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ABSTRACT

In the last decade, bioinformatics data has been accumulated at an unprecedented rate,

thanks to the advancement in sequencing technologies. Such rapid development poses

both challenges and promising research topics. In this dissertation, we propose a series of

associative pattern recognition algorithms in biological regulation studies. In particular, we

emphasize efficiently recognizing associative patterns between genes, transcription factors,

histone modifications and functional labels using heterogeneous data sources (numeric,

sequences, time series data and textual labels).

In protein-DNA associative pattern recognition, we introduce an efficient algorithm for

affinity test by searching for over-represented DNA sequences using a hash function and

modulo addition calculation. This substantially improves the efficiency of next generation

sequencing data analysis. In gene regulatory network inference, we propose a framework

for refining weak networks based on transcription factor binding sites, thus improved the

precision of predicted edges by up to 52%. In histone modification code analysis, we pro-

pose an approach to genome-wide combinatorial pattern recognition for "histone code to

function" associative pattern recognition, and achieved improvement by up to 38.1%. We

also propose a novel shape based modification pattern analysis approach, using this to suc-

cessfully predict sub-classes of genes in flowering-time category. We also propose a "com-

bination to combination" associative pattern recognition, and achieved better performance

compared against multi-label classification and bidirectional associative memory methods.

Our proposed approaches recognize associative patterns from different types of data effi-

ciently, and provides a useful toolbox for biological regulation analysis. This dissertation

presents a road-map to associative patterns recognition at genome wide level.
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1

CHAPTER 1

INTRODUCTION

The value of data analysis has become unprecedentedly recognized in the last decade.

Nowadays, the great potential of data is appreciated by people from various backgrounds.

From public relation experts to strategy makers; from big companies in silicon valley to

scientists in fundamental sciences, people are devoting tremendous amount of attention,

money and time to exploring its value. According to [21] the total size of bioinformatics

databases has grown to 70 Petabytes in 2015 (109 MBytes); Twitter users generate 250

million posts every day [2].

The difficulty of storing, processing and analyzing big data has been recognized for a

long time. However, the term "big data" gained great attention in recent years because of the

big advancement in technologies [19, 47]. New infrastructures such as MapReduce, HDFS,

Hadoop [82], NoSQL databases and GPU computation as well as deep neural networks

algorithms such as LSTM [36] and CNN [53] rekindled the enthusiasm.

Associative patterns between sets of objects are of interest in many disciplines such

as social networks, economics and biology. The goal is to discover the interactions or

relations between sets of objects. Although many approaches have been proposed, most

focus on interactions between single objects, considered using similar characteristics of

objects. In this dissertation, we focus on associative patterns recognition in bioinformatics
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area.

Bioinformatics∗ is the ensemble of computational approaches to large-scale information

analysis in biological data. It is now considered to be a self-contained branch of molecu-

lar biology, and helps researchers to better understand life systems; invent new diagnosis

or treatment procedures; and design highly efficient medicines in target based therapies

using data-centric techniques. Bioinformatics research accelerates the development of fun-

damental advances in biological hypothesis generation, data analysis and modeling, and

provides tools for pharmaceutical, biomedical, chemical and even insurance companies. it

encompasses a wide spectrum of topics that address questions about biological composi-

tion, structure, function and evolution of molecules, cells, tissues and organisms by compu-

tational methods that include mathematical modeling, machine learning and data mining.

Biological regulation is defined as any process which modulates the frequency, rate or ex-

tent of biological processes, where computational approaches for recognizing interactions

between objects (i.e., genes, RNAs, promoters, transcription factors and histone modifiers)

[60] are crucially important in hypotheses generation and experiment design.

1.1 Big data era of bioinformatics

With the advent of highly efficient apparatus for sequencing, measuring and computing

(Microarray [77], ChIP-seq [43] etc.), bioinformatics has entered the "Big Data Era" where

large-scale and quantitative analyses of biological phenomena are made possible.

Researchers can quantify the dynamical phenotype changes and variations in biological

systems with a fine-grained resolution via expression level profiling, systematically mod-

eling the mechanisms of various types of regulation in terms of the relationships among

different entities. It is important to understand the fundamental mechanism of biological
∗(Molecular) bio-informatics: is conceptualizing biology in terms of molecules (in the sense of physical

chemistry) and applying "informatics techniques" (derived from disciplines such as applied maths, computer
science and statistics) to understand and organize the information associated with these molecules, on a
large scale. In short, bioinformatics is a management information system for molecular biology and has
many practical applications. – Oxford English Dictionary
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regulation, to relate underlying causes with diseases and eventually treat them effectively

[44] or culture new breeds of crops with immunity to diseases.

However, the tremendous growth in data size, dimensionality and variety pose new

challenges in data usability. Various types of data (textual, time-series, sequence, categori-

cal and numeric) are curated every year in large volumes of terabytes or even petabytes †at

a continuously increasing rate. It is hence important and urgent to create new approaches

to intelligently extract patterns and knowledge from large-scale heterogeneous data to ac-

celerate hypotheses generation and experiment design in biological research.

1.2 Biological Regulation

Biological regulation is defined as any process which modulates the frequency, rate or ex-

tent of biological processes. Regulation mechanisms allow organisms to respond to various

internal and external conditions/stimuli by maintaining the conditions under which consti-

tutive processes remain viable [11]. Early studies of biological regulation can be traced

back to the late 19th century when Bernard first proposed the idea of underlying mecha-

nisms of regulation in living biological systems space [8]. A few decades later, with the

development of molecular biology, biological regulation became the key to understanding

the fundamental principles under cellular control. Multiple research works [39, 66, 40]

proposed the idea of relationship networks and pathways between cells, which provided a

foundation on which contemporary system biology was developed.

However, the terminology of "biological regulation" lacks a precise definition, and var-

ious different interactions between biological entities (cells, genes, RNA, proteins) are con-

sidered as parts of biological regulation processes; these are described below:

• Cell Signaling: This is the communication process that governs the basic activities

of cells. It is critically important for a cell to function and respond appropriately to obtain
†According to statistics on EMBL-EBI, the total storage of bioinformatics data has reached

70+ petabytes, https://academic.oup.com/nar/article/44/D1/D20/2503123/The-European-Bioinformatics-
Institute-in-2016-Data
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information from the external environment, perceiving signals in the process of develop-

ment, defense and tissue repair. Failures to respond correctly in human cell regulation lead

to diseases such as cancer, autoimmunity or diabetes [89].

• Protein-Protein Interaction (PPI): This addresses the physical interactions between

two or more protein molecules, required because proteins rarely act alone. The regulation

of cells is carried out by molecular machines composed of many protein components. In

the field of bioinformatics, protein-protein interactions are often modeled using a network

(PPI network) whose nodes are proteins, and whose edges represent the various interactions

between proteins [34]. Malfunctioning PPIs lead to diseases such as Alzheimer’s disease

and cancer.

• Biological Pathways: In this category, the actors of interactions are biological pro-

cesses, functions or metabolism, instead of physical entities like DNA, RNA or proteins.

Each process facilitates or inhibits others in the same pathway; [46] is a well known curated

database of pathways in different organisms, assisting a systematical analysis of relation-

ships between processes.

• Gene Expression Regulation: The coding regions in genes provide the blueprints for

building RNA and eventually proteins in living organisms. However the genes don’t ex-

press themselves equally. The RNA production rates are very different in different tissues

or under diverse conditions, enabling cells to respond to internal and external conditions

efficiently, although all cells are equipped with the same set of genes. However, our knowl-

edge of how exactly gene expressions are regulated or controlled is very limited. Gene

transcription regulation and histone modification are two very important mechanisms in

gene expression regulation.

1. In gene transcription regulation, one or more transcription factors which are prod-

ucts from certain regulatory genes bind to small fragments of sequences called Cis-

regulatory elements (CREs) in the non-coding DNA and then activate or inhibit gene

expression by increasing or decreasing the RNA production rate. The interactions



5

Fig. 1.1: Illustration of Gene Regulatory Network Modeling: According to the central
dogma of biology, DNA is transcribed into RNA, which are further translated to proteins
(represented by the dashed line between different layers). Genes (on the lowest level) are
connected if their downstream products interact with each other. GRNs serve as a simplified
model for the complex regulation system.

between genes are modeled as networks whose nodes represent genes, and whose

edges represent either activation or repression (between proteins and genes layer in

Figure 1.1). These interactions include a wide range of mechanisms that are used

by cells to increase or decrease the production of specific gene products. In the last

decade, many computational approaches were proposed to infer the links between

genes. We propose an innovative approach, described in Chapter 3, which used CRE

data to create the TF-CRE mapping score which is utilized as a measure to refine

incomplete GRNs.

2. Another important type of gene expression regulation is histone modification. His-

tones are highly alkaline proteins found in eukaryotic cell nuclei that package and

order the DNA into units called nucleosomes. Genes packaged in nucleosomes can
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only be expressed if they are available to transcription factors or RNA polymerase.

Furthermore, histone code (combinatorial patterns of presence and absence of differ-

ent histone modifications) is hypothesized to play a role in regulating gene expression

in different biological processes.

In this work, we focus on computational approaches to address associative pattern

recognition problems in the above two major regulation mechanisms in gene expression.

1.3 Problem Formulation

In this section, we formally define various associative pattern recognition problems at a

high level. The concrete embodiment of each abstract concept is further described in chap-

ters 2-6 where we elaborate each problem in detail. First, we introduce the following

terminology:

An Object Universe is the collection of objects assumed to have the same type, such as

the sets of all genes, textual labels, proteins or histone modifiers. Although our main focus

lies in biological regulation, this concept can also be applied to other applications. For

example, in social network analysis, users, hobbies or communities constitute different

universes, respectively.

Let Ωi denote the ith object universe such that Ωi ∩ Ωj = ∅ iff i 6= j. In general, there

exist a large number of different universes in real-life applications. In this dissertation, we

limit the number of universes to at most 2.

A Descriptor provides the mapping D : Ω → S where S is the feature space (of descrip-

tor D), such as time-series, geological locations, natural language, numeric values or any

reasonable space. The concrete definitions of descriptor D and feature space S vary from

application to application. For one object universe, there may exist more than one descrip-

tors which describe different "facets" of the object. For example, for gene universe ΩG, we
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have the following possible descriptors:

• Gene coding sequence: DCDS(g) = x1x2 . . . xn where xi ∈ {A,G,C, T} defines

the nucleotide sequence of gene g’s coding DNA sequence;

• Gene expression level: Dexp(g) ∈ RN defines the gene expression level (numeric

values) at N time points.

The feature space S is defined as sequence data and numeric vectors, respectively, in the

above examples. By allowing a flexible descriptor, we seek to manage heterogeneous data

sources.

A Connector C ⊆ Ω×S is loosely defined as the relation between objects in one universe

Ω and a feature space S = D(Ω′) where Ω and Ω′ may be the same or different. A set

describes the relation between objects and traits of other objects. For example: in binding

sites analysis, we seek to learn the affinity of one object (genes, aptamers) to sequences

which belong to other objects (genes); whereas in matchmaking algorithms, objects are

users and C is then defined to be the users’ preference of partners’ traits (loyal, brave,

handsome, etc.)

Baskets are transaction-like datasets of objects. Bi = {Xi, Yi, . . . } is one entry of data

where Xi ⊆ ΩX , Yi ⊆ ΩY are considered to co-occur in basket data Bi. For example, in

market basket analysis, Bi = {{bread, apple}, {beer,wine}} is a basket of objects from

two universes: food and alcohol.

1.4 Overall Objectives in Association Pattern Recog-

nition

Essentially, dynamic regulation is implemented by the interactions between different ob-

jects in organisms. The study of regulatory relations between genes, RNAs and proteins

paves the way to understanding the fundamental clockwork in organisms. In our work, we
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propose efficient computational approaches for inferring associative patterns at different

levels of regulation in biological systems, by data mining on multiple heterogeneous data

sources. The objective is to accurately discover associative patterns between objects:

• Connector: To learn the connector C for a particular feature space S;

• 1 : 1 patterns: To learn relations between objects from the universes: A ⊆ Ω× Ω′;

• n : 1 patterns: To learn relations between a combination of objects in one universe

and a single object in another universe: A′ ⊆ P(Ω) × Ω′, where P(Ω) is the set of

all combinations of universe Ω;

• n : m patterns: To learn relations between combinations of objects from different

universes. A′′ ⊆ P(Ω)× P(Ω′).

1.5 Dissertation Outline

This dissertation is organized as follows: In Chapter 1, we have discussed the recent ad-

vancement in bioinformatics which pose both challenges and opportunities. Then we in-

troduce biological regulation and formal definitions in related problems described above.

In Chapter 2, we discuss an example of connector learning problem: DNA sequence

affinity analysis. The objective is to find over-represented short sequences from a large

NGS data set and the neighborhood of a sequence, within k mismatches. We introduce

an efficient algorithm for protein-DNA affinity test by searching for over-represented DNA

sequences using a hash function and modulo addition calculation.

Following this, in Chapter 3, we discuss an example of 1 : 1 pattern recognition in

gene regulatory network (GRN) link prediction where the nodes represent genes and edges

represent regulation between genes. Most of the existing methods seek to find dependen-

cies between two genes gi, gj by studying gene expression-level data as the only descriptor
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(Dexp). As a result, most of the existing methods suffer from difficulties in causality learn-

ing, and is unable to prune indirect relations. Eliminating indirect regulations is critically

important to gene regulation modeling because only an accurate GRN with direct regula-

tion helps gain an understanding of the sophisticated and appropriate responses to external

stimuli [62]. We propose a framework for refining weak networks based on transcription

factor binding sites, thus improving the prediction performance.

In Chapter 4, we propose an algorithm for function specific histone combination pattern

learning (n : 1 patterns). In histone modification analysis, it is assumed that different

"histone codes" contribute to different biological process/functions in organisms. In our

work, we first define a histone code to be subsets of all histone modifiers, and then study

the basket data Bi = {< Hi, fi >} where Hi is the set of modification present at record i

and fi is a binary label for a particular biological function. Then we associate each pattern

with a score by comparing against its background frequency, and obtained the function

specific patterns.

In Chapter 5, we show how Histone Profiling by Significance Score (HiPSiS) approach

can be extended to more complicated patterns in which histone codes are defined as com-

binations of shapes of histone modifications (i.e., we treat each histone modification data

as a time-series and study the locations as well as magnitudes of signal peaks). We intro-

duce a procedure using series compression and symbolic aggregation methods for efficient

clustering, and then we study the distributions of genes for different combinations.

In Chapter 6, we address the n : m pattern recognition problems using an iterative

algorithm. In our histone modifications analysis, we observed the existence of dependen-

cies among "function labels": some genes are responsible for multiple roles in a biological

system and some roles never co-exist on genes. We formulate the problem as a pattern

association problem and propose an iterative algorithm to retrieve the hidden significant

patterns between combinations of categorical values.

Finally, Chapter 7 provides the concluding remarks of this study and the future direc-
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tions of research.
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CHAPTER 2

DNA SEQUENCE AFFINITY ANALYSIS

In this chapter, we discuss one example of connector learning in DNA sequence affinity

analysis. Given a pool of randomly generated short DNA sequences, a bead with a target

protein is used to extract sequences from the pool. After extraction, the new sample is

sequenced with high accuracy next generation sequencing (NGS) equipment. The objec-

tive is to efficiently and accurately find the "over-represented" sequence and its potential

variations. In this project, we mainly focus on the application in aptamer affinity search:

learning the connectors

C : Ωprotein ×Dsequence.

We also used this approach in transcription factor binding site affinity learning, i.e.,

C′ = ΩTF ×Dpromoter.

In Section 2.4, we discuss an efficient sequence indexing and counting algorithm which is

an example of creating connectors between different types of data formats. As a result, the

connector quantifies the binding strength between proteins and target gene sequence. In

Chapter 3, we use connectors to infer the relations between regulators and target genes by

scanning target gene sequences for high-affinity sequences.
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2.1 Background of Aptamer Analysis

Aptamers are oligonucleotides that bind to proteins, small organic molecules, or large

molecules. Because of the high affinity and selectivity similar to antibodies, aptamers

can be applied in fundamental research as capture agents, as well as in clinical applications

such as cancer diagnosis and intervention [29, 31]. Additionally, aptamers are more robust

because they can be preserved in a wider range of pH values and temperatures compared

with antibodies. As a result, aptamer discovery has become an important topic in recent

years.

Finding an efficient and reliable method of mapping nucleic acids with specific targets

is one of the important challenges in biochemical engineering. SELEX [84] uses a cyclic,

in vitro evolutionary method to find the desired nucleic acid aptamer. This method has been

used as a standard approach in aptamer discovery for years. However, with the advent of

high throughput deep sequencing technology [65], a new acyclic aptamer discovery method

(illustrated in Figure 2.1.a) was proposed [54].

The objective of the novel aptamer discovery method is to efficiently search for the most

over-represented (i.e., with the maximum number of copies) sequences after the acyclic

enrichment process. Given the nature of this method, the output data contains millions

or billions of reads. Consequently, an efficient approach is desired to quickly index and

analyze the experimental datasets.

We propose an efficient algorithm∗ to process data from the acyclic aptamer discovery

experiments to index and analyze the nucleic acid sequences in FASTQ format without

compromising the quality of results. Compared with existing brute-force counting pro-

grams, our approach can reduce the running duration from hours to seconds thereby en-

abling researchers to quickly evaluate the quality of the experimental datasets as well as

variants of the most highly represented aptamer using neighborhood search features.

∗The source code of implementation of the algorithm is available at http://sourceforge.net/
projects/apthunter/files/
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Fig. 2.1: a. Acyclic aptamer identification process. The blue sequences represent the
adapters for the aptamer sequences (red). [54], b. SELEX process of aptamer discovery[84]

2.2 Problem Formulation

Let S be a set ofN nucleic acid sequences of fixed length n on the alphabet Σ = {A, T, C,G}.

Adapters are the two short nucleic acid sequences that are attached to the m-mer’s (aptamer)

head and tail before sequencing (illustrated in Figure 2.1.a). They are referred to as HEAD

and TAIL, of size h and t, respectively. These adapters are used to achieve quality control

for a specific read (in the sense that reads without the desired head and tail can be viewed

as noise sequences). Ideally, a "high-quality" read s∗ in S has the following structure:

s∗ = HEAD s TAIL,

where s (the middle region) is a subsequence of size m = n− h− t. However, in practice,

HEAD and TAIL may appear in s∗ with some error; i.e., a typically observed sequence

s∗ ∈ S is of the form

s∗ = ĤEAD s T̂AIL,

where sequences HEAD, and ĤEAD may differ from each other in one or more places;

likewise for TAIL and T̂AIL. Given a user defined tolerance threshold ε (> 0), if the distance
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Categories Description

Qualified Reads d(HEAD, ĤEAD) ≤ ε and d(TAIL, T̂AIL) ≤ ε

Candidate Read d(HEAD, ĤEAD) ≤ ε or d(TAIL, T̂AIL) ≤ ε

Uncertain Read Otherwise

Table 2.1: Categories of reads.

between HEAD and ĤEAD is less than ε, the approximation ĤEAD is considered to be

acceptable, otherwise not. A similar condition holds for TAIL also. Here the distance can

be any reasonable distance, such as the Hamming-distance or the Edit-distance.

The sequences in S are categorized as qualified, candidate, and uncertain categories, as

explained in Table 2.1. A read with both HEAD and TAIL within acceptable distances from

the desired adapters is labeled as a qualified read; whereas if only one of them is within the

acceptable distance from the desired adapter, the sequence is labeled as a candidate read;

the rest are uncertain reads and are discarded.

Due to the nature of the experiments in aptamer search, we expect most of the s-strings

in the middle region to be identical. Our goal is to find the common sequences and their

number of occurrences. However, the frequencies of occurrence of some strings in S may

be large due to the reason that these strings are made out of letters from Σ that appear

in s∗ randomly and by chance some of them may appear more often. But if a sequence

occurs more often than expected by random chance, it is identified as "over-represented".

Hence, the objective is to find all over-represented sequences and the associated numbers of

occurrences. However, if this objective is not met, then we consider "highly-represented"

sets under weaker conditions. Thus, for a given dataset S there are two possible objectives

described below in descending order of preference, given the dataset S, HEAD, TAIL, and

ε:

1. Frequencies of the middle regions – Find the frequencies associated with each dis-

tinct instance of middle region s ∈ S, separately for qualified and candidate sets.
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The output consists of all sequences and associated counts in two hash tables: TQ

(Qualified) and TC (Candidate).

If this objective is not met, i.e., if no significantly over-represented sequence is found

in TQ or TC, then the following objective is addressed.

2. Basic η-neighborhood – In this case, to find a "highly-represented" sequence we

consider the size of its neighborhood:

Nη(si) = {sj| distance(si, sj) ≤ η},

where η is a user specified parameter. If the size of the neighborhood set is large then

the sequence is considered to be highly represented.†

Although the desired objectives, as described above, are different, the associated com-

putational differences are negligible and essentially the same algorithm (with minor modi-

fications) can be applied to address both objectives. These algorithms are described in the

following section.

2.3 Related Methods in Aptamer Discovery

The current tool employs a simple exhaustive search and enumeration method [54]. It

incrementally adds new sequences into an array. New entries are added if the sequence is

not already present in the records and the count is incremented if the sequence is in the

records.

A Perl script is used to identify sequence strings that closely match the 59- and 39-fixed

regions flanking the degenerate bases (F5-m-F3). The match criterion (maximum allowed

number of mismatches) is used to generate a file of qualified reads for sequences with the
†Sometimes neither of the above two objectives is met (i.e., neither we get an over-represented string nor

an over-represented neighborhood) This is generally due to bad quality of data or the longer length of library
region (e.g., for m40 library). In that case we conduct several experiments with identical setup to get several
S-sets. In these S-sets we find the most common occurring sequence(s).
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desired length of central m-bases. An m-mer count file is generated to obtain the number

and rank for each unique sequence [54].

Because the nature of the experiments for aptamer search requires multiple experi-

ments for different proteins under different conditions, the efficiency of sequence indexing

and counting is crucial. However, the existing tool fails to be efficient due to the size of

the dataset generated by next-generation parallel sequencing (NGS) technology [6], which

tends to be very large.

2.4 Modulo Addition Based Efficient Aptamer Search

In this section, we discuss the details of our proposed approach. The current version of

our program accepts two distance options: The Hamming distance between two sequences

is easy to calculate but evaluation of the edit distance is more computationally expensive.

• Hamming Distance function: Given two sequences s and t, the Hamming distance [32]

between them is defined as the

h(s, t) =
m∑
i=1

1(s(i) 6= t(i)) (2.1)

where s(i), t(i) denote the ith letters from s, t respectively; and 1 is an indicator function

which returns 1 if its condition is satisfied. In essence, it calculates the number of mis-

matched letters between two sequences in a point to point comparison.

• Edit-distance Evaluation: Suppose we want to calculate the edit-distance, d(s, t),

between two strings s and t of lengths p and q respectively. According to Wagner-Fischer
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algorithm [91], the edit distance is defined as follows:

d′i0 =i · wdel for 1 ≤ i ≤ p (2.2)

d′0j =j · wins for 1 ≤ j ≤ q (2.3)

d′ij =



d′i−1,j−1 for sj = ti

min


d′i−1,j + wdel

d′i,j−1 + wins

d′i−1,j−1 + wsub

for sj 6= ti

for 1 ≤ i ≤ p, for 1 ≤ j ≤ q, (2.4)

where wdel, winst and wsub are penalties for deletion, insertion and substitution, respectively.

The edit distance between s, t is defined as d(s, t) = d′pq.

The dynamic programing algorithm evaluates a table of size O(pq). However, it is not

necessary to evaluate this entire table for the following reason. Suppose that d(k, `) denotes

the edit distance between the first k characters of s and first ` characters of t. Then it is

easy to verify that

d(k, `) ≥ d(k′, `′), for all k′ ∈ Prefix(k); `′ ∈ Prefix(`).

Consequently, to improve the efficiency of the edit distance calculations, if d(k′, `′) ≥ ε,

then there is no need to calculate d(k, `) for longer sequences of k and `.

• Numeric Values and Hash Function

To find the hash-value of a string s we use the following hash function‡:

H(s) = (
m∑
i=1

v(si)× 4j) mod p, (2.5)

‡In the case of DNA dataset we used 4 in the hash function. This integer is replaced by the size of the
alphabet set, if it is different in other datasets.
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where p is a prime number and represents the size of the hash table, and si is the ith nu-

cleotide of the read. The numeric values for v(x) is defined in Table 2.2.

x A T C G

v(x) 0 1 2 3

Table 2.2: Numeric values assigned to nucleotides

• Hash Table with Chaining

Fig. 2.2: Hash table with chaining.

The proposed algorithm makes use of a hash table, where conflicts are resolved by

chaining, as depicted in Figure 2.2. The number of occurrences of a sequence is recorded

in the linked list attached to the corresponding index. For ease of implementation, we first

assign numerical values to nucleotides.

Often we allow minor perturbations in a s-sequence. Hence we need to know all neigh-

bors of a given sequence that are within a neighborhood of (η) distance from it. Although

such neighborhoods are required for all sequences that have high frequency in S, a proce-

dure described below decreases computational effort significantly.

We use the procedure described in Algorithm 1 to store and index the number of occur-

rences of distinct middle regions. In the execution of this algorithm, two parallel processes
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Algorithm 1 The Counting Algorithm
Require: T is initialized to be a hash table of size p.

function COUNT(S, HEAD, TAIL, ε)
for all sequence s∗ ∈ S do

key ← H(s) . s is the middle region of s∗; H(s) is defined in Equation 2.5
if d( ĤEAD,HEAD) ≤ ε ? d( T̂AIL,TAIL) ≤ ε then

if key ∈ T then
if s ∈ T [key] then

T [key][s]← T [key][s] + 1
else

T [key][s] = 1

else
Create a linked list with one node < s, 1 > on T [key]

return T

are initialized with two hash tables TQ, TC representing qualified and candidate hash tables.

Whenever a new sequence is encountered, the counting algorithm will check its quality by

d( ĤEAD,HEAD) ≤ ε ? d( T̂AIL,TAIL) ≤ ε,

where ? is a logical operator. In case of TQ we specify ? ≡ ∧ which requires both ends

of the sequence to be within at most ε distance from HEAD, TAIL respectively; whereas in

case of TC , we specify ? ≡ ∨, a weaker constraint.

• Modulo-4 Addition Operation

To reduce the computational complexity of η-neighborhood enumeration, we have adopted

the modulo operation from [81]. This method is briefly described here. An addition opera-

tion is defined at nucleotide level as shown in Table 2.3.

⊕ A T C G
A A T C G
T T C G A
C C G A T
G G A T C

Table 2.3: The modulo-4 operation between nucleotides
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The ⊕ operation can be easily extended for two different sequences u and v as well as

when S is a set of sequences and v is a sequence, as shown:

u⊕ v = (u[1]⊕ v[1], u[2]⊕ v[2], . . .),

and

S ⊕ v = {u⊕ v|u ∈ S}.

Let o represent a string "AA. . . " of length m. The η-neighborhood of o is defined as

Nη(o) = {s′| d(s′, o) ≤ η}

i.e.,Nη(o) contains all possible strings s′ such that the distance between s′ and o is no larger

than η. As a result, the η-neighborhood of a specific sequence s is easily obtained using

Nη(s) = Nη(o)⊕ s. In other words, it is not necessary to evaluate the η-neighborhoods of

frequent sequences, since these can be obtained by using the η-neighborhood of o.

Algorithm 2 The η-neighborhood Algorithm
Require: T returned from Algorithm 1.

function FINDN(S, HEAD, TAIL, ε, η, τ )
for all s ∈ S such that T [H(s)][s] ≥ τ do
Nη(s) = Nη(O)⊕ s
Ws = T [H(s)][s]
for all s′ ∈ Nη(s) do

Ws ← Ws + T [H(s)][s′]

Sort Ws in decreasing order of magnitude.
return W

In Algorithm 2, the critical step is to find η−neighborhoods for all sequences, Nη(si).

However, by using the modulo addition based method mentioned, we avoid the pairwise

comparison of sequences. In our simulations, we need to initialize two processes for TQ

and TC independently. The result of Algorithm 2 is a list of neighborhoods in descending
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Hash size p

|S| 2× 106 8× 106

tH tE tH tE

105(100, 003) 6 30 49 179

106(1, 000, 003) 4 30 16 122

107(10, 000, 017) 3 27 14 109

Table 2.4: Algorithm 1 running time (in seconds) w.r.t. the hash size and |S| (2 million
reads v.s. 8 million reads); tH , tE denote running time of Hamming distance and edit
distance measures for quality control.

order of size. The top neighborhoods of the results are interpreted as the target aptamers

(or their variants) with highest affinity to the protein on the extracting bead.

2.5 Empirical Running Time Analysis

The Human α-Thrombin dataset contains approximately 2.23 million sequences in FASTQ

format, to which we applied our algorithm. (For a detailed description of the biochemical

experiment settings, see [54].)

Using the Hamming distance function mode of our algorithm, we succeeded in discov-

ering the leading target aptamer sequence as well as its η-neighborhood in under 6 seconds.

However, if the Edit-distance function mode is used, the execution time was about 40 sec-

onds, whereas the pairwise comparison based algorithm currently used takes 8280 seconds.

Both modes in our approach count the exact number of occurrences of each sequence;

our approach has the same accuracy as the current software does.

Computational efficiency of Algorithm 1 is critical; it is the backbone of Algorithm 2.

The performance of this algorithm is related to p, the size of the hash table. We experi-

mented with several values of p and obtained the following results:

Table 2.4 and Table 2.5 show time required by Algorithms 1 and 2 respectively for

different values of the size of the hash table and size of the data sets. All experiments

were conducted using 3.06 GHz Intel i3 processors with 12GB, 1333MHz memory. The
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operating system was Mac OS X 10.7.4, and GCC compiler was used.

Size of the Hash-table Time (Hamming distance) Time (Edit distance)

105 7 seconds 39 seconds

106 5 seconds 32 seconds

107 4 seconds 30 seconds

Table 2.5: Time required by Algorithm 2 with respect to hash size with |S| = 2M .

From Table 2.4 and Table 2.5, it is clear that the proposed algorithms are sensitive to the

size of the hash table. A hash table of too small size will suffer from a high collision ratio,

which decreases the efficiency in counting and neighborhood discovery. In our experiments

we have used hash-tables of sizes 105, 106, and 107 and noted that running time for both

counting and neighborhood searching decreases as the size of the hash table increases.

However, the use of even larger hash tables is infeasible due to memory limitation, which

could cause thrashing on a system with limited memory. Moreover, it will result in too

many vacant slots in hash tables with empty records.

Distance measures are also important parameters. Obviously, the time complexity of

edit distance is considerably higher than for the Euclidean distance. Is edit distance better

than Hamming distance? The answer depends on the particular application. For some

aptamer discovery applications, Hamming distance is a suitable choice due to the fact that

insertions and deletions are rare. By contrast, in sequence alignment applications such

as BLAST [3], edit distance measure is more preferable because the exact locations of

fragments of interest are usually far from each other.
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2.6 Concluding Remarks

This work addresses an approach to reduce the time complexity of sequence counting and

the neighborhood discovery problem in aptamer searches. Our approach reduces the time

by 1− 3 orders of magnitude and can handle large datasets, which is a significant improve-

ment over the existing script-based technique. However, some additional modifications are

likely to improve the performance. One in particular is to adopt a binary tree for each bin

in the hash table. As a result, the initialization and look-up complexity can be reduced to

O(N logM) and O(logM) respectively, where N is the number of sequences and M is

maximum number of colliding sequences (i.e., with the same hash value H(x)).

In the worst case, if all sequences within the given dataset are distinct, then the space

complexity will be high (O(N)). However, in the experiments we have performed so far,

the sizes of most datasets can be reduced substantially since they contain many repeated

sequences. Most of the experiments we have tested use less than 3 GB of memory. In

future work, we can increase the algorithm’s robustness in the worst case so that the tool’s

efficiency is not affected by the frequent page swapping of the operating system.
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CHAPTER 3

GENE REGULATORY NETWORK

In this chapter, we discuss the "1:1" patterns learning in gene regulation. As discussed in

Chapter 1, a gene regulatory network (GRN) describes interactions between genes, with

directed edges representing the regulatory relationships (inhibition or activation) between

genes. The absence of an edge between two genes implies that no direct relationship be-

tween them has been discovered. An important area of systems biology is the development

of algorithms to infer the structure of GRNs, particularly with regards to the targets of tran-

scription factors (TF). In real biological systems, the actual regulation occurs between a

transcription factor (the protein product of a gene) and its target gene. However, a GRN is

the simplified model whose nodes represent genes (both regulator and targets). As a result,

the presence of an edge (gi, gj) means the transcription factor (TF) produced by gene gi has

a regulatory effect on gene gj .

An important goal of gene regulatory network inference is to create a comprehensive

map of interactions between TFs and genes. It is essentially a "1:1" pattern learning, where

the universe of objects Ω is the collection of all genes in an organism. GRN inference seeks

to find the association patterns A ∈ Ω×Ω by using one or more descriptors (i.e., promoter

sequence Dprom or expression profile Dexp).

In Section 3.1, we discuss the problem of GRN inference followed by a survey of ex-
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isting approaches. In Section 3.4 we introduce a novel Transcription Factor Target Scoring

framework (TFTS) and the motivation; then we evaluate the performance of TFTS as an

add-on procedure to other GRN inference algorithms and study the improvement.

3.1 Background of GRN Inference

Gene regulation is one of the most important biological regulation mechanisms, which al-

lows living organisms to adapt to their environment and maintain homeostasis. Genes are

expressed and work in concert with each other to ensure the organism’s fitness, survival

and each cell’s proper function. In order to maintain the appropriate functional outcome,

each gene must be expressed at the proper time and in the right amount. The gene ex-

pression profiles for some genes are extremely similar in a given cell type [5], whereas the

expression profiles of other genes vary considerably from cell to cell and from individual

to individual, partly based on external cues and stresses. Genes do not work alone: every

physiological phenomenon depends on the coordination between multiple genes, with the

expression of some genes triggering or facilitating the expression of other genes relevant to

the phenomenon of interest.

Experimental approaches, (such as ChIP-chip and ChIP-seq [43]) can be used to de-

termine such relationships, and have achieved significant progress in identifying the target

genes of a given gene. However, experimental work remains financially and technically

difficult because thousands of TFs are involved in the process. Hence, computational

approaches that analyze gene expression profiles have become useful in inferring regu-

latory relationship properties that help minimize the experimentation required. As high-

throughput biological experiments have become prevalent in the recent decades, various

computational approaches have been proposed to address the problem of GRN inference.
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3.2 Related Approaches for GRN inference

Most of the existing computational approaches (for GRN inference) only use gene expres-

sion profiles data as the input. These approaches infer the relationships among genes by

mining the interactions between genes in terms of gene expression levels. Based on the na-

ture of the data, gene expression profile data can be roughly classified into two categories:

• Condition-wise expression profile: For each gene, the expression profile for a par-

ticular gene is represented by X = {X1, X2, . . . , XC} where 1, 2, . . . , C are indexes of

conditions or even different experiments. In other words, the sequential order of observa-

tions is ignored and not used to infer relationships.

• Temporal expression profile: X = {X1, X2, . . . , XT} denotes the expression levels

at time points 1, 2, . . . , T . The order of observations is defined by the index of observation

where Xi is observed earlier than Xj if i < j. Furthermore, given two time series (X, Y ),

Xi can only affect observation Yj if i < j [55]. The availability of data for this type of ex-

pression profile is very limited because of the difficulties in obtaining temporal expression

data for higher eukaryotes [63].

In surveying related works, we find the following well known algorithms which focus

on inferring gene-gene relations from single descriptor Dexp of each gene:

1. Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) [63]

focuses on the targets prediction using mutual information measures.

2. Ordinary Differential Equations (ODEs) and controlled perturbation are used in TSNI

[25].

3. Bayesian network and Dynamic Bayesian network inference are employed in Banjo

[97]

4. GeneNet [61] uses Graphical Gaussian Models to exclude indirect relationships.
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Many other approaches along with the above methods can be roughly categorized into two

classes based on their result:

• Undirected edges usually represent the similarity or symmetric relations between

genes, where condition-wise expression profiles are used as descriptors of each ob-

ject and these approaches quantify the relation strength between genes by measuring

expression profile similarity. This approach is also called "co-expression" analysis.

• Directed edges are closer to real underlying regulation relations in biological sys-

tems. A→ B represent the specific directional regulation of gene A on B. Temporal

expression profiles are mostly used to infer such relations.

In the following sections, we will discuss the above two types of analysis in details.

3.2.1 Approaches to undirected GRN inference

Since co-expressed genes are likely to be functionally related [27], many methods were

proposed to study co-expression relations between genes. Multiple similarity measures

have been used to quantify proximity between two genes. Genes belonging to a cluster

are considered to be functionally related to all the other genes in the same cluster. Such

approaches can be applied to both aforementioned categories of expression data. Gene

clustering via expression profile similarity is mostly applied to non-temporal expression

data to discover non-directional relations, whereas temporal expression data provides more

information about the directions of regulation. We will discuss two common types of sim-

ilarity measures:

• Correlation: The most common measure is Pearson’s correlation coefficient r(X, Y ) ∈

[−1, 1] defined as follows:

r(X, Y ) =

∑C
k=1 XkYk√∑C

k=1 X
2
k

∑C
k=1 Y

2
k

(3.1)
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r(X, Y ) quantifies the linear dependencies between genes expression levels, where a value

of +1 represents total positive correlation which implies that geneX, Y may positively reg-

ulate (activating) each other, and −1 represents total negative correlation which indicates

negative (inhibitory) regulation. This measure can be used with both condition-wise data

and temporal data for co-expression analysis. Threshold τ is used to construct gene regu-

latory network by removing edges for which r(X, Y ) ≤ τ , from a fully connected network

Ω× Ω. As a result, the remaining edges are relations with of a high confidence level.

• Mutual Information: Expression profiles X, Y can be considered as the observations

for two random variables x and y. Mutual information for these random variables is denoted

as I(X, Y ) = H(X) + H(Y ) − H(X, Y ) where H(·) denotes entropy. In the context of

discrete values, we define

H(X) = −
∑
i

p(Xi) log[p(Xi)] (3.2)

H(X, Y ) = −
∑
i

p(Xi, Yi) log[p(Xi, Yi)]. (3.3)

This measure is used in ARACNe which adopts the estimated joint distribution density

function using a Gaussian kernel estimator [4] defined as:

p(x, y) = f(~z) =
1

nh

n∑
i

K(
~z − ~zi
h

)

where ~zi = {Xi, Yi} denotes the vector of two variables, h is the smoothing parameter

and K(·) is a kernel function that satisfies
∑

~z∈R2M K(~z) = 1. It is worthwhile to note

that p(x), p(y) are marginal distributions of the Gaussian kernel estimator p(x, y). As in

all similarity based edge inference algorithms, a threshold is used to determine whether an

edge should exist between two genes, by checking the occurrence of I(X, Y ) ≥ I0.

One concern with the similarity based approach is the false positive edges introduced

by indirect regulation. For instance, consider three genes X, Y and Z, whose expression is
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governed by the regulation cascade:

X → Y → Z,

with no direct regulation from X to Z. But if we analyze the expression profiles of X

and Z, it is possible to conclude that X regulates Z although there is no direct regulation.

Another scenario is

X → Y,X → Z

where Y, Z are both target genes of regulator X . Then sim(Y, Z) is high because both

sim(X, Y ) and sim(X,Z) are of high values and sim(·) is a symmetric measure of two

variables.

ARACNe prunes indirect interactions by using the data processing inequality (DPI)[22]

as the final step. For each triple of genes (X, Y, Z), ARACNe removes the edge exy if

I(X, Y ) < min(I(X,Z), I(Y, Z)).

GeneNet, a correlation based GRN inference algorithm, addresses this problem by us-

ing partial correlation, which measures the dependency between two variables in the pres-

ence of other variables:

1. In order to compute the sample partial correlations between two random variable

samples X, Y , we need to solve the following two linear regression problems to get

the residuals

W ∗
X = arg min

W
||X −W ∗ Z||2 (3.4)

W ∗
Y = arg min

W
||Y −W ∗ Z||2 (3.5)

where Z is the matrix of samples from other variables (genes).
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2. Calculate the residual of each variable:

rX = X −W ∗
XZ (3.6)

rY = Y −W ∗
YZ (3.7)

3. Finally, the measure of partial correlation (between X, Y with the presence of Z)

ρ̂XY ·Z between two samples is computed to be the correlation between rX and rY .

• Graphical Gaussian Model is a simple method for inferring the network of linear

dependencies among a set of variables. The objective is to correctly identify direct influ-

ences when a naive correlation approach is ineffective. The key idea is to use magnitudes

of partial correlation as a measure of independence of any two genes, which is then used to

distinguish indirect interactions. The gene expression levels are modeled using multivariate

Gaussian distribution D = [X, Y, Z . . . ] ∼ Nd(ξ,Σ) , where ξ is the estimated mean (i.e.,

ξ = [X̄, Ȳ , Z̄ . . . ]) and Σ is the estimated covariance matrix. If Σ is positive definite∗, then

Ω = Σ−1 is called the precision matrix. In the context of graph learning, the objective is to

estimate the precision matrix Ω̃ = Σ̃−1 using observed data X , where

Σ̃ =
1

M − 1

M∑
i=1

(Xi − ξ)(Xi − ξ)T (3.8)

Because of the convenience of the precision matrix in representing partial correlations when

D is a multivariate Gaussian distribution, GeneNet constructs edges using simple rule:

(a, b) ∈ E iff Ωa,b 6= 0. This type of network edge learning is based on the Gaussian

Markov Random Field (GMRF) [49], which is applied to association learning [86] between

variables distributed on a multivariate normal distribution. A MATLAB implementation of

partial correlation based method is implemented [61] for genome-wide gene regulatory

inference.
∗An n× n complete matrix A is called positive definite if zTAz > 0 for every non-zero column vector z

of n real numbers.
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3.2.2 Approaches to directional GRN inference

Directional regulatory relations between genes provide accurate models of how the under-

lying mechanism works. The regulators and targets are differentiated in this type of analysis

so that the regulatory network is defined as a directed network instead of a symmetric net-

work. Many different approaches were proposed in this field with various hypotheses of

how exactly regulation affects the gene expression; two important related works are dis-

cussed below:

• Dynamic Bayesian Network: Bayesian network (BN) is a graphical model used to

model the probabilistic relationships among a set of random variables D = Xi where

i = 1...N are indexes of genes G. Formally, Bayesian networks consist of 3 components:

• A set of random variables: In GRN inference, we model each gene’s expression

profile as one of the random variables.

• The conditional dependencies between variables are represented by a directed acyclic

graph π(X) ⊆ G, where if two variablesX, Y satisfy p(X|Y ) = p(X), then the edge

Y → X is not present in BN.

• The conditional probability distribution for each variable p(X|π(X)) and joint prob-

ability of all genes are modeled by the equation:

P (X1, X2, ...XN) =
N∏
i=1

P (Xi = xi|Xj = xj, Xj+1 = xj+1 . . . Xj+l = xj+l) (3.9)

where the l+1 genes are the regulators (of gene i) whose expression values determine

the value of gene i in the Bayesian network.

The learned structure of Bayesian network π(Xi) ⊆ 1, 2, . . . , N is considered as the

GRN structure since π(Xi) includes all the variables that affect Xi. G =< V,E > where

V is the set of all genes and directed edges E defines the statistical dependencies between

variables.
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The objective of Banjo [97] is to construct such a graph G so that the likelihood is

maximized. In other words, it seeks to find the parameters of the Bayesian model that can

fit best with the expression data D. In Banjo, they adopted Bayesian Information Criteria

(BIC) as the fitness score

BIC(G||θ,D) = ln(M)k − 2 ln(L̂),

whereM denotes the length of observations; k is the number of free parameters for tunning;

θ defines the conditional probability distributions; and G is the structure of the network.

L̂ = p(D|θ̂, Ĝ) is the maximized value of likelihood function with model parameters

(θ̂, Ĝ), where (θ̂, G) = arg max
θ,G

(p(D|θ,G).

Banjo initializes with a random network structure G, and iteratively refines the network

G until no improvement can be achieved.

However, the BN model lacks self regulatory relations (i.e., the model is incapable

of capturing the self-regulatory interactions of genes). Furthermore, BN cannot model

delayed interactions. So Dynamic Bayesian Networks (DBN) [68] have been proposed to

relate variables over adjacent time steps t, t+ 1:

P (X1(t+ 1), X2(t+ 1), ...XN(t+ 1))

=
N∏
i=1

P (Xi(t+ 1) = xi|Xj(t) = xj, Xj+1(t) = xj+1 . . . Xj+l(t) = xj+l)
(3.10)

• Ordinary Differential Equation: This is another type of modeling technique where the

change of a gene’s expression level is determined by variations in other genes’ expression

levels.

Ẋi(t+ 1) , [
dxi
dt

]t+1 = fi(x1(t), x2(t), . . . , xN(t);u, θ) (3.11)
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In the case of sampled observations, the discrete model is defined as:

∆Xi(t+ 1) = fi(x1(t), x2(t), . . . , xN(t);u, θ) (3.12)

where u is the external perturbation and θ is a set of parameters describing interactions

among genes. If we constrain fi(·) to be the linear function fi = WX(t)T + u, then

θ = W is the coefficients weight matrix which indicates the inter-gene relations. In the

corresponding GRN, there exists an edge i→ j iff |Wij| > 0. Furthermore, the sign of Wij

describes the type of regulation (activation or inhibition). TSNI [25] adopted this approach

to infer the relevant transcription factors for TRP63 using temporal expression profiles.

The above computational approaches all suffer from inaccuracies because it is ex-

tremely difficult to differentiate indirect regulation and direct regulation based merely on

expression profile. Hence we have proposed an innovative method TFTS [94] that takes

preliminary networks inferred from expression profile dataset, and use transcription factor

binding sites consensus to refine the network.

3.3 Cis-elements and binding sites

Cis-regulatory elements (CREs, cis-elements or motifs) are small fragments of sequences

located on non-coding regions of genes. They are found in the vicinity of transcription

starting site (TSS) of genes that they regulate. In the process of regulation, transcription

factors have to physically bind to these small regions before regulation is initiated. We

consider the presence and absence of cis-elements in the network refining algorithm, in

order to overcome the difficulties in differentiating direct and indirect regulation.

We hypothesize that functional cis-elements occur more often in the target genes (of a

given gene) than in all genes, and the increase in relative occurrence frequency is statisti-

cally significant. This hypothesis stems from the fact that TFs need to bind to cis-elements

of the target gene to regulate its profile expression [76].
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In sequence analysis of gene promoter regions, motifs can be classified into three main

types.

1. Consecutive motif: no gaps are allowed in the subsequence.

2. Simple motif: no variable gaps are allowed in the motif. For example, CGS[11,11]SCG,

where [11,11] means that there is a fixed "gap" of length 11 between the two consec-

utive motifs.

3. Structural motif: the gap length can vary in a range.

Fig. 3.1: Illustration of different scenarios of binding sites: (a) one single regulator might
need multiple binding sites; (b) each transcription factor has its own binding site; (c) one
single regulator can bind to any of the three binding sites.

• Co-occurrences of cis-elements: In real biological systems, target genes of a transcrip-

tion factor usually have multiple co-occurrences of cis-elements in the promoter region.

This may be due to the fact that some transcription factors bind to a structured motif

instead of a consecutive motif, as shown in (Figure 3.1-a). In other cases, the real bind-

ing site of the transcription factor is a complex motif with multiple gaps and may require

multiple regulators to collaborate together, as illustrated in Figure 3.1- b. As a result the

co-occurring motifs might be the real binding sites for multiple regulators [16].
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• Redundant occurrences of cis-elements: One cis-element might appear multiple times

in the promoter sequences, as shown in Figure 3.1 - c. This phenomenon is favored by

evolutionary processes because it increases the robustness of the regulation system [71].

3.4 Methods

• Problem Statement: The input for TFTS consists of two parts:

1. A directed graph G =< V,E > where V represents the collection of genes and E

denotes the set of directed edges such that ei,j ∈ E if and only if gene j is a regulatory

target of gene i. We use N = |V | to denote the total number of genes.

2. A matrix M = {mik} where mik denotes the number of occurrences of motif k in

the promoter sequence of gene i.

G refers to the candidate network inferred using the algorithms mentioned in the pre-

vious section, and M is obtained either from a cis-elements database [24] or using binding

sites discovery algorithms: HAMMER [80] or aptamer hunter [95]. The output of this pro-

cess is a scoring function f : G×G→ R which quantifies the confidence of the predicted

edge. As a result, we refine the input network by removing edges with low scores, and

introducing new edges with high confidence (exceeding a threshold). The final result will

be a refined network G∗ =< V,E∗ >.

• Gene-motif scores: The score of an edge is evaluated using the p-values associated

with cis-elements in the target genes. The p-value is used in a standard statistical approach

to calculate the probability of an event under the null hypothesis; a small p-value implies

that the event is not governed by chance. We adopt the following notation:

• Si = {gk|ei,k ∈ E} ⊆ V denotes the set of target genes of gene i. As shown in

Figure 3.2(a), the target genes of gene A are C,D,E,F,G.
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Fig. 3.2: Illustration of GRN inference using TFTS: (a) the input candidate network; (b)
the database of cis-element occurrences; (c) gene-motif score; (d) refined GRN based on
e∗ij , where dashed edges are new proposed edges and the width of an arrow represents the
confidence of the corresponding edge.
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• Ck = {gi|mik > 0} ⊆ V denotes the set of genes that contain cis-element k at least

once in their promoter region. In the illustrative example shown in Figure 3.2(b),

Cm1 = SA.

For each gene motif pair (gi,mk) we sought to evaluate the strength of the pair using the

survival function of a random variable x:

wik = Prob(x ≥ t) =
∑
u≥t

p(u) = 1− F (t) (3.13)

where x ∼ B(n, p) is the binomial distribution with n = |Si| denoting the number of regu-

lated target genes of gene i, and p = |Ck|
N

denoting the probability of observing sequence k.

If the set Si is randomly drawn from V , then wik will be large; low values of wik indicate

the that cis-element k is important with respect to transcription factor i.

• Edge scores (gene-gene relation): The outcome from the previous process can be

viewed as a set of scores of gene-motif relationships. However our goal is to evaluate the

strength of edges eij between genes. For any pair of genes (i, j), we use the following value

to quantify the gene-gene relation:

e∗ij =
∑
k∈Kj

mjk(− logwik)
α (3.14)

where Kj = {k|mjk > 0} is the set of cis-elements identified in promoter region of gene

j and α is the tuning parameter for weighing the importance of redundancy and affinity.

As discussed in the previous section, the number of occurrences (mjk) of cis-element k

on target gene j, as well as the gene-motif score wik, are important in determining the

regulation between gene i and j.

We adopt Equation 3.14 to balance between the two factors "redundancy" and "speci-

ficity" in motif analysis, because (− logwik)
α term quantifies the specificity of motif k, and

mjk is indicate redundancy. By increasing the parameter α, we can focus on high speci-
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ficity motifs that only contained in target group Si. By contrast, lower α values focus more

on the preference of biological system to certain motif k. Furthermore, we take the sum

over all motifs k so that both simple motifs and structural motifs are considered.

In our experiments, we used the value α = 0.5. As illustrated in Figure 3.2, TFTS

takes the inputs of the preliminary network and the cis-element distribution, and updates

the network by removing edges with e∗ij < τ , where τ is a significance threshold. In our

simulations, we selected different values of τ to study the performance of refinement in

terms of precision.

3.5 Experiments and Results

In this section, we discuss the experiments evaluating TFTS in various datasets. We present

the performance of TFTS in differentiating strong and weak edges; then we test its perfor-

mance in the prediction of new edges, given a preliminary network. Finally, we use TFTS as

a post-processing unit of ARACNe, and compare the performance with original ARACNe.

3.5.1 AGRIS database

In our experiments, we first used an existing GRN for Arabidopsis thaliana from AGRIS

database [24]:

1. The cis-element occurrence matrixM = mik is obtained from AtcisDB from AGRIS.

2. The regulatory network G =< V,E > is named as AtRegNet in AGRIS, where

|V | = 8154 and |E| = 11356.

• Confirmed v.s. Unconfirmed Edges: The edges in the database are classified into two

different categories: unconfirmed and confirmed. The unconfirmed edges were obtained

from text mining of literature and other computational approaches whereas the confirmed

edges were validated using biological experimental approaches. We investigated whether
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TFTS assigns higher scores to the confirmed edges than the unconfirmed edges. Towards

this goal, we compute the weights for the existing edges in each target group and perform

a t-test to compare the mean scores for the confirmed and unconfirmed edges:

t = (µc − µu)/

√
s2
c

nc
+
s2
u

nu
, (3.15)

where µc, µu are the mean values, sc, su are standard deviations of assigned scores e∗ to

confirmed and unconfirmed edges respectively. nc, nu are numbers of confirmed and un-

confirmed edges respectively. We expect TFTS to assign higher scores to confirmed edges

compared with unconfirmed edges, but in the learning phase no differentiation is made be-

tween the two types of edges. Thus, TFTS calculates the score e∗ij without any knowledge

of the edge confidence score. As discussed in Section

In order to calculate the t-value, we focus on target sets containing at least 4 edges of

each kind. As shown in Table 3.1, we summarize the mean and standard deviation assigned

to confirmed and unconfirmed edges from regulator genes (i.e., the outgoing edges from

influential gene are labeled as "confirmed" and "unconfirmed"). TFTS is successful in

differentiating confirmed and unconfirmed edges by assigning significantly higher scores

to confirmed edges compared with ones assigned to unconfirmed edges.

• Prediction of New Edges To assess the ability of TFTS to predict new edges we focused

on the largest target group Si where i = arg max
u
|Su|. The regulator is AT1G24260. Using

TFTS we assign weights to absent edges (Ē = {eij /∈ E}) using gene-gene scores (shown

in Equation 3.14). Since experimental methods for validation are not accessible, we used

AthaMap [15] which is an independent approach using published binding sites consen-

sus analysis to map gene-gene interactions to evaluate the performance. We proposed the

top 10 target genes with highest TFTS scores, where 8 genes (as shown in Table 3.2) are

also predicted to be targets of AT1G24260 by AthaMap, which implies that our prediction
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Regulator Gene µc sc µu su nc nu nc + nu t

AT1G32640 0.091 0.051 0.112 0.036 2 2 4 0.577
AT5G15840 0.126 0.079 0.209 0.090 2 3 5 0.898
AT4G18960 0.093 0.040 0.069 0.078 9 30 39 1.444
AT4G23810 0.154 0.073 0.138 0.114 12 49 61 1.950
AT3G47640 0.482 0.181 0.439 0.176 3 66 69 3.548
AT2G02820 0.430 0.095 0.400 0.200 13 230 243 0.741
AT1G14350 0.430 0.095 0.400 0.200 13 230 243 0.741
AT5G11260 0.591 0.158 0.500 0.240 221 39 260 3.050
AT3G27920 0.007 0.018 0.001 0.008 23 527 550 3.841
AT5G41315 0.037 0.060 0.044 0.081 24 693 717 3.627
AT2G20180 0.798 0.140 0.755 0.233 189 560 749 4.941
AT5G13790 0.842 0.078 0.756 0.250 22 3920 3942 3.685
AT1G24260 0.957 0.038 0.926 0.222 15 4085 4100 3.917

Table 3.1: t-test of Confirmed and unconfirmed edges.TFTS assigns significantly higher
scores for confirmed edges compared with unconfirmed edges especially when sample size
is big enough (nc + nu > 30)

(based on candidate network and cis-element occurrences) highly agrees with AthaMap†.

Gene # of matches Average Score
AT1G14330 6 (3+,3-) 5.34
AT2G42360 2 (1+,1-) 4.59
AT3G22830 1 (1+) 6.08
AT3G61430 3 (1+,2-) 5.69
AT4G31390 1 (1-) 4.74
AT4G33800 7 (3+,4-) 5.41
AT5G05250 5 (2+,3-) 6.15
AT5G59220 4 (1+,3-) 6.22
AT1G01183 NA NA
AT1G01250 NA NA

Table 3.2: List of predicted new targets for gene AT1G24260 that agrees with AthaMap. #
of matches refer to the number of matched fragments in the promoter region by AthaMap,
where + represents the forward strand and - represents reverse strand. Average score is
the confidence level of matching according to AthaMap. The details of scoring metrics in
AthaMap can be found in [15]

†The genes in Table 3.2 is sorted by the descending order of e∗.
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3.5.2 ARACNe v.s. ARACNe + TFTS

In this experiment, we extend ARACNe with the refinement process using TFTS. By com-

paring the performance of GRN inference using ARACNe only and ARACNe + TFTS

where the inferred network from ARACNe is used the candidate network, we found that

TFTS can improve the precision of network reconstruction:

precision =
|E∗ ∩ EV |
|E∗|

,

where E∗ = {(i, j)|e∗ij ≥ τ} is refined edge set using TFTS, and EV denotes the exper-

imentally verified edges (ground truth). However, the precision measure only focuses on

the proposed edges from TFTS, so a very small E∗ might have a very high precision. To

ensure a fair comparison, we select the threshold τ to make sure |E∗| ≈ |EV |. The process

is illustrated in Figure 3.3.

We used two data sets in this experiment:

• Human B-cells MYC genes targets prediction: In this experiment the candidate

gene network is obtained from the steady-state expression profiles using ARACNe. Exper-

imentally confirmed binding sites are gathered from motifMap [45, 23]. The preliminary

network G is a star network and contains 2063 target genes of MYC gene. To generate

the cis-element occurrence matrix M required by TFTS, we use RSA-tool [64] to annotate

upstream promoter sequences of every gene.

The precision of ARACNe is 0.199 (412 out of 2063 predicted targets are true targets,

i.e., |E∗ ∩ EV | = 412 ) and in ARACNe + TFTS, we managed to improve the precision to

0.21.

• Yeast regulation network in cell life cycle at α stage We collected the gene expres-

sion data from [83] and the ground truth GRN from [1]. By using the default parameters,

ARACNe inferred a very poor GRN with precision of 0.089, using TFTS as an additional

refining stage, it improves it to 0.52.
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Fig. 3.3: The process of evaluating GRN inference accuracy between ARACNe and
ARACNe+TFTS

3.6 Concluding Remarks

Our framework provides a new approach which takes advantage of the binding site discov-

ery algorithms to provide a high accuracy scoring system. TFTS improves the performance

of preliminary ARACNe networks by using motif information. Since we assign weights to

the edges of a GRN, it is possible to assess the strength of an edge for further evaluation,

such as biological experimentation. Using the weight assignment, we propose new edges.

Because TFTS calculate the gene-motif scores based on the topology of the preliminary

network, the performance is highly dependent on the accuracy of the network inference al-

gorithms and on the size of target group. In the current set of experiments we have limited

our investigation to simple motifs only, i.e., we have ignored the fact that multiple tran-

scription factors, simple and structured, collaborate together in order to regulate the target

genes. Further improvements can be achieved using "better" motifs. In higher-level organ-

isms the motif information is to be extracted from the coding as well as non-coding regions.

In addition, it would be reasonable to investigate if TFTS could be applied iteratively.
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CHAPTER 4

FUNCTION SPECIFIC HISTONE

MODIFICATION PATTERN

RECOGNITION

In this work, we describe the problem of relating gene functions to histone modification

combinations, and propose an innovative computational method for "n:1" pattern recogni-

tion. In Section 4.1, we introduce the background of the problem and related works. In

Section 4.2, we describes the proposed algorithms, Histone Profiling by Significance Score

(HiPSiS). In Section 4.4, we evaluate the proposed method.

4.1 Introduction

Feeding the world’s population requires designing robust crops, with improved yield and

enhanced resistance to diseases. In plants, histone modifications have been associated with

many biological processes, including development [10], flowering-time [42], and pathogen

defense [9]. To understand plant fitness, we need to understand how the histone modifica-

tions regulate development, flowering-time and pathogen defense, but only a few studies
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have explored the same. In this study, we attempt to understand the relationships between

certain combinatorial patterns of histone methylation and acetylation in regulating plant

development, flowering-time, and pathogen defense in Arabidopsis thaliana (A. thaliana).

This is a novel step in the early stages of the epigenetics era, and we believe that there is

a tremendous potential for the use of similar computational methods to predict how these

patterns regulate plant development, flowering-time, stress and other defense responses.

Gene expression in eukaryotes is regulated at several levels, including transcription,

post-transcription, translation, and post-translation. In higher organisms, genomic DNA is

packaged with the help of histone proteins such as H3, H4, H2A, and H2B. Each unit of

DNA and histone proteins assembly is known as the nucleosome. N-terminal tails of the

histone proteins are subjected to various modifications such as acetylation, methylation,

ubiquitination, and sumoylation, which regulates open/closed state of the chromatin.

Histone modification is a post-translational mechanism, which allows eukaryotes to

have an additional important layer of gene regulation, by opening up the space within

neighboring nucleosomes or packaging them more tightly. Relaxed nucleosomes allow

access to the transcription factors, hence facilitating gene activation, whereas condensed

nucleosomes restrict the access of transcription factors, resulting in gene repression. These

changes may be transient or can be inherited into future generations, possibly affecting the

fitness of an organism in response to various environmental stimuli.

Histone modifications such as acetylation and methylation have been shown to regulate

development of plants, and recent work has shown that they also regulate stress tolerance

in plants [48, 26]. Histone acetylation is mainly associated with gene activation, whereas

methylation is associated with both gene activation and repression. Gene expression can

be turned on and off based on the presence of active or repressive methylation marks on

genes; in A. thaliana, these marks occur mostly on lysine (K) and/or and arginine (R)

residues of H3 and H4 histone proteins. H3K4me, H3K36me marks are associated with

gene activation; however, H3K9me, H3K27me are associated with gene repression.
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Histone acetylation and methylation marks occur in various combinatorial patterns in

the promoters and/or in the coding sequences of genes, leading to different outcomes of

gene expression. These combinatorial patterns of the histone marks may function coop-

eratively or antagonistically to regulate gene expression, and have been studied mainly in

humans [92], and to a much smaller extent in A. thaliana [14, 18].

This chapter reports the results of our analysis of the Chromatin ImmunoPrecipita-

tion sequencing (ChIP-seq) dataset from Luo, et al., [59], which was produced to ana-

lyze histone modifications patterns for the regulation of natural antisense transcripts. We

selected nine abundant marks from the ChIP-seq dataset, i.e., H3K4me2/3, H3K9me2,

H3K27me1/3, H3K36me2/3, H3K9ac, H3K18ac, and total H3 occupancy. We have suc-

ceeded in discovering patterns that are unique to plant development, flowering-time, stress

response and pathogen defense. This study is useful to understand the regulation of gene

expression related to these biological processes and might be helpful in designing better

crops.

Section 4.2 presents the methodology we used, including discussion of related work.

Section 4.3 describes the experimental simulations and results obtained using our approach.

Concluding remarks are given in Section 4.4.

4.2 Methods

In this work, we focus on ChIP-Seq data where intervals of positions on chromosomes are

associated with a signal strength score. For example, Table 4.1 shows a typical bed format

for ChIP-seq data defined in UCSC genome browser online service [88].

Chromosome Start End Signal
chr1 1300 1521 93
chr1 2300 2412 13
chr2 100 230 19
chr3 5700 6030 45

Table 4.1: An example of ChIP-seq data set in bed format.



46

The strength score is a simplified data representation of histone modification activity.

The high values represent reliable and active histone modification regulation and the low

values represent absence of histone modification or weak affinity. They are quantified

by the number of reads (read is the unit in ChIP-seq for counting matching antibodies

sequences), where each interval is associated with a value. Since interval lengths may not

be uniform, the common approach [75, 52] is to use consecutive fixed-length windows

across the entire genome and calculate the accumulated read counts in each segment, for

simplicity. We divide the raw ChIP-seq dataset into fixed-width segments of 100bp length

using bedtools [72]; in our work, we consider 20 segments in the upstream 1000bp to

downstream 1000bp range∗ . We use the empirical values for segment sizes, and up/down

stream ranges suggested by [59, 52, 78].

We determine the presence/absence of each modification using a statistical threshold,

as follows:

Fig. 4.1: Illustration of pre-processing of histone modification data. TSS is the starting
point of transcription. h is the index of modification.

1. Let λj be the average enrichment level for modification j in all segments across the

entire genome.

∗The upstream and downstream regions are defined with respective the transcription starting site (TSS)
and direction of coding DNA sequence (CDS). For example, the upstream and down-stream regions for
gene A with TSS at 1000 and CDS=1000 → 2000 are intervals [0, 1000], [1000, 2000] respectively; on the
other hand, the up/down stream regions of a reverse gene whose TSS=2000 and CDS= 2000 → 1000 are
[2000, 3000], [1000, 2000], respectively.
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2. Let m(g)
i,j be the accumulated read counts on the i-th fixed-width segment (of gene g)

for modification j (j = 1, 2, 3 . . . , H), where H is the number of histone modifica-

tions.

3. For simplicity, each modification j on gene g is represented as a binary (presence/absence)

by thresholding on the highest peak:

xg,j =


1 if max

i
(m

(g)
i,j > τj)

0 otherwise
,

where τj is the threshold of histone modification j. The value for τj is determined by

the following constraint for each modification j:

Prob(xg,j ≥ τj) = e−λj
∞∑
t

λtj
t!
≤ 10−8.

Finally, for each gene xg = [xg,1, xg,2 . . . , xg,H ]T is the vector representing "pres-

ence/absence" of histone modifications 1, 2, . . . H . The process of transformation is

illustrated in Figure 4.1.

Given that the "scores" from different datasets are not identical, we adopted the genome-

wide normalization method to calculate the threshold of modification enrichment in order

to implement a universally applicable method. As described in step 3 above, we consider

the Poisson distribution for each modification P (λj). This preprocessing approach is also

widely used in other histone modification pattern recognition works [30, 59, 26, 18] to focus

on the impact of modifications on genes. Our choice of p-value threshold is an empirical

value used by the data provider [59].

Let f denote a biological function (such as flowering-time). Gf denotes the set of genes

associated with this function, and Gf = G \ Gf contains other genes. The `th pattern of

histone modifications is a binary vector P` = [P`,1, P`,2 . . . , P`,H ], where P`,j = 1 indicates
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that histone modification j occurs (otherwise P`,j = 0). Xg = [xg,1, xg,2, . . . , xg,H ] is a

vector that represents histone modification for gene g. We use the following notation to

represent gene g contains pattern `:

Xg � P` iff ∀jxg,j ≥ P`,j.

• Gene Labeling: In reality, biological function of genes, confirmed by experimental

verification, is very limited. Even in our verified flowering-time labeling [20], we cannot

guarantee that Gflowering is a complete and error-free list. So we adopt the TAIR GO term

annotation dataset as the best available approximation for gene function annotation [7]. In

TAIR database, the function labeling are obtained from Gene Ontology analysis via gene

similarity and regulating relations. Such a labeling is neither guaranteed to be complete

nor 100% accurate, but they provide a reasonable estimate for genes’ possible biological

functions. As a result, the preprocessed data is illustrated in Table 4.2.

Histone Modifications Gene Functions
m1 m2 . . . mH flowering defense . . .
0 1 . . . 1 1 1 . . .
1 0 . . . 1 0 * . . .
...

...
...

...
...

...
...

1 1 0 1 1 * . . .

Table 4.2: The processed data with labels. Under Histone Modifications: 1 and 0 represent
presence and absence of modification respectively; Under Function Labels: 1, 0 represent
f and f̄ ; * denote unknown functionalities

4.2.1 Related work

Although researchers have not fully understood the underlying mechanism of how histone

acetylations and methylations control gene expression, several approaches have been pro-

posed to speed up the process of biological hypothesis generation and experiment design.

Subsets of genes have been used to discover significant patterns, along with genome-wide
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Table 4.3: Notations and Description used in this chapter

Notation Description

Xg binary vector of histone modifications

G Set of all genes.

N = |G| Number of all genes

Gf ⊂ G Genes of function f

P` `-th pattern

G`,f {g|Xg � P` ∧ g ∈ Gf}
G`,f {g|Xg � P` ∧ g ∈ Gf}
AN×L = (ag,`) Indicator matrix ag,` iff Xg � P`

nf = |Gf | ; nf̄ = |Gf | Sizes of gene sets
n`,f = |G`,f | ; n`,f̄ = |G`,f |

r`,f =
n`,f

nf
; r`,f̄ =

n`,f̄

nf̄
Support ratios of P` in Gf and Gf

r` = |{g|Xg � P`}|/N Global support ratio of pattern P`

pattern discovery, as summarized below.

• Polling of individual histone modifications : For the set of genes Gf ,

R(f) = [r1,f , r2,f , . . . , rH,f ]
T

is obtained,which summarizes the histone modifications distribution for all genes in Gf .

Most works [50, 9] adopted these ratios to view distributions of different histone modifi-

cations on genes in genome wide scale. The individual histone modification ratios are not

used as the final results of their analysis because of the importance of combinations rather

than individual modifications has been recognized in recent epigenetic studies [67]. In this

work, we use polling as our baseline against which other space transformation methods are

compared.

• Pairwise correlation analysis : The co-occurrence strength between histone modifica-

tions j and k can be measured by the cosine similarity cosj,k = (xg,j · xg,k)/||xg,j|| ||xg,k||
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(a) Cosine similarity for flowering-time related genes

(b) Cosine similarity for stress related genes

Fig. 4.2: Pairwise correlation analysis of genes labeled with f1 = flowering and f2 =
stress.

where g ∈ Gf (see [37, 28]). As shown in Figure 4.2, we compared pairwise similarity

for two functions labels, f1 = flowering and f2 = stress; observing very small differences,

e.g., H3 and H3K9me2 co-occur slightly more often in flowering than stress related genes.
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This observation implies that pairwise correlation analysis is of limited value in determin-

ing gene functions.

• Market basket analysis: Frequencies (number of occurrences) of item sets have been

used [58, 73, 92] to obtain combinations of important histone modifications patterns. The

pattern ratio r`,f = n`,f/nf is used to measure the importance of pattern P` for label f ,

where high values are considered to indicate stronger confidence in recognized patterns.

However, these recognized patterns are considered as genome-wide instead of being func-

tion specific.

• Clustering: The self-organizing map (SOM) approach was proposed in [67] to infer

clusters of modifications, based on the raw histone modification enrichment levels m(g)
i,j .

But this unsupervised approach ignores the biological functions of genes, instead focusing

on cluster visualization. As a result, it remains a question of how to relate different histone

modification patterns to biological functions.

4.2.2 HiPSiS: Histone Profiling by Significance Score

We propose HiPSiS, an innovative method for histone modification pattern inference which

focuses on evaluating patterns by evaluating a significance score. First, for each pattern P`

we compute the global ratio r`, as well as r`,f for each Gf . We adopt the FP-growth algo-

rithm for efficient enumeration and indexing [33]. Given H distinct histone modifications,

2H patterns are possible. However, in favor of computational efficiency, we consider only

the patterns that exist in the dataset. Thus, the number of combinations is bounded by

min{N, 2H}.

For each specific function f and pattern P`, we assume that x` = (r`,f − r`,f̄ )/σ ∼

N(0, 1), where σ = r`(1 − r`)(1/nf + 1/nf̄ )
†. We quantify the importance of r`,f using

the cumulative probability from two tails of the normal distribution, and the final score

†This statistic method is usually used in comparing mean values µ1, µ2 from two groups of data, which are
believed drawn i.i.d from the same distribution. If the two groups truly have the same underlying distribution,
then the random variable x` should have a normal distribution.
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assigned to pattern P` is s`,f = log(Pr[x` ≤ r`,f · nf ]) − log(Pr[x` > r`,f · nf ]). The

score of a pattern is essentially the log value of odds ratios; and it represents the inclination

towards a certain choice. If s`,f > 0, pattern P` is considered important in function f ; in

contrast, patterns with negative scores are considered to interfere with function f .

In brief, the output of HiPSiS is the matrix S = (s`,f ) that contains the scores associated

with function specific histone modification patterns. The function maps the combinatorial

pattern ` to a real value, and quantifies its importance with respect to the function f . Higher

the score, the more confident and important pattern ` is for biological function f . As a

result, HiPSiS can be used as a function-specific pattern recognition method to select the

top k patterns for each function.

4.2.3 Gene function prediction

For each function, we use a large sparse matrix Z(f) to represent the ownership and im-

portance score of different patterns for each gene. The new input data is then fed into well

known classification algorithms to evaluate the scoring system.

We map the original input data X on to new spaces using various pattern scoring meth-

ods to evaluate the latter. Since pairwise correlation and SOM clustering cannot quantify

the importance of a particular combination of histone modifications, we performed the

transformation using only the following methods.

1. Original space: We use the original binary matrix X without any modification.

2. Polling ratio weighted space: For each f -vs-rest classification problem, we trans-

formed the original input data by: W (f) = XN×HR(f).

3. Simple basket weighted space for function f : For each record Xg, we create a new

record based on the matching results of all observed patterns. The new input data is:

Y (f) = A[r1,f , r2,f , . . . , rL,f ]
T (4.1)
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4. HiPSiS weighted space:

Z(f) = A[s1,f , s2,f , . . . , sL,f ]
T (4.2)

In our experiments, we used the 4 different binary matrices (X,W (f), Y (f), Z(f)) to

train multiple learning algorithms.

We inferred the significant combinatorial patterns for each different biological function,

and categorized genes into predicted functional groups by applying multiple classification

algorithms (Logistic linear [12], Naive Bayesian [69] and Support Vector Machine with

linear or Gaussian kernels [17]) to the pattern scores discussed above.

4.3 Performance of simulated data

In this section, we first evaluate the performance of HiPSiS with simulated data which is

pre-populated with ground truth patterns, and compare with ChromHMM [28] in terms of

pattern recognition ability. Then we evaluate HiPSiS using real histone modification data

overlaid with gene ontology database as a gene function label classifier.

4.3.1 Pattern recognition performance

In order to evaluate the specificity and sensitivity of combinatorial pattern recognition,

we compare HiPSiS with ChromHMM. We use the simulated binary data‡ XN×M where

N = 10, 000, M = 10, P (Xi,j = 1) = 0.3 and P (Xi,j = 0) = 0.7.

Then we plant a pattern [2, 7, 8] with probability α from a randomly selected subset

Gtest. The α parameter controls the confidence level of the planted patterns and the binary

values of Xi, are randomly toggled with probability 1 − α. Then we train the Hidden

Markov Model using ChromHMM with input data Gtest. Sequentially, we calculate the

‡In our experiments, we also tested multiple different choices for p-values.
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(a) α = 0.9 (b) α = 0.5

Fig. 4.3: Emission probabilities in HMM model learned using ChromHMM with 5 hidden
states. The x−axis shows elements of patterns (i.e., 0,1,2,3. . . 9) and y-axis shows the
indices of hidden states of the HMM. The intensity of each square (x, y) represents the
level of confidence of including x in pattern y. (a) With α = 0.9. States 2-4 clearly
captured the planted pattern [2,7,8]. (b) When α = 0.5. The planted pattern is not obvious
anymore.

pattern score using HiPSiS and find the top 5 patterns based on their scores s`,test. Results

show that ChromHMM is capable of capturing the pattern [2,7,8] when the confidence level

is reasonably high (Figure 4.3a) but the pattern is not clear when the confidence is very low

(Figure 4.3b). By contrast, HiPSiS is able to assign high scores for our planted patterns

even with low confidence level. In Table 4.4, we managed to capture the planted pattern

even with high noise level.

However, ChromHMM is more versatile in terms of representing patterns in which each

individual modification has different probability. For example, ChromHMM is capable of

capturing patterns like [0,2,7/8/9] where 7, 8 and 9 are interchangeable. HiPSiS is not

suitable for recognizing such patterns because it considers [0, 2, 7], [0, 2, 8] and [0, 2, 9]

as different patterns. As a result, the scores for such patterns are not significantly high.
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Rank Patterns α = 0.9 Patterns α = 0.5

1 [2,7,8] [2,7,8]
2 [2,7] [0,2,8]
3 [2,8] [8,7]
4 [8,7] [2,7]
5 [7] [4,5,7]

Table 4.4: Top 5 patterns recognized by HiPSiS: results are based on the average score
of repeated experiments on 20 randomly simulated datasets with the same planted pattern
[2,7,8]

.

4.3.2 Real Datasets

In this section, we compare the performance of HiPSiS with methods described in sec-

tion 4.2.3 for ChIP-seq dataset§ using aerial parts of two-week-old A. thaliana [59]. This

dataset contains global distribution of nine histone modifications (H3K4me2/3, H3K9me2,

H3K27me1/3, H3K36me2/3, H3K9Ac, H3K18Ac, and total H3 occupancy).

Using TAIR gene ontology annotation [7], we created subsets of genes with specific

functions (i.e., stress, stimulus, etc.). Luo and TAIR GO datasets¶ are briefly described in

Table 4.5.

Function # of genes
Stress 3451
Stimulus 2938
Defense 1215
Development 2678
Flowering 212
Unlabelled 13844
Total 28523

Table 4.5: Overview of TAIR gene GO annotation dataset

§We accessed this dataset through the National center for Biotechnology Information (NCBI, accession
number SRA010097).
¶The sum of the numbers of genes for each function f is not equal to the total number (28523) because

some genes have multiple function annotations.
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4.3.3 Verification of Predicted Candidates for Specific Functions

We assigned a score to each gene inGf̄ for each function f , using the following normalized

pattern score:

Sf(g) =

∑
g�p`

s`,f

||Xg||
. (4.3)

Then, genes with high scores were selected as the potential candidates for label f . In this

experiment, we only focused on flowering-time label because our domain experts created

this gene list manually, whereas the labels for other functions were obtained through a

keyword matching method using GO description, which is less reliable.

GeneID Name Verification
AT3G48430 JMJ12 flowering activator
AT3G48590 NF-YC1 ND function
AT3G63010 GID1B activator
AT4G00650 FRIGIDA suppressor
AT4G08920 CRY1 suppressor
AT4G15880 ESD4 suppressor
AT4G24210 SLEEPY1 activator
AT4G29830 VIP3 suppressor
AT4G34530 CIB1 activator
AT5G12840 NF-YA1 suppressor
AT5G13790 AGL15 activator
AT5G16320 FRL1 suppressor
AT5G23150 HUA1 flower development
AT5G24470 PRR5 activator
AT5G35840 PHYC repressor

Table 4.6: Verification of 15 genes with high scores Sflowering-time, predicted to have the
functionality of "flowering-time". "ND function" means that the biological function of
gene NF-YC1 related to flowering-time is not determined yet

Table 4.6 shows that 14 out of 15 predicted strong candidates from Gf were verified to

be correct by domain experts using an independent data source, suggesting the effectiveness

of the HiPSiS pattern inference approach. We verified the roles of candidate genes by man-

ually checking http://www.arabidopsis.org/ database records which is independent
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from the GO terms used in the labeling step for detailed descriptions.‖ These records were

further validated using expression profile based experimental methods described in [20].

Whether a gene is expressed highly (in the corresponding biological process/function) is

used as the ground truth to evaluate the predicted new labels for genes. Each verified gene

in Table 4.6 was either confirmed experimentally in the literature, or validated with Gen-

Bank database.

4.3.4 Correlation between pattern scores and global ratios

Our main objective is to find significantly important combinations of histone modifications

for each function f . The scores of function-specific patterns should be distinguishable from

pattern global ratios r`. Using Equation 4.3 , each pattern is assigned with a score vector

[s1,f , s2,f , . . . , sL,f ]
T to indicate the strength of relationship between patterns and label f ,

where L is the total number of patterns.

If a high correlation exists between a pattern score and the global ratio, then the scoring

system should be considered weak because pattern importance is in accordance with global

pattern score. On the other hand, if the correlation is low, then the scoring system can be

considered to be informative. We compared HiPSiS with simple basket analysis because

both methods evaluate the importance of combinatorial patterns of modifications. Results

in Table 4.7 show that HiPSiS outperforms basket analysis because the correlation between

s`,f and r` is much lower than the correlation between r`,f and r`.

Tabel 4.7 shows that the correlation values indicate the similarity between patterns from

entire dataset versus specific subset (functions) of genes. In this table, we have shown that

HiPSiS can distinguish patterns from a global dataset and a function specific dataset.

‖Descriptions come from definition lines supplied with TIGR gene annotation records (description is
generally based on sequence similarity), as well as definition lines from GenBank records (written by the
submitter). Other descriptions may be written by a curator and based upon information obtained from the
available literature.
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Function HiPSiS Market Basket
Stress 0.11 0.99
Stimulus 0.36 0.99
Defense 0.38 0.98
Development 0.08 0.98
Flowering 0.61 0.99

Table 4.7: The correlation of scores obtained using HiPSiS and simple basket analysis with
background ratios.

4.3.5 Function-specific patterns predicted by HiPSiS

For each function f , we applied HiPSiS to quantify the strength of each combinatorial

pattern p with respect to f . Patterns with high scores are proposed as f -specific histone

modification patterns, whereas others are considered to be irrelevant for function f . The

proposed patterns of interest are the top five and bottom five patterns, respectively. We

observed that although the histone modification H3K9ac is considered strong in multiple

functions, it collaborates with different modifications in different functions. For exam-

ple, H3K4me3 and H3K36me3 are the most important collaborators in "stimulus" label,

whereas H3K18ac is the most important collaborator for defenses.

(a) HiPSiS Z(f) (b) Original Dataset X

Fig. 4.4: Classification Performance of HiPSiS and Simple Basket scoring for patterns



59

(a) Polling ratio weighted space W (f) (b) Simple Basket Y (f)

Fig. 4.5: Classification Performance of ratios and simple basket transformed input data

4.3.6 Evaluation of HiPSiS by gene function classification

We evaluated different pattern scoring systems by projecting the original binary histone

modification data X on different feature spaces. We performed a stratified 5-fold cross val-

idation for testing with 10 repeated randomly shuffled sequences of input data X . For each

function f , we evaluated the performance of Logistic Regression Classifier with trans-

formed binary data; we also experimented with Naive Bayesian and SVM (with linear

kernel as well as Gaussian kernel) classifiers, obtaining similar results.

We use the mean AUC of ROC curves to evaluate the classification performance for

each function f . Figure 4.4a shows that HiPSiS performs better than other pattern scoring

scores. It is noticeable that most of the binary classifiers perform almost the same as a

random classifier. The main reason is the overlap between Gf and Gf̄ in binary feature

space. The second cause stems from the nature of function labels: we adopted the GO

annotation as the function label, but these are known to be incomplete.

4.3.7 Quality of Function Labels and Performance of HiPSiS

The combinations of histone modifications are believed to contribute to different functions

in biological processes. In our previous evaluations, we observe that HiPSiS perform the
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best on retrieving genes labeled with "flowering-time" because this label is curated us-

ing gene expression study during flowering-time of the Arabidopsis Thaliana, whereas the

remaining labels are based on GO term database [56]. We evaluate the performance of

HiPSiS in two more additional labels "heat" and "salt stress", which are collected using

both textual and gene expression levels. The result is shown in Figure A.1

4.4 Concluding Remarks

Histone modifications play an important role in gene regulation. In this chapter, we pro-

posed an approach to predict combinations of histone modifications that are most relevant

to each biological function. We proposed a new pattern scoring method (HiPSiS), which

evaluates the importance of each combinatorial pattern of histone modifications by com-

paring with the background ratio. Compared with other pattern scores proposed in previous

work, HiPSiS was shown to be capable of inferring significant patterns which were verified

by independent gene function data. We also examined the combination of different pattern

scoring methods with well-known classifier algorithms to predict gene functions, and ob-

served that HiPSiS performed the best. As an exploratory study, we list the most significant

patterns for each function in Table A.3.

We were able to predict new function-specific histone modification patterns, which

need to be experimentally verified in future studies. Future studies should also consider the

locations and distributions of histone modifications across gene segments, which may be

relevant, as implied in [37]. Additionally, we can directly examine raw enrichment values,

and incorporate the locations of modifications into the feature set.

In this chapter, we discussed "n:1" patterns recognition from two universes:

• The universe of histone modifications: Ωmods.

• The universe of functional labels: Ωlabels.
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We study the associative patterns A ∈ P(Ωmods) × Ωlabels, where P(Ωmods) denotes the

power set of universe Ωmods. Histone modifiers are believed to collaborate with each other

to maintain the normal expression of every gene in response to both internal and external

stimuli to a biological system [73]. However, it still remains challenging to understand the

fundamental principles of epigenetic∗∗ mechanisms.

∗∗epigenetics is the ensemble of studies of how histone modification, acetylation and DNA methylation
affect the access of chromatins.
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CHAPTER 5

EFFICIENT COMBINATORIAL PATTERN

RECOGNITION OF SERIES DATA

In this chapter, we discuss a new kind of histone modification patterns, as "shapes", along

the span of a gene (i.e., from upstream promoter region to downstream coding region). This

enables us to consider both the location (with respect to gene TSS positions) and magnitude

of modification of different histone modifications. The combination of shapes (instead of

presence/absence) is considered to be an informative histone pattern.

This chapter is organized as follows: in Section 5.1, we explain the motivation of shape-

matching based histone modification comparison; in Section 5.2, we discuss various dif-

ferent series methods; in Section 5.3, we explain the three-step process of combinatorial

patterns recognition of histone modification profiles; in Section 5.4, we evaluate the per-

formance of the proposed approach against dynamic time warping and clustering as the

benchmark; in Section 5.6, we summarize our findings on real histone modification data.
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5.1 Introduction

Information encoded in DNA is regulated by transcription-level regulators such as cis-

elements and also by epigenetic-level components like histone modification or DNA methy-

lation. Epigenetic regulation also controls the expression of genes, and consequently, or-

ganism phenotypes are also under the regulation of epigenetic components.

It remains challenging to understand the fundamental mechanisms of how epigenetic

components regulate and control gene expression. Multiple genome-wide in silico methods

have been proposed to search for significant "patterns" of histone modification in the recent

decades. From the very beginning of epigenetic studies, researchers have hypothesized that

it is the combinations of histone modifications (hypothesis of histone Code [41, 85]) that

regulate the gene expression and other biological processes.

The early pioneering work [79] studied the abundance consensus of each modifica-

tion individually. With the advent of highly efficient technologies like ChipSeq, recent

approaches studied pairwise patterns [37, 28] and combinatorial presence/absence patterns

in [58, 20]. In our work described in Chapter 4, we focused on discovering significant

histone combinatorial patterns (presence or absence of modifications) in genes of specific

function, and associated histone modification patterns with biological function annotations.

In this chapter, we propose an innovative perspective of histone modification patterns and

an efficient approach to quick indexing and comparison.

5.2 Previous work

In Chapter 4, we discussed the use of a binary vector to represent the histone modifications

for each gene, and then applied simple basket analysis to enumerate and record the corre-

sponding frequency for each combinatorial pattern. By comparing pattern frequency distri-

butions of gene groups (each group is annotated with a biological function), we learned the
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significant combinatorial patterns for each function. However, localization and amplitude

information of histone modifications are lost in discretization.

(a) CO

(b) Actin

Fig. 5.1: Each plot shows the raw enrichment level data for each modification for two
genes: (a) CO and (b) Actin. The x-axis is the position of modification relative to TSS of
each gene. The red lines in each subplots shows the thresholds using p-value 10−8
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Since we only considered the highest enrichment signal of each gene in thresholding

process, genes with totally different enrichment levels might be converted to identical bi-

nary representations. Figure 5.1 illustrates that the thresholding of two different modifica-

tion profiles and associated thresholds. Recall that binary representations, as described in

Figure 4.1, xgj = 1† if we observe at least one modification level greater than threshold.

For example, the binary representation of gene CO and Actin will be represented by the

identical binary vector [1, 0, 1, 1, 1, 1, 1, 1]. On the other hand, in Figure 5.1, the raw his-

tone data of CO and Actin, the shapes of the modifications are distinct: in CO, modification

H3K9AC, H3K4ME2 and H3 show a symmetric "valley" shape, but none of modifications

on Actin show such pattern. Over simplification of the previous chapter results in severe

loss of information.

Given a sequence representation of a histone modification, the next concern is: how

to use this information to determine a gene’s functionality. In the following sections we

explore this concern. Some possible similarity measures are described in the following

section.

5.3 Pattern of Histone Curves

Figure 5.1 illustrates that the sequence of histone modification can be of multiple shapes.

In this section, we explore if these shapes can be organized in small number of categories.

Histone modification shape is defined as the shape of enrichment level curve from up-

stream to downstream (as shown in Figure 5.1). In this curve, interest is in the locations of

high and low enrichment levels and their heights. In [58], the authors studied the histone

modification shape for H3K9ac, H3K23ac and H4k12ac in human CD4-T cell dataset, and

showcased the potential clusters of different histone modification shapes for genes by plot-

ting similar histone modification curves. However, the question of how to systematically

discover and use the combinations of shapes in genome wide analysis remains unsolved. In
†j is the index of histone modifiers. i.e., 0:H3K18AC, 1:H3K9ME2, 2:H3KME3. etc.
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this chapter, we seek to discover the histone modification code with respect to enrichment

level shapes. Towards to this goal, first we consider some similarity measure described

below.

5.3.1 Similarity measures for time series

First, we discuss the naive direct comparison of series-like data points and discuss associ-

ated advantages and the disadvantage.

• Direct comparison: Directly calculating distance between two series (histone modifi-

cation enrichment profiles) is a naive method used in many applications.

D(x, y) = (Σj||xj − yj||p)
1
p

where x, y are two enrichment curves; p = 1, 2 are mostly used. In this method, we

compare two enrichment curves at each specific position. This method results in high

dissimilarity when two time series are very similar but shifted in time with respect to each

other, as shown by example in Figure 5.2. Since the specific position of each modification

is not critically important in differentiating gene functions because the actual binding sites

of cis elements vary from gene to gene [98], this measure may not be suitable for our

application; and is not implemented in algorithms described below.

• Dynamic Time Warping (DTW): Dynamic time warping (defined in Algorithm 3)

is a dynamic programming algorithm (illustrated in Figure 5.3), and is used in comparing

two temporal sequences that may be shifted and vary in speed. In the context of histone

modification enrichment curves, peaks observed in close proximity should be considered

similar [98]. For each observation at i, DTW avoids the aforementioned problem with

direct comparison by searching the neighborhood [i − w, i + w] of each value for the best

alignment of two series, .

However, DTW is susceptible to noise in signals, which may greatly affect the similarity
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Fig. 5.2: Illustration of shifted series data and original data.

Algorithm 3 The Dynamic Time Warping algorithm with window constraint

function DTW(x: array of size n, y array of size m, w: int)
DTW← array[n+ 1][m+ 1]

for i := 0 . . . n do
for j := 0 . . .m do

DTW[i][j]←∞
DTW[0][0] = 0
for i := 1 . . . n do

for j := max(1, i− w) . . .min(m, i+ w) do
cost← d(x[i], y[j])

DTW[i][j] = cost+ min


DTW[i− 1][j − 1],
DTW[i][j − 1],
DTW[i− 1][j]

return DTW[n][m]

measure between enrichment curves [70]. Another problem with DTW is the high time

complexity which is O(n2), where n is the length of series data. As a result the overall

time complexity becomes O(N2n2), where N is the total number of genes.



68

Time 

Time Series 

Time Series X

Y

Fig. 5.3: Illustration of dynamic time warping method of time series comparison. The
arrows represent the optimal alignment between sequences.

5.3.2 Algorithm for shape based pattern recognition

In this section, we introduce a three-step indexing and clustering method for combination

pattern recognition.

1. Approximation: Shortening the series using approximation methods such as: piece-

wise aggregate approximation or discrete wavelet transformation;

2. Discretization: Discretizing of shortened series using symbolic aggregation;

3. Clustering: Clustering of transformed series using affinity propagation. The cen-

troids of every cluster are used to represent the shapes for all cluster members;

Detailed discussion of these three steps is provided in the following.

1. Approximation step: For each modification h, let vector X(g)
h = (X

(g)
h1 , X

(g)
h2 , . . . X

(g)
hL )

denote the raw segmented ChipSeq data on gene i, where L is the total number of windows

in the proximity of gene g’s TSS. We create an approximation (shortened version) X̃(g)
h =

(X̃
(g)
h1 , X̃

(g)
h2 , . . . X̃

(g)
hP ) for each vector X(g)

h using the either of the following methods:

Piecewise Aggregate Approximation (PAA) approximates a time-series of length n into

a vector x̃ = (x̃1, x̃2, . . . , x̃P ) of length P ≤ L where each x̃i is calculated as follows:

x̃i =
P

L

ai∑
j=a(i−1)+1

xj
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where a = bL/P c is the width of the segmenting window. Essentially, PAA computes the

average of values within each window to summarize original data.

Discrete Wavelet Transform (DWT) is a transformation, designed to turn a series data

in the time domain ∗ into a sequence of coefficients with an orthogonal basis. A typical

application of DWT is signal de-noising in digital signal processing. DWT is preferable

to Fourier transform for our problem because enrichment curves don not show periodic

behavior, and Fourier transform cannot preserve the information about the localization of

each frequency, which is considered to be important.

Because of the simplicity and high performance in de-noising properties as discussed

in [90] on original enrichment curve, we use the Haar wavelet† for high/low pass filters.

The approximating process is composed of two steps defined as follows:

Fig. 5.4: Wavelet decomposition step with 3 levels (k = 3)

• Decomposition: The original series x is decomposed using wavelet transformation,

as shown in Figure 5.4. We iteratively apply the wavelet decomposition to obtain co-

efficients of down-sampled data from low pass filters until no further decomposition

is possible (i.e., the dimensions of down-sampled data from low pass filter is 1). Let

∗In the context of histone modification, the segments of enrichment levels over locations in the gene are
analogies to the time domain.
†We also experimented with Daubechies wavelets. Haar gave the best performance in terms of agreement

with DTW and running time.
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x ∈ Rn denote the original data points‡ series. Let

L(n) = D(n)H
(n)
0 , B(n) = D(n)H

(n)
1

denote the filter bank at each iteration of transformation, where H0 and high H1

are low and high pass filters. D(n) denotes the down sampling matrix. The result

of decomposition at level n using wavelet transformation is a list of coefficients (as

shown in Figure 5.4):

w = L(1)L(2) . . . L(n)x, B(1)L(2) . . . L(n)x, . . . , B(n)x.

• Reconstruction: The original series x can be fully retrieved by the iteratively ap-

Fig. 5.5: Reconstruction with approximation using first 2 levels, the original series of
length 8 is shortened to 2 (i.e., k = 2).

ply inverse transformation using coefficients obtained in decomposition step. How-

ever, in most instances an approximated x̃ is obtained by keeping the important traits

without high frequency noise (Figure 5.5 shows an example). In this process, we

use the output of the previous decomposition step to reconstruct a vector x̃. In Haar

wavelet example, the first iteration will use coefficients w1 = L(1)L(2) . . . L(n)x and
‡Unlike PAA approximation, DWT approximation requires n = 2k. We used constant padding (i.e.,

replicating border elements to make the dimension input data into a power of 2). For example, given the
input data x1, x2 . . . xL, where L = 12. DWT requires 2 more values on each end to execute (i.e., the length
becomes 16). Constant padding will extend the input vector by replicating the values on borders. As a result,
the new input for DWT is x1x1|x1, x2 . . . xn|xn, xn.
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w2 = B(1)L(2) . . . L(n)x as the inputs to the reconstruction part, and then the inter-

mediate result with two more coefficients are used for the next iteration. The details

of DWT based approximation is provided in Section A.4.

After the approximation step, the original data is transformed into a shorter compact

approximation.

2. Discretizing step using symbolic aggregation: SAX (Symbolic Aggregate) serves as

a quick indexing method for time series data applications. Each enrichment value is repre-

sented by an alphabetical vector. The following steps are used to create such an indexing

for histone modification data:

1. Z-normalization is performed at each position j of shortened histone modification

data X̃(g)
hj , where j is the position, h is the modification index and g is the gene id.

The z-transformation is defined as follows:

D
(g)
hj =

X̃
(g)
hj − µhj
σhj

, (5.1)

where µhj and σhj are mean and standard deviation of values X̃(g)
hj , g = 1, 2 . . . N

2. Equal bandwidth discretization method is used for normalized levels Dhj with re-

spect to each modification h and position j.

3. As a result, the modification enrichments for gene g are transformed into a vector

of alphabets [c1, c2, . . . , cm]. Let [L(cj)U(cj)] represent the discretization interval of

alphabet cj at position j.

After the SAX discretization, the following pairwise distance matrix is calculated: for any

pair of two SAX vectors associated with two seriesA = [a1, a2, . . . , aP ], B = [b1, b2, . . . , bP ],

the distance is defined as the following:

D(A,B) =

√√√√ m∑
j=1

min(||U(aj)− L(bj)||, ||U(bj)− L(aj)||)2 (5.2)
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Fig. 5.6: An illustration of the proposed approach with 5 series of length 10: (a) the origi-
nal series; (b) approximated and normalized data; (c) discrete representations and number
of occurrences; (d) the 2 centroids yielded by clustering.

We obtain a pairwise distance matrices for each modification h = 1, 2, 3 . . . H .

3. Clustering step: We apply clustering on the distance matrix calculated using Equa-

tion 5.2 for each histone modification h. Then each gene is assigned to a cluster, and we

use oh(g) to denote the cluster assignment for gene g with respect to histone modification

h. The cluster assignment for each gene g is summarized in vector:

O(g) = [o1(g), o2(g) . . . oH(g)],

where each oh(g) denotes the clustering assignment to gene g for histone h.

Figure 5.6 illustrates the proposed 3-step process of getting shape patterns for each

modification. The cluster centroids are used to depict the shapes for the specific histone

modification. In our experiments, we used both affinity propagation and k-means clustering

for step 3.
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5.4 Comparison of Series Similarity Measures

In the previous section, we introduced dynamic time warping and our proposed procedure.

However, as realized in many studies in series data analysis researches ([13, 57, 38]), the

optimality of one similarity measure is highly dependent on the applications. For example,

for electromagnetic waves data, the best measure is to compare the inferred characteristics

of waves (i.e., frequency, amplitude and shift); for applications like gene expression level

comparison (as discussed in Chapter 3) correlation based methods are often used. In histone

modification pattern analysis, the optimal choice of comparison is still open to discussion.

Because of the lack of understanding of how exactly histone marks collaborate with each

other in biological regulation, we cannot quantitatively evaluate the performance of each

similarity measure with labels assigned by biological researchers. There are case studies

regarding the value of histone modification curve shapes in [92, 79], and genes are grouped

by the location where the modifications are most enriched (i.e., upstream of TSS or down

stream of TSS). In this work, we propose a systematic method to calculate similarity and

group genes based on their shapes.

In this section, we compare our 3-step algorithm, described in the previous section

against dynamic time warping followed by the same clustering algorithm. We use dynamic

time warping as the benchmark for variations of our proposed methods: (PAA + SAX or

DWT + SAX). The agreement ratio is defined as:

2
∑N

i=1

∑N
j>i 1(Ldtw(i, j) = L∗(i, j))
N(N − 1)

, (5.3)
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where

Ldtw(i, j) =


1 if Odtw(i) = Odtw(j)

0 otherwise

L∗(i, j) =


1 if O∗(i) = O∗(j)

0 otherwise

denotes whether gene i, j are assigned to the same cluster by DTW (Ldtw) and our proposed

procedure L∗(i, j), respectively.

• Random Series: First, we performed the experiment using randomly generated data,

where each value X(g)
h,j is drawn from a uniform (i.i.d.) distribution over interval [0, 1].

No inter-column or inter-row column dependencies were introduced during the process

of simulation. For simplicity, we only simulated the data for one histone modification

(H = 1), and number of genes N = 2000 with L = 10 observations as the artificial histone

modification data.

|Σ| = 3 |Σ| = 4
P = 2 P = 4 P = 8 P = 2 P = 4 P = 8

DWT + Affinity Prop. 0.25 0.49 0.63 0.27 0.52 0.67
PAA + Affinity Prop. 0.23 0.50 0.59 0.29 0.54 0.66

DWT + k-Means 0.22 0.56 0.71 0.27 0.60 0.73
PAA + k-Means 0.27 0.49 0.69 0.25 0.61 0.79

Table 5.1: Agreement ratio (defined in Equation 5.3) between proposed methods and DTW
for simulated data. |Σ| denotes the size of the alphabet used in the symbolic aggregation
step; P denotes the length of series after approximation. These results are the mean values
of 10 trials.

In this experiment, we use the randomly simulated data with uniform distributions to

test the agreement levels between clustering results from distance matrices calculated using

proposed approach (i.e., approximation + SAX discretization) and DTW. First, we approx-
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imate the original series into lengths P = 2, 4, 8); and then apply SAX using different sizes

of alphabets |Σ|; followed by a clustering on the transformed series. On the other hand,

DTW is used to calculate the pairwise distance matrix using Equation 5.2. Both distance

matrices are provided to a clustering algorithm (affinity propagation or k-means) to get the

cluster assignments for each gene g = 1, 2, . . . N . Then we use Equation 5.3 to compare

PAA+SAX and DWT+SAX to dynamic time warping.

As shown in Table 5.1, when both P and |Σ| are large, the clustering assignment is

similar for both the proposed procedure and DTW. It is noteworthy that k−means yield

higher agreement ratios because the enforcement of number of clusters.

• Real data test: Next, we use the raw histone modification data for modifier H3 from

[59] (where N = 28000, L = 20) and applied the same procedure to test the agreement

ratio between proposed method and DTW, and observed higher agreement levels for both

PAA+SAX and DWT+SAX (e.g., 0.81 when P = 8 and |Σ| = 4. This is because random

data are not naturally separable and there are real clusters in histone modification data).

The average running time of DTW+affinity propagation is 4578.3 ms and our proposed

new algorithm takes 23.4 ms on average§. Our proposed procedure excels in computational

efficiency in shape based pattern recognition.

5.5 Histone Curve Shapes

In this section, we report the observed, patterns of shapes in each modification for Ara-

bidopsis thaliana at young stage [92]. We applied the aforementioned procedure (i.e., DWT

approximation + SAX + Affinity Propagation Clustering), and observed the patterns of

shapes in each modification. We used P = 4 and |Σ| = 4 as the parameters.

As shown in Figure 5.7, each curve is regarded as a signature modification shape of its

corresponding histone modification. In this experiment on real dataset, we observed that

the recognized signature shapes of compressed data are common across multiple histone
§Experiments were conducted using a single-thread on i7-3770k CPU with 16GB memory.
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Fig. 5.7: Histone cluster centroids using approximated data (P = 4). Each curve rep-
resent a cluster centroid. X-axis shows the compressed indexes of original data (i.e.,
j = 0, 1, 2, 3.)

modifications. They can be summarized into the following categories:

1. ′L′-shape: (curves labeled = "1") In Figure 5.7, histone modifications of H3K18AC,

H3K4ME2, H3K36ME3 and H3K4ME3 have this shape indicating that the peak of

modification occur at the far upstream of genes. The modification levels are low on

the other regions of genes.

2. ′V ′-shape: (curves label = "0") In Figure 5.7, histone modifications of H3K18AC,

H3K4ME2, H3K36ME3 and H3K4ME3, H3K36ME2 show a valley like symmetric

modification enrichment shape. Upstream and downstream regions of genes are both

modified.

3. ′Γ′-shape: (curves label = "2") In Figure 5.7, histone modifications of H3K9ME2,

H3K36ME2, H3K9AC, H3, H3K27ME3 and H3K27ME1 show a modification pat-

tern where upstream is not regulated by histone modification, and downstream coding

regions are highly influenced.
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4. ′0′-shape: other curves with relatively low histone modification enrichment every-

where fall into this category.

5.6 Case Study in Histone Modification Shape Patterns

for flowering-time Genes

In Chapter 4, we proposed a binary version of histone code and studied its value in the pre-

diction of gene functions, in this study we achieved the highest performance for flowering-

time genes mainly because we have more confidence in associated functions; these genes

are labeled by studying the expression levels of genes in flowering-time. Performance was

relatively poor for the other labels (i.e., stress, defense, stimuli and development) curated

from GO terms [7], which are associated with low confidence. Using pattern recogni-

tion algorithm HiPSiS, we found that the combination of histone modifiers: H3K4ME3,

H3K4ME2 and H3K36ME3 are of great importance in flowering-time related genes. In-

spired with this success, we investigate whether there exist subgroups of genes in these 303

manually verified flowering-time genes; particularly, are there different shape patterns of

these 3 histone modifications in these genes.

As an exploratory study, we applied the aforementioned procedure to raw histone mod-

ification enrichment data of the 303 genes. In order to simplify the process, we only focus

on modifications H3K4ME3, H3K4ME2 and H3K36ME3. After the proposed 3-step pro-

cedure, each gene g is associated with a categorical vector. i.e., each gene is transformed

into a vector of nominal values:

O(g) = [o1(g), o2(g), o3(g)],

where oi(g) ∈ {L, V,Γ, 0}.

We study the distribution of O(g) for all 303 flowering-time genes, and observed that
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two patterns constitute the majority: Namely LLL, V V V with ratios of 0.28 and 0.25.

The ratio of the third most frequent combination, LVV, is 0.11. According to the pathway

analysis from [46] by biologist experts, we found 43% of genes in the first list (with pat-

tern LLL) participate in the light pathway, and only 3% of genes in the other list VVV

participate in the light pathway. Since our proposed definition of shape-based histone mod-

ification patterns is new, so the interpretations of the recognized combinations of shapes

are still open to discussion. In this case study, we showed the potential associative patterns

between combinations of shapes and biological regulation pathways. In our experiment,

we also adopt different parameters P = 8, |Σ| = 8. As expected, there are more number of

clusters, and thus more shape patterns. In those experiment, we observe the similar results,

i.e., majority of genes belong to small number of shape patterns.

The two subclasses (LLL & V V V ), in flowering-time genes, are listed in Table A.1

and Table A.2 in the Appendices. In our study, we repeat the exploratory shape patterns

analysis for other labels (i.e., stress, development and stimuli), and observe existence of

dominating shape patterns too. Due to the lack of biological experiment at this time, no

further interpretations are available at this time for these recognized patterns.

5.7 Concluding Remarks

In this work, we proposed an innovative perspective of histone code pattern by introduc-

ing the "shapes" of histone curves (i.e., where do enrichment occur with respect to TSS of

genes). In addition, we use a 3-step process to compress, index and cluster histone mod-

ification series data. Furthermore, we compare the clustering results of the proposed ap-

proach to dynamic time warping and obtained similar results with significant improvement

in efficiency and storage size. We use the clustering assignment vectors O(g) to represent

the new approach for analyzing combinations of shapes. In our case study of real histone

modification data, we observed that genes from different pathways have different combi-
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nations of shapes. Our work serves as a starting point of research topics in "histone codes"

by introducing the shape matching perspective rather than only considering the effect of

"presence/absence" of histone modifications.



80

CHAPTER 6

CATWORKS: ASSOCIATIVE PATTERN

RECOGNITION BETWEEN

COMBINATIONS OF CATEGORICAL

DATA

In this chapter, we propose the problem of n : m associative patterns recognition and an

algorithm to retrieve the hidden associative patterns between two universes. Unlike 1 : 1 or

n : 1 patterns, here we focus on combination to combination associative patterns.

In Section 6.1, we first introduce the problem of associative pattern recognition of cat-

egorical data. In Section 6.2-6.3, we explain in details the procedure of recognition. In

Section 6.4, we evaluate the proposed algorithm with simulated data and real histone mod-

ification data.
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6.1 Introduction

Pattern association mining is a problem that originated from our previous study in histone

modification pattern analysis where we sought to learn the significant patterns (combina-

tions of histone modifications) for a specific group of genes which are believed to par-

ticipate in the same biological process, or belong to the same group [96]. However, we

only focused on the synergistic behavior of different modifiers, and the combinations of

different labels are ignored. For example, questions such as what are the most important

histone patterns of genes labeled as "stress" and "development" are not answered. In this

work, we proposed an efficient pattern association mining algorithm which is applicable to

histone modification analysis, and also for generalized categorical data pattern association

learning.

6.2 Problem Formulation

In this chapter, we introduce a new information retrieval (IR) algorithm, Catworks, to ad-

dress the pattern association mining problem. In our problem formulation, we are mainly

interested in scenarios where an object’s features take categorical values.

6.2.1 Categorical data

A categorical variable is an ordinal variable (such as letter grades A,B, etc in a course

which satisfy the order A > B > C > F ) or takes nominal attributes (such as blood

types, colors of fruits or ingredients in recipes) where there is no order between values. A

categorical variable takes on a value in a fixed set.

In the problem that we have addressed in this work, both the inputs and desired outputs

take categorical values as illustrated by a few examples discussed below.

When objects being studied are grouped into categories based on some qualitative trait
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the resulting data are merely labels or categories. In natural language processing with social

media, tweets have genre attribute (such as sports, cuisine) or sentiment attribute (such as

sad or uncertain). For example consider the tweet from former president Obama when he

left the Oval office:

Thank you for everything. My last ask is the same as my first. I’m asking you

to believe. Not in my ability to create change, but in yours.

The key-word based processing results in categorical values: ("thank", "last", "believe",

"change" etc.). The sentiment labels associated with this post may be "sad", "encouraging"

and "grateful". In bioinformatics, we consider, for example, histone modifications of a

gene; thus giving rise to a set of modifications that take place in the gene. On the other

hand, we may have the knowledge of gene functionality, such as response to stress or heat.

In general, we consider different categorical attributes as different "facets" of an object.

It is possible for a single data point to have multiple distinct values in each attribute. For

example, in sentiment attribute of a post, it may have both "sad" and "encouraging". We

seek to discover the associative patterns of combinations of categorical values between

different "facets" of data. For each post, there may exist many different facets.

6.2.2 Data transformations

Let < Ai1, Ai2, . . . , AiN > be the ith data point with L facets where A` ⊆ Ω` represents

nominal values in categorical attribute `, and Ω` = {ω`1, ω`2 . . . } denotes the universe of

all nominal values for facet `.

In the tweet post example, for instance, various keywords constitute the one universe,

and the set of all sentiments becomes another universe. In this study, we limit the number

of facets to N = 2. Furthermore, Let

Ω(L) = {ω(L)
1 , ω

(L)
2 . . . },Ω(R) = {ω(R)

1 , ω
(R)
2 . . . }
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denote these two universes, and < A
(L)
i , A

(R)
i > denote the ith data point for convenience.

For each facet we transform the nominal values to a binary vector representation as follows:

Let d(L) = |Ω(L)| and d(R) = |Ω(R)| denote the size of universes. For a nominal

value based data point < A
(L)
i , A

(R)
i >, we transform it to a pair of binary vectors xi =

[xi1, xi2 . . . , xid(L) ], yi = [yi1, yi2 . . . , yid(R) ] to represent the nominal values, where

xik = 1 iff ω(L)
k ∈ A(L)

i , otherwise 0

yik = 1 iff ω(R)
k ∈ A(R)

i , otherwise 0.

6.2.3 Objective

Let D be the dataset consisting pairs of binary vectors (xi, yi) for i = 1, . . .m, where xi

and yi are input and output vectors respectively. Let P ⊆ D be a special subset whose

elements satisfy the following constraint:

If (xi : yi) ∈ P , then for a given xi the associated yi is unique.

In other words, observations in P satisfy the uniqueness property:

xi = xj iff yi = yj (6.1)

These special elements are called patterns; P is considered to be the ground truth of the

association. Other elements of D are not required to satisfy this constraint and consist of

elements that are variations of a pattern, due to noise and other perturbations. In a noise-

free scenario, i.e., when D = P , the task of association is trivial due to exact matching. On

the other hand, in a real world dataset consisting of noisy data with missing and/or wrong

labels, deriving association rules is a difficult task.

Our objective is to create a retrieval procedureRwhich, for a new given input, produces

a vector (xi, yi) ∈ P .
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Notation: α = |P|
|D| ; i.e., α denotes the ground truth ratio.

6.2.4 Related works

In this section, we discuss the related areas of study and the difficulties of pattern associa-

tion mining.

Association Rule Mining (ARM) At a first glance, the association pattern concept is very

similar to association rule mining [33, 35] which is widely used in transaction data analysis

to study the relations between subsets of items. The confidence of any rule c(X → Y ) ∈

[0, 1] is essentially the conditional probability of observing subset X ∪ Y given that X is

observed.

Although the vanilla ARM algorithm does not directly support the concepts of two cate-

gorical attributes, ARM can still be used for pattern association mining by simply removing

learned rules X → Y when X * Ω(L) or Y * Ω(R)

ARM is designed to discover strong rules of subsets of items. For example, in point-

of-sale analysis in supermarkets, sales analyst are interested in rules such as {onions, pota-

toes} → {burger} so that they can make decisions to increase profit. However, whether

the sales record contains other items is not of interest. In pattern association mining, we

seek to discover the relation between combinations instead of subsets. Namely {onions,

potatoes} and {onions, potatoes, tomatoes} are considered totally different combinations.

For example, in gene histone modification analysis, we cannot assume genes with histone

modifiers H ⊇ H ′ will have function labels F ′ even if we know H ′ → F ′. Namely, the

partial ordering monotonicity X ′ ⊆ X =⇒ Y ′ ⊆ Y is not guaranteed.

Classification Approaches Classifiers are reasonable choices for pattern association min-

ing. Binary relevance [87, 74] is a meta-algorithm for multi-label classification problems.

The process trains d(R) number of binary classifiers independently using a "one-vs-rest"

(OVR) strategy.

For each classifier j , {D(L)
i , D

(R)
ij } is used as the training data. By using d(R) classifiers,
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we can determine the final binary output vector.

The main gap between classification and pattern association problems lies in the role

of "training data". In most classifiers, the objective is to minimize some cost function

which reflects the model error from comparing model predicted value ŷ and y. Whereas

in the pattern association mining problem, the real patterns P lie buried in D. As a result,

classifiers suffer from the problem of noise or useless data.

Bidirectional associative memory (BAM) is a type of recurrent neural network which

is used for hetero-associative content based memory retrieval. Given a set of hetero-

association patterns xi, yi it will store the association which can be used to retrieve the

corresponding pattern with given (new) x or y. The only difference is that BAM adopts the

polarized representation of binary data where xij, yij ∈ {−1, 1} instead of binary represen-

tations using {1, 0}.

First proposed in [51], BAM use a simple matrix M = ΣxTi yi with given associations

{xi, yi} as input. Given x, the association pattern can be retrieved by simply using ŷ =

Tτ (Mx), where

Tτ (z) =


−1 z <= −τ

0 −τ < z < τ

1 z >= τ

(6.2)

is an element-wise thresholding function. This type of BAM is called a non-iterative hetero-

association memory. Whereas in optimal linear associative memory, W = X∗Y , defined

as the multiplication of pseudo-inverse of input data X and output Y , is proved to perform

better in terms of least square error [93]. In our empirical experiments, we didn’t observe

much difference in terms of retrieval ratio.

The main difference between hetero-association memory and pattern association prob-

lems comes from the input data. In BAM the input data are actual patterns instead of a

large dataset D with hidden patterns P . Even in the perfect scenario where D = P , BAM

still suffers from the well known problem of capacity: the internal matrixM has d(L)×d(R)
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Fig. 6.1: Mean perfect matching ratio (10 trials) vs. number of patterns using BAM

degrees of freedom. Hence, BAM is able to reliably store and recall only min(d(L), d(R))

independent vector pairs. As a sanity check, we performed experiments with simulated

D = P = xi, yi of dimensions d(L) = 5, d(R) = 5. where xi and yi are randomly generated

binary vectors satisfying Equation 6.2.3. As shown in Figure 6.1, the perfect matching ratio∑
1(ŷi = yi)/|D| is decreasing with the increasing number of patterns |D|. In the anno-

tated reliable region (the dashed rectangle) where |D| ≤ 5, the performance is acceptable.

6.3 The Algorithm

In this section, we describe our proposed algorithm; its training and retrieval phases.

• Training: In the training phase our goal is to find possible label(s) for a given input

vector x. In the dataset D = {xi, yi} an input x may be associated with several sets

of labels (vector y’s) of which some occurrences are by chance and other correspond to
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ground truth. Our goal is to identify the true labels. A label y is considered significant

(true) if its association with a given input x cannot be explained by random assignment;

i.e., if the probability of observing a y with a given x by random assignment is very small.

Let m = |D| denote the size of the entire training dataset and

p(x) =
|{xi|xi = x}|

m
and p(y) =

|{yi|yi = y}|
m

be the estimated probabilities (frequencies) of observing the vectors x and y respectively

in the dataset, where xi, yi are binary vectors of dimensions d(L) and d(R) respectively.

Similarly, let

p(x, y) =
|{(xi, yi)|xi = x ∧ yi = y}|

m

be the joint probability of observing (x, y). Then, it can be seen that if the values of y

are randomly associated with a given x, then the number of occurrences of a y should

follow a binomial distribution∗ with probability of success p(y) and associated number

of trials m × p(x). We denote this random variable as a, and if the survival probability

Prob[a ≥ p(x, y) ×m] is low, y0 is significant. Weight matrix WL assigns larger weights

accordingly. In the reverse direction, using a similar concept, we define another weight

matrix WR which finds the desirable inputs associated with a given label vector.

We use the following two survival functions to quantify the confidence of any pair of

patterns (x, y) by hypothesizing (H0) that the observation of ratio p(y|x) is a result of pure

random selection of p(x) ·m data points from D(R).

1.

W (L)(x, y) = − log{Prob[a ≥ p(x, y) ·m]} (6.3)

where a is a random variable with binomial distribution B(a; p(x) ·m, p(y)).

∗The probability of observing the occurrences of p(x, y) should follow a binomial distribution B ∼
(a; p(x)m, p(y)).
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2.

W (R)(y, x) = −log{Prob[b ≥ p(x, y) ·m]} (6.4)

and b is drawn from the binomial distribution B(b; p(y) ·m, p(x)).

We use the survival function Prob[a ≥ p(x, y) ·m] to quantify the significance of a recog-

nized pattern. As a result, if the probability Prob[a ≥ p(x, y) ·m] is small, then the null

hypothesis is rejected with a high confidence, and we conclude that x → y is a promising

pattern. The calculation of weight matrices in two directions is summarized in Algorithm 4.

Algorithm 4 Catworks Training
function TRAIN(D)

m = |D| . The size of dataset.
Step1:

for all x do
Calculate the estimated probability p(x)

for all y do
Calculate the estimated probability p(y)

for all (x, y) do
Calculate the estimated joint probability p(x, y)

Step2:
for all pair (x, y) do

(1) W (L)(x, y) = − log[Prob (a ≥ p(x, y)×m)] . see Equation 6.3

(2) W (R)(x, y) = − log[Prob (b ≥ p(x, y)×m)] . see Equation 6.4

return W (L),W (R)

• Retrieving – an iterative associative memory using top k targets: In retrieval phase,

we adopt an iterative method to keep updating two sets of patterns: X(t), Y (t) by selecting

the "most relevant" k patterns using matrices created in the learning phase. Given with a

query input x0, we initialize the following quantities:

• X(0) = {x0}, the initial singleton set.

• S(0) = X(0), the "core" of query patterns, which are incremented at each iteration.

• Original score function U(x0) = 1.



89

In each iteration, given with a set of x-values X(i), we assign scores to y using the

following equation:

V (y) =

∑
x∈X(i) W (L)(x, y)U(x)

|X(i)|
(6.5)

where high values of V (y) implies more relevance between y and set X(i). We find a set

Y (i) of size k such that

∀y∈Y (i), y′ /∈Y (i)(V (y) ≥ V (y′)).

Reversely, we create the scores for input patterns using:

U(x) =

∑
y∈Y (i) W (R)(x, y)V (y)

|Y (i)|
(6.6)

We find a set Z of size k − |S(i)| such that:

∀x∈Z, x′ /∈Z(U(x) ≥ U(x′)).

Then we update X(i+1) = S(i) ∪ Z and S(i+1) = S(i) ∪ {u}, where u = arg max
x
{U(x)}.

Essentially, S(i) ⊆ X(i) is considered as the core set of containing the original query x0,

which satisfies the following partial ordering property:

S(0) ⊆ S(1) ⊆ . . . S(k−1),

which grantees the maximum number iterations is less than or equal to k because the max-

imum size of core is k. In every iteration, we increment S(i) with the x highest score U(x),

this singleton is considered as the potential improved version of query x0. As discussed

in previous section, it is possible that the ground truth associative pattern < x∗, y∗ > may

not have the highest scores†. So we adopt the iterative iteration to find a set of query input,

which is considered as a set of variations of real pattern component x∗. As a result, by

†∃y′ 6= y∗W (L)(x∗, y′) > W (L)(x∗, y∗) or ∃x′ 6= x∗W (R)(x′, y∗) > W (R)(x′, y∗)
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Algorithm 5 Catworks Retrieval

function RETRIEVAL(x0, W
(L), W (R), k)

Initialize S(0) = X(0) = {x0}, U(x0) = 1, i = 0

while i ≤ k and Y (i+1) 6= Y (i) do

1. Calculate the scores: V (y) . see Equation 6.5

2. Find the set Y (i) of size k with top score in V (y)

3. Calculate the scores: U(x) . see Equation 6.6

4. Find the set Z of size k − |S(i)| with top score in U(x)

5. X(i+1) = S(i) ∪ Z

return Y (i), in descending order of scores V (y)

using the final set X(k), we expect to find the real associative pattern component y∗ using a

weighted score from all x, where each x might have high scores for y′ 6= y∗, but the overall

score for y∗ is maximized. The retrieval process is summarized in Algorithm 5.

6.4 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithm for one synthetic

dataset and few real datasets. We compare the performance of the proposed algorithm with

existing algorithms. We use the perfect matching ratio

∑
1(ŷi = yi)

|P|

and Hamming loss ∑
||ŷi − yi||
|P| · d(R)
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as our evaluation measures. Perfect matching is a very stringent evaluation criterion, where

Hamming loss accepts "partially correct" answers.

6.4.1 Synthetic Data Generating

First of all, a set of associative patterns P = {xi : yi} is prepared. Recall that, by definition

of a pattern, given input xi we expect that the algorithm will output the vector yi. Let NP

denote the distinct pairs in P .

Let P ′ = {x′i : y′i} be the perturbed patterns. where

x′ij = ¬xij, y′ij = ¬yij

with a probability of β and

x′ij = xij, y
′
ij = yij

with a probability of 1− β.

Then we create a new dataset D = P ′ ∪D′′ where D′′ is a set of random binary vectors

of the same dimension. Thus, the set D represents a dataset consisting of true patterns

along with some random terms.

6.4.2 Catworks performance analysis

In this first experiment, we study Catworks’ performance. When α = 1 and β = 0, it

becomes the trivial case where a simple hashing function can be used to map the associative

mapping. However, as discussed in previous section, the performance of BAM decreases

when the number of stored patterns increases, due to the well-known capacity limit.

The final k vertices in Y (t) are the predicted associative patterns and Vy is the set of

corresponding scores for them. In our evaluation, we use the best (highest score) as the

final result. Results are shown in Figure 6.2 and Figure 6.3. It is worthwhile to note that

Catworks is only sensitive to noise ratio β; thus, even if the ratio of planted pattern ratio
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Fig. 6.2: Performance when N = 1.

Fig. 6.3: Performance when N = 11.

α is small, Catworks can retrieve the associative patterns. In both experiments, we use the

perfect matching ratio as the evaluation of performance.
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We experimented Catworks with simulated data using multiple α, β,N values, for a

comprehensive performance study.

6.4.3 Performance comparison

In this section, we discuss the results of performing a horizontal comparison with related

approaches:

• Binary relevance based classifiers: (SVM‡, logistic regression, Bayesian)

• BAM

In the following experiments, we fix d(L) = d(R) = 15 and |D| = 20, 000 as the de-

fault parameters.§ In the following experiments, we use different noise ratio values

Fig. 6.4: Perfect matching vs. Pattern ratio (β = 0.15)

(β = 0.15, 0.35) to study the behavior of Catworks and other related approaches. In each

‡We used the bagging version of SVM with linear kernels.
§The potential number of distinct patterns is 215 > |D|. In our work, we also tested different parameter

settings and observed similar results.
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Fig. 6.5: Hamming loss v.s. Pattern ratio (β = 0.15)

experiment, we use pattern ratio α = [0.1, 1.0] to generate the synthetic datasets. For each

configuration, 10 trials are repeated for a robust evaluation.

When β = 0.15 (Shown in Figure 6.5 and Figure 6.4), Catworks performs significantly

better than other algorithms in both perfect matching ratio (higher is better) and Hamming

loss (lower is better). In the plots, the shaded areas are ±σ in 10 trials of experiment, re-

flecting the robustness and stability of each algorithm. When β = 0.35, all algorithms

perform worse compared with low noise ratio. However, Catworks no longer leads the

performance. In Hamming loss evaluation, the retrieval performance of Catworks is only

better than BAM (shown in Figure 6.7). In perfect matching evaluation (shown in Fig-

ure 6.6), Catworks still performs the best for low pattern ratios α ≤ 0.5. But for high

pattern ratios, other algorithms (except BAM) performs better than Catworks.

This is a reasonable result, because the main advantage of Catworks is to learn the

hidden patterns in P , when noise ratio is high, the boundary or difference between P and

D−P becomes marginal, then all the classification based methods perform better because

they don not differentiate the real patterns from useless data. Classification based methods
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Fig. 6.6: Perfect matching vs. Pattern ratio (β = 0.35)

Fig. 6.7: Hamming loss vs. Pattern ratio (β = 0.35)

try to minimize the predicting error for the entire dataset D.

Another reason is Catworks’ constraint (Equation 6.2.3), which requires at least one

occurrence of < xi, yi > in the dataset D. In high noise ratio scenarios, this is likely
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possible to be violated. As a result, Catworks will simply report nothing for x if x was

never observed before. This is a true drawback of this algorithm. To address this problem,

in such scenarios, we use the closest available neighbor in M (L) (in terms of Hamming

distance) to x0 as the delegate query input and call Algorithm 5 as usual.

6.4.4 Evaluation on real dataset

We also evaluated the performance of Catworks on real biological data from [96]. {xi : yi}

are histone modification and function annotations of genes where xij = 1 iff gene i has

modification j active on it. where as yij = 1 iff gene i is labeled with function j. In the real

data set; d(L) = 10 is the number of different modifications and d(R) = 7 is the number of

annotations considered.

We selected the top 500 (in the descending order of support) as the ground truth patterns

P . Then we add random data following the same data generation procedure described in

previous sections with parameter values α = 0.2, β = 0.15. In 10 trials of experiments,

Catworks achieved perfect matching ratio≈ 0.83±0.12 while all other algorithms achieved

less than 0.5.

6.5 Concluding Remarks

In this chapter, we raised the problem of pattern association mining and compared with

related similar problems. We also proposed a new algorithm, Catworks, which is designed

to perform well even with high number of patterns. It performs better than other algorithms

(multi-label classification based, content-addressable memory based) when noise ratio is

reasonably low. However, when noise ratio is high (β ≥ 0.3), Catworks performs worse

than SVM and logistic regression.

This is because Catworks relies heavily on the quality of matricesM (L) andM (R) where

real pattern pairs Pi =< xi, yi > are believed to have high values in bothM (L)
xi,yi andM (R)

yi,xi .
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However, with high noise ratio, this assumption will collapse.

In future work, instead of creating such a one-to-one mapping matrices, we would

like to improve Catworks with ideas from kernel based methods by creating a pairwise

similarity network between different genes. In the retrieval phase, we may use the distance

from a query input x to existing combinations to select multiple representatives instead of

directly searching for exact matched patterns.
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CHAPTER 7

CONCLUSION

First, we summarize the results and contributions of this study. Then we present some

interesting future research directions for associative patterns recognition in biological reg-

ulations.

7.1 Summary

Associations describes the relations between objects, data and variables. In our brains, the

concepts of objects are believed to associated with each other. In our daily lives, we can

usually recall remotely related memories using relevant memories in terms of geological

location, time or space. For example, a song played at someone’s wedding triggers his/her

detailed memories of the ceremony; a child experiences hunger at the sight of a logo of

fast food restaurant. A central aspect of natural intelligence is that we seek to discover

associations between different objects; this has also been used as the foundation of many

artificial intelligence studies.

The classical associative patterns (or association patterns) recognition problem was first

addressed mainly for supermarket data containing sets of items bought by customers, which

are referred to as transactions. The original objective of this kind of analysis is to determine
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the associations between groups of items in transactions, which is essentially a many-to-

many correlation between multiple items.

In our work, we generalized the idea of associative patterns to combinations between

different universes of objects with heterogeneous data. Furthermore, we categorized the

associations into "1:1", "n:1", "n:m" patterns. We proposed the problem of recognizing

such patterns from multiple objects universes with heterogeneous data (categorical, tex-

tual, sequence or numeric data formats). To be specific, we focused on relating objects in

biological regulation processes, i.e., genes, promoters, proteins, labels, histone modifiers.

First, we introduced an efficient algorithm to learn the protein-DNA binding relations

between genes and promoters using an approach based on a modulo addition with hash

function. As a result, we can efficiently recognize the target aptamer sequences with high

affinity.

Then, we proposed a new transcription factor target scoring framework (TFTS) for gene

regulatory network inference by incorporating target sequences survey in preliminary GRN.

The refined output GRN is evaluated with available ground truth regulatory network, and

we achieved up to 52% higher precision compared with ARACNe. This method provides

a systematical approach for combining gene sequences and expression profiles for the first

time also circumvented the challenge in indirect causal relations in GRN inference. The

proposed method for "1:1" patterns (gene-gene patterns) also predicted new potential edges

which are not available in the biological database, which can be used to help biologists to

design new experiments.

Inspired by the "histone code" hypothesis, we proposed a new computational approach

(HiPSiS) for "histone combination: biological function" associative patterns ("n:1" pat-

terns) recognition. In this work, we added the market basket analysis to create a con-

volutional layer before applying classifiers directly on the histone modification data, and

achieved 10% to 35% improvement in terms of precision. Additionally, HiPSiS also serve

as a hypothesis generator to assign new labels to genes to address the scarcity of existing
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function annotations on genes. This approach was verified by the domain expert: in our

proposed top 15 genes related to flowering-time, 14 of them were predicted to be candidates

using an independent biological approach.

We extended HiPSiS to shape-based combinatorial patterns of histone modifications,

and proposed an additional series compression and indexing step for efficient clustering.

In an exploratory study, we studied the potential subclasses in flowering-time genes with

different combinations of shapes, and observed that light-induced genes and non-light in-

duced genes contain distinct combinations of patterns. This is novel compared to previous

studies where only presence/absence of modification is considered.

Finally, we proposed an algorithm for discovering hidden "n:m" patterns from a noisy

dataset. Our proposed information retrieval algorithm performs better than other approaches

based on classification or content addressable associative memory.

7.2 Future Research Problems

The work in this dissertation can be extended by the following directions:

• Increase Cardinality of Associative Patterns: In this work, we limited the number

of object universes to 2 for simplicity. In the future, it is worthwhile to study how to

generalize the associative patterns across more universes (L ≥ 2). For example, in histone

modifications analysis, instead of relating only functional labels with histone modifications,

we should investigate how to find the associative patterns among sequences, expression

profiles and others.

This is crucial to understanding the fundamental mechanism of biological regulation

given that the synergistic collaboration among multiple object universes (i.e., DNA, RNA,

proteins, epigenetic regulators and external perturbation) ensures the fitness of complex

systems such as living organisms. This is one of the most important objectives in com-

putational biology, which seek to create the systematical "circuit logics" of the underlying
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mechanism in biological systems. KEGG [46] seeks to create such an encyclopedia of bi-

ological regulation by curating different sources of data (i.e., publications, existing models

and manually uploaded data). However, it lacks the ability to infer associative patterns

automatically, and requires extensive interactions with domain experts.

To extend the current work, future researchers can investigate the inter-layer link predic-

tion problem in multilayer social networks for potential solutions, where layers represent

different relations between users. Also, this is related to identity learning across different

social networks, where IDs for the same user is not guaranteed to be identical, and the

correct mapping of nodes from different layers is desired.

• Dynamic Associative Patterns: We have discussed the approaches to associative n : m

patterns, where the different combinations of objects (i.e., presence/absence of modifica-

tions, motifs and shapes) were considered as collaborating groups in a static snapshot of a

biological systems. However, their temporal order are ignored in this work. For example,

it is worthwhile to study the dynamic changes of such associative patterns across differ-

ent stages of a biological organism (e.g., for plants, the biological regulation processes are

believed to vary in different stages: budding, flowering, young and mature).

The real temporal histone modification data are limited, preventing such analysis at this

time. However, more such dynamic epigenetic data will become available with advances

in experimental equipment and processes.

• Improve Catworks: As mentioned in Chapter 6, Catworks cannot retrieve counterpart

pattern yi if xi is not encountered due to noise or missing data, because we train the model

to be a point-to-point associative pattern memory. Although we have addressed the problem

using a delegating pattern available in M (L), the performance of Catworks relies heavily

on the quality of input data. In the future work in this direction, one can investigate the

potential of recognizing cluster-to-cluster associative patterns instead. Thus, whenever a

query input x is not found in the relation matrixM (L), we can use its neighbors as delegates

for prediction.



102

However, the construction of pattern neighborhoods is a non-trivial task because even if

two combinations x, x∗ are close in terms of Jaccard distance or cosine similarity (i.e., the

composition of two nominal vectors are very similar), it is not guaranteed that correspond-

ing patterns y, y∗ are also close. In other words, Lebesgue continuity is not guaranteed:

|x− x∗| ≤ δ 6=⇒ |y − y∗| ≤ ε.

To address this problem, future researchers should incorporate metric learning for nom-

inal data. For example, the closeness of two vectors x, x∗ should be determined by the

comparing distribution of p(y|x) and p(y|x∗) using KL divergence.

• Consider Additional Features: As discussed in Chapter 1, biological regulation analy-

sis is an area studying the complicated ensemble of various sub-systems. The understand-

ing of how exactly living organisms work is limited at this time. To extend this work, one

may explore the value of features such as: protein sequences, RNA expression, exon/intron

annotations, SNPs and external perturbations in biological regulation.

Furthermore, feature engineering in bioinformatics research is a non-trivial task. In

Chapter 5, we discussed the potential values of shape-based pattern recognition in gene

function prediction. It is worthwhile to study different transformations of bioinformatics to

improve the performance in associative pattern recognition.
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APPENDIX A

A.1 Proposed Sub-Classes of Flowering Genes

ID Other Name Description

AT1G01040 SUS1 SUSPENSOR 1

AT1G05830 SDG30 SET DOMAIN PROTEIN 30

AT1G08970 NF-YC9 "nuclear factor Y, subunit C9"

AT1G09570 PHYA phytochrome A

AT1G10570 ULP1C UB-LIKE PROTEASE 1C

AT1G14920 RGA2 RESTORATION ON GROWTH ON

AMMONIA 2

AT1G26830 CUL3A cullin 3A

AT1G28520 VOZ1 vascular plant one zinc finger protein

AT1G50700 CPK33 calcium-dependent protein kinase 33

AT1G51450 TRO TRAUCO

AT1G53090 SPA4 SPA1-related 4

AT1G55250 HUB2 histone mono-ubiquitination 2

AT1G55325 MAB2 MACCHI-BOU 2

AT1G61040 VIP5 vernalization independence 5
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AT1G62830 SWP1

AT1G68050 FKF1 "flavin-binding, kelch repeat, f box 1"

AT1G71800 CSTF64 cleavage stimulating factor 64

AT1G72390 NA

AT1G80070 SUS2 ABNORMAL SUSPENSOR 2

AT2G01570 RGA1 REPRESSOR OF GA1-3 1

AT2G02760 UBC2 ubiquiting-conjugating enzyme 2

AT2G17290 CPK6 calcium dependent protein kinase 6

AT2G18790 PHYB phytochrome B

AT2G18915 LKP2 LOV KELCH protein 2

AT2G25930 PYK20 NA

AT2G30140 UGT87A2 UDP-glucosyl transferase 87A2

AT2G32950 FUS1 FUSCA 1

AT2G43010 SRL2 NA

AT2G44150 SDG7 SET DOMAIN-CONTAINING PRO-

TEIN 7

AT2G44680 CKB4 casein kinase II beta subunit 4

AT2G46020 CHR2 CHROMATIN REMODELING 2

AT2G46260 LRB1 light-response BTB 1

AT2G46830 CCA1 circadian clock associated 1

AT3G03450 RGL2 RGA-like 2

AT3G10390 FLD FLOWERING LOCUS D

AT3G12810 SRCAP NA

AT3G20810 JMJD5 jumonji domain containing 5

AT3G22380 TIC TIME FOR COFFEE



106

AT3G22590 PHP PLANT HOMOLOGOUS TO PARAFI-

BROMIN

AT3G26640 LWD2 LIGHT-REGULATED WD 2

AT3G46640 PCL1 PHYTOCLOCK 1

AT3G48430 REF6 relative of early flowering 6

AT3G57300 INO80 INO80 ortholog

AT3G59060 PIL6 phytochrome interacting factor 3-like 6

AT3G63070 NA NA

AT4G00650 RSB7 REDUCED STEM BRANCHING 7

AT4G00830 LIF2 LHP1-Interacting Factor 2

AT4G04920 SFR6 SENSITIVE TO FREEZING 6

AT4G10180 FUS2 FUSCA 2

AT4G15880 ESD4 EARLY IN SHORT DAYS 4

AT4G20400 PKDM7B NA

AT4G24620 PGI1 phosphoglucose isomerase 1

AT4G29830 VIP3 vernalization independence 3

AT4G32980 ATH1 homeobox gene 1

AT4G34530 CIB1 cryptochrome-interacting basic-helix-

loop-helix 1

AT4G37280 NA NA

AT4G38680 GRP2 glycine rich protein 2

AT4G40060 HB16 homeobox protein 16

AT5G02810 PRR7 pseudo-response regulator 7

AT5G04240 ELF6 EARLY FLOWERING 6

AT5G13790 AGL15 AGAMOUS-like 15

AT5G15840 FG NA
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AT5G16320 FRL1 FRIGIDA like 1

AT5G24470 PRR5 pseudo-response regulator 5

AT5G47640 NF-YB2 "nuclear factor Y, subunit B2"

AT5G48300 APS1 ADP-GLUCOSE PYROPHOSPHORY-

LASE SMALL SUBUNIT 1

AT5G51230 VEF2 CYTOKININ RESISTANT 1

AT5G58230 MSI1 MULTICOPY SUPRESSOR OF IRA1

AT5G60120 TOE2 target of early activation tagged (EAT) 2

AT5G63110 SIL1 NA

AT5G65060 MAF3 MADS AFFECTING FLOWERING 3

Table A.1: The detailed list of genes with combination of shapes "LLL".

ID Other Name Description

AT1G02400 GA2OX6 gibberellin 2-oxidase 6

AT1G04400 PHH1 NA

AT1G15550 GA4 GA REQUIRING 4

AT1G25540 PFT1 PHYTOCHROME AND FLOWERING

TIME 1

AT1G47990 GA2OX4 gibberellin 2-oxidase 4

AT1G50960 GA2OX7 gibberellin 2-oxidase 7

AT1G51140 FBH3 FLOWERING BHLH 3

AT1G57820 VIM1 VARIANT IN METHYLATION 1

AT1G66050 VIM2 VARIANT IN METHYLATION 2

AT1G66650 NA

AT1G69120 AP1 APETALA1

AT1G76710 SDG26 SET domain group 26
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AT1G79430 WDY WOODY

AT1G79730 ELF7 EARLY FLOWERING 7

AT2G03500 NA NA

AT2G19425 MIR156G microRNA156G

AT2G21660 GRP7 GLYCINE-RICH RNA-BINDING PRO-

TEIN 7

AT2G22630 AGL17 AGAMOUS-like 17

AT2G25095 MIR156A microRNA156A

AT2G27550 ATC centroradialis

AT2G28550 TOE1 TARGET OF EARLY ACTIVATION

TAGGED (EAT) 1

AT2G31650 SDG27 SET DOMAIN PROTEIN 27

AT2G33835 FES1 FRIGIDA-ESSENTIAL 1

AT2G34880 PKDM7C NA

AT2G44950 RDO4 REDUCED DORMANCY 4

AT2G45650 RSB1 REDUCED SHOOT BRANCHING 1

AT2G45660 SOC1 SUPPRESSOR OF OVEREXPRES-

SION OF CO 1

AT2G46340 SPA1 SUPPRESSOR OF PHYA-105 1

AT3G01090 SNRK1.1 SNF1-RELATED PROTEIN KINASE

1.1

AT3G04610 FLK flowering locus KH domain

AT3G11910 UBP13 ubiquitin-specific protease 13

AT3G20740 FIS3 NA

AT3G23060 NA NA

AT3G24440 VRN5 VERNALIZATION 5
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AT3G43190 SUS4 sucrose synthase 4

AT3G44110 J3 NA

AT3G45880 NA NA

AT3G46510 PUB13 plant U-box 13

AT3G49600 UBP26 ubiquitin-specific protease 26

AT3G54500 LNK2 night light-inducible and clock-regulated

2

AT3G54560 HTA11 histone H2A 11

AT3G54990 SMZ SCHLAFMUTZE

AT4G10710 SPT16 global transcription factor C

AT4G11880 AGL14 AGAMOUS-like 14

AT4G16250 PHYD phytochrome D

AT4G16280 FCA NA

AT4G20370 TSF TWIN SISTER OF FT

AT4G21200 GA2OX8 gibberellin 2-oxidase 8

AT4G22140 EBS EARLY BOLTING IN SHORT DAYS

AT4G23100 RML1 ROOT MERISTEMLESS 1

AT4G25420 GA5 GA REQUIRING 5

AT4G26440 WRKY34 WRKY DNA-binding protein 34

AT4G30200 VIL2 VIN3-Like 2

AT5G03840 TFL1 TERMINAL FLOWER 1

AT5G04275 MIR172B microRNA172B

AT5G07200 YAP169 NA

AT5G09740 HAM2 histone acetyltransferase of the MYST

family 2

AT5G10140 RSB6 REDUCED STEM BRANCHING 6
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AT5G10945 MIR156D microRNA156D

AT5G11977 MIR156E microRNA156E

AT5G13480 FY

AT5G17690 TFL2 TERMINAL FLOWER 2

AT5G24860 FPF1 FLOWERING PROMOTING FACTOR

1

AT5G26147 MIR156F microRNA156F

AT5G35910 NA NA

AT5G39550 VIM3 VARIANT IN METHYLATION 3

AT5G42400 SDG25 SET domain protein 25

AT5G44200 CBP20 CAP-binding protein 20

AT5G46210 CUL4 cullin4

AT5G48890 LATE LATE FLOWERING

AT5G51810 GA20OX2 gibberellin 20 oxidase 2

AT5G51820 STF1 STARCH-FREE 1

AT5G61060 HDA5 NA

AT5G61150 VIP4 VERNALIZATION INDEPENDENCE

4

AT5G62040 BFT brother of FT and TFL1

AT5G65070 MAF4 MADS AFFECTING FLOWERING 4

Table A.2: The detailed list of genes with combination of shapes "VVV".
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A.2 Siginficant Combinations of Histone Modifications

for Functions

Function* Top patterns Bottom patterns

Stress

H3K18AC+H3K9AC H3K27ME1
H3K4ME3 H3
H3K18AC+H3K9AC+H3K36ME3 H3K27ME1+H3
H3K18AC+H3K4ME3+H3K9AC+H3K36ME3 H3K9ME2
H3K4ME3+H3K9AC H3K9ME2+H3+H3K27ME1

Stimulus

H3K9AC H3
H3K4ME3+H3K9AC H3K27ME1
H3K4ME3 H3K9ME2
H3K9AC+H3K36ME3 H3K27ME1+H3
H3K4ME3+H3K9AC+H3K36ME3 H3K27ME3

Development

H3K36ME2 H3
H3K27ME3 H3K27ME1
H3K27ME3+H3K9AC+H3K36ME3 H3K18AC
H3K27ME3+H3K4ME3+H3K36ME3 H3K27ME1+H3
H3K27ME3+H3K4ME3+H3K4ME2+H3K36ME3 H3K9ME2

Defense

H3K9AC H3K27ME1
H3K18AC+H3K9AC H3K9ME2
H3K4ME3+H3K9AC H3
H3K18AC H3K36ME3+H3
H3K18AC+H3K4ME3 H3K4ME3+H3K36ME3+H3

Flowering

H3K4ME3 H3K27ME3
H3K4ME3+H3K36ME3 H3K27ME3+H3K36ME3
H3K36ME3 H3K18AC
H3K4ME3+H3K4ME2+H3K36ME3 H3
H3K4ME3+H3K9AC H3K27ME3+H3K4ME3

Table A.3: Function-specific combinatorial histone modification patterns. Functions label-
ing ( marked with asterisk ) are defined and obtained from TAIR gene ontology database
[7]. Top patterns are desired modifications in the specific function, whereas bottom combi-
nations are considered as inhibitors.
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A.3 Extended Study of HiPSiS with Other Labels

Fig. A.1: ROC curves of HiPSiS with additional heat and salt stress.
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A.4 Details of Haar Transformation

Decomposition: The low (H0) and high (H1) pass filters (Haar wavelet) for data series of

length n = 2k are defined as follows:

H
(n)
0 =

1

2



1 1

1 1

. . .

1 1

1


∈ Rn×n

and

H
(n)
1 =

1

2



1 −1

1 −1

. . .

1 −1

1


∈ Rn×n

In Figure 5.4, the circled down-arrow represent the down-sampling of input. Let

D(n) =



1 0 0 . . . 0 0

0 0 1 . . . 0 0

...
...

...
...

...
...

0 0 0 . . . 1 0


∈ R

n
2
×n

denote the down sampling matrix. For convenience, we use

L(n) = D(n)H
(n)
0
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and

B(n) = D(n)H
(n)
1

to denote the calculation of approximation and detail coefficients in each iteration. As a

results, we obtain coefficients of different lengths (i.e., 1, 1, 2, 4, . . . ):

w = L(1)L(2) . . . L(n)x, B(1)L(2) . . . L(n)x, . . . , B(n)x,

and the complete Haar transformation for length n is defined as

H(n) =


L(n)

—

B(n)

 ∈ Rn×n.

Reconstruction: In this process, we use the output of the previous decomposition step to

reconstruct a the approximation vector x̃. This process can be viewed as the reverse pro-

cedure of decomposition. In Haar wavelet example, the first iteration will use coefficients

w1 = L(1)L(2) . . . L(n)x and w2 = B(1)L(2) . . . L(n)x as the inputs to the reconstruction

part.

x̃(2) = (H(2))T


w1

—

w2


Iteratively, x̃(4) can be calculated using:

x̃(4) = (H(4))T


x̃(2)

—

w3

 .
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