the components calculated by pretending that v1, v2, . . . vk

forms an orthonormal basis are exactly the components with respect to v1, v2, . . . vk! Such

a set is the eponymous frame of finite frame theory. We can in fact find frames with any
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number of axes we want. For the satellite, this means we can take position readings with

any number of components, and reconstruct the position perfectly. The guard against

faulty data is now possible: the more axes we have, the less contribution each one has

in the reconstruction formula. We can effectively safeguard against a bad transmission in

some components by increasing the total number of axes to take components with respect

to. The result of reconstruction with bad components is now practically the same signal

that was sent originally, and manipulating the components will give nearly the same re-

sults as manipulating components of a basis.

The mathematical framework of this theory is developed in Section 1. It turns out that

non-perfect reconstruction comes in varying degrees, and a given choice of axes can be

classified by how badly it violates the reconstruction formula. These axes are just as

important in theory as the frames with perfect reconstruction, since both have similar

geometric characterizations. Thus, we include the non-perfectly-reconstructing choice of

axes in the definition of frame.

The theory of finite frames motivates difficult questions in pure mathematics. Two of

these questions, topological in nature, are the focus of Sections 2 and 3. Moreso, just

as frames generalize bases, the definition of frame can be extended to include infinitely

many axes. This is the focus of Section 4. The generalization requires a proper recon-

struction formula with respect to infinitely many axes. The result of this generalization is

surprising - the finite frames can approximate infinite frames as well as desired.
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Advice to Future Honors Students

So you’re writing a thesis in mathematics? There is only one piece of advice. Start early,
and start typing.

While the scientist has a lab or raw data to structure their investigation, the mathe-
matician, without these, can feel particularly lost in a vast and abstract place. At times,
an argument might seem obvious until it comes to putting it to paper. This is the biggest
danger, especially when writing for a deadline. Scribbled notes can contain holes that
you assumed were filled, and a theory might seem a collection of disparate facts until
the student finally gathers the courage to type. When typing, strive for terseness without
sacrificing thorough explanation. The best mathematical writings have a refined beauty
to them. They have the ability to speak simply, and paint a picture of a theory as a co-
herent whole. To write mathematics is an art and a balancing act, between maintaining a
sufficient level of rigor, while retaining a global scope and easing the reader into a subject.

To do mathematics is another thing, arguably a thing that the undergraduate should
limit in their prospects. To begin a thesis expecting to discover a great theorem is simply
counterproductive, not to mention unreasonable. In the author’s opinion, the most under
appreciated aspect of mathematical discovery for undergraduates is the simple reinter-
pretation of existing results. It is a subtle business to reinterpret (or shall I say, re-frame),
and not very glorified in the curriculum. You might hear these results referred to as “grunt
work”, or “machinery”. They live in propositions, and might confuse the reader in their
apparent obviousness. But they are crucial. If the mathematician has two tools, they are
the formal proof, and the reframing of results. The former is what distinguishes mathe-
matics from the other disciplines. The latter, however, is just as important, and might be
called intuition. Instead of classifying finite Abelian groups, we classify finitely generated
Modules over PIDs and get the result for groups as a consequence. In real analysis, we
view the derivative on the real line as an approximating linear function and open up the
world of multivariable calculus.

So how do you proceed writing an undergraduate thesis in mathematics? Your pro-
fessor will likely give you a broad topic of investigation early on. Find a text to make
your primary reference, and do as many exercises from it as possible. Then type them up.
Then, perhaps six months later, type up “preliminary results” by recounting the theory
from this text as best as possible, proofs included, from memory. This will become the first
part of your thesis. All the while, you should be asking your advisor many questions
about your topic. Most will be silly, but one may become another chapter of your thesis.

Inevitably, you will hit a dry spell. You will be lost trying to prove something in a topic
you barely know anything about. After all, you are just an undergraduate. You won’t
realize it, but very likely your advisor won’t know exactly where to go either, although
probably for different reasons. The best and sometimes most difficult way to remove
yourself from this period is simply to keep on reading, and keep on typing. Maybe read
from a new book, skipping the proofs so you can “jump start” your understanding of a
subject. You’ll find out that some mathematicians spend their whole lives in this state of
mind. Get used to dealing with your own particular response to this stage.
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In the end you’ll have more to show than you expected. At the same time, your re-
sults will seem completely trivial and embarrassingly obvious. From my interaction with
mathematicians, I’ve gathered that this also happens to everyone.
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1 Introduction

Finite frame theory focuses on finite collections of vectors in a Hilbert spaceH known

as frames. There are several equivalent formulations of the definition of frame, and the

connection between these is not immediately apparent. In this section, the basics of finite

frames will be explored, along with some surprising results. These characterizations will

be the foundation for subsequent sections, which both generalize much of the theory of

finite frames, and answer some natural topological questions one might ask about frames.

The topic has a flavor of application in many ways that motivate the theory. The results

here are presented for H = Rn. Unless otherwise noted, they hold in the more general

case of n dimensional Hilbert space.

Definition 1. A finite frame is a set of vectors {ui} ⊂ Rn with constants 0 < A ≤ B < ∞

known as frame bounds, such that for all x ∈ Rn,

A‖x‖2 ≤∑
i
〈x, ui〉2 ≤ B‖x‖2. (1)

If A = B, the frame is called tight. A Parseval frame is a tight frames satisfying A = B = 1.

A frame is restricted case of a Bessel sequence, which is a set {ui} that only satisfies the
upper bound in (1),

∑
i
〈x, ui〉2 ≤ B‖x‖2.

It is easy to see that {ui} finite implies the set is a Bessel sequence. The lower bound A
furnishes the more interesting properties of frames.

Theorem 2. {ui}k
i=1 ⊂ Rn is a frame if and only if its vectors span Rn.

Proof. ( =⇒ ) By contrapositive (non-spanning implies not a frame). Suppose {ui} does
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not span Rn, so there exists unit vector x ∈ span (ui)
⊥. It follows that

k

∑
i=1
〈x, ui〉2 = 0.

so that the frame condition fails.

(⇐=) Again by contrapositive (not a frame implies non-spanning). Suppose that {ui} is

not a frame. The upper bound is satisfied since k < ∞, so there must exist a sequence of

unit vectors xj ∈ Rn with
k

∑
i=1
〈xj, ui〉2 ≤

1
j
.

Since {xj} a subset of the unit sphere which is compact, and Rn is a Hilbert space (which

is complete), there exists a convergent subsequence {xjk} → x̄ ∈ Rn. It must be that x̄ a

unit vector with
k

∑
i=1
〈x̄, ui〉2 = 0,

which violates the lower bound condition. Thus {ui} is not a frame.

Frames have significant application in signal processing. Their most important feature

is shared with orthonormal bases, primarily the ability to reconstruct any vector using a

prescribed linear combination of frame vectors. Their advantage over bases lies in their

flexible size. While the number of vectors in any basis is fixed, the spanning property

asserts the existence of frames with arbitrary size. The applied aspects of frames will

not be explored further in this thesis, although the allusion to decomposing a signal vec-

tor into coefficients, and reconstructing it as a combination of frame vectors motivates

several key theoretical results. In particular, the following discussion will introduce the

analysis operator, which decomposes a vector into coefficients, and the synthesis opera-

tor, that attaches coefficients back to frame vectors. These operators are crucial in several
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unintuitive theorems that follow in the next section.

Definition 3. For any finite sequence {ui}k
i=1, the analysis operator Θ is defined by

Θ : Rn → l2(k)

y 7→ 〈y, un〉.

The adjoint of Θ∗ : `2(k)→ Rn is called the synthesis operator. Θ∗ is unique, and must

satisfy

〈Θx, y〉 = 〈x, Θ∗y〉.

This holds for the operator

Θ∗ : `2(k) → Rn

{an} 7→
k

∑
n=1

anun,

since for y = {yi}k
i=1, x = (x1, x2, . . . , xn)T,

〈Θx, y〉 = 〈x, u1〉y1 + · · ·+ 〈x, uk〉yk

and

〈x, Θ∗y〉 = 〈x,
k

∑
n=1

ynun〉

=
k

∑
n=1

yn〈x, un〉.

The tight frames satisfy a reconstruction property similar to the expression of a vector

13



with respect to an orthonormal basis, and motivates the definition of the frame operator.

Definition 4. The frame operator S : Rn → Rn for frame {ui}k
i=1 is given by

S(x) = Θ∗Θ(x) =
k

∑
i=1
〈x, ui〉ui.

By Theorem 2, It follows that {ui} a frame if and only if S is an invertible operator.

Theorem 5. (Reconstruction Property for Tight Frames) A k-vector frame {ui}k
i=1 ⊂ Rn is tight

with frame constant A > 0 if and only if

k

∑
i=1
〈x, ui〉ui = Ax. (2)

for all x ∈ Rn, I.e., S = A · Id. If the vectors {ui} are all unit vectors, A = k
n , and in general

A = 1
n ∑k

i=1 ‖ui‖2.

Proof. Suppose {ui}k
i=1 tight, so that for all x,

k

∑
i=1
〈x, ui〉2 = A‖x‖2.

Note that ∑k
i=1〈x, ui〉2 =

〈
∑k

i=1〈x, ui〉ui, x
〉
= 〈Sx, x〉, and the lower frame bound implies

that S is positive definite. The tight frame condition,

〈Sx, x〉 = A〈x, x〉 = 〈Ax, x〉

is equivalent to

A · Id � S � A · Id

14



so it must be that S = A · Id.

The value of A follows from the reconstruction of ui by the orthonormal basis {ei},

k

∑
i=1
‖ui‖2 =

k

∑
i=1

n

∑
j=1

∣∣〈ej, ui〉
∣∣2 =

n

∑
j=1

k

∑
i=1

∣∣〈ej, ui〉
∣∣2 =

n

∑
j=1

A = nA.

For any frame {ui}k
i=1, and invertible operator T, it follows by Theorem 2 that the set

{Tui} is also a frame. In this case we will say {ui} and {vi} = {Tui} are similar frames. In

an analogous manner, for frame operator S, the frame {S−1ui} satisfies the property,

k

∑
i=1
〈x, ui〉S−1ui = S−1

(
k

∑
i=1
〈x, ui〉ui

)
= S−1 ◦ S(x) = x.

Since S = Θ∗Θ is obviously self-adjoint, The following property also follows:

k

∑
i=1
〈x, S−1ui〉ui =

k

∑
i=1
〈S−1x, ui〉ui = S

(
S−1x

)
= x.

This motivates the term dual frame for any frame {vi} with analysis operator Θ{vi}, such

that

Θ∗{ui}Θ{vi} = Θ∗{vi}Θ{ui} = Id.

It is apparent that {S−1ui} is a dual frame. However, in general there exist other dual

frames.

As seen above, tight frames share a useful property of orthonormal bases, and this

property can be generalized to non-tight frames via the canonical dual frame. In fact the

connection between frames and bases runs deeper. First, the orthogonal projection of a

frame with bounds A, B is a frame for the range space. Next, any frame is the projection

of a basis in a higher dimension.
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Theorem 6. (Projection Property for Finite Frames) Let {ui}k
i=1 be a frame for Rn with bounds

A, B and P : Rn → Rm be an orthogonal projection with rank(P) = m < n. Then {Pui}k
i=1 is a

frame for Rm also with bounds A, B.

Proof. Let H = Range(P). Since P is self-adjoint, and P
∣∣

H = IdH, we have for x ∈ H

k

∑
i=1
〈x, Pui〉2 =

k

∑
i=1
〈Px, ui〉2 =

k

∑
i=1
〈x, ui〉2.

giving the result.

Theorem 7. (Dilation Property for Finite Frames) Let {ui}k
i=1 be a frame for V , dimV = n,

with bounds A, B. There exists a basis {wi}k
i=1 for H ⊃ V, dimH = k for which ui = ProjV(wi)

for 1 ≤ i ≤ k. In particular, if {ui} is a tight frame, then {wi} is an orthonormal basis for H.

Proof. Consider the analysis operator Θ : Rn → `2(k) ∼= Rk for {ui}k
i=1, and let Q be the

orthogonal projection onto Θ(V), and Q⊥ be the projection onto Θ(V)⊥. Construct the

Hilbert space H = V⊕Θ(V)⊥, identifying V with V⊕{0}. For standard basis {ei} ⊂ Rk,

define vi = ui⊕Q⊥ei. It is clear that Pvi = ui for P the orthogonal projection onto H. The

claim is that {vi}k
i=1 is in fact a basis. The following fact will be used to prove this.

Fact 1: Two frames {xi}k, {yi}k for spaces H, K are similar if and only if their analysis

operators have the same range. If two Parseval frames are similar, then T must be a unitary

operator.

For the case where {ui}k a frame, we show that there exists an invertible operator T

that takes {ei}k to {vi}k, so that {vi} must be a basis. This makes use of Fact 1, by first
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showing that Θ and Θ{Qei} have the same range. Since span{Qei} = Θ(H), Θ{Qei} :

Θ(H)→ Rk, and for y ∈ Θ(H),

Θ{Qei}(y) =
k

∑
i=1
〈y, Qei〉ei

=
k

∑
i=1
〈Qy, ei〉ei =

k

∑
i=1
〈y, ei〉ei = y.

It follows that Θ and Θ{Qei} have the same range, and so there exists T invertible such

that Tui = Qei for 1 ≤ i ≤ k. This gives

vi = ui ⊕Q⊥ei = T−1Qei ⊕Q⊥ei = U(Qei ⊕Q⊥ei),

where U = T−1 ⊕ IdQ⊥ is invertible. This gives the result.

The case where {ui}k a tight frame follows by choosing T unitary using Fact 1. U will

then be unitary.

Figure 3: The Dilation Property for a 3-vector frame in R2

ProjHf1

ProjHf2

ProjHf3

Example 8. For R2, the set of nth roots of unity in C give a tight frame for every n > 2.
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This is seen by writing the frame operator from analysis and synthesis operator in polar

coordinates. For a concrete example, take k = 3. Then

Θ =


← u1 →
← u2 →
← u3 →

 =


cos(2π·0

3 ) sin(2π·0
3 )

cos(2π
3 ) sin(2π

3 )

cos(2π(2)
3 ) sin(2π(2)

3 )

 =


ei 2π·0

3

ei 2π
3

ei 4π
3



Θ∗ =


↑ ↑ ↑
u1 u2 u3

↓ ↓ ↓

 =

 cos(2π·0
3 ) cos(2π

3 ) cos(2π(2)
3 )

sin(2π·0
3 ) sin(2π

3 ) sin(2π(2)
3 )

 =

[
ei 2π·0

3 ei 2π
3 ei 4π

3

]
.

Making use of the double angle formulas sin(2θ) = 2 sin θ cos θ and cos(2θ) = 1− 2 sin2 θ,

along with the real and imaginary parts of the identity ∑N−1
k=0 ei2πk/N = 0,

Θ∗Θ1,1 =
2

∑
k=0

cos2(
2πk

3
) =

2

∑
k=0

(
cos(

4πk
3

) +
1
2

)
=

3
2

Θ∗Θ1,2 = Θ∗Θ2,1 =
2

∑
k=0

cos(
2πk

3
) sin(

2πk
3

)

=
1
2

2

∑
k=0

sin(
4πk

3
) = 0

Θ∗Θ2,2 =
2

∑
k=0

sin2(
2πk

3
) =

1
2

2

∑
k=0

(
− cos(

2πk
3

) + 1
)
=

3
2

.

It follows that

S = Θ∗Θ =
3
2
· Id

so the frame is tight. By an identical method, the frame operator for K-th roots of unity is

K
2 · Id. It is clear that the k-th roots of eiθ and reiθ are also frames for R2, since they are the

images of k-th roots of unity under invertible linear transformations (see Theorem 2).
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Example 9. (Diagram Vectors) There are more tight frames in R2 than the roots of unity.

For K frame vectors

f k =

 ak cos θk

ak sin θk


we can write a formula for S = Θ∗Θ in a similar fashion to Example 8. Since S is a

symmetric matrix,

Θ∗Θ2,2 =
K

∑
k=0

a2
k sin2 θk =

K

∑
k=0

a2
k cos2 θk = Θ∗Θ1,1.

I.e.,
K

∑
k=0

a2
k

(
cos2 θk − sin2 θk

)
=

K

∑
k=0

a2
k cos(2θk) = 0.

If { f k} is a tight frame, off-diagonal entries of S must vanish, so

Θ∗Θ1,2 =
K

∑
k=0

a2
k cos θk sin θk =

K

∑
k=0

a2
k sin(2θk) = 0.

Defining the diagram vectors for { f k} by

f̃ k =

 a2
k cos(2θk)

a2
k sin(2θk)


gives the condition ∑K

k=0 f̃ k = 0, a geometrically appealing property. See [3] for a defini-

tion of diagram vectors in three dimensions.
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Figure 4: The diagram vector sum-zero property

f̃1

f̃2

f̃3

f̃4

f̃5 f̃1

f̃1 + f̃2

f̃1 + f̃2 + f̃3

f̃1 + . . .+ f̃4

f̃1 + . . .+ f̃5

2 Moving Frames

Manifolds arise in various branches of mathematics as spaces that are “locally Eu-

clidean”. Formally, a manifold M is a topological space in which for every point x ∈ M

there exists a neighborhood N(x) ⊂ M and a homeomorphism φx : N(x) → Rn. It must

be that n is the same for each φx, so that we may unambiguously refer to an n-manifold.

The tangent space of a point x ∈ M, denoted TMx is an n-dimensional vector space ab-

stractly defined as an equivalence class of curves {γ̄ | γ(0) = x} passing through x

such that φ ◦ γ̄ is differentiable in Rn for all γ̄, and two curves γ1, γ2 are equivalent if

(φx ◦ γ1)
′(0) = (φx ◦ γ2)

′(0). In the cases discussed in this section, the tangent space at a

point x can always be associated with those vectors y with 〈x, y〉 = 0, so this warrants no

further discussion.

A moving frame for an n-manifold M is a local choice of basis ( f i)
n(x) for the tangent

space TMx at every point x ∈ M, such that each f i(x) is a vector field on M. The well-

known Hairy Ball theorem states that the n-sphere Sn, where n refers to the dimension of

its tangent space, does not have a nonvanishing tangent vector field for any n even. In
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a search for a moving frame for Sn, we are thus restricted to the case where n odd. This

series of questions has in fact been resolved as well: such a frame only exists for n = 1, 3, 7

and makes use of the algebraic structure of C, the quaternions in R4, and the octonions

in R8. The proof that no other sphere hosts a moving frame is complicated and will not

be discussed further in this document. It does, however, motivate an extension of finite

Hilbert space frame theory to clarify this classic result.

In our discussion so far, the term tight frame denotes any set of vectors in space H
that generalizes the spanning and reconstruction properties of orthonormal bases. It is

an easy matter to confuse the terms moving frame and tight frame, a mistake that turns

out to be lucrative. If we take moving frame to mean an ordered set of vector fields

{ f i(x), 1 ≤ i ≤ k} so that at each x ∈ M the fields constitute a tight frame for TMx,

a new set of questions arise regarding whether moving Hilbert space frames exist on

manifolds where the older definition of moving frame fails to exist. As in the paper [4], to

avoid confusion with our established terminology, we will refer to a local choice of basis

as a ’moving basis’, so that the term ’moving frame’ can be used for a general k-vector

Hilbert space frame.

The question now becomes whether a moving frame for Sn exists for arbitrary n odd.

In [4], the authors show that a moving tight frame for Sn does in fact exist for all odd n.

The argument proceeds by selecting a convenient collection of vectors from the set A of

tangent vectors at point a ∈ Sn. In particular, the vectors inA are obtained from the point

a ∈ Sn, denoted

a = (a1, a2, . . . , a2m)

by swapping pairs of indices and multiplying one element of each pair by -1. As a con-

crete example, consider the circle S1. For a = (a1, a2) on the circle, (a2,−a1) and (−a2, a1)

are both orthogonal to a. Since the tangent space is one dimensional, these two vectors

constitute a frame for the tangent space of a. The tangent vector field obtained by the
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swap (a1, a2) → (a2,−a1), for example, is continuous by its algebraic nature. Check-

ing orthogonality is just as simple. Using subsets of A, the authors showed that it was

possible to find a moving tight frame with (2n− 1)2n vectors. The question was posed

however whether this was minimal for a moving frame chosen from this set.

The goal of this section is to investigate the less restrictive question of moving frames

for S2n−1, without the tightness condition.

2.1 Exhibiting Moving Frames

First, we would like to assert the existence of a moving frame for S2n−1. Using the

existence of a moving tight frame, it will be shown that we can always delete a critical

number of vectors from this tight frame while still maintaining the frame condition. In

fact, the deleted vectors are arbitrary, so this is presumably the bluntest way of maintain-

ing the frame bounds. It is nonetheless illustrative of the technique by which we analyze

how ’close’ to reconstructing a vector the frame operator is.

Theorem 10. (Neumann series) Let A : X → X be a linear operator. If ‖cI − A‖ < c, for c > 0

then A is invertible.

Proof. If ‖cI − A‖ = α < c then

c‖x‖ = ‖(cI − A)x + Ax‖ ≤ ‖(cI − A)x‖+ ‖Ax‖ ≤ α‖x‖+ ‖Ax‖.

Therefore, ‖Ax‖ ≥ (c− α)‖x‖, so that A is invertible.

Theorem 11. Given a unit-norm tight frame (ui)
K
i=1 with K/n > 1 , the set (ui)

K
i=1\{uj} after

removing any vector uj is a K− 1 frame.
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Proof. The frame operator is T = ∑K
i=1 ui ⊗ ui =

K
n I, with norm ‖T‖ = K

n . Let T̃ be the

operator

T̃ =
K−1

∑
i=1

ui ⊗ ui.

If T̃ is invertible, it follows that (ui)
K−1
i=1 is a frame. Since uK is a unit vector, uK ⊗ uK is an

orthogonal projection with norm 1. Thus,

‖T̃ − K
n

I‖ = ‖T − uK ⊗ uK −
K
n

I‖ ≤ ‖T − K
n

I‖+ ‖uK ⊗ uK‖ = 1 <
K
n

.

Theorem 10 now implies that T̃ is invertible, giving the result.

Corollary 12. Given a UNTF (ui)
K
i=1 with K/n > m ∈ N, there exists a frame with K − m

vectors by removing m vectors from (ui)
K
i=1.

Proof. Use Theorem 11 on the sum ∑m
i=1 ui ⊗ ui,

‖T̃ − K
n

I‖ ≤ ‖T − K
n

I‖+
m

∑
i=1
‖ui ⊗ ui‖ = m <

K
n

.

The above result relies on keeping the modified frame operator T̃ appropriately close

to the tight frame operator K
n I, and follows from a general theorem for invertible opera-

tors. A natural question to ask is whether this bound on number of dropped vectors is

strict, and if it any simple cases allow us to push this number further.

Theorem 13. Let (ui)
K
i=1 be a moving UNTF with frame constant K

n . If for some subset {uki}K/n
i=1 ,

the dimension of span({ukj}) is > 1, then (ui)
K−m
i=1 \{uk} is a frame.
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Proof. The norm ∑K/n
i=1 ‖uki ⊗ uki‖ is bounded above by K

n as in the previous result. In fact,

the inequality is strict, for unit vectors u, x

|u⊗ u(x)| = |〈u, x〉u| = |〈u, x〉| ≤ 1

and the upper bound is attained exactly when x ∈ span(u). Since by assumption, there

exist some uki 6∈ span(ukj), the inequality above must be strict for one of |uki ⊗ uki(x)|,
|ukj ⊗ ukj(x)|, which bounds the norm strictly and gives the result.

2.2 A Criterion on the Standard Basis

Lemma 14. Let T be an operator. If

∣∣Tei − ei
∣∣ < 1√

n
.

for every standard basis vector ei, then T is invertible. I.e., if T = ∑k
i=1 ui ⊗ ui, then it is a frame

operator.

Proof. T is noninvertible if and only if Range(T) is contained in a hyperplane of Rn. The

proof follows from finding the hyperplane H that is ’closest’ to the set {ei}n. As indicated,

the word closest must be clarified. For hyperplane H let dH(ei) =
∣∣ProjH⊥(ei)

∣∣. For the

problem at hand, a closest hyperplane to {ei} will minimize

D (H) = dH(e1) + dH(e2) + · · ·+ dH(en).

If
∣∣Tei − ei

∣∣ < 1
n D(H) for 0 ≤ i ≤ n, then Tei cannot send the standard basis to a hyper-
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plane.

H can be found by Lagrange multipliers. H will consist of vectors x = (x1, x2, . . . , xn)T

that satisfy

α1x1 + α2x2 + · · ·+ αnxn = 0,

i.e., 〈α, x〉 = 0 for normal vector α = (α1, α2, . . . , αn)T. It is easy to express dH(ei), since

ProjH⊥(ei) =
1
‖α‖2 〈α, ei〉α.

We can restrict ‖α‖2 = 1, so that dH(ei) =
∣∣αi
∣∣ = √α2

i . This gives the bounded minimiza-

tion problem

minimize f (α1, . . . , αn) =
√

α2
1 +

√
α2

2 + · · ·+
√

α2
n

subject to g(ff1, . . . , ffn) = sqrt
(

α2
1 + α2

2 + · · ·+ α2
n

)
− 1 = 0.

The Lagrangian is given by

Λ =

(√
α2

1 +
√

α2
2 + · · ·+

√
α2

n

)
+ λ

(
sqrt

(
α2

1 + α2
2 + · · ·+ α2

n

)
− 1
)

so a minimum will solve the system,

∂Λ
∂αi

=
αi√
α2

i

+ λ

(
αi

sqrt(α2
1 + · · ·+ α2

n)

)
= 0

∂Λ
∂λ

= sqrt
(

α2
1 + α2

2 + · · ·+ α2
n

)
− 1 = 0.

The second equation is simply ‖α‖2 = 1. Thus, the equations ∂Λ
∂αi

= 0 become

λαi = ±1,
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i.e., αi = ±1
λ , so that ‖α‖2 = 1

λ2 n = 1 gives λ = 1√
n . It follows that dH(ei) = 1√

n for

0 ≤ i ≤ n, giving the result.

3 Connectedness Theorems for Frames

3.1 Connectedness of F k
n

This section is concerned with topological properties of different classes of frames, pri-

marily connectedness and path-connectedness of finite frames, finite unit-norm frames,

and tight frames. These are properties of the set of frames as a whole, an element of which

is the ordered set {ui}k
i=1 that constitutes a frame with k vectors over a given Hilbert space

H. Recall that a set S is called disconnected if there exist nonempty sets A, B ⊂ S such that

Ā ∩ B = ∅, A ∩ B̄ = ∅ and A ∪ B = S. If a set is not disconnected, then it is connected.

A path connected set is one for which given any two points a, b in the set, there exists a

continuous function γ : [0, 1]→ S with γ(0) = a and γ(1) = b.

Connectedness and path-connectedness are basic topological properties which, like

openness, describe how well-behaved a set is, and lend geometric intuition to the un-

derstanding of a general space, beyond the confines of the low-dimensional Euclidean

spaces. An important result that is used in our discussion of frames relates to the path-

connectedness of GLn(V), the invertible linear operators on vector space V = Rn.

Since the determinant is a continuous function from Mn×n(R) to R[x], the preimage

of R\{0} (a disconnected set) must be disconnected. It is natural to ask whether the

preimages of R+ and R− are connected. That is, whether the matrices with determinant

0 are the only obstructions to connectedness. It turns out that they are.
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Theorem 15. The sets GL+(Rn) = {T ∈ GL(Rn)
∣∣det T > 0} , GL−(Rn) = {T ∈

GL(Rn)
∣∣det T < 0} are path connected.

Proof. See [11].

Theorem 15 raises an important question with connection to finite frames. Since an

element of GL(Rn) is a collection of column vectors that forms a basis, the previous proof

describes a path through GL(Rn) as a path through the bases for Rn. In Rn, a basis does

not contain enough vectors to avoid all vectors entering a hyperplane when continuously

moving from one basis to another. It seems plausible that including more vectors is one

way of getting around this problem. Instead of moving a basis continuously to another

basis, the question becomes whether it is possible to continuously move one k-vector

frame to another. With this, we introduce a notation for the topological space of frames.

Definition 16. F k
n = the set of all k-vector frames on Rn, with topology induced from Rn.

A matrix Mm×n with m < n is said to be full-rank if Range(Mm×n) has dimension

m. If Mm×n has columns representing vectors in a frame (ui)
n
i=1, ui ∈ Rm by the dilation

property it is natural to consider the related column matrix Nn×n corresponding to some

basis (vi)
n of Rn, in which projecting each vi onto its first m coordinates gives ui. We will

call the matrix Nn×n a dilation of Mm×n. It is clear that a given frame matrix Mm×n might

have several dilations.
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Figure 5: The dilation of frame matrix M

M =

 ↑ ↑ ↑
u1 u2 . . . un
↓ ↓ ↓

 , N =


↑ ↑ ↑
u1 u2 . . . un
v1 v2 vn
↓ ↓ ↓



Lemma 17. A real matrix Mm×n, m < n is full-rank if and only if can be dilated to a matrix with

det > 0.

Proof. ( =⇒ ) Let m ≤ n , and matrix

M =


↑ ↑

m1 . . . mn

↓ ↓

 , mi ∈ Rm

be full rank, so that (mi)
n
i=1 is a spanning set (frame) for Rm. By the dilation property

for frames (Theorem 7), it is possible to dilate each mi to mi ⊕ vi, vi ∈ Rn−m so that

(mi ⊕ vi)
n
i=1 is a basis for Rn. If m′i = mi ⊕ vi, the matrix

M′ =


↑ ↑

m′1 . . . m′n

↓ ↓

 , m′i ∈ Rn

has det M′ 6= 0. If det M′ < 0, the matrix M′′ obtained by multiplying the last row of M′

by −1 has full span, and by the properties of determinants det M′′ = −det M′ > 0.

(⇐=) Suppose Mm×n has dilation N with det N > 0. The columns of N form a basis for

Rn, say (ui)
n. Since the orthogonal projection of a frame is also a frame for the projected
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subspace, it follows that (Pui)
n is a frame for Rm, where P : Rn → Rm projects onto the

first m coordinates. (see Proposition 5.1 in [6] ). Therefore (Pui)
n has full rank, and its

frame matrix is precisely M.

Fact 18. The continuous image of a path-connected space is path connected.

Theorem 19. F k
n is path-connected.

Proof. Using Lemma 17, we can dilate the frame matrix of any (ui)
k ∈ F k

n to a member

of GL+
k . For any (ui)

k,(vi)
k ∈ F k

n , choose corresponding dilations U, V ∈ GL+
k . By the

path-connectivity of GL+
k , there exists a path f : [0, 1] → GL+

k such that f (0) = U and

f (1) = V. The projection operator

P =

 In 0

0 0


is continuous, so it follows by Fact 18 that P ◦ f (t) ≡ q(t) is a path. Moreso, the backward

direction of Lemma 17 ensures that the P ◦ f (t) is isomorphic to F k
n for all t. This gives

the desired path, since q(0) = (ui)
k and q(1) = (vi)

k.

The path connectedness ofF k
n is an immediate consequence of the path-connectedness

of GL+, and the dilation property for frames. We run into more difficulty when consid-

ering the path-connectedness of finite unit-norm frames (FUNF), since the path found in

Theorem 19,

f (t) =


 u1(t)

q1(t)

 . . .

 uk(t)

qk(t)
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which gives ui ∈ Rn as the ith frame vector in the path P ◦ f (t), might have ui = 0 for

some t, making the path ui(t) non-normalizable. If ui(t) nonzero for all t ∈ [0, 1], then

showing the path-connectedness of FUNF would be a matter of normalizing each of the

ui(t) via multiplication by someλi(t), making the new path

Λ(t)P f (t)

with

Λ(t) =


λ1(t)

. . .

λk(t)

 .

Since P f (t) must be continuous with respect to the norm of each of its columns and by the

continuity of matrix multiplication, the normalization constants λi(t) must be continuous.

It remains to be shown that such a nonzero path can always be found.

3.2 Connectedness of FUNF

As stated in the previous section, the path-connectedness of F k
n does not ensure the

path-connectedness of FUNF, since γ : [0, 1] → F k
n might pass through a frame (ui)

k

in which uj = 0 for some j. This is in fact the only problem, since it was reasoned that

normalization is a continuous process and preserves the path.

We are therefore concerned with the set of frames with vanishing vectors, or frame ma-

trices with vanishing components in their column vectors. More precisely, the following

two subsets of GL+ will be considered:

Definition 20. Writing M ∈ GL+(k) as
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M =

 u1 . . . ui . . . uk

v1 . . . vi . . . vk


with column vectors ui ∈ Rn and vi ∈ Rk−n, denote the sets:

T0 ≡ {M ∈ GLk
+| ∃i, ui = 0}

T1 ≡ {M ∈ GLk
+| ui 6= 0 ∀i}

.

Lemma 21. T1 is open in GL+, T0 is closed.

Proof. The multiplication map mi : GL+ → Rk defined by mi(M) = Mei, and the projec-

tion map P =

 In 0

0 0

 are both continuous maps, so the map

Ωi : GL+ → Rn

M 7→ PMei

is continuous. Since ui = 0 if and only if Ωi(M) = 0, and {0} ∈ Rn is closed, it follows

that T0 is closed. Since T1 = Tc
0 , it must be open.

Fact 22. A proper subspace of Rn is closed with empty interior.

Proof. Let W ⊂ Rn be proper, so that W⊥ 6= ∅. For any v 6∈ W, and projection PW(v) is

the closest element of W to v. If ε = d(v, PW(v)) then it follows that

Nε(v) ⊂Wc
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so that W must be closed. To show W has empty interior, take any open ball centered

around w ∈ W, Nε(w). Since W⊥ is a subspace, v ∈ W⊥ implies cv ∈ W⊥ for all c ∈ R.

In particular, we can find a v ∈ W⊥ with arbitrarily small norm, |v| < ε. The vector

w + v ∈Wc satisfies

d(w + v, w) = |w + v−w| = |v| < ε

so that w + v ∈ Nε(w), showing that W has empty interior.

Proposition 23. The union of finitely many proper subspaces is closed with empty interior.

Proof. Let Wi ⊂ Rn be a proper subspace for all i ≤ N. As the union of finitely many

closed sets,
⋃N

i=1 Wi is closed. Since each Wi has empty interior, W{i is a dense open subset

of Rn. Baire’s Theorem (see Exercise 3.25 in [8]) implies that

G =

(
N⋃

Wi

){
=

N⋂
W{i

is dense in Rn. Since N is finite, G is also open, giving the result.

Theorem 24. Let W be an n-dimensional vector space, Vi ⊂ W a subspace with codimension

≥ 2 for all 1 ≤ i ≤ N. For any x, y ∈ W\V and ε > 0, it is possible to choose x′ ∈ Nε(x),

y′ ∈ Nε(y) so that the line segment connecting them does not intersect any Vi.
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Figure 6: A connecting linear path for dim W = 3, dim Vi = 1

V1

V2

V3

V4

x

y

Proof. For clarity, assume N = 1. The case N > 1 will be described subsequently. The

worst case scenario occurs when the codimension of V is precisely 2. Any subspace with

larger codimension can be embedded into a codimension 2 subspace, so it is acceptable

to consider only this case. Consider the line segment

γ(t) = tx + (1− t)y, 0 ≤ t ≤ 1.

If γ(t) does not intersect intersect V at any point t then we are done. So suppose there

exists some t with γ(t) = v ∈ V. Shift everything by −v, so that the intersection is at the

origin and the line segment γ(t) is a subset of linear subspace L = {tx + (1− t)y
∣∣∣∣ t ∈ R}.

This will be the only point of intersection with V, since L ∩ V a proper subspace of L.

Let L⊥ be the orthogonal complement of L. This is a subspace with codimension 1, since

dim (L) = 1, and (ProjL⊥V) ∩ L = 0 since ProjL⊥V ⊂ L⊥.

Now ProjL⊥V must be a proper subspace of L⊥, since V was assumed to have codi-

mension 2. Using Fact 22 22, it follows that ProjL⊥V has empty interior, so that for any
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ε > 0 there exists ` ∈ L⊥, ` ∈ Nε(0) with ` 6∈ ProjL⊥V. Shifting L by `,

L→ L + ` = L′

gives L′ ∩ L⊥ = `. It must be that L′ ∩ V = ∅, since ProjL⊥L′ = ` and Proj−1
L⊥` does not

intersect V. Choose ε small enough so that Nε(x) ∩ L⊥ = ∅ and Nε(y) ∩ L⊥ = ∅, and

set x′ = x + ` ∈ Nε(x) and y′ = y + ` ∈ Nε(y) for ` as above. This gives the result for a

single subspace. The result for N > 1 follows since the union

⋃
ProjL⊥Vi

is closed with empty interior by Proposition 23, and ` can be found in a similar manner.

Figure 7: The construction of L, V′, and Nε(0) for dim(W) = 3 and dim Vi = 1.

y

x

ProjV ′Vi

L⊥ = V ′

Vi

Nε(0)

L

Lemma 25. (Paving Lemma) For any open set S, and path γ : [0, 1] → S, there exists a sub-

division 0 = x0 < x1 < . . . ,< xn = 1 such that γ
∣∣
[k,k+1] ⊂ Bk (an open ball) for all k. In
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particular,
n⋃

i=0

Bε(γ(xi)) ⊂ S

and γ([xi, xi+1]) ⊆ Bε(γ(xi)) for all i ∈ {0, 1, . . . , n}.

Theorem 26. FUNF is path connected

Proof. For any A, B ∈ FUNF, take the path γ : [0, 1] → F k
n that connects A and B in the

finite frames. This path was found by dilating the frame matrix to GL+. As stated, γ

may include elements of T0, which cannot give a normalized frame. However, the path γ

can be modified to stay within T1. Note that T0 is the finite union of subspaces each with

codimension ≥ 2, since for

M =

 u1 . . . ui . . . uk

v1 . . . vi . . . vk


ui is assumed to have dimension ≥ 2, and T0 is the intersection Ti

0 ∩ GL+ where Ti
0 is the

subspace

Ti
0 =

 u1 . . . 0 . . . uk

v1 . . . vi . . . vk

 ⊂ Mn×n.

Since GL+ is open , the paving lemma gives subdivision {xi}n
i=0 of [0, 1] and Bεi(γ(xi)) ⊆

GL+. We are concerned with the set of j ∈ 0, . . . , n for which

Bεj(γ(xj)) ∩ T0 6= ∅.

Without loss of generality, it can be assumed that γ(xj), γ(xj+1) 6∈ T0. If γ(xj) ∈
T0, then since T0 is closed with empty interior (Lemma 21) there exists some uj ∈ T1
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such that uj lies in neighborhood Nδ(γ(xj)) ⊂ Bε(γ(xj)). The path γ can be diverted

through uj without leaving GL+. Relabeling xj → uj when necessary then gives the

desired subdivision.

The path pi : [0, 1]→ GL+ through Bε(γ(xi)) given by

pi(t) = tγ(xi) + (1− t)γ(xi+1).

is a line segment through Mn×n(R). Suppose pi([0, 1]) ∩ T0 nonempty. Since T1 is open,

there exists ε > 0 such that

Nε(γ(xi)), Nε(γ(xi+1)) ⊂ T1.

Theorem 24 now gives new points x′i ∈ Nε(γ(xi)) and x′i+1 ∈ Nε(γ(xi+1)) such that the

path

p′i = tx′i + (1− t)x′i+1

does not intersect T0. Since γ(xi) and x′i can be connected by a path as members of

Nε(γ(xi)) ⊂ T1 (the same holds for γ(xi+1) and x′i+1), the new path formed from them

makes the path through Bε(γ(xi)) avoid T0. Repeating this finitely many times for all

Bεi(γ(xi)) completes the theorem.

4 Frame Measures

The aim of this chapter is to generalize the concept of frame to infinite collections of

vectors {uλ}λ∈Λ ⊂ Rn. While a Bessel sequence only becomes interesting for infinite se-

quences, this still restricts discussion to countable sets. One apparent way to generalize
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to uncountable sets is to reinterpret condition (1) in a measure-theoretic framework. The

summation in the frame condition is then replaced by integration with respect to a mea-

sure µ : Rn → R. The properties of a collection of vectors are now studied as properties of

a measure on Rn. Finite frames follow immediately as a special case of ’frame measures’.

It will be shown that this reinterpretation admits similar notions of dual frame and the

geometric interpretation for R2 frame measures in Example 9.

The definition of frame measure is most naturally defined as a Borel measure, which

is the smallest measure defined on all open sets of a topological space X.

Definition 27. (Borel Measure). Let X be a locally-compact Hausdorff topological space,

and B(X) be the smallest σ- algebra that contains the open sets of X. B(X) is the Borel σ-

algebra on X. Any measure µ defined on B(X) is called a Borel measure.

The definition of Radon measure follows from the Borel measure.

Definition 28. A Radon measure on a locally-compact Hausdorff space is a Borel measure

satisfying the following properties:

1. µ(K) < ∞ for every compact K.

2. µ(E) = supK⊂E µ(K) for every Borel set E, and compact K.

With these we define a frame measure µ.
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Definition 29. A frame measure is a measure space (X, µ) with square integrability,
´

X r2 dµ(r) <

∞, and constants 0 < A ≤ B < ∞ so that for any x ∈ Rn,

B‖x‖2 ≤
ˆ
〈x, r〉2dµ(r) ≤ A‖x‖2. (3)

The measure is called a tight frame measure if A = B.

Note the similarity to formula (1). The first connection with finite frames follows from

this definition. In particular, it is possible to recover the definition of finite frames from

the notion of a frame measure, indicating that (3) is an appropriate generalization.

Example 30. The Dirac measure (δui) which gives mass ci to each of the vectors {ui}k
i=1,

δ{ui}(E) =


0, {ui} ∩ E = ∅

∑ui∈E ci, {ui} ∩ E 6= ∅

is identical to a finite frame when ci = 1 for all i, since the finite frame operator as an

integral over the measure becomes the finite sum

k

∑
i=1
〈x, ui〉2 =

ˆ
〈x, r〉2 dµ(r).

For a general description of the Dirac measure, see [7].

It is necessary to introduce the support of a measure, which we define using the usual

topology on Rn.
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Definition 31. The support of a Borel measure µ is the set

supp(µ) ≡ {x ∈ Rn|x ∈ Nx =⇒ µ(Nx) > 0}

where Nx is any neighborhood of x.

With this it is now possible to reproduce the spanning property of finite frames with

frame measures.

Theorem 32. (Spanning property for frame measures)

(i) If supp(µ) not contained in any hyperplane of Rn and
´ ‖r‖2dµ < ∞, then (RN, χ, µ) a

frame measure.

(ii) If (Rn, χ, µ) a frame measure, then supp(µ) not contained in any hyperplane of Rn.

Proof. (i) By the Cauchy-Schwarz inequality, 〈x, r〉2 ≤ ‖x‖2‖r‖2, so the measure inequal-

ity ˆ
〈x, r〉2dµ ≤ ‖x‖2

ˆ
‖r‖2dµ ≤ ‖x‖2A,

gives the upper frame bound. So we are only concerned with the lower bound. By contra-

positive, supposing µ not a frame measure, then the lower bound fails, and we can find a

sequence of vectors ym, with ‖ym‖ = 1 such that

ˆ
〈ym, r〉2dµ <

1
m

.

{ym} must have a convergent subsequence , {ymj
} → y. Since the sequence of functions

〈ym, ·〉2 converges pointwise to 〈y, ·〉2, and are pointwise bounded above by g = A‖y‖ (a
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measurable (constant) function), by the dominated convergence theorem it follows that

0 = lim
m→∞

ˆ
〈ym, r〉2dµ =

ˆ
〈y, r〉2dµ.

Since 〈y, ·〉2 positive, and the µ nontrivial, it follows that supp(µ) cannot span Rn.

(ii) By Contrapositive. Suppose (RN, χ, µ) has support completely contained in hy-

perplane H ⊂ Rn . Then there exists nonzero vector x ∈ H⊥. Since x is orthogonal to all

r ∈ supp(µ), the integral ˆ
〈x, r〉2dµ(r) = 0,

so the lower frame bound condition fails. (ii) follows.

Theorem 33. If (µ) a frame measure, then the frame bound B satisfies

B ≤
ˆ
‖r‖2dµ

with equality holding when µ is a tight frame measure.

Proof. Using the reconstruction property on the standard orthonormal basis {ei}N ⊂ RN,

and by Holder’s inequality,

B =
1
N

N

∑
n=1

B‖en‖ ≤
1
N

N

∑
n=1
‖
ˆ
〈en, r〉2dµ‖ = 1

N

N

∑
n=1

ˆ
‖r‖2dµ =

ˆ
‖r‖2dµ.

This gives the equality when µ is tight.

Together, Theorems 33 and 34 provide a correlate of the spanning property for finite

frames. Note however that the
´

r2 dµ < ∞ property is trivial in the finite case, and so the

extra assumption of square integrability does not manifest itself.
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Theorem 34. (Reconstruction property for tight frame measures) For (µ) is a tight frame mea-

sure, for all x ∈ Rn,

x =

ˆ
〈x, r〉r dµ(r)

Proof. The operator T : Rn → R, given by

T(x) =
ˆ
〈x, r〉r dµ

is positive semidefinite, since 〈x,Tx〉 = A‖x‖ ≥ 0 for all x ∈ Rn, and also self-adjoint,

since

〈y, Tx〉 = 〈y,
ˆ
〈x, r〉rdµ〉 =

ˆ
〈x, r〉〈y, r〉dµ = 〈x,

ˆ
〈y, r〉rdµ〉 = 〈x, Ty〉 = 〈Ty, x〉.

Now since 〈x, Tx〉 = A‖x‖2 for all x, it must be that 〈Tx− Ax, x〉 = 0 ∀x, and so T = A · Id
since 〈y, Tx〉 defines an inner product.

Example 35. The Lebesgue measure on the circle (S1, χ, λ) is a tight frame measure with

frame constant A = 1
2 . For any x = (a, b) ∈ R2, and f = (cos θ, sin θ)

ˆ
〈x, f 〉 f dλ =

ˆ 2π

0

 (a cos(θ) + b sin(θ)) cos(θ)

(a cos(θ) + b sin(θ)) sin(θ)

 dθ

=

ˆ 2π

0

 a cos2(θ)

b sin2(θ)

 dθ

=

(
a
2

,
b
2

)
=

1
2
(a, b)

41



4.1 Analysis and Synthesis Operators

The operator T in Theorem 35 is the analog of the frame operator S for finite frames.

This is not coincidental. In fact, we are able to make a measure theoretic generalization

of the analysis/synthesis operators Θ, Θ∗. With the proper definitions, this will lead to

a generalization of dual frame, which given frame measure µ will be be a new frame

measure η related to µ that satisfies the reconstruction property.

Definition 36. The analysis operator Θ : Rn → L2 takes x ∈ Rn → Θ(x), and is defined by

Θ(x) = 〈x, ·〉.

The synthesis operator is the adjoint of the analysis operator, Θ∗ : L2 → Rn.

Note that Θ(x) is always L2 integrable by definition of frame measure.

Theorem 37. Θ∗Θ(x) =
´ 〈x, r〉r dµ. In particular, Θ∗(g) =

´
g(r)r dµ(r).

Proof. First we determine the form of Θ∗, the unique operator satisfying

〈Θ(x), v〉 = 〈x, Θ∗(v)〉 ∀x ∈ Rn, v ∈ L2().

Since

〈Θ(x), v〉 =

ˆ
〈x, r〉v(r) dµ(r)

=

〈
x,
ˆ

rv(r) dµ(r)
〉
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the last line must be 〈x, Θ∗(v)〉, so that Θ∗(v) =
´

v(r)r dµ(r).

Now by our definition of tight frame measure, µ is A-tight for Rn if and only if the

analysis operator satisfies ˆ
‖Θ(x)‖2 dµ(r) = A‖x‖2

for all x ∈ Rn. Likewise, the reconstruction property for tight frames can be rephrased as

the requirement T = Θ∗Θ = A · Id. The self-adjoint property of T follows immediately

from the decomposition.

Drawing from the theme of signal analysis, the dual frame allowed for perfect recon-

struction of any signal vector using the analysis operator of frame {ui} and the synthesis

operator of its dual {S−1ui}, or vice versa. In the context of frame measures, the dual

measure η will have to satisfy x =
´ 〈x, r〉 dη(r), but if there is no relation between η and

the original frame measure µ, nothing new gained from beyond an arbitrary tight frame

measure. We require a method of obtaining new measures from old in order to make

sense of a dual frame measure.

Definition 38. Let (X, β, µ) be a measure space. A function φ : X → Y from (X, β) to

measure space (Y, C) is measurable if the preimage of a measurable set is measurable.

Definition 39. Let (X, β, µ) be a measure space, and φ : X → Y a measurable function

from (X, β) to measurable space (Y, C). The pushforward measure φ∗µ : C → [0, ∞] is

defined by the formula φ∗µ(E) = µ(φ−1(E)).
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Fact 40. φ∗µ is a measure on C, and for f : Y → R measurable,
´

Y f dφ∗µ =
´

X( f ◦ φ) dµ.

Lemma 41. The spherical projection P : x 7→ x
‖x‖ and the inverse frame operator T−1 are mea-

surable functions.

Proof. This follows since P, T−1 are both uniformly continuous, and µ is a Borel measure

by definition.

Theorem 42. The pushforward S−1
∗ µ of frame measure µ by invertible linear operator S is itself

a frame measure

Proof. By Theorem 33, since
´ ‖r‖2dµ < ∞.

(i) supp(S−1
∗ µ) not contained in any hyperplane. The nonzero-measure sets of S−1

∗ µ are

those sets E such that

µ((S−1)−1(E)) = µ(S(E)) 6= 0.

Now S cannot send sets with nonzero support to a hyperplane, since it is invertible and

supp(µ) not contained in any hyperplane. Therefore µ(S(E)) nonzero for a set not con-

tained in any hyperplane.

(ii) Using the inequality ‖Sr‖ ≤ ‖S‖‖r‖, where ‖S‖ denotes the operator norm of S,

ˆ
‖r‖2S−1

∗ dµ =

ˆ
‖S−1(r)‖2dµ ≤

ˆ
‖S−1‖2‖r‖2dµ = ‖S−1‖2

ˆ
‖r‖2dµ.

Now since S is an invertible operator on a finite dimensional space, 0 < ‖S‖ < ∞, so

‖S−1‖ = 1/‖S‖ < ∞. By the assumption that
´ ‖r‖2dµ < ∞, it follows that

´ ‖r‖2S−1
∗ dµ <

∞.
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Theorem 43. The pushforward of a frame measure µ under any invertible linear transformation

T is a Borel measure. In particular, the pushforward of a frame measure by an invertible operator

is a frame measure.

Proof. This is equivalent to showing that T−1 is Borel measurable, since

ˆ
Y

f dT∗µ =

ˆ
X
( f ◦ T) dµ

and T−1 Borel measurable implies T(E) a Borel (open) set for all E ⊂ Y. (Or since any

invertible linear map is a homeomorphism).

The most appropriate way to generalize the concept of dual frame is through the rela-

tion

Θ∗{ui}Θ{Sui} = Θ∗{Sui}Θ{ui} = Id. (4)

That is, the correct combination of analysis and synthesis operators allows for reconstruc-

tion. For the finite frame {ui}, Θ{ui} : Rn → `2(k) ∼= Rk gives the coefficients with respect

to the frame vectors as a finite list. The analogous operator for frame measures gives an

infinite list of coefficients, in the form of an integrable linear functional Θ : Rn → L2. The

synthesis operator Θ∗{ui} : `2(k) → Rn takes a list of coefficients to a finite linear combi-

nation of frame vectors, and similarly, the synthesis operator for frame measures takes an

infinite list of coefficients to an infinite linear combination of frame vectors, Θ∗ : L2 → Rn

by integrating with respect to a measure.

For T a linear operator, denote the linear functional ΘT(x) = 〈Tx, ·〉, and the map Θ∗T

from L2 → Rn given by Θ∗T(g) =
´

g(r)Tr dµ. The following theorem describes how the
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canonical dual operators are defined, and how the operator T in ΘT,Θ∗T can be absorbed

into the measure.

Theorem 44. The pushforward of frame measure µ under the inverse frame operator T−1 satisfies

the reconstruction property

x =

ˆ
〈x, r〉Tr dT−1

∗ µ =

ˆ
〈x, Tr〉r dT−1

∗ µ.

Proof. Since T is invertible, measurable and self-adjoint,

x = TT−1(x) =

ˆ
〈T−1(x), r〉r dµ(r)

=

ˆ
〈x, T−1r〉r dµ(r)

=

ˆ
〈x, T−1r〉r d(TT−1)∗µ

=

ˆ
〈x, r〉Tr dT−1

∗ µ.

The second line gives x = Θ∗ΘT−1 , and the fourth line gives x = Θ∗T
∣∣
dT−1∗

Θ, where

Θ∗T
∣∣
dT−1∗

(v) =
´

v(r)Tr dT−1
∗ µ(r). Reversing the order of T, T−1 gives

x = T−1Tx =

ˆ
〈x, r〉T−1r dµ

=

ˆ
〈x, r〉T−1r d(TT−1)∗µ

=

ˆ
〈x, Tr〉r dT−1

∗ µ,

giving x = Θ∗
∣∣
dT−1∗

ΘT.
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Example 45. (Finite Dual Frame) Recall from Example 30 the Dirac measure (δui) which

gives mass 1 to each of the vectors {ui}k
i=1. In this case the frame operator is the finite

frame operator S, and the pushforward measure under S−1 gives weight 1 to each of the

vectors {S−1ui}k
i=1. We then have

ˆ
〈x, Sr〉r dS−1

∗ µ =
k

∑
i=1
〈x, SS−1ui〉S−1ui =

k

∑
i=1
〈x, ui〉S−1ui = x

as well as

ˆ
〈x, r〉Sr dS−1

∗ µ =
k

∑
i=1
〈x, S−1ui〉SS−1ui =

k

∑
i=1
〈x, S−1ui〉ui = x.

4.2 Examples

Example 46. (Gaussian measure) Consider the usual n-dimensional Lebesgue measure

λ3. The Gaussian measure γ3 is defined by

γ3(A) =

ˆ
A

exp(−‖x‖2)dλ3(x).
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γn is a tight frame measure, since for x = (x1, x2, x3)

ˆ
Rn
〈x, r〉r dλn(r) =

ˆ
(x1r1 + x2r2 + x3r3)


r1

r2

r3

 e−(r
2
1+r2

2+r2
3) dr1dr2dr3

=

ˆ


x1r2
1 + x2r1r2 + x3r1r3

x1r1r2 + x2r2
2 + x3r2r3

x1r1r3 + x2r2r3 + x3r2
3

 e−(r
2
1+r2

2+r2
3) dr1dr2dr3

The integral is symmetric with respect to the three coordinates, so we can determine its

matrix by its value for e1.

ˆ
R

r2
1e−(r

2
1+r2

2+r2
3) dr1dr2dr3 = π

ˆ
r2

1e−r2
1 dr1 = π

2
22

√
π

2
=

π3/2

4

And ˆ
R

r1r2e−(r
2
1+r2

2+r2
3) dr1dr2dr3 =

√
π

ˆ
R

r1r2e−(r
2
1+r2

2)dr1dr2 = 0

Since the off-diagonal terms are odd functions. So the matrix for T is given by

T =
π3/2

4


1

1

1

 ,

that is, the Gaussian measure is tight, with frame constant π3/2

4 .

The next example shows the explicit construction of the analysis and synthesis opera-

tors for a given frame measure.
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Example 47. (Analysis/Synthesis operators for S1 measure). Recall from before the Lebesgue

measure on the circle, which is a tight. We use Theorem 20 to find the analysis and syn-

thesis operators, and show that Θ∗Θ = 1
2Id. Θx(r) is simply xT, while

Θ∗(g) =

ˆ
S1

g(r)r dθ.

g is the vector transpose, g = [g1, g2], so g(r) = (g1r1 + g2r2). The integral becomes

Θ∗(g) =

ˆ 2π

0
(g1 cos θ + g2 sin θ)

 cos θ

sin θ

 dθ

=

ˆ 2π

0

 g1 cos2 θ + g2 cos θ sin θ

g1 cos θ sin θ + g2 sin2 θ

 dθ

=
1
2

 g1

g2

 .

Now Θ∗Θ(x) = 1
2

 x1

x2

 , the identity discussed previously.

Next we characterize the tight frame measures on R2 expressible in terms of the stan-

dard Lebesgue measure λ2.

Example 48. Suppose µ̂ a frame measure on R2 such that

µ̂(E) =
ˆ

E
f (r) dλ(r).
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for some f : Rn → R. The frame operator can be given for x = (x1, x2) by

Θ∗Θ(x) =

ˆ  x1r2
1 + x2r2r1

x1r1r2 + x2r2
2

 f (r) dr1dr2

=

 ´
f (r)r2

1
´

f (r)r1r2´
f (r)r1r2

´
f (r)r2

2

 .

This is similar to the condition introduced for finite frames in R2. We can express the

frame matrix in terms of r = r(cos θ, sin θ) so the frame operator becomes

Θ∗Θ =

 ´
f (r)r2 cos2 θ

´
f (r)r2 cos θ sin θ

´
f (r)r2 cos θ sin θ

´
f (r)r2 sin2 θ


=

 ´ f (r)r2 cos2 θ
´

f (r)r2 sin 2θ
´

f (r)r2 sin 2θ
´

f (r)r2 sin2 θ


So that we have tightness if and only if

ˆ
f (r)

 r2 cos 2θ

r2 sin 2θ

 dλ = 0.

This is the direct generalization of the diagram vectors from Example 9.

4.2.1 The Frame Inertia Property

We have seen in the theory of finite frames that tight frames are in some sense “evenly

dispersed” (Example 9). The authors of [2] push this idea further by introducing a re-

pulsive mathematical force between vectors in a frame, showing that a configuration is in
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equilibrium under this force precisely when a frame is tight. In analogy to the equilibrium

configuration of finitely many electrons on a spherical shell, a tight frame has “optimally

spaced vectors”.

It remains unclear if this characterization can be applied to frame measures. However,

drawing a physical analogy with distributions of charge, we are able to characterize the

tight frame measures as somehow “evenly distributed” around the origin. To do this, we

introduce the inertia tensor of a distribution of mass.

Definition 49. The inertia tensor of a finite set of vectors {rk}N with masses {mk}N is the

operator defined by

I =
N

∑
k=1

mk (〈rk, rk〉E− rk ⊗ rk) (5)

where E = e1 ⊗ e1 + e2 ⊗ e2 + · · ·+ en ⊗ en, the identity tensor. For a general measure,

the inertia tensor is defined by

I =

ˆ
(〈r, r〉E− r⊗ r) dµ(r). (6)

Theorem 50. µ is a tight frame measure on RN if and only if its inertia tensor is ME for M ∈ R.

Proof. If µ is a tight frame measure with frame constant A, then by the reconstruction

property,

AE =

ˆ
(r⊗ r) dµ(r)

so that I = ME for M =. Next, suppose I = ME, for M ∈ R. Then since
´

r2E is

always a multiple of identity, we must have
´

r ⊗ r dµ a multiple of identity as well. By

the reconstruction property, it follows that the frame operator is a multiple of identity, so
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that µ is tight.

Corollary 51. The inertia tensor for a finite tight k-vector frame in RN is (k− k
N )E.

The usefulness of this observation is not necessarily mathematical, but provides a nice

physical interpretation of tight frame measures. The tensor can be written in matrix form,

where the i, j off-diagonal entry is given by

ˆ
xixj dµ

for (x1, x2, . . . , xn) = x ∈ Rn, and diagonal entry i, i is given by

ˆ (
∑
j 6=i

x2
j

)
dµ.

In physics, the inertia matrix of an object rotating about a given point relates the angular

velocity ω to the angular momentum L via

L = Iω.

In other words, for an object spinning around a fixed point about an axis parallel to ω,

the angular momentum points in the direction of Iω. An example of an object with inertia

matrix given by a multiple of identity is a cube rotating about its center, or a sphere about

its center. The inertia matrix does not specify the distribution of mass exactly, but it is

easy to use this characterization to identify non-tight frame measures based on symmetry

and geometric intuition.
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4.3 Convergence of Measures

The approximation of finite frames is either ambiguous, or trivial. If we wish to ap-

proximate the frame operator S{ui}, the result follows by the fact that every positive defi-

nite operator S is the frame operator for some {vi}, a proof of which can be found in [6],

and follows by diagonalizing S. Since the positive definite operators are dense in L(Rn),

the approximation of any operator by frame operators follows.

On the other hand, there are several modes of convergence for a sequence of measures

{µi} → µ. It can be shown that the limit µ must always be a measure. It is then natural

to ask whether an arbitrary frame measure µ is the limit limn→∞{µn}, where the µn come

from a much simpler set of frame measures. A natural candidate for this set are the

discrete frame measures from Example 13 , which include the finite frames. The major

result of this section is the approximation of an arbitrary frame measure by discrete frame

measures.

The mode of convergence used will be the weak convergence of sequences of frame

measures. We are interested in retaining the frame bounds for the original measure µ

across all µi in an approximating sequence. This will ultimately result in a statement of

the density of discrete frame measures in the space of frame measures, much like density

of frames in L(Rn).

Definition 52. Given a measure µ on X, we say the sequence of measures {µn}n∈N con-

verges weakly to µ if for every f ∈ Cb (continuous bounded functions f : X → R)

ˆ
f dµn →

ˆ
f dµ.

Before the equivalence statement, we describe what a weakly converging sequence
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of finite frame measures {µi} → µ must look like. The following lemmas provide a

description that gives a natural choice for an approximating sequence. The following

lemma says that we must choose our discrete frame vectors of a µi close enough to the

support of µ if we want weak convergence.

Lemma 53. If the discrete frame measures {ui}n∈N converge weakly to µ, then for every open set

U with supp(µ) ⊂ U,

∑
un 6∈U

cn → 0.

Proof. There exists a continuous function f : Rk → R so that f (x) = 1 for all x ∈ supp(µ),

and f (x) = 0 for x ∈ Uc. Integrating f ,

ˆ
f dµ = µ(Rk)

while for each n ∈N, integrating f with respect to {ui}n gives

∑
i

ci · f (ui) = ∑
uj∈U

cj.

Now since {ui}n → µ, we have ∑ ci = µ(Rk), but for each {ui}n this is the same as

∑
uj∈U

cj → µ(Rk).

Since the weights cj are positive, it must be that ∑un 6∈U cn → 0 for n large enough.

This characterization still allows for the possibility that the approximating frames
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{ui}n contain vectors not in supp(µ), as long as the weights ci of these non-support vec-

tors all vanish as i → ∞. Of course, an easy guess for a converging sequence {ui}n → µ

might ignore vectors outside supp(µ) altogether.

The next lemma says that the vectors in a sequence of discrete frame measures {ui}n →
µ must in some way sample supp(µ) uniformly.

Lemma 54. If the discrete frame measures {ui}n∈N converge weakly to µ, then given ε > 0, and

x ∈ supp(µ), ∃N ∈N such that

uk ∈ Nε(x)

for some uk ∈ {ui}n , and all n > N.

Proof. There exists a continuous function f : Rk → R so that for fixed ε′ < ε,

f (r) =


1, r ∈ Nε′(x)

0 r ∈ Rk\Nε(x)
.

If for infinitely many n ∈N, we can’t find uk ∈ {ui}n so that uk ∈ Nε(x), then since

ˆ
f dµ = µ(Nε(x))

but ∑ ci · f (ui) = 0 for infinitely many {ui}n, it is impossible that the discrete measures

converge to µ.

Since Rk is separable, Lemma 54 poses no restrictions to approximating some µ with

unbounded support. However, as a simplifying case, the following statements will be

considered for supp(µ) compact. In this setting, Lemma 54 says that given a finite open
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cover of supp(µ) by balls of radius 1
n , we can find N so that n′ > N implies µn′ contains a

uk in each 1
n -neighborhood. For convenience, assuming the existence of {µn}, let’s always

take a subsequence {µm} so that µm satisfies this property for balls of radius 1
m .

So far, the necessary conditions on the weights ci have only required that they vanish

for vectors outside suppµ. If we wish to show by construction that an approximation by

discrete measures exists, we are left in the dark as to how to choose the c′is to pair with the

ui ∈ suppµ. Indeed, an intuitive choice of {ci} will prove to be a viable one. Assuming

supp(µ) compact, and the µi satisfying the open-cover property, let ci be the mass of the

neighborhood containing ui,

ci = µ(N1
n
(ui)).

N1
n
(ui) is the open ball containing ui. Since weak convergence is tested against f ∈

Cb(R
k), this choice of {ci}n will ensure weak convergence to

´
f dµ for all f . This is

the basic approximation that we will use in the approximation theorem. In the following

discussion, each µi will be modified so that the frame bounds of µ are retained.

As will be shown, the uniformity condition in Lemma 53 ensures that for frame bounds

B 6= A, µn large enough will ensure these bounds are preserved. First, a lemma describing

the convergence of the frame operator Tµi → Tµ.

Lemma 55. If the sequence of frame measures {µi} converges weakly to frame measure µ (irre-

spective of frame bounds), then

Tµi → Tµ.

Proof. This follows immediately from the definition of weak convergence, since Θx(r)r a

continuous function, and

Tµi(x) =
ˆ

Θx(r)r dµi
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Theorem 56. (Approximation of non-tight frame measures) Given frame measure µ, supp(µ)

compact, and frame bounds B 6= A, there exists a sequence of discrete measures

µi : Rn → R

converging weakly to µ. Moreso, every µi a frame measure with bounds A, B.

Proof. The proof is by construction. For µn = {ck, uk} Choose {uk} so that the vectors

satisfy the uniformity condition of Lemma 34 for an open cover by balls of radius 1
n . Let

the weights {ck} be the µ-measures of those open balls. It was reasoned before that such

a choice of µn will converge weakly to µ. It must be shown that for n large enough,

B‖x‖2 ≤∑
i
〈x,
√

ciui〉2 ≤ A‖x‖2.

Consider the case for the upper bound A (the case for B can be handled similarly). Let

Tn be the frame operator for {ui}n. By the continuity of eigenvalues, there is an N such

that n > N implies the eigenvalues of Tµ are within ε of the eigenvalues of Tµn . Since

the frame bounds are determined by B = λmin and A = λmax of Tµ, this ensures all

eigenvalues of Tµn are less than A except for possibly the largest one. Thus it is possible

that our sequence {µn} has no subsequence {µni} with λmax(µni) < A. The rest of the

proof will continue after the next results.

4.4 Perturbation of Frame Operators

The construction given approximates frame measure µ weakly by finite frames µi.
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In fact the method is general for approximating any measure by discrete measures. We

have that the limit of frame operators converges to the correct operator Tµi → Tµ. The

only problem being that the eigenvalues {λk}µi of Tµi may approach {λk}µ of T in a way

where (λi)max > λmax and/or (λi)min < λmin for infinitely many i ∈ N. The following

theorems show that the µi can be perturbed

µi → µ′i

so that limi→∞ µ′i → µ and each µi has frame bounds A, B.

Theorem 57. Let Ω : X → X .

1. Ω has spectrum {λk} with eigenvalues {vk} if and only if the operator Ω + εI has

spectrum {ε + λk} with eigenvalues {vk}.

2. Ω has spectrum {λk} with eigenvalues {vk} if and only if εΩ has spectrum {ελk}
with eigenvalues {vk}.

Proof. Since (Ω + εI)vk = Ωvk + εvk = (λk + ε)vk. The second equality follows just as

directly since εΩvk = εΩλkvk.

Let σ(T) = {λk}. In considering the frame operator T, the above result means diam(σ(T))

can be scaled and shifted by multiplication by ε ∈ R, or addition of the simple matrix εI.

Moreso, the next theorem says that these operations on the frame operator Ti have a sim-

ple interpretation as modifications to the frame µi, using the following definition.
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Definition 58. Denote by MB
A(R

n) the space of all frame measures on (B, Rn) with frame

bounds A and B. For two measures µ1, µ2 ∈ MB
A(R

n), their linear combination c1µ1 + c2µ2

is the Borel measure defined on open sets by

(c1µ1 + c2µ2)(E) = c1µ1(E) + c2µ2(E).

Theorem 59. Let µi have frame operator Tµi

1. Tµi + εI is the frame operator for the frame measure µi + {ui}, where {ui} is an

orthogonal basis with ‖ui‖ =
√

ε.

2. εTµi is the frame operator for the frame measure εµi.

Proof. The frame operator for µi + {ui} is

Tµi+{ui}(x) =
ˆ
〈x, r〉r d(µi + {ui}) =

ˆ
〈x, r〉r dµi + ∑

i
〈x, ui〉ui = Tµi x + εx.

The frame operator for εµi is obviously εTµi by linearity of the integral. These are frame

measures.

So for σ(Tµi), we can shift and scale its spectrum by simply appending an orthogonal

basis, or scaling the measure. Using this procedure, the proof of weak approximation of

frame measures can be completed.
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Proof. (Theorem 56 Continued) Let the finite frames µi → µ weakly. There exist pertur-

bations µ′i of µi so that µ′i → µ and each µ′i has frame bounds A, B.

From before we are concerned only with (λi)max and (λi)min. There exists subsequence

ni so that 1− 1
i <

diam(σ(Tµni
))

diam(σ(Tµ))
< 1 + 1

i . Picking εi = (1 + 1
i )
−1, it follows that

diam(σ(εiTni)) <
diam(σ(Tµ))

diam(σ(Tµni
))

diam(σ(Tµni
)) = diam(σ(Tµ)).

By Theorem 9, εiµni are frame measures with corresponding operators εiTni . Since εi → 1,

it follows that εiµni → µ.

Now consider subsequence {ηj} = {nij} ⊂ {ni} so that

λmin −
1
j
< λmin(εjTµηj

) < λmin +
1
j

. Picking ξ j =
1
j we have that

λmin < λmin

(
ξ j I + εjTµηj

)
.

Since ξ j I → 0, it follows that ξ j I + εjTµηj
→ Tµ.

For the subsequence ηj, define

Tµ′j
= ξ j I + εjTµηj

.

Where µ′j is the frame measure from Theorem 9. The perturbed frames µ′i now have

shifted and scaled eigenvalues so that diam
(

σ(Tµ′j
)
)
< diam

(
σ(Tµ)

)
, and λmin(Tµ′j

) >

λmin(Tµ). The perturbed sequence µ′j is the weakly converging sequence we have been

seeking.
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We have shown that an approximation {µi} exists for non-tight frame measure µ. The

method employed does not work for tight frames however, since perturbing the spectrum

of Tµn to a single value is impossible by appending orthonormal bases. In other words,

it is possible to contract and shift the spectrum of Tµn under the current method, but its

span will remain finite in length.

Theorem 60. (Approximation of Tight Frame Measures) Given tight frame measure µ, supp(µ)

compact, and frame constant A, there exists a sequence of discrete measures

µi : Rn → R

converging weakly to µ. Moreso, every µi a tight frame measure with frame constant A.

Proof. Beginning with the same {µi} from the approximation of non-tight frame mea-

sures, we again modify µi so that it is tight with constant A. For ε > 0, from before, for N

large enough, the frame condition gives

(A− ε)‖x‖2 ≤ 〈Tµn x, x〉 ≤ A‖x‖2

or

A‖x‖2 ≤ 〈Tµn x, x〉 ≤ (A + ε)‖x‖2.

Without loss of generality, assume the first inequality, so that −A‖x‖2 ≤ 〈−Tµn x, x〉 ≤
(ε− A)‖x‖2 gives for all x,

0 ≤ 〈(AI − Tµn)x, x〉 ≤ ε‖x‖2. (7)

Thus AI− Tµn is a positive semidefininte operator and therefore has rank 1 tensor product
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decomposition by the spectral theorem [6]

AI − Tµn =
n

∑
k=1

λkrk ⊗ rk.

Adding this operator to Tµn is the same as appending the discrete frame {rk}n
k=1 with

weights {√λk}n
k=1 to the frame µi (all eigenvalues λk are positive so this is a measure).

The resulting frame operator is T̃µn = Tµn + ∑n
k=1 λkrk ⊗ rk, so

AI − T̃µn =
n

∑
k=1

λkrk ⊗ rk −
n

∑
k=1

λkrk ⊗ rk = 0

thus T̃µn is the operator for a tight frame. Formula (5) says λk → 0 as µn → µ, so the new

frame measures still converge to µ.

Figure 8: The approximation of the circle measure (Example 18) by tight frame measures.

µ10 µ15 limn→∞ µn

. . . . . .

5 Afterword and Looking Ahead

The developments of the previous sections are interesting on their own, but should

primarily be seen as recasting frame theory in a new light. Through the specific problems
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encountered, we see the primary importance of the frame bounds in dictating important

theoretical questions. Such a question might proceed as “Can some mathematical prop-

erty be preserved in a given subset of frames while also preserving the frame bounds?” We

saw that these properties could naturally be topological ones in Sections 2 and 3, but

very easily could be algebraic or analytic. For example, we could try to refine the path-

connectedness of FUNF result (Theorem 26 ) to ask about paths of smallest length connect-

ing arbitrary unit-norm frames, becoming a problem in analysis. In the cases before, the

subsets of the frames were FUNF ⊂ F k
n, or sets of frames in F k

n with like bounds A, B.

We could ask the same connectedness question for FUNTF ⊂ FUNF. This is in fact a

very complicated problem. The path-connectedness of FUNTF, also known as the Frame

Homotopy Problem, was shown in 2013 using rather deep results from abstract algebra [1].

Over the course of this investigation, other new questions arose which have no immediate

answer. The biggest comes from Section 2. Can we delete more vectors from a moving

tight frame than the number described? The most ambitious question is whether there

exists a moving FUNF with smallest redundancy, i.e., a moving frame for S2n−1 with 2n

vectors? The preliminary lemmas used to prove Theorem 11 are general and apply to

any operator. Is there a subclass of moving frames for which we can make stronger con-

clusions about the invertibility of their frame operators when deleting larger numbers

of vectors from the fields? Another question from Section 2 regards preserving frame

bounds at every frame in a moving frame. I.e., is it possible to make a moving frame

( f i)
k
i=1 so that the frame ( f i(x))k

i=1 has the same bounds A, B for every x ∈ S2n+1?

Regarding Section 4, the biggest remaining question is motivated by the correlation we’ve

seen with the theory of finite frames. In particular, we were not able to conclude an

analogous Dilation Property (Theorem 7 ) for frame measures. The infinite-dimensional

Hilbert space obtained by making every v ∈ supp(µ) a formal basis element does not

give the same kind of geometric insight as the finite dimensional dilation property. Does
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a more revealing dilation property exist for frame measures? As stated before, the concept

of frame force for finite frames gives a deep geometric insight into tight frames. Beyond

the characterization of tight frame measures with the inertia property, does there exist a

more revealing notion of a force for frame measures?

The result in [1] on the connectedness of FUNTF is complicated beyond the level of this

thesis, and the question arises whether any simpler proof exists. As is often the case in

mathematics, the push to find a simpler proof motivated many of the results in Section 3.

While no simpler proof was discovered, the investigation generated new questions and

results of independent interest.

The significance of finite frames with respect to signal processing was expounded upon

in the Executive Summary section. The results of this investigation have significance pri-

marily in their theoretical application. In part, the importance of these results is evident

in their generality. Any time we deal with a spanning set, full rank operator, or nonva-

nishing vector field, we are in essence dealing with frames and moving frames. At the

same time, as was seen in the section on connectedness theorems, a discourse on frames

is inevitably a discourse on positive definite and semidefinite operators—which have a

tremendous scope of application in pure fields such as geometry, as well as uses in elec-

trical engineering and quantum mechanics.
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