
Syracuse University Syracuse University 

SURFACE SURFACE 

Syracuse University Honors Program Capstone 
Projects 

Syracuse University Honors Program Capstone 
Projects 

Spring 5-1-2015 

Characterization of Ghrelin O-acyltransferase Active Site Characterization of Ghrelin O-acyltransferase Active Site 

Leslie Patton 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/honors_capstone 

 Part of the Amino Acids, Peptides, and Proteins Commons, Biochemical Phenomena, Metabolism, and 

Nutrition Commons, Biochemistry Commons, Cell Biology Commons, and the Molecular Biology 

Commons 

Recommended Citation Recommended Citation 
Patton, Leslie, "Characterization of Ghrelin O-acyltransferase Active Site" (2015). Syracuse University 
Honors Program Capstone Projects. 823. 
https://surface.syr.edu/honors_capstone/823 

This Honors Capstone Project is brought to you for free and open access by the Syracuse University Honors Program 
Capstone Projects at SURFACE. It has been accepted for inclusion in Syracuse University Honors Program Capstone 
Projects by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/honors_capstone
https://surface.syr.edu/honors_capstone
https://surface.syr.edu/honors_capstones
https://surface.syr.edu/honors_capstones
https://surface.syr.edu/honors_capstone?utm_source=surface.syr.edu%2Fhonors_capstone%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/954?utm_source=surface.syr.edu%2Fhonors_capstone%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1012?utm_source=surface.syr.edu%2Fhonors_capstone%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1012?utm_source=surface.syr.edu%2Fhonors_capstone%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=surface.syr.edu%2Fhonors_capstone%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=surface.syr.edu%2Fhonors_capstone%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=surface.syr.edu%2Fhonors_capstone%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=surface.syr.edu%2Fhonors_capstone%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/honors_capstone/823?utm_source=surface.syr.edu%2Fhonors_capstone%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


 
 

 

 

 

 

 

 

 

 

Characterization of the Human Ghrelin O-acyltransferase Active Site 

Leslie Michelle Patton 

Renée Crown Honor Capstone Project 

30 April 2015

i 



Abstract 

 
Ghrelin, first discovered in 1999, is a 28-amino acid peptide hormone involved in the 
regulation of appetite, insulin secretion and sensitivity, and many neurological effects 
such as learning, memory, and depression.1-6 Ghrelin has been identified to have a unique 
posttranslational octanoylation carried out by the enzyme ghrelin O-acyltransferase 
(GOAT). This distinctive modification is a point of interest in studying GOAT whereby 
blocking the acylation of the ghrelin could potentially halt the activity of the peptide 
hormone and provide a means of treating obesity, diabetes, and other diseases affected by 
ghrelin levels. The duration of my project involved working with a 20-amino acid mimic 
of the ghrelin peptide with various single residue mutations in the original wild type 
ghrelin sequence (GSSFLSPEHQRVQQRKESKK). The 20-amino acid ghrelin mimics 
are fluorescently labeled with a single acrylodan compound, and the activity as well as 
the inhibitory effects are monitored via reverse phase high performance liquid 
chromatography.7 Further studies were done to identify the interactions of ghrelin with 
GOAT specifically at the N-terminal lysine-5 position of ghrelin. Defining the 
interactions of ghrelin with the GOAT binding site and octanoyl Co-A substrates would 
pave the way to design inhibitors and aid in helping diseases related to diabetes, obesity, 
and neurological illnesses such as Alzheimer’s and Parkinson’s.     
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Executive Summary 

Ghrelin is a peptide hormone secreted from endocrine cells (cells that release 

peptides, hormones, steroids, or neuropeptides) in the stomach that plays many roles in 

the body, among which is stimulating appetite. Studies have shown ghrelin to increase 

before meals and decrease upon satiation. Similarly, mice injected with additional 

amounts of ghrelin exhibit increased consumption of food, whereas those with the gene 

for ghrelin or its receptor (GHSR-1a) knocked out show decreased food consumption.15 

Subsequent research has linked the secretion of ghrelin to maintaining levels of glucose 

in a state of starvation, learning and memory, insulin secretion, and the production of 

fat.1-6, 13  

Ghrelin is a twenty-eight amino acid peptide hormone, that binds and activates the 

growth hormone secretagogue receptor (GHSR-1a). However, in order for ghrelin to be 

biologically active and be able to bind to the GHSR-1a receptor, it must be modified with 

an octanoic acid on a serine at the third position from the N-terminus of ghrelin.1 This 

unique modification of ghrelin, required for biological activity, is catalyzed by the 

enzyme ghrelin O-acyltransferase (GOAT), which attaches an octanoate group (C8H15O) 

to serine-3 (third amino acid) in the ghrelin sequence 

GSSFLSPEHQRVQQRKESKKPPAKLQPR*.1 Additionally, ghrelin has shown to be the 

sole substrate for GOAT, providing further support for the unique nature and function of 

the ghrelin signaling pathway.1,11  

As ghrelin is the only known substrate for GOAT, the mechanism of how GOAT 

catalyzes ghrelin and attaches the octanoyl fatty acid group has been a key point of 

* Letters denoting specific amino acids: G, glycine; S, serine, F, phenylalanine; L, leucine; etc. 
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interest. Potentially blocking ghrelin from binding to GOAT could inhibit the signaling 

pathways that lead to increased appetite, the production of adipose tissue, and many other 

effects stimulated by octanoylated ghrelin. To efficiently block ghrelin recognition and 

modification by GOAT, the interactions between the ghrelin substrate and GOAT must 

be deciphered.  

Prior studies discovered the first five amino acids of the ghrelin sequence elicited 

reactivity with GOAT—implying those amino acids (‘GSSFL’) make up the recognition 

site of ghrelin.14 The Hougland lab developed a shortened ghrelin peptide consisting of 

the first six amino acids, rather than the full twenty-eight amino acid wild type sequence, 

and attached an acrylodan fluorophore at the sixth amino acid in order to allow 

fluorescence detection and monitoring of acylation of the peptide substrate by GOAT. 

Optimizing this shortened ghrelin mimic in the reaction with GOAT provided a baseline 

of reactivity that can be used to compare with subsequent reactions to study the 

interactions of the amino acids with the GOAT active site. From here, site directed 

mutagenesis of specific amino acids in the ghrelin sequence could be applied to evaluate 

the chemical interaction between ghrelin and GOAT involved in ghrelin binding and 

subsequent acylation.  

Previous studies done in the Hougland lab have investigated interactions of the 

first four amino acids (GSSF). To extend these studies, I explored the characteristics of 

the fifth amino acid (leucine) in ghrelin binding. Amino acids containing different 

properties were substituted for leucine at the fifth amino acid position on ghrelin, and the 

reactivity’s of the leucine mutants were compared against the six amino acid substrate. 

Alanine (smaller sized amino acid), phenylalanine (medium sized amino acid), and 
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tryptophan (largest amino acid) were substituted to explore the toleration of size GOAT 

has for ghrelin at this position; whereas glutamate (negatively charged) and lysine 

(positively charged) were substituted to examine toleration of charge. 

Beyond the specific interactions occurring between the peptide hormone and 

GOAT, we believe a binding pocket exists where ghrelin resides during catalysis. Though 

the first four amino acids on the N-terminal sequence of ghrelin have been shown to be 

essential for binding and recognition to GOAT,11 there is evidence that interactions also 

occur between downstream portions of ghrelin and GOAT.16 Determining the length of 

the binding pocket and which of the twenty-eight amino acids of ghrelin lie within the 

pocket will aid in identifying downstream interactions and potentially lead to additional 

targets for the development of GOAT inhibitors. My specific project includes placing the 

acrylodan fluorophore at different positions on ghrelin in the context of a twenty-amino 

acid ghrelin mimic. The bulky acrylodan compound can block interactions occurring 

within the binding pocket of GOAT, while an acrylodan at a position that does not 

contact GOAT should have a small effect of ghrelin binding. An unreactive acrylodan 

labeled ghrelin peptide indicates the acrylodan group is blocking binding and that portion 

of the peptide resides in the active site—while a reactive acrylodan labeled ghrelin mimic 

suggests the portion of the labeled peptide is not within the group, but instead outside of 

the binding pocket not interfering in the reaction between ghrelin and GOAT. By 

“walking out” the placement of the acrylodan compound from the sixth amino acid 

position to the twentieth amino acid position (the last amino acid), we can probe the 

approximate length of the ghrelin binding site. 
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Understanding the precise interactions and characterizing the active site between 

ghrelin and GOAT is imperative for potentially designing inhibitors to block the binding 

of ghrelin. An inhibitor that could adequately bind and hinder ghrelin binding to GOAT 

could be used to lower levels of appetite and food intake, which is highly regulated by the 

ghrelin-signaling pathway. In addition to treating obesity, blocking the ghrelin pathway 

could also provide therapeutics to depression, learning and memory, post traumatic stress 

disorder (PTSD), insulin secretion, and other neurological illnesses and functions 

associated with the ghrelin signaling pathway. 
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Advice to Future Honors Students 

Do your Capstone Project on something you enjoy! It’s a great experience to be 

able to go really in depth about something you find interesting and that you have studied 

all through out college. That being said, start you Capstone Project early enough too. 

Begin writing drafts over Christmas break, that way when finals get close you’ll be ready 

to turn it all in. 
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Introduction 

Secreted from the stomach and pancreas as a 28-amino acid peptide, ghrelin has 

been shown to regulate appetite, stimulate the release of growth hormone, and control 

certain neurological processes such as depression and memory, and aid in 

neuroprotection in diseases like Parkinson’s and Alzheimer’s.1-6 Ghrelin has most notably 

been recognized for its control on appetite as studies have shown it to increase prior to a 

meal, and decrease after eating, a mechanism transduced through the hypothalamus in the 

brain.4 Because of this, 

finding the precise method 

of how ghrelin is activated 

has become a major source 

of interest in curing 

obesity. Moreover, 

increased levels of ghrelin have been linked to high levels of stress, like that in 

posttraumatic stress disorder (PTSD), linking stress and weight gain.18 Overall, it is 

evident ghrelin functions in a vast array of pathways in the body and has become a 

popular area of study in the past decade.  

 Ghrelin requires a number of post-translational modifications in order to become 

active, beginning as preproghrelin, a 117-amino acid protein.8,9 Following translation, 

preproghrelin is cleaved to a 94-amino acid des-acyl proghrelin where it becomes 

acylated by a C8 fatty acid group at the serine-3 position of the N-terminus of the 

peptide. After acylation occurs, acyl-ghrelin is cleaved by a prohormone convertase to its 

active 28-amino acid form, referred to as ghrelin (Figure 1). The body contains both des-

Figure 1. Des-acyl ghrelin precursor requires a unique post-
translational modification for ghrelin to become biologically active. 
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acyl ghrelin as well as the ghrelin, however previous studies have shown that only the 

acylated form of ghrelin exhibits activity.2 Upon activation, ghrelin acts as a ligand for 

the growth hormone receptor GHSR-1a, stimulating the release of growth hormone.1 

Ghrelin is the only known protein to require a serine octanoylation for activity, making it 

a desirable target for controlling ghrelin signaling.1,11 

 The enzyme responsible for the acylation of ghrelin, and thus responsible for the 

activity of the peptide hormone, was identified in 2008 as ghrelin O-acyltransferase 

(referred to as GOAT).†,10,11 GOAT is a member of the MBOAT (membrane-bound O-

acyltransferase) enzyme family, however ghrelin is the only known substrate for GOAT. 

Because ghrelin acylation is required for biological activity, understanding the structure 

and interactions in the ghrelin-GOAT complex is important to develop inhibitors to block 

the biological activity of ghrelin. Though the structure of GOAT is unidentified, it is 

predicted that it is membrane-spanning enzyme of 11 trans-membrane regions bridged by 

11 loops domains.12 Furthermore, the location of conserved residues (Asn307 and 

His338) among MBOAT family members suggest the active site of human GOAT 

(hGOAT) lies within the C-terminal region of the enzyme. Though the enzyme poses a 

novel opportunity for producing therapeutics protecting against many life-threatening 

illnesses, uncertainty regarding the structure of the active site and the mechanism of 

ghrelin acylation by hGOAT presents obstacles to creating GOAT inhibitors. 

Characterization of the specific interactions of the N-terminal region of ghrelin with the 

C-terminal region of hGOAT will help guide the design of efficient inhibitors of hGOAT.  

† Abbreviations used: GOAT, ghrelin O-acyltransferase; MBOAT, membrane-bound O-acyltransferase; 
hGOAT, human ghrelin O-acyltransferase; HPLC, high performance liquid chromatography; MALDI-
TOF, matrix-assisted laser desorption/ionization-test of function; MAFP, methyl acarchidonyl 
fluorophosphonate; TCA, trichloroethane; IC50, half maximal inhibitory concentration 
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Previous studies done in the Hougland 

Lab have identified interactions between 

ghrelin and GOAT by performing amino acid 

mutations on a peptide substrate that mimics 

the N-terminal region of ghrelin, with 

sequence variation of the first four amino acids 

and monitoring reactivity through a 

fluorescent-based assay.7,16 This assay involves 

mutating the S-6 position to a cysteine (6-mer sequence GSSFLC), creating a shortened 

ghrelin mimic.7 The shortened 6-mer peptide is reacted with a fluorescent acrylodan 

compound to introduce a fluorescent label, which is then monitored via high performance 

liquid chromatography (HPLC)(Figure 2).7  While the shortened  fluorescently labeled 

peptide ghrelin mimic only shows about 20% product conversion to the acylated form, 

creating a baseline value of the 6-mer ghrelin substrate reactivity is sufficient for 

comparing further ghrelin mimics. Prior activity analysis of mutations occurring at 

residues 1-4 (‘GSSF’) of ghrelin in accordance with hGOAT has shown interactions 

imperative for the reactivity of GOAT. The L5 position, (‘GSSFL’), was further 

investigated through site-directed mutagenesis as described below in order to better 

characterize the interactions occurring within the GOAT binding site with the ghrelin 

substrate. 

 The 6-mer ghrelin mimic substrate is believed to lie in a groove in hGOAT. To 

test this, my project consists of a 20-mer ghrelin mimic with acrylodan compounds 

placed at different positions along the peptide sequence. Studies have shown that placing 

Figure 2. Scheme to labeling ghrelin 
mimics with the fluorophore compound, 
acrylodan. 
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the acrylodan in the six position (GSSFLCAcdan) in the 20-mer substrate has no reactivity 

with hGOAT because the large aromatic groups of acrylodan are blocking the binding 

site. Because of this observation, we believe that walking out the acrylodan label on the 

20-mer substrate (that is, at the six, ten, fourteen, eighteen, and twenty residue position 

on ghrelin) could provide insight to the size of the binding pocket ghrelin binds to in 

hGOAT. Gaining information of the specific contacts ghrelin has with hGOAT could 

serve as a gateway to designing hGOAT inhibitors.  

 

Materials and Methods 

General methods. Octanoyl coenzyme A (octanoyl-CoA) was solubilized to 5 mM in 10 

mM Tris-HCl (pH 7.0), and separated into low-adhesion microcentrifuge tubes, and 

stored at -80 °C. Acrylodan (Anaspec) was solubilized in acetonitrile, with the stock 

concentration determined by absorbance at 393 nm on dilution into methanol (ε= 18,483 

M-1 cm-1 per manufacturer’s data sheet).  Unlabeled 20-mer ghrelin peptides mimics were 

purchased from Sigma Aldrich. 20-mer ghrelin peptide mimics were purified by HPLC, 

with peptide mass verified by MALDI-TOF. 20-mer ghrelin peptide mimics were 

solubilized in 50% acetonitrile and stores at -80 °C.  

 

Expression and enrichment of hGOAT.  hGOAT was expressed and enriched in insect 

(Sf9) cell membrane fractions using a previously published procedure.7  

 

Peptide substrate fluorescent labeling of Leucine-5 Ghrelin Mutants. A 5,5'-dithiobis-(2-

nitrobenzoic acid) 
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 (DTNB) assay was performed to determine free cysteine concentration. The L5 mutant 

peptide were dissolved in 50% AcCN (200 μl). DTNB solution is made using 0.1 M 

K2HPO4 and 1 mM EDTA. Four mg of DTNB is dissolved in 1 mL of the DTNB 

solution. To perform the DTNB assay, 50 μl of working solution, 5 μl of L5 mutant 

peptide, and 945 μl of DTNB solution is mixed and incubated at room temperature for 

five minutes. Absorbance of the L5 mutant peptides are measured at λ=412 nm (ε=14,150 

cm-1m-1) and concentration determined using Beers Law. L5 mutant peptide substrates 

were labeled with an acrylodan fluorophore on a cysteine side chain thiol. Peptide (300 

μM) and acrylodan (500 μM) were dissolved in 1 ml of 1:10 50 mM Tris buffer (pH 

7.8)/50% acetonitrile, followed by incubation at room temperature in the dark overnight 

(18 h) with shaking.17 Acrylodan-labeled peptides were purified by reverse phase HPLC 

and peptide labeling with acrylodan was verified by MALDI–TOF mass spectrometry 

(Bruker Autoflex III, SUNY–ESF) using a matrix of 1:1 H2O: AcCN, 0.1% TFA, and 

saturated 3-CH(A). Acrylodanylated peptides were solubilized in 50% AcCN and stored 

at -80° C until use, with peptide concentrations determined by UV absorbance of the 

cysteine-conjugated acrylodan group at 360 nm in aqueous solution (ε360 = 13,300 M-

1cm-1).  

 

20-mer ghrelin mimics fluorescent labeling. A DTNB assay was performed to determine 

free cysteine 20-mer ghrelin peptide mimics were labeled with an acrylodan fluorophore 

on a cysteine side chain thiol. Peptide (300 μM) and acrylodan (500 μM) were dissolved 

in 50 mM Tris buffer (pH 7.8) and 250 μl 50% acetonitrile. Flick to mix, and vortex for 

18 hours at room temperature under foil. The acrylodan-labeled peptides were purified by 
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reverse phase HPLC and verified by MALDI-TOF mass spectrometry (Bruker Autoflex 

III, SUNY-ESF) using a matrix of 1:1 H2O: AcCN, 0.1% TFA, and saturated 3-CH(A). 

Thoeretical and observed masses are in Table 5. Acrylodanyl labeled 20-mer peptides 

were dissolved in 50% AcCN and stored in the -80 °C freezer. 

 

hGOAT activity assays and analysis of L5 ghrelin mutants. The membrane fraction of Sf9 

cells expressing hGOAT was first thawed on ice, and subsequently broken up through an 

18-gauge needle 10 times. Assays utilized 10-50 μg of membrane protein, 2 μM 

fluorescently labeled peptide substrate, 500 μM octanoyl-CoA, and 50 mM HEPES 

buffer (pH 7.0), and water to volume up to a total volume of 50 μL. All components were 

added and mixed by pipetting up and down. The assay began was initiated with the 

addition of peptide and incubated at room temperature for a total of 1 hour. The reaction 

was stopped by adding 50 μL of 20% acetic acid in isopropanol.  Reverse phase HPLC 

was used to evaluate the assays through fluorescence detection. Chemstation for LC 

(Agilent Technologies) was used to integrate peaks of both the peptide and any products, 

which were presented as a percentage of the total substrate and product fluorescence. 

(1) Product Fluorescence= (Maximum Product Fluorescence) * ( [𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆]
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆]+𝐾𝐾𝑚𝑚

) 

 

20-mer Competition Assay to Screen for Inhibition. Membrane protein (10 μL of 2.05 

μg/μL stock) was needled ten times using an 18 gauge needle. Fifty μM HEPES, 7.6 μg 

of membrane fraction, 1 μM MAFP, and water to a total volume of 50 μL  was mixed and 

incubated at room temperature for 10 minutes. To initiate the assay, 100 μM octanoyl 

Coenzyme A and 7 μM 20-mer peptide mimic was added into the reaction mixture and 
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incubated for an additional 60 minutes under foil to avoid exposing the fluorescently 

labeled peptides to light.  8.5 μM ghrelin 6-mer substrate was added to the assay and 

incubated for another 60 minutes. The assay was stopped with 50 μl 20% acetic 

acid/isopropanol and activity determined utilizing the following equation: 

 
(2) % activity= % peptide octanoylation in presence of inhibitor 
                         % peptide octanoylation in absence of inhibitor 

 

Results 

L5 Ghrelin Mimics Series.  

Prior experiments in the Hougland lab were done to test the tolerance of hGOAT 

when the crucial first four N-terminal amino acids (‘GSSF’) were substituted for other 

amino acids.7 To continue to study the characteristics of the binding site at the N-

terminus, a series of point mutations were done at the fifth amino acid residue, leucine 

(Figure 3a). These ghrelin mimics were tested for reactivity with hGOAT and the results 

compared to the reactivity of wild type ghrelin GSSFLCAcdan with hGOAT. 
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Placing alanine at the fifth position (‘GSSFACAcdan’) led to an increase in product 

fluorescence compared to the wild type GSSFLCAcdan product fluorescence. A rise in the 

product fluorescence in comparison to the wild type ghrelin substrate indicated the 

leucine in the wild type sequence is not required for GOAT recognition of ghrelin. 

Substituting a lysine at the L5 position also led to increased product fluorescence than the 

wild type, suggesting the hGOAT-binding pocket can tolerate and accept positive charge 

at this position. Tryptophan substitution led to similar reactivity as observed for the wild 

type substrate product fluorescence as expected for a hydrophobic residue like leucine. 

However, the nearly equal product fluorescence of tryptophan, having a volume of 227.8 

Å 3, to that of leucine, with a surface area on only 166.7 Å3 , suggests GOAT is not 

discriminatory against amino acid size at the fifth residue position. Similarly, 

phenylalanine produced slightly decreased product fluorescence, however still 

comparable to the wild type yield with hGOAT. Lastly, placing a negatively charged 

residue, glutamine, led to a loss of reactivity implying the fifth residue position bears a 

negative charge. 

To further test the fifth residue position, a 5-mer ghrelin mimic peptide was 

fluorescently labeled with acrylodan (‘GSSFCAcdan’) in order to see how the size and 

sterics of the fifth amino acid position affects the binding of octanoylation of ghrelin 

(Figure 3b). The large acrylodan almost entirely inhibits the binding of the substrate 

indicating hGOAT cannot accommodate a compound of that size at that position.   

20-mer ghrelin mimic peptide with hGOAT assay.  

The specific size and length of the hGOAT binding site remains unknown. 

Additionally, while interactions between the first five amino acids have been researched, 
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interactions of ghrelin with hGOAT downstream at positions beyond the ‘GSSFLS’ 

sequence are largely undeciphered. 

Implementing a single cysteine 

residue mutation at different positions 

on the wild-type 20-mer ghrelin 

sequence 

(‘GSSFLSPEHQRVQQRKESKK’) 

was done to create a template for 

labeling with the fluorescent acrylodan compound. The ghrelin mimics were initially 

labeled with acrylodan at the cysteine mutation. However, this assay resulted in the 

double labeling of acrylodan at more than one position on the 20-mer ghrelin mimic 

sequence. A modified protocol was optimized to result in acrylodan labeling of only the 

cysteine mutation, with labeling verified MALDI-TOF mass spectrometry (Figure 5, 

Table 6). 

 

 

 

 

Figure 4. ‘WT’ indicating the wild type ghrelin 
sequence. Otherwise, the ghrelin variants are listed by 
the first letter of the wild type sequence, followed by 
the point at which the mutation is made, and the last 
letter indicating the residue substituted. 

Variant                     Sequence              
WT          GSSFLSPEHQRVQQRKESKK 
S6C         GSSFLCPEHQRVQQRKESKK 
Q10C       GSSFLSPEHCRVQQRKESKK 
Q14C      GSSFLSPEHQRVQCRKESKK 
S18C       GSSFLSPEHQRVQQRKECKK 
K20C      GSSFLSPEHQRVQQRKESKC   

Figure 5. MALDI-TOF on S6CAcdan 
20-mer ghrelin mimic. All 20-mer 
mimics were verified by MALDI-
TOF after labeling each peptides 
with an acrylodan compound to 
ensure single labeling. 
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Table 6. MALD-TOF data determining single acrylodan labeling of the 20-mer ghrelin mimics. 
Theoretical molecular weight (MW) calculated with the addition of 225 g/mol for the acrylodan compound. 

Peptide Sequence Theoretical MW (g/mol) Actual MW 
Q10S, K20CAcDan 

 
GSSFLSPEHSRVQQRKESKCAcdan 2525.56 2513.41 

Q14CAcDan 
 

GSSFLSPEHQRVQCAcdanRKESKK 
 

2556.65 2555.38 

Q14S, K20CAcDan 
 

GSSFLSPEHQRVQSRKESKCAcdan 
 

2515.56 2513.45 

K20CAcdan GSSFLSPEHQRVQQRKESKCAcdan 2556.61 2555.56 
 

Q10CAcdan 

 

GSSFLSPEHCAcdanRVQQRKESKK 2556.63 2555.25 

S18CAcdan 

 

GSSFLSPEHQRVQQRKECAcdanKK 2597.69 2594.95 

S6CAcdan 

 

GSSFLCAcdanPEHQKAQQRKESKK 2541.62 2538.67 

 
 Introducing the large fluorescent acrylodan compound was done in order to 

create steric hindrance within the binding pocket to further determine the size and length 

of the active site. The cysteine mutations (as shown in Figure 4) were incorporated 

systematically throughout the downstream sequence on each 20-mer ghrelin mutant 

peptide substrate. It was expected the K20CAcdan ghrelin mimic would show reactivity 

with hGOAT, as it is thought only a portion of the N-terminal substrate resides in the 

hGOAT active site. Whereas a 20-mer ghrelin mimic with an acrylodan label upstream 

might not bind due to the large compound blocking the active and longer ghrelin 

sequence inhibiting the acrylodan compound from altering its position to be able to fit 

into the active site. Serine point mutations were specifically mutated into the ghrelin 

sequence on the Q10S, K20C and the Q14S, K20C 20-mer peptides. Implementing these 

serine mutations ensured that substituting glutamine for the cysteine needed to attach the 

fluorophore has no effect on ghrelin binding. 

To probe the length of the hGOAT active site, an assay was carried out to 

examine to reactivity of the hGOAT-ghrelin complex using 20-mer ghrelin mimics. Four 
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components of the hGOAT assay reaction (ultra pure water, 50 μM HEPEs buffer, 

membrane fraction containing the GOAT enzyme, and 1 μM MAFP) were incubated for 

30 minutes. The assay was initiated by the addition of 500 μM octanoyl CoA (the acyl 

donor) and 1.5 μM of the 20-mer peptide ghrelin mimic. The assay was run for 6 hours 

and results observed by reverse phase HPLC. The chromatograms from the 20-mer 

ghrelin and hGOAT assay showed no formation of product. A peptide peak was apparent 

at 25 minutes, with no product peak that would be expected to appear at a later retention 

time due to the attachment of a hydrophobic group. 

A final study to optimize the assay to be viable with the longer ghrelin substrates 

was done by omitting a single reaction component during the assay and analyzing 

reactivity of the assay by reverse phase HPLC. It was found that the preparation of the 

sample for loading onto the HPLC was pulling the peptide out of solution. This 

preparation includes adding tricarboxylic acid (TCA) to the sample to precipitate larger 

proteins from the reaction, and centrifuging the sample for one minute. Because the 20-

mer ghrelin mutants could not be observed and analyzed via HPLC, a new route was 

taken to observe the binding of the 20-mer ghrelin mimic to hGOAT. 

Inhibition with 20-mer ghrelin mimics.  

As results testing specific activity of the 20-mer substrates were inconclusive, 

new conditions were developed to examine the 20-mer ghrelin mimics as competitive 

inhibitors with the 6-mer substrate (GSSFLCAcdan) and monitor the reactivity seen in the 

6-mer substrates (Figure 8).  

The S6C 20-mer ghrelin showed very little inhibition, indicating the acrylodan at 

the sixth amino acid position was almost entirely blocking binding of the 20-mer 
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substrate, and the 6-mer ghrelin mimic was successfully binding. Likewise, the 

Q10CAcdan and Q14CAcdan showed nearly 50% inhibition compared to the wild type 6-mer 

reactivity. The further downstream the acrylodans are placed (i.e. S18CAcdan and 

K20CAcdan) the greater the inhibition seen. 

  

 

Discussion  

 Characterization of the ghrelin O-acyltransferase binding site through inhibition 

studies of 20-mer ghrelin mimics led to a better estimation of the length of the binding 

site. It was found that our previous methods to monitor activity based on an assay of 

ghrelin with hGOAT could not be sued to visualize the reactivity of the longer ghrelin 

substrate. As a means to monitor the binding and acylation of ghrelin, an inhibition assay  

was carried out with 20-mer ghrelin mimics in competition with a 6-mer ghrelin substrate 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

None S6C-Acdan Q10C-Acdan Q14C-Acdan S18C-Acdan K20C-Acdan

%
 P

ro
du

ct
 F

lu
or

es
en

ce

20-mer peptide ghrelin mimic

20-mer ghrelin mimic inhibitors of hGOAT at 7μm

Figure 8. 20-mer ghrelin mimic inhibitors at 7μm. Inhibition seen with the S18C-Acdan and K20C-
Acdan ghrelin mutants, which could indicate those amino acids fall outside of a proposed ghrelin 
binding pocket.     
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to bind with hGOAT. A concern when using the acrylodan label is ensuring the cysteine 

mutation required for acrylodan labeling does not alter ghrelin binding with hGOAT. In 

attempt to assess the implications of the cysteine mutation and taking away of glutamine 

residues to attach a fluorophore, serine point mutations were created on ghrelin at the 

Q10 and Q14 position with the acrylodan label at the 20th residue in both cases. The data 

obtained suggests a binding pocket exists on the enzyme where ghrelin binds to and is 

acylated, as placing the acrylodan label at different positions on the sequence results in 

vastly different reactivity. From the 20-mer ghrelin mutants inhibition assay, the binding 

site is between 14-17 amino acids in lengths, as inhibition of hGOAT greatly increases 

with the S18C-Acdan and K20C-Acdan substrates.  

In addition to better determining the size of the binding site, it can be concluded 

the leucine at the fifth residue from the N-terminal sequence is not essential for ghrelin to 

be recognized by hGOAT, which is not the case for the first four amino acids before it. 

Moreover, hGOAT is not discriminatory against size with tryptophan resulting in no 

decrease in ghrelin binding. Interestingly, there is a drop in reactivity with phenylalanine 

placed at the fifth position. Because there is no drop in reactivity with the larger 

tryptophan mutant (L5W), it can be assumed there are other properties interacting with 

the active site at that position. The increased reactivity with the lysine mutant (L5K) and 

similar reactivity to wild type ghrelin with tryptophan (L5W) gives insight to possible 

hydrogen bonding occurring at that residue position on ghrelin with the hGOAT enzyme. 

Further, the complete rejection of the glutamate mutant (L5E) suggests a negative charge 

resides on the enzyme near that position. From this data, a rough model of the hGOAT 

active site was developed (Figure 9).  
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Defining the mechanism and layout of the ghrelin substrate binding with hGOAT 

is an important step to designing inhibitors that can block the binding site and 

subsequently block the ghrelin-signaling pathway. Due to the difficulties of analyzing the 

integral membrane enzyme hGOAT by high-resolution methods, probing the ghrelin 

substrate with different mutations and monitoring the reactivity with hGOAT based on 

the formation of the acylated product is a sufficient way to depict the ghrelin-GOAT 

interactions. By systematically identifying specific characteristics of the ghrelin-GOAT 

complex, synthesis of inhibitors that take advantage of the hGOAT binding properties of 

ghrelin can be created. Blocking the ghrelin signaling pathway could pave a way for 

potential therapeutics curing diseases such as post-traumatic stress disorder18, Prader-

Willi Syndrome, diabetes, obesity, and many more.19-21 
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Figure 9. Proposed binding site of ghrelin-hGOAT complex.  
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