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Abstract 

The electrostatic assembly of cationic gold nanoparticles (AuNPs) with core diameters of 
approximately 1.5 nm and 4.5 nm and the anionic sphere and wheel polyoxomolybdates 
( ) ( ) ( )VI V

72 60 372 3 2 2 3 442 30 724 Mo Mo O CH COO H O · ca. 300 H O · ca. 10 C ON H NHH CO    (Mo-132a), 

( ) ( ) ( ){ } ( ) ( ){ } ( ){ }4 2 4
VI VI V

5 21 2 272-n 81 4 4 26 301n n 2-
Mo Mo O HNH H O O M+ NH o O SO ca. 200 H O ⊂ ⋅ 

 

(Mo-132b), and ( ) ( ) ( )4 154 448 14 2 228 14 70
NH Mo NO O H H O  · 350 H O    (Mo-154) was 

investigated. The AuNPs were capped with a trimethylammonium terminated ligand. Zeta 
potential and UV-Vis studies supported the successful assembly of the oppositely charged 
species. The ratio at which the precipitation of aggregates from solution occurred was consistent 
with the point of electroneutrality observed in the zeta potential results. The UV-Vis studies 
showed the loss of the surface plasmon resonance (SPR) band as this point of electroneutrality 
was approached. 

 
In a study performed by Gooch, et. al. involving combining the 4.5 nm AuNP and Mo-

132a and Mo-132b, it was found that a counterintuitive trend was observed. The precipitation 
point for the more negatively charged Mo-132b corresponded to a higher ratio than the 
precipitation point for Mo-132a.  This trend continued in this study involving the 4.5 nm AuNP 
and Mo-154, where r  = [POM]:[AuNP] mole ratio of r  ≈ 8 was required to reach the point of 
electroneutrality and precipitation than what would be predicted through basic charge balance 
considerations. In the study involving the 1.5 nm AuNP, the spherical Mo-132 Keplerates 
precipitated out approximately at the point where the charges on the nanoparticles and 
polyoxomolybdates were balanced, similar to what is observed when oppositely charged 
nanoparticles interact. These ratios for Mo-132a and Mo-132b were r  ≈ 1 and r  ≈ 0.6, 
respectively. However, the precipitation point between the smaller AuNP and Mo-154 again 
required less of the Mo-154 than what would be expected if it followed this trend at r  ≈ 0.4. 
Overall, these results indicate that both the shape and charge of the polyoxomolybdate and the 
size of the AuNP affect their interaction and precipitation point. 
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Executive Summary 

In the present work, the electrostatic assembly of polyoxomolybdates and gold 

nanoparticles was investigated. Polyoxometalates (POMs) are frameworks comprised of multiple 

metal ions bridged by oxygens. They can contain different kinds of metals and are also capable 

of incorporating heteroatoms, such as phosphorous, sulfur, or nitrogen. A central metal ion forms 

a polyhedron with the atoms bonded to it, and several polyhedra come together to form the 

polyoxometalate. Due to the diversity of coordination polyhedra that can be formed and the 

variety of ways they can connect, a vast assortment of overall shapes and structures are possible. 

They can even be built to a size beyond the molecular scale of 0.1-10 nm (1 nm = 10-9 m) and 

into the nanoscale of 1-100 nm. This assortment of structures is what makes POMs a subject of 

interest in current research. They can be synthesized to display a variety of desirable properties, 

such as luminescence or mesoporosity where any cavities or channels are well-defined. 

Typically, polyoxometalates are anions, meaning they have an overall negative charge. 

Polyoxomolybdates or POMs are clusters where the only metal present in the structure is 

molybdenum. In the present work, three polyoxomolybdates were used, two of which were 

spherical (Mo-132), and one which was shaped like a wheel (Mo-154). 

Similarly, nanoparticles are materials whose size lies between 1-100 nm, and are 

interesting due to the fact that they exhibit properties that are not observed at either the molecular 

or bulk scales. Metal nanoparticles are typically comprised of a neutral metal core with ligands 

adsorbed onto the surface. With regards to nanoparticles, ligands are generally long chain 

organic molecules that can bind to the surface of the metal core. For gold nanoparticles (AuNPs), 

there is normally a thiol group at one end of the chain, containing a sulfur-hydrogen group. There 

is a strong affinity between sulfur and gold, making the bond between them strong and keeping 
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the ligands attached.  The other end of the chain can be terminated with a charged functional 

group to give the nanoparticles an overall charge, either positive or negative. In the present work, 

the nanoparticles used contained a spherical gold core of varying sizes surrounded by positively 

charged ligands. 

Most current research involving nano-sized units is focused on building larger systems 

from these nano-objects rather than developing new nanoparticles, such as systems involving 

POMs and AuNPs. This is partially due to the fact that many of the possible applications for 

nanoparticles rely on how these nanoscopic entities come together and interact, rather than the 

effects of a single nano-object. Because of this, understanding how nano-sized objects aggregate 

is important in the design of nanomaterials. The potential applications for these nanomaterials 

include electronics, drug delivery, and catalysis, where the nanomaterial can speed up the rate at 

which a reaction proceeds and is not consumed. 

With regards to nanoparticles, it has been found that a mixture containing two types of 

nanoparticles, one positively charged and the other negatively charged, will precipitate from 

solution only when the overall charge between the two types are balanced. This has led to the 

electrostatic assembly of charged nanoparticles, where the attraction between the positively 

charged ligands on one nanoparticle and the negatively charged ligands on another nanoparticle 

led to aggregation and assembly of nanoscopic entities. This electrostatic assembly has even led 

to the development of crystals constructed from two types of oppositely charged nanoparticles. 

However, in a recently published study involving AuNPs and POMs, a trend counterintuitive to 

this was observed. That study involved combining one type of AuNP with POMs of differing 

negative charges. It was found that a larger amount of the more negatively charged POM was 

required for precipitation to occur than the amount required in the system with the less 
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negatively charged POM. Had those systems followed the trend observed with oppositely 

charged nanoparticles, a smaller amount of the more negatively charged POM would have been 

needed. This observation was mainly explained by the different ways that the counterions that 

balanced out the charges of the POMs interact with the counterions of the AuNPs and with the 

POM itself.  

 The aim of this project was to further investigate this concept of the precipitation point 

dependence on charge neutrality between oppositely charged nano-sized species. This was done 

by combining positively charged nanoparticles and negatively charged polyoxomolybdates and 

observing how they interact by finding the ratio at which precipitation occurs. Two nanoparticles 

were used, both with the same positively charged ligand but with different diameters of the metal 

core. The different sizes of the core meant that these nanoparticles had different overall charges, 

where a larger core was covered with more ligands and therefore had a higher charge. Three 

polyoxomolybdates were used as well, two of which were spherical and one was shaped like a 

wheel. All three had differing overall negative charges.  

The general experimental procedure employed separate vials containing one size of 

nanoparticle. A solution of one of the types of polyoxomolybdates was added to the vials in 

different amounts, providing a range of ratios between the positively charged nanoparticles and 

the negatively charged polyoxomolybdates. The ratio at which aggregation and precipitation 

occurred was observed, then the systems were analyzed using zeta potential and ultraviolet-

visible spectroscopy. In all of the studies, the zeta potential results supported what was observed 

visually where the point of electroneutrality occurred at the same ratio where precipitation 

occurred. Zeta potential essentially provides a way of measuring the stability of suspended 

charged particles, where precipitation generally occurs when the measured potential is near zero. 
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This indicates that the electrostatic repulsive forces between like-charged entities is not strong 

enough to keep the particles suspended, and therefore aggregation and precipitation occur. In 

ultraviolet-visible spectroscopy, the wavelengths at which absorption occurs can be characteristic 

of the entities present in solution. 

Based on the previous study involving oppositely charged AuNPs and POMs, it was 

expected that the systems investigated here would behave similarly and precipitate out in a 

manner counterintuitive to the studies involving oppositely charged NPs. However, this result 

was only observed with the same-sized nanoparticle as that which was used in the previous 

study. In the studies performed with a smaller nanoparticle, it was found that the spherical 

Mo-132 entities precipitated out according to the approximate point of charge balance between 

the AuNPs and POMs, similar to what is observed when oppositely charged nanoparticles are 

combined. However, the precipitation point between the smaller AuNP and the Mo-154 occurred 

at a lower ratio than what would be expected if it were to follow the trend observed with the 

other POMs and the same-sized NP. Overall, these results indicate that both the shape and charge 

of the POM and the size of the AuNP affect their interaction and precipitation point. 
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1 Introduction 

1.1 Nanoparticles 

Nanoparticles (NPs) are of interest due to the variety of applications, quantum size 

effects, and the behavior of individual NPs. They exhibit physical properties that are not 

displayed by either the bulk metal or molecular compounds due to quantum-mechanical rules 

related to their electronic structure.1,2 These properties depend on size, distance between NPs, 

type of ligand, and shape.1,3 Their potential applications include catalysis, electronics, energy 

storage, and biological applications such as drug delivery.1,2,4-8 

Interest in gold nanoparticles (AuNPs) generally comes from the fact that they are the 

most stable metal nanoparticle.1 A basic description of their synthesis involves adding a reducing 

agent to a gold salt as well as a charged stabilizing agent or surfactant to provide colloidal 

stability to the NPs by keeping them separated through electrostatic repulsion. Gold 

nanoparticles can forma a variety of shapes, such as spheres, rods, or hollow shells. The 

stabilizing agent/surfactant can be replaced through ligand exchange, which for AuNPs is 

typically a thiol due to the high affinity between sulfur and gold.1,3,5 It is advantageous to use 

ligands which will form a self-assembled monolayer (SAM), where the ligands organize on their 

own in a compact manner on the surface of the core. This makes it energetically unfavorable to 

disrupt the SAM, making the nanoparticle more stable.3 Charges can easily be added to the NPs 

by using ligands terminated by a charged functional group8, such as positively charged N,N,N-

trimethyl(11-mercaptoundecyl)ammonium chloride (TMA). 

Nanoparticles can be characterized through such methods as ultraviolet-visible 

spectroscopy (UV-Vis), electron microscopy, dynamic light scattering (DLS), and 

electrophoresis. The absorption band observed in UV-Vis spectra for nanoparticles is known as 
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the surface plasmon resonance (SPR) band. It arises when the free electrons are excited as a 

group and oscillate upon absorption.3,5 The resonance arises when the frequency of the incident 

light and the frequency of the electron cloud oscillation are the same (Fig. 1). This oscillation of 

the electrons is called the surface plasmon, and absorption occurs very strongly near this 

frequency. Noble metal NPs tend to have strong plasmon resonances in the visible light range, 

giving them a vivid color in solution. This SPR band depends on the size of the metal core; as the 

size increases, the SPR band undergoes a red-shift to higher wavelengths. This red shift causes 

the suspension to appear more violet or blue, and can also occur when the particles aggregate. 

For AuNPs, the SPR band is usually centered around 510-530 nm for gold core diameters of 

around 4-40 nm.3,5 

 
Fig. 1: Diagram showing how surface plasmon resonance arises in spherical metal nanoparticles. When the 

frequency of the incident light (E-field) and the frequency of the oscillation of the electron cloud (e- cloud) are 
the same, it leads to the surface plasmon resonance.3 

1.2 Zeta Potential 

A charged particle in solution will attract ions of opposite charge which will be strongly 

bound to the surface of the particle. This layer is known as the Stern layer and shields the surface 

charge of the particle.9,10 Beyond this layer of ions is the diffuse layer, which is more loosely 

bound to the particle. These layers make up the electric double layer where the outer boundary is 

known as the slipping plane. When an electric field is applied to the solution, the slipping plane 

is the boundary of ions which move with the charged particle, while ions outside the slipping 
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plane remain unaffected by the movement of the particle. The zeta potential is the potential at 

this plane (Fig. 2).11,12 

 
Fig. 2: Graphic representation of the electric double layer for a nanoparticle functionalized with a negatively 
charged ligand. Labeled are the metal core of the NP (“Core”), the bound ligands (“Ligand shell”), the Stern 

layer of adsorbed countercations (“Adsorbed layer”), and the plane of shear (“Slipping plane”). The zeta 
potential is the potential at the slipping plane.11 

Zeta potential is not a direct measure of the charge of a particle, but rather it is related to 

the charge which leads to electrostatic repulsions between like-charged particles. Zeta potential 

values of large magnitude are more stable than smaller values. The smaller values indicate that 

particles will have a tendency to flocculate, or aggregate, as the colloidal system is not as stable 

due to a weaker electrostatic repulsive force.9 This repulsive force is very important in 

maintaining the stability of a colloidal suspension (e.g. nanoparticle dispersion system), as it is 

only when the repulsive forces are greater than the attractive van der Waals interactions that the 

particles remained dispersed.13 

1.3 Precipitation Across Size Regimes 

The level of stability of mixtures of oppositely charged species in solution depends on 

their size (Fig. 3). Larger particles in the micro size regime precipitate out continuously due to a 

combination of residual van der Waals forces leading to attraction between microparticles and 
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the weak solvation of large aggregates. On the molecular level, complexing ions will precipitate 

out when they reach a certain ratio due to solubility and equilibrium. In contrast, oppositely 

charged nanoparticles will precipitate out once they reach the point of electroneutrality and a 

neutral surface charge on the resulting aggregates.14 

When oppositely charged nanoparticles are combined below the point of charge 

compensation, they will initially form small aggregates that are stabilized by a shell of the 

dominant charged species. This stabilizes the aggregates through solvation and electrostatic 

repulsion between the like-charged shells, preventing further aggregation. As the point of 

electroneutrality is approached, the aggregates become larger and larger where the outer shell of 

the more concentrated nanoparticle surrounds both the positively and negatively charged NPs. At 

the point of electroneutrality, there aren’t enough of the more concentrated nanoparticle to form 

the stabilizing shells the stabilizing effects no longer apply, leading to precipitation.14,15 It would 

be expected for the like-charged repulsive force between the “shell” NPs to be too large for the 

shell to form. However, the ions in solution screen the charges of the nanoparticles, allowing the 

shells to form.8  

 
Fig. 3: Graph describing how the precipitation of oppositely charged particles depends on their size. 

Microparticles precipitate out continuously, complexing ions on the molecular level precipitate out when a 
certain ratio between the ions has been reached, and nanoparticles precipitate out when the oppositely charged 

particles reach electroneutrality.14 
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1.4 Polyoxomolybdates 

In general, polyoxometalates (POMs) can form a wide variety of structures.16,17 However, 

scientists have had issues with synthesizing compounds and materials with desirable properties, 

such as mesoporosity (where the cluster has well-defined openings), luminescence, and catalytic 

activity.16,18-21 POMs are specifically of interest here due to their ability to form structures whose 

sizes lie in the mesoscopic size regime, which lies between the microscopic world of small 

molecules and the macroscopic world of ‘bulk’ compounds.16,17 This puts them in the same sized 

order of magnitude as nanoparticles. The structures of POMs are based on the linking of metal-

oxide polyhedra, allowing for the diverse assortment of structures which include spheres and 

wheels.16 These large clusters can even themselves be used as building blocks, where the spheres 

or wheels can be linked together in chains or layers.17-27 

Polyoxomolybdates are especially good at being able to create various shapes and 

structures for various reasons. Some of these are: the simple way of changing coordination 

numbers, the easy ways of performing ligand exchange between water and other ligands at 

molybdenum sites, the ability to adjust or increase the electron density without forming metal-

metal bonds, and terminal Mo=O groups hindering linking and preventing unrestrained growth.28 

Many polyoxomolybdates can be synthesized using the basic process of acidifying an aqueous 

molybdate solution and then adding a reducing agent. The final product depends on the length of 

time the reaction is allowed to proceed, the pH, the ionic strength of the solution, the type of 

electrolytes present, the concentration of molybdate, the concentration of the reducing agent, and 

the type of reducing agent.23,29 Reduction of anions, either a single polyhedron or a building 

block, leads to a higher charge density on the peripheral oxygens due to the increased magnitude 

of the overall negative charge. This leads to protonation, which could lead to additional 
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condensation reactions to expand the fragment. It is through this type of growth that many 

polyoxomolybdates are constructed.29 

1.4.1 Mo-132: Keplerates  

When Keplerates (Mo-132) were first discovered, they were considered quite remarkable 

due to their high symmetry and spherical shape as icosahedral inorganic superfullerenes.22 Each 

Mo-132 is made up of 12 {Mo11} moieties, giving each 132 molybdenum atoms. Each {Mo11} 

unit has a C5 symmetry and contains a central {MoO7} pentagonal bipyramid surrounded by 10 

{MoO6} octahedra (Fig. 4).22,29-33  

 
Fig. 4: Polyhedral representation of a Keplerate (Mo-132). Shown in darker colors is the {Mo11} unit with C5 
symmetry. In the center is the {MoO7} pentagonal bipyramid, which is surrounded by 10 {MoO6} octahedra. 

Mo-132 spheres contain 12 of these units.34 

These spheres can also be thought of as consisting of 12 {(Mo)Mo5} pentagons linked 

together by 30 V 2
2 4{Mo O } + , and the V 2

2 4{Mo O } +  are bridged with a bidentate ligand (Fig. 5). 

This classical V 2
2 4{Mo O } +  linker is usually formed in solutions of reduced molybdates and 

bidentate ligands. When an Mo-132 type Keplerate is made using acetate, Mo-132a is formed:  

( ) ( ) ( )VI V
72 60 372 3 2 2 3 442 30 724 Mo Mo O CH COO H O · ca. 300 H O · ca. 10 C ON H NHH CO    

(Mo-132a).22,30 If the bidentate ligand used is sulfate instead of acetate, Mo-132b is formed: 
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( ) ( ) ( ){ } ( ) ( ){ } ( ){ }4 2 4
VI VI V

5 21 2 272-n 81 4 4 26 301n n 2-
Mo Mo O HNH H O O M+ NH o O SO ca. 200 H O ⊂ ⋅ 

 

(Mo-132b).35,36  

The actual cage forming the sphere has an overall charge of -12, with 30 binding sites for 

ligands. Since acetate is a monovalent ligand with a -1 charge and sulfate is a divalent ligand 

with a -2 charge, this difference in ligand leads to Mo-132a having an overall -42 charge while 

Mo-132b has an overall -72 charge.30,33,35,36 This increased negative charge on Mo-132b leads to 

an increased affinity for the countercations and their encapsulation. Both Mo-132a and Mo-132b 

could encapsulate their NH4 counterions, which would affect their overall charges, however this 

was not considered.35 

 

 
Fig. 5: Polyhedral representation of the {(Mo)Mo5} unit present in Mo-132. In the center (light blue) is a 

{MoO7} pentagonal bipyramid, surrounded by five {MoO6} octahedra (dark blue), all of which are linked the 
central polyhedron through edge sharing.37 

Solutions of Mo-132a and Mo-132b are brown, and mainly absorb at about 450 nm. They 

are stable in solution, and are capable of encapsulating certain guest species within the hollow 

center. This opening is a nanometer sized cavity and contains the ligands (Fig. 6), while the outer 

edges have a high electron density. For Mo-132b, having the divalent sulfate ligands within the 

cavity means that the charge density increases from the outside of the sphere to the inner 

ligands.20,22,30,33,35,36 
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Fig. 6: Polyhedral representation of Mo-132a, where the internal acetate ligands are represented as ball-and-

stick figures.38 

 

1.4.2 Mo-154: the “Big Wheel” 

The “big wheel” was first identified in 1995 and the Mo-154 type wheels have since been 

recognized as being one of the main components in molybdenum blue (where Mo-154 indicates 

that there are 154 molybdenum centers present in the cluster).39,40  It was one of the first 

structures evolved beyond the molecular (micro) scale, and into the mesoscopic scale, i.e., 

between the macro and micro regimes.41 When Mo-154 is synthesized, not all of the 

molybdenum centers are reduced to MoV, making it a mixed-valent (MoV/MoVI) diamagnetic 

cluster with the ( ) ( ) ( )4 154 448 14 2 228 14 70
NH Mo NO O H H O  · 350 H O    (Mo-154), making the 

charge on the wheel itself -28.18,22,39 It contains 140 MoO6 octahedra and 14 MoO6(NO) 

pentagonal bipyramids.39 It is a tetradecamer with approximate D7d symmetry when the 

hydrogen atoms are not taken into account.21  

Like the Mo-132 Keplerates, the wheel can be considered to be made up of {Mo11}n 

units, where for the big wheel n=14 and for the Keplerates n=12. It could also be thought of as 

being constructed from 14 each of {Mo8}, {Mo2}, and {Mo1} units (Fig. 7, Fig. 9).16-18,21,22 The 
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{Mo11} unit contains both MoV and MoVI centers, giving the motif CS symmetry rather than 

fivefold symmetry (Fig. 8). The {Mo8} unit is contained within the {Mo11} motif, where three of 

the outer molybdenum octahedra present in the {Mo11} motif are missing in the {Mo8} motif.22 

A solution of Mo-154 has an intense blue color, which has been attributed to inter-valence 

charge transfer (IVCT) transitions between the MoV and MoVI centers that results in a band in the 

range of 200-900 cm-1 in the infrared (IR) spectrum.42 

 

 
Fig. 7: (a) Polyhedral representation of Mo-154, where the {Mo8} subunit is shown. (b) Ball-and-stick 

representation of a side view of Mo-154 with two {Mo8} and {Mo1} units emphasized through polyhedral 
representation.16 

 
Fig. 8: Polyhedral representation of the {Mo11} motif present in Mo-154. The wheel is made up of 14 of these 

units, each of which has CS symmetry.22 

The Mo-154 cluster is highly soluble due to the large number of water ligands, making 

both the inner and outer surfaces of the ring hydrophilic. To improve crystallization, the 
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concentration of electrolytes in solution must be increased in order to disrupt the hydration shell. 

It has a hole with a size in the nanometer range and a high surface area, explaining its high 

affinity for adsorbents (Fig. 9). The outer edges of the wheel have a high electron density.20,22-

24,40,42  

 
Fig. 9: Polyhedral representation of the "big wheel" Mo-154 and approximate dimensions. Shown are the 
different subunits that make up the structure: {Mo8} (dark and light blue, with the light blue as the central 

pentagonal bipyramid and dark blue as the surrounding octahedra), {Mo2} (red octahedra), and {Mo1} (yellow 
octahedra).18 

1.5 Literature Review 

Most current research related to the nanoscale is now more focused on building larger 

systems from well-ordered building blocks rather than developing new nanoscopic 

components.6,31 This is partially due to the fact that many of the possible applications for 

nanoscopic entities rely on the interaction and assembly of the nano-sized units, rather than the 

effects of a single nano-object.6 Therefore, understanding aggregation tendencies at the 
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nanoscale is important in the design of nanomaterials for various applications, such as plasmonic 

sensors and drug delivery vehicles.7 

As stated in section 1.3, oppositely charged nanoparticles will precipitate out when their 

charges are balanced.14 It has been shown that this point can be reached through dilution of the 

solution and/or an increase in temperature. Both of these methods result in an increase in the 

interaction between the oppositely charged nanoparticles, leading to precipitation due to the 

attractive forces. In the case of dilution, the lower salt concentration leads to less screening by 

the ions and desorption of ions from the NP ligands, both of which serve to increase the 

electrostatic attraction between the oppositely charged nanoparticles. By increasing the 

temperature, ions desorb from the surface of the NPs, also leading to stronger electrostatic 

interactions.43 

It is possible to take advantage of the electroneutrality precipitation point through the 

electrostatic assembly of oppositely charged nanoparticles to form large, well-defined crystals. 

However, it has been shown that these crystals will only form when the size distributions 

between the oppositely charged nanocomponents overlap, and that the crystals will be built from 

the particles in that overlapping region.44  

Past research has provided the ability to synthesize nanoparticles that exhibit attractive or 

repulsive forces and the ability to adjust the range over which these interactions occur through 

the size and shape of the nano-objects. This makes electrostatic interactions useful in mediating 

the assembly of aggregates or crystalline structures.7,15,44 Recently, it has been found that 

nanoscopic entities can be synthesized through the electrostatic assembly of nanoparticles and 

polyoxometalates.31 In the present work, investigation into the concept of size-based 
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precipitation was expanded by observing the interaction between positively charged 

nanoparticles and negatively charged polyoxomolybdates. 

 

2 Experimental Methods 

2.1 Synthesis of Polyoxomolybdates 

Syntheses were performed in collaboration with Stephanie Jones and Jonathan Gooch.

( ) ( ) ( )VI V
72 60 372 3 2 2 3 442 30 724 Mo Mo O CH COO H O · ca. 300 H O · ca. 10 C ON H NHH CO    (Mo-132a), 

( ) ( ) ( ){ } ( ) ( ){ } ( ){ }4 2 4
VI VI V

5 21 2 272-n 81 4 4 26 301n n 2-
Mo Mo O HNH H O O M+ NH o O SO ca. 200 H O ⊂ ⋅ 

 

(Mo-132b), and ( ) ( ) ( )4 154 448 14 2 228 14 70
NH Mo NO O H H O  · 350 H O    (Mo-154) were performed 

according to procedures described by Müller and coworkers.29,30,36,39,45 

2.1.1 Synthesis of Mo-132a 

Following the procedure described by Müller and coworkers29,30,45, a solution of 

CH3COONH4 (12.5 g, 162.2 mmol) and (NH4)6Mo7O24 · 4 H2O (5.6 g, 4.5 mmol) in 250 mL 

H2O was prepared, then N2H6·H2SO4 (0.8 mg, 6.1 mmol) was added. The solution was allowed 

to stir for 10 minutes, during which the solution exhibited a color change to blue-green. After the 

10 minutes were complete, a 50% (v/v) solution of CH3COOH (83 mL) was added under 

stirring, changing the color of the solution to green. The solution was then stored undisturbed in 

an open 500 mL Erlenmeyer flask for 4 days under ambient conditions, during which the 

solution exhibited a final color change to dark brown and red-brown crystals precipitated out. 

After the 4 days, the crystals were filtered out using a glass frit and washed with 90% ethanol 

then diethyl ether. 
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2.1.2 Synthesis of Mo-132b 

Following the procedure described by Müller and coworkers36, a solution of Mo-132a 

(2.0 g, 0.07 mmol) prepared as described in Section 2.1.1 was prepared in 160 mL H2O. To this 

red-brown solution, first (NH4)SO4 (8.0 g, 60.5 mmol) then H2SO4 (21 mL, 2.0 M) were added 

under stirring. The solution was stored undisturbed in an open 400 mL beaker under ambient 

conditions for 2 weeks, during which brown crystals precipitated out. These crystals were 

filtered off using a glass frit and washed with cold 2-propanol (4 mL), then diethyl ether (4 mL) 

and dried using air. 

2.1.3 Synthesis of Mo-154 

Following the procedure described by Müller and coworkers39, to 200 mL water, 

Na2MoO4 · 2 H2O (7.46 g, 30.8 mmol), NH4VO3 (1.19 g, 10.2 mmol), NH2OH · HCl (12.83 g, 

184.6 mmol), and HCl (3.5% v/v, 9.5 mL) were added. The mixture was stirred for 2 minutes, 

then the stirring was stopped while it was heated to 65°C in a 300 mL Erlenmeyer flask covered 

with a watchglass for 20 hours. Dark blue crystals precipitated out during this time, which were 

filtered out using filter paper, which was then placed in a desiccator under argon to dry. 

2.2 Synthesis of Gold Nanoparticles 

2.2.1 Synthesis of Au1.5TMA (Au1.5) 

The synthesis of the 1.5 nm diameter gold core NPs functionalized with TMA was 

performed using a synthesis modified from the one reported by Weare, et. al.46 In a 100 mL 

round-bottom flask, TOAB (0.160 g, 0.293 mmol) was added to a nitrogen purged toluene:water 

solution (6.5 mL:5.0 mL) and was allowed to stir for 5 minutes. Then HAuCl4·3H2O (0.100 g, 

0.254 mmol) was added and the reaction was left to stir for 15 minutes. At this point, the organic 
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layer had turned red-orange and PPh3 (0.232 g, 0.884 mmol) was added, turning the solution a 

cloudy white. After stirring 10 minutes, a solution containing excess NaBH4 (0.141 g, 3.73 mmol 

in 10 mL water) was slowly added under high stirring. The reaction bubbled and the organic 

layer turned dark purple. The reaction was allowed to stir for 3 hours, after which the aqueous 

layer was discarded and the organic layer was dried under argon, resulting in a dark brown-black 

solid. 

The solid was washed with hexanes, a solution of NaNO2 (6 g, 87.0 mmol in 10 mL 

water), and a methanol:water solution (3 mL:2 mL) to remove the phase-transfer agent (TOAB), 

undesired byproducts, and excess reagents. After drying, DCM (6.0 mL) was added and 

sonicated to ensure the dissolution of the solid. The solution was split into three vials (2 mL 

each), and 200 µL of TMA was added (5 mM in EtOH). The vials were covered and left to stir 

for an hour, then 2 mL of water was added to each vial. The vials were covered again and left to 

stir overnight, during which the nanoparticles transferred to the aqueous layer. The vials were 

combined, sonicated for 30 seconds, and then centrifuged for 5 minutes at 4400 rpm. The organic 

layer was removed and discarded, then the aqueous layer was washed twice with DCM, 

repeating the sonication and centrifugation before discarding the organic layer. The Au1.5TMA 

(Au1.5) nanoparticles were stored at 4°C.  

Thermogravimetric analysis (TGA) was used to determine the number of TMA ligands 

on the NPs, and therefore the size, as well as the concentration of the solutions used. From the 

number of ligands on the NPs, the charge could also be found, typically being between 

+36 and +42. For simplicity, this charge shall be referred to as ≈42. Further descriptions 

involving the interpretation of TGA results can be found in Appendix B. 
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2.2.2 Synthesis of Au4.5TMA (Au4.5) 

The synthesis of the 4.5 nm diameter gold core NPs functionalized with TMA was 

performed using a synthesis modified from the one described by Maye, et. al.47 After rinsing a 

100 mL round-bottom flask and stir bar with toluene, toluene (16 mL) and TOAB (0.278 g, 

0.508 mmol) were allowed to stir. A solution of HAuCl4·3H2O (0.040 g, 0.10 mmol in 10 mL 

water) was prepared and added after 15 minutes, causing the organic layer to turn dark red-

orange. After 30 additional minutes of stirring, the layers were separated and the aqueous layer 

discarded. A solution containing excess NaBH4 (0.038 g, 1.0 mmol in 20 mL H2O) was added 

dropwise to the organic layer until the toluene layer turned dark purple. The round-bottom flask 

was covered and left to stir for 2 hours, after which the layers were separated and the aqueous 

layer discarded. 

The toluene layer was split among 4 vials (4 mL each), and 400 µL of TMA (5 mM in 

EtOH) was added to each vial. The vials were covered, then left to stir overnight. The dark 

precipitate that had formed was separated out by centrifuging the vials for 3 minutes at 4400 rpm 

and decanting the toluene off. The precipitate was washed twice with ethyl acetate, sonicated for 

30 seconds, and then centrifuged for 3 minutes at 4400 rpm. The ethyl acetate was decanted off 

and the precipitate dried under argon, then dissolved in a solution of HCl (3 mL each, pH 2). The 

Au4.5TMA nanoparticles were stored at 4°C. Transmission electron microscopy was used to 

characterize the size of the nanoparticles. From the size, the number of ligands per NP could be 

calculated and therefore the charge on the NP could be found. Typically the charge would be 

approximately +420. 
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2.3 Sample Preparation and Analysis 

In a typical experiment, 1 mL aliquots of diluted NPs of one size were added to snap 

tubes, then aliquots of one type of POM solution were added to the different snap tubes to result 

in different molar ratios between the NPs and POMs. Precipitation at one of the ratios ( er , point 

of electroneutrality in the zeta potential measurements) would usually occur within 5 minutes. 

Zeta potential, DLS, and UV-Vis measurements and would then be taken. A typical 

concentration of the diluted NPs for Au1.5 would be 5 µM and for Au4.5 would be 0.05 µM. 

2.4 Instrumentation 

2.4.1 Zeta Potential and Dynamic Light Scattering (DLS) 

Both the zeta potential and DLS measurements were performed on a Malvern Zetasizer 

ZS. Zeta potential measurements were made over the range of -200 mV to +200 mV at an 

effective voltage of 150 mV using a folded capillary cell to contain the sample. DLS 

measurements were made using a 173° backscatter in a low volume polystyrene cell. The 

samples used in the zeta potential and DLS measurements were the mixtures of NPs and POMs 

described in Section 2.3. 

2.4.2 Ultraviolet-Visible Spectroscopy (UV-Vis) 

A Varian Cary 50 spectrophotometer was used to collect UV-Vis data at a scan rate of 

3000 nm/min over a range of 300-800 nm using a baseline correction. The samples were placed 

in 1 mL glass cuvettes, and were the same samples used in zeta potential and DLS whose 

preparation is described in Section 2.3. 
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2.4.3 Thermogravimetric Analysis (TGA) 

A Perkin Elmer Pyris1 TGA was used to collect TGA data with the samples purged under 

nitrogen gas and heated at a rate of 10°C/min. Before the analyses were performed, the samples 

were dropcast and dried. The samples used were the Au1.5 NPs whose synthesis was described in 

Section 2.2.1. All TGA experiments were performed by Jonathan Gooch in Dr. Zubieta’s group. 

A representative TGA weight loss plot can be found in Appendix B. 

2.4.4 Transmission Electron Microscopy (TEM) 

A JEOL 2000EX operated by the SUNY-ESF N.C. Brown Center for Ultrastructure 

Studies was used to perform TEM measurements. It was run with a tungsten filament at 100 kV. 

The samples with populations of at least 100 counts were analyzed using ImageJ software. The 

samples used were the Au4.5 NPs whose synthesis was described in Section 2.2.2. TEM 

experiments were performed by Rebeka Alam. 

3 Results and Discussion 

3.1 Keplerates and AuTMA Studies 

3.1.1 Mo-132a and Au1.5TMA 

For the assembly between Mo-132a and Au1.5, r  = [Mo-132a]:[Au1.5] mole ratios 

between 0:1 and 5:1  were studied. The brown solution of Au1.5 grew darker upon addition of the 

brown Mo-132a until precipitation occurred at er  ≈ 1, at which point all color had left the 

solution to form brown aggregates. These solutions were then analyzed using zeta potential and 

UV-Vis. DLS studies were attempted, however the results were inconsistent, possibly due to the 

polydispersity of the samples caused by the aggregating particles. The zeta potential studies were 
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performed in collaboration with Jonathan Gooch. A set of representative zeta potential results is 

shown in Fig. 10.  

 
Fig. 10: A representative set of zeta potential results in the assembly of Mo-132a and Au1.5. The red error bars 

shown represent the standard deviation of the measurements taken at that ratio. The precipitation point 
corresponded to the point of electroneutrality between the NPs and POMs observed in the zeta potential results 

at er  ≈ 1. 

The zeta potential remained relatively constant before the precipitation point, then 

dropped drastically near the precipitation point and ratio of electroneutrality ( er ) and leveled out 

to a near constant value at higher values of r . This general shape of the zeta potential curve is 

consistent with previous studies into the electrostatic assembly of both oppositely charged 

nanoparticles14,15 as well as NPs and Keplerates31. The ratio at which precipitation was observed 

corresponded to the point of electroneutrality, er  ≈ 1, in the zeta potential results. This ratio is in 

agreement with the point of charge balance between the ≈42 charged Au1.5 and the -42 Mo-132a, 

indicating that this assembly may follow the tendencies of oppositely charged nanoparticles. 

The UV-Vis spectra monitoring the assembly are shown in Fig. 11, with the faint SPR 

band centered at about λmax = 520 nm. Interestingly, the absorbance bands increase as more Mo-

132a is added, and drop only near the point of precipitation and electroneutrality. Consistent with 
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the results published by Gooch, et. al.,31 the loss of the SPR band in the absorption spectra at 

higher r  is attributed to a combination of the screening of the Au1.5 by the Mo-132a and the 

aggregation and precipitation out of solution of both the NP and POM. However, the increase in 

absorbance at the lower ratios was not observed in the previously reported study. This can be 

attributed to the fact that the SPR band for Au1.5 is much less pronounced due to its size of less 

than 2 nm,46 allowing for the absorption band of Mo-132a at 450 nm to begin to be seen and to 

add to the absorption spectra as more POM was added as well as the darkening of the 

solution.29,30,45 

 
Fig. 11: Absorbance spectra monitoring the assembly of Au1.5 and Mo-132a. [Mo-132a]:[Au1.5] mole ratios up 

to er  ≈ 1 are shown. The small band centered at about 520 nm is the SPR band for Au1.5. 

3.1.2 Mo-132b and Au1.5TMA 

For comparison, the assembly of Au1.5 and Mo-132b was also studied using 

[Mo-132b]:[Au1.5] mole ratios between 0:1 and 2.2:1  were studied. The brown solution of Au1.5 

grew darker upon addition of the red-brown Mo-132b until precipitation occurred at er  ≈ 0.6, at 

which point the solution became clear at the precipitation of brown aggregates. These solutions 
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were analyzed using zeta potential and UV-Vis. DLS studies were attempted, however it 

appeared that the formation of the aggregates made the solutions too polydisperse for analysis. 

The zeta potential studies were performed in collaboration with Jonathan Gooch, with 

representative zeta potential results shown in Fig. 12. 

 
Fig. 12: A set of representative zeta potential results in the assembly of Mo-132b and Au1.5. The red error bars 

shown represent the standard deviation of the measurements taken at that ratio. The precipitation point 
corresponded to the point of electroneutrality between the NPs and POMs observed in the zeta potential results 

at er  ≈ 0.6. 

The overall shape of the curve is quite similar to the zeta potential results in the assembly 

of Au1.5 and Mo-132a, as well as previous studies.14,15,31 The precipitation point occurred at 

er  ≈ 0.6 observed in the zeta potential results. This point also corresponds to the point of 

electroneutrality between the NP with a charge of ≈42 and the -72 Mo-132b.  

The UV-Vis spectra monitoring the assembly of Au1.5 and Mo-132b are shown in Fig. 13. 

Similar to the assembly involving Mo-132a, as more Mo-132b is added the absorbance increases 

then drops only near the point of precipitation and electroneutrality. Again, the loss of the SPR 

band at higher r  is attributed to both the screening of the Au1.5 by the Mo-132b and the 

aggregation and precipitation out of solution of both entities. The increase in the absorption band 
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can be attributed to the characteristic Mo-132b band at 450 nm beginning to be seen as more 

POM was added and the solution darkened.29,30,45 

 
Fig. 13: Absorbance spectra monitoring the assembly of Au1.5 and Mo-132b. [Mo-132b]:[Au1.5] mole ratios up 

to er  ≈ 0.6 are shown. The small band centered at about 520 nm is the SPR band for Au1.5. 

In the results reported by Gooch, et. al.31, which studied the assembly of Mo-132a and 

Mo-132b with Au4.5, different results were observed. The literature results showed that er  for the 

assembly between the more negatively charged Mo-132b and Au4.5 ( er  ≈ 14) was higher than 

that of Mo-132a and Au4.5 ( er  ≈ 10). These results appeared counterintuitive, since it would be 

expected that a smaller amount of the more negatively charged Mo-132b would be needed to 

balance the positive charge on the NPs. This observation was explained with two main 

arguments: (1) as the Keplerates and NPs came together, their electric double layers and 

counterions could have interacted in such a way that the new double layers forming around the 

aggregates would affect the zeta potential values observed (Fig. 14), and (2) the higher charge on 

Mo-132b would result in a stronger attraction between the NH4
+ counterions and the sphere, 
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which would screen the attractive nature between Mo-132b and the NPs to a greater extent than 

the Mo-132a counterions. This decreased attraction between Mo-132b and Au4.5 could have led 

to the higher er  value observed.31  

In the present work involving the smaller and less charged Au1.5, the opposite trend was 

observed. This seemed sensible since, as stated before, it would be expected that less of the more 

negatively charged Mo-132b would be needed to achieve charge balance. Also, the results of 

both Keplerates precipitating out with Au1.5 at the point of charge balance between the NPs and 

POMs indicated that the assembly of Au1.5 and Keplerates operated in a similar manner to that of 

oppositely charged NPs. Overall, these results indicate that the size of the nanoparticle affects the 

point of aggregation.  

 
Fig. 14: Diagram showing how the layers of counterions surrounding the Keplerates and the NPs would have 

been disturbed as the assembly progressed. This could have affected the zeta potential results.31 

3.2 Mo-154 and AuTMA Studies 

3.2.1 Mo-154 and Au1.5TMA 

In the assembly of Au1.5 and Mo-154 was studied using [Mo-154]:[Au1.5] mole ratios 

between 0:1 and 0.9:1  were studied through zeta potential, DLS, and UV-Vis. DLS and UV-Vis 
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measurements were performed in collaboration with Jonathan Gooch. The brown solution of 

Au1.5 grew darker upon addition of the dark blue Mo-154 until the precipitation point of er  ≈ 0.4, 

when the solution lost all color and brown aggregates formed. Representative zeta potential 

results are shown in Fig. 15, where the general shape of the curve is similar to those reported in 

previous studies.14,15,31 

 

 
Fig. 15: A set of representative zeta potential results in the assembly of Mo-154 and Au1.5. The red error bars 

shown represent the standard deviation of the measurements taken at that ratio. The precipitation point 
corresponded to the isoelectric point observed in the zeta potential results at er  ≈ 0.4. 

The UV-Vis absorption spectra up to er  are shown in Fig. 16, with the SPR band for 

Au1.5 being centered at about λmax = 520 nm. Consistent with the previous studies reported here, 

as er  is approached and aggregates begin to form, the absorption bands decrease, likely due to 

both the screening of the NPs by the addition of the POM and the formation and precipitation of 

aggregates. The spectra for r  values between 0.2 and 0.3 lie above Au1.5 due to the fact that the 

addition of Mo-154 darkened the solution and Mo-154 absorbs around the SPR band between 

about 500-900 nm due to IVCT between MoV and MoVI centers.40  
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Fig. 16: Absorbance spectra monitoring the assembly of Au1.5 and Mo-154. [Mo 154]:[Au1.5] mole ratios up to 

er  ≈ 0.4 are shown. The small band centered at about 520 nm is the SPR band for Au1.5. 

A comparison of the UV-Vis and DLS measurements to show how the hydrodynamic 

diameter of the aggregates ( hD ) increases while the absorbance maximum decreases at 

increasing r  can be found in Fig. 17. Similar to the zeta potential results, the UV-Vis maxima 

remained relatively constant until the precipitation point was approached, when a sudden drop 

occurred. This loss of the SPR band is consistent with the formation of aggregates observed and 

the precipitation of both the Mo-154 and Au1.5 from solution. The UV-Vis maxima reported here 

have taken into account the different initial absorbances. 

Unlike the studies performed with Au1.5 and the Keplerates, the ratio at which 

precipitation occurred does not correspond to the point of charge balance between the -28 

Mo-154 and the ≈42 AuNP. From charge balance considerations alone, it would be expected that 

a greater amount of the less negatively charged Mo-154 would be needed than either of the Mo-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

300 350 400 450 500 550 600 650 700 750 800

Ab
so

rb
an

ce

Wavelength (nm)

0:1 0.1:1 0.2:1 0.25:1 0.3:1 0.35:1 0.4:1

 
 



25 
 

132 POMs to balance out the charges on the NP. Therefore, the expected er  value based on the 

trend observed in the assembly of the Keplerates and Au1.5 would be er  ≈ 1.5. 

 
Fig. 17: Plot showing the change in the absorbance maximum corresponding to the SPR band until er  has been 

reached (green), as well as the change in hD  of the aggregates (blue). 

There are two main possible explanations for why this is occurring. (1) With the 

Keplerates, the screening of the inner charged ligands by the actual structure of the sphere could 

reduce the attraction between the Mo-132 and Au1.5. In the case of the wheel, the high electron 

density on the edges20,22 could mean that there is a higher level of attraction between Mo-154 and 

Au1.5 than the Keplerates due to the lack of screening. (2) The cavity in the center is large 

enough to allow ions to pass through, meaning that when the Mo-154 approaches the Au1.5, it 

may be better able to penetrate the electric double layer. The ions that make up the double layer 

could pass through the wheel, rather than being forced to pass around the sphere of the 

Keplerate. Essentially this could let the Mo-154 and the NPs to aggregate more effectively, and 

thus allow for a lower precipitation point. 
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3.2.2 Mo-154 and Au4.5TMA 

The assembly of Au4.5 with Mo-154 was studied over the range of r = [Mo-154]:[Au4.5] = 

0:1 to 30:1 mole ratios. The red solution of Au4.5 turned purple as the blue solution of Mo-154 

was added until precipitation occurred at er  ≈ 8, when the solution became clear and purple 

aggregates precipitated out. The system was monitored using zeta potential measurements (Fig. 

18). Much like the preceding studies reported here, the overall shape of the curve is consistent 

with those results and those reported in literature.14,15,31 

 
Fig. 18: A set of representative zeta potential results in the assembly of Mo-154 and Au4.5. The red error bars 

shown represent the standard deviation of the measurements taken at that ratio. The precipitation point 
corresponded to the isoelectric point observed in the zeta potential results at er  ≈ 8. 

This system follows the trend reported by Gooch, et. al. in that the point of 

electroneutrality occurs at a lower ratio than what would be anticipated based purely on the 

charges of the NPs and POMs. Similar to that study, the less negatively charged Mo-154 (-28) 

precipitated out at a lower ratio than either of the Keplerates. This indicates that the same 

arguments reported there would apply to this system. The interaction of the electric double layers 
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of both the NPs and the POMs could affect the zeta potential values, and the shielding caused by 

the counterions could lead to a decreased attraction between the two types of entities.31 

The UV-Vis spectra monitoring the assembly between Au4.5 and Mo-154 are shown in 

Fig. 19. The absorbance continuously decreases as r increases, consistent with previously 

published results involving Au4.5 and Mo-132 Keplerates. Also consistent with previously 

published studies, a slight red-shift is observed in the SPR band as r  increases, which is 

attributed to the formation of aggregates.3,5,7,14,15,31 Unlike the UV-Vis results involving Au1.5, 

addition of the Mo-154 at lower ratios did not lead to an increase in absorption. This is attributed 

to the more pronounced SPR band with a much higher extinction coefficient masking any 

absorption due to the POM, consistent with the previously reported study involving Au4.5 and 

Mo-132 Keplerates.31 

 
Fig. 19: Absorbance spectra monitoring the assembly of Au4.5 and Mo-154. [Mo-154]:[Au4.5] mole ratios up to 

er  ≈ 8 are shown. The band centered at about 530 nm is the SPR band for Au4.5. 

A summary of the results found in the present work, as well as those published by Gooch, 

et. al. for comparison, are shown in Table 1.31 In the case of the assembly system involving Au4.5 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

300 350 400 450 500 550 600 650 700 750 800

Ab
so

rb
an

ce

Wavelength (nm)

0:1 2:1 3:1 4:1 5:1 6:1 7:1 8:1

 



28 
 

and Mo-154, the results were consistent with those published previously. The trend observed was 

counterintuitive to the studies involving oppositely charged nanoparticles, but the trend was 

consistent within the studies involving Au4.5. Therefore, the arguments used by Gooch. et. al. 

involving the interaction of the two electric double layers and the shielding of the adsorbed 

counterions on the POMs would be applicable in explaining these observations.31 In the studies 

involving Au1.5, the results did not show a consistent trend based on the charges of the POMs, 

indicating that some factor other than charge plays a role in the point of precipitation. Although, 

the precipitation points for Mo-132a and Mo-132b follow the trend observed when oppositely 

charged NPs are combined in solution, where their precipitation ratios occur approximately 

where the charges on the Au1.5 and Mo-132 are balanced. This could indicate that the Mo-154 is 

the outlier, and therefore that the shape of the POM plays a larger role in the assembly process 

with Au1.5 than Au4.5. Further studies would be required to determine the level of dependence 

that shape and charge have on the electrostatic assembly of AuNPs and POMs. 

Table 1: Summary of the er  values at which precipitation occurred in each of the systems studied in the present 
work, as well as the results published by Gooch, et. al for comparison.31 The POMs are displayed by 

increasing negative charge: Mo-154 (-28), Mo-132a (-42), and Mo-132b (-72). 

 Mo-154 Mo-132a Mo-132b 
Au1.5 0.4 1 0.6 
Au4.5 8 1031 1431 

 

4 Conclusions and Future Work 

In the present work, the electrostatic assembly of cationic AuNPs with anionic POMs 

were investigated to further expand on both the work published by Gooch, et. al and studies into 

the interaction of oppositely charged nanoparticles. The NPs used were functionalized with 

N,N,N-trimethyl(11-mercaptoundecyl)ammonium chloride, with gold cores of approximately 1.5 
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nm and 4.5 nm. The POMs used were the Mo-154 “Big Wheel” and Mo-132 Keplerates 

containing either acetate or sulfate ligands. The assembly process was monitored through zeta 

potential and UV-Vis, and DLS measurements were attempted. The zeta potential and UV-Vis 

results indicated that successful assembly between the oppositely charged entities was 

successful, however the DLS measurements were inconclusive, most likely due to the 

polydispersity of the aggregates caused by the assembly process. The precipitation from solution 

of the NPs and POMs occurred at the point of electroneutrality, as measured by zeta potential. 

The UV-Vis results showed the loss of the SPR band for the AuNPs as aggregation and 

precipitation occurred. In all of the studies involving Au1.5, the absorption increased as more of 

the POM was added, then the absorption bands dropped as er  was approached. This was not 

observed in the study performed here involving Mo-154 and Au4.5, or those previously reported. 

This was attributed to the more pronounced SPR band for Au4.5 masking the absorption band 

characteristic of Mo-154, consistent with the previously reported studies involving Mo-132 

Keplerates. 

Including the previously reported results involving Au4.5 and Mo-132 Keplerates, a 

consistent trend was observed across the Mo-132 and Mo-154 POMs and Au4.5. The ratio at 

which electroneutrality and precipitation occurred increased from er  ≈ 8 (Mo-154), er  ≈ 10 

(Mo-132a), to er  ≈ 14 (Mo-132b) as the charge on the POMs became more negative. Although 

these results do not correspond to the trend observed for oppositely charged nanoparticles, where 

they will only precipitate out when the charges on the NPs are balanced, they do form a 

consistent trend. These counterintuitive results were justified by Gooch, et. al. by explaining how 

the interaction of the two species’ electric double layers and the stronger attraction of the POMs 

counterions as the negative charge increases would impact the results. The interaction of the 
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double layers of both the AuNPs and the POMs could affect the zeta potential values, and the 

increased shielding of the POMs by the adsorbed counterions as the POMs become more 

negatively charged could lead to a decreased attraction between the two types of entities.  

In the studies involving Au1.5 and the Mo-132 Keplerates, it appeared that ratios of er  ≈ 1 

(Mo-132a) and er  ≈ 0.6 (Mo-132b) at which electroneutrality and precipitation occurred 

correspond to the ratios at which the charges on the NPs and Keplerates are balanced. This 

indicates that for these spherical entities, they follow the trends reported when oppositely 

charged nanoparticles are combined. However, the er  ≈ 0.4 observed when Au1.5 and Mo-154 are 

combined does not correspond to the point of charge balance between the NPs and POMs. 

Therefore, the differing shapes of the Mo-154 wheel and the Mo-132 spheres appears to be 

affecting how these entities interact and precipitate. This could possibly be due to the high 

electron density on the outer edges of the Mo-154 leading to a higher level of attraction between 

the AuNPs and POMs and lowering the observed er  value, or the wheel shape of the Mo-154 and 

its hollow center could allow it to better penetrate the electric double layer of the Au1.5. 

Since the trends observed for Au1.5 are different than those observed for Au4.5, it is likely 

that the different sizes of the NPs also influence how these types of entities interact.  Essentially, 

these results indicate that both the charges on the POMs and their shape have an impact on how 

these species interact with nanoparticles, and that the size of the NPs affect how they interact 

with polyoxomolybdates. Further studies should be performed to investigate what role these 

factors play in the electrostatic assembly of anionic polyoxomolybdates and cationic gold 

nanoparticles. Possible avenues of this research could include different sized nanoparticles or 

additional non-spherical POMs.   
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Appendix A Abbreviations 

Chemical Compounds 

Abbreviation Chemical Name and/or Chemical Formula 

Au1.5 AuNP with gold core of about 1.5 nm 

Au4.5 AuNP with gold core of about 4.5 nm 

Mo-132a 
( ) ( ) ( )VI V

72 60 372 3 242 30 72

2 3 4

4 Mo Mo O CH COO H O

· ca. 300 H O · ca. 10 C O

N

H NH

H

CO

  

 

Mo-132b 
( ) ( ) ( ){ } ( ) ( ){ }

( ){ }
4 2 4

VI VI
5 21 2 6 12

V
2

72-

4

n 81

0

n n

2

-

4 3

Mo Mo O HNH H O

Mo O SO ca. 200 H O

O + NH ⊂
 ⋅  

Mo-154 ( ) ( ) ( )4 154 448 14 2 228 14 70
NH Mo NO O H H O  · 350 H O    

TMA 
N,N,N-trimethyl(11-mercaptoundecyl)ammonium chloride 

C14H32ClNS 

TOAB 
tetraoctylammonium bromide 

C32H68BrN 
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Other 

Abbreviation Term 

AuNP Gold Nanoparticle 

hD  Hydrodynamic Diameter 

DLS Dynamic Light Scattering 

IR Infrared 

IVCT Inter-Valence Charge Transfer 

NP Nanoparticle 

POM Polyoxometalate 

r  ratio of [POM]:[NP] 

er  
ratio of [POM]:[NP] at which electroneutrality in zeta potential results were 
observed 

SAM Self-Assembled Monolayer 

SPR Surface Plasmon Resonance 

TEM Transmission Electron Microscopy 

TGA Thermogravimentric Analysis 

UV-Vis Ultraviolet-Visible Spectroscopy 
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Appendix B Thermogravimetric Analysis 

TGA experiments were performed by Jonathan Gooch. App. B Fig. 1 shows a 

representative analysis of the results when Au1.5 was used as the sample. From this, it was 

determined that about 35% of the weight lost was from the TMA, and therefore about 65% of the 

total weight was the gold core. This mass percentage corresponds to approximately 101 gold 

atoms within the core, allowing for a range of 36 to 42 TMA ligands to be attached (Au101TMAn, 

where n = 36-42). These results were in agreement with previous reported studies.46 Since each 

ligand has a +1 charge, the overall charge on the Au1.5 lies between +36 to +42, although for 

simplicity was referred to as ≈42. TGA was also used to find the concentration of the Au1.5 

samples, since the small size of the gold core and the subsequent lack of a pronounced SPR band 

made the use of UV-Vis too difficult. A typical concentration was about 50 µM. 

 
App. B Fig. 1: Representative TGA results for Au1.5 to determine the mass of the gold core and the 

concentration of the Au1.5 solution. 
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