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Abstract 

Snowmelt is a critical component of hydrologic processes in mountainous and seasonally 

cold regions. As such, monitoring and understanding regional snowmelt patterns and fluctuations 

is a crucial aspect of water resource management. While ground-based snow monitoring stations 

can provide continuous data on melting processes, they are cost-prohibitive for dense coverage at 

regional to global scales. Satellites, however, can provide global data on weekly to twice daily 

time scales. Previous studies have found that passive microwave (PMW) remote sensing data from 

satellites with twice daily observations can be used to detect onset of snowmelt using changes in 

brightness temperature (a measure of emitted radiation) from day to night, known as the diurnal 

amplitude variation (DAV). This study first evaluates the accuracy of an enhanced DAV method 

developed by Tuttle & Jacobs (2019) in a heterogenous environment consisting of forest and 

cropland by comparing satellite detected melt events to detailed ground snow observations 

collected at Sleeper’s River Research Watershed, VT between 2021-2023. Using lessons learned, 

the analysis is extended to over 500 snow stations located throughout the western US and Canada, 

using daily SWE and snow depth data from 2002-2011. This study aims to fill gaps in 1) evaluating 

PMW melt detection techniques using detailed observations of the snowpack energy state, and 2) 

assessing their performance in mid-latitude regions and a variety of different terrains/climates. I 

find that snow surface temperature observations are more valuable than other tested methods for 

validation of melt events detected using PMW observations. I also find that, in accordance with 

previous studies, PMW melt detection methods are likely most sensitive to liquid water at the 

surface of the snowpack, making them more useful for detecting midwinter surface melt and the 

onset of the spring melt period, rather than hydrologically significant releases of snowmelt. 
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1. Introduction 

Snowmelt is an integral component of both the hydrologic cycle and energy budget for 

seasonally cold regions. Many rely on seasonal spring snowmelt to replenish local reservoirs, 

rivers, and aquifers for drinking water, agriculture, and recreational activities. In mountainous 

regions, snowmelt can account for as much as 80% of the total annual runoff (Li et al., 2017). 

Snowmelt has become especially important in recent years as extreme droughts become more 

common, resulting in low water storage in surface and subsurface reservoirs and decreasing 

snowpack accumulation in the winter (Barnett et al., 2005; Musselman et al., 2021). With rising 

global temperatures, spring snowmelt rates are projected to decrease, resulting in decreased runoff 

and streamflow for many water stressed areas (Musselman et al., 2017). Warmer temperatures are 

also likely to bring more midwinter melt events, such as rain-on-snow (Putkonen et al., 2009), and 

cause overall shifts in spring melt timing (Adam et al., 2009; Clow, 2010; Stewart, 2009). 

Snowmelt is also an important factor to consider in flood hazards during the winter and 

spring months for many northern regions. Rapid snowmelt rates can cause a high volume of runoff 

into streams over a short period of time, resulting in flooding that can negatively impact 

downstream communities. This hazard may be further amplified by increasing temperatures and 

frequency of rain-on-snow events due to climate change (Freudiger et al., 2014; Musselman et al., 

2018). The resulting floods can have destructive societal impacts, as well as ecological and 

geological consequences, and therefore it is important to predict and understand how the 

hydrological drivers may change with shifting climates. Monitoring snowmelt in these areas could 

help to predict flooding hazards and water availability for snowmelt-dominated watersheds. 
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1.1 Background 

1.1.1 Snowpack Dynamics 

A snowpack is a very dynamic and heterogeneous system that undergoes constant change. 

Newly fallen snow is made up of ice crystals, air, and sometimes liquid water within its pore 

spaces. The ice crystals can vary in size, density, and liquid water content (or "wetness") due to 

factors such as atmospheric temperature humidity during formation, surface wind speed, and air 

temperature during precipitation (Mellor, 1964). These factors can vary significantly between 

precipitation events, resulting in a buildup of semi-homogenous horizontal layers of snow with 

varying crystal sizes (or "grain sizes") and densities. Newly fallen snow immediately experiences 

density adjustments due to initial gravitational settling, while deeper layers experience 

densification from compaction. The ice crystals in these layers experience different types of 

metamorphism throughout the winter, such as sublimation and redeposition of ice within the 

snowpack, as well as melting and refreezing. These processes cause further changes in snow grain 

size and shape, density, and wetness throughout the winter.  

Regions that experience seasonal snow, or snow that does not last for more than a year, 

tend to follow general seasonal patterns of snow accumulation and melt, shown in Figure 1. The 

accumulation period typically occurs in the first half of the season, when the amount of snow on 

the ground is increasing. The melt, or ablation, period occurs late in the season and consists of 

three subphases: warming, ripening, and output phases. Snowpack temperatures are always at or 

below 0°C. Once the snow reaches 0˚C, any additional net input of energy will cause melting. The 

melt phase begins when the total energy input into the snowpack outweighs the energy output, 

causing the snow to warm until it is isothermal, or 0°C throughout the snowpack. The ripening 
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phase begins at the start of melting, but meltwater stays trapped within the snowpack due to surface 

tension. At this stage, the snowpack consists of solid ice, liquid water, and air. The amount of 

liquid water contained in the snowpack is also known as liquid water content (LWC), and 

snowpack that contains liquid water is termed "wet". The output phase begins when the snowpack 

cannot hold any more liquid water due to surface tension and further energy inputs result in water 

leaving the snowpack (Dingman, 2014). This output phase is considered to be hydrologically 

significant, as water is leaving the snowpack. It is also important to note that many snowpacks do 

not exactly follow this paradigm. Shallower snowpacks are more sensitive to changes in weather 

due to relatively lower thermal inertia, which can cause midwinter surficial melt events with slight 

increases in air temperature or solar radiation.   

1.1.2 Snowpack Measurement Techniques 

There are many different techniques for measuring a wide range of snow properties on 

various spatial and temporal scales. These can be either destructive or nondestructive to the 

snowpack, automated or manually collected, in situ or remotely sensed, and representative of a 

wide range of spatial scales, from a single point to areal averages over many kilometers. There are 

also many different techniques that can be used to collect the same type of measurement. The most 

common snow measurements include snow depth, or the height of the snowpack from the ground, 

and snow water equivalent (SWE). SWE is the depth of liquid water contained in the snowpack if 

it were to completely melt. A decrease in SWE indicates that water has been lost from the 

snowpack, most likely due to melting, making this measurement vital for forecasting water 

availability and timing from spring snowmelt runoff in mountainous regions. Manual data 

collection usually consists of measuring the mass, volume, and depth of the snow to calculate 

SWE. Manual SWE measurements require collecting a core of snow, typically in a standard 
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volume snow tube, with a record of the depth, volume, and weight of the sample. A "snow pillow" 

is common alternative that uses a fluid-filled pad with an internal pressure sensor under the 

snowpack to allow for continuous observations of SWE based on its mass. Analogous sensors have 

been developed that use a load cell instead of a fluid-filled pad, called "fluidless snow pillows" or 

"snow scales".  

Snow depth is another potential indicator of snowmelt, as a decrease in snowpack height 

can indicate that some type of melt has occurred. Manual snow depth can be collected using a 

snow depth probe or ruler. One technique for continuous snow depth measurements is to use a 

time lapse camera to take photographs of the height of the snowpack around a stationary graduated 

snow depth stake or ruler. Snow depth can then be extracted manually though human observation, 

or through advanced automated extraction techniques (Kopp et al., 2019). More precise automated 

snow depth measurements can be obtained using ultrasonic sensors mounted above the snowpack 

that determine the distance from the sensor to the snow surface, which allows for calculation of 

the height of the snowpack (Kinar & Pomeroy, 2015).  

Although both SWE and snow depth are commonly used for snowmelt monitoring, there 

are many more processes that can affect both measurements other than melting, making them 

imperfect melt indicators. For example, sublimation and wind redistribution of the snowpack can 

cause a decrease in SWE and snow depth even if melt is not occurring. Snow depth also naturally 

decreases over time due to compaction and deformation of deep snow layers under pressure. Rapid 

compaction commonly follows snowfall events due to the gravitational settling of fresh snow. 

Decreases in snow depth may also indicate different types of snowmelt events besides pure loss of 

water from the snowpack, such as melt-refreeze events. These occur when certain melting snow is 

refrozen before any water is lost from the snowpack, usually causing densification of the snow and 
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a decrease in snow depth. These types of melt events are common throughout the mid-winter 

season, as snowpack temperatures warm during peak solar radiation at midday, before quickly 

falling during the evening and refreezing any liquid water. While these conventional snowpack 

measurements are useful for tracking physical changes in the snowpack, they lack insight into the 

thermodynamics, energy balance, and vertical and horizontal variability of snow. 

1.1.3 Remote Sensing 

Another popular but destructive field technique for understanding vertical variability 

within deep snowpacks is a snow pit. This method involves digging a pit in the snowpack with at 

least one vertical, flat wall that extends from the top of the snowpack to the ground (Fierz et al., 

2009). A multitude of measurements and observations may be taken along the vertical transect of 

the snowpack to understand the spatial variability and snow metamorphism. The most common 

data collected in snow pits are density, temperature, grain size and shape, and snow water 

equivalent (SWE) (Kinar & Pomeroy, 2015). Besides snow researchers, this method is also very 

popular with snow recreationists as a means to assess the risk of avalanches due to instabilities in 

the snowpack created by differences in snow density and grain types within layers (Schweizer et 

al., 2021). While snow pits provide a wealth of data and insight, they are very time consuming for 

results valid only at a one point in space and time, and their measurements can be subjective and 

overall destructive of the snowpack (Kinar & Pomeroy, 2015).  

 Thermal snow measurements can provide an understanding of the energy state and energy 

transport within the snowpack. Specifically, measuring the vertical temperature gradients can 

provide information on the potential for melt and ice crystal metamorphism within the snowpack. 

Although there is a lack of commercially designed and produced instruments for this type of 
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automated temperature measurements, there have been numerous studies published since at least 

1944 using a variety of designs for continuous vertical snowpack temperature measurements (R. 

W. Gerdel, 1944). Some structures use sensors strung along horizontal wires to largely avoid 

disturbing snowfall patterns (Helgason & Pomeroy, 2012; Sturm & Johnson, 1991). Other designs 

use sensors mounted along a vertical solid stake or “ladder”, which allows for better durability 

throughout the winter, but have a large impact on the surrounding snowpack (Ingólfsson et al., 

2012). Most designs, however, fail to eliminate the effect of preferential melting around these 

devices, causing a similar affect to tree wells (McGurk, 1983). A wide range of sensors have also 

been used, weighing factors such as cost, size, data storage, Bluetooth connectivity, and overall 

durability in wet, freezing conditions.  

 The temperature of the snow surface can also provide valuable insight into energy 

exchange and melt processes. Ground-based infrared radiometers, also known as infrared 

“thermometers”, measure longwave radiation emitted from a target surface. These measurements 

can also be supplemented by the use of pyrgeometers, which measure background radiance, to 

apply corrections for ambient radiation. This technique has been used in multiple studies to provide 

automated, non-destructive snow surface temperature observations for ground validation of 

satellite products (Pérez-Díaz et al., 2017).  

In-situ snow measurement sites can monitor high-resolution temporal variability in snow 

properties; however, each only provides site-specific data that is only representative of a limited 

surrounding area (Blöschl, 1999; Meromy et al., 2013). For large scale studies, researchers can use 

satellites and airborne sensors for continuous snow observations. While satellites have coarser 

spatial resolution than ground-based observations, and thus cannot observe small-scale variability, 

many satellites observations are freely accessible and allow for global scale observations. Satellite 
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and airborne remote sensing observations are also the least destructive to snowpacks compared to 

most ground-based measurement techniques. Visible and infrared satellite observations have been 

used for snow studies, specifically looking at properties such as snow cover extent and reflectivity 

from surface albedo (Frei et al., 2012). One of the largest issues with optical sensors, however, is 

the sensitivity of this range of the electromagnetic spectrum to cloud cover, sunlight, and 

vegetation. Microwave observations have greater potential for snow observations partly due to its 

ability to penetrate through clouds and snowpack on the ground, along with its sensitivity to 

snowpack properties and subsurface features (Hallikainen et al., 2018). Active microwave 

satellites, such as Sentinel-1, provide high resolution observations of up to 10 m, but have return 

frequencies between 2-14 days depending on latitude. Passive microwave satellites, such as SSM/I, 

SSMIS, AMSR-E, and AMSR2, offer twice daily data with native resolutions between 5-50 km. 

These sensors detect microwave radiation naturally emitted by a target (e.g., a location on Earth), 

compared to active sensors which emit radiation to a target and measure the amount of energy 

returned (backscatter) and return time. Because Earth’s surface emits microwave radiation at very 

low intensity, larger footprints are necessary for the radiation to be detectable by the satellite, 

resulting in decreased resolution compared to active sensors. PMW satellites also typically 

measure radiation at various channels between 1-89 GHz.  

Passively emitted microwave radiation, as measured by a radiometer, is typically expressed 

as brightness temperature (Tb), and is approximated based on the Rayleigh-Jeans approximation: 

Equation 1: 𝑇𝑇𝑏𝑏 = 𝜀𝜀 ∗ 𝑇𝑇𝑠𝑠 . 

In this equation, ε is emissivity and Ts is the physical temperature (K). Physical temperature 

includes anything within view of the satellite that emits microwave radiation, including the 

atmosphere, vegetation, snow, and ground. Because liquid water has a much higher dielectric 
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constant than a dry (i.e., completely frozen) snowpack, a wet snowpack will result in significantly 

higher emissivity compared to a dry snowpack (Stiles & Ulaby, 1980). When using AMW or PMW 

observations to measure snow properties such as depth, SWE, and extent, the presence of liquid 

water dominates the microwave signal and causes errors in algorithms that rely on the scattering 

and radiative properties of dry snow (Conde et al., 2019; Dong et al., 2005; Tanniru & 

Ramsankaran, 2023).  

Most snowmelt events tend to occur during the day, when solar radiation and, usually, air 

temperature peak. Ramage & Isacks (2002) calculated the difference in brightness temperature 

from day to night, which they termed the diurnal amplitude variation (DAV), to detect melt events. 

Similar DAV methods were later adopted by (Tedesco, 2007). Calculations of DAV require two 

satellite passes over the same location: one during nighttime and another during daytime. If the 

brightness temperature significantly increases between a consecutive nighttime and daytime 

satellite pass, this indicates liquid water is present during the daytime and melting has occurred. 

Since this method calculates relative diurnal change, it will only detect water phase changes, rather 

than continuously wet snow. A continuously wet snowpack will only show a melt event at the first 

time-step when liquid water was present (Tuttle & Jacobs, 2019). Therefore, DAV methods are 

best for detecting melt event onset rather than the duration of melt events.  

 Although past studies have shown that PMW DAV algorithms contain valuable 

information about snowpack energy processes and transitions, they do not account for the 

influence of physical temperature (Ts) on brightness temperature (Tb), as shown in equation 1. 

Tuttle and Jacobs (2019) attempt to account for the influence of physical temperature changes 

using an enhanced DAV method called ΔTb-ΔTa. In this method, diurnal changes in air 

temperature, ΔTa (as a proxy for Ts), are plotted against coincident diurnal brightness temperature 
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changes, ΔTb. They found that for frozen snow, the two show a roughly linear relationship, and 

that Tb changes which are much larger than what would be expected from the linear ΔTb-ΔTa 

relationship can be classified as melt and refreeze events (Figure 1), as they are assumed to be a 

result of water phase changes that change the emissivity of the snow. 

1.2 Research Questions and Hypotheses  

The goal of this research is to evaluate the usefulness of passive microwave (PMW) 

satellite data for detecting snowmelt events, and to investigate the utility of different types of in-

situ snow observations for validation. Many methods have been established using PMW data to 

detect snowmelt (Abdalati & Steffen, 1995; Apgar et al., 2007; Dolant et al., 2016; Foster et al., 

2011; Grenfell & Putkonen, 2008; J. M. Ramage & Isacks, 2002; Tedesco et al., 2009; Tuttle & 

Jacobs, 2019; Walker & Goodison, 1993; Zheng et al., 2018), and microwave emission modeling 

studies suggest that PMW techniques are sensitive to very small amounts of liquid water in the 

snowpack (Chang et al., 1987; Mätzler, 1987; Stiles & Ulaby, 1980). However, the accuracy of 

PMW snowmelt detection methods, with respect to ground-based observations, has not been well 

established. In fact, it is not definitively known what character of snowmelt the satellites are 

sensitive to (e.g., melt only at the snow surface, or melt throughout the entire snowpack).  

The first part of this study assesses the utility of a modified version of the ΔTb-ΔTa PMW 

satellite melt detection algorithm in a heterogenous domain consisting of forest and cropland using 

a variety of in-situ snow measurements collected at Sleeper’s River Research Watershed (SRRW) 

in Northeastern Vermont. Based on the sensitivity of passive microwave brightness temperature 

to liquid water in the snowpack, the ideal ground indicator for validation would be liquid water 

content of the snowpack. However, these data are very rare and difficult to collect autonomously. 
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Therefore, I compare the physical conditions within the snowpack to satellite snowmelt signals I 

aim to determine 1) the ability of the satellite to detect radiative fluxes in the snowpack, and 

2) which in-situ melt indicator is most ideal for this analysis based on the sensitivity of the 

algorithm to certain snowpack processes. In-situ melt indicators include snow depth decreases, 

internal snowpack temperature, and snowpack surface temperature. I hypothesize that the thermal 

melt indicators will have the best agreement with the satellite melt algorithm, as they are a better 

indicator of the presence of liquid water in the snowpack compared to snow depth. 

In the second part of the analysis, I extend the study to the western US using standard daily 

snow depth and SWE measurements from SNOTEL stations to 1) determine if widely available 

data such as snow depth and SWE are appropriate melt indicators and 2) assess the 

performance of the ΔTb-ΔTa method at a regional scale and detect potential relationships 

with certain land and snow characteristics. Since most snow stations only measure snow depth 

and SWE, these are the only in-situ melt indicators tested for this regional study. I hypothesize that 

neither will prove to have high agreement with the satellite algorithm, as neither are direct proxies 

for detecting energy transfer within the snowpack.  

The environmental conditions in different regions (e.g., climate, land cover type, elevation) 

lead to distinct snowpack characteristics, such as typical snow amount and persistence, which in 

turn lead to different spatial and temporal patterns of melt. It is unclear how well the PMW 

satellites can detect snowmelt events under different environmental conditions, such as if there is 

a thick tree canopy over the snowpack (Serreze et al., 1999; Walker & Goodison, 1993), or the 

depth at which microwave radiation becomes saturated and undetectable by the PMW satellite 

instrument (Chang et al., 1976; Dong et al., 2005; Foster et al., 2005). Therefore, this analysis will 

also explore how well satellites can detect snowmelt in areas with varying snow and land 
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characteristics, such as annual maximum snow depth/SWE, tree cover fraction, elevation, and 

snow class (Sturm & Liston, 2021). In general, I expect to see poorer agreement with higher tree 

cover fraction due to attenuation of the microwave signal. I also expect to see worse agreement at 

sites with higher annual maximum snowpack due to potentially incomplete penetration of the 

microwave radiation through the snowpack (Stiles & Ulaby, 1980) and larger energy requirements 

for melting deeper snowpacks. 

Given that DAV methods use changes in brightness temperature to detect melt, only the 

initial transitions from dry to wet snow (and refreezing from wet to dry) should be detectable using 

these methods. Consecutive observations of wet snow should produce similar brightness 

temperatures (after accounting for changes in physical temperature), which would show no change 

and therefore no melting events. I hypothesize that the ΔTb-ΔTa method is most useful for detecting 

melt/refreeze events and melt onset, while it is less useful for detecting hydrologically significant 

melt events that would release water from the snowpack.  

1.3. Study Site for Part 1: SRRW Analysis 

Sleeper’s River Research Watershed (SRRW) is a USGS/USDA snow and hydrology 

research site that has been in operation since 1958. The watershed encompasses 287 km2 of mixed 

deciduous and coniferous forest and agricultural land in Northeastern Vermont (Figure 2), with an 

elevation range of 213-762m. The watershed drainage flows from northwest to southeast, from 

Pope Brook draining into Sleeper’s River and eventually into the Connecticut River. Relevant 

research conducted in the watershed includes the effect of frost depths on snowmelt runoff and 

recharge (Shanley & Chalmers, 1999), the effects of snowmelt timing and shifts on the chemistry 

of surface waters (Porter et al., 2022), and snow energy balance modeling and soil temperature 
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simulations (Sun & Chern, 2005). There have also been weekly snow depth and SWE field 

sampling measurements taken throughout the watershed since 1960. 

In Fall of 2021, Sam Tuttle's research group began setting up a variety of automated snow 

measurement instruments at the SRRW snow research site (44.482942˚ -72.164879˚) located just 

north of Danville, VT at an elevation of 554m. Data were collected for the 2021-2022 and 2022-

2023 winter seasons. Instruments include a Sommer Messtechnik Snow Pack Analyzer 2, various 

vertical profiles of snowpack temperature, an infrared radiometer, and a snow depth stake and time 

lapse camera (Figure 3, Table 1). This location also houses an active weather station and fluidless 

snow pillow run by the USGS and the University of Vermont, which was installed in winter 2022-

2023. While these data were not available at the time of this study, future research efforts at this 

site could explore the possibility of collaboration and data sharing.  

2. Data 

2.1 Satellite Data 

2.1.1 Part 1: SRRW Analysis 

The first part of this analysis (hereafter the "SRRW analysis"), I applied the ΔTb-ΔTa PMW 

melt detection method at SRRW. The PMW data used in this method are Level 3 Tb from the 

Advanced Microwave Scanning Radiometer 2 (AMSR2) instrument aboard the Japanese 

Aerospace Exploration Agency (JAXA) GCOM-W1 satellite, at the native 25km spatial resolution. 

Observations from the vertically polarized 37 GHz frequency were used as it has been shown to 

be the most sensitive to liquid water in the snowpack (Stiles & Ulaby, 1980) and has been used in 

many similar studies (Apgar et al., 2007; J. M. Ramage & Isacks, 2002; Tuttle & Jacobs, 2019; 
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Zheng et al., 2018). AMSR2 began collecting data in 2012 and is still in operation. In this analysis, 

I use data for two winters (2021-2022 and 2022-2023), coincident with ground observations at 

SRRW. AMSR2 has two overpasses per day, approximately 12 hours apart, with an equatorial 

local overpass time of 1:30pm ascending and 1:30am descending.  

2.1.2 Part 2: SNOTEL Analysis 

The second part of the analysis (hereafter the "SNOTEL analysis"), I applied the ΔTb-ΔTa 

PMW melt detection method at over 500 snow monitoring stations in the western U.S.  The PMW 

data used in the method are the MEaSUREs Calibrated Enhanced-Resolution Passive Microwave 

Daily EASE-Grid 2.0 Brightness Temperature ESDR for the Advanced Microwave Scanning 

Radiometer for EOS (AMSR-E) instrument aboard the NASA Aqua satellite (Brodzik et al., 2016). 

AMSR-E was operative from 2002 to 2011, and I use the data for all winters between August 2002 

to August 2011. These data have the same overpass times, spatial resolution, electromagnetic 

frequency, and polarization as AMSR2. 

2.2 In-Situ Data from SRRW 

A summary of ground-based instrument data availability for the SRRW site for winters 

2021-2022 and 2022-2023 can be found in Figure 4. 

2.2.1 Snow Pack Analyzer-2 

The Snow Pack Analyzer-2 (SPA-2) measures the volume content of ice, water, and air 

within the snowpack. Flat sensor bands running horizontally at 10 and 30 cm above the ground 

and one running diagonally through the snow can distinguish between these components by 

measuring the complex impedance the sensor at two different frequencies. The SPA-2 also 
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includes an ultrasonic snow depth sensor, which measures the return time of a sonic pulse reflected 

off of the snow surface to infer snow depth, with a 1mm resolution and 0.1% accuracy. The final 

products that can derived include SWE, liquid water content (LWC), ice content, and snow density 

at 10-minute timesteps. Due to issues with calibration of the sensor bands, only the snow depth 

data are available at this time. Since this instrument was initially installed midwinter of 2022 and 

required widespread disturbance of the snowpack, so only snow depth data from winter 2022-2023 

are used in this study.  

2.2.2 Snow Depth Stake & Timelapse Camera 

To supplement the snow depth sensor, a Wingscapes Timelapse Pro camera and graduated 

snow depth stake were installed for both winter seasons. The camera recorded photographs of the 

snow depth stake and surrounding instruments every hour for the full snow season. This allowed 

us to reconstruct a time series of snow depth, and also determine if/when instrumentation became 

physically degraded/damaged or if the snowpack was unnaturally disturbed throughout the winter. 

These snow depth data for winter 2021-2022 were used in this analysis. 

2.2.3 Vertical Temperature Profiles 

Three different vertical temperature profile (or "temperature ladder") configurations were 

used at SRRW to measure the temperature dynamics of the snowpack. The different temperature 

ladder constructions were used to test which sensors and/or configurations worked best in harsh 

winter conditions. Two of the ladders included Bluetooth enabled HOBO MX2201 Water 

Temperature Data Loggers and iButton DS1922L Temperature Data Loggers, respectively, 

mounted onto either wooden or PVC stakes. The third ladder was a custom-made thermistor ladder 

provided by Eric Kelsey (Plymouth State University), which consisted of Campbell Scientific 
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thermistor beads heat shrink wrapped onto long spindles and wired to a Campbell Scientific data 

logger (hereafter referred to as the "custom ladder"). All temperature ladders recorded 

temperatures every 10 cm from the ground (up to at least +90 cm). The HOBO and custom 

temperature ladders collected data at 10-minute intervals, while the iButton ladders collected data 

at 1-hour intervals due to limited internal data storage. Due to programming issues, the custom 

ladder was not able to collect data during Winter 2021-2022. Data are also unreliable for both the 

HOBO and iButton temperature ladders for Winter 2022-2023 due to damage and dislodging of 

sensors that occurred midwinter during a period of heavy snowpack.  

2.2.4 Infrared Radiometer & Pyrgeometer 

Prior to winter 2022-2023, an Apogee SI-111-SS infrared radiometer sensor was installed 

to observe the surface temperature of the snowpack. This instrument measures infrared radiation 

in an 8-14 um wavelength range (also known as "longwave" radiation) emitted from the underlying 

surface (snow or bare ground), in combination with downwelling longwave radiation reflected off 

of the surface. The amount of longwave radiation emitted from an object (e.g., snow) is a function 

of its temperature and emissivity, according to the Stefan Boltzmann Law. In order to get an 

accurate snow surface temperature, an emissivity correction must be applied, and the reflected 

background longwave radiation must be accounted for. Therefore, an Apogee SL-510-SS upward-

looking pyrgeometer sensor was also installed midwinter on February 7th in 2023.  The data were 

collected at 10-minute intervals. 
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2.3 SNOTEL Data 

In-situ data from the Snowpack Telemetry Network (SNOTEL), which has over 900 

automated snow monitoring stations across the western US, were used to evaluate the satellite-

derived melt events in the second part of this study. Most SNOTEL stations measure and report 

daily SWE, snow depth, and maximum and minimum air temperature, which are available on the 

US Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) National 

Water and Climate Center (NWCC) website. Snow depth is measured using ultrasonic sensors that 

sit above the snow and measure the return time of a sonic pulse reflected off the snow surface. 

Temperature data are collected using a shielded thermistor located at least 2 meters above the 

ground. SWE is measured using snow pillows, which are located under the snowpack and measure 

the weight of the overlying snow. Snow depth and temperature data were downloaded directly 

from the SNOTEL website, while SWE was gathered from a more extensive dataset from 

Musselman et al. (2021). This latter dataset includes SWE from SNOTEL and other networks, 

such as in California and Canada, and it has been thoroughly QA/QC’ed. All data were gathered 

from stations in the contiguous U.S. for October 1, 2002, to September 30, 2011 (coincident with 

the AMSR-E satellite instrument), resulting in 563 sites with SWE, 481 sites with snow depth and 

temperature, and 444 sites with all three measurements.  

2.4 Snow Class Data 

 Snow climate classes over North America from Sturm et al. (2021), as seen in Figure 5, 

were used to examine differences in snowmelt between SNOTEL sites. The data were downloaded 

as a GeoTIFF file at 300m spatial resolution. This map classifies the snowpack into different 

categories according to air temperature, precipitation, and wind speed. Each category is meant to 
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represent a unique set of shared snowpack characteristics such as snow depth, density, texture, and 

layering. Using ArcMap 10.8.1, the snow class for each SNOTEL station was extracted from the 

GeoTIFF dataset using the station's latitude and longitude. The total number of stations within 

each snow class can be seen in Figure 6. Based on the original classification, there are 7 total snow 

classes, but no stations in this study were found to be classified as “Ice”. There are also very few 

snow stations in areas with ephemeral snow, where snowpack does not always persistent 

throughout the winter.  

2.5 Tree Cover Data 

Forest fraction, or the percentage of a pixel covered by trees during peak foliage, has been 

shown in previous studies to have an impact on the ability of a satellite to accurately observe 

ground conditions (Foster et al., 1991). A global tree cover fraction dataset was downloaded from 

Hansen et al. (2010) at 30m resolution. Tree cover fraction was extracted for each snow station 

location. Average tree cover fraction was also calculated for each 25km AMSR-E satellite pixel in 

order to investigate the potential effects of tree cover on the satellite data. 

3. Methods 

 A summary of all melt detection indicators and instruments used for each part of this analysis can 

be found in Table 1. 

3.1 Satellite Melt Detection 

The AMSR-E and AMSR-2 satellite data were processed identically for all analyses using 

a modified version of the ΔTb-ΔTa melt detection method from Tuttle & Jacobs (2019). The 
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detection algorithm was restricted to only include times with snow on the ground based on in-situ 

snow depth data. In this method, 12-hourly changes in brightness temperature (ΔTb) are paired 

with coincident air temperature changes (ΔTa).  In this analysis, we use NLDAS-2 air temperature 

data (Mitchell et al., 2004). Tuttle & Jacobs (2019) found that when the snow is completely frozen, 

ΔTb and ΔTa form a roughly linear relationship, which can be approximated by a linear regression. 

This represents the expected change in brightness temperature observed by the satellite from a 

given change in air temperature (which is a used as a proxy for physical temperature; see Equation 

1). In the original paper, melt and refreeze events were classified as observations that fell more 

than 10 K from the ΔTb-ΔTa regression line. In subsequent investigations, it was found that the 

ΔTb-ΔTa slope varies by location (due to different land surface characteristics, snow dynamics, 

etc.), which means that a 10 K threshold may not be appropriate everywhere. A method called k-

means clustering, a form of vector quantization, was instead used to detect which observations 

significantly deviated from the ΔTb-ΔTa line (Figure 7). Using k-means clustering, the ΔTb 

residuals from the regression line were classified into three groups: melt events (strongly positive 

residuals), freeze events (strongly negative residuals), and non-events (residuals close to zero). 

This method is adaptable to different locations and hypothetically allows for a more accurate 

identification of melt events than assuming that a constant threshold applies everywhere.  

After applying the ΔTb-ΔTa method, the resulting datasets of melt events contained twice-

daily data for each pixel. Satellite-detected melt events were assigned a value of 1, 0 indicated no 

melt event, and NA indicated missing or removed data.  

For part 1 of this study (SRRW Analysis), a time series of 12-hourly ΔTb-ΔTa snowmelt 

events was produced for the AMSR2 pixel containing our field site location at SRRW for 

November 1, 2021, through May 24, 2023, corresponding with ground-based data collected at the 
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site. The ΔTb-ΔTa line used to identify these events was fit to all 12-hourly AMSR2 ΔTb and 

NLDAS-2 ΔTa data with snow cover from September 1, 2012, to May 31, 2023.  For winters 2021-

2022 and 2022-2023, this was observed snow cover at the SRRW site, and for all prior winters 

only data from December and March were included in the analysis. 

For part 2 of this study (SNOTEL Analysis), ΔTb-ΔTa snowmelt events were identified for 

the AMSR-E pixels containing the locations of the SNOTEL stations, resulting in a 12-hourly time 

series of snowmelt events for each station from August 1, 2002, to July 31, 2011 (9 winters). The 

12-hourly melt event data were then degraded to a daily timestep for better comparison with the 

daily SNOTEL ground data.  To create the daily dataset, any day with at least one melt event 

detected (out of the two 12-hourly timesteps) was designated as a melt event.  

For simplicity, references to the ΔTb-ΔTa melt indicator will herein be referred to as the 

“satellite” melt indicator. 

3.2 SRRW In-Situ Melt Indicators 

 For part 1 of this analysis, different in-situ melt detection indicators were derived from 

detailed ground snow data collected at Sleeper’s River Research Watershed to evaluate the satellite 

melt detection methods.  

3.2.1 Internal Snowpack Temperature 

One way to determine if snow is melting or contains liquid water is to measure the vertical 

temperature profile of a snowpack. Theoretically, if the entire snowpack reaches 0°C, the snow is 

isothermal, or ready to melt. In winter 2022-2023, the custom thermistor temperature ladder data 

were used to determine when the snowpack became isothermal. In winter 2021-2022, the iButton 
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and HOBO temperature ladder data were used.  The mean temperature was calculated for sensors 

under the snowpack, starting at 10cm above the ground. Data from sensors that were less than 

10cm from the top of the snowpack were removed to limit the influence and exposure of solar 

heating and radiation to due to significant welling observed around the instrument (McGurk, 

1983). Snow depth data from the SPA-2 was used to constrain these heights, with a matching 

temporal resolution of 10 minutes. A melt event was then detected if any of the average snowpack 

temperatures within the same 2-hour window around the satellite overpass reached -0.1 C. This 

indicates the snowpack has reached or is approaching isothermal, which is when a large melt event 

is most likely to occur. 

3.2.1 Surface Temperature 

In winter 2022-2023, the surface temperature of the snowpack was also used as a thermal 

melt indicator, as it can provide unique insight into surface melt caused by solar radiation. Surface 

temperature was derived from the infrared radiometer sensor (IRT), using the pyrgeometer 

background reflectance data to correct for surface emissivity (Equation 2).  

Equation 2: 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆4−(1−𝜀𝜀)⋅𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆𝑆𝑆𝐵𝐵𝑆𝑆𝐵𝐵4

𝜀𝜀

4
 

In this equation, the TTarget is the actual temperature of the surface, TSensor is the brightness 

temperature measured by the IRT, TBackground is the background brightness temperature measured 

by the pyrgeometer, and ε is the emissivity of the surface. Brightness temperatures from the IRT 

and pyrgeometer are outputs from the instruments, which use a modified Stefan-Boltzmann 

equation for internal calibration (Apogee, 2015). Emissivity of the snow surface was assumed to 

be 0.98, as typical ranges for snow have found to be 0.97-0.99 (Dozier, 2011; Hori et al., 2013).  
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The surface temperature data were restricted to only data within +/- 1 hour of the satellite 

overpass times (1:30am and 1:30pm local time). A melt event occurred if any of the 10-minute 

temperature readings from this window approached 0 (> -0.1°C), indicating the surface of the snow 

was approaching the point at which it could melt.  

3.2.3 Snow Depth 

Since continuous thermal snowpack observations are uncommon, snow depth was also 

investigated for its use as a melt event indicator. For 2023, 12-hourly snow depth data were 

extracted from the SPA-2 snow depth dataset for the corresponding AMSR-2 satellite overpass 

times. SPA-2 snow depth data are not available for the winter of 2022 due to mid-winter 

installation of the instrument that caused snow disturbance, so snow depth was instead visually 

determined using 12-hour camera photographs of the snow depth stake at the site. This also 

introduced a higher level of human error and less precision, especially due to visual effects by the 

snow camera angle, disturbed snow, and welling around the snow stake. The difference in snow 

depth was then calculated to determine when the snow depth was decreasing, and therefore 

potentially experiencing a melt event. The threshold to indicate a melt event was set at less than or 

equal to -1cm (i.e., at least 1cm of snow depth decrease).  

3.3 SNOTEL In-Situ Melt Indicators 

 For part 2 of this analysis, snow observations made abundant by extensive snow monitoring 

networks were used as melt indicators to evaluate the satellite melt detection method at a wide 

range of locations and environments over a 9-year period. 
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3.3.1 Snow Depth 

Similar to the SRRW analysis, snow depth was used as a melt indicator for the large-scale 

analysis of SNOTEL sites, but instead using the publicly available and QA/QC’d daily data. 

Because air temperature was available at these sites, days with decreasing snow depth were not 

considered melt events unless the daily maximum air temperature exceeded 0°C, to limit the 

influence of potential confounding factors such as compaction, wind redistribution, or sublimation. 

A threshold of at least -2 cm (instead of the -1 cm threshold used for SRRW) was used to the 

longer timestep (daily, as opposed to 12-hourly for SRRW).  

3.3.2 SWE 

I also investigated SWE for use as a melt event indicator due to the abundance of 

measurements in comparison to other snow observations. While SWE data from the SPA-2 was 

not yet available for use at the SRRW site, daily SWE data were used for the analysis of SNOTEL 

stations across the western U.S. Processing was almost identical to that for the SNOTEL snow 

depth data, except a threshold of -2 cm ∆SWE was used to indicate a melt event and was not 

temperature restricted.  

We expect that most SWE decreases are due to melting that leads to loss of water from the 

snowpack, but it is also possible to lose snow mass via blowing snow or sublimation. However, 

SWE is not sensitive to melt/refreeze events that do not change the overall mass of water in the 

snow, and thus may not be an ideal ground truth for PMW melt detection methods, which are 

sensitive to snow liquid water content. Alternatively, melt events detected by decreases in SWE 

may not be detectable by phase changed-based satellite methods if the snow remains wet (i.e., 
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contains liquid water) throughout the diurnal cycle, which can occur in the spring melt period, 

especially in deep snowpacks. 

3.4 1:1 Daily Agreement Analysis  

The first step of the analysis was to compare the satellite-detected snowmelt events and 

ground-based melt indicators at SRRW. In general, the goal was to understand how frequently 

both satellite and ground-based methods detect a melt event at the same time. To determine 

agreement between binary datasets (i.e., snowmelt detected, or not), I used a confusion matrix to 

calculate the true positive rate (or “sensitivity”; TPR), which defines how often a known positive 

event will be detected as positive by a predictor or proxy. A true positive (TP) occurs when both 

datasets detect a melt event, whereas a false negative (FN) occurs when melt is detected by the 

actual/true observation but is not detected by the proxy. True negative events, which occur when 

both datasets do not see melting, was not of interest in this study because we are primarily 

interested in the occurrence of melt events, not the lack thereof.  Melt events are less frequent than 

days without melt, and therefore true negatives might inflate the agreement statistics. This type of 

analysis is typically performed on two binary datasets with the purpose of comparing true data to 

modeled or proxy data. In this study, neither satellite nor ground observations can be considered 

as “true” observations of a snowmelt event, because neither are direct observations of the presence 

of liquid water in the snow. Therefore, I perform the true positive rate calculation from two 

perspectives: assuming first 1) that the ground observation is the true observation, and a second 

time with 2) the assumption that the satellite is the true observation. Both analyses are important, 

depending on whether the goal is to determine how often satellite detected melt events are 

supported by ground data, versus how often ground-indicated melt events are detected by the 

satellite. 
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Equation 3 shows how the sensitivity was calculated when the ground-based melt events 

were treated as the "truth". 

Equation 3: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅 𝑃𝑃𝑜𝑜𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅 (𝑇𝑇𝑃𝑃𝑅𝑅) = 𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

=  # 𝑜𝑜𝑜𝑜 𝑑𝑑𝑇𝑇𝑑𝑑𝑠𝑠 𝐺𝐺𝑇𝑇𝑜𝑜𝐺𝐺𝐺𝐺𝑑𝑑 𝑇𝑇𝐺𝐺𝑑𝑑 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇 𝑏𝑏𝑜𝑜𝑇𝑇ℎ 𝑑𝑑𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑇𝑇 𝑚𝑚𝑇𝑇𝑆𝑆𝑇𝑇
𝑇𝑇𝑜𝑜𝑇𝑇𝑇𝑇𝑆𝑆 # 𝑜𝑜𝑜𝑜 𝐼𝐼𝐺𝐺−𝑆𝑆𝐼𝐼𝑇𝑇𝐺𝐺 𝑚𝑚𝑇𝑇𝑆𝑆𝑇𝑇 𝑇𝑇𝑒𝑒𝑇𝑇𝐺𝐺𝑇𝑇𝑠𝑠

 

The sensitivity was calculated a second time but instead using the total number of satellite detected 

melt events as the denominator. Both agreement analyses were repeated for all ground-based melt 

indicators at SRRW, as well as for snow depth and SWE derived melt indicators for the SNOTEL 

analysis.  

 For clarity, “sensitivity” and “rate of true positive” (TRP) herein refers the percentage of 

melt events that are detected by one melt indicator (“true”) that are also detected by another melt 

indicator (“proxy”). Since sensitivity is calculated both ways for each set of melt indicators, each 

calculation will be referred to by the indicator assumed to detect the “true” number of melt events. 

For example, the “SRRW 2022 Snow Depth Sensitivity” would refer to the number of matching 

melt events between the satellite and snow depth indicator divided by the total number of snow 

depth melt events, or “true melt events”.  

 For the Part 2 SNOTEL Analysis, three final agreement datasets were calculated: one that 

includes all sites with snow depth data; one that has all sites with SWE data; and a combined 

dataset that only includes sites with both SWE and snow depth data. Each of these datasets will 

from here on be referenced as the “Snow Depth Dataset”, the “SWE Dataset”, and the “Combined 

Dataset”. 
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3.5 Testing Correlations Between Snow Surface Characteristics and SNOTEL Analysis 

Agreements 

For the regional SNOTEL analysis only, Spearman correlations were calculated for each 

of the 4 agreement datasets (snow depth vs. satellite, and SWE vs. satellite, with sensitivity 

calculated assuming each are the "true" melt events) to determine if the agreements varied by 

latitude, longitude, elevation, forest fraction, or average annual maximum SWE and snow depth. 

One-way Kruskal-Wallis tests were performed to determine if any of the snow classes had 

statistically significant differences in agreement. If so, a multiple comparisons test was then 

performed to determine which snow classes had significantly different agreements. 

4. Results 

4.1 SRRW Analysis 

4.1.1 Overview of the 2022 and 2023 Winter Seasons 

 Time series of melts events detected by ground-based and satellite data for the winter of 

2022 can be found in Figure 8. Timesteps when each individual melt indicator had NA values are 

depicted by shaded grey regions in their respective plots (Figure 8a-d). In 2022, snow depth 

measurements show a steady increase in snow through February, with some larger fluctuations in 

late February and early March indicative of potential midwinter melt and continuing snow 

accumulation. Steady melt seems to occur starting in mid-March, likely the melt output phase, 

although this cannot be confirmed without SWE measurements. The snowpack was completely 

melted by early April, although a few cm of snow accumulated afterwards in late April. Events 

from late April were not included in the analysis due to the small size of the snowpack that formed 
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(less than 5cm), which is below the 10cm height of the lowest temperature sensor. The satellite 

melt events almost exclusively occur during this second period of snow depth fluctuations, with 

the exception of one melt event occurring during a snow depth decrease in early December (Figure 

8a). Both iButton temperature ladders also detected melt mostly during this period starting in mid-

February and during snow depth decreases, except for some melts detected before a large snow 

depth increase (Figure 8b). This may also be due to the 20cm snow depth requirement for this melt 

indicator, as snow depth did not reach that depth until late January. Snow depth detected melt 

throughout the entire winter, as any decreases larger than 1cm were counted as a melt (Figure 8c). 

The HOBO temperature ladder also only detected melt events in the second half of the winter, 

although it is important to note that it did not start collecting data until January 20th, 2022. Some 

of the HOBO melt events occurred during large snow depth increases, contrary to all other melt 

indicators.  

 Time series of melts events detected by ground-based and satellite data for the winter of 

2023 can be found in Figure 9. Timesteps when each individual melt indicator had NA values are 

depicted by shaded grey regions in their respective plots (Figure 9a-d). In 2023, the winter season 

started with a small early snowpack (< 20cm) in mid-November that completely melted in early 

December. Another snowpack quickly formed in mid-December but experienced another 

significant decrease in late December. After this period, the snowpack had a steadier accumulation 

through February, with larger snow depth fluctuations occurring throughout March. Snow depth 

steadily decreased starting in April and was completely gone by April 14th. One other significant 

event to note is the large snow depth decrease and immediate increase that occurred around 

December 19th. Based on further investigation and meteorological observations from the region, 

this is hypothesized to be a mixed precipitation event, with a potential rain-on-snow event causing 
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the drastic snow depth decrease followed by a switch to heavy snow accumulation accounting for 

the subsequent drastic snow depth increase depicted in Figure 9. It is also worth noting that 12-

hour snow depth observations, such as used in 2022, would have likely not been able to detect 

such large variability, and highlights an important limitation of using data with a lower temporal 

resolution than 1 hour.  

The satellite did detect a few melt events during the small November snowpack but did not 

detect any melt events in the snowpack that formed in December (Figure 9a). The rest of the 

satellite melt events occurred in February through April, and mostly coincided with falling or 

stagnant snow depths. The custom ladder melt events, depicted in purple points in Figure 9b, 

mostly occurred during a small snow depth decrease period in mid-February and during the melt-

off period starting just after mid-March. A few melt events were also detected in December and 

January, with one event likely associated with the mixed precipitation event observed on 

December 19th. Similar to 2022, snow depth melt events were detected throughout the entire winter 

period (Figure 9c). IRT surface melt events were also detected throughout the entire winter, but 

mostly coincided with decreasing or stagnant snow depths (Figure 9d).  

4.1.2 In-Situ Melt Indicator Comparisons 

 Because the in-situ melt indicators are all imperfect proxies for snowpack liquid water 

content, the sensitivity, or rate of true positive, was calculated between each of the SRRW in-situ 

melt indicators to determine how often they can mutually detect melt events. An example of the 

contingency table used for these agreements can be found in Figure 10, comparing iButton-

detected melt events with HOBO-detected melt events. The yellow box indicates the number of 

melt events detected by both, blue is the total number of iButton melts, and the red is the total 
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number of HOBO melts. Table 2 shows a summary of the sensitivity values between each pair of 

indicators. In each case, the melt indicator listed in the column is assumed to be the “actual” or 

“true” total number of melt events, while the indicator in the row is the “predicted” melt events.  

 For the winter of 2022, in-situ melt indicators included snow depth (from camera images 

of a snow stake) and average snowpack temperature from 3 different temperature profiles. Snow 

depth had the overall lowest agreements with all other in-situ melt indicators, between 52% to 

64%. The two iButton melt indicators had the highest agreements with each other, between 95.0% 

and 97.4%, which makes sense because these are the same temperature sensors that were simply 

mounted differently. The HOBO melt indicator also had high agreement with both iButton 

indicators, between 85.7% and 95.0%.  

 For the winter of 2023, snow depth from the SPA-2, surface temperature from the IRT, and 

average snowpack temperature from the custom thermistor temperature ladder were used as in-

situ melt indicators. Agreements ranged from 42.4% between SD and custom ladder indicators to 

76.9% between the Custom Ladder and IRT.  

4.1.3 SRRW 2022 Agreements Between In-Situ and Satellite Melt Indicators 

 The agreements calculated between the in-situ melt indicators and the satellite melt 

indicator for both 2022 and 2023 are summarized in Table 3, which includes the total number of 

each melt event type, number of coincident events, and the sensitivity, assuming the in-situ and 

satellite-detected melt events as the “truth”, respectively. In winter 2022, all four in-situ melt 

indicators detected at least three times more melts than the satellite algorithm. More in-situ melts 

resulted in much lower agreements when assuming those indicators were the “true” melts, and 

better agreements when assuming the satellite was the “truth”. The total number of satellite melt 
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events differs due to occurrences of NAs in the datasets. The snow depth melt indicator detected 

10 out of 13 satellite melt events and satellite detected 10 out of 51 snow depth melt events, or 

76.9% and 19.6%, respectively. There were 34 total melt events from the HOBO temperature 

ladder, along with 11 satellite melts, and 8 detected by both. Therefore, the HOBO melt events 

matched with the satellite melt events for 72.7% of all satellite melts and for 23.5% of all HOBO 

melts. Both iButton melt indicators saw 31 total melt events and 11 satellite melts, with 8 and 9 

matching events caught by iButton S and iButton F, respectively. Satellite agreement with iButton 

S was 72.7% (satellite as "truth") and 25.8% (iButton as "truth"), while iButton F agreements were 

the overall highest at 81.8% and 29.0%. 

 An Exact Binomial Test was also performed to determine if these agreements were likely 

a result of random chance rather than a true relationship between melt indicators. Using a p-value 

of 0.05, the alternative hypothesis states that the true probability of success (rate of true positive) 

is greater than the rate if melt events were randomly distributed throughout the winter. Using this 

test, all agreements between the satellite and in-situ melt indicators for the winter of 2022 were 

determined to be higher than what would be expected from random chance. In 2023, however, 

only the agreements between the IRT surface melt and the satellite melt showed significantly 

higher agreements than expected from random chance, while satellite agreements with the snow 

depth and custom temperature ladder melt indicators were not significantly higher.  

4.1.4 SRRW 2023 Agreements Between In-Situ and Satellite Melt Indicators 

 In winter 2023, the number of in-situ melt events were again significantly higher than the 

number of satellite melt events for all analyses. The total number of snow depth melt events was 

63 compared to 24 satellite melt events, with 11 events detected by both. As a result, they agreed 
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on 45.8% of total satellite melt events and 17.5% of total snow depth melt events. The IRT (surface 

temperature) detected the most melt events at 86 compared to 24 satellite melt events, with 23 melt 

events detected by both. This led to the overall highest agreements of the winter with 95.8% of 

satellite melt events detected by surface temperature and 25.8% of surface temperature melts also 

detected by the satellite. The final in-situ melt indicator for this year was average snowpack 

temperature from the custom temperature ladder, with 38 total melt events compared to 22 satellite 

melt events. Both indicators detected melt at the same time on 9 occasions, or 40.9% of satellite 

melts and 23.7% of the custom ladder melts.  

4.2 SNOTEL Regional Analysis 

4.2.1 Agreements Between In-Situ and Satellite Melt Indicators 

 The average sensitivities between the satellite and SNOTEL in-situ indicators across all 

sites are summarized in Table 4. This includes averages for the snow depth dataset, the SWE 

dataset, and the combined dataset that only include sites with both SWE and snow depth data. The 

number of sites in each dataset is provided in the second column for reference. Due to data 

limitations, some later analyses were only performed on the combined dataset. Melt events 

indicated by decreases in snow depth agreed with the satellite-detected melt events for 43% of all 

snow depth events, on average, and for 53.4% of all satellite melt events. Much lower average 

agreements were found using decreases in SWE as the snowmelt indicator, with SWE-indicated 

events agreeing with satellite-detected events for 39.7% of all SWE melt events, on average, and 

27.8% of all satellite melt events. The distribution of agreements for all snow stations, and all 

sensitivity metrics, are summarized in boxplots in Figure 11. Red indicates analyses using the SWE 
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dataset, while blue indicates snow depth analyses. Both snow depth analyses have much smaller 

distributions of agreement among sites compared to both SWE analyses.  

 Exact binomial tests were again performed for all four agreement statistics for each of the 

444 stations of the combined dataset with a p-value of 0.05. This test determined that 92% of sites 

had agreements between the satellite and snow depth melt indicators (for both TPRSatellite and 

TPRSD) that were higher than expected due to random chance, while only 45% of sites had 

satellite/SWE agreements higher than expected from random chance.  

 Figure 12 summarizes the average seasonal distribution of melt events detected by each 

melt indicator for the snow depth dataset (Figure 12b, c), and the SWE dataset (Figure 12b, c). 

SWE melt events peak in May, while snow depth melt events peak in April, and satellite melt 

events from both datasets peak much earlier in March. Snow depth also indicates more melt events 

throughout the year compared to the satellite and SWE.  

4.2.2 Correlations 

 The next step of the SNOTEL regional analysis was to investigate spatial patterns of 

agreement across different sites, as well as land characteristics of the snow stations and their 

surrounding satellite pixels. Figure 13 shows a map of sensitivity of each snow station for each 

analysis. A notable pattern shown by these maps is a group of sites with generally high agreement 

located in the Sierra Nevada Mountain Range. This trend is most visible in both snow depth 

analyses and is also somewhat visible in the SWE datasets. Figure 14 shows violin-boxplot 

comparisons of agreements at all sites vs only the Sierra Nevada sites for the SD analysis (a) and 

the SWE analysis (b). Unlike the snow depth dataset, the SWE dataset contained sites outside of 

the SNOTEL network, including 29 sites in the Sierra Nevada Mountains, allowing for more data 
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in the SWE comparison. Kruskal-Wallis tests were also performed with a p-value of 0.05 and 

found all sensitivities were significantly higher in the Sierra sites compared to the rest of the 

dataset.  

 Different site characteristics were then tested for correlation with each agreement metric 

using a Pearson correlation test, with the results shown in Figure 15. Due to a large sample size of 

444 sites, most correlations were found to be statistically significant at a significance level of 0.05, 

even with very low correlations. Correlations that are not statistically significant are marked in 

grey Figure 15. Elevation appears to have the highest correlation with most agreement metrics, 

including 0.5 correlation with the snow depth-satellite melt agreement (assuming satellite events 

are the "truth"). The correlations are also all positive, suggesting that higher elevation sites have 

higher agreement. The snow depth-satellite melt agreements also seem to have the highest 

correlations for most variables tested. Latitude has similarly high correlations with all agreement 

metrics but are instead all negative. This suggests that the satellite and SNOTEL melt indicators 

agree better at sites located farther south. Elevation and latitude of snow sites has a correlation of 

-0.8, indicating that higher agreement may only be tangentially associated with one (or both) of 

these variables. Longitude was also tested but found much weaker positive correlations between 

0.2 and 0.3. The next variable tested for correlations with agreement was “Max SD”, or the average 

of the annual maximum snow depth recorded at each site across all years. The most significant and 

largest correlation by far was with the SD-satellite agreement, with a correlation of 0.4. This 

suggests that the snow depth indicator can detect a higher percentage of satellite-detected melts at 

sites with deeper snowpack. The same statistic but for max SWE was also tested, resulting in 

correlations of 0.3 for the satellite (SD) agreements and -0.4 for the SWE agreements. This 

promotes the previous suggestion of snow depth detecting more satellite melt events at sites with 
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larger snowpack, but it also suggests that the satellite can better detect SWE melt events at sites 

with smaller snowpacks. The percent tree cover at each snow station was also tested, resulting in 

negative but generally low correlations below -0.2. If correlations were stronger, this would have 

indicated that sites with less tree cover have better agreement. The tree cover percentage over the 

entire AMSR-E pixel was also tested, with a negative correlation of -0.2 with agreements in the 

SD dataset. This may suggest that the satellite can better detect snow depth melt events when the 

satellite pixel has overall less vegetation/tree cover.    

 The last analysis of differences in satellite vs. in-situ agreement across SNOTEL sites was 

by snow class (see section 3.5). Only the snow classes of Tundra, Boreal Forest, Montane Forest, 

Maritime, and Prairie were tested due to a lack of sites located in regions assigned to the Ephemeral 

snow class. Using a Kruskal-Wallis test, it was determined that only the satellite-snow depth 

agreement metrics had any statistically significant differences between the means of any of the 

snow class groups. A Dunn’s test indicated that for the snow depth sensitivity assuming snow 

depth as “true”, only the Boreal Forest and Montane Forest groups have significantly different 

medians. For the snow depth sensitivity assuming satellite melt as “true”, only the Boreal Forest 

and Prairie groups have significantly different medians. 

5. Discussion 

5.1 Limitations of Data 

The results of these analyses are dependent on the accuracy and representativeness of the 

input data. Biases and uncertainty in the data can affect the results, therefore is it necessary to 

discuss the limitations of the data used. 
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5.1.1 In-Situ Data 

 The use of point-scale data for understanding temporal trends of a snowpack comes with 

inherent limitations due to the high spatial variability of snow, especially in mountainous or 

heterogeneous landscapes (Meromy et al., 2013; Sexstone et al., 2016; Watson et al., 2006). 

Locations less than 1 km apart can have significant differences in snowpack properties, including 

snow depth and temperature, due to atmospheric and land surface conditions.  

In-situ data were collected firsthand for the SRRW analyses, allowing for better knowledge 

of the errors and uncertainty associated with the data collection. For 2022, the snow depth from 

the SPA-2 was unreliable, and therefore snow depth was determined using visual identification of 

snow height from 12-hour camera images of the snow stake. Besides inherent human error and 

uncertainty in determining snow depth, a fair number of observations were not available due to 

poor visibility in photographs due to precipitation accumulation on the lens or sunlight reflectivity 

on the snowpack. There also may be error in the HOBO temperature ladder data during this year 

as it was installed on January 20th, after the snowpack had already formed. The snowpack was 

significantly disturbed during installation and potentially altered temperatures within the 

snowpack throughout the remainder of the winter. The field site was also visited on February 7th 

of 2023 for instrument maintenance, and while care was taken not to disturb the snow directly 

around instrumentation, it is possible that disturbances did occur. There is also error and 

uncertainty associated with each of the temperature ladders due to the sensitivities of the sensors 

to solar radiation, as well as from preferential melting around the ladders from heat conductance 

of the structure. It is important to note that only two years of data were included in this study, 

which may not be representative of typical conditions at this location. Future data collection at this 

site and potential surrounding locations can help improve and confirm these results.  
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 There are also significant limitations associated with the SNOTEL and associated snow 

network data. One of the more significant limitations of the SNOTEL network specifically is the 

lack of spatial distribution and diversity among stations. The original purpose of SNOTEL was to 

monitor mountain snow conditions in the Western US for water resource monitoring. Therefore, 

it’s not surprising that most sites are located in regions that are important for that purpose (Fleming 

et al., 2023; Heldmyer et al., 2021; Schaefer, 2000). The downside, however, is the systematic bias 

towards specific elevations and land cover types within the SNOTEL network, as seen by the 

proportions of snow classifications among SNOTEL sites in Figure 6. Most sites are also located 

in clearings, therefore muddying attempts at understanding potential correlations between 

vegetation cover and snowpack dynamics. There is also a lack of diversity in types of data collected 

at each station. While SWE and snow depth measurements were the focus for hydrologic snow 

monitoring, there has been an increasing need for different types of snowpack measurements, such 

as snow temperature and liquid water content (LWC).  

A practical limitation of SNOTEL data relevant to this study is the fact that quality-

controlled datasets are only published with daily average data for both SWE and snow depth, 

despite data collection at a shorter timestep. Daily observations are insufficient to understand the 

dynamics of snowpack melt due to diurnal fluctuations. Within 24 hours, many different processes 

and events can take place which can significantly alter the physical state of the snowpack including 

melt, refreeze, new snowfall, and rain on snow events.  

5.1.1 Satellite Data 

 There are many limitations of the satellite data used in this study, including the large spatial 

resolution of 25km. Heterogeneity of the land surface within the boundaries of a 25km pixel have 
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the potential to obscure melt signals from colder or higher elevation regions located within the 

pixel. This limitation is enhanced when using point-based ground data for validation, as conditions 

at one snow station are likely not representative of a 25km region. It is also very likely that in-situ 

melt indicators can respond to local or small-scale melt events, which may not occur throughout 

the entire pixel region, and therefore the satellite may not be able to detect it. This is especially 

true for mountainous regions with steep elevation changes associated with extreme differences in 

weather conditions. Snowmelt distribution is also heavily influenced by topographic variability 

and its effects on solar radiation (Cline, 1997; Marks & Dozier, 1992; Vuyovich et al., 2017). More 

generally, a lack of snow cover over a majority of a pixel may also cause bias in the brightness 

temperature, as bare ground vs snow can have significant influences on passive microwave 

radiation (Chang et al., 1996; Mätzler, 1994) and obscure possible melt signals. Studies have also 

suggested that microwave signals may not fully penetrate through moderate to dense vegetation 

canopies (Chang et al., 1996; Foster et al., 1991; Lund et al., 2022). 

 An additional limitation of the satellite data is the saturation of the microwave signal in 

deeper snowpacks. Studies have estimated that at 37GHz frequency, snow depths greater than 0.8-

1 m cause microwave emissions to be “saturated” and therefore undetectable by the satellite 

(Chang et al., 1976; Dong et al., 2005; Foster et al., 2005). While the ΔTb-ΔTa method may correct 

for the influence of air temperature on microwave signals, it is not able to correct for potential 

rapid changes in snowpack properties such as snow texture and grain size (Chang et al., 1976; 

Foster et al., 2005; Sturm et al., 1995). Change-based satellite melt detection methods cannot detect 

consistently wet snow (Tuttle & Jacobs, 2019), only phase changes. This study also does not take 

into account rain-on-snow events, although some PMW rain-on-snow detection methods rely on 
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similar wet snow sensitivities, suggesting that they may produce similar brightness temperature 

signals (Dolant et al., 2016; Grenfell & Putkonen, 2008). 

5.2 In-Situ Snowmelt Indicators 

 As supported by results from both the SRRW and SNOTEL analyses, decreases in snow 

depth is not an ideal indicator of melting snow. While melting snow can cause decreases in snow 

depth due to densification or loss of snow mass, there are also many other processes that cause 

snow depth to decrease that are not indicative of melt. These other factors could explain the large 

number of potential melt events inferred from snow depth in comparison to the number of melt 

events detected by the satellite. Besides melting, snow depth can decrease due to compaction. This 

is very common after fresh snowfall, as snow grains initially settle and pack together due to gravity 

(Pomeroy et al., 1998). Compaction also occurs throughout the winter season due to a combination 

of gravity and pressure of lower layers, especially in deeper snowpacks. Decreases in snow depth 

can also be caused by removal of snow due to sublimation, wind redistribution, and rarely, 

avalanches (Hiemstra et al., 2006; Marks & Dozier, 1992). Due to these common processes 

affecting snow depth decreases and the potential for false melt identifications, snow depth is not 

an ideal indicator for snow melt events. It is, however, one of the few variables collected by 

SNOTEL that contain some information potentially related to snowmelt and snow liquid water 

content. 

 Although SWE is a proven useful snowmelt indicator (Serreze et al., 1999), SWE decreases 

had much worse overall agreements with the satellite melt detection method compared to snow 

depth. The main limitation of this metric is that it can only be used to detect hydrologically 

significant melt events, where water is leaving the snowpack. PMW satellite instruments are 
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sensitive to the presence of liquid water in the snowpack, which may occur due to snowmelt and 

subsequent refreezing of the liquid water without a loss of water from the snowpack. While 

processes such as compaction may not decrease SWE, physical displacement of snow due to 

sublimation, wind redistribution, and the occasional avalanche may lead to false melt event 

detection using this indicator. 

 Based on the results from the SRRW analysis, average snowpack temperature is a decent 

indicator for detecting snow melt events. Theoretically, as a snowpack approaches 0°C, melting is 

more likely to occur with minimal energy input into the system. In reality, however, melting can 

occur nonuniformly throughout the snowpack, with some layers not yet reaching 0°C. One of the 

most common examples of this is solar radiation causing surface melting at the top of the 

snowpack, while deeper layers may still be well below 0°C. The practicality of this method is also 

dependent on the vertical resolution of these temperature measurements, as well as the depth of 

the snowpack. Our method used the average temperature of the snowpack as detected by 

temperature sensors located every 10cm, while excluding sensors less than 10cm from the surface 

due to welling around the instruments. Our method began measurements at 10cm above the ground 

and excluded sensors less than 10cm from the top of the snow, automatically excluding any melt 

detection in snowpacks less than 20cm. In the future, these data could be used for different melt 

indicators, such as detecting melt events within specific layers of the snowpack (i.e., bottom, 

middle, surface). 

 Overall, data from the SRRW analysis supports the hypothesis and previous studies that 

the surface temperature of the snowpack (as measured by the IRT) and subsequent surface melt 

events most closely resemble the processes detected by this satellite melt detection algorithm. In 

2023, 23 of the 24 satellite detected melt events were detected by the surface temperature indicator, 
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resulting in a 95.8% agreement. This indicates that almost all the satellite detected melt events 

were corroborated by surface temperatures at or above the melting point of snow. This also 

supports the idea that passive microwave satellites at 36GHz is sensitive to snowmelt on the 

surface of the snowpack. While surface temperature may not be as important for detecting 

hydrologically significant melt events, our results show that it is a viable melt detection indicator 

for ground truthing passive microwave satellite melt detection methods.  However, this indicator 

also produced many false positives (i.e., days when the daytime snow temperature was near 0˚C 

but the satellite did not detect melting).  It is unclear if this is due to the location of the IRT in a 

clearing, while much of the surrounding satellite pixel consists of forest. On the other hand, the 

snow surface temperature may frequently reach close to 0˚C without producing snowmelt. 

 The most ideal observations for detecting wet or melting snow are liquid water content 

observations, as they directly measure the amount of liquid water present in the snow and can track 

increases indicative of true snow melt. LWC are also theoretically ideal for ground truthing of 

PMW melt detection algorithms due to findings from (Mätzler, 1987; Stiles & Ulaby, 1980) which 

state that PMW brightness temperature observations are directly correlated with the dielectric 

constant of a snowpack. Since frozen snow and liquid water have drastically different dielectric 

constants, the proportion of the two within a snowpack should have a strong influence on the 

brightness temperature of a land surface detected by PMW satellite, along with air temperature 

(Equation 1). Therefore, having direct measurements of liquid water content in a snowpack would 

allow for more accurate analyses of the effect of liquid water on melt detection algorithms. 

Unfortunately, LWC measurements are very rare due to the complicated and expensive nature of 

the instruments needed for non-destructive continuous monitoring, as learned from the ongoing 

effort using the SPA-2 at SRRW.  
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5.3 PMW Satellite DAV Melt Detection Method 

 The results at the Vermont study site (SRRW) demonstrate that while this PMW melt 

detection method is not able to detect all melt events that may occur at a snow station, certain 

ground melt indicators verify that a large portion of satellite detected melt events can be 

corroborated by ground data. This is expected due to the limitations of comparing large-scale 

observations that encompass 25km with point data, especially given the high spatial variability of 

snowmelt. Specifically, 23 out of 24, or 95.8%, of the satellite-detected melt events during 2023 

were verified by the IRT ground melt indicators (i.e., snow surface temperature). The satellite also 

showed consistent melt detection during the beginning of in-situ-detected multi-day melt periods 

during the winter of 2022, which is consistent with the detection of phase changes rather than 

continuously wet snow, as expected. 

 In the SRRW site analysis, the satellite melt indicator was able to detect 77% of snow 

depth-detected melt events in the winter of 2022, but only 46% in the winter of 2023. This may be 

attributable to the different number of melt events detected by the satellite in those years (13 and 

24, respectively), or to the difference in snow depth measurement techniques each year (manual 

vs snow depth sensor, respectively). For the SNOTEL regional analysis, the snow depth melt 

indicator was able to detect an average of 53% of satellite-detected melt events, which matches 

ranges of the 2023 SRRW. There are also large differences the sensitivities calculated for total 

satellite melt events detected by snow depth (satellite as “true”), as the SNOTEL analysis found a 

much higher average sensitivity of 43% compared to the SRRW analyses of 17% and 20% for 

2022 and 2023, respectively. This may be due to the use of maximum daily air temperature to 

restrict snow depth melt events at SNOTEL sites, which was not able to be done for SRRW, or 

from the use of 12-hourly measurements at SRRW and daily snow depth measurements at 
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SNOTEL stations. It is also important to note that while SRRW is classified as being a montane 

forest snow class, similar to the majority of sites in the SNOTEL study, there may be other factors 

not considered in this classification that can affect snowpack characteristics, specifically between 

West and Eastern snowpacks. 

 Low overall agreements between the satellite and SWE/snow depth indicate fundamental 

differences in how each indicator identifies melt. While more common at individual snow 

measurement sites and easier to measure than LWC, large snow station networks such as SNOTEL 

do not include instrumentation to collect snow surface temperature. This gap in snow radiation and 

melt data within snow monitoring networks hinders the ability to perform large-scale analyses of 

satellite melt detection methods. Without better melt proxies available across a wide range of snow 

stations, the usefulness of findings from further regional analyses of this PMW melt detection 

method may be limited. Although significantly better agreements between the satellite and ground 

data were observed in all analyses for stations located within the Sierra Nevada Mountain Range, 

without ground-based observations that are more reflective of snow liquid water content it is hard 

to determine if these agreements are statistically meaningful or if there are unique characteristics 

in the snowpack in this mountain range that allow this satellite method to perform better.  

 Positive correlations between agreements and elevation suggest that this melt detection 

method performs better at higher elevations. This may be due to sites at higher elevations having 

longer snow seasons, allowing for better calibration of the ΔTb-ΔTa relationship at these sites. 

Negative correlations with latitude suggest that there may be other factors causing higher 

agreements at sites in lower latitudes of the Western US, although this needs to be investigated 

further. Although correlations were overall low with site and pixel tree cover, all significant 

relationships with agreement were found to be negative. This corresponds with previous studies, 
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which found that microwave signals were not able to fully penetrate vegetation canopies (Chang 

et al., 1996; Foster et al., 2005; Lund et al., 2022).  

 Due to the low agreement and differences in seasonality between the satellite and SWE 

melt detection indicators (Figure 12), it can be concluded that this modified ΔTb-ΔTa melt 

detection method is not appropriate for detecting hydrologically significant melt events. 

Hydrologically significant events occur when liquid water is released from the snowpack into the 

surrounding environment and is often associated with consecutive days of high liquid water 

content in the snowpack (Johnson et al., 2020). The ΔTb-ΔTa method relies on detecting physical 

changes in the snowpack from dry to wet snow, and therefore continuously wet snow will not be 

detected. This is also supported by the relatively lower agreement between the satellite-detected 

melt events and the isothermal melt indicators in the SRRW study in 2023, compared to the 

agreement between the satellite and the IRT snow surface melt indicator. I find that the satellite 

melt detection method is instead best suited to detect surficial and/or midwinter melt events, as 

well as confirming the onset of hydrologically significant melt events. This method may also be 

useful for providing information about the energy balance of a snowpack, such as when the 

snowpack is warming up, along with being used for energy inputs for snowpack modeling in 

remote regions (Langlois et al., 2012). This method could also be useful for the assimilation of 

PMW derived snow depth and SWE data into models (J. Ramage & Semmens, 2012), as it can 

help determine when the snowpack is wet and therefore the PMW data are not reliable for inferring 

snow depth or SWE (Frei et al., 2012).  

 Results from this study are well aligned with those from previously literature. Johnson et 

al. (2020) used similar snow depth melt proxy techniques to validate a standard threshold-based 

melt detection algorithm with the same AMSR-E 25km 37GHz frequency PMW dataset. Their 
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DAV method was able to detect 46% of all melt events at three study sites in Colorado for one 

winter season. This matches very closely with results from my SNOTEL analysis, which showed 

an average TPR of 43% for 481 study sites over 9 years. They also similarly conclude that diurnal 

PMW melt detection methods are better suited for detecting mid-winter surface melt and refreeze 

events, and that snow depth and SWE data is not sufficient for true validation of these satellite 

methods. Johnson also found that the higher resolution AMSR-E data product increased the overall 

TPR to 78%. High resolution downscaled PMW observations are not included in this thesis as 

similarly processed data is not yet available for the AMSR2 satellite but could be investigated 

when data becomes available. Due to the novel nature of this research, there are few relevant 

studies with similar analyses and techniques that allow for direct comparison of quantitative 

results. Validation efforts of similar DAV methods have achieved comparable quantitative results. 

Ramage & Isacks (2002) used air temperature and stream discharge data to validate their original 

DAV method on the glaciers of Alaska and Northwestern Canada. They found significant 

relationships between DAV and stream discharge, suggesting their method was able to capture real 

transitions in the melt cycle rather than full hydrologic melt events. Li et al. (2012) evaluated 

AMSR-E DAV melt onset days using snow pillow SWE data in the Sierra Nevada Mountains. 

They demonstrated that PMW observations do contain valuable information about snowpack melt 

cycles in mountainous terrain, and they also found that diurnal air temperature variations were 

highly correlated with diurnal brightness temperature variations (DAV). In this context, Tuttle & 

Jacobs (2019)’s ΔTb-ΔTa method was the next logical step in improving snow melt extraction from 

PMW observations. 
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6. Conclusions 

 Detailed and continuous in-situ snowpack observations from Sleeper’s River Research 

Watershed provide a unique opportunity to investigate snowmelt detection methods using passive 

microwave brightness temperature observations. Surface temperature of the snowpack was the best 

indicator of melting snow, as defined by the transition of frozen water from a solid to a liquid state 

in the topmost layer of the snowpack. However, all ground-based melt indicators also resulted in 

high false positive rates. Hydrologically significant melt events, best captured by observations of 

SWE and internal snowpack temperature, are not well distinguished by the modified ΔTb-ΔTa 

PMW satellite melt detection method, with the exception of the initial transitional period as 

described by Ramage & Isacks (2002). While the dense networks of snow monitoring stations 

throughout the western US and Canada can provide vital snow depth, SWE, and meteorological 

data for runoff and water availability forecasts, current SNOTEL observations do not provide 

direct observations that would allow for the advanced prediction of snowmelt. The addition of 

instrumentation to measure snow internal and/or surface temperature will help improve validation 

efforts of PMW melt detection methods, which could aid in better snowmelt forecast modeling.  
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Figures  

 

Figure 1: Timeseries of snow depth and snow density data at Sleeper’s River Research Watershed, 

1972-1973, showing the accumulation period and the different stages of ablation (melt) for the 

snowpack. Figure from Dingman (2014). 
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Figure 2: a) Map of Sleeper’s River Research Watershed and instrumentation locations (red star). 

Blue lines indicate river/streams. Solid line represents boundary of watershed. Grey points are 

locations of USGS weekly SWE and snow depth sampling locations. Triangles indicate locations 

of stream gauges. b) Regional map of study site, outlined in red (Google Maps, 2023). 
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Figure 3: Sleeper’s River Research Watershed Tuttle research instruments for water years 2022 

and 2023. 1) Vertical snow temperature ladders using: 1a) HOBO MX2201temperature data 

loggers, 1b) iButton temperature sensors mounted on poles facing east (iButton S) and another set 

mounted directly on the stake facing north (iButton F), and 1c) custom thermistor sensors (from 

Eric Kelsey, Plymouth State). 2a) Wingscapes Timelapse Pro camera and 2b) snow depth stake to 

record photographs of snow depth every hour. 3) Snow Pack Analyzer-2 (SPA-2) with a) dielectric 

measurement bands and b) ultrasonic snow depth sensor. 4) Apogee Infrared Radiometer (IRT) 
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Figure 4: SRRW instrument data availability. Solid lines indicate data included in analysis, dashed 

lines indicate data collected but not included, grey indicates no data collected. 
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Table 1: Summary of all melt indicators used for each analysis for SRRW 2022, SRRW 2023, and 

SNOTEL 2002-2011. 

Study Melt 
Indicator Measurement Type Instrument Units Spatial 

Resolution 
Temporal 
Resolution 

SRRW 2022 

Snow 
Depth Snow Depth 

Snow Stake and 
Wingscapes 

Timelapse Camera 
(manual) 

cm Point 1 hour 

HOBO Snowpack 
Temperature Profile 

HOBO MX2201 
Water Temperature 

Data Loggers 
°C Point 10 minutes 

iButton F Snowpack 
Temperature Profile 

iButton DS1922L 
Temperature Data 

Loggers 
°C Point 1 hour 

iButton S Snowpack 
Temperature Profile 

iButton DS1922L 
Temperature Data 

Loggers 
°C Point 1 hour 

Satellite ΔTb-ΔTa AMSR2  K 25x25 km 12 hours 

SRRW 2023 

Snow 
Depth Snow Depth SPA-2 Ultrasonic 

Sensor cm Point 10 minutes 

Custom 
Ladder 

Snowpack 
Temperature Profile 

Campbell Scientific 
Thermistor 

Temperature Sensors 
°C Point 10 minutes 

IRT 

Surface Temperature 
& Downwelling 

Infrared Radiation 
Correction 

Infrared Radiometer 
Sensor (IRT) & 

Pyrgeometer 
°C Point 10 minutes 

Satellite ΔTb-ΔTa  AMSR2  K 25x25 km 12 hours 

SNOTEL 
(2002-2011) 

Snow 
Depth Snow Depth Ultrasonic Sensor cm Point Daily  

SWE Snow Water 
Equivalent Snow Pillow cm Point Daily  

Satellite ΔTb-ΔTa AMSR-E  K 25x25 km 12 hours 
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Figure 5: Map of snow climate classes (Sturm & Liston, 2021) and ground-based snow 

measurement stations (Musselman et al., 2021) across the western U.S. and Canada. The snow 

climate classes represent variations in snowpack characteristics (such as density, layers, crystal 

structure, etc.) derived using three climatic variables: wind speed, precipitation, and air 

temperature. For example, the Tundra snow class (purple) has characteristically dry snow that is 

heavily blown by wind and little to no melt features. The Ephemeral snow class (yellow), 

conversely, describes a thin, wet snowpack that frequently melts and reforms throughout the 

winter. 

Snow Station     
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Figure 6: Distribution of snow classifications for study sites within the SWE dataset, the Snow 

Depth dataset, and the combined dataset, using the updated high-resolution seasonal snow 

classification map (Sturm & Liston, 2021). Total number of stations in each dataset are also 

provided on the y-axis. Only stations with non-NA agreements were included. 
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Figure 7: Diurnal change in air temperature (y-axis) plotted against diurnal change in brightness 

temperature (x-axis) for snow covered periods for an AMSR-E pixel in the Northern Great Plains, 

USA, 2002-2011. The grey cluster of points represents was found to have a linear relationship 

between change in air temperature and change in brightness temperature over completely frozen 

snow for this location using modal linear regression. Melt (red) and refreeze events (blue) were 

identified as significant deviations from the ΔTb-ΔTa line using k-means clustering. (Updated 

figure from Tuttle et al, 2019). 
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Figure 8: Timeseries of 12-hour snow depth measurements at SRRW for the 2021-2022 winter with a) satellite, b) iButton, c) snow 

depth, and d) HOBO melt events. Horizontal dashed lines in b) and d) indicate 20cm snow depth thresholds necessary for temperature 

ladder melt detection (iButton and HOBO). b) includes both iButton F and iButton S melt events as they are almost identical. Vertical 

dashed line in d) indicates time when the HOBO temperature ladder was installed midwinter on January 20th, 2022. Grey shaded time 

periods on a) – d) indicate times when each respective melt indicator is NA, due to lack of data or conditions not met for melt detection. 

Graph e) shows the same time series of 12-hour snow depth measurements with all five melt indicators plotted above for comparisons.  
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Figure 9: Timeseries of 10-minute snow depth measurements at SRRW for the 2022-2023 winter with a) satellite, b) custom ladder, c) 

snow depth, and d) IRT melt events. Horizontal dashed lines in b) indicate 20 cm snow depth thresholds necessary for the custom 

temperature ladder melt detection. Grey shaded time periods on a) – d) indicate times when each respective melt indicator is NA, due 

to lack of data or conditions not met for melt detection. Graph e) shows the same time series of 10-minute snow depth measurements 

with all four melt indicators plotted above for comparison.
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Figure 10: Example confusion matrix for comparing SRRW HOBO temperature ladder melt 

events with the iButton F temperature ladder melt events. Red shows total number of matching 

melt events (TP), green shows total number iButton F melt events, and blue shows total number 

of HOBO melt events.  
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Table 2: SRRW sensitivities (TPR) between in-situ melt indicators. Each row and column indicate 

a different combination of data. Agreements are calculated using the total number of the column 

name for total melt events. (a) WY 2022, (b) WY 2023. 

 Assumed to be “True” 

2022 SD iButton S iButton F HOBO 

SD - 59.0% 63.1% 57.1% 

iButton S 52.5% - 95.0% 90.4% 

iButton F 54.5% 97.4% - 85.7% 

HOBO 54.5% 95.0% 92.3% - 

 

 Assumed to be “True” 

2023 SD IRT Custom Ladder 

SD - 48.2% 53.8% 

IRT 66.3% - 76.9% 

Custom Ladder 42.4% 48.8% - 
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Table 3: Summary of Sleeper’s River Research Watershed snowmelt detection results for 2022 

and 2023, including total melt events and agreements between satellite and in-situ melt indicators. 

Exact Binomial Tests were performed to determine if any agreements could be due to random 

chance. Sensitivities in black indicate they are higher than what would be expected from random 

chance, while grey indicates they are not.  

 # of Melts Detected Sensitivity ("True" Melts) 

In-Situ Melt Indicator In-Situ Satellite Both TPR Satellite TPR In-Situ 

2022 

Snow Depth 51 13 10 77% 20% 

iButton S Ladder 31 11 8 73% 26% 

iButton F Ladder 31 11 9 82% 29% 

HOBO Ladder 34 11 8 73% 24% 

2023 

Snow Depth 63 24 11 46% 17% 

IRT 86 24 23 96% 27% 

Custom Ladder 38 22 9 41% 24% 
 

 

 

Table 4: Average sensitivity (rate of true positive) for SNOTEL analysis for the SD (snow depth), 

SWE, and combined datasets. The number of sites in each dataset is also listed. Sensitivity was 

calculated first assuming satellite data is “true” and then assuming in-situ is “true”.  

  Average Sensitivities 

In-Situ Melt Indicator # of Sites Satellite In-Situ 

SD (all) 481 53.4% 43.0% 

SD (combined) 444 53.4% 43.2% 

SWE (all) 563 27.8% 39.7% 

SWE (combined) 444 27.6% 39.2% 
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Figure 11: Distributions of the daily sensitivity (TPR) statistic for all snow stations (444). “SD” 

refers to the comparison of snow depth and satellite melt events and “SWE” refers to the 

comparison of SWE and satellite melt events. The percent of true positive melts was calculated for 

the total number of satellite melt events (blue/green) and for the total number of in-situ melt events 

(orange). Horizontal line within boxplots indicates the mean of the dataset rather than the median.  
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Figure 12: Seasonal distribution of melt detection frequency for: (a) Snow Depth melts, (b) 

satellite melts (DAV) from the SD dataset, (c) SWE melts, and (d) satellite melts from the SWE 

dataset. Each datapoint is the average number of melt events that occur in that month for a specific 

site.  
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Figure 13: Map of SNOTEL sites and their sensitivities for the snow depth analysis (left) and 

SWE analysis (right), assuming that the in-situ melt indicator is “true” (top), and assuming the 

satellite melt indicator is “true” (bottom). a) Group of sites located in the Sierra Nevada Mountains 

are circled to show regional pattern of higher agreement between snow depth and satellite melt 

indicators. 
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Figure 14: a) Distributions of satellite and SWE sensitivities for all sites (red) compared to snow 

stations located within the Sierra Nevada Mountain Range (blue). b) Distributions of satellite and 

snow depth sensitivities for all sites (red) compared to snow stations located within the Sierra 

Nevada Mountain Range (blue). Kruskal-Wallis tests indicate that the Sierra Nevada snow stations 

have significantly higher agreements for all agreement statistics (p > 0.05). 
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Figure 15: Calculated spearman correlations between agreement statistics and site characteristics 

using the combined agreement dataset (n = 444). Elevation, latitude, longitude, and site tree cover 

refer to characteristics of the snow station site itself. Pixel tree cover refers to the tree cover percent 

of the entire AMSR-E pixel containing the snow station. The variable “Max SD” is the average 

yearly snow depth maximum recorded for each site, and same for the SWE. Color scale indicates 

direction and magnitude of correlation. Grey numbers indicate correlation was not found to be 

significant, with p < 0.05. The first two columns are for agreements between snow depth and 

satellite melt indicators, the second two columns are for SWE and satellite agreements. SD/SWE 

refer to rate of true positive (TPR) assuming ground-detected melt events are true, and “Satellite” 

refers to the TPR calculated assuming that the satellite-detected melt events are true.  
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Figure 16: Agreements by snow class. (a) Distributions of agreement between snow depth and 

satellite snowmelt indicators calculated assuming the satellite is detecting true melt events 

(TPRSatellite). (b) Agreement between snow depth and satellite indicators calculated assuming 

satellite-detected melt events are true (TPRSD). Kruskal-Wallis tests indicate that SD agreements 

show statistically significant differences between snow class groups, while SWE agreements 

showed no significant differences and are therefore not pictured. A Dunn’s Test indicates that for 

the TPRSatellite (a), Boreal Forest and Montane Forest have significantly different means, and for 

the TPRSD (b), only Boreal Forest and Prairie have significantly different means (p > 0.05). The 

snow class group “Ephemeral” was excluded due to lack of data.  
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PMW – Passive Microwave 

SD – Snow depth 

SNOTEL – SNOwpack TELemetry 

SPA-2 – Snow Pack Analyzer-2 

SRRW – Sleeper’s River Research Watershed, VT 
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SWE – Snow water equivalent 
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