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Abstract

The vortex produced at the leading edge of the wing, known as the leading edge vortex
(LEV), plays an important role in enhancing or destroying aerodynamic force, especially
lift, upon its formation or shedding during the flapping flight of birds and insects. In this
thesis, we integrate multiple new and traditional vortex identification approaches to visu-
alize and track the LEV dynamics during its shedding process. The study is carried out
using a 2D simulation of a flat plate undergoing a 45𝑜 pitch-up maneuver. The Eulerian
𝛤1 function and 𝑄 criterion are used along with the Lagrangian coherent structures (LCS)
analyses including the finite-time Lyapunov exponent (FTLE), the geodesic LCS, and the
Lagrangian-Averaged Vorticity Deviation (LAVD). Each of these Lagrangian methods is
applied at the centers and boundaries of the vortices to detect the vortex dynamics. The
techniques enable the tracking of identifiable features in the flow organization using the
FTLE-saddles and 𝜆-saddles. The FTLE-saddle traces have shown potential to identify
the timing and location of vortex shedding, more precisely than by only studying the
vortex cores as identified by Eulerian techniques. The traces and the shedding times
of the FTLE-saddles on the LEV boundary matches well with the plate lift fluctuation,
and indicates a consistent timing of LEV formation, growth, shedding. The formation
number and vortex shedding mechanisms are compared in the thesis with the shedding
time and location by the FTLE-saddle, which validates the result of the FTLE-saddles
and provide explanations of vortex shedding in different aspects (vortex strength and
flow dynamics).

The techniques are applied to more cases involving vortex dominated flows to explore
and expand their application in providing insight of flow physics. For a set of experi-
mental two-component PIV data in the wake of a purely pitching trapezoidal panel, the
Lagrangian analysis of FTLE-saddle tracking identifies and tracks the vortex breakdown
location with relatively less user interaction and provide a more direct and consistent
analysis. For a simulation of wall-bounded turbulence in a channel flow, tracking FTLE-
saddles shows that the average structure convection speed exhibits a similar trend as a
previously published result based on velocity and pressure correlations, giving validity to
the method. When these Lagrangian techniques are applied in a study of the evolution
of an isolated hairpin vortex, it shows the connection between primary and secondary
hairpin heads of their circulation and position, and the contribution to the generation
of the secondary hairpin by the flow characteristics at the channel wall. The current
method of tracking vortices yields insight into the behavior of the vortices in all of the
diverse flows presented, highlighting the breadth of its potential application.
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Chapter 1

Introduction

1.1 Bio-inspired micro aerial vehicles design and lead-

ing edge vortex shedding

The need for micro aerial vehicles (MAVs, figure 1-1(a)), which are small, intelligent,

and capable of dealing with challenging environments, has been increasing in military,

commercial, scientific, recreational and other applications, such as aerial photography,

delivery, surveillance, etc (Zbikowski, 2000; Żbikowski, 2002a; Pitt Ford and Babinsky,

2013). MAVs face unique challenges different from conventional aircraft, such as unsteady

flow fields when encountering a gust, and transitions from steady to unsteady flow or

from laminar to turbulent flow, due to their small size, low flight speed and working

environment.

In MAV design, a new trend has arisen that takes inspiration from flying insects or

birds (figure 1-1(b)), whose flapping flight produces much higher lift than the correspond-

ing fixed wings at low Reynolds number, Re = 𝑈∞𝑐/𝜈 ≤ 104 (based on characteristic

appendage length 𝑐 and velocity 𝑈∞), to achieve unprecedented flight capabilities (Dick-

inson and Gotz, 1993; Ellington et al., 1996; Wang, 2005; Eldredge et al., 2009; Mueller,

2001; Pines and Bohorquez, 2006; Shyy et al., 2010). The flapping wing mechanism at

high-angles of attack, however, imposes challenges that are unseen in fixed wing vehicles,

especially the formation of large scale vortical structures such as the leading edge vortex
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(a) Bio-inspired MAV (image courtesy of Sri-
grarom and Chan (2015))

(b) Animals with flapping flight (image
courtesy of Institute of Physics)

Figure 1-1: MAV design mimicking natural flyer flapping-wings.

(LEV), significantly altering the behavior of the aerodynamic forces (Shyy et al., 2008).

A better understanding of unsteady aerodynamics associated with massive separation

at low Re can be utilized to improve maneuverability and performance of MAVs (Shyy

et al., 2008; Pesavento and Wang, 2009).

1.1.1 Influence of leading edge vortex in massively separated flow

Unsteadiness in conventional air vehicles is considered a deficit since the unsteady motion

can lead to flow separation, instabilities, and flow-structure interactions that are difficult

to control. However, certain insects (Birch and Dickinson, 2001; Sane, 2003; Żbikowski,

2002b) and birds (Videler et al., 2004; Pesavento and Wang, 2009; Polet et al., 2015;

Polet and Rival, 2015) take advantage of specific maneuvers and the extent of their

flow control authority to manage the unsteady effects associated with flow separation in

different applications.

Key to understanding the aerodynamics of natural flyers flight is the phenomenon of

flow separation, in which the formation and shedding of coherent vortices can develop.

The complex wing kinematics can provide efficient locomotion and control in complex

flow environments or during precise maneuvers. Vorticity generation is also modified,

which can change the nature and dynamics of shed vorticity. A dynamic stall (figure 1-2)

occurs over aerodynamic surfaces when the effective angle of attack and the LEV formed

by flow separation changes rapidly (McCroskey, 1982). The LEV interacts with the
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Figure 1-2: Streamlines representing typical stall behavior of an aerodynamic surfaces
(image courtesy of Buchner (2016)).

wing surface and with vorticity shed from the trailing edge, which provides temporarily

enhanced lift and decreased pitching moment, and then sheds downstream, resulting in

lift loss and determining the ultimate form of the wake (Smith, 2005; Akkala et al.,

2015; Buchner, 2016). The physical mechanisms driving the complex process of flow

separation have remained in many ways unknown, requiring greater understanding of the

production, evolution, and interaction of vortices and shear layers shed by the pitching

airfoil (Żbikowski, 2002b; Eldredge et al., 2009; Ol et al., 2009; Buchner, 2016).

The attempt to model the flapping flight first emerged in the early work by Theodorsen

and Mutchler (1935), which approached the problem of unsteady airfoil aerodynamics

(the modeling of flutter in aircraft wings) from a quasi-steady perspective and led to prac-

tical modeling tools. Early work on the aerodynamic effects of more complex motions also

include the assessment of an airfoil starting from rest by Wagner (1925), the response of

an airfoil to a gust by Küssner (1936), and a theory related to generalized airfoil motions

by Kármán (1938). Following on from these studies, it has become almost standard to

model flapping flight as a simple combination of pitching, heaving, and surging motions,

as well as some more complex three-dimensional (3D) motions such as wing-root rotation.

Later on, Osborne (1951) and Pringle (1965) proposed the basic quasi-steady models, in

which the instantaneous forces on the flapping wing were assumed to be equivalent to

those for steady flight at the same instantaneous velocity and angle of attack.

The pioneering work on insect-wing flight mechanisms was started with the basic
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quasi-steady models (Weis-Fogh, 1972, 1973; Lighthill, 1973; Maxworthy, 1979), then

was rejuvenated by a series of seminal work by Ellington (1984a,b,c,d) in the 1980𝑠.

The latter strongly speculated the presence of unsteady flow mechanisms that led to

further study in the area, i.e., the most complete description of insect-wing flapping

motion at the time. Although it had been observed in earlier experiments (Martin and

Carpenter, 1977; Maxworthy, 1979), it was not until then that the key role of the LEV

received proper recognition in natural flight. The unsteady flow around flapping wings

comprises two components, the attached flow due to freestream flow over the wing and

that due to the unsteady motion, and separated flow in the form of wakes shed from

both leading and trailing edges (Ellington, 1984c). Ellington (1984c) also described the

dynamic stall of hovering insects, and believed it to be critical in force generation at low

Re. High values of lift coefficient were associated with the formation of an LEV, which

for specific parametric combinations was subsequently mixed with trailing-edge vortices

(TEV) (McCroskey, 1981; Freymuth, 1990). Reynolds and Carr (1985) later provided

insight on the basic mechanism governing LEV generation and stabilization, establishing

the influence on lift enhancement by spanwise flow through the core of the LEV.

In the past two decades, a large number of experimental studies based on observations

and measurements have been carried out to better understand the vortex dynamics in the

near wake and the associated aerodynamic implications in flapping flight. For example,

Ohmi et al. (1990, 1991) studied the vortex formation in the flow around a translating

and harmonically pitching airfoil at Re between 1500 and 10000, with mean angle of

attack of 15∘ or 30∘, by a pathline method. At large angle of attack they found that the

patterns in the vortex wake depend on whether the translational or rotational motion

dominates the flow, and how the LEV interacts with TEV, while the Re effect was of

secondary importance. In the case of the flow dominated by the rotational motion, the

governing parameter is the product of the reduced frequency and the pitch amplitude,

which is closely related to the Strouhal number (St) (Triantafyllou et al., 1991, 1993).

Brodsky (1991) first measured the structure of the vortex wake for a peacock butterfly

flying in a wind tunnel using high-speed filming, which showed that the near wake of

the butterfly in ‘feeding’ flight was a system of discrete pairs of coupled vortex rings,
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and the propulsive force is produced continuously through the evolutionary changes in

the interaction between wings and the ambient environment. Grodnitsky and Morozov

(1992, 1993) studied the near wake structures of several insects in tethered flight with a

dust flow visualization technique. Their results indicated that flapping insects created a

single vortex ring during each stroke, that an insect interacts with its own wake during

the whole stroke cycle to gain additional energy, and that insects have adopted kinematic

and morphological adaptations to increase the total efficiency of their flight apparatus.

Dickinson and Gotz (1993) carried out two-dimensional (2D) experiments on insect-

like flapping-wing motion and investigated the effects on the lift of several kinematics

parameters with the force measurement and flow visualization techniques. Jones con-

ducted a series investigations of the propulsive properties of a heaving airfoil both the-

oretically and experimentally (Jones et al., 1996, 1997; Jones and Platzer, 1999; Jones

et al., 2000; Jones and Babinsky, 2011). Ellington and his co-workers made the remark-

able discovery of the LEV on a scaled-up model of the hawk-moth wings (Re ≃ 100)

(Ellington et al., 1996; Willmott et al., 1997; Van Den Berg and Ellington, 1997a,b).

They reported that insects utilize unsteady aerodynamic mechanisms to produce enough

lift force to stay aloft, and in particular, prolonged attachment of an LEV due to the

spanwise vortex stabilization was shown to be a key element in enhancing the lift force

production. They postulated that spanwise flow through the vortex core, causing a coni-

cal spiral vortex coalescing with the tip vortex and convecting into the trailing wake, was

responsible for the redirection of momentum toward the wing tip. This would then allow

for the LEV circulation to remain sufficiently small to delay vortex shedding, similar to

the quasi-steady stabilization experienced in the low 𝐴𝑅 delta-wing LEV arrangement

(Martin and Carpenter, 1977; Van Den Berg and Ellington, 1997a,b). Not long after

these studies, Liu et al. (1998) found that due to the presence of the LEV, the wings of a

hovering hawk-moth were able to generate lift force up to 40% greater than that required

to support its weight.

Anderson et al. (1998) studied the thrust-producing harmonically oscillating foils

through force and power measurements, as well as visualization data, to classify the

principal characteristics of the flow around and in the wake of the foil. Dickinson et al.
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(1999) measured the near field flows around and aerodynamic forces acting on a robotic fly

model wing in an idealized hovering motion by means of the particle imaging velocimetry

(PIV) techniques. Thomas et al. (2004) and Bomphrey et al. (2005, 2006) investigated

the LEV structure of several real insects in forward flight with high resolution using

smoke-wire visualization and PIV techniques, which indicated that the LEV could be

continuous across the thorax and contribute to the aerodynamic force generation in a form

of vortex-body interactions. Poelma et al. (2006) carried out quantitative measurements

of time-dependent 3D velocity fields around a flapping wing. Recently, Baik et al. (2011)

investigated an experiment of a pitching and plunging flat plate at a prescribed effective

angle of attack in the range of 0.16 ≤ St ≤ 0.35. Using PIV, Akkala et al. (2015)

investigated the kinematic and aerodynamic behaviors of sinusoidally plunging, flexible

airfoils over a parameter space broadly representative of flapping flight, and described

the evolution of flow structures with the effects of airfoil deformation, and developed a

scaling parameter.

There have also been many numerical approaches that have been carried out for aero-

dynamic analysis of wings in severe unsteady maneuvers. Wang (2000a, 2003, 2005) have

been tackling the problem of insect-flight aerodynamics from a computational fluid dy-

namics (CFD) point of view, which showed the association between the unsteady flow

and accelerating flat plates using Navier-Stokes (NS) calculations. Similarly, using both

inviscid models and CFD methods, Pullin and Wang (2004) analyzed the flow past an

accelerating flat plate at fixed angles of attack. Jones (2003) considered the unsteady

separated flow of an inviscid fluid around a moving flat plate by a boundary-integral

method to represent and solve for the velocity field. Zdunich (2003) arrived at similar

results for the unsteady separated flow around a thin airfoil, but without recourse to com-

plex algebra. Ansari et al. (2006) developed a circulation-based, quasi-three-dimensional

unsteady aerodynamic model of insect-like flapping wings in hover, and showed a good

agreement with existing experimental data in terms of both flow field representation and

force prediction. Aono et al. (2009) investigated and addressed the vortex dynamics

of the unsteady 3D near wake of a hovering hawk-moth and its correlation with the

aerodynamic force production by means of a biology-inspired dynamic flight simulator.
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Figure 1-3: Lift coefficient per wing as a function of dimensionless time for a fling at
Re = 128 (image courtesy of Arora et al. (2014)). The insets show the vorticity contours
around the wing at the instants corresponding to the wing positions. At the beginning
of fling (𝑖) − (𝑖𝑖), a strong LEV is formed, resulting in lift increase. Later, the LEV is
about to shed in (𝑖𝑖) − (𝑖𝑖𝑖), thus a gradual drop in lift is registered.

Using the lattice Boltzmann method (LBM) simulations for the ‘clap and fling’ motion,

Arora et al. (2014) indicated the evolving LEV and its circulation that enhanced instan-

taneous lift on the wing, and the LEV shedding that corresponds with gradual lift drop,

as shown in figure 1-3, especially at low Re. Jardin and David (2015) reviewed some

main hypotheses of both LEV attachment and high lift generation on revolving wings by

direct numerical simulation (DNS) of the NS equations, and evaluated the influence of

the Coriolis effects on the lift generation.

The described studies have investigated numerous aspects of the vortex dynamics in

near wake and have deepened the understanding of the aerodynamics of natural flapping

flight. Missing from the literature are investigations of some of the finer points of the

LEV shedding behavior and its influence on the aerodynamic forces over the wings. The

complementary insight into the detailed fluid physics associated with the LEV will inform

wing-design guidelines for MAVs.
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1.1.2 Origins of leading edge vortex shedding

As postulated in section 1.1.1, the lift development of unsteady aerodynamic motion

shows a close association with the LEV evolution and the corresponding near wake flow

at low Re (McCroskey, 1982; Jones and Babinsky, 2010). The evolution of an LEV

can be categorized into two main stages: formation and shedding. The former stage

is initiated by shear-layer roll-up at the leading edge, and is characterized by the LEV

attachment to the aerodynamic surface. During the formation, the LEV continuously

increases in size and circulation, correlating to lift enhancement. This is followed by

the LEV shedding and convecting downstream, and the lift then drops correspondingly

(Dickinson et al., 1999; Wang, 2000b; Carr et al., 2013; Widmann and Tropea, 2017). In

particular, the importance of the LEV shedding mechanisms to unsteady lift, deciding

both the maximum lift that can be achieved and lift peak generation timing, is due largely

to its maximum achievable circulation and shedding timing. It has also motivated the

investigation of the parametric dependence of vortex strength on vortex evolution, and

scaling laws to predict vortex strength (Buchholz et al., 2011; Wang and Eldredge, 2013;

Wojcik and Buchholz, 2014).

A number of hypotheses regarding the origins of vortex shedding for inviscid/viscous

and internal/external flows have been put forth, such as ‘formation number’ N (Gharib

et al., 1998; Rosenfeld et al., 1998); flow instability (Boghosian and Cassel, 2016); topolog-

ical flow changes inside a vortex (Dallmann et al., 1995; Theofilis et al., 2000; Marquillie

and Ehrenstein, 2003); an eruption of secondary near-wall vorticity bisecting the main

vortex (Obabko and Cassel, 2002); local temporal instability near the center of the vortex

with upstream and downstream traveling disturbances (Marquillie and Ehrenstein, 2003;

Wee et al., 2004). Among them, the most commonly used concept to explain vortex

shedding in biological flight is the optimal vortex formation, which is associated with the

formation number introduced originally by Gharib et al. (1998).

Gharib et al. (1998) used a piston-cylinder apparatus with flow visualization and

PIV to demonstrate that there is a limit to the size and strength (circulation) that a

vortex ring can attain, which is referred to as saturation. Upon saturation, the vortex
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rings are shed via a process termed ‘pinch-off’ based on the Kelvin-Benjamin variational

principle (Kelvin, 1880; Benjamin, 1976). Vortex ring pinch-off is characterized by the

non-dimensional ‘formation time’, 𝑇 = L/D (in their case, equivalent to the piston stroke-

length-to-diameter ratio). Gharib et al. (1998) reported that for a variety of piston

kinematics and geometry, a leading vortex ring saturates at 𝑇 ≈ 4, while the vortex

ring increases in size and circulation but remains unsaturated for 𝑇 < 4, and for 𝑇 > 4,

additional entrainment of vorticity from the shear layer is rejected by the vortex ring

and remains spatially in the adjacent trailing jet (shown in figure 1-4) (Pottebaum and

Gharib, 2004). The formation number is defined as the formation time at which pinch-off

happens, and exhibits as a universal time scale.

Gharib et al. (1998) observed N = 4 for vortex ring generated by an impulsively

started jet from the piston-cylinder, while N falls in a range of 3.6−4.5 for a broad range

of generating flow conditions. Krueger and Gharib (2003) demonstrated that the time-

averaged thrust for starting jets generated using a piston-cylinder mechanisms maximizes

at instants 𝑇 ≈ N, and the thrust reduces for time 𝑇 > N. The formation number concept

then was extended to flow past oscillating cylinders by Jeon and Gharib (2004) and to

temporarily varying orifices by Dabiri and Gharib (2005).

Milano and Gharib (2005) attempted to bridge the gap between piston-cylinder and

impulsively-started, flat-plate work, using a genetic algorithm validated by Milano and

Koumoutsakos (2002). They reported the optimized solutions of a flapping rectangular

plate with aspect ratio 𝐴𝑅 = 6 produced an LEV of maximum circulation with associated

formation numbers in the range of 3.6−4.6, in agreement with previous studies. Similarly,

Ringuette et al. (2007) studied vortex development in the wake of a rectangular flat plate

𝐴𝑅 = 2 and 6 undergoing a purely translating motion, to investigate the influence of

the tips on vortex growth along the edges. His study showed the LEV saturated at

each of the chord-wise planes investigated, indicating that the optimal vortex formation

methodology is applicable to vortices in the wake of accelerating plates.

Dabiri (2009) extended the optimal vortex formation concept by defining the forma-

tion number based on the feeding shear-layer velocity and the characteristic length of the

vortex generator, which provides a good scaling for the maximum LEV circulation gener-
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(c)

(b)

(a)

Figure 1-4: Visualization of vortex rings for (a) 𝑇 = 2; (b) 𝑇 = 3.8; (c) 𝑇 = 14.5 gen-
erated through impulsively started jet by the piston-cylinder (image courtesy of Gharib
et al. (1998)).

ated by an airfoil executing unsteady motions. Since then, a formation number is found

for a wide range of natural flyer flight. Rival et al. (2009) studied various bio-inspired

airfoil kinematics, and demonstrated the relevance of vortex shedding to all maneuvers

investigated with formation numbers between a range of 4.4 and 5. Jones and Babin-

sky (2011) showed that for 𝐴𝑅 = 4 rotating flat plates at 25∘ angle of attack and Re

ranging from 1× 104 to 6× 104, formation number does capture the trends in LEV satu-

ration and lift accounting for the Re variation. Onoue and Breuer (2016) demonstrated

that the LEV formation time and circulation scale with the characteristic velocity of

the feeding shear layer over a range of reduced frequencies (0.038 − 0.11) and pitching

amplitudes (42∘ − 100∘) at distinct Re on a rapidly pitching flat plate, and had a scaled

LEV circulation and vortex formation time peak within a range of N = 3.5 − 4.

It is also quite common to see vortex shedding interpreted as a result of a ‘Kelvin-

Helmholtz-like’ instability of the shear layer (Cherdron et al., 1978; Pauley et al., 1990;

Tsui et al., 1995; Kaiktsis et al., 1996; Mittal et al., 2003; Boghosian, 2011). Previous

research by Boghosian and Cassel (2013) has indicated that pressure gradient forces
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Figure 1-5: Demonstration of VSM in the flow field of an elliptically shaped vortex.
Contour of net force divergence and streamlines (black lines) are plotted. Zero momentum
location is shown by intersection of 𝑢 = 0 and 𝑣 = 0. which becomes the vortex shedding
location due to the local maxim of net force divergence (image courtesy of Boghosian
and Cassel (2016)).

having a specific magnitude signature (adverse, zero, and favorable in the streamwise

direction) acting on regions in the flow having zero momentum, plays a critical role

in making the physical link between the presence of an instability, and the subsequent

vortex shedding. This explanation is called the pressure gradient mechanism (PGM)

(Boghosian and Cassel, 2013). Essentially, the vortex is pulled apart by the adverse and

favorable pressure gradients on the upstream and downstream sides of the shear layer at

the shedding location. Boghosian and Cassel (2016) expanded PGM in vortex shedding

by including viscous and body forces and eliminating directional dependence, which is

termed the vortex shedding mechanism (VSM) and proved that it is mathematically valid

for any 2D, incompressible flow, as demonstrated in figure 1-5. Similarly, Lawson and

Dawson (2013) proposed a theory attributing the initiation of vortex ring pinch-off from

a synthetic jet with a trailing pressure maximum (TPM) that forms at upstream of the

vortex ring.

By examples from the existing literature, it has been shown that vortex shedding

mechanisms can potentially serve as models for aerodynamic force prediction. Addition-

ally, optimal vortex formation can provide a unifying principle to understand the diversity

of solutions used to achieve propulsion in natural fliers. To obtain detailed knowledge

of the vortex shedding mechanisms of LEV, it is necessary to investigate the shedding
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timing and saturation strength of an LEV to understand the relationship between the

wake structures and the aerodynamics (DeVoria and Ringuette, 2012).

1.2 The state of the art in vortex identification meth-

ods

Vortices, especially LEVs, and their interaction with aerodynamic bodies in separated

flow are ubiquitous features in wakes of aerodynamic surfaces at high angles of attack

associated with flapping wings. Previous indicators of LEV shedding are mainly based

on the examination of airloads, which include the instants at which the pitching moment

coefficient changes significantly, or the achievement of maximum or critical leading edge

suction (Leishman and Beddoes, 1989; Wilby, 2001; Sheng et al., 2006). Qualitative

and quantitative descriptions of the vortex dynamics based directly on the flow field by

vortex identification methods are required, which can provide insight into the physical

mechanisms of lift generation/loss and moment balance over the flapping-wings (Brunton

and Rowley, 2009a; Mulleners and Raffel, 2012; Huang and Green, 2016).

Although the identification and tracking of vortices is not a new problem, a widely-

accepted, objective definition of a vortex and its boundaries remains elusive (Jeong and

Hussain, 1995; Chakraborty et al., 2005). The common goal of vortex identification

methods is to locate, extract, and visualize vortical structures. The diffusion of vorticity

by viscosity, coupled with the interaction of vorticity distribution with background strain

fields, makes the vortex identification problem in real (complex, unsteady, 3D) fluids quite

complicated. A series of reviews have been provided by Post et al. (2003); Salzbrunn et al.

(2008); Pobitzer et al. (2010, 2011).

1.2.1 Eulerian approaches

Many commonly-used vortex criteria are Eulerian, which are calculated using spatial

derivatives of the velocity field, such as closed or spiraling streamlines, iso-vorticity sur-

faces, pressure minima etc. The Eulerian criteria generally identify coherent structures
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as concentrated regions of high vorticity, and usually contain the essential characteristics

of the flow induced by a vortex filament (McWilliams, 1984; Hussain, 1986; Chakraborty

et al., 2005). These Eulerian approaches define a function that can be evaluated point-

by-point and then classify each point as being inside or outside a vortex according to a

criterion based on the point values.

Most local vortex identification criteria are derived from the velocity gradient tensor

(or Jacobian), ▽𝑢, thereby making them Galilean invariant, i.e., invariant under any

constant speed translation of the underlying coordinate system (Post et al., 2003; Günther

et al., 2016). The most popularly used local criteria are: the Q-criterion (Hunt et al.,

1988), 𝜆2-criterion (Jeong and Hussain, 1995), the 𝛥-criterion (Chong et al., 1990), and

the swirling strength, 𝜆2
𝑐𝑖-criterion (Zhou et al., 1999).

The Q-criterion identifies vortices as flow regions with positive second invariant of

▽𝑢, i.e. Q > 0 (Jeong and Hussain, 1995; Dubief and Delcayre, 2000). The 𝜆2-criterion

is formulated based on the observation that a local pressure minimum in a plane alone

fails to identify vortices under strong unsteady and viscous effects. Jeong and Hus-

sain (1995) defined the vortex as a connected region with two positive eigenvalues of

the pressure Hessian matrix. If the eigenvalues of the symmetric tensor are ordered as

𝜆1 ≥ 𝜆2 ≥ 𝜆3, this definition is equivalent to the requirement that 𝜆2 < 0 at every point

inside the vortex core. Using critical point theory, Chong et al. (1990) define a vortex

to be the region where ▽𝑢 has complex eigenvalues with the 𝛥-criterion. The swirling

strength 𝜆2
𝑐𝑖-criterion (Zhou et al., 1999) is based on the 𝛥-criterion and uses the imagi-

nary part of the complex conjugate eigenvalue of ▽𝑢 to identify vortices. Cucitore et al.

(1999) uses the change in the relative distance between particles inside a vortex struc-

ture, 𝐷-criterion, in conjunction with the 𝛥 > 0 to identify a vortex. Graftieaux et al.

(2001) introduced the 𝛤2 function, calculating an averaged rotation intensity to locate

the vortex center in 2D flow fields, which has gained popularity due to its simplicity.

Chakraborty et al. (2005) proposed using the ratio of real and imaginary parts of the

complex eigenvalues of ▽𝑢 to refine the definition of a vortex core. Okubo (1970) and

Weiss (1991) independently developed a criterion related to the Q-criterion. As Jeong

and Hussain (1995); Dubief and Delcayre (2000) and Haller (2005) have pointed out,
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these Eulerian criteria identify similar structures in most flows except in some special

cases, i.e. time-dependent rotations.

In the past, the above Eulerian approaches have been widely used in unsteady aero-

dynamic problems. Zhou et al. (1999) used 𝜆2
𝑐𝑖-criterion to study the evolution of a single

hairpin vortex structure in the mean turbulent field of low Re. Berson et al. (2009)

combined 𝛤2 and streamlines to identify and track the location of vortex center with a

non-zero convection velocity, which is validated using PIV performed in an oscillating

flow as a model of a thermo-acoustic refrigerator. Yilmaz and Rockwell (2012) applied

PIV, phase-referenced 3D streamline patterns, volume images of iso-Q-criterion and vor-

ticity projections in orthogonal directions, to study the onset and development of the 3D

flow structure around a wing undergoing a pitch-up maneuver and the relation between

the flow features and the unsteady aerodynamic forces on the wing. Instantaneous flow

features extraction can be combined with tracking of the singularities over time.

Because Eulerian scalar quantities depend only on the instantaneous velocity field

and its gradient, they are relatively quick to compute. However, they share some disad-

vantages (as reviewed by Jeong and Hussain (1995); Cucitore et al. (1999); Kolář (2007)).

When visualizing the data, especially in 3D, an important disadvantage is that the struc-

ture size and boundary shape can vary with the user’s selection of threshold or iso-surface

level.

1.2.2 Lagrangian approaches

In Lagrangian approaches, a vortex is generally viewed as an evolving domain with a

high degree of material invariance (Chakraborty et al., 2005; Haller, 2005). Virtually,

all Lagrangian approaches are based on the flow map, a vector quantity that maps fluid

trajectories from their initial locations to their final locations in space after an integra-

tion time. They include information on the history/future of the flow, and have a clear

physical interpretation (Gurtin, 1982). The Lagrangian approaches uncover repelling,

attracting, and shearing material surfaces from experimental and numerical flow data,

which promise a simplified understanding of the overall flow geometry, and exact quan-

tification of material transport, thus providing a powerful prediction of vortical features
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of the flow (Haller, 2015). A number of Lagrangian approaches have been proposed over

the past two decades (Peacock and Dabiri, 2010; Peacock et al., 2015; Shadden, 2011;

Haller, 2015; Allshouse and Peacock, 2015).

The Lagrangian coherent structures (LCS) analysis was initiated by Haller (2001),

and includes a series of Lagrangian methods that calculate quantities based on the rel-

ative behavior of fluid particle trajectories. The most popular LCS analysis is based on

finite-time Lyapunov exponents (FTLE) and related techniques (Haller and Yuan, 2000;

Haller, 2002; Shadden et al., 2005; Lipinski and Mohseni, 2010; Allshouse and Peacock,

2015; Huntley et al., 2015; Balasuriya, 2015; He et al., 2016), the maximizing ridges of

which have been defined geometrically as hyperbolic LCSs in some cases and represent

partial vortex boundaries (Shadden et al., 2005; Lipinski and Mohseni, 2010; Haller, 2011;

Mulleners and Raffel, 2012).

Unsteady aerodynamic problems have been widely explored with FTLE in the past

two decades. FTLE was applied to vortex extraction from time-periodic laboratory

experiments by Voth et al. (2002) and then from turbulent flow experiments by Mathur

et al. (2007). Shadden et al. (2005) applied FTLE to the ‘double gyre’ example and

various other example 2D flow fields. Shadden et al. (2006) studied the entrainment

and detrainment of an empirical vortex ring as well as in the vicinity of a live jellyfish.

Green et al. (2007) extended the application of FTLE combined with 𝜆2
𝑐𝑖-criterion and Q-

criterion to a 3D turbulent channel flow. The entrainment regions of a sheet swimming in

an inviscid fluid have been examined by the FTLE (Peng and Dabiri, 2008). Separation

from an airfoil at a low angle of attack and Re = 104 has been studied by Lipinski

et al. (2008) and Cardwell and Mohseni (2008), who used the FTLE and associated

particle tracking to explore the vortex formation and reattachment topology. The FTLE

obtained from a computational model of jellyfish swimming has been studied by Lipinski

and Mohseni (2009) and in 2D flow with a low Re by Wilson et al. (2009). Later, Brunton

and Rowley (2009b) used FTLE to visualize the wake of a flat-plate cross section of a wing

either fixed or undergoing oscillatory pitching and plunging kinematics in a free stream

with Re = 102. Green et al. (2010) used FTLE to investigate the evolution of vortical

structures in the wakes of rigid pitching panels with a trapezoidal platform geometry
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Figure 1-6: Presence of LEV at an instant during a dynamical stall cycle indicated by
FTLE ridges (red-pFTLE, blue-nFTLE) (image courtesy of Mulleners and Raffel (2012)).

chosen to model idealized fish caudal fins. Mulleners and Raffel (2012) described the

influence of the unsteadiness of a pitching wing with respect to the dynamic stall process

utilizing a combination of FTLE (shown in figure 1-6) and 𝛤2. O’Farrell and Dabiri (2014)

used FTLE on both numerical and experimental data to study the vortex formation and

shedding in starting jets.

As research in LCS analysis advances, there is inevitably evolution in the scope of the

field. Recently, Haller (2011, 2015) initiated a stretching-based mathematical approach

to identify Lagrangian vortical structures from the complex geophysical flow data by

the geodesic theory. The geodesic theory of LCSs is a collection of global variational

principles for material lines/surfaces, including hyperbolic, parabolic, and elliptic LCSs

that form the time-evolving dynamical structures (Farazmand and Haller, 2012a; Haller

and Beron-Vera, 2013, 2014; Haller, 2015).

The skeleton of the most influential hyperbolic LCSs act as the generalized stable

and unstable manifolds over a finite-time interval (Farazmand and Haller, 2012b, 2013).

Parabolic LCSs detect the shearless transport barriers that are minimally hyperbolic,

hence serve as generalized jet cores (Farazmand et al., 2014). Elliptic LCSs extend the

notion of Kolmogorov-Arnold-Moser (KAM) tori (a doughnut-shaped surface) and serve

as generalized coherent vortex boundaries in unsteady flows (Haller and Beron-Vera,

2012; Beron-Vera et al., 2013). Most recently, Farazmand and Haller (2016) introduce

the notion of rotationally coherent vortices as impermeable tubular material regions with
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a high concentration of vorticity over a finite time interval. In this fashion, Haller et al.

(2016) use the Lagrangian Averaged Vorticity Deviation (LAVD), to identify rotationally

coherent vortices, whose elements exhibit identical mean material rotation.

These recent LCS analysis approaches were established to provide objective (material

invariant) vortex extraction methods. Objectivity requires that the vortex identifica-

tion methods provide invariant results under Euclidean coordinate changes of the form

(Truesdell and Noll, 2004),

𝑦 = Q(𝑡)𝑥 + p(𝑡), (1.1)

with Q(𝑡) denoting a time-dependent proper orthogonal tensor and p(𝑡) denoting a time-

dependent translation (Haller, 2015). Therefore, the Lagrangian vortex is defined ob-

jectively in this way, representing the material evolution independent of the observer

(Gurtin, 1982).

Other than the contribution of Haller and his group, there are several other heuristic

and mathematical Lagrangian approaches that have been developed over the years, in-

cluding Finite-Size Lyapunov exponent (FSLE) (Joseph and Legras, 2002; d’Ovidio et al.,

2004; Bettencourt et al., 2013), Perron-Frobenius transfer operator methods that help

determine regions that ‘hold together’ (Froyland and Padberg, 2009; Dellnitz and Junge,

2002; Froyland et al., 2010), topological analyses based on braids (Allshouse and Thif-

feault, 2012; Budišić and Thiffeault, 2015), ergodic partitions and entropy Budišić and

Mezić (2012); Froyland and Padberg-Gehle (2012), the Koopman operator (Mezić, 2013),

sets whose boundaries retain their curvature (Ma and Bollt, 2014), clustering (Huntley

et al., 2015; Froyland and Padberg-Gehle, 2015), and a Lagrangian generalization of the

Okubo-Weiss criterion via mesochronic analysis (Mezić et al., 2010).

Cucitore et al. (1999) extracted LCS by observing the neighboring particles around a

particle, i.e., they let the reference frame move with the tested particle. Salzbrunn et al.

(2008) introduced the notion of ‘pathline predicates (Boolean function)’, which proposed

a pathline placement allowing a user to track individual particles showing a specified

behavior, yielding a proper illustration of the flow. Lagrangian smoothing as proposed
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by Fuchs et al. (2008) and Shi et al. (2009) can be applied to any local vortex detector

that was originally designed for steady flow by smoothing the extraction results along

pathlines over time. Weinkauf and Theisel (2010) developed the description of streaklines

as tangent curves of a derived vector field, and show how it can be computed from the

spatial and temporal gradients of the flow map. A particle density estimation is proposed

by Wiebel et al. (2011), which injects a number of particles and observes their attraction

behavior over time. Specifically, their mesochronic classification considers regions where

the deformation gradient has real eigenvalues as mesohyperbolic, and regions where the

deformation gradient has complex eigenvalues as mesoelliptic. Mancho et al. (2013)

proposed that abrupt variations in the arc-length function of a trajectory indicate the

positions of boundaries of qualitatively different dynamics, which is quick to compute

but not objective. Some comprehensive reviews of the diversity of Lagrangian approaches

and recommendations for applying their requirements are provided by Jiang et al. (2005);

Peacock et al. (2015) and Hadjighasem et al. (2017).

As a new vortex identification scheme, Lagrangian approaches have gained more pop-

ularity due to their objective nature, i.e., frame invariant under any smooth translation

and rotation of the coordinate system (Günther et al., 2016). LCS analyses provide the

insight into the structure and dynamics of the shear layer that analysis of the Eulerian

approaches overlook (Shadden et al., 2005; Garth et al., 2007).

1.3 Objectives

There is a wealth of previous work addressing the problem of vortex dynamics in massively-

separated flow of flapping-flight with a variety of approaches. However, there is a corre-

sponding lack of fundamental research based on the direct vortex detection and tracking

with current vortex identification methods, and a lack of convergence of the various vortex

shedding mechanisms that explain the occurrence of physically-significant phenomena.

In the work of this thesis, Eulerian vortex identification approaches, along with La-

grangian coherent structure analysis, such as hyperbolic LCS, Lagrangian saddle, and

LAVD, are used to study the LEV separation in a plate simulation. The optimal vortex
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formation concept and VSM are examined in the research to reveal more mechanisms of

vortex shedding.

While current computational systems can efficiently process the velocity information

needed to track trajectories for these Lagrangian calculations, improvements in experi-

mental techniques have led to increasingly large amounts of data, requiring development

of automated procedures for vortex tracking (Chong et al., 1990). All the computa-

tions are implemented automatically by the code developed as a part of this work. An

additional objective of this thesis work is to minimize user interaction for successful

identification and tracking of physically significant vortex structures.

This thesis seeks to contribute to the following ongoing discussion in the field of

unsteady aerodynamics by doing the following:

� Initiate a discussion of the definition of vortex shedding and influences on vortex

shedding, including perspectives of vortex dynamics and flow dynamics for research

on the physical mechanisms of vortex shedding, and connections between vortex

dynamics and aerodynamic forces on the immersed body.

� Implement several new Lagrangian vortex identification methods for study of vortex

visualization and tracking in massively separated and turbulent flow and establish

their efficacy and appropriateness for different data sets.

� Provide suggestions on proper usage of multiple vortex criteria and combine appli-

cations of multiple vortex criteria for complete descriptions of vortex dynamics in

unsteady 2D and 3D flow fields.
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Chapter 2

Analysis Techniques

The main focus of vortex dynamics analysis in the current study is to determine the

evolution of the LEV and study the origin of its shedding since it is believed to have a

critical influence on lift in unsteady aerodynamics (Chakraborty et al., 2005). It involves

two steps: the detection of the vortex and the analysis of its location and strength. In this

chapter, the numerical analysis scheme used to detect the LEV during its formation and

shedding process are presented, as well as some vortex shedding mechanism diagnostics.

2.1 Visualization Techniques

In the study, a combination of multiple vortex detection schemes are applied to visualize

the vortex by its area, center and boundary, which are used for tracking as well.

2.1.1 𝛤1, 𝛤2 functions

Many Eulerian criteria are not capable of pinpointing the individual vortex axes or de-

termining the geometry of the various vortex cores (Mulleners and Raffel, 2012). The 𝛤1,

𝛤2 functions provide a simple and quick way to indicate the vortex center. Graftieaux

et al. (2001) initially defined the scalar function 𝛤1 by using the topology of streamlines

to find the center of the vortex core in 2D flows. The velocity field is sampled at discrete

spatial locations, and the 𝛤1 quantity is defined as,
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Figure 2-1: Demonstration of 𝛤1 function calculation.

𝛤1(𝑃 ) =
1

𝑁

𝑁∑︁
𝑖=1

(𝑃𝑀 ×𝑈𝑀) · 𝑧
||𝑃𝑀 || · ||𝑈𝑀 ||

𝑑𝐴 =
1

𝑁

𝑁∑︁
𝑖=1

sin(𝜃𝑀)𝑑𝐴, (2.1)

where 𝐴 is a 2D rectangular domain of fixed size and geometry, centered on 𝑃 (shown as

light green block in figure 2-1) and 𝑀 lies in 𝐴. Here, 𝑁 is the number of points 𝑀 inside

𝐴, and 𝑧 is the unit vector normal to the measurement plane. 𝜃𝑀 is the angle between

the velocity vector at 𝑀 (𝑈𝑀) and the radius vector at 𝑀 (𝑃𝑀). || · || represents the

Euclidean norm of the vector (sometimes known as the Frobenius norm). The parameter

𝑁 plays the role of a spatial filter, but only weakly affects the location of the maximum

𝛤1 function (Graftieaux et al., 2001), which is chosen as 4 × 4 in this thesis.

The vortex center location is determined by the local maxima of 𝛤1, typically ranging

from 0.9 to 1 near the vortex center. The sense of vortex rotation is given by the sign of

the 𝛤1 function. An example of vortex detection by the 𝛤1 function is given in figure 2-2,

where a simple 2D periodic Bickley jet model involving several rotating vortices (Onu

et al., 2015) is visualized by streamlines and 𝛤1 function contours. The vortex centers

are captured by local maxima of 𝛤1 function, coinciding with the rotating center of the

closed streamlines.
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Figure 2-2: Visualization of Bickley jet flow field by 𝛤1 contour and streamline (gray
lines). The vortex centers are shown by white spots.

The 𝛤1 quantity itself is not Galilean invariant, meaning that it is affected by reference

frame translation. The local function 𝛤2 was derived from the previous 𝛤1 algorithm to

account for this (Graftieaux et al., 2001). It takes into account a local convection velocity

𝑈̃𝑃 around 𝑃 and thus is Galilean invariant. 𝛤2 function is defined as,

𝛤2(𝑃 ) =
1

𝑁

𝑁∑︁
𝑖=1

(𝑃𝑀 × (𝑈𝑀 − 𝑈̃𝑃 )) · 𝑧
||𝑃𝑀 || · ||𝑈𝑀 − 𝑈̃𝑃 ||

𝑑𝐴, (2.2)

where 𝑈̃𝑃 = 1
𝑁

∑︀𝑁
𝑖=1𝑈𝑀 𝑑𝐴.

Graftieaux et al. (2001) defined a vortex core in 2D flow as area with 𝛤2 > 0.6, and

showed that the locus of the vortex core boundary was insensitive to perturbations in

the threshold around this value.

2.1.2 Eulerian Q-criterion

Another Eulerian scalar, the Q-criterion is employed to discern vortices based on the dis-

tinction it makes between shear and swirling flow (Hunt et al., 1988; Poelma et al., 2006;

Lu and Shen, 2008; Yilmaz and Rockwell, 2012; Carr et al., 2013). The velocity gradient

tensor ∇𝑢 is decomposed into the symmetric rate of strain tensor 𝑆 and antisymmetric

rate of rotation tensor 𝛺, as,

∇𝑢 = S+ 𝛺, (2.3)
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Figure 2-3: Visualization of Bickley jet flow field by green positive Q-criterion regions
and streamlines (gray lines).

where 𝑆 = 1
2
[∇𝑢+(∇𝑢)⊤] and 𝛺 = 1

2
[∇𝑢−(∇𝑢)⊤]. [·]⊤ indicates the matrix transpose.

The 𝑄 criterion is then defined as,

Q =
1

2
[||𝛺||2 − ||𝑆||2]. (2.4)

In simple flows, especially simulations in two-dimensions, contours of Q > 0 can

often be used to define vortices, which is interpreted as where local rotation dominates

over local strain. A demonstration of Q-criterion is shown in figure 2-3 of the Bickley jet

model compared to streamlines. The regions with positive Q-criterion are usually defined

as vortex areas in simple flows, especially 2D simulations, such as in figure 2-3, where

the vortex area of Bickley jet model is located by green positive Q-criterion regions.

In complex flows, notably 3D or turbulent experimental flows, contours of a certain

percentage of Q𝑚𝑎𝑥 are often used, for example 0.1Q𝑚𝑎𝑥, in practical implementation.

When noise is present in the system caused by uncertainty in the velocity measurements,

the spatial gradients used to calculate the Q-criterion magnify the errors caused by the

noise significantly, thus causing inherently noisy Q-criterion for experimental flows (Rock-

wood, 2017). For 3D or turbulent datasets, the vortex surface identified by a Q-criterion

threshold appears significantly smoother, resulting in an easy interpretation, as well as

allowing to distinguish individual vortices from a shear layer which is often difficult.
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Fluid trajectories at 𝑥0, 𝑡0

(a) Fluid trajectories at 𝑥0, 𝑡0.

Location of fluid trajectories at 𝑡0 + 𝜏 .

(b) Location of fluid trajectories at 𝑡0 + 𝜏 .

Figure 2-4: Visualization of flow map in positive time.

2.1.3 Finite-time Lyapunov exponent

Building from the work of Haller (2002) and Shadden et al. (2005) provided a precise

definition of the Finite-time Lyapunov exponent (FTLE), a scalar field that measures

the maximum rate of Lagrangian separation around a certain location over a prescribed

time interval.

Virtually all Lagrangian approaches are based on the flow map 𝜑(𝑥0, 𝑡0, 𝜏), a vector

quantity defined on 𝑥0 at 𝑡0, that maps fluid trajectories initiated at 𝑥0, 𝑡0 to their final

location in space after an integration time 𝜏 (shown in figure 2-4), thereby mimicking

experimental flow visualization by tracers (Haller, 2015). In the visualization of the flow

map, the trajectories initiated at 𝑥0, 𝑡0 are colored by their location in figure 2-4(a), and

the color distribution in their final location in figure 2-4(b) shows the separation of the

trajectories from their neighboring trajectories due to their belonging to different parti-

tions of flow dynamics, thus the flow map provides the separation information of the fluid

trajectories of 𝑥0 at 𝑡0 over the integration time 𝜏 . Several Lagrangian approaches also

rely on the deformation gradient, 𝜕𝜑(𝑥0, 𝑡0, 𝜏)/𝜕𝑥0, comprised of the spatial derivatives

of the flow map with respect to the initial location 𝑥0.
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𝜆1

(a) 𝜆1 and 𝜉1

𝜆2

(b) 𝜆2 and 𝜉2

Figure 2-5: Visualization of eigenvalues and eigenvectors of 2D Cauchy-Green strain

tensor.

To calculate FTLE at location 𝑥0 at time 𝑡0, calculation of the flow map 𝜑(𝑥0, 𝑡0, 𝜏)

and its deformation gradient 𝜕𝜑(𝑥0, 𝑡0, 𝜏)/𝜕𝑥0 are the first step. The Lagrangian stretch-

ing associated with the deformation gradient is captured by the Cauchy-Green strain

tensor, which is defined as (Truesdell and Noll, 2004),

𝐶(𝑥0, 𝑡0) =

[︂
𝜕𝜑(𝑥0, 𝑡0, 𝜏)

𝜕𝑥0

]︂⊤
𝜕𝜑(𝑥0, 𝑡0, 𝜏)

𝜕𝑥0

. (2.5)

For a 2D velocity field, the Cauchy-Green strain tensor is symmetric and positive

definite, we can get the positive eigenvalues (𝜆𝑖) and normalize the eigenvectors (𝜉𝑖)

(shown in figure 2-5) as follows:

𝐶(𝑥0, 𝑡0)𝜉𝑖 = 𝜆𝑖𝜉𝑖, 𝑖 = 1, 2; 0 < 𝜆1 ≤ 𝜆2; |𝜉𝑖| = 1; 𝜉2 ⊥ 𝜉1. (2.6)

The maximum eigenvalue of the Cauchy-Green strain tensor is referred to as the

coefficient of expansion 𝜎𝜏 :

𝜎𝜏 (𝑥0, 𝑡0, 𝜏) = 𝜆2(𝐶(𝑥0, 𝑡0)). (2.7)

From there, the FTLE field is defined from the coefficient of expansion as:

𝐹𝑇𝐿𝐸(𝑥0, 𝑡0, 𝜏) =
1

2𝜏
log𝜎𝜏 (𝑥0, 𝑡0, 𝜏). (2.8)
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Maximizing ridges in the FTLE field, which can either be explicitly extracted or (more

commonly) visualized by viewing a contour plot (Lipinski and Mohseni, 2010), indicate

high levels of Lagrangian stretching among nearby particle trajectories. For well-defined

FTLE ridges computed using a sufficiently long integration time, the flux across the

ridges is usually negligible (Shariff et al., 1989; Rom-Kedar et al., 1990; Guckenheimer

and Holmes, 2013), and therefore delineate regions that exhibit qualitatively different

dynamical behavior. For this reason, these ridges can represent vortex boundaries in a

flow (Shadden et al., 2005; Haller, 2001, 2002).

While repelling ridges of FTLE can be calculated using forward-time integration,

attracting ridges at time 𝑡0 can be found by calculating FTLE using particle trajectories

initialized at 𝑡0 and integrated in negative-time. This calculation also yields a scalar

FTLE field, but because it measures Lagrangian separation in negative time, its ridges

represent those regions in the flow where particle trajectories are being attracted in

physical (forward) time. By including ridges from both FTLE calculations, the analysis

produces both the repelling FTLE ridges at 𝑡0 along which particle trajectories locally

are most prone to deviate from one another (positive-time, pFTLE), and attracting

FTLE ridges at 𝑡0 along which particle trajectories locally have contracted to each other

(negative-time, nFTLE). pFTLE are analogous to the stable manifolds, and in contrast,

nFTLE are associated with the unstable manifolds, both of which apply the notion of

hyperbolic invariant manifolds to finite-time dynamics.

The pFTLE and nFTLE ridges at time 𝑡0 intersect at the outer boundaries of vortices

but do not overlap when there is low level of shear. Inclusion of both FTLE types provides

a more complete boundary that delineates which particles are entrained into the vortex

from those that continue to convect with the outer flow. Since the Q-criterion only

visualizes the vortex cores, the ability to visualize the boundaries objectively provides

additional insight into the vortex dynamics, especially when studying the interactions

among coherent structures. The Bickley jet model is used to show the vortex detection

by pFTLE and nFTLE ridges in figure 2-6. The boundaries of individual vortices of which

are captured by the both the pFTLE and nFTLE ridges but not in previous Eulerian

approaches. A representation of the vortex boundaries using FTLE ridges is obtained at
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Figure 2-6: Visualization of Bickley jet flow field by positive- (blue) and negative-time
(red) FTLE ridges.

later times in the flow evolution by reinitializing the flow map calculations (updating 𝑡0),

which is considered the ‘standard’ method by Lipinski and Mohseni (2010).

Compared to Eulerian criteria, using FTLE in vortex detection could avoid the sensi-

tivity to short-term anomalies in the velocity field because it has been shown to be robust

and relatively insensitive to imperfect velocity data (Haller, 2002). The mean location

of the FTLE ridge got a minimal effect by the random velocity field noise as long as it

remains a time-weighted sense (it has either small magnitude or short duration) (Olcay

et al., 2010). It is important to note that changing the threshold value or integration

time for FTLE ridge extraction does not change the location or shape of the coherent

structures identified, only the thickness of the ridges (Shadden et al., 2005; Rockwood

et al., 2016).

There is also scope for improvement in the practical application of FTLE. For exam-

ple, it is important to check convergence of the FTLE values with system parameters,

such as the temporal and dimensional resolution of experimental velocity data. While it

is not uncommon to use a trajectory integration time step during flow map calculation

that is smaller than the time between subsequent velocity data sets, the temporal reso-

lution of the data must be sufficient so that interpolation techniques adequately recreate

intermediate velocity fields when it is necessary (Rockwood et al., 2016). For inherently

3D flows, a single plane of data from stereoscopic PIV, even if it contains all three ve-

locity components, may not be sufficient to generate an accurate Cauchy-Green strain
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tensor and FTLE field. Particularly, vortices parallel to the data plane, such that the

vortex-induced velocity will be normal to the plane, will not be captured (Rockwood,

2017). In those cases prior knowledge for orientations of both the vortex of interest and

the data plane is critical for the success to capture the majority structures of the data

plane by FTLE.

Finally, an outstanding issue is that it can be unclear what type of local separatrices

the FTLE ridges represent (i.e., normally hyperbolic repulsion, Lagrangian shear, or

tangential stretching) (Mezić et al., 2010; Allshouse and Peacock, 2015; Haller, 2015;

Hadjighasem et al., 2017). In order to exact FTLE ridges that are indeed hyperbolic, the

normal rate of Lagrangian strain 𝑆⊥ can be examined along the identified ridges Haller

(2002). The normal rate of Lagrangian strain is defined by equation 2.9,

𝑆⊥(𝑥0, 𝑡0) =< 𝑛(𝑥0, 𝑡0),𝑆𝑛(𝑥0, 𝑡0) > . (2.9)

Here, 𝑆 represents the local rate of strain tensor, 𝑛(𝑥0, 𝑡0) is defined as a unit vector

normal to the target FTLE ridges, and < · > denotes inner product operation.

A positive value of normal rate of Lagrangian strain 𝑆⊥ indicate a hyperbolically

repelling FTLE ridge, while a negative value reveals hyperbolically attracting FTLE

ridges (Mathur et al., 2007). The method is applied to different flow phenomena, such

as hyperbolic material line detection in 2D turbulent flow (Mathur et al., 2007), the

evolution of hairpin vortices in turbulent boundary layers (Green et al., 2007), and the

forecast for the major short-term changes in oceanic contamination patterns of oil spills

Olascoaga and Haller (2012).

2.1.4 Geodesic LCS

The geodesic theory of LCSs is a collection of global variational principles for material

transport barrier, which includes elliptic LCS, hyperbolic LCS and parabolic LCS (Haller

and Beron-Vera, 2012). By an analogous study of LCSs with black holes by Haller and

Beron-Vera (2013) and Haller (2015), the above LCSs coincide with null-geodesics of

appropriately defined Lorentzian metrics. In this thesis, we only discuss the application

28



of hyperbolic LCS, herein the term LCS will refer to a hyperbolic LCS only.

By the geodesic definition of LCSs, Haller and Beron-Vera (2012) and Farazmand and

Haller (2012a) argue that repelling LCSs in 2D flows are least-stretching strainlines in a

forward time interval. Similarly, attracting LCS are defined as least-stretching strainlines

in backward time over the same time interval. By solving the Lorentzian metrics, the

repelling LCSs turn out to be the material lines that are everywhere tangent to the field

of unit eigenvectors 𝜉1(𝑥0) associated with the smaller eigenvalue field 𝜆1(𝑥0) of the

Cauchy-Green strain tensor 𝐶(𝑥0, 𝑡0) from equation 2.6 (Farazmand and Haller, 2012b,

2013). In practice, repelling LCSs are computed, in a way similar to the computation of

streamlines from the velocity field (Miron and Vétel, 2015).

To calculate the repelling LCS at time 𝑡0 in a 2D flow, it starts from the calculation of

the flow map 𝜑(𝑥0, 𝑡0, 𝜏) (blue arrow in figure 2-7) over the time interval of interest [𝑡0,

𝑡1] (black arrow in figure 2-7, where 𝑡1 = 𝑡0 + 𝜏). Then we obtain the repelling Cauchy-

Green strain tensor 𝐶𝑟𝑒𝑝(𝑥0, 𝑡0) with the particle trajectories repelling information over

the time interval [𝑡0, 𝑡1] by equation 2.5, and its eigenvalues 𝜆𝑖(𝑥0, 𝑡0) and eigenvectors

𝜉𝑖(𝑥0, 𝑡0). The repelling LCSs at 𝑡0 are calculated as trajectories, i.e., loci of points 𝑟

from a set of grid points satisfying the following ordinary differential equation (ODE) of

the eigenvectors 𝜉1(𝑟, 𝑡0),

𝑟′ = 𝜉1(𝑟, 𝑡0). (2.10)

In practice, the above procedure starts with the selection of initial coordinates that

satisfy two criteria: the first criterion states that the normal repulsion rate (the larger

eigenvalue 𝜆2(𝑟, 𝑡0) of the repelling Cauchy-Green strain tensor 𝐶𝑟𝑒𝑝(𝑥0, 𝑡0)) computed

along the repelling LCS is larger than the tangential stretching rate (the smaller eigen-

value 𝜆1(𝑟, 𝑡0)) i.e. 𝜆2(𝑟, 𝑡0) > 𝜆1(𝑟, 𝑡0) (Haller, 2011; Onu et al., 2015); the second

ensures the repelling LCS has a local maximum repulsion rate 𝜆2(𝑟, 𝑡0) among all other

material lines. The procedure is carried on until either the boundary of the domain is

reached or pre-set maximum LCS length is reached.
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Figure 2-7: Schematic of flow maps.
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Figure 2-8: Visualization of Bickley jet flow field by repelling LCS (cyan lines) and

pFTLE contour.

The repelling LCS in the Bickley jet model is demonstrated in figure 2-8, in which the

pFTLE contour is shown for comparison as well. In this case, the repelling LCSs match

with the bright pFTLE ridges well.

The calculation of attracting LCSs at time 𝑡1 starts with the flow map 𝜑′(𝑥0, 𝑡1, 𝜏) (red

arrow in figure 2-7) over the same dynamical system over [𝑡0, 𝑡1] but in negative time.

Thus by equation 2.5, we gain the attracting Cauchy-Green strain tensor 𝐶𝑎𝑡𝑡(𝑥0, 𝑡1)

with the particle trajectories attracting information over the time interval [𝑡0, 𝑡1], and

its eigenvalues 𝜆𝑖(𝑥0, 𝑡1) and eigenvectors 𝜉𝑖(𝑥0, 𝑡1). The attracting LCSs are locus of

points 𝑟 solved by ODE equation 2.10 with eigenvectors 𝜉1(𝑟, 𝑡1) from the attracting

Cauchy-Green strain tensor 𝐶𝑎𝑡𝑡(𝑥0, 𝑡1) with the same procedure as described above. As

proved by Farazmand and Haller (2013), the forward repelling LCS coincides with the

backward attracting LCS, and the backward repelling LCS coincides with the forward
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attracting LCS when calculated in the same time interval of interest.

By the procedure described above and full available data over the time interval of

interest [𝑡0, 𝑡1], we can get the repelling LCS of 𝑡0 and attracting LCS of 𝑡1. To get the

complete and dynamically consistent LCS at any time t of the interval (𝑡0 ≤ 𝑡 ≤ 𝑡1)),

the repelling LCS of 𝑡0 needs to be advected forward by the flow map 𝜑(𝑥0, 𝑡0, 𝜏) (blue

arrow in figure 2-7) from 𝑡0 to 𝑡 to get repelling LCS of 𝑡 (Farazmand and Haller, 2012a,

2013). Similarly, the attracting LCS of 𝑡1 needs to be advected backward by the flow

map 𝜑′(𝑥0, 𝑡1, 𝜏) (red arrow in figure 2-7) from 𝑡1 to 𝑡 to get attracting LCS of 𝑡. The

geodesic LCS method is an automated and objective vortex detection approach, as well

as a mathematically rigorous and sophisticated scheme by support of exact variational

principles. There remain some practical challenges for its application, such as the fact

that it involves heavy computation and is sensitive to a large number of numerical input

parameters; it is too restrictive for some weak coherent structures as it only detects the

most coherent LCSs (Hadjighasem et al., 2017).

2.1.5 Lagrangian saddle

In vortex dominated flow, a Lagrangian saddle (or hyperbolic stagnation point) is a time-

varying location at which particles consisted of attracting LCS approach asymptotically

while particles consisted of repelling LCS repel from asymptotically (Balasuriya, 2012;

Balasuriya and Padberg-Gehle, 2014; Balasuriya et al., 2016). Lagrangian saddles have

been shown to be dynamically important features as components of vortex boundaries

(Green et al., 2011; Mulleners and Raffel, 2012), and can be used for vortex tracking

(Huang and Green, 2015; Rockwood et al., 2016) that yields insight into the behavior of

the vortices in various vortex dominated flow.

In practice, there is no universally agreed-upon definition for Lagrangian saddle. The

research by Voth et al. (2002) identifies a Lagrangian saddle as the intersection between an

nFTLE ridge, corresponding to the unstable manifold, and a pFTLE ridge, corresponding

to the stable manifold. In this thesis, the Lagrangian saddles identified in this way will

be referred to as FTLE-saddles.

A more recent method (Olascoaga and Haller, 2012), termed LCS-core analysis, con-
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cluded that a point 𝑟 that lies on an attracting LCS of time 𝑡1 (a locus of finite number of

points calculated in a time interval (𝑡0, 𝑡1) ) is a Lagrangian saddle over the time interval

of interest [𝑡0, 𝑡1] if its normal rate of Lagrangian strain 𝑆⊥(𝑟, 𝑡) =< 𝑛(𝑟, 𝑡),𝑆𝑛(𝑟, 𝑡) >

stays negative for all the time t (𝑡0 ≤ 𝑡 ≤ 𝑡1)) when advected backward by the flow

map 𝜑′(𝑥0, 𝑡1, 𝜏) (red arrow in figure 2-7) from 𝑡1 to 𝑡. Here, 𝑛(𝑟, 𝑡) is defined as a unit

vector normal to the target attracting LCS at an arbitrary time 𝑡 during the backward

advection.

Similarly, Miron and Vétel (2015) proposed a method extracting a Lagrangian saddle

from an attracting LCS by an exponent 𝜆 related to the tangential rate of Lagrangian

strain 𝑆|| based on the previous work of Haller and Iacono (2003), Haller (2004) and

Lekien and Haller (2008). These Lagrangian saddles are computed and referred to as

𝜆-saddle in this thesis. The Lagrangian 𝜆-saddle over the time interval of interest [𝑡0, 𝑡1]

is defined as the hyperbolic point 𝑟 that maximizes the 𝜆(𝑟, 𝑡0, 𝑡1) exponent along the

attracting LCS of time 𝑡0 (Miron et al., 2015). The attracting LCS of time 𝑡0 is calculated

in a time interval [𝑡2, 𝑡0], where 𝑡2 = 𝑡0 − 𝜏 , by flow map 𝜑′(𝑥0, 𝑡0, 𝜏) (red dashed arrow

in figure 2-7). The 𝜆(𝑟, 𝑡0, 𝑡1) exponent, defined as in equation 2.11, is computed for all

points 𝑟 of the attracting LCS of 𝑡0, and is a trajectory integral of the tangential rate of

Lagrangian strain 𝑆|| (green dotted arrow in figure 2-7) of each point 𝑟 for all the time t

(𝑡0 ≤ 𝑡 ≤ 𝑡1)) when the points are advected forward by the flow map 𝜑(𝑥0, 𝑡0, 𝜏) (blue

arrow in figure 2-7) from 𝑡0 to 𝑡1 (Miron and Vétel, 2015).

𝜆(𝑟, 𝑡0, 𝑡1) =

𝑡1∫︁
𝑡0

𝑆||(𝑟, 𝑠)𝑑𝑠, (2.11)

where the tangential rate of Lagrangian strain 𝑆|| is defined as,

𝑆||(𝑟, 𝑡) =< 𝑒(𝑟, 𝑡),𝑆𝑒(𝑟, 𝑡) > . (2.12)

Here, 𝑒(𝑟, 𝑡) is defined as a unit vector along and tangent to the target attracting LCS

at an arbitrary time 𝑡 during the advection. As proved by Haller and Iacono (2003), for

incompressible flow 𝑆||(𝑟, 𝑡) = −𝑆⊥(𝑟, 𝑡).
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Note that, the attracting LCS of time 𝑡0 consists of finite number of points extracted

from a set of grid points satisfying equation 2.10 and the calculation criteria. The tan-

gential unit vector 𝑒(𝑟, 𝑡) of each point 𝑟 during the forward advection by flow map

𝜑(𝑥0, 𝑡0, 𝜏) can be solved by setting 𝑒 = (cos 𝜃, sin 𝜃) for 𝑟 at 𝑡0 and equation 2.13:

𝜃 = 𝑣𝑥 cos2 𝜃 − 𝑢𝑦 sin2 𝜃 + (𝑣𝑦 − 𝑢𝑥) cos 𝜃 sin 𝜃. (2.13)

Alternatively, Dellnitz and Junge (2002); Balasuriya (2011); Balasuriya and Padberg-

Gehle (2014); Balasuriya et al. (2016) proposed some analytical and numerical methods

to extract Lagrangian saddles, termed as hyperbolic neighborhoods, which is beyond the

scope of this thesis.

2.1.6 Lagrangian-Averaged Vorticity Deviation

A majority of researchers (Haller, 2005; Chakraborty et al., 2005) view vortex cores as

regions where both swirling motion and small particle separation govern the flow. To

capture both main features of a vortex, Haller et al. (2015) proposed an objective vortex

criteria called Lagrangian-Averaged Vorticity Deviation (LAVD).

LAVD is defined as the trajectory integral of the normed vorticity deviation from its

spatial mean around a certain location in space 𝑥0 from time 𝑡0 to 𝑡, as

𝐿𝐴𝑉 𝐷𝑡
𝑡0

(𝑥0) =

∫︁ 𝑡

𝑡0

|𝜔(𝑥(𝑠;𝑥0), 𝑠) − 𝜔̄(𝑠)|𝑑𝑠. (2.14)

where 𝜔̄ is the instantaneous spatial mean of vorticity, and 𝑠 is the coordinate along a

Lagrangian trajectory initialized at 𝑥.

A rotationally coherent Lagrangian vortex is defined as a nested set of outward de-

creasing tubular level sets of LAVD. The Lagrangian vortex boundary is defined as the

outermost closed convex level surface of LAVD, satisfying convexity deficiency (ensur-

ing a round structure) and arc-length thresholds (eliminating numerical or observational

noise), while the vortex center is defined as singular level sets (local maxima) of LAVD en-

closed by an LAVD boundary. The vortex detection by LAVD in the Bickley jet model is
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Figure 2-9: Visualization of Bickley jet flow field by LAVD contour. Vortex boundaries
and centers are shown as red circles and spots.

visualized in figure 2-9, and LAVD boundaries and centers identify the vortex boundaries

and centers in the flow.

LAVD is obtained from the exact, dynamically consistent Dynamic Polar Decompo-

sition (DPD) (Haller, 2016) of fluid element finite deformation, thus it provides a fully

frame invariant, and not subject to individual judgment, thresholding vortex criterion,

avoiding trial and error implementation in complex 3D flow or material convection flow.

Furthermore, LAVD can provide a complete vortex boundary definition and has benefits

for vortex strength study. However, it requires some user input (the maximal convexity

deficiency and the minimal spatial scale), and requires a large enough computational

domain for practical application (Hadjighasem et al., 2017).

2.1.7 Circulation

Vortex strength is measured by circulation as it characterizes the vorticity flux into a

prescribed vortex area. Thus the circulation of an LEV is related to the lift development

over the aerodynamic surface (Ringuette et al., 2007; Carr et al., 2013), and the increase

of the circulation indicates a vorticity flux into the vortex area. The circulation 𝛤 of a

vortex is defined as in equation 2.15:

Γ =

∮︁
𝑢 · 𝑑𝑙. (2.15)

In this thesis, the vorticity is sampled at discrete spatial locations. By the Stokes
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Theorem, the instantaneous circulation can then be obtained by integrating its vorticity

within the vortex area:

Γ =
𝑁∑︁
𝑖=1

𝜔 · 𝑑𝑆. (2.16)

Here, the total vortex area 𝑆 is the finite enclosing vortex area defined for circulation

calculation. 𝑁 is the number of discrete area elements inside 𝑆.

In vortex circulation study, special care needs to be taken in vortex area definition. Al-

though studies on vortex dynamics have been carried out for decades, a widely-accepted,

objective definition of a vortex and its boundaries and areas remains an open question.

A consistently defined vortex area, especially in study of circulation development, is crit-

ical to the result. The area definition is more complicated when the vortex is fed by a

shear layer, as the boundary between the vortex and the shear layer is unclear. Several

application-specific manners of vortex area definition, based on different vortex definition

approaches, are applied in the following chapters for different data sets. The resulting

circulation developments are compared for a further discussion of different vortex criteria

performance in vortex circulation study.

2.2 Vortex shedding mechanisms

2.2.1 Optimal vortex formation

The optimal vortex formation theory (Dabiri, 2009) suggests that the optimality of

propulsion can be achieved by maximizing the vortex size and strength. The key concept

in the optimal vortex formation is the dimensionless vortex formation time 𝑇 , defined by

the instantaneous vortex circulation 𝛤 as well as the vortex-feeding shear layer velocity 𝑈

(𝑈 is originally the jet velocity from the piston-cylinder apparatus in the vortex ring gen-

eration (Gharib et al., 1998)), and the characteristic length scale 𝐷 (cylinder exit of the

piston-cylinder apparatus in vortex ring generation (Gharib et al., 1998)), respectively

(Mohseni et al., 2001; Dabiri, 2009):

𝑇 =
𝐶𝛤

𝐷𝑈
, (2.17)
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where 𝐶 is a constant factor depending on the physical configuration of a given vortex

generator, and is given by the inverse of the dimensionless vorticity flux 𝑑𝛤/𝑑𝑇 from the

vortex generator configuration. In the piston-cylinder apparatus for vortex ring genera-

tion, the dimensionless vorticity flux 𝑑𝛤/𝑑𝑇 ≃ 1/2 (Didden, 1979), then the parameter

𝐶 is equal to 2 in the case. Dabiri (2009) proposed the constant factor 𝐶 to make sure

the change of formation number 𝑁 = 4 (defined as the formation time at which pinch-off

happens from piston-syliner apparatus) is independent of the vorticity flux from the vor-

tex generator. Thus only the influence of parameter 𝛤 , 𝐷 and 𝑈 on the formation number

will be shown by comparing the resulting formation number to the universal formation

number 𝑁 = 4 for a comparison across the various apparatus of vortex shedding.

Some physical intuition on the vortex formation process limitations is indicated by

equation 2.17, such as larger vortex circulation tends to advance formation number,

while either a stronger shear layer or a longer shear layer from the vortex generator tends

to delay the formation number. With the framework of optimal vortex formation, the

optimal design strategies that involve combinations of various aforementioned parameters

can be applied for engineering design assessment.

A series of research (Mohseni et al., 2001; Dabiri and Gharib, 2005; Milano and

Gharib, 2005; Krueger et al., 2006; Dabiri, 2009) applied the optimal vortex formation

concept to flapping flight, and modified the definition of formation time 𝑇 accounting for

the varying velocity distribution and vortex generator configuration.

In the study of flapping flight of this thesis, vortex circulation 𝛤 in equation 2.17 is

approximated by equation 2.18,

𝛤 ≈ 𝑈∞

cos(𝛼)

𝑈

𝛿
𝑡𝛿, (2.18)

Here the flux of vorticity-containing mass into the vortex is represented by the advection

of vorticity flux from the uniform feeding shear layer with velocity 𝑈∞/ cos(𝛼) over the

plate with thickness 𝛿 (Dabiri, 2009; Sattari et al., 2012; Rival et al., 2014). The vorticity

generated at the leading edge can be approximated by the vortex-feeding shear layer

velocity 𝑈 divided by the characteristic shear layer thickness 𝛿.
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Equation 2.17 is then simplified to calculate the optimal formation time as follow:

𝑇 ≈ 𝐶𝑈∞𝑡

𝑐 cos(𝛼)
, (2.19)

where the characteristic length scale 𝐷 implies the geometry-related limit of vortex

growth, e.g., nozzle opening, cylinder diameter, or airfoil chord, which in the current

work is chosen as the plate length 𝑐 (Sattari et al., 2012; Rival et al., 2014). In addition,

𝑡 is the dimensionless time, and 𝛼 is the instantaneous plate angle of attack. In the case

of chapter 3, the plate angle of attack 𝛼 remains 45∘ during the period of interest, and

when setting 𝐶 = 1 the dimensionless vorticity flux 𝑑𝛤/𝑑𝑇 =
√

2/2, thus 𝐶 =
√

2 (as

the reverse of dimensionless vorticity flux) is chosen in this study.

2.2.2 Vortex shedding mechanism

According to the Vortex shedding mechanism (VSM) proposed by Boghosian and Cassel

(2016), the necessary and sufficient conditions of vortex separation for any 2D, incom-

pressible flow are (1) the existence of a location with zero momentum and (2) the same

location having the presence of a net force with a positive divergence. More specifically,

VSM states that the existing vortex will undergo a separation at a location where if and

only if:

(1) There is a zero-momentum point as defined with following stream function (𝛹)

condition,
𝜕𝛹

𝜕𝑥
=

𝜕𝛹

𝜕𝑦
= 0. (2.20)

(2)The divergence of the net force is positive, which can be expressed as follows:

∇ · 𝑓𝑛𝑒𝑡 = −∇2𝑝 + ∇ · 𝑓𝑏. (2.21)

for incompressible flow.

In this thesis, this condition becomes the presence of a positive pressure streamwise

gradient because no body force is present. As demonstrated by its definitions, vortex

separation detected by VSM is supposed to be independent of 𝑅𝑒, study case geometry,
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and net force source.
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Chapter 3

Vortex formation and shedding in

two-dimensional massively separated

flows

In this chapter, vortex visualization, tracking, and strength calculation using both Eule-

rian and Lagrangian methods were applied to a numerical 2D example data set to reveal

the occurrence of physically-significant phenomena in massively-separated flows.

3.1 Test case

To obtain a better understanding of vortex shedding in flapping flight, it is useful to

break such a complex problem into simpler sub-problems. Compared to the whole sys-

tem, a sub-problem approach focuses on more sophisticated models progressively. There

are several goals of this approach: it pays attention to individual phenomena, such as

the influence of single vortex dynamics on leading edge vortex shedding events in these

scenarios, before including more complicated phenomena like vortex interactions; it also

serves as a benchmark for comparisons between various experiments, computations and

theories from independent researchers, within a manageable parameter space and sim-

plified systematic framework (Buchner, 2016); finally, it serves as a validation exercise

for the development of numerical algorithms and experimental apparatuses (Eldredge,
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2007).

In the spirit of a sub-problem approach, this chapter focuses on one such canonical

case, a simulation of the flow at 𝑅𝑒 = 1000 surrounding a flat plate in the process

of a 45∘ pitch-up maneuver generated by Eldredge (2007). The Re of this case lies in

the range of typical flight experienced by insects, thus is relevant to the design and

miniaturization of MAVs (Ol et al., 2009). This data set has been distributed among the

Massively Separated Flows Discussion Group of the American Institute of Aeronautics

and Astronautics (AIAA) Fluid Dynamics Technical Committee (FDTC), in an effort to

share insight into the canonical case as the simplification of the problems of unsteady

airfoils or unsteady flow over airfoils problem.

An instantaneous snapshot of the flow field of the data is shown in figure 3-1 by

streamlines and vorticity contour. Figure 3-2 shows the plate angle of attack 𝛼 (the

angle between the plate and the freestream) change in dimensionless formation time.

During this motion, there is formation and shedding of a large scale leading edge vortex

(LEV) and trailing edge vortex (TEV), the dynamics of which are shown to correlate

with the fluctuation of lift on the plate (Wang and Eldredge, 2013).

3.2 Analysis implementation

Mechanisms of LEV shedding in the canonical case are examined by approaches intro-

duced in chapter 2. Most of the popular vortex identification schemes can only provide

partial information (Sadlo and Peikert, 2009), i.e. vortex center, or boundary, or core

area, thus different combinations of multiple vortex criteria are necessary for a complete

comprehension of vortex dynamics during LEV shedding.
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Figure 3-1: Instantaneous snapshots of the primary LEV shedding process visualized by

vorticity contour and instantaneous streamlines at 𝑇 = 6.0. Flat plate is shown as a

yellow line.
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Figure 3-2: Angle of attack (𝛼) of the plate with respect to formation time 𝑇 .

3.2.1 Vortex center and boundary identification

Demonstration of vortex core area, center and boundary detections are shown in figure 3-

3. In that figure, the LEV center is first found using the 𝛤1 function, which is shown as

the orange spot in the center of the vortex core area visualized by positive Q-criterion.
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Q

(a) Vortex center identification

Q

(b) Vortex boundary identification.

Figure 3-3: Examples of vortex identification methods. Positive Q-criterion contour

(green) defines vortex core area. Negative- and positive-time FTLE ridges are shown as

red and blue ridges respectively, with contour level of values more than 85% maximum.

𝛤1 function, Q-criterion centers, and FTLE-saddles are orange, black and cyan spots,

separately.

Another method to locate vortex center uses the Q-criterion by first identifying a

rectangular area around the 𝛤1 center that roughly bounds the region ofQ > 0 (separating

vortex core from shear layer). Starting from the 𝛤1 center, the rectangular sides are

tangent to the farthest point of Q = 0 at up, down, right and left directions. The vortex

center by the Q-criterion is defined as the ‘center of mass’ of the Q-criterion in that

rectangular region (defined as in equation 3.1), shown as the black boxes and black spot

in figure 3-3(a).

𝐶 =

∑︀𝑛
𝑖=1𝑄𝑖𝑐𝑖∑︀𝑛
𝑖=1𝑄𝑖

, (3.1)

In equation 3.1, 𝑛 is the number of points with Q > 0 inside the rectangular region;

𝑄𝑖 is the value of Q at each point, and 𝑐𝑖 is spatial coordinate of each point. In the

present case, we found these two centers generally, but not exactly, locate the vortex

center at the same location.

For vortex boundary identification, we also compared several methods involving dif-
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ferent Lagrangian vortex criteria. In figure 3-3(b), the LEV boundaries are identified

by positive- (blue) and negative-time (red) FTLE ridges wrapping around vortex area.

The nFTLE ridges are calculated using a 𝜏 = 2.0 integration time, and 𝜏 = 4.0 for pF-

TLE ridges. The cyan dots mark FTLE-saddles, and are used for vortex tracking during

the flow evolution as they locate on the vortex boundaries (Huang and Green, 2015).

Among all the FTLE-saddles, only FTLE-saddles observed surrounding and convecting

consistently with the LEV are tracked and analyzed in this thesis.

Figure 3-4 presents the behavior of material particles, initially located in the vicinity

of an FTLE-saddle and its connecting pFTLE and nFTLE ridges at 𝑇 = 5.4, at four

instantaneous moments during their advection by flowmap. This is demonstrated and

compared with the nFTLE, pFTLE ridges and FTLE-saddles shown in the background,

which are calculated at the four instants 𝑇 = 5.4, 5.6, 5.8 and 6.1 respectively, by the

‘standard’ method introduced in section 2.1.3. Each quadrant of particles divided by the

initial FTLE ridges is assigned one solid color. Any particles found on the initial pFTLE

ridge with finite thickness are colored blue while those on the initial nFTLE ridges are

colored red, and particles found at the area where two ridges overlapping are colored

black.

There is a clear motion of particles away from the pFTLE ridge, and along the

nFTLE ridge, remaining tangent to the ridges, which agrees with the expected behavior

of particles in the vicinity of a Lagrangian saddle. The Lagrangian saddle behavior is

further observed in the thickening and compressing of the blue ridge initially containing

particles on the pFTLE ridge at 𝑇 = 5.4 as the nearby particles are repelled away,

and a narrowing and stretching of the red ridge initially containing particles on the

nFTLE ridge at 𝑇 = 5.4 as the particles are attracted closer. All the new FTLE-saddles

identified by the ‘standard’ method at each instantaneous moment 𝑇 = 5.4, 5.6, 5.8 and

6.1, appear to overlap with the particles initially located at the FTLE-saddle at 𝑇 = 5.4

and convected by the flow map. This implies that the FTLE-saddles extracted by the

‘standard’ method are indeed Lagrangian saddles, since the same dynamics are found for

each FTLE calculation.
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(a) 𝑇 = 5.4 (b) 𝑇 = 5.6

(c) 𝑇 = 5.8 (d) 𝑇 = 6.1

Figure 3-4: Lagrangian particle evolution around an FTLE-saddle identified at 𝑇 = 5.4.

Particles are colored by their initial locations as described in the text. Negative- and

positive-time FTLE ridges calculated by the ‘standard’ method at every instantaneous

moment are shown as red and blue ridges respectively, with contour level of values more

than 90% maximum. FTLE-saddles calculated by the ‘standard’ method at every instan-

taneous moment are shown as cyan spots.
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Figure 3-5: Visualization of LEV shedding process by nFTLE contour and attracting

LCS at 𝑇 = 3.7 and 𝑇 = 7.7. Flat plate is shown as black line.

Figure 3-5 shows the vortex boundary using attracting LCS (introduced by geodesic

LCS in section 2.1.4) at 𝑇 = 3.7 and 𝑇 = 7.7. One or two attracting LCS are captured

at each instant, which are marked ‘A’ in figure 3-5(a) and ‘B’ and ‘C’ in figure 3-5(b),

separately. Compared with the nFTLE contours, attracting LCS A, B and C all coincide

with the nFTLE ridges wrapping around the LEV and feeding shear layer in the LEV

vicinity.

Attracting LCS A is calculated backward by the flow map 𝜑′(𝑥0, 𝑡0, 𝜏) (red dashed

arrow in figure 2-7) from 𝑇 = 3.7 right after the LEV is formed, with an integration
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time of 𝜏 = 2, similar to the nFTLE calculation. Alternatively, attracting LCS B and

C are calculated backward using the flow map 𝜑′(𝑥0, 𝑡1, 𝜏) (red arrow in figure 2-7) with

integration time 𝜏 = 4 and shown in the end of the period of interest 𝑇 = 3.7 − 7.7,

during which the LEV sheds. In the following calculation for the 𝜆-saddle along these

LCSs, attracting LCS B and C are convected by flow map 𝜑′(𝑥0, 𝑡1, 𝜏) (red arrow in

figure 2-7) backward to the beginning of the period of interest to show attracting LCS B

and C at 𝑇 = 3.7, as done by Farazmand and Haller (2012a) and Olascoaga and Haller

(2012).

The 𝜆 values along all three attracting LCS are computed from 𝑇 = 3.7 to 𝑇 = 7.7

by trajectory integration (green dotted arrow in figure 2-7) and have 3D contours as

shown in figure 3-6. The 𝜆 values are visualized as a 3D surface for which the x-axis

is the curvilinear coordinate s along the attracting LCS A, B, and C, the y-axis is the

integration time 𝜏 , and the z-axis and the contour color indicates the magnitude of the

𝜆 value.

As integration time 𝜏 increases, the 𝜆(𝑥0, 𝑡0, 𝑡) values gradually reveal the existence

of several hyperbolic points (marked by green markers in figure 3-6) maximizing the

Lagrangian strain rate, allowing the extraction of the 𝜆-saddles along each attracting

LCS respectively, as shown in figure 3-7. In figure 3-6(a), there are several hyperbolic

points (𝜆 peaks) at 𝑠 < 0.6, which are not identified as 𝜆-saddles of the LEV. This is

because the attracting LCS A, which separates the plate shear layer from both the LEV

and the free stream extends beyond the the LEV boundary (as shown in figure 3-5(a)),

and thus contains particles (locating at 0 < 𝑠 < 0.6) that do not entrain into or convect

along the LEV.

All the 𝜆-saddles extracted at the end of the integration time are tracked backward

using the flow map 𝜑′(𝑥0, 𝑡1, 𝜏) (red arrow in figure 2-7) to their locations in each time

instant. In practice, the number of 𝜆-saddles extracted along each attracting LCS is

determined by all the hyperbolic points that remain a local maxima of 𝜆 over the longest

𝜏 . The calculation characteristics of all the Lagrangian criteria applied in the case are

summarized in table 3.1 for comparison.
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Figure 3-6: The corresponding 𝜆 values computed over attracting LCS A, B and C in

figure 3-5 is 3D contour shown as a function of the curvilinear coordinate 𝑠 (computed

along the attracting LCS, and the integration time 𝜏 . The local maximum of 𝜆 at the

end integration time 𝜏 is marked by green markers.
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Lagrangian criteria Integration direction Integration interval (𝑇 )

Negative-time FTLE Backward 𝑡0 + 2.0

Positive-time FTLE Forward 𝑡0 − 4.0

FTLE-saddle 𝑡0

Attracting LCS A Backward 3.7 − 1.7

𝜆-saddle on attracting LCS A Forward 3.7 − 7.7

Attracting LCS B&C Backward 7.7 − 3.7

𝜆-saddle on attracting LCS B&C Forward 3.7 − 7.7

LAVD Backward 17.0 − 13.0

LAVD fluid particle Backward 17.0 − 3.7

Table 3.1: Integration characteristics of various Lagrangian criteria

3.2.2 Vortex area for circulation calculation

As discussed in section 2.1.7, the definition of the vortex boundary and area remains

ambiguous to date, especially during the vortex formation, but plays a critical role in the

vortex circulation study. To determine the circulation of the LEV during its shedding

process, vortex area for circulation calculation is defined by three approaches for com-

parison. Two approaches that involve instantaneous vortex identifications are introduced

in this subsection. Traditionally, the instantaneous vortex circulation is obtained by in-

tegrating its vorticity within a rectangular or circular window generally surrounding the

target vortex for easy implementation (Maxworthy, 1979; Anderson et al., 1998; Rival

et al., 2010; Buchholz et al., 2011; Gutierrez et al., 2016), similar to the magenta square

shown at three instants 𝑇 = 4.0, 𝑇 = 8.0 and 𝑇 = 12.0 in figure 3-8. The center of

the window was determined by and follows the vortex center using the 𝛤1 function (the

orange spot shown in figure 3-8 in every instant).
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Figure 3-7: Visualization of LEV shedding process by vorticity contour, attracting LCS

(green lines) and 𝜆-saddles (black spots) along them. 𝜆-saddles 𝐴𝑖 and 𝐴𝑖𝑖 are extracted

from attracting LCS A at 𝑇 = 3.7, and 𝜆-saddles 𝐵𝑖 and 𝐶𝑖, 𝐶𝑖𝑖 are extracted from

attracting LCS B and C at 𝑇 = 7.7 respectively. Flat plate is shown as yellow line.
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Figure 3-8: Demonstration of window size/location for the LEV (magenta square) cir-

culation calculation at three instants 𝑇 = 4.0, 𝑇 = 8.0 and 𝑇 = 12.0. The flow field is

shown by vorticity contour, and the LEV center is shown by orange spot. The flat plate

is shown as the yellow line.
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Figure 3-9: Circulation sensitivity analysis. The black line with black markers is the

dimensionless circulation against the window area 𝑎. The blue line with blue markers

is the circulation growth rate against the window area 𝑎. The red dash line marks the

optimal window area for the LEV.

Early in the formation (𝑇 ≤ 7.1) of the the LEV, the positive Q-criterion iso-contour

(Q = 0) does not distinguish the shear layer from the vortex core. The preferred window

area, in cases where a forming vortex is fed by a connected shear layer, varies in the

literature due to the influence of the shear layer and nearby vortices on the resulting

circulation. Later, the LEV can be identified separately from the shear layer after it

sheds at 𝑇 ≤ 7.1, thus we pick the optimal window area at a later stage 𝑇 = 12.0 and

apply it for the LEV circulation calculation at every instant.

A sensitivity analysis is conducted at 𝑇 = 12.0 to find the optimal dimensionless

window area as indicated in figure 3-9. The dimensionless circulation and its growth rate

against the dimensionless window area is shown as a function of the bounding window

area around the LEV 𝛤1 function center at 𝑇 = 12.0. For a window area of less than 1.25

(marked by red dash line), the circulation increases rather steeply. While for window

area larger than 1.25, the dimensionless circulation |𝛤 | reaches a plateau with a value

4.4, and the growth of dimensionless circulation with the increasing dimensionless window

area reaches to a plateau with a value 0.01. Therefore, a bounding window of area 1.25

is chosen as the optimal window for the LEV circulation calculation through the LEV
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formation and shedding process. Only the negative vorticity within the optimal bounding

window is included in the spatial integration of equation 2.16. During the formation stage,

the variation of LEV circulation calculated within the fixed-area window represent the

transportation of vorticity flux by shear layer into the LEV.

For the study of formation number in the current case, the total circulation over the

whole plate also needs to be calculated. The total circulation is obtained by the spatial

integration of all the negative vorticity in the whole flow domain.

Another approach was developed uniquely in this thesis to obtain a more specific

prescription of the individual LEV structure. In this approach, the LEV is identified

by the selected regions within a 𝑄 = 0 level set centered on each 𝛤1 function-identified

LEV center (as shown in figure 3-10). The forming LEV is made of the main core region

and shed feeding shear layer region, for example the two light green positive Q blocks

in the instantvisualized in the figure 3-10. The regions within the Q = 0 level set above

the main LEV core (region surrounding orange LEV center) are shed from the feeding

shear layer and will be entrained later into the LEV core. It is included in the vortex

area, because it locates inside the LEV boundaries of both pFTLE and nFTLE ridges,

which means it will entrain into LEV in the future. The vortex area identified by this

approach is re-initialized for each velocity field snapshot. This method will introduce

error by mistakingly including extra regions of vorticity or shear layer in the vicinity

of the targeted vortex, and will make it difficult for automatic calculation due to the

changing LEV area each time step.
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Q

Figure 3-10: Vortex area identified by multiple criteria. Negative- and positive-time

FTLE ridges are contoured as red and blue ridges respectively, with contour level of

values more than 85% maximum. Positive Q-criterion (black) with contour level Q = 0.

Flat plate is shown as yellow line. Green curves bound the vortex area of primary LEV

to be used in circulation calculation.

3.2.3 Identification method by LAVD

LAVD is implemented to identify the materially-coherent LEV during a time frame after

it has shed. The area is determined after it is shed due to the tubular requirement for an

LAVD vortex. The filamentary shape of vortex undergoing formation would make it fail

the convexity deficiency threshold, and dissatisfy the definition of tubular shape LAVD

vortex. The forming LEV usually is not materially-coherent, because the entrainment and

detrainment of the mass transformed from the shear layer. By comparing the detection

of LEV by both LAVD and Q-criterion, certain feeding shear layer regions, picked up

by Q-criterion as part of the LEV, are eventually excluded from the materially-coherent

LEV identified by LAVD.
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Figure 3-11: Identification of the LEV and the TEV after shedding by contour plot of

LAVD at 𝑇 = 17.0 and 𝑇 = 18.8, respectively. LAVD vortex center and boundary are

shown as red spot and circle respectively. Flat plate is shown as black line.

In the case of the LEV on a pitching flat plate, the LAVD of the primary LEV is

calculated at 𝑇 = 17.0 after it is fully shed. A TEV formed and shed in the vicinity of

the primary LEV is also studied by LAVD at a time 𝑇 = 18.8 to reveal the interaction

between the LEV and the TEV by the motion of the fluid particles from the shear layer.

The LAVD contour plot, LAVD center and boundary of both LEV and TEV are shown

in figure 3-11. The LAVD calculation for the LEV is done backward during formation

time span 𝑇 = 17.0 − 13.0, and similarly a backward calculation during 𝑇 = 18.8 − 14.8
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is used to determined the TEV area.

The third approach we exploit to provide a new way of studying the vortex area

for its circulation calculation is with the objective LAVD. Figure 3-12 shows that all

the fluid within the LAVD boundary constitutes a Lagrangian coherent vortex during

calculation time span 𝑇 = 17.0− 13.0, but it can also be tracked backward by a flowmap

calculation to time before 𝑇 = 13.0. In this way, its origins (shear layer over pitching

panel and from upstream) before being entrained into the coherent LEV are shown, such

as at the instant of 𝑇 = 6.4 in figure 3-12(c). Despite not being considered a ‘coherent

vortex’ for 𝑇 < 13.0, the fluid defined this way stays materially invariant at these earlier

times. It enables us to study the relationship between shear layer and the LEV and the

feeding process between them, as well as the strength an LEV requires to shed. A better

understanding of how fluid mixes during vortex shedding presents the opportunity to

identify when the fluid making up the vortex will be subject to a flow control scheme

designed to influence the vortex dynamics (Cardwell and Mohseni, 2008).

The circulation within the LAVD boundary for each velocity field is calculated on

same set of fluid particles in their new location, which will remain a constant area due to

incompressibility, to monitor the LEV formation and shedding. The LEV vortex center

defined by LAVD at 𝑇 = 17.0 is convected backward by flow map for each instant as

well.
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Figure 3-12: Distribution of Lagrangian fluid belonging to primary LEV at different

instants. Purple regions are fluid within Lagrangian coherent structure of primary LEV

identified by LAVD. Flow field is shown by positive Q contour, and the LEV center by

LAVD is shown as red spot. Flat plate is shown as yellow line.
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3.3 Results

3.3.1 FTLE- and 𝜆-saddles

Figure 3-13 shows the formation time history of the primary LEV separation pro-

cess at nine instants of the flow evolution. In the figures, multiple vortex identifica-

tion techniques are employed. Red and blue ridges are the negative- and positive-time

FTLE ridges, respectively. Green contour regions indicate the vortex core by positive

Q-criterion. The orange and black spots mark the 𝛤1-criterion and 𝑄-criterion vortex

centers of the primary LEV and a TEV formed in its vicinity. The cyan spots with the

black edge visualize the FTLE-saddles of the LEV and TEV via the methods described

in section 3.2.1. In figure 3-13(a) when 𝑇 = 3.7, the LEV has started rolling up from the

shear layer into the circulating area, and multiple vortices have shed from the trailing

edge. Both the 𝛤1 function and Q-criterion locate the vortex centers in approximately the

same location for each LEV vortex core. As described, the FTLE-saddles locate at the

intersections of the pFTLE and nFTLE ridges. Four of the FTLE-saddles between the

LEV and shear layer or TEV, containing the most information of the relevant dynamics,

are marked ‘I’, ‘II’, ‘III’ and ‘IV’ corresponding to the time of their appearance.

After formation until 𝑇 = 4.5 (3-13(b)), the LEV centers by both methods continue

to move downstream, from approximately 𝑥/𝑐 = 0.25 to 𝑥/𝑐 = 0.45, but the LEV FTLE-

saddle I stays in approximately the same position ([𝑥/𝑐, 𝑦/𝑐] = [0.11, 0.07]). This location

is not exactly at the leading edge of the plate, but remains toward the top of a pair of

counter-rotating secondary and tertiary vortices that form at the leading edge after the

formation of the primary LEV. That FTLE-saddle I is stationary and connected to the

vortex system during this time indicates continued LEV attachment. After 𝑇 = 4.5,

FTLE-saddle I accelerates downstream, and the centers of the LEV continue to move

downstream at a steady rate.
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Figure 3-13: Instantaneous flow field is shown by positive Q-criterion. nFTLE and

pFTLE are contoured as red and blue ridges respectively, with contour level of values more

than 85% maximum. 𝛤1 function, Q-criterion centers and FTLE-saddles are presented

by orange, black spots and cyan spots with black edge, respectively. Flat plate is shown

as yellow line.
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The TEV center is detected by 𝛤1 function at 𝑇 = 6.9 (the instant before figure 3-

13(e)) when its circulation motion is intense enough. It convects upstream along the

pitching plate between the LEV and the plate between 𝑇 = 7.1 (figure 3-13(e)) and

𝑇 = 10.0. The FTLE-saddle IV appears at 𝑇 = 7.6 between the LEV, TEV and the

secondary LEV, and convects downstream with a similar speed of the LEV center until

𝑇 = 11.3. At 𝑇 = 11.3, FTLE-saddle IV drops toward the pitching plate between the

TEV and the secondary LEV, and the center of the TEV starts convecting downstream

with an accelerating speed.

Figure 3-14 shows the location of each of these tracking targets in time, measured as

distance from the leading edge and scaled by the plate chord. From this figure, we see

that LEV Q-criterion center and 𝛤1 function center give very similar traces of the vortex

center path, with a convecting speed 𝑢𝑐𝑜𝑛𝑣𝑒𝑐 u 0.7𝑈∞, matching the convection speed

range between 0.6 and 0.8 of shed vortices from the airfoils as reported by Panda and

Zaman (1994).

The traces of the FTLE-saddles, on the other hand, appear to move with a different

profile. As can be observed in a movie of the tracking targets’ motion, this is due to

the rotation of the structure boundary after it sheds and begins to evolve downstream

(figure 3-13(b) − figure 3-13(i)). Each point on the LEV boundary (including the FTLE-

saddles) will trace out a large arc unlike the vortex core path. A portion of the difference

comes from the fact that as a structure grows, the core points shift downstream even as

the LEV remains attached to the plate (figure 3-13(a) − figure 3-13(b)).

The motion difference between different targets is evident in figure 3-14 in the trace

of FTLE-saddle I, which is part of the boundary of the primary LEV that forms and

sheds first. FTLE-saddle I moves away from its initial stationary location with a rapid

acceleration at 𝑇 = 4.5 (figure 3-13(b)). This is apparent in the changing slopes of the

cyan diamonds in figure 3-14, which is highlighted with two intersecting red solid lines

and by dash lines ‘a’. After it sheds, FTLE-saddle I follows an arc due to its motion

around the LEV as shown between 𝑇 = 4.5 in figure 3-13(b) and 𝑇 = 6.1 in figure 3-13(d).

We propose that this rapid acceleration of Lagrangian saddles from their formation zone

gives a good indication of the starting point of vortex shedding. Similar to the cyan trace
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of FTLE-saddle I, the other two traces of FTLE-saddle II (green) and FTLE-saddle III

(blue) indicate additional dynamics of the LEV shedding process.

As postulated in section 1.1.2, the LEV separation can be described as a process in

which the leading edge shear layer stops feeding circulation to the LEV, and the LEV

does not shed from the shear layer until it reaches its maximum circulation. In the

present case, however, this process is intermittent. The shear layer emanating from the

leading edge breaks into masses of vorticity due to the Kelvin Helmholtz-type instability

(DeVoria and Ringuette, 2012).

By observing the shear layer in figure 3-13(b) as the thin green region of 𝑄 > 0

extending from the leading edge of the plate to the LEV, we see that the Q-criterion

magnitude in the shear layer near FTLE-saddle I drops considerably at 𝑇 = 4.5 as FTLE-

saddle I sheds. In figure 3-13(c), the value of Q-criterion in the region of interruption

has become negative, indicating that that region is no longer considered part of a vortex

according to the Q-criterion.

However, an additional green filamentary region of shear layer is wrapped around

and then entrained into the LEV after that, before breaking again at 𝑇 = 6.1, as seen

in figure 3-13(d). The timing of this second interruption corresponds to the acceleration

of FTLE-saddle II at 𝑇 = 6.1, as highlighted by dash lines ‘b’ in figure 3-14. Finally,

an additional region of vorticity is shed and entrained into the LEV at approximately

𝑇 = 7.1 (as shown in figure 3-13(e)), which corresponds to FTLE-saddle III shedding

at that time (as highlighted by dash lines ‘c’ in figure 3-14). This is the last saddle to

move from the leading edge region and wrap around the LEV, and after its departure a

drastically different Lagrangian coherent structures emerge, as shown between figure 3-

13(f) and figure 3-13(i).
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Figure 3-14: Distance of tracking markers, measured from the panel leading edge, in

formation time. Red lines indicates the trace segments slopes of FTLE-saddle I. Black

dash lines indicate FTLE-saddle shedding times.

The trace of the TEV center indicates its motion upstream starting at 𝑇 = 7.1, when

the last detected FTLE-saddle of the LEV, FTLE-saddle III, sheds. This phenomenon

matches the observation in the research of Rival et al. (2014), which points out that the

LEV shedding leads to the opening of a channel for reversed flow, the development of

TEV, at the trailing edge. In the research by the Eulerian topological analysis (Rival

et al., 2014), the LEV shedding process is described as the merging of the rear stagnation

point (half Eulerian saddle) of the LEV and half Eulerian saddle of the trailing edge into

one full Eulerian saddle, and the lift-off of this full Eulerian saddle. In this thesis, the

observed LEV shedding process shows a similar influence on the topology at the trailing

edge, while taking advantage of the frame invariant Lagrangian approaches.

The FTLE-saddle IV (yellow) trace exhibits a constant distance from the LEV center

between 𝑇 = 7.7 and 𝑇 = 11.3, while a growth in distance is observed between the TEV

and the secondary LEV (as shown in figure 3-13(f) − figure 3-13(h)). The FTLE-saddle

IV sheds at 𝑇 = 11.3 as highlighted by dash lines ‘d’ in figure 3-14), dropping towards

the plate between the TEV and the secondary LEV (figure 3-13(h)). At the same time,

a slope change of the TEV center trace by both LAVD and 𝛤1 function indicates the

beginning of its convection downstream.
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Figures 3-15 and 3-16 compare the performance of the 𝜆-saddles of three attracting

LCSs and five FTLE-saddles (introduced in section 3.2.1) in detecting the LEV shedding

process at five instants. As seen in figure 3-15(a), 𝜆-saddle 𝐴𝑖 is found in the vicinity of

FTLE-saddle I at the attracting LCS 𝐴 extracting time 𝑇 = 3.7. We consider FTLE-

saddle I and 𝜆-saddle 𝐴𝑖 to be the two different numerical saddles identifying the same

physical saddle in the flow at the moment. Ideally, we expect both the FTLE-saddles

and the 𝜆-saddles to behave similarly.

However, in a movie that compares the motion of both the FTLE-saddle and the 𝜆-

saddle, the 𝜆-saddle 𝐴𝑖 only remains close to the FTLE-saddle I for a finite interval after

the latter is detected (as shown in figure 3-15(a)). After the previous stage, it shows that

the 𝜆-saddle 𝐴𝑖 tends to convect away from the FTLE-saddle along the attracting LCS 𝐴

earlier and gets entrained inside the LEV, as observed in figure 3-15(b) and figure 3-15(c).

The 𝜆-saddle 𝐴𝑖𝑖 is observed in figure 3-15(c) in the vicinity of FTLE-saddle III right

after the latter is detected at the time 𝑇 = 6.0. Similarly, a finite interval after 𝑇 = 6.1,

the 𝜆-saddle 𝐴𝑖𝑖 convects away from the FTLE-saddle along the attracting LCS 𝐴 and

gets entrained inside the LEV earlier (shown between figure 3-15(c) and 3-15(e)).

In figure 3-16(e), 𝜆-saddles 𝐵𝑖 and 𝐶𝑖𝑖 appear in the vicinity of FTLE-saddles III and

IV at the time 𝑇 = 7.7 when the attracting LCS 𝐵 and 𝐶 are extracted. Contrasted with

𝜆-saddle 𝐴𝑖, 𝜆-saddles 𝐵𝑖 and 𝐶𝑖𝑖 appear to convect towards the vicinity of FTLE-saddles

III and IV from the upstream along the attracting LCS 𝐵 and 𝐶. Later, 𝜆-saddles 𝐵𝑖

and 𝐶𝑖𝑖 convect close to the FTLE-saddles along the attracting LCS 𝐵 and 𝐶. Between

the figure 3-16(c) and 3-16(e), the 𝜆-saddle 𝐶𝑖 convects at close to, but upstream of

FTLE-saddle II along the attracting LCS 𝐶, with a constant distance between them.
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Figure 3-15: Comparison of FTLE-saddles and 𝜆-saddles on attracting LCS A (gray

curves) during the LEV shedding process. Vortex core areas are visualized by green

positive Q-criterion, and nFTLE are contoured as red ridges indicating the vortex area,

with contour level of values more than 85% maximum. The 𝜆-saddles on A and FTLE

saddles are shown as blue and cyan spots. Flat plate is shown as a yellow line.
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Figure 3-16: Comparison of FTLE-saddles and 𝜆-saddles on attracting LCSs B & C

(gray curves) during LEV shedding process. Vortex core areas are visualized by green

positive Q-criterion, and nFTLE are contoured as red ridges indicating the vortex area,

with contour level of values more than 85% maximum. The 𝜆-saddles and FTLE saddles

are shown as blue and cyan spots. Flat plate is shown as a yellow line.
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Figure 3-17: Comparison of FTLE-saddle and 𝜆-saddle traces in formation time.

Figure 3-17 shows the location of each of these Lagrangian saddles and the LEV center

identified from the 𝛤1 function, measured as distance from the leading edge, scaled by

the plate chord, and shown as a function of the formation time. The 𝜆-saddle 𝐶𝑖 have

parallel trace with FTLE-saddle II after the latter sheds at 𝑇 = 6.1. The 𝜆-saddle 𝐴𝑖

trace overlaps with FTLE-saddle I during 𝑇 = 3.7 and 𝑇 = 4.2, then sheds and entrains

into the LEV, as shown by its spiraling shape around the LEV center trace. The 𝜆-saddle

𝐴𝑖𝑖 trace overlaps with FTLE-saddle I during 𝑇 = 6.0 and 𝑇 = 6.1, then changes slope

earlier and becomes parallel to the trace of the latter after the latter’s shedding time

𝑇 = 7.1. The 𝜆-saddle 𝐵𝑖 and 𝐶𝑖𝑖 traces show a deceleration trend and start overlapping

with FTLE-saddle IV and III traces, respectively.

We can see the 𝜆-saddles are showing similar dynamics with FTLE-saddles but with

some discrepancy at shedding time. We argue that applying the flow map on discrete

data as in the algorithm of the 𝜆-saddle extraction can possibly be introducing numerical

errors, as the saddles can shoot out earlier along the attracting LCS, if there is an initial

discrepancy between the physical saddle and the numerical saddle.

Similarly, there an initial discrepancy between the physical saddle and the FTLE-

saddle. While the standard method used to extract the FTLE-saddle constrains the

discrepancy between the FTLE-saddle and the physical saddle to the FTLE calculation

grid size for every instant (shown in figure 3-18).
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Figure 3-20: Schematic of flow maps.

On the other hand, besides the initial discrepancy in the extraction of the attracting

LCS (up to the LCS grid size), there is another source of numerical error coming from

the 𝜆-saddle convection by the flow map in the 𝜆-saddle extraction algorithm.

To illustrate this point, we picked five different initial grid sizes (3%, 11%, 22%, 43%

and 50% of the FTLE calculation grid size) for the attracting LCS A and extracted the

𝜆-saddle in the vicinity of FTLE-saddle I. The distance between the five 𝜆-saddles and

FTLE-saddle I are plotted in figure 3-19 as a function of formation time. As we can

see in figure 3-19, all the 𝜆-saddles are extracted and convecting in the close vicinity of

the FTLE-saddle I from 𝑇 = 3.7 to 𝑇 = 3.9, then the distance between them and the

FTLE-saddle I increases with the formation time increasing. As shown in figure 3-20,

if we ignore the numerical error of the LCS grid size and assume the physical saddle is

located on the LCS, the finer initial grid size of LCS can identify the 𝜆-saddle closer to

the physical saddle. It is also shown that the fine initial grid size along the attracting

LCS A will delay the shooting out of the 𝜆-saddle, that the 3% grid size resolution makes

𝜆-saddle 𝐴𝑖 (mustard-colored hexagrams) convect in the vicinity of FTLE-saddle I for
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the longest time. This shows the fact that the initial discrepancy between the 𝜆-saddle

and the physical saddle is amplified, when the 𝜆-saddle is convected forward by the flow

map 𝜑(𝑥0, 𝑡0, 𝜏) (blue arrow in figure 2-7) to get its trajectory integral of the tangential

rate of Lagrangian strain 𝑆|| value (green dotted arrow in figure 2-7) and the discrepancy

is stretched along the attracting LCS.

3.3.2 Materially coherent vortex via LAVD

Detection of the LEV by LAVD provides us a different Lagrangian coherent perspec-

tive of the LEV formation and separation. The LAVD-identified region of fluid belonging

to the LEV is tracked backward from shedding to formation and shown at several instants

(in a forward-time sequence) in figure 3-21. The LAVD region is colored by vorticity,

which shows when and how the fluid acquires vorticity, and if it has entrained into the

LEV or is still in the shear layer.

The phenomena we observed in figures 3-13 and 3-14 could be seen also in the con-

tained fluid behavior, as similar shape changes to the negative vorticity over the formation

time. The LAVD vortex center of the LEV and the TEV are shown in figure 3-21 and

tracked in figure 3-14, which are observed at the same location as the 𝛤1 function center,

and give similar traces.

The LAVD region with high vorticity magnitude has a similar size comparable to the

compact LEV core identified by the positive Q-criterion contours in figure 3-13. The

intermittent feeding of the shear layer due to Kelvin Helmholtz-type instability of the

shear layer is also demonstrated in figure 3-21(c)−figure 3-21(f) by the filamentary LAVD

fluid containing vorticity between the LEV core LAVD fluid and the LAVD fluid over

the plate. We note here that the blue regions identified by LAVD are materially tracked

through the sequence of figure 3-21, while the green 𝑄-criterion regions of figure 3-13 are

computed in a Eulerian sense every time step.
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Figure 3-21: Instantaneous flow field visualized by LAVD fluid particles. LAVD fluid

is shown by contour plot of vorticity magnitude. 𝑄 > 0 region is shown as the green

regions. 𝛤1 function and LAVD vortex centers are presented by orange and black spots.

Flat plate is shown as black line. LAVD fluid particles outside flow field are colored pink

due to lacking information.

The feeding process of the shear layer to the LEV could be observed during its forma-

tion and shedding as shown between figure 3-21(a) and figure 3-21(d). Figure 3-21(e) −

figure 3-21(h) show the LEV after all the fluid that will be entrained into the materially

coherent LEV has lost contact with the plate surface. During these later times, it has

coalesced into a circular shape and convected downstream.
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The TEV formation process is also shown clearly by LAVD-identified fluid. After

FTLE-saddle III sheds, the flow reversal from the trailing edge occurs such that a TEV

develops and convects upstream. The LAVD-identified fluid from the pressure side of the

plate generates counter-clockwise vorticity around the trailing edge and connects with

the shear layer on the suction side, as shown between figure 3-21(d) and figure 3-21(f).

Later as exhibited in figure 3-21(g) − 3-21(h), the TEV moves towards the leading edge

until the topology changes then it starts convection downstream.

3.3.3 Vortex Shedding Mechanism

The Vortex Shedding Mechanism (VSM, introduced in section 2.2.2) and the its des-

ignated shedding location are shown in figure 3-22, compared with the FTLE-saddles.

In this case, as stated by VSM, vortex shedding happens at locations with the zero-

momentum, identified as intersections of 𝑢 = 0 and 𝑣 = 0 contour lines, as well as

positive streamwise pressure divergence. A location with positive streamwise pressure

divergence is exhibited as the white region with the blue negative pressure gradient on

the right and red positive pressure gradient on the left, as shown in figure 3-22.

As we can see in figure 3-22(a), a shedding location, indicated by zero momentum

point within positive streamwise pressure divergence, distinguishes the LEV from the

pitching plate, and FTLE-saddle I appears at the same position. The VSM shedding

location propagates with FTLE-saddle I between figure 3-22(a) and 3-22(b) till the FTLE-

saddle sheds at 𝑇 = 4.5. A similar phenomena is observed in figure 3-22(c) − 3-22(h),

the VSM shedding location appears near and propagates with FTLE-saddles II, III and

IV till the saddle shedding times of 𝑇 = 6.1, 7.1 and 11.3, respectively.
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Figure 3-22: Instantaneous vortex shedding position detected by VSM as zero momentum

locations, marked by black triangle, in the white area of the instantaneous streamwise

pressure gradient contour plot. nFTLE ridges are shown as red curves indicating the

vortex boundary. FTLE-saddles are shown as cyan spots. Flat plate is shown as a yellow

line.

Thus the role of FTLE-saddles in detecting vortex shedding can be elucidated sim-

ilarly to VSM. The feeding shear layer near the FTLE-saddles at the upstream end of

the LEV will become depleted of vorticity. The positive pressure gradient at the up-

stream of the saddle eliminates the propagation of the shear layer with the LEV, while

the negative pressure gradient at the downstream of the saddle aids the convection of
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the LEV downstream, which thus separates the LEV from the shear layer. The initiation

and subsequent persistence of the VSM shedding location, or FTLE-saddles in our case,

is responsible for the separation of the vortex from the source shear layer. There is no

indication of time scale for VSM persistence in the work by Boghosian and Cassel (2016),

but we suggest the it is necessary for the vortex shedding process.

It is worth noting that vortex shedding detection by the VSM does not apply to flow

with moving reference frame, because the zero-momentum point, one of the necessary

and sufficient condition of VSM, may not exist in this flow. Therefore the VSM is not

Galilean invariant, while the vortex shedding detection by Lagrangian approaches, i.e.

FTLE-saddles and 𝜆-saddles, are frame and material invariant.

3.3.4 Shedding, circulation and force

The total circulation and the LEV circulation are studied using the methods intro-

duced in section 3.2.2, the development of which are shown respectively in figure 3-23.

The LEV circulation within a carefully chosen window is marked by magenta diamonds,

and compared to the total circulation of plate shear layer marked by blue diamonds. The

LEV circulation shows an increasing trend during its formation, and reaches a plateau

after it has completely shed from the shear layer. The formation number 𝑁 defined by

Gharib et al. (1998) as the time when the total circulation equals the peak LEV circula-

tion is in this case 𝑁 = 4.5. The LEV formation number in this case lies in the reported

range of 𝑇 = 3.5 − 4.5, and matches the FTLE-saddle I shedding time.

Circulation development by Q-criterion and FTLE ridges of the primary LEV is shown

by green markers in figure 3-23. The circulation stops increasing rapidly after 𝑇 = 4.0

when plate stops pitching, then has a big jump during 𝑇 = 8.3 − 8.4, which could be

explained by observation of figures 3-21(d) − 3-21(f): after FTLE-saddle III sheds at

𝑇 = 7.7, additional vorticity stretches into thin layers along the boundary until collected

into the LEV core. This vorticity is not in the interior of the LEV area as defined by the

Q-criterion until it compresses into the area almost all at once.

As we observed in figure 3-23, the LEV feeding process is complicated, causing discon-
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tinuous jumps of circulation calculated this way, for reasons including the intermittent

feeding process of shear layer. It is a challenge to identify a vortex area boundary by

Q = 0 contour level despite the use of the FTLE ridges and saddles as described in

sections 3.2.2. The vortex area defined this way cannot collect all the eventual vorticity-

containing fluid along the vortex boundary during the LEV formation. A closed, well

defined vortex area provided by LAVD offers a more straightforward circulation calcula-

tion avoiding an ambiguous area definition.

The LEV circulation development by LAVD (as red markers shown in figure 3-23),

on the other hand, is clear and continuous. The result by LAVD clearly identifies the

regions of the shear layer that will end up in the shed coherent LEV while it is still

forming, and it facilitates a more straightforward circulation calculation. The circulation

of the LEV reaches to two peaks at 𝑇 = 6.1 and 𝑇 = 7.1 when FTLE-saddle II and

III shed separately. The circulation peak time indicates that the LEV fluid has reached

its saturation strength at this instant as the materially coherent LEV has ended contact

with the plate surface, which coincides with when the LEV by LAVD region has shed

from shear layer as shown in figure 3-13(e). The same phenomena of the LEV shedding

process was observed in the research of vortex ring pinch-off by Fernando and Rival

(2016), who argued that when the vortex ring pinches-off from the plate, it may not

physically separate from the shear layer, which may occur later or not at all.

Before the peak time, the circulation increases with vortex formation, and maintains

a relatively constant value after the second peak, showing the vortex stays materially

coherent and maintains its circulation during convection despite some diffusion after

𝑇 = 10.0. It is worth noting that the plateau of circulation in the box window matches

with the peak LAVD circulation. The time 𝑇 = 4.0 (when the plate stops pitching)

is marked by red dotted line ‘e’ in figure 3-23, after which the slope of all circulation

(calculated all ways) drops drastically. The circulation of the TEV by LAVD-identified

fluid is shown as a trace of cyan markers in figure 3-23, with one peak around 𝑇 = 9.0.

The circulation increases with TEV formation, then stays relatively constant after the

peak.
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Figure 3-23: The LEV circulation development by multiple methods in formation time.

Black dash lines indicate FTLE-saddle shedding times. Red dash line indicates the time

at which the plate pitch-up motion stops.

The 2D lift coefficient (𝐶𝐿 = 𝐿/(𝜌𝑈2
∞𝑐)) on the 45𝑜 pitch-up plate is shown against

formation time in figure 3-24 (Wang and Eldredge, 2013). There is an initial drop in the

amount of lift on the plate that occurs at 𝑇 = 4.0, which is associated with the end of

the transient motion of the plate. After 𝑇 = 4.0, the fluctuations in force are associated

with the unsteady fluid dynamic effects, and not the motion of the plate itself.

By comparing the FTLE-saddle shedding times and lift coefficient with respect to

formation time after 𝑇 = 4.0, we observe that the lift drops most precipitously at 𝑇 =

4.5, corresponding to the formation number 𝑁 = 4.5. The added-mass force is not

considered in the case due to the fact that the plate is not moving during the period of

interest(Hartloper et al., 2013; Jain et al., 2015). The observation that the timing of the

lift coefficient peak matches with the LEV formation number agrees with the optimal

vortex formation concept (Dabiri, 2009), and indicates the end of the LEV attachment

to the plate and the beginning of the LEV shedding process from the shear layer.

As more shear layer is entrained into the LEV as shown by the increasing and sec-

ond peak of circulation by the LEV LAVD-identified fluid in figure 3-23, the lift keeps

decreasing with even an steeper trend until the last drop at 𝑇 = 7.1, when FTLE-saddle

III sheds in figure 3-14.
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Figure 3-24: Force coefficients in formation time (Eldredge, 2007). Black dash lines

indicate FTLE-saddle shedding times. Red dash line indicates the time at which the

plate pitch-up motion stops.

The recovery of lift after 𝑇 = 8.0 is associated with the TEV formation. The lift drops

close to the time 𝑇 = 9.0, when the circulation of TEV LAVD-identified fluid peaks. The

TEV later sheds at 𝑇 = 11.3 along FTLE-saddle IV shedding. The continuing oscillation

of the lift history between 𝑇 = 11.3 to 𝑇 = 20 continues to be related to the alternating

formation and shedding of structures from the leading and trailing edges.

3.4 Discussion

In this chapter, we demonstrate the LEV separation process from a variety of differ-

ent perspectives and diagnostics. Multiple vortex separation criteria are reviewed and

compared, along with their connection to the shedding detection by multiple vortex vi-

sualization and tracking approaches, and pitching plate lift history. The current work

shows the timing of the LEV separation and the circulation development generally fits

the trend of lift history. With the vortex detection methods introduced in the chapter,

we utilized multiple separation criterion, and demonstrated the vortex dynamics and

time-varying vortex strength during the vortex separation process.

The behavior of both FTLE-saddles and 𝜆-saddles correlate with the vortex shedding,

which is also consistent with forces acting in two opposite directions identified from
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VSM. A formation number reported in the literature is also shown to agree in this study,

matching with the LEV circulation plateau. The use of LAVD to identify the region

in which to calculate circulation provides a different perspective as it collects all the

Lagrangian particles that comprise the final LEV during its formation. The peak in

circulation found this way is considerably later than the formation time (𝑇 = 4.5), but

incorporates an additional region of vorticity that sheds and is entrained into the LEV

after the initial LEV separation and shedding.

The application of VSM and formation number in this case provide the explanations

of LEV shedding process and its influence on the plate lift coefficient fluctuation from

different perspectives. The LAVD as an objective vortex criterion provides a straightfor-

ward and versatile method to study vortex strength and evolution, as well as reveals new

information of vortex circulation peak and its connection to the lift coefficient fluctuation,

which cannot be captured by the above Eulerian approaches.

The fact that FTLE-saddle locations match with the VSM shedding location, as

well as that FTLE-saddle shedding times coincide with formation number and LAVD-

identified fluid circulation peaks, shows that the FTLE-saddle is a valid approach in-

cluding the most information in the vortex shedding detection. In the comparison of

FTLE-saddle and 𝜆-saddle applied for the vortex shedding detection in the massively-

separated flow, i.e. the flow around a pitch-up plate, we show the utility and practicality

of the ‘standard method’ (section 2.1.3) and the FTLE-saddle over the 𝜆-saddle. The

FTLE-saddle by the standard method constrain the discrepancy of physical saddle and

numerical saddle into the size of the data grid, and avoid the error being magnified by

the flow map as in the 𝜆-saddle approach. Among all the approaches compared in this

chapter for vortex shedding detection, FTLE-saddles, as a material invariant approach,

provide the most consistent and detailed information during the whole LEV evolution,

including vortex formation, growth and shedding.
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Chapter 4

Other applications

In this chapter, we applied the combination of multiple vortex detection methods, in-

cluding 𝛤2 function, Q-criterion, FTLE, FTLE saddles and LAVD, into three cases of

either experimental periodic or three-dimensional aperiodic flow to explore and expand

their application in providing insight of flow physics.

Vortices are a key component of the unsteady flows that include propulsive wakes, flow

separation, and shear layers with instability, etc. These flows often involve aerodynamic

surfaces at high angles of attack or turbulent flows. When the vortices interact with

aerodynamic bodies, they influence the oscillating force as introduced in chapter 3, and

also play an important role in fluid mixing and instability, kinetic energy production and

dissipation, mass transport and diffusion. The visualization and tracking of vortices by

various detecting methods help to explain the basic physics of unsteady flows, as well as to

improve vortex dominated flow modeling, prediction, and the design and implementation

of control systems.

The first case studied in this chapter is a set of experimental two-component PIV

data in the wake of a purely pitching trapezoidal panel, generated in the study of Green

et al. (2011). Even though the flow in the wake is 3D, recent results from Kumar et al.

(2016) showed the two-component assumption at midspan of the wake is a good one.

We also expand the physical observations we can make using these vortex detection

techniques in the second case, a 3D fully turbulent channel flow simulation, previously

used by Green et al. (2007) and originally from Kim et al. (1987). The average vortex
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convection speed is computed as a function of wall-normal distance, and is compared

to previously published work for validation. The third case is a single hairpin vortex

(Green et al., 2007) exacted from the turbulent channel boundary layer by the method

introduced by Zhou et al. (1999).

4.1 Vortex wake breakdown: 2D continually pitching

trapezoidal panel

Study of the role of vortex formation, shedding and breaking-down in the wake of pitching

flat plates has been previously carried out both computationally and experimentally

(Buchholz and Smits, 2006, 2008; Green and Smits, 2008; Shyy et al., 2010; Zhang et al.,

2010). This classic case is a first, fundamental step toward understanding the more

complicated unsteady flow in the propulsive wakes (Ringuette et al., 2007).

The dataset in the current section is reconstructed from phase-averaged 2D PIV data

downstream of a rigid trapezoidal panel pitching around its leading edge (𝑥/𝑐 = −1.0),

and an example 3D representation of the flow field is shown in figure 4-1. Experimental

details about the acquisition of this data can be found in Green et al. (2011). In this

figure, the 𝑥 direction is aligned with the freestream flow from left to right, and the 𝑧

direction is aligned with the span of the panel trailing edge. The data plane for the

current work is taken at the midspan (𝑧/𝑆 = 0), where 𝑆 is the span of the trailing edge,

and is parallel to the freestream flow. The current flow field is presented for Re = 4200

(based on panel chord length) and a Strouhal number of St = 0.28, where 𝑆𝑡 = 𝑓𝐴/𝑈∞,

with 𝑓 = 0.5𝐻𝑧 as the frequency of oscillation, 𝐴 = 20𝑚𝑚 as the width of the wake, and

𝑈∞ = 0.036𝑚/𝑠 as the freestream velocity. The peak-to-peak amplitude of the trailing

edge is commonly used as an approximation for 𝐴. FTLE ridges and FTLE-saddles are

determined, with an integration time of four pitching periods in the positive-time FTLE

calculation, and two pitching periods for the negative-time FTLE calculation. A shaper

nFTLE ridge is obtained with the same integration time compared to pFTLE, so a longer

integration time is used for pFTLE to get a equally sharper ridge.
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Figure 4-1: Spanwise vorticity (𝜔𝑧) isosurfaces in the flow around a continually oscillating

trapezoidal panel. Panel is shown in black, positive vorticity in white isosurfaces, negative

vorticity in blue isosurfaces. Vorticity isosurface level is 14% maximum and minimum

𝜔𝑧. Recreated from the data set of Green et al. (2011).

The main result of the previous work was the observation of a loss of coherence in

the reverse von Kármán street wake at a certain distance downstream of the pitching

panel trailing edge. A von Kármán street is the flow pattern that emerges downstream of

periodic shedding of alternately-signed vortices from the surface of a bluff body (Kármán,

1938; Wille, 1960). This loss of coherence in vorticity isosurfaces is evident in figure 4-1

near 𝑥/𝑐 = 1.5, and was shown to coincide, both in space and time, with the merging

of two FTLE-saddles that belonged to the boundaries of two distinct vortex structures.

The merging of the saddles indicated the interaction of the two vortex structures, and

the loss of coherence of each. In the current work, we use the tracking technique from

the shedding study to not only observe the merging, but to quantitatively identify the

location at which it occurs.

The vortex centers are identified by the 𝛤2 function, with vortex area determined by
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positive Q-criterion regions, while the vortex boundaries are located by nFTLE ridges,

pFTLE ridges and FTLE-saddles, as introduced in section 3.2.1. The function 𝛤2 is used

here instead of 𝛤1 because of the large velocity of the whole vortex core, relative to the

LEV velocity in the study case of chapter 3. In the first case, the LEV drifted from

a relatively stable location. Here, the cores are already shed and continually moving

downstream as part of the wake. As 𝛤1 is not Galilean invariant, its identification of the

vortex center will be affected by the vortex core motion, whereas 𝛤2 will not be.

In order to use these Eulerian quantities to determine a location of breakdown, it is

necessary to identify the downstream location at which both the Q > 0 regions or the 𝛤2

centers disappear, indicating the lack of coherent rotation around them. That process,

however, would be highly sensitive to a user-defined threshold on the value of Q-criterion

or 𝛤2 function at the center location, and it is also sensitive to data noise because Q-

criterion calculation uses velocity gradient. Instead, the FTLE-saddles merging are used

to indicate vortex breakdown to avoid threshold dependence.

4.1.1 Results

Figure 4-2 displays instantaneous snapshots of the wake from dimensionless time 𝑡* = 0.0

to 𝑡* = 1.2, where 𝑡* = 𝑡/𝑇 , and 𝑇 is the period of panel pitching motion. The panel

is continuously pitching, and 𝑡* = 0.0 is taken at the phase of motion where the panel

is aligned with the flow, with the trailing edge moving in the positive 𝑦 direction. From

the trailing edge (𝑥/𝑐 = 0) to approximately 𝑥/𝑐 = 1.5 downstream, the wake consists of

a 2S vortex street, as two single vortices are being shed each period.

The locations of the vortex cores as identified by 𝛤2 center are shown as yellow dots,

and the regions of positive Q-criterion are the black round areas that give an indication of

the vortex core regions. The contour setting for Q-criterion is 5%𝑄𝑚𝑎𝑥, chosen to avoid

small scale noise associated with the experimental data. Further than approximately

one chord length downstream, both the 𝑄 regions and the 𝛤2 centers seem to disappear,

indicating the destruction of the coherent vortex structures. The location of where these

Eulerian metrics disappear is consistent with the previously calculated isosurfaces of

vorticity, shown in figure 4-1.
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Figure 4-2: Instantaneous snapshots of the continuously pitching trapezoidal panel wake

at 𝑆𝑡 = 0.28. Negative- and positive-time FTLE ridges are contoured as red and blue

ridges respectively, with contour level of values more than 67% maximum. Positive Q-

criterion is contoured as black region with contour level at 5% of the maximum value.

Panel is plotted as purple line.

In figure 4-2, it is clear that nFTLE (red curves), pFTLE (blue curves), and FTLE-

saddles (cyan spots) provide a transverse boundary of the wake, and an alternating scroll

pattern around the vortex cores. As each FTLE-saddle moves downstream, it approaches

another FTLE-saddle associated with a vortex shed in either the previous or subsequent

half-period. By approximately 𝑥/𝑐 = 1.0 downstream, the saddle pairs have nearly

merged together entirely.
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Figure 4-3: Instantaneous snapshot of marked FTLE-saddles. Negative- and positive-

time FTLE are contoured as red and blue ridges respectively, with contour level of values

more than 67% maximum. Positive Q-criterion is contoured as black region with contour

level at 5% of the maximum value. Panel is plotted as a purple line.

Figure 4-3 shows one snapshot of this wake, with the FTLE-saddles labeled as they

are referenced in figure 4-4. There are four markers labeled, two each that belong to

boundaries of two subsequent structures along the centerline of the wake. They are

labeled with either an ‘H’ to represent that they are on the higher half of the figure as

presented, or ‘L’ to represent that they are on the lower half of the figure as presented.

Each of the distinct vortex cores has one H saddle and one L saddle, and as seen in

figure 4-2, we expect the lower saddles to merge together, and the higher saddles to

merge together. In particular, L1 and L2 are shown to approach merger in figure 4-2(d)

at 𝑦/𝐴 ≈ −1 and 𝑥/𝑐 ≈ 1. H1 and H2 are shown to approach merger in figure 4-2(e) at

𝑦/𝐴 ≈ 1 and 𝑥/𝑐 ≈ 0.8.
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Figure 4-4: Decreasing distance between pairs of FTLE-saddles compared to downstream

distance of the pair’s centroid. Two dotted lines indicate linear curve fits to the decreas-

ing pair distances from upstream. Linear fit was performed for FTLE-saddle distance

upstream of 𝑥/𝑐 = 0.6.

In figure 4-4, the distance between the labeled H saddles and the distance between

the labeled L saddles is presented as a function of the downstream distance of each pair’s

centroid. Both trace out a similar path as they move downstream, with an apparent

deceleration of the merging occuring downstream of approximately 0.6 chord lengths.

This is observed as a shallowing of the slope of the two curves. As seen in figure 4-2(d),

the lower half saddles approach each other at 𝑥/𝑐 ≈ 0.8, and the two red nFTLE ridges

that are associated with each of the two saddles become parallel to each other, but can

never intersect. Therefore the distance between the saddles will never go identically to

zero. For this reason, we take the slope of these curves from trailing edge to 𝑥/𝑐 = 0.6,

and find that both the upper half saddles and the lower half saddles have a projected

merge location of 𝑥/𝑐 = 0.8 chord lengths downstream at 𝑆𝑡 = 0.28.

In the previous work, the location of the vortex wake breakdown that accompanies

the FTLE-saddle mergers was shown to move upstream with increasing Strouhal number.

93



By using the Lagrangian analysis, a more direct and consistent analysis of the breakdown

location is possible, and as in the current results, can identify and track these structures

with relatively less user interaction.

4.2 Vortex convection: 3D fully-developed turbulent

channel flow

Fully developed 3D channel flow has been studied extensively to increase the under-

standing of the basic physics of wall-bounded turbulent flows. Vortex identification and

tracking in the channel flow is important for the quantitative and qualitative investiga-

tions of complex turbulence interactions near a wall. It also helps the design and testing

of turbulence closure models, independent of whether the flow is treated as a stochastic

flow field, a network of vortices, or a superposition of waves (Robinson, 1991).

The vortex convection velocity is of fundamental interest as vortical structures play a

dominant role in transport phenomena in turbulent flows. As indicated in the literature

(Robinson, 1991), individual vortex structures are not expected to propagate at the

speed of the mean flow. The velocity of structures varies among vortices, and for one

given vortex, its convection velocity will change with time and location in a turbulent

channel flow. Kim et al. (1987) and Kim and Hussain (1993) previously showed the

variation of average structure convection velocity with wall-normal distance in turbulent

channel flow using Eulerian space-time correlations of velocity and pressure fluctuations.

Their study found that structure convection velocity is slightly less than the local mean

velocity for most of the channel, except in the near-wall region. The Eulerian space-time

correlation method has been fundamental to statistical theories of turbulence and its

modeling since the 1940s, but it does not retain sufficient information, i.e., the energy

transfer among small scales which are convected by large scales (Squires and Eaton, 1991),

or the ability to disperse contaminants suspended in the turbulent flow (Kraichnan, 1965).

The current study also calculates the streamwise structure convection velocity, but using

cross-correlations of FTLE-saddle locations which reveals the transport phenomena in

94



the turbulent flow from the perspective of the Lagrangian coherent structure.

Here, the temporally and spatially averaged convection velocity is measured on 2D

planes parallel to the wall. This is accomplished by tracking FTLE-saddles in each plane

to determine their average streamwise velocities. The statistical average of the convection

velocity has practical application, such as in aeroacoustic studies where structure velocity

can indicate the time and velocity scales of the most dominant features that produce

aerodynamic forces and sound (Kim and Hussain, 1993).

The 3D, fully turbulent channel simulation for this study was run at 𝑅𝑒𝜏 = 180,

with 𝑅𝑒𝜏 = 𝑢𝜏ℎ/𝜈, where 𝑢𝜏 is the friction velocity, ℎ is the channel half-height, and

𝜈 is the kinematic viscosity. In these quantities, 𝑢𝜏 = (𝜏𝑤/𝜌)1/2, where 𝜏𝑤 is the shear

stress at the wall and 𝜌 is the density. The computational domain is 𝑥/ℎ ∈ [0, 2𝜋] in the

streamwise direction, 𝑧/ℎ ∈ [0, 2𝜋] in the spanwise direction, and 𝑦/ℎ ∈ [−1, 1] in the

wall-normal direction. It is bounded by walls at 𝑦/ℎ = -1 and 𝑦/ℎ = 1, and has periodic

boundary conditions in the streamwise and spanwise directions. Distance from the wall

can also be represented in terms of 𝑦+ = 𝑢𝜏𝑦/𝜈.

This simulation was used by Green et al. (2007), and was based on that of Kim

et al. (1987). For the case shown here, a non-dimensional integration time of τ+ = 27

was used for the flow map computation with integration time steps of 𝛥𝑡+ = 0.09. Both

integration time and time step were non-dimensionalized by τ+ = 𝑡𝑢2
𝜏/𝜈. The integration

time was chosen based on previous results, and yields well-defined FTLE fields. As can be

seen in figure 4-5, shorter integration times can result in less sharp FTLE ridges, but by

τ+ = 27, the FTLE ridges are converged. Longer integration of the flow map to τ+ = 36

or τ+ = 45 does not change the ridge locations, only sharpens them. The values of FTLE

along the ridges decrease, which can be expected because the denominator of equation 2.8

is increasing, but the particle trajectories that were initialized near the ridges may have

left the vicinity of structures and may not be continuing to separate.
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Figure 4-5: Negative-time FTLE fields in a plane located at 𝑦+ = 49.6 for five different

integration times, as indicated. All five figures use the same color axis as shown.

4.2.1 Results

In this study, the averaged structure convection velocity at each wall-normal location was

found by tracking the FTLE-saddles in wall-parallel planes of the channel flow. Fields

of nFTLE in this data were originally presented by Green et al. (2007), but the current

study manages to detect and track FTLE-saddles automatically from processed nFTLE

and pFTLE data sets. Figure 4-6 shows FTLE ridges on 2D planes at 𝑦+ = 10.5 and

𝑦+ = 49.6 in the turbulent channel at one representative time. Positive- and negative-

time FTLE ridges are shown as blue and red curves, respectively, and cyan dots locate

the FTLE-saddles at the intersections of the pFTLE and nFTLE ridges. While 2D cuts

of the FTLE surfaces are shown here as FTLE ridges, the full 3D domain is used for the

FTLE calculation.
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Figure 4-6: Instantaneous snapshots of pFTLE ridges (blue) and nFTLE ridges (red)

(values above 0.65𝐹𝑇𝐿𝐸𝑚𝑎𝑥) at (a) 𝑦+ = 10.5 and (b) 𝑦+ = 49.6 in the turbulent

channel simulation. FTLE-saddles are highlighted by cyan dots.
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The ridges of the FTLE field are codimension-one structures, meaning that in 2D

flows, they are one-dimensional curves. In the case of the turbulent channel, which is

3D, the FTLE ridges will be 2D curved surfaces in space. In figure 4-6, although the

flow maps were only initialized in a series of single planes, they were advected in the

full 3D data domain. For this reason, the ridges in figure 4-6 can be considered the

intersection of the 2D FTLE maximizing surfaces with these particular planes. The

saddles, which are the intersections of the FTLE ridges, are codimension-two, meaning

that they are points in 2D flows, and one-dimensional line segments in 3D flows. The

saddle points of figure 4-6 are then intersections of the saddle curves with the shown

2D planes. It is expected that the saddle line segments can also be moving in the

wall-normal direction, and therefore the streamwise velocity could also be including line

segment growth, bending, or rotation. The results obtained from the numerical hotwires

used by Kim and Hussain (1993), however, would be subject to the same errors.

FTLE ridges and FTLE-saddle locations were identified for a series of twelve time-

resolved snapshots at each of the 129 planes across the channel height. Using an adaptive

cross-correlation algorithm by Dantec DynamicStudio for every two sequential snapshots

of cyan saddles, one average streamwise velocity of the saddles at each plane was then cal-

culated for each image pair. The algorithm is an iterative and adaptive cross-correlation

based displacement estimator combined with window shifting, window deformation, and

sub-pixel analysis. In particle image velocimetry analysis, it iteratively adjusts the size

and the shape of the individual interrogation areas during processing in order to adapt to

local particle densities and flow gradients. For the current study, streamwise convection

velocity of saddles in each pair of snapshots was estimated from saddle displacements

inside interrogation areas that were chosen as the whole 2D plane. This resulted in

one average saddle velocity per instant in time per plane, which were then averaged

together for the data points shown in figure 4-7. The structure convection velocity is

non-dimensionalized using the friction velocity: 𝑢𝑐 = 𝑢/𝑢𝜏 . As shown in figure 4-7, one

standard deviation of the resulting convection velocity is less than 10% of the mean ve-

locity for most sections of the channel, with the exception of planes close to the channel

center, due to the existence of fewer saddles in this region, and very close to the wall,
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Figure 4-7: Dimensionless plane-averaged velocity of FTLE-saddles 𝑢𝑐/𝑢𝑚 (𝑢𝑚 is the
mean velocity at the centerline of the channel) in the turbulent channel simulation is
shown against wall-normal distance (red). This data is compared with the dimensionless
simulation mean streamwise velocity 𝑢̄/𝑢𝑚 profile (blue), and the dimensionless stream-
wise propagation velocity of the velocity fluctuation 𝑢𝑟/𝑢𝑚 from the space-time correla-
tions by Kim and Hussain (1993) (green). The error-bars in the figure are one standard
deviation of the measured FTLE-saddle convection velocity in the plane.

where the saddles are hard to extract, due to lack of sharpness of the pFTLE ridges and

nFTLE ridges caused by the shorter time scales. The plane-averaged transverse convec-

tion velocities of FTLE-saddles for all the planes have near-zero mean values (𝑣𝑐 u 0.03),

and have an average standard deviation of 3% of the mean convecting velocity, with a

maximum of 11% of planes close to the channel center, which is also due to the existence

of fewer saddles in this region.

For comparison, the channel mean streamwise velocity 𝑢̄ is included as a solid blue

curve in figure 4-7, and the streamwise propagation velocity of the velocity fluctuation

𝑢𝑟/𝑢𝑚 from the space-time correlations by Kim and Hussain (1993) is also shown on

the same axes. Here, we refer to the vortex convection velocity from Kim and Hussain

(1993) as the velocity fluctuation propagation velocity. All the velocities are scaled by

the mean velocity at the turbulent channel centerline for comparison. The structure

convection velocity from the FTLE-saddles, 𝑢𝑐, is approximately 10% - 15% less than the

mean profile velocity 𝑢̄ for a large segment of the channel width: −0.92 < 𝑦/ℎ < 0.92

(𝑦+ > 14). Close to the wall (𝑦+ ≤ 14), the velocity of the vortices is larger than the

channel mean profile velocity. While this is consistent with the physical interpretation
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that vortices will travel faster than the viscous-dominated mean velocity close to the

wall, the average velocity data in that region may not be statistically converged. Even

though the channel mean velocity reaches zero close to the wall, the vortex structure

convection velocity could be significant in the region due to perturbations caused by

vortices advecting away from the wall. As shown in figure 4-7, Kim and Hussain (1993)

and Kim et al. (1987) observed that the velocity fluctuation propagation velocities are

slightly smaller than the local mean velocity for portions of the channel away from the

wall (𝑦+ > 15), but that they are higher near the wall (𝑦+ < 15). The velocity profile of

the current study agrees with the previous research, while the magnitude of the velocity

fluctuation propagation velocity is higher than the convection velocities of FTLE-saddles

for portions of the channel away from the wall (𝑦+ > 15). The previous research found

that in sections near the wall (𝑦+ < 15) the structure convection velocity stays constant

at 55% of the centerline velocity while the local mean velocity decreases until it is zero

at the wall, indicating that the movement of vortices in this region is dominated by

convection not viscosity.

The current study, which used automatic tracking of FTLE-saddles, was consistent

with previous results that used correlations of velocity and pressure. This shows the va-

lidity of using FTLE-saddles to track vortices directly, avoiding the fluctuating velocity or

pressure components that can be sensitive to small errors typically found in experimental

data. FTLE ridges, and therefore FTLE-saddle points found from them, are robust to

small magnitude or short duration velocity field errors (Haller, 2002).

4.3 Vortex evolution: 3D hairpin vortex

In section 4.2, some statistical quantities of vortex dynamics in the complex 3D turbulent

flow, even in the boundary layer region, are revealed by vortex identification methods.

The Lagrangian coherent structures show promising performance in tracking and identi-

fying relatively larger scale vortices in the freestream compared to the small structures

with short time scale. In the current section, we intend to extend this part of work by

study of the hairpin (HP) vortex behavior with the application of quantitative analysis
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techniques and criteria for more details and explanation.

HP vortex is a typical vortical structure in a turbulent boundary layer, and consists

of an 𝛺-shaped head with a pair of counter-rotating quasi-streamwise legs usually not at

equal strength. Spanwise asymmetric one-sided HP vortices (‘canes’) near the wall have

also been observed (Theodorsen, 1954; Robinson, 1991; Guezennec, 1989). Its properties

(size, vorticity, energy) and dynamic phenomena (origin, growth, breakdown) have been

shown to correlate to the complex, multi-scaled turbulent motions observed in both

experiments and simulations.

Passage of a rapidly lifting HP head and the strong pumping of fluid between the HP

legs create a ‘burst’ event, which is a sequence of ‘ejection’ events: events in the second

quadrant corresponding to negative streamwise fluctuations being lifted away from the

wall by positive wall-normal fluctuations (𝑢′ < 0, 𝑣′ > 0) using quadrant analysis (Adrian,

2007). The pumped fluid encounters the high-speed free-stream fluid resulting near-wall

shear layers, which correlates to increase of the wall shear stress and boundary layer

momentum (Brown and Thomas, 1977; Adrian et al., 2000; Ganapathisubramani et al.,

2003; Tomkins and Adrian, 2003; Hutchins et al., 2005; Smits et al., 2011). The near-

wall spanwise spacing of low-speed streaks is associated with the spanwise width of the

HP legs, and the characteristic 30∘ to 50∘ angle seen in the structure of wall turbulence

is also associated with the angle at which HP vortices incline with respect to the wall

(Kim and Adrian, 1999; Tomkins and Adrian, 2005; Guala et al., 2006; Balakumar and

Adrian, 2007; Monty et al., 2007). Experimental and numerical research (Bakewell Jr

and Lumley, 1967; Head and Bandyopadhyay, 1981; Perry and Chong, 1982; Perry et al.,

1986; Zhou et al., 1999; Adrian et al., 2000; Adrian, 2007; Wu and Moin, 2009) in wall-

bounded turbulence revealed that the HP vortices are scattered randomly in streamwise

and spanwise directions within an organized packet (shown in figure 4-8).
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Figure 4-8: Hairpin vortices packet generated by DNS, visualized by iso-surfaces of 𝜆2
𝑐𝑖

(image courtesy of Zhou et al. (1999))

Figure 4-9: Hairpin vortex packet visualized by Q-criterion with isosurface level of 2%

maximum, colored by streamwise location to aid visualization.

The physical process of the new HP vortex auto-generation on the wall and its evolu-

tion to large-scale motions (LSMs) farther from the wall was initially provided by Smith

et al. (1991) with a model supported by unsteady surface-layer separation theory and
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‘kernel’ experiments. This research also provided an explanation for the kinematic be-

havior of boundary-layer and channel flow based on HP vortex dynamics. Zhou et al.

(1999) extended the study to address in detail the mechanisms responsible for the auto-

generation of HP vortices, as well as discussion of the characteristic shape of the resulting

HP packet. Adrian et al. (2000) used PIV to study the high-resolution velocity field mea-

surements within the turbulent boundary layer, and revealed that HP vortices align one

behind other within the packet, usually as an existing HP vortex (e.g., primary hairpin

(PHP)) followed by a sequence of younger HP vortices (e.g., secondary hairpin (SHP))

on its upstream end that arise from a process of auto-generation, all of which results in

a series of long near-wall low-speed streaks.

Adrian (2007) discussed HP vortex packet formation and organization, and its growth

into larger-scale structures than the boundary layer thickness by LSMs. Vortex identi-

fication methods, i.e. FTLE and 𝜆2
𝑐𝑖, were applied by Green et al. (2007) to reveal the

evolution of the single HP vortex into a packet of similar structures, and to show that the

birth of a SHP vortex corresponds to a loss of hyperbolicity along the LCS. Jodai and

Elsinga (2016) used time-resolved tomographic PIV to study the evolution of HP vortex,

and argued that the SHP is initiated by an approaching ‘sweep’ event with associated

fourth quadrant velocity fluctuations (𝑢′ > 0, 𝑣′ < 0), perturbing the shear layer that

contains an existing HP packet.

A previously generated simulation of an isolated HP vortex by Green et al. (2007),

with the method introduced by Zhou et al. (1999), is used to study the auto-generation

of a SHP vortex structure (shown in figure 4-9). The single HP vortex was generated by

DNS from the simulation of turbulent channel flow in section 4.2, with an initial con-

dition extracted by the linear stochastic estimation. The initial condition is identified

as the statistically most probable flow field from the turbulent channel flow, that has a

prescribed ejection event (a signature of HP vortex) at a prescribed point. More details

of the data set can be found in Green et al. (2007). Eulerian methods, i.e., the Q-criterion

and 𝛤2 function, as well as Lagrangian methods, i.e., FTLE and LAVD, are used to visu-

alize the 3D HP vortices and the auto-generation process. The circulation development

and wall-normal location of both PHP and SHP heads are studied to determine if there
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is a correlation between the strength and height of the primary HP vortex with the SHP

vortex auto-generation.

Both the PHP and SHP heads are identified at the mid-span cross-section of the

channel due to the approximate symmetry of the flow field through the HP heads (shown

in figure 4-10). The vortex center of the HP head is identified by local maxima of 𝛤2

function at the mid-span cross-section of the channel, and the vortex area boundary of

the HP head is picked by Q = 2%Q𝑚𝑎𝑥 level set surrounding 𝛤2 function center. Both

negative- and positive-time FTLE ridges will be plotted at the mid-span cross-section

to indicate the HP vortex auto-generation process as elucidated in Green et al. (2007).

The FTLE fields are calculated using the full 3D data set despite the fact that a 2D

plane is shown in figure 4-10(c). A non-dimensional integration time of τ+ = 27 was

used for the FTLE computation with integration time steps of 𝛥𝑡+ = 0.09 in this case.

Both integration time and time step were non-dimensionalized by τ+ = 𝑡𝑢2
𝜏/𝜈. 2D HP

head circulation is calculated in the identified vortex area as a measurement of HP head

strength (Zhou et al., 1999). As introduced in section 2.1.7, the circulation of the 2D

HP head vortex is calculated by equation 2.16 using the vorticity of the mid-span cross-

section plane (𝜔𝑧) within the vortex area. The development of the HP head circulation

is studied during the HP auto-generation process.

3D LAVD is applied to reveal some details of HP auto-generation. Similar to the

method introduced in section 3.2.3, the 3D LAVD is calculated from dimensionless time

τ+ = 189.0 (after SHP vortex is formed), and through a backwards integration to τ+ =

184.5. A relatively short LAVD calculation period is chosen to avoid a scenario in which

a too long integration time involves too many fluid particles entraining into or detraining

from the SHP head, which makes it hard to separate LAVD-fluid of SHP from the shear

layer close to the wall. To identify HP vortex with 3D LAVD, the LAVD boundary is

identified at the mid-span cross-section of the channel, by an LAVD iso-contour level set

that satisfies a chosen arc-length and convexity deficiency (shown in figure 4-11).
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Figure 4-10: HP head visualized by an isosurface of Q = 2%Q𝑚𝑎𝑥 (cyan) at the mid-span

cross-section. (a) Demonstration of mid-span cross section of the channel. (b) HP heads

visualized by Eulerian vortex identification methods. Yellow and green spots are PHP

and SHP 𝛤2 centers respectively. Black circle identifies the vortex boundary by the Q-

criterion level set. (c) HP head visualized by Eulerian vortex identification methods and

FTLE ridges. Yellow and green spots are PHP and SHP 𝛤2 centers respectively. Black

circle identifies the vortex boundary by Q-criterion level set. Negative-time and positive-

FTLE ridges are plotted as red and blue curves.
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Figure 4-11: HP head visualized by LAVD. (a) Identification of HP heads by LAVD 2D

contour plot at the mid-span cross section of the channel. Red curves are HP head vortex

boundaries by LAVD. (b) SHP head visualized by 3D LAVD iso-surface. The location of

mid-span cross section plane is shown by black frame.

The SHP vortex is shown by a 3D LAVD isosurface identified from a level set of

the 2D LAVD boundary around the SHP as shown in figure 4-11(b). As can be seen in

the figure, the 3D LAVD isosurface of the SHP, consists of not only the SHP but also

the shear layer close to the wall and partial PHP. After the formation of either PHP
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or SHP vortex, the fluid particles are still entrained into or detrained from the vortex,

and mix into the shear layer close to the wall. This dynamic process makes it difficult

for Lagrangian methods, i.e. LAVD and FTLE, to differentiate the HP vortex from the

shear layer close to the wall.

All the fluid particles within the 3D LAVD isosurface of the SHP are tracked back-

wards to study related problems: 1) the conditions for HP vortex auto-generation, i.e.

PHP circulation, 2) origins of the SHP, 3) regions of the boundary layer directly affected

by HP auto-generation.

4.3.1 Results

HP heads at the mid-span cross section of the channel are visualized by both negative-

and positive-time FTLE ridges at four instants in figure 4-12. The HP vortices are moving

from right to left in figure 4-12. The PHP head is identified by vortex boundary and

center at τ+ = 31.5, at which instant it appears with wrapping FTLE boundaries and

FTLE-saddles at intersection of both FTLE ridges, and is identified after the pFTLE

separates it from the shear layer. The SHP is identified at τ+ = 89.1 by the Eulerian

boundary and center, when the nFTLE boundary shows a kink (shown in figure 4-12(b)).

Green et al. (2007) showed the loss of hyperbolicity along the nFTLE ridge indicating

the beginning of the SHP formation, which coincides with the result of the current study.

109



𝑥/ℎ

𝑦
/
ℎ

PHP

(a) τ+ = 31.5

𝑥/ℎ

𝑦
/
ℎ PHP

SHP

(b) τ+ = 89.1

𝑥/ℎ

𝑦
/
ℎ PHP

SHP

(c) τ+ = 123.3

𝑥/ℎ

𝑦
/
ℎ

PHP

SHP

(d) τ+ = 135.0

Figure 4-12: HP head visualized by Eulerian vortex identification methods and FTLE

ridges at two instants. Yellow and green spots are PHP and SHP 𝛤2 centers respectively.

Black circle identifies the vortex boundary by Q-criterion level set. Negative-time and

positive- FTLE ridges are plotted as red and blue curves.
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Figure 4-13: Traces of HP heads location identified by 𝛤2 function centers.

In figure 4-13, both PHP and SHP heads are tracked by 𝑦+ of their 𝛤2 function center

along the wall-normal direction against τ+. In the figure, we can see that both HP heads

move towards the channel midplane at a steady rate when convecting downstream. The

PHP head crosses the channel midplane at τ+ = 152.1.

In figure 4-14, the dimensionless vortex area defined by Eulerian methods are tracked

against τ+. As we can see in the figure, the PHP head area increases between τ+ =

31.5 − 152.1 before it crosses the channel midplane. A more rapidly increasing trend

of PHP head area can be observed close to the channel midplane. After its formation

at τ+ = 89.1, the SHP head area exhibits a relatively small area compared to PHP

head. The PHP and SHP head areas drop when their shapes change at τ+ = 123.3 and

τ+ = 135.0 respectively (shown by black head boundary changing in figure 4-12(c) and

figure 4-12(d)).

The development of both HP head circulations at mid-span are tracked against τ+ in

figure 4-15. The circulation development between τ+ = 31.5 − 89.1 shows that the PHP

head circulation has a steady increasing rate. PHP head circulation reaches a plateau

after SHP head formation at τ+ = 89.1, and starts decreasing while SHP head circulation

increases. It can be observed that SHP heads circulation drops at τ+ = 135.0 when the

head area decreases.
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Figure 4-14: Development of HP heads area.
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Figure 4-15: Development of HP heads circulation.
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Figure 4-16: Material of SHP vortex identified by LAVD fluid particles colored by 𝑦+ to

aid visualization.

Figure 4-16 shows the motion of all the material belonging to the SHP identified by

LAVD fluid particles. The LAVD fluid material of SHP is picked by a cut out (2.0 <

𝑥/ℎ < 3.0,−0.75 < 𝑦/ℎ < 0.75) of 3D LAVD iso-surface at τ+ = 189.0 (shown in figure 4-

11) around the SHP vortex head by visual judgment. Due to the reason discussed above,

it is difficult to separate the SHP vortex from the shear layer and part of the PHP vortex

in the visualization of LAVD iso-surfaces, and the arbitrary cut is used here to help

visualize only the SHP auto-generation process. The SHP LAVD fluid are convected

backward from τ+ = 189.0 to τ+ = 89.1, and shown in figure 4-16 at six instants during

the SHP auto-generation process in the forward time sequence. As can be seen in the

figure, all the LAVD fluid particles in the SHP start close to the wall. The LAVD fluid

belonging to the SHP head starts from 𝑦+ = 70, then moves up towards the midplane to
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𝑦+ = 150 in the end. It is consistent with ejection event, which is often associated with

HP vortex generation. This also indicates that HP vortex formation will have effects at

the wall, i.e., pressure, shear stress, etc.

The circulation, area, and wall-normal location of the PHP and SHP heads has been

compared during the evolution process. A correlation between these characteristics of

two HP heads is given. It is observed that the increasing strength of PHP head stops at

SHP formation. A decrease in the PHP head strength while the SHP strength increases

is also observed. By LAVD fluid, the origin of the SHP vortex is shown to come from

the vicinity of the channel wall. Thus a strong connection between flow characteristics,

i.e., pressure and shear stress and SHP is expected preceding or during the HP ejection

event.

In this chapter, we applied the combination of multiple vortex detection methods

into three cases of either experimental periodic or three-dimensional aperiodic flow. We

found that with sufficient temporal and dimensional resolution of 3D experimental veloc-

ity data, the Lagrangian analysis by FTLE and FTLE-saddles can provide a more direct

and consistent analysis with relatively less user interaction than Eulerian approaches in

the research of propulsive wakes. In the 3D wall-bounded turbulent flow, the application

of FTLE and FTLE-saddles provide a quantitative and qualitative investigation consis-

tent with the traditional methods of velocity and pressure correlation, while being more

robust from the small velocity field errors. In the case of 3D isolated hairpin vortex,

the Lagrangian analysis of both FTLE and LAVD provide new perspectives of the SHP

auto-generation process compared to the analysis only by Eulerian approaches. But we

also observed that in places close to the boundary layer where the time scales can be

much shorter than those in the main flow, as well as in the HP vortex where it experiences

strong entrainment and detrainment, the Lagrangian approaches perform poorly, as it is

difficult to separate the HP vortex and shear layer for in depth research.
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Chapter 5

Conclusion and outlook

This thesis advances the state of the art regarding vortex identification and tracking in

the vortex forming and shedding flows of flapping flight by a detailed study of a canonical

case, the leading edge vortex (LEV) shedding from a flat plate with 45∘ pitch-up maneu-

ver. The canonical case study revealed the advantages of the combination of multiple

Eulerian and Lagrangian vortex detection approaches, i.e. FTLE, Geodesic LCS, LAVD,

and Q-criterion, etc., in the vortex dynamics analysis. By identifying and quantifying

the LEV dynamics during its evolution, and by analyzing its shedding phenomenon and

the influence on the plate lift fluctuation, this study helps to provide future refinement

of aerodynamic models incorporating vortex shedding. The vortex dominated flow in the

study is in many ways analogous to the flight of natural flyers, and is relevant to the

aerodynamics of bio-inspired MAVs incorporating unsteady flapping flight. The knowl-

edge produced by this study thus has the potential to impact the future design of such

MAVs.

5.1 Conclusions

The vortex detection methods used in this thesis allow us to simultaneously consider

multiple vortices present in a given data set, and they reveal complex vortex dynamics.

This allows us to track and evaluate the vortex dynamics in both time and space, such

as formation, attachment, growth, shedding, and convection, etc. Combined with the
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optimal vortex formation concept and vortex shedding mechanism, the vortex detection

methods enable us to investigate the vortex shedding mechanism and its correlation with

the fluctuation of lift on the plate.

During the pitch-up motion of the flat plate, there is formation and shedding of a

large scale LEV and a trailing edge vortex (TEV, induced upon LEV shedding). FTLE-

saddles and 𝜆-saddles on the boundary of the LEV are tracked to study the LEV shedding

from the plate and the intermittent feeding of the LEV by the shear layer. The shedding

time of FTLE-saddle I at 𝑇 = 4.5 indicates the detachment of the LEV, matches with

the formation number 𝑁 = 4.5, and correlates with the first peak of lift after the plate

motion stopped. The shedding time of FTLE-saddle III at 𝑇 = 7.1 correlates with

the LAVD-defined fluid circulation peaks and the last marked decreases in the plate lift

(associated with the LEV). The FTLE-saddles around the LEV match with the shedding

location identified by VSM, which attributes the vortex shedding to influence of stream-

wise pressure gradient. As discussed in chapter 3, 𝜆-saddle is a more recent approach,

but there is a numerical error in its resulting saddle location induced by the flow map in

its algorithm compared to FTLE-saddle. In contrast, the FTLE-saddle by the standard

method provides a solution with the minimum error, preventing the discrepancy between

the physical saddle and numerical saddle to be amplified in the calculation.

The exploration of vortex detection methods is extended to three other cases: a 2D

experimental data set of a pitching plate, a fully developed turbulent channel flow and an

isolated hairpin vortex through its evolution process. We found that the trajectory and

phenomenological evolution of vortices could be determined by tracking FTLE-saddles

and visualizing LAVD-defined fluid in these cases. Using the vortex detection approaches

to track the vortices yielded an objective point in space tied to their location, which

enabled the implementation of automatic tracking algorithms. Automatic tracking of

vortices in moderate 𝑅𝑒 flows dominated by large scale structures allows for the robust

application of quantitative analysis techniques and criteria to determine the behavior

of structures. This will be particularly useful in studying the unsteady aerodynamic

applications of birds and large insects, which primarily fly at 𝑅𝑒 = 102−104 (Shyy et al.,

2008; Ol et al., 2009). It is worth noting that in turbulent flows or other flows with an
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interacting range of length and time scales, users need to carefully consider the interplay

between the spectrum of time scales of the data set and the integration time, and carefully

choose an integration time of the vortex criteria based on the relevant time scale. As

shown in Chapter 4, there is still a good deal of information and flow description available

using these methods in the more complex flows, but implementation of the method and

interpretation of the results must be more careful.

5.2 Recommendations for Future Work

With the current body of work detecting and analyzing the LEV shedding with its cor-

relation to the plate lift fluctuation in a 2D canonical case, the next step in the current

research would be to extend the study into more complicated flapping flight with either

the pitching, heaving or surging motions, or a combination of them. Flow features that

emerge in the pitch-up motion have been described in detail, and investigating the effect

of the continuous motions on the vortex shedding and the aerodynamic forces would be

an interesting problem to explore.

Use of the Lagrangian FTLE with experimental data requires both temporal and

dimensional support in the data. While it is not uncommon to use a trajectory integration

timestep during particle trajectory calculation that is smaller than the time between

subsequent velocity data sets, the temporal resolution of the data must be sufficient

so that interpolation techniques adequately recreate intermediate velocity fields when it

is necessary. For inherently three-dimensional flows, a single plane of data, even if it

contains all three velocity components, is not sufficient to generate an accurate Cauchy-

Green deformation tensor and FTLE field. The wake structure of a 2D flow and a 3D flow

is essentially different, and a 2D plane flow would not represent the real 3D wake structure

as 3D instabilities develop. In particular, vortex structures that are parallel to the data

plane, such that the vortex-induced velocity will be in and out of the plane, will not be

captured. In those cases where it is known ahead of time that the structures of interest are

mainly perpendicular to the plane in which data is acquired, the FTLE calculation will

capture the majority of the structures in the plane. The further application of the vortex
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detection approaches in 3D data is necessary to broad and validate their application to

more general cases.

Based on the statistical result in the turbulent channel flow and the study on the

hairpin vortex evolution in this thesis, the next step can be a 3D implementation of

the vortex identification methods in turbulent boundary layers. When applying the

Lagrangian methods FTLE and LAVD for vortex identification and tracking in turbulent

boundary layer, the high shear stress close to the boundary, and intense entrainment and

detrainment of fluid material into or away from the the Lagrangian coherent structure

make it difficult to differentiate Lagrangian coherent structures from the shear layer

close to the boundary. More correlations between the hairpin vortex dynamics and the

complex, random, multi-scaled turbulent motion, as well as the shear stress and drag

on the boundary will be the next step in the current research. A united picture of the

turbulent flow could be significantly advanced.
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Appendix A

Code Used

MATLAB and Fortran 90 were used extensively for all the analysis techniques, La-

grangian coherent structure analysis, such as FTLE, FTLE-saddle, Geodesic LCS, 𝜆-

saddle, LAVD. Fieldview was used to generate wake visualization images. All codes used

are available on http://greenfluids.syr.edu/, and a list of the files and a short description

for each is included below.

A.1 Fortran 90 codes

1. intprog.f90: Top-level code to integrate trajectories and 𝜆, and calculate Cauchy-

Green strain tensor eigenvector and eigenvalue, FTLE, LAVD.

2. grid.f90: Read in input parameters and set up the calculation grid.

3. inout.f90: All input and output subroutines.

4. ftlecalc.f90: Particle, 𝜆 integration, Cauchy-Green strain tensor eigenvector and

eigenvalue, FTLE, LAVD calculation, and velocity field interpolation.

5. Makefile: File used to compile all modules at once.

6. input.inp: Input parameters, usually located in a subfolder.
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A.2 MATLAB codes

1. ftle_saddle.m: Calculates FTLE-saddle locations for all cases.

2. lambda_saddle.m: Calculates 𝜆-saddle locations for all cases.

A.3 Fieldview code

1. Image_General.fvx Generate images with the same formatting for a number of data

files.
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