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Abstract

Energy harvesting is considered as a prominent solution to supply the energy demand for

low-power consuming devices and sensor nodes. This approach relinquishes the requirements

of wired connections and regular battery replacements. This thesis analyzes the performance

of energy harvesting communication networks under various operation protocols and multi-

ple access schemes. Furthermore, since the radio frequency signal has energy, in addition to

conveying information, it is also possible to power energy harvesting component while estab-

lishing data connectivity with information-decoding component. This leads to the concept

of simultaneous wireless information and power transfer. The central goal of this thesis is to

conduct a performance analysis in terms of throughput and energy efficiency, and determine

optimal resource allocation strategies for wireless information and power transfer.

In the first part of the thesis, simultaneous transfer of information and power through

wireless links to energy harvesting and information decoding components is studied consider-

ing finite alphabet inputs. The concept of non-uniform probability distribution is introduced

for an arbitrary input, and mathematical formulations that relate probability distribution to

the required harvested energy level are provided. In addition, impact of statistical quality of

service (QoS) constraints on the overall performance is studied, and power control algorithms

are provided.

Next, power allocation strategies that maximize the system energy efficiency subject to

peak power constraints are determined for fading multiple access channels. The impact of

channel characteristics, circuit power consumption and peak power level on the node selec-

tion, i.e., activation of user equipments, and the corresponding optimal transmit power level

are addressed. Initially, wireless information transfer only is considered and subsequently

wireless power transfer is taken into account. Assuming energy harvesting components, two

scenarios are addressed based on the receiver architecture, i.e, having separated antenna or



common antenna for the information decoding and energy harvesting components. In both

cases, optimal SWIPT power control policies are identified, and impact of the required har-

vested energy is analyzed.

The second line of research in this thesis focuses on wireless-powered communication de-

vices that operate based on harvest-then-transmit protocol. Optimal time allocation for the

downlink and uplink operation interval are identified formulating throughput maximization

and energy-efficiency maximization problems. In addition, the performance gain among var-

ious types of downlink-uplink operation protocols is analyzed taking into account statistical

QoS constraints.

Furthermore, the performance analysis of energy harvesting user equipments is extended

to full-duplex wireless information and power transfer as well as cellular networks. In full-

duplex operation, optimal power control policies are identified, and the significance of intro-

ducing non-zero mean component on the information-bearing signal is analyzed. Meanwhile,

SINR coverage probabilities, average throughput and energy efficiency are explicitly char-

acterized for wireless-powered cellular networks, and the impact of downlink SWIPT and

uplink mmWave schemes are addressed.

In the final part of the thesis, energy efficiency is considered as the performance metric,

and time allocation strategies that maximize energy efficiency for wireless powered commu-

nication networks with non-orthogonal multiple access scheme are determined. Low complex

algorithms are proposed based on Dinkelbach’s method. In addition, the impact of statistical

QoS constraints imposed as limitations on the buffer violation probabilities is addressed.
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Chapter 1

Introduction

1.1 Wireless Information and Power Transfer

With billions of low-power consuming devices, such as wireless sensors, connected to the

internet within the frame work of Internet-of-Things (IoT), there is significant growth in

the energy demand as well as data traffic. Hence, much attention has been given to ef-

fective utilization of available energy resources in the network while accomplishing reliable

information exchange between the transmitter and receiver with certain quality of service

guarantees. Inspiring scientific ideas have been providing promising solutions and approaches

to the problem of ever increasing demand for scarce resources such as energy and bandwidth.

These solutions help to reduce operating costs and the impact on the environment. In recent

years, harvesting energy from the information-bearing signal has been proposed as one viable

strategy. Theoretically, in wireless power transfer, energy can be harvested from either ambi-

ent radio-frequency (RF) electromagnetic signals or dedicated energy beamforming sources.

Energy harvesting from RF signal is considered as a promising solution to power up low-

power consuming devices such as sensors implanted in the human body to monitor certain

activities [1]-[4], or those placed inside a physical structure, e.g. bridges [5], to continuously

measure control parameters.

1



Advances in the technology lead to smaller devices with much better computational and

communication capabilities. In such scenarios, using wired connection to supply energy from

an external source may be infeasible if the number of devices is large as in sensor networks,

or using built-in batteries could be challenging as these have limited-life span and replacing

them becomes a rather difficult and very tedious procedure. This promotes energy harvest-

ing before establishing data communication, and in the literature, the phenomenon is known

as harvest-then-transmit protocol. It is mainly applicable to wireless-powered communica-

tion networks (WPCN) consisting of multiple nodes or remote user equipments (UEs) that

harvest energy from abundant RF signals present in the surrounding environment or sent

from dedicated wireless power sources. The latter method guarantees reliability of power

supply, and it can be more efficient via energy-beamforming. Furthermore, the number of

antennas as well as the spatial arrangement of wireless power source and information receiver

can have an effect on the operation protocol, i.e., half-duplex mode or full-duplex mode, for

wireless information and power transfer in WPCN. In half-duplex mode, uplink information

transfer and downlink energy harvesting operations occur over non-overlapping time inter-

vals, whereas in the full-duplex mode these operation can be carried out concurrently.

As mentioned above, energy harvesting enables the transfer of power to a wireless-powered

device through a wireless link. On the other hand, conveying information on the signal that

targets energizing the receiving end leads to simultaneous wireless information and power

transfer (SWIPT). This enables the joint transfer of data as well as power to a destination

where information-decoding (ID) component and energy-harvesting (EH) components are

equipped with common or separated antenna architecture. In the first case, both ID and

EH components employ a common antenna to collect the transmitted signals, whereas in

the second case, both components have independent antenna architecture and hence EH

component harvest energy opportunistically from the transmitted signal intended to the ID

component. In the literature, there has been significant interest in exploring the feasibility,

efficiency, and implementation of SWIPT strategies (see e.g., [6]−[10]).

2



1.2 Literature Overview

1.2.1 Power Allocation Strategies for Simultaneous Wireless In-

formation and Power Transfer

Optimal resource allocation policies designed to benefit information transfer or to utilize

available energy resources efficiently do not guarantee the same performance when energy

transfer is incorporated along with the information-bearing signal. In principle, SWIPT

requires modeling components and allocating resources at the transmitting and receiving

ends taking into account of the additional constraint in SWIPT, i.e., harvested energy con-

straint. The authors in [11] designed a receiver architecture that employs SWIPT, but due

to practical hardware limitations for co-located ID and EH components with common an-

tenna setup, power splitting scheme was proposed to share the received signal power between

these components proportionally and perform information decoding and energy harvesting

tasks, concurrently [12]. Meanwhile, reconfigurable dual-antenna model was proposed in

[13] to support uplink wireless information transfer (WIT) and downlink SWIPT at the user

end operating in a broadband system. Related works are presented in references [14], and

[15] considering multiple antennas at the transmitting and receiving ends. Furthermore,

distributed antenna systems for SWIPT were introduced in [16], and power management

strategy that maximizes information transfer was determined in the presence of stochasti-

cally distributed energy receivers while satisfying energy constraint. The authors in [17]

considered a wireless network with nodes that can decode information and harvest energy

simultaneously by applying the power splitting scheme. A similar setup but with multiple

sources communicating with the destination through an energy-harvesting relay node is ad-

dressed in [18] and [19]. In these studies, the relay operates in half duplex mode in which

it applies power splitting to the received signal during the first phase, and then forwards

the decoded information to the destination in the second phase. Meanwhile, the authors

in [20] considered sub-carrier partitioning for ID and EH components based on orthogonal
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frequency division multiplexing (OFDM) instead of applying the power-splitting scheme.

There are also several studies on the application of SWIPT in point-to-point communication

systems and also in multiple-user model [12]−[21]. In addition, interesting observations can

be found in various regards such as in cognitive-radio networks (CRN) and cooperative relay

networks (see e.g., [22]−[26]).

In the above mentioned and related studies in the literature, optimization strategies

and rate-energy tradeoffs are identified for time-switching and power-splitting schemes con-

sidering ideal Gaussian-distributed input signals. However, practical signals are generally

selected from finite constellations, and hence it is appealing to study the performance of

SWIPT with finite-alphabet input signals. Furthermore, it is important to study mutual

information expression for SWIPT, and explore the significance of non-uniform input distri-

butions to improve the rate-energy tradeoff characteristics.

On the other hand, in addition to having finite alphabet inputs, various nodes in wire-

less communication networks experience different channel characteristics due to path loss

and small-scale multi-path fading. Hence, different nodes do not necessarily utilize available

resources, e.g. operating intervals and transmit power, in the same way, and in such cases,

allocating the resources optimally with the goal of maximizing the network throughput is an

important and critical issue. More specifically, for delay-sensitive UEs, statistical queuing

(or equivalently quality of service (QoS)) constraints such as limitations on buffer violation

probabilities have significant impact on the throughput that is supported by each user, and

this throughput is quantified by effective capacity (see e.g. [27]−[33] for comprehensive

overview). Initially, the authors in [27] analyzed effective bandwidths of the time-varying

departure processes. In [28], the maximum constant arrival rate that can be supported by

a given service process under QoS constraints was investigated, whereas in [29], optimal

power control policies that maximize the effective capacity were derived. Meanwhile, anal-

ysis of effective capacity for dual-hop network was conducted in [30]. More recently, the

authors in [31] provided detailed characterizations of the statistical QoS-based throughput
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and energy efficiency for various source models. Additional studies are conducted in [32] and

[33] considering multiple-access fading channels and energy efficiency, respectively. These

works provided interesting observations and insightful results focusing on the number of bits

successfully transmitted over the wireless link. However, further investigation becomes nec-

essary to comply with the design goals of future advanced green communication networks in

which energy transfer along with information-bearing signals has gained more attention as

a promising solution for low-power consuming devices.

1.2.2 Energy Efficiency in Fading Multiple Access Channels

In wireless networks, multiple access is a transmission scenario in which multiple nodes or

user equipments (UE) transfer information uplink to an access point. There are various types

of multiple access schemes including, e.g., time-division multiple access (TDMA), frequency-

division multiple access (FDMA), and code-division multiple access (CDMA). In wireless

channels, mobile UEs experience multipath fading and operate under different resource con-

straints, and hence in the above mentioned multiple access schemes, determining optimal

resource allocation policies that maximize the system performance is required. With this

motivation, fading multiple access channels have been extensively studied, generally consid-

ering throughput as the performance metric, and numerous publications in the literature

provide concrete theoretical framework (see e.g., [33]− [39]).

Generally, throughput maximization in multiple access channels (MACs) encourages UEs

to utilize their resources fully, i.e., transmit at the peak power level. However, due to increas-

ing energy consumption and cost in communication systems, efficient utilization of available

energy resources to transfer each bit of information is an important and a compelling perfor-

mance indicator [34]. In particular, in energy-constrained wireless networks, energy-efficient

operation leads to longer battery life and recharging cycle. In addition, this further enables

the activation of more service nodes or UEs, and reduces the indirect impact on the envi-

ronment due to carbon emission and related issues when considered at large. Despite these
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motivating facts, as noted in [35], there were only limited works on the energy efficiency

(EE) of MACs with respect to various multiple access methods, and in this work, the au-

thors compared the impact of TDMA and spatial-division multiple access (SDMA) schemes

on circuit power consumption and energy efficiency as well. They proposed energy aware

algorithms that select either of these schemes to allocate time slots to multiple users on

each sub-band. The tradeoff between EE and spectral efficiency (SE) for Gaussian MAC

was investigated in [36] without circuit power consumption. Meanwhile, circuit power con-

sumption was considered in [37], and the impact of transmission bandwidth and throughput

were taken into account to model total circuit power consumption. In principle, EE and SE

are conflicting performance metrics, i.e., one benefits at the cost of the other. Like spec-

tral efficiency, quality-of-service (QoS) constraints also have significant impact on the EE

of MAC as discussed in [38] in which the authors formulated energy minimization problem

that determines optimal departure curves for each user given their arrivals characteristics.

Related work was presented in [39] considering packet dropping as a QoS parameter.

All these studies provide interesting observations and new insights. However, only lim-

ited attention has been given to energy-efficient resource allocation in multi-user scenarios

in which UEs communicate with a receiver through a MAC. However, this issue has gained

more importance in the design of next-generation 5G wireless networks where energy efficient

uplink/downlink operation (especially in small cells) is one of the primary goals [40] [41].

On the other hand, based on the fact that information-bearing signal also conveys energy,

the feasibility and implementation of SWIPT have been intensively studied considering net-

work throughput as a performance metric. However, energy-efficient resource allocation is

another performance metric as noted earlier, and several recent studies have addressed this

key parameter in the presence of wireless power and information transfer. The authors in

[42] studied energy efficiency (EE) of multiple users that operate employing OFDMA under

the assumption that each user has co-located ID and EH circuitries. In this work, harvested

energy from a dedicated information-bearing signal and other nearby unknown interference
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Figure 1.1: 5G wireless networks

was deducted from the consumption when evaluating the total number of bits successfully

transferred per net consumed energy. A related work with similar EE definition was pre-

sented in reference [43] considering multiple-input single-output (MISO) models. Meanwhile,

the conventional EE definition, i.e., achievable data rate per total consumed energy, was ap-

plied in [44] while studying energy-efficient OFDMA systems with non-overlapping uplink

and downlink operation intervals. Unlike these approaches, the potential capacity produced

by the transferred energy was added to the system capacity in reference [45] assuming that

the harvested energy primarily contributes to future information transfer. In all these defini-

tions, EE metrics measure successfully transferred bits of information per consumed energy.

On the other hand, the authors in [46] introduced a new approach to evaluate the EE of

SWIPT systems. They considered the EE of information transfer and EE of energy transfer

separately, where the latter is defined as the amount of energy transferred per total consump-

tion. As can be noted from these studies, incorporating SWIPT in wireless networks has

direct impact on energy-efficient power control policies, but, as to the best of our knowledge,

this has not been sufficiently addressed in MAC so far.
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1.2.3 Throughput- and Energy-Efficient Transmission Strategies

for Wireless Powered Communication Networks

As noted earlier, energy harvesting is a promising solution to the future energy-efficient

WPCNs. It enables one to remotely energize low-power consuming devices that might not

have an embedded power source or may be equipped with limited-size rechargeable batter-

ies. In either case, wireless power transfer guarantees continuous power supply, and avoids

disruption due to the need of battery replacement or recharging [47]. In fact, this newly

emerging technique can be applied to a wide range of applications, but it has a direct im-

pact on optimal resource allocation strategies among the network nodes, and the design of

UEs [48]. Hence, the feasibility and implementation of WPCN have been intensively studied

in recent years. (see e.g., [49] - [55]). The authors in [49] proposed harvest-then-transmit

protocol in which an access point (AP) broadcasts wireless power to users that later transfer

information to the AP through uplink channels. In this work, the downlink energy harvesting

and uplink data transfer operations were assumed to take place over non-overlapping time

intervals. In addition, each user transmitted an information-bearing signal based on TDMA

scheme. The authors illustrated that sum-rate capacity maximization benefited nearby users,

i.e., optimal solution encouraged to allocate more time for these users. A similar protocol

was applied in [50] to operate remote devices considering a three-node system that consists

of a single user with spatially separated wireless power source and information receiver. In

this paper, average symbol error rate was introduced as a constraint while formulating an

optimization problem to determine optimal time allocation strategy that maximize through-

put. Related works were presented in [51] and [52] focusing on large-scale wireless-powered

communication networks, and considering multiple antennas at the power station, respec-

tively. A point-to-point WPCN with multiple antennas at the hybrid AP was presented

in [53] taking into account delay-limited and delay-tolerant scenarios. In this work, energy

beamforming was carried out using maximum ratio transmission. Meanwhile, multiple-user

models having multiple antennas at the energy broadcasting and information decoding base
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station (BS) were presented in [54] and [55] with the above-mentioned protocol.

In these references, downlink energy broadcast and uplink information transfer opera-

tions are carried out in half-duplex operation mode, i.e., over orthogonal time intervals.

In fact, deploying multiple antennas at the AP/BS provides the opportunity to carry out

these operations in full-duplex mode, i.e., base station or an access point broadcasts wireless

power to energize the nearby users while decoding the information transmitted uplink by

these or other users. Despite the possibility of having strong self-interference at AP/BS,

recent studies demonstrate the feasibility of this approach in various settings. More specif-

ically, the authors in [56] assumed that each user harvested energy until the beginning of

its data transmission, and all the harvested energy was utilized during each symbol interval.

Meanwhile, in [57] users were allowed to harvest downlink broadcast power except during

their corresponding uplink information transfer interval. In such a case, any extra harvested

energy which is not utilized for data transmission will be stored in the battery for the next

block duration. Self-energy recycling in two-hop network with full-duplex operation was

discussed in [58] under the assumption that the energy-constrained relay harvested energy

while sending information. In this work, the authors considered MISO model, and proposed

a two-phase AF protocol in which full-duplex operation occurs in the second phase.

All these WPCN studies provide detailed analysis and interesting results considering

Shannon capacity formulation and outage capacity definition as measurement metrics for

throughput. However, in practice, statistical queuing constraints have significant impact on

the arrival rate that is supported by each user, and optimal resource allocation for WPCN

under QoS constraints have not been addressed, to the best of our knowledge. On the other

hand, designing resource allocation strategies which target energy efficiency of a WPCNs

is necessary in these days. Recently, the authors in [59] investigated energy-efficient time

allocation and power control strategy for WPCN considering a model that users harvest

energy simultaneously and then transmit information uplink based on time-division proto-

col. However, it is possible for users to continuously harvest until scheduled for transmission
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so long as WPS and AP are using independent antennas. Besides, users can also scavenge

energy from an information-bearing signal transmitted by a user scheduled earlier for uplink

data transfer, and this surely affects the energy-efficient time allocation for the operation

intervals. Furthermore, considering the case in which energy harvesting UEs transmit in-

formation uplink through a multiple access channel, instead of time-division manner, could

lead to better energy efficiency. Thus, it is much more interesting and relevant to study the

energy efficiency of WPCNs considering various downlink-uplink operation protocols.

1.2.4 Performance Analysis of Energy Harvesting Cellular Net-

works

One of the main challenges in data gathering from randomly deployed sensor networks or

user equipments is the need to have continuous energy supply, and energy harvesting can

be one efficient solution, specially for low-power consuming devices. As mentioned earlier,

this encourages wireless information and power transfer, and there are several publications

in the literature which address the issue in cellular networks. The authors in [60] applied the

concept of stochastic geometry, and provided analytical characterization and optimization

of cellular mobile devices that are capable of harvesting energy and decoding information

simultaneously. Related work was presented in [61] considering MIMO cellular networks.

The authors in [62] modeled randomly located base stations of SWIPT-enabled cellular

networks applying stochastic geometry, and they investigated the fundamental trade-offs

using joint complementary cumulative distribution function (CCDF) of average rate and

harvested energy. A related work was presented in [63] focusing on several diversity schemes

for SWIPT-enabled cellular networks. It is shown that receiver diversity have the ability

to improve both data rate and amount of harvested energy, simultaneously. Meanwhile,

downlink SWIPT with power splitting at the receiving end and an uplink WIT using the

downlink harvested energy was studied in [64] for heterogeneous cellular networks with K-

tiers. In the paper, the authors considered both nearest base station cell association and
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maximum received power cell association scenarios, and they evaluated the system perfor-

mance considering outage probability and ergodic rate as performance metrics. Similarly, in

reference [65], k-tier heterogeneous cellular network was considered with uplink information

transfer, but the downlink was dedicated to power the mobile terminals, instead of SWIPT.

The authors in [66] studied relay-based WPCNs where the relay node supports not only the

uplink information transfer but also the downlink energy broadcasting. In this paper, iter-

ative algorithms were proposed to determine optimal time and power allocation strategies.

Related works are presented in [67] and [68] considering energy harvesting in K-Tier cellular

networks.

When it comes to powering energy-limited cellular UEs, obtaining an energy-efficient

resource allocation strategy is almost necessary and is a core point of research. In [69],

energy-efficient beamforming was studied for heterogeneous cellular networks that have ID

and EH users in the femto-cell co-channel overlaid with a macro-cell. The authors formulated

optimization problems that maximize the information transmission efficiency of ID users and

energy harvesting efficiency of EH users while satisfying QoS of all users. The authors in [70]

have focused on energy efficiency, and addressed mmWave for relay-assisted cellular networks

with non-cooperative mobile users and cooperative mobile users. Furthermore, analysis of

bidirectional antenna for SWIPT in cellular networks were given in [71]. Yet, despite these

works, the impact of allocating optimal downlink/uplink operating intervals on the system

energy efficiency (EE) in the presence of randomly deployed wireless-powered UEs has not

been investigated. In addition, using stochastic geometry as tools, it is necessary to investi-

gate the influence of circuit power consumption as well as downlink transmit power level on

the optimal operation intervals, and their impact on the overall system energy-efficiency.

Another key issue in cellular network the need to accommodate densely populated UEs

with higher data rate, and in future green communication networks operating at higher

frequencies, i.e., 28-30GHz, a.k.a. millimeter wave (mmWave) frequencies suggested as a

prominent solution. Several studies in the literature have modeled the channel character-
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istics for mmWave communications, and then investigated the performance gains. In [72],

the authors modeled mmWave in cellular networks, and provided details focusing on cov-

erage and rate analysis. They derived analytical expressions for the SINR coverage proba-

bilities, and analyzed dense networks using an equivalent ball model. Related works were

presented in [73]-[75]. Meanwhile, application of mmWave to wireless information and trans-

fer was very recently studied in the literature. Specifically, the authors in [76] investigated

the performance of harvesting energy from the signal transmitted in mmWave frequency

bands, and derived closed-form expressions for energy coverage probability, and average har-

vested power. In addition, they formulated joint energy-information coverage probability

for a wireless-powered network. A related work was presented in [77] considering harvest-

then-transmit protocol in mmWave, i.e., downlink energy harvesting and uplink information

transfer are carried out in mmWave frequency bands. They derived explicit expressions for

the average harvested energy and average achievable uplink information transmission rate.

Similarly, the authors in [78] analyzed joint CCDF of information rate and harvested power

in mmWave cellular networks applying maximum ratio transmission and maximum ratio

combining at the receiver and transmitter terminals, respectively. Despite these works, im-

pact of operating time interval in mmWave wireless-powered cellular networks has not been

investigated, to the best of our knowledge. For such models, hybrid approach, i.e., broad-

casting an energy signal at lower microwave frequencies, instead of downlink mmWave, and

then uplink information transfer in mmWave band, can provide better performance. This is

because mmWave is sensitive to blockage and energy harvesting focuses only on the received

power level. Moreover, energy efficiency analysis in energy harvesting cellular networks with

mmWave uplink information transfer is a key issue to address, and it is important to analyze

the impact of various parameters, such as operating intervals and circuit power consumption,

as well.
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1.2.5 Non-Orthogonal Multiple Access in WPCNs

The feasibility of wireless power transfer guarantees implementation of wireless-powered

communications applying harvest-then-transmit protocol, and each node can transfer infor-

mation uplink to the receiving end using time/frequency-division multiplexed transmission

schemes, or in general orthogonal multiple access scheme, as mentioned in all the above and

related studies. However, non-orthogonal multiple access (NOMA) has recently attracted

much interest from both academia and industry as one of the prominent solutions for fu-

ture 5G wireless networks as it enhances spectral efficiency. As discussed in the literature,

NOMA is categorized into power-domain and code-domain NOMA based on how users’ data

multiplexing is achieved [79], and it can be applied to both downlink and uplink operations.

In principle, power-domain NOMA utilizes superposition coding (SC) at the transmitter and

successive interference cancellation (SIC) at the receiver, and this allows multiple users to

transmit information on the same sub-carrier channel simultaneously. The decoding order

for SIC depends on the channel characteristics of the wireless link between each transmitter-

receiver pair, i.e., the main idea is that information transmitted to the receiver with the

strongest wireless link is decoded without interference. In [80], the authors provided the

basics of power-domain NOMA scheme and discussed possible solutions to address the chal-

lenges that could be experienced while applying this technique. Similarly, the authors in [81]

focused on power-domain NOMA with downlink operation, i.e., SC at the transmitter and

SIC at the receivers. Another related work was presented in [82] considering both power and

channel allocation in a downlink cellular system. Meanwhile, the authors in [83] introduced

and explicitly formulated the concept of power division multiple access (PDMA), and they

proposed orthogonal PDMA protocol based on bit-orthogonality principle. In addition, they

compared the energy efficiency of the proposed approach with conventional time/frequency

division multiple access techniques. In fact, most of the above mentioned studies analyzed

the throughput to characterize and compare the performances obtained using different ap-

proaches. However, in the presence of limited power resources, efficient utilization of the
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available energy to transfer each bit of information is also necessary. Hence, several studies

in the literature considered energy efficiency as a compelling performance metric to design

optimal resource allocation strategies for future wireless networks [84]. More specifically,

the authors in [85] considered heterogeneous radio access networks, and characterized the

system energy efficiency in a setting in which the cloud center transferred information down-

link to different types of base stations using NOMA scheme. In this work, it is argued that

system energy efficiency under NOMA depends on the number of base stations in each type,

and a heuristic algorithm is proposed to sequentially determine the optimal number of base

stations for each type. Energy efficient resource allocation for downlink NOMA system were

also presented in [86]. The authors in [87] proposed a low-complexity suboptimal algorithm

for sub-channel assignment and power allocation. A related work was presented in [88] con-

sidering fading MIMO channels.

Meanwhile, several studies have addressed the issue in regard to WPCN. In [89], up-

link NOMA is introduced for wireless powered communications where uplink and downlink

operations are carried out over non-overlapping intervals, and the authors formulated opti-

mization problems which maximize the throughput. The authors in [90] studied the joint

design of time allocation, downlink energy beamforming and receiver beamforming in wire-

less powered communication networks employing uplink NOMA. In this work, the formulated

optimization problem focused on obtaining a solution that maximizes the sum rate capacity,

but because of the non-convexity of the problem, an iterative algorithm was proposed. Sim-

ilarly, joint optimization of base station transmit power and operating intervals for uplink

NOMA in WPCNs was considered in [91]. Yet, despite these works, the impact of NOMA

on the system energy efficiency (EE) in the presence of wireless-powered users has not been

investigated, to the best of our knowledge.
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1.3 Main Contributions

We summarize the main contributions of the thesis below:

• In Chapter 3, we consider a point-to-point communication system in which a source

transmits a SWIPT signal selected from finite alphabets. The receiver has ID and

EH components, and power-splitting scheme is applied to carry out these operations

concurrently. In order to improve the rate-energy tradeoff characteristics, we have

introduced a novel approach that assigns probabilities non-uniformly to different sig-

nals in the constellation based on their energy level. According to the relationship

between signal probabilities and energy consumption, these signal probabilities can be

adjusted using two techniques, namely static slope characteristics and dynamic slope

characteristics, given the minimum harvested energy constraint. Intuitively, advantage

of one approach over the other depends on the improvement of the power-splitting

factor when high energy input signals become more likely to be transmitted. In order

to determine the optimal solution, we formulate an optimization problem and develop

an algorithm taking into account the key parameters, e.g., splitting factor and signal

probabilities.

• In addition, in Chapter 3, we consider a SWIPT model in which multiple-nodes with

delay-limited sources transmit finite alphabet input signals. These nodes communi-

cate through time-division multiple access channels, and the receiving node harvests

energy from the received signal while decoding information by applying power splitting

scheme. In addition, the transmitting nodes are subject to limitations on the buffer

overflow probability, specified by the quality of service (QoS) exponent θ. Due to

harvested energy constraint, we have applied the novel approach to assign probabili-

ties non-uniformly to different signals in the constellation. We formulate optimization

problems to maximize the effective capacity and effective EE while taking input signal

probabilities, operating intervals, and splitting factor into account. Since obtaining
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closed-form expressions for the optimization parameters are unlikely, we develop an

algorithm to determine the solutions numerically.

• In Chapter 4, we consider multiple access channels, and focus on obtaining the optimal

resource allocation schemes that maximize the system energy efficiency while satisfy-

ing energy and power constraints. In addition, we study the performance tradeoffs for

energy-efficient transmission policies when SWIPT is incorporated in MACs. Usually,

EE studies in the literature that consider SWIPT apply algorithms to obtain optimal

solutions for given EE definitions, but in our work, we provide novel closed-form ex-

pressions for the optimal transmit power levels. More specifically, we, first, formulate

concave-linear fractional optimization problems that maximize the instantaneous en-

ergy efficiency in a MAC, and identify the Karush-Kuhn-Tucker (KKT) conditions to

determine optimal solutions. We provide novel closed-form expressions for the opti-

mal transmit power levels, and characterize the impact of peak power constraint on

the optimal resource allocation strategy. Then, we incorporate SWIPT and formulate

optimization problems considering two types of receiver architectures, namely sepa-

rated and common, for ID and EH components at the receiving node. We also address

the impact of battery size on the optimal solution when energy demand is satisfied

by the energy-efficiency maximizing input. We perform similar analysis when ID and

EH components are supported by a common antenna. In this case, we incorporate

power splitting scheme to share the received signal power between the decoding and

harvesting operations, and hence we characterize power splitting factor in terms of

the harvested energy requirement. In all the cases, we provide energy-efficient node

selection policies and analytical expressions for the optimal transmit power level. In

addition, we explicitly characterize optimal system EE, and the impact of harvested

energy demand on the optimal EE and other critical parameters such as power splitting

ratio.
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• In Chapter 5, we study the performance of various wireless information and power

transfer protocols for wireless-powered communication networks in the presence of

delay-limited sources. We consider that UEs harvest energy from wireless power trans-

mitter (WPT) and then transmit information uplink to AP either over orthogonal time

slots using TDMA scheme or simultaneously using MAC. Each user is subject to limita-

tions on the buffer overflow probability, and the time allocation for the downlink energy

harvesting and uplink information decoding operations rely on these constraints in ad-

dition to the channel characteristics. Depending on whether the performance metric

is throughput or energy efficiency, we formulate optimization problems to obtain the

best resource allocation strategies while taking QoS constraints into account. Since the

problems are concave/Pseudo-concave maximization problems, Karush-Kuhn-Tucker

(KKT) conditions are necessary and sufficient for global optimality. Applying these

conditions, we provide analytical expressions for the optimal operating intervals. How-

ever, in some cases, it is difficult to obtain closed-form expressions, and hence, we

develop an algorithm to solve the problems numerically. Furthermore, we determine

the special conditions where optimal solutions become independent of the QoS expo-

nent.

• In Chapter 6, we introduce non-zero mean-information bearing signals, and study op-

timal resource allocation strategies for wireless information transfer (WIT) as well as

SWIPT focusing on the throughput and system’s energy efficiency. We consider multi-

ple user settings with energy harvesting and non-energy harvesting UEs, and we derive

explicit expressions for the throughput maximizing power control policies. In addition,

we provide an iterative algorithm to obtain the optimal solution using the formulated

expressions. Besides, we explicitly characterize energy-efficient strategies considering

a two-user model, and then generalize to multiple users settings. We also character-

ize impact of harvested energy constraint on the optimal system energy efficiency and

significance of introducing non-zero mean input signal.
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• In Chapter 7, we consider a wireless-powered cellular network in which UEs do not

have embedded power sources, but harvest energy from densely deployed APs. Using

tools from stochastic geometry, we first characterize SINR coverage probabilities and

achievable data rates as a function of the system parameters, i.e., uplink and downlink

operating intervals. We also provide expressions to analyze the system energy effi-

ciency (measured by throughput per total consumed energy). Furthermore, we study

the performance characteristics incorporating SWIPT, instead of WPT, in the down-

link channel while having WIT over the uplink channel. In such scenarios, we derive

coverage probabilities as a function of an additional parameter, i.e., power splitting fac-

tor. Furthermore, we study mmWave based energy harvesting cellular networks where

UEs harvest energy using signals in the lower frequency bands, but send information

uplink using mmWave frequency bands. For this case, we provide the cellular network

model, and explicitly characterize the average harvested energy, SINR coverage proba-

bility and achievable rate as a function of network parameters, such as directivity gains

and APs density.

• In Chapter 8, we study the energy-efficient time allocation strategies for WPCN with

uplink power-domain NOMA. More specifically, we consider two scenarios, namely half

duplex and asynchronous transmission, based on the coordination of uplink and down-

link operations, and we compare the performance gains achieved by these approaches

with the conventional TDMA scheme. More specifically, energy-efficient resource allo-

cation strategies are investigated for wireless information and power transfer consider-

ing two types of uplink-downlink coordination scenarios, namely half-duplex and asyn-

chronous transmission. In both cases, we formulate optimization problems focusing

on the system energy efficiency while UEs are allowed to transmit information-bearing

signals simultaneously on the same frequency band based on the non-orthogonal multi-

ple access scheme. We show that the optimization problems satisfy pseudo-concavity,

and subsequently derive the necessary optimality conditions for each scenario. Due
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to the difficulty in obtaining analytical expressions for the optimal solution, we pro-

vide iterative algorithms using the Dinkelbach’s method. Furthermore, we consider

delay-limited data sources, and address the impact of statistical queuing constraints

on energy-efficient time allocation policies. In this case, we define and derive the system

effective energy efficiency with downlink power transfer and uplink NOMA. We formu-

late optimization problems that maximize the system effective energy efficiency in the

presence of constraints on buffer violation probabilities at UEs. We prove the presence

of unique allocation of the optimal operating intervals, and propose an algorithm based

on the bisection method.

1.4 Outline of Thesis

The thesis mainly addresses on the performance analysis of wireless information and power

transfer focusing on throughput and energy-efficient resource allocation schemes. The re-

mainder of the thesis is organized as follows: Chapter 2 provides the necessary preliminary

background on statistical queuing constraints studied in the subsequent chapters of the thesis.

Chapter 3 introduces novel schemes that assign non-uniform probabilities to finite alphabet

input signals for SWIPT, and presents optimal resource allocation policies that maximize

throughput and energy efficiency considering buffer violation probability as a quality-of-

service (QoS) constraint. Chapter 4 mainly characterizes energy-efficient resource allocation

strategies for fading multiple access channels both in the presence and absence of SWIPT, and

analytical expressions are derived for each scenario. In Chapter 5, optimal time allocation

policies are analyzed for delay-sensitive wireless-powered communication networks consider-

ing various downlink-uplink operation protocols. In chapter 6, energy-efficient transmission

with non-zero mean input is characterized under full-duplex downlink energy transfer and

uplink information transfer. Chapter 7 presents performance analysis for energy-harvesting

cellular networks using stochastic geometry. In Chapter 8, non-orthogonal multiple access is
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introduced for WPCNs, and energy-efficient time allocation strategies are characterized.
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Chapter 2

Preliminaries

In this chapter, we discuss the basic concept of energy harvesting, and the main components

of the receiving structure. In addition, mathematical models and preliminaries of statistical

queuing constraints are presented briefly.

2.1 Energy Harvesting

As mentioned earlier in the first chapter, energy harvesting is a prominent solution for fu-

ture green communication networks, and it is a phenomenon by which a power consuming

electronic device harnesses energy from an external source. There are different types of en-

ergy sources such as as solar, wind, thermal, biochemical and wireless as illustrated in Fig.

2.1. Except for wireless/RF sources energy is obtained in other forms, and additional device

is necessary to convert it into a usable form, i.e., electric energy. In the case of wireless

power source, energy harvesting is about utilizing the electric as well as magnetic energy in

the electromagnetic waves that are transmitted at certain frequencies. In fact, the distance

between RF energy source and the receiver determines the type of harvesting technique as

well as the amount of harvested energy. In the case of near-field harvesting, electric energy

can be harvested based on inductive coupling principle, on the other hand in the case of

far-field harvesting, the receiving component usually is equipped with antenna to scavenge
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the abundant RF signals from radio broadcasting, WiFi communications, or a dedicated

wireless power source.

Figure 2.1: Energy sources block model

Architecturally, the main component of an energy harvesting device is known as a

rectenna which is a rectifying circuit which is shown in Fig. 2.2. The diode is used to

convert the AC signal into pulsating DC, and the low pass filter removes the high frequency

components. In addition, the DC-to-DC converter allows the generation of approximately

constant output voltage with very small ripple. The design of energy harvesting could be in

such a way that the harnessed energy is directly utilized or stored in a large size capacitor/

rechargeable battery.

Figure 2.2: Rectenna model
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2.2 Statistical Queuing Constraints

In our studies addressing delay-sensitive traffic, we consider that each user equipment stores

received data packets generated by a delay-sensitive source that requires certain statistical

QoS guarantees described by the QoS exponent θ. More specifically, the tail distribution of

the buffer is required to have an exponential decay with rate controlled by the exponent θ,

and the buffer violation or overflow probability is described as

Pr
{
Qi ≥ Qmax

}
≈ ςe−θiQmax (2.1)

whereQi denotes the stationary queue length in the ith user buffer, Qmax is the buffer overflow

threshold, and ς = Pr{Q > 0} is the probability of non-empty buffer. More rigorously, QoS

exponent θ is defined as

θ = lim
Qmax→∞

− log Pr{Qi ≥ Qmax}
Qmax

. (2.2)

2.3 Effective Capacity

Instantaneous channel capacity provides the maximum achievable data rate at which infor-

mation can be transmitted through wireless medium based on the availability of channel

state information. However, data arrival rates at which data packets are received from the

source may be further limited by the buffering requirements such as the presence of statis-

tical queuing constraints, as mentioned above. This buffer constraint determines the arrival

rates that can be supported by the wireless link. Let ri[n] and Ri[n] denote ith user random

arrival and instantaneous service rates, respectively, in the nth time slot. The correspond-

ing asymptotic logarithmic moment generating functions (LMGF) ΛA and ΛC , are given as
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follows [27]:

ΛA = lim
t→∞

log
(
E
{
eθ
∑t
n=1 ri[n]

})
t

ΛC = lim
t→∞

log
(
E
{
eθ
∑t
n=1Ri[n]

})
t

.

(2.3)

Having the buffer overflow probability to decay exponentially with rate θ as in (2.1) requires

ΛA(θ∗) + ΛC(−θ∗) = 0. The work in [27] provides a mathematical formulation for the

maximum arrival rate, also termed as effective capacity, with a certain QoS exponent θ as

follows:

Ce
i (θi) = − lim

t→∞

1

tθi
log

(
E
{
e−θi

∑t
n=1Ri[n]

})
bps/Hz. (2.4)

Assuming block fading scenario with frame duration T , this can be further simplified as

Ce
i (θi) = − 1

Tθi
log

(
E
{
e−θiTRi[n]

})
bps/Hz. (2.5)

As the buffer constraint is relaxed, effective capacity approaches ergodic capacity, i.e.,

limθi→0C
e
i = E{Ri}, whereas for increasingly strict constraints, i.e., as θi → ∞, effective

capacity converges converges to the delay-limited capacity with zero outage.
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Chapter 3

Simultaneous Wireless Information

and Power Transfer with

Finite-Alphabet Input Signals

This chapter mainly studies throughput optimization for SWIPT in the presence of finite-

alphabet input signals. Two novel schemes are proposed in order to assign probabilities

to the alphabets in the constellation set based on their energy levels. Then, using the non-

uniform probability distributions, optimal solutions are determined using iterative procedure

focusing on the throughput with arbitrary input signaling. Section 3.1 considers point-

to-point transmitter receiver pair, and an optimization problem that maximizes mutual

information subject to harvested energy constraint is formulated. Despite the complexity of

getting analytical expression for power-splitting factor, an algorithm is provided to determine

globally optimal solution. In Section 3.2, multiple users with delay-limited sources are taken

into account. In these cases, optimization problems are formulated to determine throughput

maximizing and energy-efficient transmission policies. Numerical results are presented and

discussed at the end of each section.
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3.1 Rate-Energy tradeoff for a Single User

In this section, the optimal power control scheme that maximizes the throughput for SWIPT

with arbitrary input distributions subject to harvested energy constraint is presented. We

introduce novel non-uniform probability assignment using two approaches, namely static

slope and dynamic slope characteristics, to modify the input probability distribution based

on the required harvested energy at the receiving end. We provide mathematical formulations

for these probabilities according to the constraints on the minimum harvested energy level.

3.1.1 Preliminaries

System Model

We consider a communication system where a transmitter-receiver pair communicates over

a wireless link as shown in Fig. 3.1. The source transmits a signal, X[i], during ith symbol

duration selected from a finite set of alphabets denoted by S = {X1, X2, . . . XM} with

|S| = M indicating the cardinality of the signal set. In general, these alphabets could be

one-dimensional as in pulse-amplitude modulation (PAM) signals

Xi = ai (3.1)

or two-dimensional such as phase-shift keying or quadrature-amplitude modulation (QAM)

signals

Xi = ai + jbi (3.2)

where ai and bi denote the distance of the constellation point from the origin on the respective

axis. We assume that the input signal is limited by a peak energy constraint i.e., |X[i]|2 ≤

Epk. The transmitted signal X[i] targets transferring not only information but also energy to

the receiving end, and hence we have simultaneous information and power transfer using the

information-bearing signal. The receiver has both information-decoding (ID) and energy-
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harvesting (EH) components, and it applies power splitting scheme to the received signal to

support decoding and harvesting operations, concurrently. We denote ρ for the fraction of

received power allocated to the ID component, and hence 1− ρ to the EH component.

Figure 3.1: SWIPT model for a transmitter-receiver pair

The wireless link experiences frequency flat-fading and the channel fading coefficient in the

ith symbol period is denoted by g[i]. We assume that both the receiver and transmitter are

equipped with a single antenna, and perfect channel state information is available on each

side. Hence, under these assumptions, the discrete-time channel input-output relation is

given by

Y [i] = g[i]X[i] +N [i] i = 1, 2, · · · (3.3)

where i represents the time index, Y [i] denote the received signal, and N [i] is a zero-mean

circularly symmetric, additive complex Gaussian noise with variance σ2 = N0, i.e., N ∼

CN (0, N0). Hereafter, time index i is omitted for brevity of notation. Once the signal is

received, it will be processed to decode the information and/or replenish the energy according

to operation policy priorities that depend on the received power level.

Information Transfer

It is well-known from information-theoretic results that input distribution has a direct im-

pact on the achievable rates at which data can be reliably transmitted, and Gaussian input

distribution maximizes the capacity for Gaussian channels [92]. On the other hand, practical

input signals are generally selected from finite constellations. In such cases, achievable rate
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expressions are determined by considering the input-output mutual information [92]:

R = I(X;Y )

= h(Y )− h(Y | X)

=
M∑
k=1

pk

∫ ∞
−∞

fY |Xk,g log

[
fY |Xk,g∑M

j=1 pjfY |Xj ,g

]
dy

(3.4)

where fY |Xk,g = 1
πN0

e
− |Y−gXk|

2

N0 is the probability density function of Y given Xk as well as

the fading coefficient g, and pk = Pr{X = Xk} is the probability that the transmitted signal

takes the input signal Xk. After substitution and some rearrangements

I(X;Y ) = −
M∑
k=1

pk
πN0

∫ ∞
−∞

∫ ∞
−∞

e−|v|
2

log

[
M∑
j=1

pje

[
−|v+γd|2+|v|2

]]
dv1dv2 (3.5)

where v = Y−gXk√
N0

, γd = g√
N0

(Xk −Xj), and v1 and v2 are real and imaginary component of

v assuming that the alphabets are distributed on a two-dimensional constellation space.

Remark 3.1.1 When only data transmission is considered, uniformly distributed input is

in general optimal in the sense of maximizing the average achievable rate expressions.

Energy Harvesting

In our model, the receiver harvests energy transferred from a source through the wireless

medium so as to meet, at least, the minimum required energy, denoted by χ. Given that

the source transmit signals selected from a finite constellation size, the instantaneous, Ehv[i],

and average, Ehv, harvested energy can be determined as follows:

Ehv[i] = z[i]
∣∣Xj[i]

∣∣2 + σ2 (3.6a)

Ehv = E{Ehv(z)} (3.6b)
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where z = |g|2 and the expectation in (3.6b) is with respect to both z and the distribution of

the input signal in the constellation. As can be seen from (3.6a) and (3.6b), average harvested

energy is directly proportional to each signal energy level as well as its assigned probability,

and this fact encourages to assign higher probabilities to those with higher energy levels

among the input signals.

Remark 3.1.2 Unlike in the case of information transfer, optimal input probability distri-

bution that maximizes the level of harvested energy is the one when the source transmits the

highest-energy signal almost surely, i.e., Pr(X = Xm) = 1 where |Xm|2 > |Xi|2 ∀i,m ∈

{1, 2, . . . ,M} and i 6= m.

3.1.2 Non-Uniform Input Distribution

Finite-alphabet inputs can be geometrically described in the signal space by their coordinate

points and the corresponding probabilities. In fact, the optimal choice of the probability dis-

tribution depends on the overall objective, and as stated in Remarks 3.1.1 and 3.1.2, the goals

of maximizing the information transfer and harvested energy lead to uniformly distributed

and deterministic inputs, respectively. However, each of these input characterizations may

not be optimal when SWIPT is considered. Rather, non-uniform probability distribution

can result better overall performance, i.e., improves rate-energy tradeoff, since signals in a

given constellation, e.g., PAM with M > 2 and QAM with M > 4, do not necessarily have

equal energy levels. Intuitively speaking, these unequal energy levels have direct impact on

the information and power transfer strategies. For instance, assigning higher probabilities

to those signals with higher energy level benefit harvested energy while sacrificing data rate.

Note that this is not applicable to BPSK or QPSK as all the signals in these cases have

equal energy level, and no extra benefit is attained with unequal input distribution in terms

of harvested energy while achievable rates are reduced.

Theorem 3.1.1 For a rectangular/square QAM constellation with size M = 2n where n

denotes the number of bits per symbol, there are N ∈ {Ns, Nr} different energy levels with
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N < M where

Ns =

√
M
4
−1∑

i=0

(√
M

4
− i

)
(3.7a)

Nr =
M

8
+

√
M
8
−1∑

i=0

(√
M

8
− i

)
. (3.7b)

Ns and Nr denote total number of different energy levels when the constellation has square

and rectangular geometries, respectively.

Proof: See Appendix A.

As we can conclude from this theorem, constellation size is always greater than the num-

ber of unequal energy levels, and this implies that there exist some signals that have equal

energy levels. Let us define a set which consists of all the signals but in terms of disjoint

subsets, Si, where each includes signals with equal energy level as follows:

Ssc ,
N⋃
i=1

{
Si : Xa ∈ Si; Xb ∈ Si+1; |Xa|2 > |Xb|2

}
(3.8)

∀a = {1, 2, . . . , |Si|} and ∀b = {1, 2, . . . , |Si+1|}. For each subset |Si| > 1 where i ∈

{1, 2, · · · , N}, it is obvious that unequal probability assignment for two signals that have

equal energy levels benefits neither information transfer nor energy-harvesting. In such a

case, signals probabilities in that subset are uniformly distributed i.e., pa = Pr{X = Xa} =

psi
|Si| , where psi denote the probability assigned to the ith subset. However, it is meaningful

to optimally adjust probabilities assigned to each subset Si ∈ Ssc in consonance with the

harvesting constraint while maximizing information rate.

Proposition 3.1.1 For finite constellations, signal probabilities can be non-uniformly dis-

tributed based on their energy levels to improve SWIPT performance as long as the required

harvested energy is bounded, 0 ≤ X ≤ Emx, and hence the corresponding feasible set of sig-

nals probabilities, denoted as Sp, becomes,
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Sp ,
M⋃
j=1

(pj) :
|S|−1 < pj < |SN |−1, if Xj ∈ SN ;

|S|−1 < pj < 0, otherwise.

 (3.9)

Proof: See Appendix B.

According to Proposition 3.1.1, probability assigned to each subset, as well as signal,

changes for any increment in X , and this can be characterized by developing probability-

energy relation. Thus, we consider two novel approaches, namely static slope characteristics

and dynamic slope characteristics, that help to adjust probabilities given the harvested

energy constraint.

Static slope characteristics

In this scenario, probabilities assigned to subsets, psi , Pr{s = Si}, are updated with con-

stant slope for each increment in the minimum required harvested energy. The slope depends

only on the gross harvested energy constraint boundaries and the corresponding input prob-

ability distributions, both of which are known priori. Hence, energy level probabilities, psi ,

change linearly with static slope as shown in Fig.3.2. Mathematically, this probability-energy

characteristic can be expressed as follows:

psi(X ) = δX + pi(X )
∣∣∣
X=0

(3.10)

where X = χ
z−ρz is the scaled or gross harvested energy and pi(X )|X=0

= 1
|S| defines the

signal probability in the absence of harvested energy constraint. In addition, δ = |S|−|Sm|
E∆(|Sm||S|)

if Xi ∈ SN , otherwise δ = − 1
(E∆|S|)

where E∆ = Emx−Emn. Note that Emn and Emx denote the

minimum required gross harvested energy and the maximum available energy, respectively.

As can be seen from (3.10) and Fig. 3.2, each subset probability changes with the same

slope which implies psi = psj , except those of SN , and constellation size remains |S| until

X = Emx at which it becomes |SN .
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Figure 3.2: Probability-Energy characteristics for 16-QAM

Dynamic slope characteristics

The basic principle of this approach is that a subset having the lowest-energy signals is

assigned the smallest probability i.e., psi < psi+k for k = {1, 2, . . . , N−i}, given the harvested

energy requirements. When this energy exceeds a certain threshold, subset Si is discarded

from Ssc, for instance S1 at E1 as shown in Fig. 3.2, and the process continues successively

until X = Emx. Let the required gross harvested energy change with some increment,

X∆k
= X k

mx−X k
mn, and the number of increments depend on the number of different energy

levels in the constellation set. Then, the probability-energy relation during kth increment is

mathematically given as follows:

psi(X ) = δksiX + pksi

∣∣∣
X=Xkmn

(3.11)

where k ≤ i and δjsi defines the slope of the probability of subset Si in the interval X k
mn ≤

X ≤ X k
mx, and the last term in (3.11) denotes this subset probability when X takes the

lowest value in the kth increment. In order to determine δjsi , we begin with the lowest energy
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level as follows:

δ1
s1

=

1
|S| − 0

E1
mn − E1

mx

, (3.12)

and hence at E = X 1
mx, ps1 = 0. Meanwhile, the probability for the lowest energy alphabet

at this energy level for the static slop is determined as

ps1 =

1
|S| − 0

E1
mn − Emx

E1
mx +

1

|S|
. (3.13)

Thus, the difference for the probability assignment between static and dynamic slop schemes

at E = X 1
mx becomes

∆ps1 = ps1 − 0 =
1

|S|

[
1− E1

mx

Emx − E1
mn

]
. (3.14)

Then, the slope for the next (e.g., the second, the third and so on) lowest energy level in the

first increment is given as

p1
sj

∣∣∣
X=X 2

mn

=
∆ps1
N − 1

+ psj

δ1
sj

=

1
|S| − p

1
sj

∣∣∣
X=X 2

mn

E1
mn − E1

mx

,

(3.15)

Note that Psj = ps1 for j ∈ {2, 3, · · · , N − 1} in the static slope characteristics. Similarly,

for the highest energy level in the first increment is given as

δ1
sN

=

1
|S| −

[
∆ps1
N−1

+ p1
sN

]
E1
mn − E1

mx

, (3.16)

where

p1
sN

=

1
|S| −

1
|SN |

E1
mn − Emx

E1
mx +

1

|S|
. (3.17)

The details for other incremental ranges are omitted for brevity, but this procedure continues

until the probability-energy relationship is derived over the entire feasible harvested energy

region.
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Compared to the earlier approach, the slope for any subset changes according to the

harvested energy demand in this case. In addition, the slope does not change in the same

way for different subsets. Moreover, constellation size consequently reduces in each increment

X∆k
and the probabilities for the available N − k subsets increase where k indicates the

number of subsets that are successively removed earlier based on the value of X . The main

benefit of this approach is that it enables the receiver to harvest more energy because higher

energy level input signals have higher probabilities compared to the static slope technique

as deduced from Fig. 3.2.

Remark 3.1.3 Once psi is known, the corresponding signal probability can easily be deter-

mined using pi =
psi
|Si| . Hence, for any two signals Xi ∈ Si, Xj ∈ Sj and Si,Sj 6= SN , pi 6= pj

in the first approach, i.e., where psi = psj .

3.1.3 Throughput-Efficient SWIPT Policies

Performing information-decoding and energy-harvesting operations simultaneously while main-

taining maximum achievable output, i.e., (Rmx, Emx), is ideal whether these are carried out

at co-located or separated receivers. Hence, it is important to determine the appropriate

scheme and optimal way of allocating resources to improve the rate-energy tradeoff. In the

literature, time-switching and power-splitting schemes are proposed to carry out these opera-

tions both in single and multiple user settings [12] [14] [21]. Here, we consider power-splitting

scheme due to the fact that time-switching strategy would simply require us to characterize

information maximizing and energy maximizing inputs separately over orthogonal time in-

tervals. Hence, in such a case, non-uniform probability distribution for finite constellation

inputs would not provide any benefits.

Power splitting scheme divides the received signal power to ID and EH components with

a certain power-splitting fraction ρ : 1 − ρ. Basically, when information decoding and en-

ergy harvesting components have a common antenna architecture at the receiving end, the

performance of SWIPT with finite-alphabet inputs depends on the input probability distri-
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bution at the transmitter and splitting factor at the receiver. These parameters need to be

optimally adjusted to determine the best operating point for the system. Intuitively, when

highest-energy level signals become more likely to be transmitted, the amount of power al-

located to the ID component increases given the harvested energy constraint. However, the

impact on the information rate is determined by the balance between the reduction and gain

due to unequal probabilities and increased in power splitting factor, respectively.

Therefore, in order to investigate the tradeoff between information rate and harvested en-

ergy and determine the solution for the optimal probability distribution and splitting factor,

we formulate an optimization problem as follows:

(PR:3.1) max
pi∈Sp
ρ∈[0,1]

I(X;Y ) (3.18a)

subject to (1− ρ)Ehv ≥ X (3.18b)

0 ≤ ρ ≤ 1 (3.18c)

0 ≤ pi ≤
1

|SN |
(3.18d)

where the achievable data rate I(X, Y ) for SWIPT with finite-alphabet input is given as:

R(ρ,p) = −
M∑
k=1

pk
πN0

∫ ∞
−∞

∫ ∞
−∞

e−|v|
2

log

[
M∑
j=1

pje

[
ρ(−|v+γd|2+|v|2)

]]
dv1dv2 (3.19)

where γd and Sp are as defined in (3.5) and (3.9), respectively. The last two constraints

specify the domain set of the optimization parameters.

Proposition 3.1.2 Given the probability distribution of the finite-alphabet inputs, the achiev-

able rate expression in 3.19 is concave with respect to the power splitting factor, ρ.

Proof: See Appendix C.

According to Proposition 3.1.2, there exists a global optimal solution which maximizes

the achievable rate when the probabilities of the finite-alphabet inputs are fixed. On the
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other hand, if the power splitting factor ρ is given, the mutual information expression in

(3.18a) is concave in the marginal probability distribution of the finite-alphabet input pi [92].

Since there is always a tradeoff between improving information transfer rate and satisfying

the required harvested energy, it is necessary to adjust the probabilities accordingly. As

mentioned above, these are determined using the static or dynamic slope characteristics

curves. Hence, once those are determined, the optimization problem (PR:3.1) equivalently

becomes minimization of a convex problem since I(X, Y ) is concave function of ρ and the

constraints are convex. Thus, Kahun-Kurush-Tucker (KKT) conditions are necessary and

sufficient for global optimality, and hence we have

∂L(ρ)

∂ρ
= −

M∑
k=1

pk
πN0

∫ ∞
−∞

∫ ∞
−∞

e−|v|
2 ∂ log h(ρ, v1, v2)

∂ρ
dv1dv2 + µxEhv + µρ(1− 2ρ) = 0 (3.20)

where

L(ρ) = R(ρ)− µx
(
χ− (1− ρ)Ehv

)
− µρρ(1− ρ)−

N∑
i=1

µipi

(
1

|SN |
− pi

)
(3.21)

and

h(ρ, v1, v2) =
M∑
j=1

pje

[
ρ(−|v+γd|2+|v|2)

]
. (3.22)

From the complementary slackness conditions, i.e.,

µ∗x

(
χ− (1− ρ∗)Ehv

)
= 0

µ∗ρρ
∗(1− ρ∗) = 0

µ∗i p
∗
i

(
1

|SN |
− p∗i

)
= 0,

(3.23)

it is clear that µρ = 0 and µi = 0 since the feasible solution lies 0 < ρ < 1 and 0 < pi <
1
|SN |

for χ < χmx. When the demand reaches the maximum achievable harvested energy, the

solution is ρ∗ = 1, and pi = 0 ∀i = {1, 2, · · · , N −1} and PN = 1
|SN |

. Therefore, for χ < χmx,
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after several arrangements (3.20) is simplified as

E

{
e−|v|

2

h(ρ, v1, v2)

[
M∑
j=1

pj(−|v + γd|2 + |v|2)e

[
ρ(−|v+γd|2+|v|2)

]]}
= C (3.24)

where C = πN0µxEhv is a scaler quantity. Despite the difficulty in formulating closed-form

expression for the optimum splitting factor, ρ∗, it can be easily obtained using standard

numerical tools.

Algorithm 1 SWIPT with finite alphabets input

1: Given: X , M
Require: max I(X;Y )

2: Determine the number of energy levels using (3.7)
3: Initialize ρu = 1 and ρl = 0, p(0) = 1

M
[1 1 · · · 1]1×M

4: ρ(0) = 0.5(ρu + ρl)
5: n← 0
6: repeat
7: repeat
8: Determine I(X;Y ) for ρ(n) using p(n), and Rn = I(X;Y )
9: Determine X = χ

z−zρ(n)

10: Determine signal probabilities based on X
11: if Static Slope then
12: Apply the relation given in (3.10)
13: else
14: Use (3.11) for dynamic slope characteristics
15: end if
16: Solve (3.24) for ρ
17: Determine I(X, Y ) using (3.19)
18: n← n+ 1
19: Update ρ(n) using bisection method
20: until |I(X;Y )−Rn| < ε
21: Update µx using gradient method
22: until |µx(n)− µx(n− 1)| < ε
23: Determine the optimal signal probabilities at the transmitter and power-splitting factor

at the receiver
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3.1.4 Numerical Analysis

In this section, we provide numerical results considering 16-QAM constellation where the

transmitted signal energy per second is limited by the peak value, 2W . As we can clearly see

from Fig. 3.3, there are three different energy levels, denoted as pC ∈ S1, pB ∈ S2, pA ∈ S3,

and hence there are two increments, k = 2, for the harvested energy level with X∆ = 0.5Emx.

Figure 3.3: 16-QAM Constellation

Figure 3.4, illustrates that non-uniform probability distribution using either static or

dynamic slope characteristics outperforms time-sharing and uniform probability distribu-

tion, and this becomes more significant for higher X values. In the absence of harvested

energy constraint, i.e., χ = 0, uniform probability distribution among the finite alphabet

input signals is optimal, and hence selecting only the highest energy alphabets hurts the

achievable rate without any benefit. In addition, for time-sharing scheme, each incremental

demand for harvested energy degrades the data rate linearly. This is because, this scheme

shares the operation time interval for the information-maximizing (uniform distribution) and

energy-maximizing (highest energy alphabets) inputs, and as χ increases less time will be

allocated to transfer the information. On the other hand, with uniform probability assign-
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ment approach, the power splitting factor ρ is varied to satisfy the energy demand while

tracing maximum information transfer rate. Despite its benefit to favor information trans-

fer, lower splitting ratio for higher Xvalues hurts the overall performance, and this leads to

time-sharing scheme to achieve better data rate for certain ranges of harvested energies as

can be seen from the figure.
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Figure 3.4: Rate-Energy tradeoff characteristics

Meanwhile, the significance of static over dynamic, or vice versa, depends on the net

impact of signal probabilities and power-splitting factor. Intuitively, assigning higher prob-

abilities to those alphabets with higher energy level allow to harvest more energy but hurts

the achievable data rate. However, harvesting more energy in a given duration encourages to

allocate more power to the ID component, i.e., higher ρ, which in turn benefits information

transfer. Therefore, balance between the gain and the loss in data rate due to ρ and non-

uniform probability assignment, respectively, determines the tradeoff characteristics. From

Fig. 3.5a, we observe that as X increases, higher energy level signals become more likely

for transmission in the dynamic slope approach as expected. This enables the receiver to
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harvest more energy within a given duration compared to the probability distribution deter-

mined by static slope characteristics. As a result, the information-decoding circuitry shares

the power more favorably, i.e., ρ increases as can be seen in Fig. 3.5b. The net effect of

these parameters, i.e., probability distribution and power-splitting factor, is observed in Fig.

3.4. According to the numerical results, we can observe that the gain in ρ due to dynamic

slope characteristics is not significant for lower harvested energy constraints, and this implies

more weight should be given to information rate under these circumstances. However, as the

energy demand exceeds a certain threshold, it is advantageous and efficient to ignore smaller

energy level alphabets and adjust probability distribution accordingly.

3.2 QoS-Driven SWIPT with Multiple Users

In this section, the optimal power control scheme that maximizes the throughput as well

as energy-efficiency for SWIPT with arbitrary input distributions in the presence of delay-

limited sources are investigated. We apply the above-mentioned non-uniform probability

assignment schemes to adjust the input probability distribution of each transmitting node

based on the corresponding channel characteristics and harvested energy constraint.

3.2.1 Preliminaries

System Model

We consider a system where multiple delay-limited transmitting nodes communicate with a

receiver over a wireless link as shown in Fig. 3.6. Assuming that each component is equipped

with a single antenna, the transmitted signal from kth source node during ith symbol duration

is selected from finite alphabets denoted by Sk = {Xk
1 , X

k
2 , . . . X

k
M} with |Sk| = Mk indicat-

ing the cardinality of the signal set. In addition, the input signal has a certain probability

of occurrence denoted by pj = Pr{X = Xk
j } where j ∈ {1, 2, · · · ,mk}, and it is limited by a
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Figure 3.5: Effect of X on optimization parameters for 16-QAM

peak energy constraint i.e., |X|2 ≤ Epk.

While harvesting energy, each user stores received data packets generated by a delay-

sensitive source that requires certain statistical QoS guarantees described by the QoS ex-

ponent θ. More specifically, the tail distribution of the kth source node buffer is required

to have an exponential decay with the rate controlled by the exponent θk, and the buffer
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Figure 3.6: Multi-user SWIPT model with delay-limited sources

violation or overflow probability is described as

Pr
{
Qi ≥ Qmax

}
≈ e−θkQmax (3.25)

where Qk denotes the stationary queue length in the kth source node buffer, and Qmax is

the buffer overflow threshold. This buffer constraint dictates the arrival rates that can be

supported by the wireless link. Each transmitter operates over non-overlapping time intervals

such that
N∑
k=1

τk ≤ 1 (3.26)

where τk is the operation interval for node k. The wireless link between the kth source node

and the receiver experiences flat-fading and the channel fading coefficient in the ith symbol

period is denoted by gk[i]. Hence, the received signal in this duration can be expressed as

Yk[i] = gk[i]Wk[i] +N [i] (3.27)

where Wk ∈ Sk is the transmitted signal from source k and N [i] ∼ CN (0, N0) is the circularly

symmetric complex Gaussian noise with zero mean and variance N0. Furthermore, the

receiver has ID and EH components, and it applies power splitting scheme, i.e., ρ fraction of

the received energy is allocated to ID and 1−ρ to EH, in order to carry out the corresponding

operations simultaneously.
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Information Transfer

When multiple sources transmit their message to a common receiver over an orthogonal

interval of duration τi with i ∈ {1, 2, · · · , K}, the throughput can be expressed using input-

output mutual information as follows:

R =
K∑
i=1

τiI(Xi;Y )

=
K∑
i=1

τi

[
mi∑
k=1

pk

∫ ∞
−∞

fY |Xk,g log

[
fY |Xk,g∑mi

j=1 pjfY |Xj ,g

]
dy

] (3.28)

which leads to

R =
K∑
i=1

τi

[
−

mi∑
k=1

pk
πN0

∫ ∞
−∞

∫ ∞
−∞
e−|v|

2

log

[
mi∑
j=1

pje

[
−|v+γd|2+|v|2

]]
dv

]
(3.29)

where where fY |Xk,g = 1
πN0

e
−

∣∣
Y−giXk

∣∣2
N0 is the conditional probability density function of Y

given Xk as well as fading coefficient g = (g1, g2, . . . , gn), v = Y−gXk√
N0

, γd = g√
N0

(Xk − Xj),

and v is a vector consisting of real and imaginary component of v.

Energy Harvesting

Assuming that each source send information-bearing signal from a finite input signal con-

stellations, the average harvested energy at the receiving end can be determined as follows:

Ehv = E

{
N∑
j=1

τjzj[i]
∣∣Xj[i]

∣∣2 + σ2

}
(3.30)

where zj = |gj|2 and the expectation is with respect to both zj and the distributions of

the finite alphabet input signals from each source. Obviously, when energy harvesting is

considered alone, it is more beneficial to assign higher probabilities to those with higher

energy levels among the input signals.
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3.2.2 Optimal Resource Allocation Strategies

Based on the remarks stated earlier, the choice of probability distribution for finite alphabet

inputs depends on the overall objective. Thus, incorporating energy transfer along with

information-bearing signal influences the optimal transmission policy, and in such a case,

better performance, i.e., tradeoff, can be achieved with non-uniform probability distribution.

In other words, alphabets that have different energy levels should have unequal probabilities

for SWIPT. According to Theorem 3.1.1, the number of different energy levels in the finite-

alphabets available for the kth source node, assuming QAM constellation with size mk, is

given as

Nk
s =

√
mk
4
−1∑

i=0

(√
mk

4
− i

)
(3.31a)

Nk
r =

mk

8
+

√
mk
8
−1∑

i=0

(√
mk

8
− i

)
(3.31b)

where Nk
s and Nk

r denote total number of different energy levels of kth transmitting node

when the constellation has square and rectangular geometries, respectively. Except 4-QAM,

constellation size is always greater than the number of unequal energy levels, and this implies

that there exist some signals that have equal energy levels as mentioned earlier. Hence, it is

meaningful to optimally adjust probabilities assigned to each subset Ski , where the superscript

k denote the source node, in accordance with the harvested energy constraint. In Section

3.1, we introduced two novel approaches, but the way probabilities are adjusted are modified

due to the presence of multiple users as follow:

Source dependent static slope characteristics

Probabilities assigned to subsets change linearly for each increment in the required harvested

energy, but the slope which characterizes probability-energy relation is not necessarily the

same for all transmitting nodes. This is because different nodes might experience different
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channel characteristics, and hence the fraction of the total harvested energy obtained from

each node should be determined accordingly. Thus, we have

X =
K∑
i=1

biEi (3.32)

where X = χ
1−ρ , bi = τizi and Ei = E{|Xi|2}. Therefore, in order to be fair among the

transmitting nodes, the contribution from each node is determined based on its channel

conditions as follows:

Xk =
X|bk|2∑K
i |bk|2

(3.33)

where

X =
K∑
k=1

Xk. (3.34)

Therefore, the average energy level from the kth source node becomes

Ek =
Xk
bk
. (3.35)

Then, based on (3.10), the probability-energy characteristic for the kth transmitting nodes

can be formulated as follows:

pksi(Ek) = δkEk + pki (Ek)
∣∣∣
X=0

(3.36)

where pki (X )|X=0
= 1
|Sk|

defines the signal probability for the kth source node in the absence

of energy constraints. In addition, δk = |Sk|−|Skm|
E∆(|Skm||Sk|)

if Xi ∈ SkN , otherwise δk = − 1
(E∆|Sk|)

where E∆ = Ekmx − Ekmn. As can be seen from (3.36), for a given transmitting node, each

subset probability changes with the same slope which implies pksi = pksj , except those of SkN ,

and constellation size remains the same, i.e., |Sk| until Ek = Ekmx.
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Source dependent dynamic slope characteristics

In this scenario, the probability assignment for the finite-alphabets of each transmitting node

is in such a way that a subset with the lowest-energy signals in the kth source node is assigned

the smallest probability i.e., pksi < pksi+j for j = {1, 2, . . . , N − i}. In addition, as the fraction

of the required harvested energy from node k increases, a subset with the lowest energy level

from the available active alphabets is discarded, for instance Ski from Sksc, and this process

continues successively until Ek = Ekmx. The probability-energy characteristic curve of each

transmitting node depends on the ranges of harvested energy allocated to the corresponding

source. Hence, various transmitting nodes might enforce different slope characteristics shown

in the Fig. 3.7, and the likelihood of a certain subset (or alphabet) in one node could be

different in the other for the same contribution of harvested energy level.

(a) Two-level increment for node i (b) One-level increment for node j

Figure 3.7: Probability-energy relation for multiple transmitting nodes with 16-QAM and
8-QAM finite alphabet inputs

Let us denote the required harvested energy in the jth increment for the kth source node as

X k
∆. Then, the probability-energy relation for this node and increment is mathematically
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given as follows:

psi(Ek) = δkjsi Ek + pkjsi

∣∣∣
Ek=§kmn

(3.37)

where δkjsi defines the slope of the probability of subset Ski in the interval X j
mn ≤ Ek ≤

X j
mx, and the last term in (3.37) denotes this subset probability when Ek takes the lowest

value during the jth increment. The signal probabilities for each set of energy levels can be

iteratively obtained as mentioned earlier in Section 3.1.2.

Throughput Maximization

In the presence of multiple UEs where information-decoding and energy-harvesting compo-

nents are served by a common receiving antenna and RF chains, there are more variables

to adjust in order to improve the rate-energy trade-off. The achievable data rate of users

operating based on time-division multiple access scheme with finite alphabet input while

applying power splitting at the receiving end can be modified as:

Ri(τ , ρ,p) = −
N∑
i=1

τi

M∑
k=1

pk
πN0

∫ ∞
−∞

e−|v|
2

log

[
M∑
j=1

pje

[
ρ(−|v+γkjd |

2+|v|2)
]]
dv (3.38)

where γkjd is as defined earlier. Thus, the constant arrival rate for ith delay-limited source

node depends on the power splitting factor ρ as well as operating interval τi, and the explicit

expression for the effective capacity is given as follows:

Ce
i (θi, τi, ρ,p) = − 1

Tθi
logE


e

θiτi
πN0

[∑m
k=1pkEv

{
log2

[∑m
j=1 pje

[
−ρ|v+γd|

2+ρ|v|2
]]}]

(3.39)
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where p = [p1, p2, · · · , pN ]. Based on Proposition 3.1.2, it is obvious that the achievable

data rate given in 3.38 is concave with ρ, and τi as well. This implies that eθRi(τi,ρ) is log-

convex function, and hence the effective capacity given in 3.39 is jointly concave with the

uplink operation interval τi and the power splitting factor ρ assuming that the probabilities

for the finite-alphabet inputs are known apriori. Therefore, in order to investigate trade-off

between effective capacity and harvested energy by optimally adjusting operating intervals

and splitting factor for the given probability distribution, we formulate an optimization

problem as follows:

(PR:3.2) max
τ,ρ

N∑
i=1

Ce
i (3.40a)

subject to (1− ρ)Ehv ≥ X (3.40b)∑
i=1

τi ≤ 1 (3.40c)

τi ≥ 0, ∀ i ∈ {1, 2, · · · , N} (3.40d)

0 ≤ ρ ≤ 1 (3.40e)

where χ denotes the required harvested energy at the EH component. The last three con-

straints specify the domain set of the optimization parameters. Given the probability dis-

tribution, the above problem is in general convex, and hence optimum splitting factor and

operating intervals can be obtained numerically. We develop an algorithm that iteratively

solve the problem as indicated in Algorithm 2.

Energy-Efficiency Maximization

In limited energy resource environment, total energy expenditure to transfer every bit of

information is a critical issue. Basically, energy is consumed to power data processing cir-

cuitry and send the signal to the target destination through a wireless fading medium. Let

Pci denote the circuit power consumption of node i, and assume that it is independent of
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the transmitted power level Pi for Pi > 0. Hence, the total energy expense of multiple users

over an uplink operation interval of T seconds becomes

Etot = TPc +
N∑
i=1

τiPi (Joules) (3.41)

where Pc =
∑N

i=1 Pci = NPci , and without loss of generality, we assume each node consumes

energy at the same rate. Since the information-bearing signal is used to energize the EH

component, harvested energy should be subtracted from the total energy consumption in

the formulation of the energy efficiency metric in order to reflect the net system energy

consumption, as discussed in the literature [42] [43]. Thus, the effective energy efficiency of

the system is expressed

η(ρ,p, τ ) =

∑N
i=1C

e
i

E
{
TPc +

∑
i=1 τiPi − χ

} (3.42)

where τ = [τ1, τ2, · · · , τN ] is a vector consisting of each node operating interval. Note

that T = 1 in the sequel for simplicity. Any increment in demand for harvested energy

requires additional ∆Pi that could change the system efficiency by ∆ηs. In addition, Remark

1 encourages uniform distribution in the absence of harvested energy constraint, but this

might not be the optimal strategy when energy efficiency is considered, as will be discussed

shortly. Hence, it is necessary to formulate optimization problems so as to trace the impact

of harvested energy on the optimal operating points, and determine optimal transmit power
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as well as system energy efficiency. Thus, we have

(PR:3.3) max
pi ,ρ,τ

η

subject to (1− ρ)Ehv ≥ X∑
i=1

τi ≤ 1

τi ≥ 0, ∀ i ∈ {1, 2, · · · , N}

0 ≤ ρ ≤ 1.

(3.43)

Despite the difficulty in obtaining closed-form expressions for the optimizing parameters

from the above problem (PR:3.3), standard numerical tools can easily be applied to determine

the solution. We provide the procedure in Algorithm 2 to solve (PR:3.2) and (PR:3.3), but

we skip the details for brevity.

Algorithm 2 QoS-Driven SWIPT with finite input constellations

1: Given: X
2: for i = 1 to N do
3: Determine Xi using (3.35)
4: Determine the number of energy levels for the node using (3.31)
5: Determine corresponding signal probabilities
6: if Static Slope then
7: Apply the relation given in (3.36)
8: else
9: Use (3.37) for dynamic slope characteristics

10: end if
11: end for
12: Decide the performance metric
13: if Throughput Max then
14: Apply Gauss-Hermit approach to Solve (PR:2)
15: else
16: Apply Dinkelbach method to solve (PR:3)
17: end if
18: Determine the optimal signal probabilities and power-splitting factor
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3.2.3 Numerical Analysis

In this section, we provide numerical results considering 16-QAM constellation given in Fig.

3.3 where there are three different energy levels with probabilities denoted as p1 for S1, p2

for S2 and p3 for S3. The transmitted signal energy per second is limited by the peak value,

2W . In regard to the channel characteristics, we consider two scenarios, namely case X with

g1 < g2 and case Y with g2 < g1. The QoS exponential decaying characteristics for user 1

and user 2 denoted by θ1 and θ2, respectively.
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Fig 3.8 illustrates the impact of harvested energy constraint and QoS exponent param-

eter on the overall throughput, i.e., sum effective capacity of the system. More specifically,

Fig. 3.8a shows the tradeoff characteristics between required harvested energy and effective

capacity, and from this figure, we observe that non-uniform probability distribution using

either static or dynamic slope characteristics outperforms the uniform probability distribu-

tion as the demand hits higher values, and this encourages to harvest more energy by giving

priority for high energy alphabets. Furthermore, the advantage of static scheme over the

dynamic case is a function of harvested energy constraint. In any case, the power splitting

factor is optimally adjusted accordingly, and Fig. 3.8b describes how the splitting factor ρ

changes with χ. Meanwhile, Fig. 3.8c characterizes effect of changing θ1 on the sum effective

capacity, and as can be seen from the figure, strict QoS constraint hurts the throughput,

i.e., effective capacity decreases with exponential decaying parameter θ. Besides, the perfor-

mance of dynamic and static slope approaches depends on each node channel characteristics

and their QoS constraint parameter. For instance, when user 1 has looser QoS constraint,

i.e., θ1 < θ2, in scenario Y, static approach achieves better throughput.
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On the other hand, the tradeoff characteristics for the system energy efficiency and

required harvested energy is plotted in Fig. 4.7. From the figure, we can see that en-
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ergy efficiency is a non-increasing function and it reduces with χ despite harvested energy

is subtracted in the denominator to reflect the net energy consumption. Comparing the

non-uniform probability assignment approaches, static slope characteristics mostly leads to

better energy efficiency in both cases, i.e., Case X and Case Y. The optimal time allocated

for user 1 and user 2 while maximizing the system energy efficiency are illustrated in Fig.

3.10 as a function of harvested energy constraints. We observe that EE maximization gives

more priority for less stringent QoS constraint under small harvested energy despite the user

might experience smaller fading power, i.e., θ1 < θ2 and g1 < g2. However, as energy demand

increases, more time is allocated for the node with better wireless link, ant this goes until

χ forces only that node to transmit. Similar observation can be made from Fig. 3.10 under

scenario Y with θ1 > θ2. Furthermore, better channel conditions result in more harvested

energy over a smaller duration of time, which leads to higher power splitting factor at the

receiving end.
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Chapter 4

Energy-Efficient Resource Allocation

in Fading Multiple Access Channels

This chapter presents energy-efficient power allocation schemes considering multiple users

operating through fading MACs. First, novel expressions for the optimal power levels that

maximize the instantaneous energy efficiency in a MAC are identified. Then, simultaneous

wireless information and power transfer (SWIPT) is incorporated and optimization problems

are formulated considering two types of antennas architecture, namely separated and com-

mon, for the ID and EH components at the receiving node. In all the cases, energy-efficient

node selection policies and analytical expressions for the optimal transmit power level are de-

rived. In addition, the performance tradeoffs for energy-efficient transmission policies when

SWIPT is incorporated is studied, and the corresponding closed-form expressions for the

optimal transmit power levels are derived focusing on the system energy efficiency while

satisfying energy and power constraints. Furthermore, the impact of peak power constraint

on the optimal resource allocation strategy is characterized. In addition, optimal system EE,

and the impact of harvested energy demand on the optimal EE and other critical parameters

such as power splitting ratio are identified.

Section 4.1 introduces the system model and illustrates the receiving architecture for
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the SWIPT scenario. In Section 4.2, energy efficiency maximization problem is formulated

for multiple access channels, and closed-form expressions for the optimal power allocation

strategies are derived. In Section 4.3, wireless power transfer is incorporated with infor-

mation transfer, and optimization problems are formulated considering harvested energy

constraint. Numerical results are discussed at the end of Section 4.2 and 4.3.

4.1 System Model

We consider a wireless multiuser network in whichN transmitting (TX) nodes send information-

bearing signals on the same frequency band to a receiving (RX) node through a multiple

access channel as shown in Fig. 4.1 Each TX node is equipped with a single antenna,

Figure 4.1: Multiuser model in multiple access channel

and the transmitted signal from node i ∈ S = {1, 2, · · · , N} in the kth symbol duration is

Xi[k] ∼ CN
(
0, Pi[k]

)
with instantaneous power Pi[k] ∈ P where

P =
⋃
i∈S

{
Pi : 0 ≤ Pi ≤ Pmx

i

}
. (4.1)

The RX node has information decoding (ID) component and, if SWIPT is being considered,

it has an energy harvesting (EH) component as well. The ID component applies successive

interference cancellation to decode the information from the received signal. We first study

energy-efficient resource allocation among the TX nodes focusing on information transfer
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(a) Separated antenna architecture (b) Common antenna architecture

Figure 4.2: RX architecture for SWIPT

only. Then, we analyze system’s energy efficiency with SWIPT. In this case, we consider two

scenarios as shown in Fig. 4.2. As can be seen, ID and EH components, in the separated

architecture, have independent antenna and RF chains to collect the signals, whereas a single

antenna is used in the common antenna architecture. In the latter model, power splitting

scheme is applied to share the received signal proportionally, e.g.,
√
ρ :
√

1− ρ to ID and

EH components where ρ denotes the fraction of power allocated to the ID component.

In regard to the wireless channel, we assume that the link between any TX node and

the receiver experiences frequency-flat fading. The complex fading coefficient for the channel

between ith node and an information-receiving antenna during kth symbol duration is denoted

by ri[k], and the channel power gain, hi[k] = |ri[k]|2, is constant over a block length T

and changes independently to a new value based on its probability distribution. Similarly,

gi[k] = |zi[k]|2 is the normalized channel power gain for the link between ith source and the

EH receiving antenna in the case of separated architecture, while hi[k] is again denotes the

channel power gain for the ID component. Furthermore, it is assumed that channel side

information is available at both ends. Therefore, the received signal at the destination in

the kth symbol duration is given as

Y [k] =
N∑
i=1

wiXi[k] +N [k] (4.2)
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where wi ∈ {ri, zi} depending on the ID-EH receiving antenna architecture, and N [k] ∼

CN (0, 1) is the complex Gaussian noise component at the receiving antenna with unit vari-

ance.

4.2 Energy Efficiency in MAC

In wireless communication systems, user energy efficiency (EE) can be quantitatively mea-

sured by bits of information reliably transferred to a receiver per unit consumed energy at

the transmitter. In the presence of multiple users, it is also relevant and meaningful to con-

sider the system EE. For instance, the consideration of the system energy efficiency enables

us to allocate resources in such a way that the overall energy usage becomes more efficient.

With this motivation, we consider the system energy efficiency, which is defined as

η =
Throughput

Total consumed energy
(bits/Joule). (4.3)

In this chapter, we focus on the instantaneous achievable data rate per unit consumed energy,

and given the fading state realization, sum-rate capacity over a block interval of T seconds

is

Rsum[k] = T log2

(
1 +

N∑
i=1

γi[k]
)

(bits/Hz) (4.4)

where γi[k] = hi[k]Pi[k]. For simplicity, we eliminate the index k of symbol duration in the

sequel. Based on (4.4), sum-rate capacity is maximized when each source transmits at its

peak power level in the absence of average power constraint. However, this might not be the

optimal strategy for MAC when energy efficiency is considered, as will be discussed shortly.

Let’s now consider energy consumption. Note that energy is consumed to power the

data processing circuitry and send the signal to the target destination. Let Pci denote the

circuit power consumption of node i, and assume that it is independent of the transmitted

power level as long as Pi > 0. However, if no information is transmitted, there is no power
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consumption, i.e., Pi = 0 implies Pci = 0. Hence, the total energy consumption of multiple

users over an uplink operation interval of T seconds becomes

Etot(P ) = T

N∑
i=1

(
Pci + Pi

)
= T

(
Pc +

N∑
i=1

Pi

)
(Joules) (4.5)

where P = [P1, P2, · · · , PN ], and Pc =
∑N

i=1 Pci . We also denote the sum of the circuit

powers of k users as
∑k

i=1 Pci = P k
c . Thus, the system energy efficiency is expressed as

η(P ) =
log2

(
1 +

∑N
i=1 γi

)
PC +

∑N
i=1 Pi

. (4.6)

It is obvious that the sum-rate capacity and total consumed energy are concave and affine

functions of P , respectively. Besides, both are differentiable. Hence, according to Proposition

2.9 stated in [93], the system energy efficiency given in (4.6) satisfies the criteria for pseudo-

concavity.

As noted earlier, analytical characterizations of optimal transmission policies and the

corresponding system efficiency have not been addressed in the literature to the best of our

knowledge. Hence, we formulate an optimization problem to determine the energy-efficient

power allocation strategy for fading multiple access channels as follows:

(PR:4.1): max
P

η(P ) (4.7a)

subject to Pi
(
Pi − Pmx

i

)
≤ 0 ∀i (4.7b)

where P = [P1, P2, · · · , PN ] and i ∈ S. The constraint given in (4.7b) guarantees that the

transmitted signal power level from each source node is within the feasible set P . Since

the objective function is pseudo-concave, as noted above, and the constraint is convex, from

Proposition 2.8 and 2.9 stated in [93], Karush-Kuhn-Tucker (KKT) conditions are necessary

and sufficient to obtain the globally optimal solution. This implies that there is a unique
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optimal solution for (PR:4.1).

Theorem 4.2.1 The energy-efficient power allocation strategy for MAC is carried out based

on channel power gain, i.e., priority is given to the strongest wireless link, and hence if we

assume, without loss of generality that, hN > hN−1 > · · · > h2 > h1, the optimal transmit

power level from the ith node is given by the following:

P ∗i = min
{
P̃i, P

mx
i

}
(4.8)

where

P̃i = ξi
eW
(

Γi
e

)
+1 − Ωi

hi
, (4.9)

and

ξi =

{
1 P ∗i+1 = Pmx

i+1 (4.10a)

0 otherwise (4.10b)

with ξN = 1, ΩN = 1, ΓN = −1 + hNPc. In addition, Γi =
∑N

j=i+1(hi − hj)Pmx
j − 1 + hiP

i
c ,

and Ωi = 1 +
∑N

j=i+1 hjP
mx
j for i ∈ {1, 2, · · · , N − 1}. Finally, W(·) above denotes the

Lambert function. Proof: See Appendix D.

From Theorem 4.2.1, we note that the selection of the energy-efficient transmitting node

depends on the channel gain, total circuit power consumption and the peak power constraint.

For instance, considering the case where only node N is transmitting and the transmission

power is less than the peak Pmx
N , the corresponding optimal transmit power level is given as

P ∗N =
eW
(
hNPc−1

e

)
+1 − 1

hN
. (4.11)

Due to the fact that W(x) is a monotonically increasing function for x > 0, we notice that

the transmitted power level reduces with lower circuit power consumption. Thus, energy
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efficiency improves as the power is lowered further and further if the circuit power consump-

tion decreases. In addition, the optimal strategy always requires the node that has a weaker

channel gain to be silent unless the peak power constraint of the transmitting node is active.

For instance, if the solution for the transmit power level of the node with the best wireless

link exceeds the peak power constraint, i.e., P̃N > Pmx
N , then this node operates at its peak

power level and the node with the second best wireless link transmits an information-bearing

signal to the receiver at power P ∗N−1 and the rest of the nodes stay silent unless P̃N−1 > Pmx
N−1.

Meanwhile, if multiple nodes have the same channel gain as the link with the highest gain,

i.e., hk = hN where k ∈ S, then there will be infinitely many solutions (transmission power

levels) that lead to the same optimal energy efficiency. In such a case, these transmission

power levels can be determined using

|A|∑
k=1

Pk =
ω∗

hN
(4.12)

where ω∗ is given in (D.6) in Appendix D, and A =
{
k : hk = hN for k ∈ S

}
. For instance,

considering two TX nodes, (4.12) becomes P1 +P2 = P ∗ where P ∗ is the total optimal power

level determined by ω∗

hN
, and the above claims can be clearly observed in Fig.4.3, where we

plot the energy-efficiency as a function of the power level of each TX node. In the first case,

assuming one has higher channel gain compared with the other, say h1 > h2, the numerical

results illustrate that the global solution is obtained on the P1 edge of the P1 − P2 power

plane, i.e., P1 = 1.89 and P2 = 0, or it is at the coordinate (0.46, 1.89, 0) on the η−P1−P2

three dimensional space, i.e., lies on the surface of the η − P1 plane. This justifies that the

energy-efficient policy encourages node 1 to transmit, when h1 > h2, at power level P ∗1 while

node 2 is kept silent provided that P ∗1 does not violate the peak power constraint. On the

other hand, if both nodes have the same channel gain, i.e., h1 = h2, any point on the line

P1 + P2 = P ∗ achieves the optimal solution as can be seen from Fig. 4.3b. This supports

the statement that there are infinitely many solutions that satisfy (4.12).
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Figure 4.3: Energy efficiency (bpJ/Hz) plot for two-TX nodes over a multiple access channel

We also note from Theorem 1 that the optimal power allocation policy for the active

node does not follow the water-filling strategy. Without loss of generality, let us consider the

node with the highest channel gain, say hN , and ignore the peak power constraint. Then,

we analyze the asymptotic characteristics of the corresponding transmit power level, which

is determined by (4.11), as channel gain goes to infinity and zero as follows.

lim
hN→∞

PN(hN) = lim
hN→∞

eW(
hNPc−1

e
)+1 − 1

hN

≈ e
[

lim
hN→∞

eW(
hNPc
e

)

hN

]
=

Pc

limhN→∞W(hNPc
e

)

(4.13)

where the last equality is obtained by substituting the identity property of Lambert function,

i.e., eW(x) = x
W(x)

. Since W(x) is a monotonically increasing function for x > 0, we conclude

that the optimal transmission power level is reduced as channel gain increases, unlike in the

water-filling approach.

On the other hand, as hN → 0, we can apply L’Hopital’s rule to determine the asymptotic
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Figure 4.4: Optimal power allocation with four TX nodes

value for very low hN values as follows:

lim
hN→0

PN(hN) = lim
hN→0

d
dhN

[
eW(

hNPc−1

e
)+1 − 1

]
d

dhN
hN

= e
limhN→0W(hNPc−1

e
)

limhN→0
hNPc−1

e
(1 +W(hNPc−1

e
))

=
W(−1

e
)

1 +W(−1
e
)

(4.14)

Using the fact that W(−1/e) = −1, we can clearly see that limhN→0 PN(hN) = ∞. This

implies more power is allocated as the channel gets worse similar to the channel inversion

policy, and the required transmitted power level is unbounded for very small hN .

As noted earlier, the transmitted power level from each TX node depends on the total

circuit power consumption and peak power constraint, and we justify this using numerical

results. It is assumed that there are four TX nodes with the peak power constraint P pk
i = 5W

or 37dBm where i ∈ Q = {1, 2, 3, 4}. The bandwidth of the transmitted signal is assumed to

be 10MHz, and the receiver noise is assumed to be white Gaussian with power spectral density

−140dB/Hz. We assume that the channel fading gains are h1 = −44dBm, h2 = −42dBm,

h3 = −41dBm, and h4 = −40.5dBm at the carrier frequency of fc = 900 MHz.
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Fig. 4.4 and Fig. 4.5 illustrate the effect of circuit power on the system energy efficiency

and optimal power allocation strategy, respectively. More specifically, from Fig. 4.4a and

Fig. 4.4b we observe that Pi = 0 for i ∈ Q when Pc = 0, i.e., if the circuit power is negligibly

small, the strategy which benefits energy-efficiency encourages the TX nodes to transmit

at lower and lower power levels. We also notice that, for Pc 6= 0, the node which has the

best channel link, i.e., node 4, is always active, and its transmit power level increases with

Pc. In addition, when the optimal transmitted power level of node 4 reaches to its peak,

i.e., P ∗4 = Pmx
4 , the node with the next best channel link, i.e., node 3, could be allowed to

transmit depending on the value of Pc as shown in both figures. For instance, in region B,

node 4 is operating at its peak while node 3 is silent, whereas in region C node 3 becomes

active. In region D, both node 4 and node 3 are at their peak power level, but node 2 and

node 1 are still in silent mode. Furthermore, comparing Fig. 4.4a and Fig. 4.4b, we see that

when those nodes with better channel links have limited peak power, energy-efficient power

allocation strategy allows other nodes with weaker channel conditions, such as node 1 and 2

in this example, to transmit as Pc increases.

In regard to the energy efficiency, each increment in Pc hurts the average EE as shown in

Fig. 4.5, and for very high circuit energy consumption per unit time, few bits of information

will be transmitted per joule of total consumed energy. Moreover, when there are unequal

power constraints and those with better channel gains, such as node 4 and node 3, have

limited peak power as indicated in Fig. 4.4b, the system operates at a lower efficiency

especially if the circuit power consumption is relatively large.

4.3 Energy Efficiency with SWIPT

Energy efficiency is essential in the presence of limited available resources, but this can be

further challenging with SWIPT as there are additional optimization variables to control and

constraints to satisfy. In this section, we study these issues and provide optimal resource
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allocation strategies while taking harvested energy constraints into account. Since the phys-

ical architecture of receiving antennas and RF chains have direct impact on the analysis

of energy efficiency and the corresponding optimal parameters, we consider an architecture

with separated antennas and an architecture with a common antenna for the ID and EH

components in the following two subsections, respectively.

4.3.1 Separated Antenna Architecture

In this scenario, TX nodes broadcast information and power simultaneously to ID and EH

components that have independent antennas and RF chains to collect the transmitted signal.

Since the information-bearing signal is also used to energize the EH component, harvested

energy should be subtracted from the total energy consumption in the formulation of the

energy efficiency metric in order to reflect the net system energy consumption, as discussed

in the literature [42] [43]. Based on this remark, the system energy efficiency for multiple
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access channels is given as follows:

ηs(P ) =
log2

(
1 +

∑N
i=1 γi

)
κ+

∑N
i=1 Pi

(4.15)

where κ = PC −
Eshv(P )

T
denotes the total circuit power consumption minus the harvested

energy per unit time, with the harvested energy expressed as

Eshv(P ) = Tβ
N∑
i=1

giPi (Joules) (4.16)

where β ∈ [0, 1] denotes energy conversion efficiency. Without loss of generality, we assume

that T = 1 in the sequel. Since it is not possible to harvest more than the transmitted

amount, we have κ+
∑
Pi > 0.

In SWIPT, each TX node transmits a signal not only to send information to the ID

component but also to energize the harvesting device. Hence, it is necessary to formulate an

optimization problem in order to trace the impact of energy demand at the EH component

on the optimal operating points and system energy efficiency. Thus, we have

(PR:4.2) max
P

ηs(P ) (4.17a)

subject to Eshv(P ) ≥ χ (4.17b)

Pi
(
Pi − Pmx

i

)
≤ 0 ∀i ∈ S (4.17c)

where χ denotes the required harvested energy at the EH component, which is limited by

the capacity of the energy storage device. (4.17b) describes an energy harvesting constraint

that needs to be satisfied by the optimal solution in addition to the power constraint given

in (4.17c). Any increment in demand for harvested energy requires additional transmitted

power ∆Pi and this could change the system efficiency by ∆ηs. For the ease of analysis, the

above optimization problem is split into two cases based on the harvested energy constraint.
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Energy constraint satisfied with strict inequality

When the constraint is satisfied with strict inequality at the optimal operating point, i.e.,

Eshv(P ∗) > χ, the information-bearing signal can be transmitted at the energy-efficiency-

maximizing power level. In this case, harvesting more than the demand is feasible, if the

battery has enough capacity to store any additional harvested energy. Otherwise, there is

an energy overflow, and only portion of the available energy can be harvested. Hence, χ will

be deducted instead of Eshv(P ∗), and this in turn modifies κ. From these, we observe that

the net energy consumption relies on the battery capacity, denoted as B, and hence we have

κ =

{
PC − Eshv(P ∗), B > χ (4.18a)

PC − χ B = χ. (4.18b)

In order to determine the energy-efficiency-maximizing input, optimization problem (PR:4.2)

is reformulated as

(PR:4.2a) : max
P

log2

(
1 +

∑N
i=1 γi

)
κ+

∑N
i=1 Pi

subject to Pi
(
Pi − Pmx

i

)
≤ 0 ∀i

(4.19)

Regardless of whether κ takes the value in (4.18a) or (4.18b), the denominator is still convex,

and hence the objective function maintains pseudo-concavity. Therefore, KKT conditions

are still sufficient and necessary for global optimality. The following proposition provides an

analytical expression for the optimal transmission power level when the energy constraint is

satisfied with strict inequality.

Theorem 4.3.1 We again assume, without loss of generality that, hN > hN−1 > · · · > h2 >

h1. Then, for the separated architecture, the corresponding energy-efficient power allocation

strategy under a loose energy harvesting constraint, i.e., when 0 ≤ χ ≤ χ∗, is given by the

following:
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P ∗i = min

ξi eW
(
hiΦi−1

e

)
+1 − 1

hi
, Pmx

i

 (4.20)

where

Φi =


P i
c

1− gi
B > χ (4.21a)

P i
c − χ B = χ, (4.21b)

and ξi is the same as defined in (4.10a) and (4.10b) with now P ∗i given in (4.20) being

applied. In addition, χ∗ is the harvested energy level at which the constraint starts being

active.

Proof: See Appendix E.

Under the given assumptions, Theorem 4.3.1 demonstrates that the user with better

channel conditions has the priority to communicate with the ID receiver, and power the EH

component as well, in order to maximize the system energy efficiency. Furthermore, it is

interesting to observe that P ∗i decreases for each incremental ∆χ in the case of B = χ, and

the reason is as follows. First, it is immediate that Φ decreases with increasing χ. Knowing

that Lambert function W(x) is a non-negative and increasing function for x > 0, eW(·) is

also an increasing function. Thus, incremental demand ∆χ reducesW(hiΦ−1
e

). Therefore, we

conclude that the optimal transmit power P ∗i reduces further until χ = χ∗ based on (4.20).

Intuitively, an increase in χ reduces κ and this in turn shifts the energy-efficiency maximizing

point to the left, i.e., towards the origin or zero. Note that the power allocation policy given

in (4.20) is optimal provided that the demand for harvested energy is below the threshold χ∗,

i.e., the harvested energy constraint given in (4.17b) is inactive. However, when the demand

exceeds this threshold, the constraint becomes active and this case is treated next.
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Active energy constraint

When the energy demand is beyond χ∗, the constraint in (4.17b) becomes active, and hence

the constraint is satisfied with equality. Thus, we have

(PR:4.2b) max
P

log2

(
1 +

∑N
i=1 γi

)
PC +

∑N
i=1(1− gi)Pi

(4.22a)

subject to Eshv(P ) = χ (4.22b)

Pi ≤ Pmx
i (4.22c)

Pi ≥ 0, i ∈ {1, 2, · · · , N}. (4.22d)

Here, the constraint in (4.22b) enforces the power allocation strategy to meet the demand

while maximizing the energy efficiency. As noted earlier, the objective function in (4.22a)

satisfies pseudo-concavity, and the constraints given in (4.22b) and (4.22c) are affine and

convex, respectively. Thus, the optimization problem (PR:4.2b) is a concave-linear fractional

problem [93], and its Lagrangian is given by

L = ηbs + µ
(
Eshv − χ

)
−

N∑
i=1

κi(Pi − Pmx
i ) +

N∑
i=1

φiPi, (4.23)

where µ, κi ≥ 0, φi ≥ 0 denote Lagrange multipliers, and

ηbs =
log2

(
1 +

∑N
i=1 γi

)
Pc +

∑N
i=1(1− gi)Pi

. (4.24)

Since (PR:4.2b) is a concave-linear fractional programming optimization problem, the KKT

conditions are both necessary and sufficient for global optimality, and are given by

∂ηbs
∂Pi

+ µ∗
∂Eshv
∂Pi

+ κ∗i + φ∗i = 0, (4.25a)

µ∗
(
Eshv − χ

)
= 0, κ∗i (P

∗
i − Pmx

i ) = 0, φ∗iP
∗
i = 0. (4.25b)
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Incorporating the complementary slackness conditions, i.e., κ∗i = 0 and φ∗i = 0 for 0 < Pi <

Pmx
i , into (4.25a) and applying the derivatives, we get

Ξ−1(P )h−Ψ(P )d = µ ln(2)g (4.26)

where Ξ(P ) =
(

1+
∑N

i=1 γi

)(
Pc+

∑N
i=1(1−gi)Pi

)
and Ψ(P ) =

(
Pc+

∑N
i=1(1−g)i)Pi

)−1

ln
(

1+∑N
i=1 γi

)
. In addition, h = [h1, h2, · · · , N ], g = [g1, g2, · · · , gN ] and d = [1−g1, 1−g2, · · · , 1−

gN ]. From (4.26), it is not easy to get a closed-form expression for the optimal transmit power

level. Meanwhile, in the presence of two-nodes, the complexity is reduced and it is possi-

ble to derive analytical expressions for the optimal solution. Moreover, in this setup, the

impact of χ on the energy-efficient transmit power level of the TX nodes can be explicitly

characterized as stated in the following proposition.

Proposition 4.3.1 The energy-efficient SWIPT power allocation strategy for two-user MAC

with separated architecture in the presence of an active harvested energy constraint is given

by the following:

(a) If hi > hj and gi > gj for i ∈ {1, 2}, then

χ ∈ [χ∗, χ′a] ⇒

 P ∗i = χ
gi

P ∗j = 0
(4.27a)

χ ∈ (χ′a, χ
mx] ⇒

 P ∗i = Pmx
i

P ∗j = min
(
χ−giPmxi

gj
, Pmx

j

) (4.27b)
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(b) If hi > hj and gi < gj for i ∈ {1, 2}, then

χ ∈ [χ∗, χ′b] ⇒

 P ∗i = χ
gi

P ∗j = 0
(4.28a)

χ ∈ (χ′b, χ
′′] ⇒


P ∗i =

(
gje
W(Ae )+1−gj−hjχ
gjhi−gihj

)+

P ∗j = min
(
χ−giP ∗i
gj

, Pmx
j

) (4.28b)

χ ∈ (χ′′, χmx] ⇒

 P ∗i = min
(
χ−gjPmxj

gj
, Pmx

i

)
P ∗j = Pmx

j

(4.28c)

where χ′ and χmx denote the maximum energy that can be optimally harvested from user

i and the maximum achievable harvested energy from both users, respectively. In addition,

χ′′ denotes the energy demand at which user j starts transmitting at the peak power level.

Furthermore, A = aPc + χ
(

1−gj
gj
a− hj

gj

)
− 1, and a =

higj−hjgi
gj−gi .

Proof: See refer to Appendix F.

From Proposition 4.3.1, we observe that once the demand exceeds the threshold χ∗,

the harvested energy constraint overrides the energy-efficiency-maximizing solution, and the

transmitted power level changes linearly with χ. In addition, the optimal policies depend

on the wireless link characteristics between each node and the ID and EH components.

For instance, assuming h1 > h2, it is more energy-efficient to keep node 2 silent and allow

node 1 to transmit until it reaches its peak power level provided g1 > g2. On the other

hand, when g1 < g2 while h1 > h2, keeping node 2 silent is energy-efficient only if the

demand for harvested energy is below χ′b. However, once the energy constraint exceeds χ′b,

it becomes more advantageous to utilize resources from both users according to the power

allocation policy given in (4.28b). This implies that better energy efficiency can be achieved

by introducing node 2 instead of increasing the transmitted power level of node 1 by an

equivalent amount. For χ′b < χ < χ′′, there is a tradeoff between choosing a node which has
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better channel link with the ID, node 1 in this case, and a node which has better channel

link with EH component, i.e., node 2. As can be seen from the power allocation policy in

(4.28b), more weight is given to node 2 until it utilizes its full capacity so long as the demand

increases within the range χ′b < χ < χ′′. This is because, for a given increment ∆χ in this

range, allocating additional power ∆P to node 2 instead of node 1 in order to satisfy the

demand results in a linear gain of δE = (g2− g1)∆P , and this becomes significant compared

to the logarithmic loss log
(
(h1 − h2)∆P

)
. Based on the EE expressions given in (4.15) and

(4.24), more will be subtracted in the denominator if ∆P is allocated to node 2 to instead

of node 1, and this achieves higher energy efficiency despite the reduction in the rate (the

numerator) since h2 < h1.

Corollary 4.3.1 Given the harvested energy demand, the optimal system energy efficiency

for a two-user MAC under separated antenna architecture for ID and EH components with

h1 > h2 is given as

η∗s(χ)=


h1 log2(ω∗)

−1 + h1(Pc − χ) + ω∗
;χ<χ∗ (4.29a)

log2

(
1+(h1−a2g1)P1+a2χ

)
Pc +

(
1− g1

g2

)
P1 + b2χ

;χ∗<χ<χmx (4.29b)

where a2 = h2

g2
, b2 = 1

g2
− 1, and

ω∗ = e
W
(
−1+h1(Pc−χ)

e

)
+1
. (4.30)

Proof : The optimal energy efficiency can be easily obtained by substituting the expressions

for P ∗1 and P ∗2 given in (4.27)-(4.28) into (4.15). �

According to the above characterization stated in Corollary 1, we observe that η∗s(χ) is

always an increasing function of harvested energy demand for χ<χ∗. This is because the

numerator in (4.29a) decreases logarithmically with ω∗ (which decreases with increasing χ)

while the denominator reduces only linearly with ω∗. Hence, the ratio becomes an increasing
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function of χ. On the other hand, for χ∗ < χ < χmx, we can see that η∗s(χ) is neither an

increasing nor a decreasing function of χ, and in such instances energy efficiency is generally

expressed in the form of log2(ax+b)
cx+d

. This is clearly a pseudo-concave function, and there exists

a point beyond which efficiency starts to decrease for each increment in χ. Therefore, energy

efficiency is maximized when the harvested energy demand reaches a point at which

∂η∗s(χ)

∂χ

∣∣∣
χ=χpt

= 0. (4.31)

Applying (4.31) to (4.29b), we get

a2

a2χ+ 1+(h1−a2g1)P1

− b2 log(a2χ+ 1+(h1−a2g1)P1)

b2χ+ Pc +
(
1− g1

g2

)
P1

= 0 (4.32)

which leads to

Z lnZ − Z = κ (4.33)

where Z = a2χ+ 1+(h1−a2g1)P1 and κ = a2

b2
(Pc +

(
1− g1

g2

)
P1)− (1+(h1−a2g1)P1). Thus, the

optimal solution for χopt can be expressed using the Lambert function as follows:

χopt =
1

a2

[
κ
W(κ

e
)
+(h1−a2g1)P1 − 1

]
. (4.34)

4.3.2 Common Receiving Antenna Architecture

In this scenario, each TX node transfers both information and power simultaneously to ID

and EH components that are physically connected to a common receiving circuitry, i.e.,

common antenna and RF chains. Thus, for supporting harvesting and decoding operations

at the same time, the received signal power is split between ID and EH components based

on the ratio ρ : 1 − ρ as noted earlier in Section 4.1. Hence, the energy efficiency depends
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not only on the transmit power level, but also on the power splitting factor ρ, and we have

ηc(ρ,P ) =
R(ρ, Pi)

PC +
∑N

i=1 Pi − Echv(ρ,P )
(4.35)

where

R = log2

(
1 + ρ

N∑
i=1

γi

)
(bps/Hz) (4.36a)

Echv = β(1− ρ)
( N∑
i=1

hiPi

)
(Joules). (4.36b)

In the co-located architecture, each incremental value of the harvested energy demand is

satisfied at the expense of information transfer, i.e., lower data rate, and this is due to the

power splitting factor ρ. In such a case, allocating power so that EH harvests more than the

demand is not energy-efficient. Therefore, the necessary as well as sufficient condition is to

satisfy the energy harvesting constraint with equality, and hence, given the energy demand

χ, the splitting factor during the kth symbol duration can be determined as follows:

ρ =

[
1− χ∑N

i=1 hiPi

]+

(4.37)

where [x]+ = max(x, 0). The splitting factor is lower bounded by the condition at which

the demand reaches to the maximum value, χmx, that can be supported by all the available

resources. At this point, the received signal power is allocated to the EH component only,

and if the desired harvested energy goes beyond this threshold, energy outage occurs.

Having said this, the energy efficiency formulation for MACs in this scenario can be

simplified further by substituting (4.37) into (4.36a) as well as (4.36b), leading to

ηc(P , χ) =
log2

(
1 +

∑N
i=1 γi − χ

)
PC +

∑N
i=1 Pi − χ

. (4.38)
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Given the harvested energy demand, both the achievable rate and energy efficiency depend on

the transmitted power level from each source, and as the demand changes by some increment,

∆χ, so does the optimal transmit power level. Thus, in order to analytically illustrate the

impact of harvested energy on the system energy efficiency and provide the optimal strategy,

we formulate an optimization problem as follows:

(PR:4.3) max
P

ηc(P , χ) (4.39a)

subject to Pi ≤ Pmx
i (4.39b)

Pi ≥ 0. (4.39c)

Indeed, the objective function is a pseudo-concave function for the same reason stated ear-

lier. Note that the harvested energy constraint has already been taken into account in the

objective function while substituting the splitting factor.

Theorem 4.3.2 We assume, without loss of generality that, hN > hN−1 > · · · > h2 > h1.

Then, the energy-efficient power allocation strategy for SWIPT in MAC when the ID and

EH components are physically connected to a single receiving circuitry is given as

P ∗i =


0 ;χ < χmni

P̂i ;χmni ≤ χ ≤ χmxi

Pmx
i ;χ > χmxi

(4.40)

where

P̂i =
eW
(
ci+diχ

e

)
+1 − 1−

∑N
j=1,j 6=i hjP

∗
j + χ

hi
, (4.41)

ci = hiP
i
c +
∑N

j=1,j 6=i
(
hi−hj

)
P ∗j −1, di = 1−hi. In addition, χmni and χmxi are the threshold

harvested energy levels at which the transmitted power from node i reaches peak and node

i+ 1 becomes active, respectively. Note that χmnN = 0 and χmx1 is the maximum energy which

can be harvested from all source nodes.
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Proof: See AppendixG. �

As can be seen from the explicit expressions given in (4.40), the optimal strategies for

energy-efficient SWIPT with power splitting scheme at the receiving end is neither water-

filling nor channel inversion. In addition, the node selection criteria and the corresponding

optimal power allocation policies directly depend on the wireless channel conditions and

harvested energy constraints. For instance, for lower energy demand, node with the best

channel condition is prioritized to transmit while keeping those that experience poor condi-

tions silent. However, after the demand for the harvested energy enforces the selected node

to utilize its full capacity, i.e., the node starts transmitting the signal at its peak power,

each incremental demand, ∆χ, can be satisfied either by allowing the node with the second

best link to transmit or by optimally adjusting the power splitting factor at the receiving

end without activating any other node. The latter approach is the optimal solution for a

certain range of harvested energy. As the demand increases further, allowing the node with

the second highest channel power gain to send information and power becomes the best

strategy rather than adjusting ρ. In such instances, the transmitted power level of this node

is optimally adjusted to maximize the system energy efficiency while complying with the

energy demand. With an increase in χ, this procedure continues until the node with the

weakest link is required to transmit at its peak power.

Note that the energy efficiency expression given in (4.38) is always a decreasing function

of χ, and in the next corollary, we provide an explicit expression for the optimal energy

efficiency using the power allocation strategies given in (4.40).

Corollary 4.3.2 The optimal energy efficiency for the TX nodes with a receiver having ID
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and EH components that operate using the power splitting scheme is explicitly given as

η∗c =



hN
ln(2)

(
W
(
ci+diχ

e

)
+1

)
(
ci+diχ+e

W

(
ci+diχ

e

)
+1

) ;χmni ≤ χ ≤ χmxi

log2

(
1+
∑N
j=i hjP

mx
j −χ

)
(
P ic+

∑N
j=i P

mx
j −χ

) ;χmxi ≤ χ ≤ χmni−1.

(4.42)

Proof : Substituting (4.40) into (4.38) and simplifying the expressions completes the proof.�

4.3.3 Numerical Analysis

In this section, we provide numerical results considering four transmitting nodes (similarly

as considered in Section III) for the co-located ID-EH setting. For the case of separated

architecture, we assume two nodes since analytical expressions are explicitly derived for this

setting. The transmitted power level from each node is upper bounded by Pmx = 5W . The

corresponding normalized average channel gains for ID and EH components are E{h1} =

−41dBm, E{h2} = −44dBm, and E{g1} = −43dBm. For the link between Node 2 and EH

receiver, we have considered two cases: E{g2} = −45dBm and E{g2} = −41dBm in order

to investigate impact of channel conditions on the optimal strategy and overall performance.

In regard to the EH receiver model, we assume that the device is able to utilize the harvested

energy with β = 1.

Energy Efficiency

Fig. 4.6 illustrates the quasi-concave characteristics of the optimal energy efficiency for the

two-user MAC in the presence of the harvested energy constraint. As can be seen from Fig.

4.6a, for the separated ID and EH components with separate receiving antennas, system

EE improves with the harvested energy demand so long as this demand is satisfied with

the EE-maximizing input. The threshold or boundary for this condition depends on the

peak power constraint and channel conditions. Further increase in harvested energy demand
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Figure 4.6: Energy efficiency (bpJ/Hz) under two-user MACs with SWIPT

overrides EE optimality condition, i.e., the constraint forces the system to operate at a point

below the most energy-efficient level. In the separated architecture, the overall performance

depends on the corresponding channel gains of ID and EH components. For instance, when

h1 > h2 and g1 > g2, activating user 2 always degrades the system efficiency, whereas if

g1 < g2, allowing user 2 to transmit could lead to better efficiency for certain ranges of χ.
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On the other hand, the system in the co-located scenario operates at the maximum energy

efficiency point if no energy harvesting is required, and each incremental demand ∆χ hurts

the system EE. Hence, energy efficiency decreases with the increase in the harvested energy

demand as shown in Fig. 4.6b. Similar characteristics are observed in the case of four-TX

nodes except that more energy can be harvested when all the nodes are forced to utilize their

peak power, at the cost of attaining lower energy efficiency levels, though. Furthermore, the

impact of circuit power on the optimal energy efficiency is shown in Fig. 4.7 where the total

circuit power is formulated as PC = Pc1 + Pc2 = αPc1 for some α ≥ 1 when both users are

active. As can be seen, when the second user becomes active, in region B, the additional

circuit power consumption reduces the energy efficiency. Indeed, the upper most curve in

region B corresponds to the case of α = 1.0 in which Pc2 is negligible/ignored. Note that

the second user circuit power consumption has no effect on the threshold at which this user

starts transmission.

Transmit Power Level

As can be seen from Fig. 4.8 and Fig.4.9, transmitter and receiver parameters rely on the

harvested energy demand in both separated and co-located architectures. Starting with the

transmitted power level, we observe in Fig. 6.2a that P ∗1 decreases as the EH component

opportunistically harvests energy in the separated scenario. This achieves better efficiency

for certain ranges of χ. Further increase in the energy demand leads to transmission at

higher power levels, and this continues until the peak value is reached for node 1. The

optimal transmit power level is slightly modified as shown in Fig. 6.2b when h1 > h2 but

g1 < g2. In this case, P1 first decreases and then increases with the harvested energy demand

as in regions A and B, respectively. However, P1 again starts to decrease in region C when

additional energy obtained from user 2 becomes significant compared with the corresponding

reduction in information rate. This continues until the harvested energy demand cannot be

satisfied by user 2 as in region E where P2 = Pmx and P1 < Pmx.
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Figure 4.7: Effect of circuit power consumption

In regard to the co-located scenario, any increment in χ results in additional transmit

power level regardless of the number of TX nodes. Besides, the node with the next better

channel condition can only be triggered to transmit provided the other nodes that experience

higher channel gain already transmit at their peak power level, and this is clearly shown in

Fig. 4.9a and 4.9b. Furthermore, the effect of harvested energy constraint on the receiver

power splitting parameter under the co-located architecture with a common receiving cir-
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Figure 4.8: Optimal transmit power for two-TX nodes with SWIPT in the separated ID-EH
scenario

cuitry is shown in Fig. 4.10. The figures illustrate how the optimal splitting factor varies

when the demand χ increases, and we observe that ρ has mostly a decreasing, but sometime

an increasing, characteristics. This is explained as follows. For instance in Fig. 4.10b, the

power splitting factor decreases non-linearly in region A when the UE with highest channel

gain is transmitting. The parabolic characteristics is due to the fact the ρ depends on both

the harvested energy demand and the transmit power level, i.e., ρ ∝ χ
P

. Then, in region B
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Figure 4.9: Optimal transmit power in the co-located ID-EH scenario

this UE is transmitting at its peak power, but the other UE is still silent, and hence the

ρ decreases linearly. Meanwhile, as the demand increases further, the second UE becomes

active and the additional energy is obtained from this user allows to allocate more power to

the ID component. As a result, ρ increases with the harvested energy demand in region C.

Once both users reach the peak, the splitting factor decreases linearly in region D until it is

reach to the maximum energy level that can be harvested from the users.
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Figure 4.10: Optimal power splitting factor in the co-located ID-EH scenario
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Chapter 5

Energy Harvesting Communication

Networks Under Statistical QoS

Constraints

In the previous chapters, simultaneous transmission of information and power to ID and EH

components that are equipped with either a common or independent antenna architecture

were considered, and throughput maximizing and energy-efficient power allocation strategies

were determined while satisfying harvested energy constraints at the receiving node. In this

chapter, the information receiver is assumed to have embedded power source, but transmit-

ting nodes do not have battery or external power source, rather they harvest energy from

a dedicated wireless power source. Based on the coordination of users to harvest energy

and transfer information to the AP, three downlink-uplink wireless information and power

transfer (WIPT) protocols are considered, and in all the cases, the influence of buffer over-

flow probabilities on the optimal operation intervals and their impact on the overall network

performances, i.e., throughput and energy-efficiency are studied.

The remainder of the chapter is organized as follows: Section 5.1 introduces the system

model and describes three types of WIPT operation strategies. In Section 5.2, throughput
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maximization optimization problems are formulated for synchronous TDMA, asynchronous

TDMA and simultaneous operation under statistical quality-of-service (QoS) constraints,

and optimal solution are determined. In Section 5.3, energy-efficient time allocation strate-

gies are obtained for each WIPT policy assuming delay-tolerant and delay-limited sources.

5.1 System Model and Preliminaries

5.1.1 System Model

In this chapter, we consider an energy harvesting communication networks in which an access

point (AP) communicates with multiple users that do not have embedded energy sources.

These users harvest energy from a dedicated wireless power transmitter (WPT) which broad-

casts energy signal with power Pa over the downlink channel. Having equally divided time

slots of T sec, wireless energy transfer occurs for a certain duration of each slot. Without

loss of generality, we use a normalized unit for each cycle, i.e., T = 1. In addition, we assume

that each user fully utilizes the harvested energy in each cycle (or time slot), as noted in [49]

[56], to support data transmission and circuit power consumption.

Figure 5.1: A delay-sensitive multiuser wireless-powered communication system

While harvesting energy, each user stores received data packets generated by a delay-

sensitive source that requires certain statistical QoS guarantees described by the exponential

QoS component θ. Moreover, the tail distribution of the buffer is required to have an expo-

nential decay with rate controlled by the exponent θ, and this buffer constraint determines
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the arrival rates that can be supported by the wireless link. Once energy is harvested, users

send information-bearing signal over the remaining time of the slot to the AP. We assume

that all the users transmit their data over the uplink channel in the same frequency band,

and the transmitted signal from the ith user is denoted by Xi where i ∈ S = {1, 2, · · · , N}.

Note that the uplink power level Pi of this user directly depends on the amount of energy

harvested. In regard to the channel, the link between an AP and any user experiences fre-

quency flat-fading, and the channel fading coefficients changes from one block to another

according to the distribution. Besides, the fading remains the same for both downlink and

uplink operation of a given cycle.

5.1.2 WIPT Operation Strategies

As noted above, each user applies harvest-then-transmit protocol, and their coordination to

carry out the downlink energy harvesting and uplink information transfer operations can

be carried out using three difference schemes as will be discussed shortly. Namely, the

scheme are synchronous energy harvesting with time-division multiple access (SH-TDMA)

[49], synchronous harvesting with multiple access (SH-MAC), and asynchronous harvesting

with time-division multiple access (ASH-TDMA) [56], and these are illustrated in Fig. 5.2

at the top of the next page. In the following sections, we will analyze and compare the

performance gain achieved under each approach.

SH-TDMA

In this case, the downlink energy harvesting and each user uplink information transfer opera-

tions are carried out over non-overlapping time intervals, and WPT and AP are operating in

half-duplex mode. Hence, all the users simultaneously harvest the downlink broadcast wire-

less power, but they transmit information uplink to the AP based on time-division multiple

access scheme such that
N∑
i=1

τi ≤ 1− τB (5.1)
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(a) SH-TDMA

(b) SH-MAC

(c) ASH-TDMA

Figure 5.2: Various WIPT strategies

where τB denotes the fraction of the time for downlink operation, and τi is the time allocated

for user i. Thus, the harvested energy at user i in one cycle can be expressed as

Ehv
i = τB|gi|2Pa (Joules) (5.2)

where gi denotes the channel fading coefficient between user i and WPT during downlink

operation. Then, the transmitted signal power level from the ith user is given as

Pi = βi
τB
τi
|gi|2Pa (5.3)

where βi denotes fraction of harvested energy utilized for data transfer while the remaining,

i.e., 1− βi, is consumed by the circuit.
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Meanwhile, the uplink received signal at AP from the ith user is given as

Ui = hiXi +Nu
i (5.4)

where NU
i = CN (0, 1) is the circularly-symmetric complex Gaussian noise at the AP with

unit variance, and hi denotes the channel fading coefficient between user i and the AP the

during uplink operation. Accordingly, the instantaneous achievable rate of user i becomes

Ri = τi log2

(
1 + γi

)
(bps/Hz) (5.5)

where γi = |hi|2Pi is the received SNR from user i in the kth symbol duration. Substituting

(5.3) into (5.5) and simplifying the expression, we get

Ri(τB, τi) = τi log2

(
1 + ai

τB
τi

)
(5.6)

where ai = βi|gi|2|hi|2Pa. Since the instantaneous service rate of each user is jointly concave

with the downlink and uplink operating intervals as noted in [49], so does the average. Thus,

the total average throughput,

Rtot(τ ) = E

{
N∑
i=1

Ri(τB, τi)

}

= Ea

{
log2

N∏
i=1

(
1 + ai

τB
τi

)τi} (5.7)

where τ = [τB, τ1, · · · , τN ], is a jointly concave function of τ .

SH-MAC

Similar to the earlier case, wireless power broadcasting and information decoding operations

occur over orthogonal time intervals, and harvested energy at user i can be determined

from (5.2). However, users send information-bearing signals simultaneously over the uplink
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channel throughout the interval 1−τB. Thus, the received signal at AP is written as follows:

V =
N∑
i=1

hiXi +N v (5.8)

whereN v = CN (0, 1) is the circularly-symmetric complex Gaussian noise at the AP with unit

variance. In order to decode each user’s information, AP performs successive interference

cancellation, and we consider fixed decoding order. Hence, the instantaneous service rate for

the user whose signal is decoded in the ith order can be determined as

Ri = (1− τB) log2

(
1 +

|hi|2Pi
1 +

∑N
j=i+1 |hj|2Pj

)
(bps/Hz) (5.9)

where the uplink transmitted power from user i in given as

Pi = βi
τB

1− τB
|gi|2Pa. (5.10)

Substituting this into 5.9, the service rate is expressed in terms of harvesting interval τB as

follows:

Ri(τB) = (1− τB) log2

(
1 +

aiτB
1− τB + a∗i τB

)
(bps/Hz) (5.11)

here ai = βi|gi|2|hi|2Pa and a∗i =
∑N

j=i+1 aj.

Proposition 5.1.1 The instantaneous service rate given in (5.11) is a concave function of

harvesting interval τB.

Proof: See Appendix H.

Thus, the total average throughput, i.e., average sum-rate capacity in this case, which is

given as

Rtot = Ea

{
(1− τB) log2

(
1 +

N∑
i=1

ai
τB

1− τB

)}
, (5.12)
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is a concave function of τB since concavity is preserved under summation.

ASH-TDMA

In this approach, users are allowed to harvest energy until they begin uplink data transfer

as can be seen from Fig. 5.2c, and hence WPT and AP are no longer in half duplex mode.

However, each energy harvesting and information transferring operations occur over non-

overlapping time intervals. The harvested energy at user i becomes

Ehv
i =

(
τB +

i−1∑
j=1

τj

)
giPa + Eadd

i (Joules) (5.13)

where τi denotes the time interval scheduled for this user to send information-bearing signal

uplink to the AP, and Eadd
i denotes the additional energy which can be harvested from the

transmitted signal by other users. It is given as

Eadd
i =

i−1∑
k=1

τk|rik|2Pk (5.14)

where rik is channel fading coefficient between user i and user k, and Pk is the transmitted

signal from user k. As a result, the transmitted power level from user i is given as

Pi =βi
Ehv
i

τi
(5.15)

which leads to

Pi =βiPa

gi
(
τB+

∑i−1
j=1 τj

)
+
∑i−1

u=1riugu

(
τB+

∑u−1
v=1τv

)
τi


=βiPa

[
τBa

i
B +

∑i−1
j=1 τja

i
j

τi

] (5.16)
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where aiB and aij’s are weighting coefficients while taking transmitted power level from user

i, and they are obtained from the channels power gains. For instance, in a two-user model,

we have a1
B = g1 and a1

1 = 0, a2
B = g2 + g1r12, and a2

1 = g2.

In regard to the uplink operation, users are operating based on time-division multiple

access scheme, and hence the received signal at the AP and the corresponding achievable

data rate during the time interval τi are as expressed in 5.4 and 5.5. Substituting (5.16) into

(5.5), the instantaneous throughput of user i in terms of operating intervals becomes

Ri(τ i) = τi log2

(
1 + βi

aiBτB +
∑i−1

j=1 τjaj

τi

)
(5.17)

where τ i = [τB, τ1, · · · , τi].

Proposition 5.1.2 The instantaneous throughput of user i given in (5.17) is jointly concave

with orthogonal operating intervals τ1, τ2, · · · , τi.

Proof : See Appendix I.

Therefore, the total average throughput, which is given as

Rtot(τ ) =
N∑
i=1

E
{
Ri(τ i)

}
, (5.18)

is a concave function of operating intervals.

5.2 Throughput Maximization under QoS constraints

In wireless-powered communication networks, the time intervals allocated for harvesting as

well as decoding operation, and the power level of an energy-bearing signal transmitted

downlink by WPT are important parameters that can be optimized to improve the through-

put or service rate. In fact, broadcasting a signal at a higher power level enables users to

harvest more energy within a shorter time interval, and this allows to transfer data over a
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longer duration of each cycle. Since the AP is assumed to have a reliable external power

source as mentioned in Section 5.1.1, it always transmits an energy-bearing signal at the

peak power level. Thus, operation time intervals become the only parameters to control for

maximum throughput, and in the following subsections, we analyze impact of QoS parameter

on the optimal time allocation policies.

5.2.1 Optimal Harvesting Time in the MAC Protocol

In this case, energy-harvesting users send information bearing signal to AP through mul-

tiple access channels, and hence harvesting time becomes the only parameter to optimize

for better performance. Knowing that each user harvests energy to support data transfer,

the effective capacity expression of user i given in (2.5) is modified for SH-MAC scheme by

incorporating the additional parameter τB, i.e., the harvesting interval, as follows:

Ce
i (θi, τB) = − 1

Tθi
log2

(
E

{
e
−Φi log

(
1+

aiτB
1−τB+a∗

i
τB

)})
(5.19)

where Φi = (1− τB)θi. The sum effective capacity of users transmitting through a multiple

access channel can be determined by summing up the individual effective capacities:

Ce(θ, τB) =
N∑
i=1

Ce
i (θi, τB) (5.20)

where θ = [θ1, θ2, · · · , θN ].

Theorem 5.2.1 Given the QoS exponent θ, the sum effective capacity of the considered

wireless-powered communication network under SH-MAC operation protocol is concave in

τB.

Proof: See Appendix 5.2.1.

Intuitively, the QoS exponent θ has an impact on the optimal harvesting interval, and a

strict QoS constraint requires higher service rates which can be provided if there is sufficient
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time to harvest as well as transmit data. Since these are conflicting requirements, obtaining

optimal duration in the presence of buffer violation constraints while improving the over-

all performance is a challenging task. Hence, we first formulate an optimization problem

considering a single user case, and then extend it to multiple users.

Single User

In the presence of a single user setting, let us denote as user 1, and the optimal harvesting

time can be obtained by formulating an optimization problem as follows:

(PR:5.1) max
τB

− 1

Tθ1

log

(
E
{
e−θ1R1

})
subject to τB(−1 + τB) ≤ 0.

(5.21)

Proposition 5.2.1 The optimal harvesting time for a single user scenario is independent

of the statistical QoS exponential decaying parameter θ, and it is given as

τ ∗B =
eW(a1−1

e )+1 − 1

a1 + eW(a1−1
e )+1 − 1

. (5.22)

Proof: See Appendix K.

According to Proposition 5.2.1, it is interesting to see that the exponential decaying

parameter θ1 does not have an impact on the optimal harvesting time interval. On the

other hand, if the harvesting interval is independent of the fading state realization, i.e.,

τB[k] = τB[k + 1], then (K.3) given in Appendix K becomes

E
{
e−θ1R1

[
ln
(

1 +
a1τB

1− τB

)
− a1

1− τB + a1τB

]}
= 0. (5.23)

Since the Qos exponential decay parameter θ1 can not be taken out from the expectation,

the optimal harvesting time depends on not only the channel characteristics but also θ1. In
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such a case, the solution is obtained by finding the root of the following function

f(τB) = E
{
e−θ1(1−τB) ln(Γ)

[
ln(Γ)− A

Γ

]}
(5.24)

where Γ = 1 + a1τB
1−τB

and A = a1

1−τB
. In order to guarantee the existence of a unique solution,

we apply the first order derivative, i.e.,

∂f(τB)

∂τB
= E

{[
ln(Γ)− A

Γ

][
∂

∂τB
e−θ1(1−τB) ln(Γ)

]
+

[
e−θ1(1−τB) ln(Γ)

][
∂

∂τB

(
ln(Γ)− A

Γ

)]}

= E

{
e−θ1(1−τB) ln(Γ)

[(
ln(Γ)− A

Γ

)2

θ1 +
a2

1

(1− τB)2 + (1− τB)a1τB

]}
≥ 0,

(5.25)

and it can be inferred from (5.25) that f(τB) is an increasing function for any feasible

harvesting interval. Furthermore, taking the boundary conditions, τB = 0 and τB = 1,

the functional values are f(0) = −a1 and f(1) � 0, respectively. Therefore, based on

intermediate value theorem, there exists a unique value of τ ∗B such that 0 < τ ∗ < 1 and

−a1 < f(τ ∗) = 0 < f(1). It is obvious that Γ ≥ 1 and A > 0 for a1 6= 0. Nevertheless, there

is no guarantee whether loge(Γ) − A
Γ
> 0 ∀τB ∈ (0, 1) despite loge(Γ) being monotonically

increasing and 1/(Γ) decreasing functions of τB. Thus, (5.24) does not necessarily imply

ln(Γ) = A
Γ

. Besides, it is unlikely to obtain closed-form expressions for the optimal harvesting

interval. Hence, we provide an algorithm determine the optimal harvesting interval from

(5.24) using bisection method as described in Algorithm 3.

Multiple Users

In this case, there are at least two or more users having buffer violation probabilities defined

by the exponential decaying parameter θi. The goal is to determine the best time allocation

strategy that benefit the total throughput, i.e., effective capacity, while satisfying the peak

time constraint τB ≤ 1 over each fading state realization. Thus, the optimization problem
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Algorithm 3 Harvesting interval independent of channel condition

1: Let: f(τB) as defined in (5.24).
Require: τ ∗B where f(τ ∗B) = 0

2: Given ε, τuB and τ lB
3: Initialize τB(0) = τ lB
4: i← 0
5: repeat
6: τB(i) = 0.5 ∗ (τuB + τ lB)
7: Calculate f(τB) using (5.24)
8: if f(τB(i)) ∗ f(τ lB) > 0 then
9: update τ lB = τB(i)

10: else
11: update τuB = τB(i)
12: end if
13: i← i+ 1
14: until |τB(i)− τB(i− 1)| < ε and |f(τB(i))| < ε
15: τ ∗B = τB(i)

is formulated as

(PR:5.2) max
τB

Ce(θ, τB) (5.26a)

subject to τB(−1 + τB) ≤ 0. (5.26b)

The constraint is convex, and it guarantees that the harvesting interval does not exceed

the peak or give infeasible solution, i.e., τ ∗B < 0. From characterization in Theorem 5.2.1 and

property of (5.26b), we note that (PR:5.2) is a convex optimization problem. This implies

that KKT conditions guarantee global optimality, and hence

∂L
∂τB

= 0 (5.27a)

λ∗(τ ∗B − τ ∗B
2) = 0. (5.27b)

can be applied where the Lagrange function L is now defined as

L = Ce(θ, τB) + λ(τB[1− τB]). (5.28)
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Knowing that 0 < τ ∗B < 1 for the reason mentioned earlier, the first order optimality criteria

becomes

∇Ce =
N∑
i=1

∂Ce
i (θi, τB)

∂τB
= 0. (5.29)

where ∇Ce
i is further expressed as

∇Ce
i =

e−θiRi[k]

E(e−θiRi[k])

[
ln
(
Hi(τB)

)
−

ai
1−τB(

Hi(τB) +
a∗i τB
1−τB

)
Hi(τB)

]
(5.30)

where Hi(τB) = 1 + aiτB
1−τB+a∗i τB

. Here, we can clearly observe that QoS has a direct impact on

the optimal harvesting interval, and each incremental ∆θi changes the operation time alloca-

tion strategy. However, it is still not easy to explicitly characterize how an increase/decrease

of θi affect τB and to provide a closed-form expression for the optimal harvesting time inter-

val as well. Nevertheless, the global points of convex programming problems can be obtained

using standard numerical tools.

We note that the uplink operating interval depends on the QoS exponents, and the upper

boundary is achieved when each user does not have a buffer overflow limitation. In such a

case, i.e., in the absence of statistical QoS constraints, throughput becomes average sum-

rate capacity given in (5.12). In such a case, assuming 0 < τ ∗B < 1, the optimality criteria

becomes

∂

∂τB
E
{

(1− τB) log2

(
1 +

τB
1− τB

γT

)}
= 0 (5.31)

which leads to

ln
(

1 +
γT τB

1− τB

)
− γT

1− τB + γT τB
= 0 (5.32)

where γT =
∑N

i=1 ai. Following similar procedure as in the proof of Proposition 3, the

solution becomes

τ ∗B =
z∗ − 1

z∗ − 1 + γT
. (5.33)
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where

z∗ = eW(
−1+γT

e
)+1. (5.34)

Based on the above analytical result for wireless-powered users transmitting through mul-

tiple access channels, the optimal harvesting interval given in (5.33) decreases with increase

in γT [k]. This in turn implies that higher γT [k] value reduces τ ∗B[k] as shown in Fig. 5.3.

Intuitively, better channel gain allows to harvest the required energy within shorter time

interval, and this improves the throughput by encouraging users to transmit information for

longer duration.
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Figure 5.3: Optimal harvesting time τ ∗B (Sec.) versus Φ = −1 + γT

5.2.2 Optimal Time Allocation in the TDMA Protocol

As noted in earlier for TDMA schemes, energy harvesting users transmit information uplink

over non-overlapping time intervals that are governed by (5.1). The corresponding service

rates can be determined using either (5.6) or (5.17) depending on how users are coordinated

for the downlink operation. The relation between the wireless-powered user i effective ca-

pacity and operating intervals can be obtained by substituting the above mentioned service
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rates into (2.5). The simplified expressions are given as

For SH-TDMA

Ce
i (θi, τB, τi) = − 1

Tθi
log

(
E
{
e
−θiτi log2

(
1+ai

τB
τi

)})
(5.35a)

For ASH-TDMA

Ce
i (θi, τB, τ i)=− 1

Tθi
log

(
E

{
e
−θiτilog2

(
1+βi

[
aiBτB+

∑i−1
k=1

τkak
τi

])})
(5.35b)

where τ i = [τB, τ1, τ2, · · · , τN ]′. Thus, the total effective capacity in either case is determined

by

Ce
tot(θ, τ ) =

N∑
i=1

Ce
i . (5.36)

where τ = [τB, τ1, · · · , τN ]′.

Proposition 5.2.2 The total effective capacity of wireless-powered users preserves concavity

under TDMA.

Proof: See Appendix L.

From Theorem 5.2.1 and Proposition 5.2.2, we observe that the throughput of wireless-

powered users having delay-limited sources preserves concavity over the downlink and uplink

operating time intervals. This implies obtaining effective capacity maximizing operating so-

lution is feasible given the statistical QoS exponential parameters. In the previous scenario,

since energy-harvesting users were simultaneously transferring data to AP, it was necessary

and sufficient to optimize the harvesting time alone. Meanwhile, when these users transmit

information-bearing signals based on TDMA scheme, resource allocation strategy requires

obtaining the set of time intervals for the downlink energy broadcasting and uplink informa-
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tion transfer operations. Thus, we formulate an optimization problem as follows:

(PR:5.3) max
τB ,τi

Ce
tot (5.37a)

subject to (5.1), τi ≥ 0, τB ≥ 0. (5.37b)

The Lagrangian of (PR:5.3) is

L(τ ) = Ce
tot −Θ

(
τB +

N∑
i=1

τi − 1
)

(5.38)

where Θ is the Lagrange multiplier for the constraint. The solutions of (PR:5.3) can be

obtained from the corresponding dual problem, which is given as

max
Θ

min
τ
L(τ ). (5.39a)

subject to (5.37b). (5.39b)

Knowing Ce
tot is a concave function and the time constraint is convex, (PR:5.3) is a convex

optimization problem. Thus, the KKT conditions

∂L
∂τB

= 0 (5.40a)

∂L
∂τi

= 0 (5.40b)

Θ∗
(
τ ∗B +

N∑
i=1

τ ∗i − 1
)

= 0 (5.40c)

are necessary and sufficient for optimality. The complementary slackness condition implies

Θ∗ 6= 0 if the optimal total duration is the same as the symbol interval. Intuitively, maximiz-

ing the throughput requires harvesting more energy and transferring information for longer
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period of time, which in turn enforces

τ ∗B +
N∑
i=1

τ ∗i = 1. (5.41)

Since first order optimality criteria given in (5.40) depend on the Lagrange function, or more

specifically the objective function, we provide the details for synchronous and asynchronous

TDMA schemes separately as follow.

SH-TDMA

Similarly as in [29] and [94], the maximization problem (PR:5.3) can be equivalently ex-

pressed as the following sub-optimal minimization problem,

min
τB ,τi

N∑
i=1

E
{(

1 + ai
τB
τi

)−θiτi}
(5.42a)

subject to (5.37b), (5.42b)

and the corresponding Lagrange function given in (5.38) becomes

L =
N∑
i=1

E
{(

1 + ai
τB
τi

)−θiτi}
−Θ

(
τB +

N∑
i=1

τi − 1
)
. (5.43)

Then, applying (5.40a) and (5.40b), we get

∇LτB =
N∑
i=1

ai
(
1 + ai

τB
τi

)−θiτi−1−Θ = 0 (5.44a)

∇Lτi =
(
1 + ai

τB
τi

)−θiτi[ln
(
1 + ai

τB
τi

)
−

ai
τB
τi

1 + ai
τB
τi

]
−Θ = 0, (5.44b)

which leads to

zi ln(zi)− zi(1 + Θi) = 1 (5.45)
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where zi = 1 + ai
τB
τi

and Θi = ΘT
(
1 + ai

τB
τi

)θiτi . The above equations in (5.45) have a

form X lnX − aX = b, and after several manipulations as in the proof of Proposition 3, the

corresponding solution to (5.45) is given as

z∗i =
1

W(e−(1+Θi))
. (5.46)

Hence, each user optimal uplink operating time interval is expressed as

τ ∗i =
aiτB
z∗i − 1

. (5.47)

Substituting (5.47) into (5.41), and solving for τ ∗B we get

τ ∗B =
1

1 +
∑N

i=1
ai

z∗i −1

(5.48)

ASH-TDMA

In this case, some users can harvest while others are transferring information to AP, and

the corresponding the expression for each user’s effective capacity and total throughput

are determined using (5.35b) and (5.36), respectively. Substituting these into the objective

function of (PR:5.3) gives us an optimization problem that maximizes total effective capacity

for ASH-TDMA scheme. Following similar approach as to the earlier case, the equivalent

sub-optimal minimization problem becomes

min
τB ,τi

N∑
i=1

E


(

1 + βi

[
aiBτB+

∑i−1
k=1 a

i
kτk

τi

])−θiτi (5.49a)

subject to (5.37b). (5.49b)
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From the first order optimality criteria given in (5.40a), where the Lagrangian function in

this case is

L(τ )=
N∑
i=1

E


(
1+βi

[
aiBτB+

∑i−1
k=1 a

i
kτk

τi

])−θiτi−Θ
(
τB+

N∑
i=1

τi−1
)
, (5.50)

we have

∇LτB =
N∑
i=1

βia
i
B

(
1 + βi

[
aiBτB+

∑i−1
k=1 a

i
kτk

τi

])−θiτi−1

−Θ. (5.51)

Similarly, the explicit expression for (5.40b) using (5.50) becomes

∇Lτi =
(
1 + βixi

)−θiτi [ln (1 + βixi
)
− βixi

1 + βixi

]
+

N∑
j=i+1

βia
i
j

τj

(
1 + βjxj

)−θjτj−1 −Θ (5.52)

where

xi =
aiBτB +

∑i−1
k=1 akτk

τi
.

After few manipulations, we have

(1 + βixi) ln(1 + βixi)− (1 + βixi)(1 + Θ′i) = −1 (5.53)

where

Θ′i = (1 + βixi)

[
Θ−

N∑
j=i+1

(
1 + βjxj

)−θjτj−1aj
τj

]
. (5.54)

This equation is similar to (5.45), and can be solved following the same procedure using

Lambert function. Thus, the optimal uplink operation interval for each user can be implicitly

expressed as

τ ∗i =
βi

(
aiBτB +

∑i−1
k=1 a

i
kτk

)
W(e−(1+Θ′i))

1−W(e−(1+Θ′i))
(5.55)
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Therefore, once the total time interval required for information transfer is known, the optimal

initial harvesting time can be determined as

τ ∗B = 1−
N∑
i=1

τ ∗i . (5.56)

Since the expressions given for the optimal operating intervals in both SH-TDMA and

ASH-TDMA cases are implicit functions, solution can only be obtained numerically using

an iterative procedure. Note that the above downlink energy broadcasting and each user

uplink data transfer time intervals are determined for the given the dual parameter, and sub-

gradient approach can be applied to iteratively update Θ until the solution converges to the

optimal value. We provide an iterative algorithm to solve (PR:5.3) as shown in Algorithm

4.

5.2.3 Numerical Analysis

In order to justify theoretical characterizations, we provide numerical results considering two

energy harvesting users communicating with an AP. We assume that the uplink and down-

link channel of a given user have the same characteristics, and the corresponding magnitude

square of fading coefficients are exponentially distributed with means 1
%1

and 1
%2

for user 1

and user 2, respectively. For the asynchronous harvesting - TDMA scheme, we consider two

cases, namely ASH-TDMAA and ASH-TDMAB, for comparison purpose. ASH-TDMAA de-

notes the scenario discussed in Section 5.1.2 where the harvested energy at user i is governed

by 5.13. On the other hand, ASH-TDMAB considers the same situation as illustrated in

Fig. 5.2c except that users harvest only from downlink broadcast signal as noted in [56], i.e.,

Eadd
i = 0 in 5.13.

Fig. 5.4 illustrates the impact of downlink transmitted power level and user exponential

QoS decaying parameter θ on the network throughput, i.e., sum effective capacity. As can

be seen from 5.4a, broadcasting an energy-bearing signal at higher power level, in general,
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Algorithm 4 Sub-optimal interval for TDMA under QoS

Require: τ ∗B, and τ ∗i ∀i ∈ {1, 2, · · · , N}
1: Given ε, a1, a2, · · · , aN
2: Initialize k = 0, and τB(0), τ1(0), · · · , τN(0)
3: Initialize r = 0, and β(0)
4: repeat
5: repeat
6: for i = 1 to i = N do

7: Θi = Θ(k)T
[
1 + ai

τB(k)
τi(k)

]θiτi(k)

8: Θ′i using 5.54
9: end for

10: if Nov-TDMA then
11: Calculate τB(k + 1), using 5.48
12: for i = 1 to i = N do
13: Calculate τi(k + 1) 5.47
14: end for
15: else
16: for i = 1 to i = N do
17: Calculate τi(k + 1) 5.55
18: end for
19: τB(k + 1) = 1−

∑N
i=1 τi(k + 1)∗

20: end if
21: until

∣∣τi(k)−τi(k−1)
∣∣<ε, and

∣∣τB(k)−τB(k−1)
∣∣<ε

22: r = r + 1
23: Update Θ(r)
24: until Θ(r)−Θ(r − 1) < ε
25: τ ∗i = τi(k) and τ ∗B = τB(k)
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Figure 5.4: Impact of downlink transmitted power P and user 2 exponential decay parameter
θ2 on sum effective capacity Ce

tot

improves the network throughput as expected. This is because, if the received downlink

signal at each user has relatively higher power level, sufficient amount of energy can be

harvested in shorter duration which leaves more time for the uplink information transfer.
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Comparing the various types of WIPT operation protocols, asynchronous energy harvest-

ing is the best approach for throughput maximization of a wireless-powered communication

network. In addition, we observe that allowing one user to opportunistically harvest energy

from the uplink information-bearing signal transmitted by the other user to the AP provides

additional energy and this increases the total number of bits that can be transferred as can

be inferred from ASH-TDMAB and ASH-TDMAA. On the other hand, Fig. 5.4b shows

impact of changing user 2’s QoS parameter θ2 on the sum-effective capacity while user 1’s

QoS parameter is kept constant at θ1 = 1. Generally speaking, higher θ values, i.e., stricter

QoS constraint, hurts the throughput under fixed downlink transmit power. As can be seen

from the figure, the performance gain of asynchronous harvesting with uplink TDMA over

synchronous harvesting with uplink MAC is dependent on not only the users’ buffer violation

probabilities but also the channel characteristics experienced by each of them. For instance,

assuming both users have the same average channel power gain, ASH-TDMA achieves better

data rate than SH-MAC for any values of θ2 > 0. However, if user 2 experiences favorable

situations compared with user 1, i.e., %2 < %1, then loose QoS constraint at user 2 encour-

ages to apply SH-MAC in order to benefit for throughput maximization. This is because

the channel characteristics improvement leads to allocating more time for the uplink infor-

mation transfer which actually benefits both users. Meanwhile, each incremental reduces

the performance difference in the two approaches, and at point P the same amount of bits

is transferred using either scheme. Furthermore, Fig. 5.5 explains how the average optimal

harvesting time changes with both channel conditions and user 2’s exponential decaying QoS

parameter θ2. From the figure, we understand that better channel condition reduces the time

allocated for energy harvesting which actually benefits the throughput. On the other hand,

when the user experiences bad channel condition or transmits through worse wireless link,

its buffer violation probability has little impact on the optimal harvesting time, and hence

as θ2 becomes more strict less change is observed in τB under the given channel condition.

Fig. 5.6 shows explicitly users’ data arrival rates as a function of user 2’s exponential de-
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caying parameter θ2 under different channel conditions. From 5.6a, we can see that at lower

θ2 values user 2 achieves higher data arrival rates for both uplink TDMA and MAC schemes.

More specifically, letting this user to harvest while user 1 transmits under ASH-TDMA case

is advantageous. Despite the exponential decreases in effective capacity as θ2 takes higher

values, user 2 maintains better arrival rate compared with user 1 until θ2 exceeds certain

threshold, for instance i.e., θ2 ≈ 1 for SH-TDAM or θ2 = 3 for ASH-TDMA. In regard to

MAC, since both users operate simultaneously, strictness of θ2 has little impact on user 1

achievable data rate, and both users achieves the same data arrival rate when θ2 = 6.5.

This is due to the fixed decoding order applied at the receiving end. On the other hand,

when user 2 experiences better channel condition, i.e., %2 > %1, users data arrival rates and

the corresponding point at which both users attain the same throughput is also changed

as shown in Fig. 5.6b. Intuitively, when %2 > %1, allocating more time to user 2 improves

the network throughput, but this can hurt user 1’s data arrival rate. From the figure, we

observe that effective capacity of user 1 reduces slightly considering both SH-TDMA and

ASH-TDMA WIPT protocols when user 2 has better channel gain. However, this condition

does not reflect the same characteristics under SH-MAC. This is because, in synchronous
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harvesting with uplink MAC, both users share the benefit of user 2’s channel gain through

the time allocated for energy harvesting and information transfer. Furthermore, compar-

ing Fig. 5.6a and Fig. 5.6b, user 1 and user 2 data arrival rates improve simultaneously.

However, the effective capacity of both users becomes the same at θ2 = 2.8 under MAC

protocol, and each incremental value of θ2 beyond this point degrades user 2 performance,
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and as a result, user 1 achieves better arrival rate. Whereas, in the case of uplink SH-TDMA

scheme, since user 2 benefits from the channel power gain significantly, higher value of θ2

is expected in order to reach R1 = R2. In other words, the time allocated for each user to

transfer information uplink to AP, more specifically for TDMA scheme, is highly affected

by the buffer violation probability in the presence of delay-limited sources, and the doubly

near-far problem mentioned in [49] depends on these parameters.

5.3 Energy-Efficient Time Allocation

Resource allocation for wireless-powered users considering throughput as a performance mea-

suring metric benefits the uplink information transfer. Meanwhile, energy-efficiency is an-

other compelling performance parameter mainly in energy-limited environment. In this

section, we focus on obtaining optimal time allocation strategies that maximize the sys-

tem energy efficiency of an energy harvesting communication networks. More specifically,

we begin with instantaneous values and determine operating intervals without exponential

decaying QoS constraints. Then, we investigate impact of these constraints on the system

average performance, i.e., effective-EE.

5.3.1 Energy Efficiency without QoS Constraints

The system energy efficiency determines the total number of bits transferred to the AP per a

joule of energy consumed by the system, and in subsequent subsections, we apply this metric

to wireless-powered nodes considering uplink TDMA and uplink MAC protocols.

Under uplink TDMA protocol

In this protocol, wireless-powered users transfer data over non-overlapping time intervals,

and their corresponding instantaneous service rates can be determined using (5.6) and (5.17)

for synchronous and asynchronous energy harvesting operations, respectively. It is clear that
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the system expends energy to transfer R bits of information to the AP, and this expenditure

depends on the downlink transmitted power level Pa as well as the power consumption of

the circuitry. Thus, the energy consumption rate during the downlink and uplink operations

intervals are given as

PD =Pa + PWPT
cir

PU =PAP
cir

(5.57)

where PWPT
cir and PAP

cir denote circuit power consumption at the WPT and AP, respectively.

Note that since the wireless-powered nodes do not have embedded power source, their circuit

power consumption is satisfied from the harvested energy. Hence, it does not need to be

included in 5.57. Therefore, the system energy efficiency, which evaluates the amount of

data transferred per joule of consumed energy in each fading realization, is mathematically

expressed as

ηaT (τ ) =



log2

∏N
i=1

(
1+ai

τB
τi

)τi
PDτB+PU (1−τB)

SH-TDMA

∑N
i=1 τi log2

(
1+βi

[
aiBτB+

∑i−1
k=1

aikτk
τi

])
PD(1−τN )+PU (1−τB)

ASH-TDMA.

(5.58)

Knowing that the throughput, which is the numerator of ηaT , is a concave function of

operating intervals in both types of TDMA scenarios as noted in Section 5.1.2 and the

consumed energy is affine function, the system energy efficiency given in 5.58 is Pseudo-

concave claiming Proposition 2.9 of [93]. This guarantees the existence of a stationary point

that maximize the utility function, and in order to determine the optimal set of operation
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time intervals, an optimization problem is formulated as follow:

(PR:5.4) max
τ

ηaT (τ ) (5.59a)

subject to (5.37b). (5.59b)

Since (PR:5.4) is a concave-linear fractional problem, Dinkelbach method can be applied

to solve the optimization problem [93]. This method follows an iterative procedure until

the optimal solution which maximizes the system energy efficiency is achieved. Each step

involves solving another convex maximization problem which is defined as

x∗ = arg max
X∈S

[
F(x)− αng(x)

]
(5.60)

where F(x) is the numerator, and g(x) is the denominator of system energy efficiency given

in (5.58). In addition, the parameter αn is a constant for the nth iteration, and it is updated

iteratively with αn+1 = F(x)
g(x)

until the solution converges to the optimal value. The convex

maximization problem given in (5.60) is a.k.a. inner loop and it has different description for

SH-TDMA and ASH-TDMA scenarios as will be discussed shortly.

i. Inner loop under SH-TDMA

From the characterization in (5.58), the inner loop maximization problem defined in

(5.60) can be reformulated as

min
τ
− ln

N∏
i=1

(
1 + ai

τB
τi

)τi
+ αn

(
(PD − PU)τB + PU

)
(5.61a)

subject to (5.37b). (5.61b)

For the given αn, the problem reflects throughput maximization formulated in [49] except the

additional term αn((PD−PU)τB+PU). The Lagrangian function L for the above optimization
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problem is defined as

L(τB, τ , β) = − ln
N∏
i=1

(
1 + ai

τB
τi

)τi
+ αn

(
(PD − PU)τB + PU

)
− Φ

(
τB +

N∑
i=1

τi − 1
)
(5.62)

where Φ is the Lagrange multiplier for the constraint. Since ln
∏N

i=1

(
1 + ai

τB
τi

)τi
is proved

to be concave, it is straightforward to see that the above problem is convex with respect

to the operating time intervals, and hence their optimal values can be determine applying

KKT conditions,

Φ∗
(
τ ∗B +

N∑
i=1

τ ∗i − 1
)

= 0. (5.63a)

∂L
∂τB

= 0 and
∂L
∂τi

= 0 (5.63b)

Thus, we get
N∑
i=1

ai
1 + ai

τB
τi

+ αn(PD − PU)− Φ = 0 (5.64)

ln
(

1 +
aiτB
τi

)
−

aiτB
τi

1 + aiτB
τi

− Φ = 0. (5.65)

Similarly as in [49], from (5.64) and (5.65), we have

N∑
i=1

ai − 1 = z ln z − z(1 + ωi), (5.66)

and the optimal time allocations are given as

τB =
z∗ − 1∑N

i ai + z∗ − 1
and τi =

ai∑N
i ai + z∗ − 1

(5.67)
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where ωi = αn(PD − PU), z = 1 + τB
K

, and K = 1−τB∑N
i=1 ai

. Thus, the solution to (5.66) can be

expressed as

z∗ =
ai − 1

W
(

(ai − 1)e−(1+ωi)
) . (5.68)

Substituting (5.68) into (5.67), solution of operating intervals while αn is fixed are explicitly

expressed as

τ ∗B =

ai−1

W
(

(ai−1)e
−
(

1+αn(PD−PU )

)) − 1

∑N
i=1 ai + ai−1

W
(

(ai−1)e
−
(

1+αn(PD−PU )

)) − 1
(5.69a)

τ ∗i =
ai∑N

i=1 ai + ai−1

W
(

(ai−1)e
−
(

1+αn(PD−PU )

)) − 1
. (5.69b)

Therefore, the optimal time intervals for the downlink energy broadcasting and uplink infor-

mation transfer can be determined by updating (5.69) iteratively. The procedure for solving

the optimization problem (PR:5.4) considering synchronous harvesting with uplink TDMA

is indicated in Algorithm 5.

Algorithm 5 EE maximization for SH-TDMA scheme using Dinkelbach’s algorithm

1: Given: ε

2: Define: F(τ ) = ln
∏N

i=1

(
1 + ai

τB
τi

)τi
,

g(τ ) = (PD − PU)τB + PU
3: n← 0
4: Initialize τB, τ1, τ2, · · · , τN .
5: repeat
6: Update τB and τi using (5.69a) and (5.69b), respectively
7: Determine ∆n = F(τ )− αng(τ )

8: αn+1 = F(τ )
g(τ )

9: n← n+ 1
10: until |∆n| > ε
11: Set τ ∗B = τB and τ ∗i = τi.

ii. Inner loop under ASH-TDMA
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In this case, the inner loop is expressed as follows:

min
τ
−

N∑
i=1

τi ln2

(
1+βi

aiBτB +
∑i−1

k=1 a
i
kτk

τi

)
+αnC(τN , τB) (5.70a)

subject to (5.37b) (5.70b)

where C(τN , τB) = PD + PU − PDτN − PUτB. The corresponding Lagrange function L is

given as

L(τB, τ , β) =

−
N∑
i=1

τi ln

(
1 + βi

aiBτB +
∑i−1

k=1 a
i
kτk

τi

)
+ αn(PD + PU − PDτN − PUτB)− Φ

(
τB +

N∑
i=1

τi − 1
)

(5.71)

where Φ is the Lagrange multiplier. As noted in the SH-TDMA case, this problem is also a

concave throughput maximization apart from the additional term. Clearly, KKT conditions

in (5.63) are necessary and sufficient for global optimality. Thus, applying the first order

optimality criteria, we get

∂L
∂τi

= ln
(

1 + βixi

)
− βixi

1 + βixi
+

N∑
j=i+1

βja
j
i

1 + βjxj
−Φ = 0 (5.72a)

∂L
∂τN

= ln
(

1 + βNxN

)
− βNxN

1 + βNxN
− αnPD − Φ = 0 (5.72b)

∂L
∂τB

=
N∑
i=1

βia
i
B

1 + βixi
− αnPU − Φ = 0 (5.72c)

where xi =
aiBτB+

∑i−1
k=1 a

i
kτk

τ∗i
. After several manipulations as in [56], we have

zi ln zi − zi
(
1 + φi(zi)

)
= βia

i
B − 1 (5.73)
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where zi = aixi + 1, zi = [z1, z2, · · · , zi−1, zi+1, · · · , zN ]′,

φi(zi) =
N∑

j=i+1

βj(−aji + ajB)

zj
− αnPU +

i−1∑
k=1

βka
k
B

zk
(5.74)

∀i ∈ {1, · · · , N − 1} and φN(zN) =
N−1∑
j=1

ajBβj
zj

+ αn(PD − PU). (5.75)

Note that (5.73) is similar to (5.66), and hence the solution is given as

z∗i =
βia

i
B − 1

W
((
βiaiB − 1

)
e−
(

1+φi(zi)
)) . (5.76)

However, since zi depends on the zj where i, j ∈ {1, 2, · · · , N} but i 6= j, it is required to

apply an iterative procedure. Then, for a given αn, the uplink operating intervals can be

expressed as a function of τB using x∗i =
aiBτ

∗
B+
∑i−1
k=1 a

i
kτ
∗
k

τ∗i
and z∗i = aix

∗
i + 1 as follow:

τ ∗1 =
a1
Ba

1
1

z∗1 − 1
τ ∗B (5.77a)

τ ∗2 =
a2
Ba2

z∗2 − 1
τ ∗B +

a1
1a

2
1a2a

1
B

(z∗1 − 1)(z∗2 − 1)
τ ∗B (5.77b)

... (5.77c)

τ ∗N =

[
aNB τ

∗
B +

∑N−1
j=1 aNj τ

∗
j

z∗N − 1

]
aN . (5.77d)

From the complementary slackness condition, recall that

τ ∗1 + τ ∗2 + · · ·+ τ ∗N + τB = 1. (5.78)

Substituting (5.77) into (5.78), we get

N∑
i=1

aiBai
z∗i − 1

τ ∗B +
N∑
i=1

[∑i−1
j=1 a

i
jτ
∗
j

z∗i − 1

]
ai + τB = 1. (5.79)
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which leads to

τ ∗B =
1∑N

k=1

akBak
z∗k−1

+H(a)
(5.80)

where a is a set of alB and anm ∀ l,m, n ∈ {1, 2, · · · , N}, and H(a) is a scalar valued function

which is obtained from (5.79). We provide an algorithm for energy-efficient time allocation

strategy considering ASH-TDMA scheme as indicated in Algorithm 6.

Algorithm 6 Energy-efficient time allocation for ASH-TDMA scheme using Dinkelbach’s
algorithm

1: Given: ε
2: Define: F(τ ) =

∑N
i=1 τi ln

(
1 + βi

aiBτB+
∑i−1
k=1 a

i
kτk

τi

)
g(τ ) = PD + PU − PDτN − PUτB

3: n← 0
4: Initialize τB, τ1, τ2, · · · , τN .
5: repeat
6: r ← 0
7: repeat

8: Determine zi(r) = ai

[
aiBτB+

∑i−1
k=1 a

i
kτk

τ∗i
+ 1
]

9: r ← r + 1
10: Update zi(r) using (5.76)
11: until |zi(r)− zi(r − 1)| < ε
12: Calculate τB using (5.80)
13: Update τi using (5.77)
14: Determine ∆n = F(τ )− αng(τ )

15: αn+1 = F(τ )
g(τ )

16: n← n+ 1
17: until |∆n| < ε
18: Set τ ∗B = τB and τ ∗i = τi.

Under uplink MAC protocol

In this case, users are transmitting information-bearing signals through MAC after harvesting

energy simultaneously from a dedicated wireless power source, and the energy-efficient time
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allocation policy can be determined by formulating the following optimization problem:

(PR:5.5) min
τB
−

(1− τB) log2

(
1+ aT τB

1−τB

)
(PD − PU)τB+PU

(5.81a)

subject to (5.26b) (5.81b)

where PD and PU are as defined in (5.57). Having a concave numerator and an affine denom-

inator with respect to harvesting interval τB together with the convexity of the constraint

in (5.26b), (PR:5.5) is proved to be a concave-linear fractional problem (CLFP). The corre-

sponding Lagrange function is given as

L =
(−1 + τB) log2

(
1+ aT τB

1−τB

)
(PD − PU)τB+PU

) + ΩτB
(
1− τB

)
(5.82)

where Ω is the lagrange multiplier for the constraint in (5.81b). Since KKT conditions

are necessary and sufficient to obtain global solution for concave-linear/convex fractional

problems [93], (K.2a) and (K.2b) can be directly applied to the Lagrange function defined

in (5.82). Thus, we have

ln

(
1+ aT τB

1−τB

)
−

aT
1−τB

1+
aT τB
1−τB

κτB+PU
−
κ(1− τB) ln

(
1+ aT τB

1−τB

)
(κτB+PU)2

= 0 (5.83)

where κ = PD−PU . Note that the optimal harvesting interval can neither be τ ∗B = 0 nor τ ∗B =

1 for the same reason mentioned earlier, and hence Ω∗ = 0. After several rearrangements on

(5.83), we get

z ln(z)− ϕz = ξ (5.84)

where z=1 + aT τB
1−τB

, ξ= aT−1
PD

(κτB + PU), and ϕ = ξ ∗ (aT − 1). The solution to (5.84) can be

simply expressed as

z∗ =
ξ

W(ξ ∗ e−ϕ)
. (5.85)
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Thus, the energy-efficient harvesting time under uplink MAC protocol with synchronous

harvesting becomes

τ ∗B =

ξ
W(ξ∗e−ϕ)

− 1

aT + ξ
W(ξ∗e−ϕ)

− 1
. (5.86)

Since ξ is dependent on τB, so does ϕ. This shows that (5.86) is an implicit equation, and

it can only be solved using an iterative procedure. Therefore, we provide an algorithm to

obtain the optimal harvesting interval for (PR:5.5) using (5.86) as detailed in Algorithm 7.

Algorithm 7 Energy-efficient harvesting interval for MAC

Require: τ ∗B
1: Given ε, aT , PD, PU , and κ
2: Initialize τB(0)
3: r ← 0
4: repeat
5: ξ = aT−1

PD

(
κτB(r) + PU

)
6: ϕ = ξ ∗ (aT − 1)
7: r ← r + 1
8: Update τB(r), using 5.86
9: until

∣∣τB(r)− τB(r − 1)
∣∣ < ε

10: τ ∗B = τB(r)

5.3.2 Effective Energy Efficiency

In this section, we analyze the impact of exponential decaying QoS parameter θ on the

energy-efficient time allocation strategies. Since effective capacity measures the constant

data arrival rate, i.e. throughput in the presence of delay-limited data sources, we focus

on the effective-EE to determine the number of bits arrived per a joule of consumed energy

by the system. Thus, we formulate an optimization problem considering the three WIPT

operation protocols as follow:

(PR:5.6) max
τ

ηe(τ ) (5.87a)

subject to (5.26b) For MAC (5.87b)

(5.37b) For TDMA (5.87c)
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where

ηe(τ )=



N∑
i=1

− 1
Tθi

log

E

{(
1+

aiτB
1−τB+a∗τB

)−θi(1−τB)
ln(2)

}
E
{
PDτB+PU (1−τB)

} MAC

N∑
i=1

− 1
Tθi

log

(
E

e−θiτi log2

(
1+ai

τB
τi

))
E
{
PDτB+PU (1−τB)

} SH-TDMA

N∑
i=1

− 1
Tθi

log

E

(

1+βi

[
aiBτB+

∑i−1
k=1

τkak
τi

])−θiτiln(2)




E
{
PD(1−τN )+PU (1−τB)

} ASH-TDMA

(5.88)

Knowing that the sum effective capacity in each case is concave function of operating

intervals as mentioned in Section 5.1.2 and the corresponding denominators of ηe are affine,

the above optimization problem (PR:5.6) is generally a concave-linear fractional problem.

Hence, optimal solution can be obtained by applying the Dinkelbach’s method as indicated

in Algorithm 8.

Algorithm 8 Effective-EE maximization using Dinkelbach’s algorithm

1: Given: ε
2: Define: Ctot =

∑N
i=1Ci(θi, τ )

g(τ ) =Total consumed energy
3: n← 0
4: Initialize α0

5: repeat
6: τ = arg maxτ {Ctot(τ )− αng(τ )} (Inner loop)
7: F (αn) = Ctot(τ )− αng(τ )

8: αn+1 = Ctot(τ )
g(τ )

9: n← n+ 1
10: until |F(τ )| > ε
11: Set τ ∗B = τnB and τ ∗i = τni .
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In regard to the inner loop, we have

min
τB
−

N∑
i=1

Ce
i (θi, τ ) + αng(τ )

subject to (5.26b) For MAC

(5.37b) For TDMA

(5.89)

where Ce
i (θ, τ ) is as defined in (5.19) for MAC, and (5.35a) and (5.35b) for SH-TDMA and

ASH-TDMA, respectively. Thus, the corresponding Lagrange function becomes

L = −
N∑
i=1

Ce
i (θ, τ ) + αng(τ ) + µh(τ ) (5.90)

where h(τ ) = τB(1 − τB) for MAC, or h(τ ) = τB +
∑N

i=1 τi − 1 otherwise. We note that

the above problem is convex, and hence the KKT conditions are necessary and sufficient for

global optimality. Thus, applying (K.2a) and (K.2b) on (5.90) considering MAC protocol,

we have
N∑
i=1

∂Ce
i (θ, τB)

∂τB

∣∣∣∣
θ=θi

= αn(PD − PU) (5.91)

assuming that the optimal solution lies 0 < τ ∗B < 1. The explicit expression for ∇τBC
e
i is as

given in (5.30). Similarly, applying the KKT conditions given in (5.40) considering TDMA

protocol, we get

For SH-TDMA

N∑
i=1

aiz
−θiτi−1
i

E
{
z−θiτi−1

} − αn(PD − PU)− µ = 0

z−θiτii

E
{
z−θiτi−1

} [ln (zi)− zi − 1

zi

]
− µ = 0.

(5.92)
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where zi = 1 + ai
τB
τi

.

For ASH-TDMA

N∑
i=1

βia
i
B

(
1 + βixi

)−θiτi−1

E
{

(1 + βixi)−θiτi
} + αnPU − µ = 0

N∑
i=1

∂Ce
i (θi, τ )

∂τi
− µ = 0, i ∈ {1, 2, · · · , N − 1}

N∑
i=1

∂Ce
i (θi, τ )

∂τN
+ αnPD − µ = 0

(5.93)

where xi =
aiBτB+

∑i−1
k=1 akτk
τi

and

∇τiC
e
i =

1

E
{

(1 + βixi)−θiτi
}(1+βixi

)−θiτi [ln (1 + βixi
)
− βixi

1 + βixi

]
+

N∑
j=i+1

βia
i
j

τj

(
1+βjxj

)−θjτj−1
.

(5.94)

After making several rearrangements, the above expressions leads to

N∑
i=1

∂Ce
i (θi, τ )

∂τB
−

N∑
i=1

∂Ce
i (θ, τ )

∂τk
=αnK (5.95)

where

K =

 PD − PU TDMA

PU MAC
(5.96)

for k ∈ {1, 2. · · · , N − 1}. If k = N , then we have K = PD − PU for both cases. As can

be observed from the optimality criteria, it is difficult to obtain a closed-form expression for

the operating time interval in all the three schemes. However, they can still be solved using

standard numerical tools due to convexity of the inner loops.
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5.3.3 Numerical Analysis

In this section, we provide numerical results to illustrate impact of channel characteristics

and downlink transmitted power level on the system average energy efficiency both in the

absence and presence of delay-limited sources. First, we consider two energy harvesting users

for the ease of demonstration and discussion, but then extend to more number of users.
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Figure 5.7: EE in (bpJ/Hz) vs. downlink transmit power level under %1 = %2

Fig. 5.7 and Fig. 5.8 illustrates the impact of downlink transmit power level on the

average energy efficiency under various settings of statistical QoS constraints. According to

Fig. 5.7, we observe that the performance curve has non-decreasing characteristics which

implies broadcasting the energy-bearing signal with higher power level benefits the energy

efficiency. Intuitively, increasing the downlink power reduces its operation interval which

allows to allocate more time for the uplink information transfer. This benefits not only

achievable data rate but also limits the downlink energy consumption, and overall there is

a gain on the energy efficiency. However, the incremental gain becomes steady under each

operation protocol for higher values of transmitted power Pa. Comparing the three WIPT

protocols, we observe that SH-MAC is an energy-efficient approach, and it has much better

performance regardless of channel characteristics and exponential decaying QoS parameter.
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Furthermore, synchronous harvesting with uplink TDMA achieves higher energy efficiency

than asynchronous harvesting with Eadd = 0, but slightly smaller compared with ASH-

TDMAA.
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Figure 5.8: EHCNs energy efficiency under different scenarios

In regard to the impact of statistical QoS constraint, Fig. 5.8a clearly illustrates that

the system performance degrades with respect to the exponential decaying parameter θ. In

general, each WIPT protocol performance depends on the exponential decay QoS parameter,
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channel characteristics and AP energy consumption rates. For instance, assuming that

both users have the same average channel condition, SH-MAC achieves better performance

compared with ASH-TDMAA for smaller power consumption as shown in Fig. 5.8a, and it

becomes significant as user 2’s exponential QoS decaying factor increases. Meanwhile, as

the uplink energy consumption rate, PU , takes higher values, the performance gap between

the two approaches gets very small, and further increase in the power consumption at the

AP favors ASH-TDMA instead of SH-MAC as an energy-efficient scheme. These can be

explained using how the operating intervals are allocated based on circuit power consumption

and user 2’s exponential decaying parameter θ2 as shown in Fig. 5.9a and Fig. 5.9b for ASH-

TDMA and SH-MAC protocols, respectively. As can be seen in Fig. 5.9a, smaller values of

PU encourages to allocate more time for the uplink information transfer in order to reduce

the energy consumed by WPT during the downlink energy broadcasting phase. Hence, τB

and τ1 are relatively very small compared with τ2 for PU = 1. On the other hand, for

higher values of PU , harvesting duration significantly increases with θ2 while that of user 2

uplink interval decreases exponentially as expected. Similarly, in the case of MAC protocol,

operating intervals are hardly affected by θ2 for small value of PU as illustrated in Fig.

5.9b. In such cases, the decreasing characteristics of effective energy efficiency shown in

Fig. 5.8a is mainly due to user 2’s stricter QoS constraint, i.e., θ2. Furthermore, higher

power consumption under MAC protocol results allocating more time for energy harvesting

operation as shown in Fig. 5.9b, but less change is observed on the system energy efficiency.

On the other hand, Fig.5.10 illustrate impact of exponential decaying QoS parameter

θ2 on users’ constant arrival rates while maximizing the system effective energy efficiency.

As can be seen from the figures, User 1’s data arrival rate is less affected by the change in

θ2 under MAC protocol regardless of the channel characteristics, but user 2’s data rate is

exponentially decreasing as its QoS constraint gets more strict. Meanwhile, user 2 achieves

higher arrival rate for TDMA protocol for any θ2 value as shown in the figure for %1 < %2.
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(a) Under ASH-TDMA protocol

(b) Under SH-MAC protocol

Figure 5.9: Average operating interval in (Sec.) vs. user 2 decaying parameter θ2 under
%1 = %2

This is because user 2 experience much better channel gain.
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Chapter 6

Full-Duplex Wireless Information and

Power Transfer with Non-Zero Mean

Input

This chapter mainly studies energy-efficiency optimization for WIPT considering a full-

duplex uplink and downlink operations in a hybrid system that consists of energy harvesting

and non-energy harvesting nodes. The significance of introducing non-zero mean component

on the information-bearing signal is well investigated. The system model is presented in

Section 6.1 and throughput maximizing and energy-efficient resource allocation strategies

are studied in Section 6.2, and Section 6.3, respectively. Subsequently, numerical results are

presented and discussed in Section 6.3.

6.1 System Model

We consider a hybrid wireless network that consists of an AP, an energy-harvesting user

(EHU) and multiple non-energy harvesting users (NEHU) as shown in Fig. 6.1. The AP

operates in full-duplex mode in the sense that it broadcasts a deterministic signal denoted as

XAe
jθh to the EHU while decoding received information transmitted uplink by the NEHUs.
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Co-phasing is performed at the transmitter, offsetting the channel phase shifts, in order to

harvest additional energy as will be discussed shortly. Each NEHU has embedded power

source and transmits information continuously to the AP, whereas EHU harvests energy

from the downlink wireless transferred power by the AP as well as the uplink transmitted

signal by the NEHUs.

Figure 6.1: Wireless power and information transfer model

Assuming the channel state information is known both at the transmitter and receiver,

each NEHU can introduce a pre-phase-shifted deterministic component in the information

bearing-signal to benefit the harvested energy at EHU. Let us denote the transmitted signal

from ith NEHU in the kth symbol duration by X i[k] ∼ N
(
φi, σ

2
i [k]
)
. Technically, this can be

expressed as follows:

X i[k] = X i
I [k] +X i

E[k] (6.1)

where X i
I ∼ N

(
0, σ2

i [k]
)

is an information-bearing component and X i
E = φi is the determin-

istic component that targets energy transfer only. The transmitted signal power is upper

bounded as E
{
|X i[k]|2

}
= σ2

i + φ2
i = Pi[k] ≤ P pk

i .

In regard to the wireless channel, we assume that the link between any transmitter and

the receiver experiences frequency-flat fading. The complex fading coefficient for the channel

between ith NEHU and the AP is denoted by hid, and ri = |hid|2 is the channel power gain.
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Similarly, he denotes the channel coefficient between the EHU and AP. The wireless channel

link between the EHU and ith NEHU is denoted by gi = |gi|ejθg , and zi = |gi|2. Hence, the

non-zero mean component of NEHU is shifted in phase by θg, i.e., X i
E = φie

−jθg , as noted in

[95], to benefit the harvested energy. The deterministic component can easily be removed at

AP, and hence the received information-bearing signal at the AP in the kth symbol duration

is given as

YD[k] =
N∑
i=1

hidX
i
I [k] +Nd[k] (6.2)

where Nd[k] ∼ CN (0, 1) is the complex symmetric Gaussian noise component with unit

variance at the receiving antenna. Thus, the instantaneous achievable data rate at which

the AP decodes the received information in full-duplex WIPT mode is given as

RT = log2

(
1 +

N∑
i=1

riσ
2
i

)
(bps/Hz). (6.3)

where σ2
i is the information-bearing component of the ith NEHU .

Similarly, the received signal at the EHU is expressed as

YE =
N∑
i=1

gi

(
X i
I +X i

E

)
+ heXAe

−jθh +Ne (6.4)

where Ne is the noise component at the energy harvesting receiver. For simplicity, we

eliminate the time index ‘k’ in the sequel. Hence, the harvested energy at EHU can be

determined as follows:

Ehv =E{|YE|2}

=
N∑
i=1

|gi|2Pi + |he|2PA +
N∑
i=1

2|gi||he|E
{
X i
EXA

}
=

N∑
i=1

(
ziPi + αiφi

)
+ C

(6.5)

129



where αi = 2|gi||he|
√
PA, and C = |he|2PA are constants for the given fading states. In

addition, we assume that XE and XA are independent, i.e., E{X i
EXA} = E{X i

E}E{XA}.

The harvested energy given in (6.5) can be rewritten as follows:

Ehv(σ2,φ) =
N∑
i=1

(
ziσ

2
i ) +

N∑
i=1

ziφ
2
i + αiφi

)
+ C

= f(σ2) + g(φ).

(6.6)

where σ2 = [σ2
1, σ

2
2, · · · , σ2

N ] and φ = [φ1, φ2, · · · , φN ].

Lemma 6.1.1 If there are two convex functions f(x) and g(x), then their sum f(x) + g(y)

is also jointly convex with respect to the domain of f(x) and g(y).

Proof: See Appendix M.

Based on Lemma 6.1.1, the following proposition guarantees that the harvested energy

is a convex function in the domain set.

Proposition 6.1.1 For the wireless-powered node, i.e., EHU, the harvested energy expres-

sion given in (6.6) is a convex function of information-bearing component and non-zero mean

component of the transmitted signal from each NEHU.

Proof: See Appendix N

Without loss of generality, we assume unit time intervals so that energy and power can

be interchangeably used. Based on (6.3) and (6.5), we notice that introducing φi could hurt

the throughput, but this might not necessarily be the case when energy efficiency is taken

into account. In the following sections, we determine optimal power control strategies taking

throughput and energy efficiency as performance metrics.

6.2 Throughput Maximizing Power Control Policy

In this case, the goal is to maximize the achievable data rate, and intuitively this can be

achieved if all NEHU transmit at peak power level with zero mean gaussian input, i.e.,
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X i
E = 0 ∀i ∈ {1, 2, · · · , N}. However, this might not be the optimum allocation strategy

when the harvested energy constraint at the EHU can not be satisfied with zero-mean input

signal, and in such a case, it is required to introduce non-zero mean component on the

transmitted signals from one or more NEHUs. Therefore, in order to trace the impact of

harvested energy constraint on the throughput maximizing power control policy, the following

optimization problem is formulated.

(PR:6.1) max
P∈P

RT

s.t. Ehv = χ.

(6.7)

Knowing that the sum-rate capacity is concave with respect to the information-bearing

component, and the harvested energy is convex, the above formulated problem (PR:6.1) is

a convex optimization problem, and hence the KKT conditions, i.e.,

∂L
∂φi

= 0
∂L
∂σ2

= 0 (6.8a)

µ∗
(
Ehv − χ

)
= 0 κ∗iPi

(
P ∗i − P

pk
i

)
= 0 (6.8b)

guarantee global optimality where the Lagrange function is defined as

L = log2

(
1 +

N∑
i=1

riσ
2
i

)
+ µ
( N∑
i=1

zi(σ
2
i + φ2

i ) + αiφi + C − χ
)

+
N∑
i=1

κiPi
(
Pi − P pk

i

)
. (6.9)

Intuitively, each NEHU should transmit at peak power level to maximize the throughput,

and hence P ∗i = P pk
i which implies that κi 6= 0 according to the complementary slackness

condition. Thus, σ2
i + φ2

i = P pk
i . If the harvested energy is satisfied with φi = 0 ∀i ∈

{1, 2 · · · , N}, then the optimal solution is σ2
i = P pk

i . In such a case, we have

E ′hv =
N∑
i=1

ziP
pk
i + C (6.10)
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and φi = 0 holds as long as E ′hv ≥ χ. However, if χ exceeds this threshold, then it becomes

necessary to introduce non-zero mean component, i.e., φ2
i = P pk

i − σ2
i 6= 0. In this case, the

optimal solution can be obtained using φ2
i +σ2

i = P pk
i in the Lagrange function, and applying

the first order derivative criteria given in (6.8a). From this, we get

∂L
∂σ2

i

=
ri

ln(2)
(

1 +
∑N

i=1 riσ
2
i

) − µ

2
√
P pk
i − σ2

i

+ κi = 0 (6.11)

which leads to

σ2
i = P pk

i −
4

µ2

(
ri

A(σ2)
+ κi

)2

(6.12)

where A(σ2) = ln(2)
(

1 +
∑N

i=1 riσ
2
i

)
. The power control policy given above is an implicit

function, and it can be computed using iterative procedure. Furthermore, the lagrange

multipliers µ and κi ∀i ∈ {1, 2, · · · , N} can be determined using subgradient method, and

detail procedure is given in Algorithm 9.

Algorithm 9 Algorithm for throughput maximization of full duplex WIPT

1: Given: Tolerance ε
2: Compute E ′hv
3: if E′hv > χ then
4: φi = 0, σ2

i = P pk
i , k ∈ S = {1, 2 · · · , N}

5: else
6: Assume σ2

0 = [σ2
10
, σ2

20
, · · · , σ2

N0
]

7: repeat
8: j ← 0
9: repeat

10: for i=1:N do
11: Compute σ2

ij
using (6.12)

12: end for
13: j ← j + 1
14: until σ2

ij
− σ2

i(j−1) ∀j ∈ S
15: update µ and κi using ellipsoid method
16: until µ and κi converge to the accuracy ε
17: end if

18: Compute φi =
√
P pk
i − σ2

i ∀i ∈ S

132



6.3 Energy-Efficient Resource Allocation

In this section, we provide energy-efficient resource allocation strategies for full-duplex op-

eration of wireless information and power transfer. As noted earlier, EHU opportunistically

harvests energy from the information-bearing signals transmitted by the NEHUs which are

intended for the AP. This can lead to much better utilization of available energy resources

and higher energy efficiency if the energy demand at the EHU can be satisfied with the

energy-efficiency-maximizing input. Nevertheless, this cannot be guaranteed when the de-

mand increases further. For the ease of analysis, we begin with two-users model and then

generalize to multiple users settings.

6.3.1 Optimal Strategy for Two-Users

In principle, incorporating energy transfer along with information-bearing signal influences

not only the optimal transmission policy but also the conventional definition of energy ef-

ficiency. Hence, when the information-bearing signal transmitted by NEHU is also used to

energize the EHU, the harvested energy should be deducted while analyzing the system’s

net energy consumption as discussed in the literature [42] [43]. Based on this remark, the

expression to determine the system energy efficiency for two-users model, i.e., one EHU and

one NEHU, when transferring RT bits of information to the destination while supporting

the energy demand at EHU is given as

η
EE

=
log2

(
1 + rσ2

)
Pc + PA + P − χ

(6.13)

where χ denotes the required harvested energy at the EHU.

Proposition 6.3.1 The system energy efficiency η
EE

is a pseudo-concave function of the

signal components transmitted by NEHU.
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Proof: See Appendix O.

It is clear that both RT and Ehv depend on the transmitted power levels, and any incre-

ment in the harvested energy demand requires additional ∆P that could change the system

efficiency by ∆η. Thus, we formulate the following maximization problem in order to deter-

mine energy efficient solution given the harvested energy constraint.

(PR:6.2) max
σ2,φ

η
EE

(6.14a)

subject to Ehv ≥ χ (6.14b)

P ≤ P pk. (6.14c)

This is a non-convex problem, and cannot be easily solved using available convex optimiza-

tion tools. However, since the energy efficiency is a pseudo-concave function according to

Proposition 6.3.1 and the constraints are convex, Karush-Kuhn-Tucker conditions are nec-

essary and sufficient to obtain the globally optimal solution. Hence, Lagrangian for the

optimization problem (PR:6.2) can be expressed as follows:

L = η
EE

+ γ(Ehv − χ) + λ(P − P pk) (6.15)

where γ and λ are the Lagrange multipliers associated with the energy constraint and trans-

mitted power level given in (6.14b) and (6.14c), respectively. The corresponding optimality

conditions are

∂L
∂φ

= 0
∂L
∂σ2

= 0 (6.16a)

γ∗
(
Ehv − χ

)
= 0 λ∗

(
P ∗ − P pk

)
= 0 (6.16b)
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Applying (6.16a) to (6.15), we get

hd
ln(2)

(1 + hdσ2)(K + P )
− log2(1 + hdσ

2)

(K + P )2
+ γhe + λ = 0

−2φ log2(1 + hdσ
2)

(K + P )2
+ γ(2φhe + α) + λ = 0

(6.17)

where K = Pc + PA − χ. For the ease of analysis, we split the problem considering two

scenarios based on the slackness condition given in (6.16b), i.e., for the harvested energy.

Constraint Satisfied with Strict Inequality

This case refers to the situation when the optimal solution satisfies the harvested energy in

(6.14b) with strict inequality, Ehv > χ, while information-bearing signal is transmitted at

the energy-efficiency-maximizing power level. However, we assume that only the demand

can be harvested, and hence it would be fair to deduct χ instead of Ehv from the total energy

consumption for energy efficiency analysis. Thus, problem (PR:6.2) can be equivalently

expressed as

(PR:6.2a) max
P∈P

η
EE
. (6.18)

We know that γ = 0 according to the slackness condition, and hence substituting this into

(6.17), we get

hd
ln(2)

(1 + hdσ2)(K + P )
− log2(1 + hdσ

2)

(K + P )2
+ λ = 0

− log2(1 + hdσ
2)

(K + P )2
+ λ = 0

(6.19)

However, this equation is not feasible for ∀hd 6= 0 unless either φ = 0, i.e. there is no non-

zero mean component on the transmitted signal by N-EHU, or σ2 = 0, i.e., the transmitted

signal does not convey information. In fact, it is more energy-efficient to have σ2 6= 0 instead

of φ 6= 0 and σ2 = 0. Thus, we conclude that transmission of information-bearing signal

with non-zero mean is not needed when the required harvested energy at the EHU can be
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satisfied with the energy-efficient input.

Theorem 6.3.1 The analytical expression for the optimal transmit power when the energy

demand at the EHU is satisfied with energy-efficiency-maximizing input level is given as

σ2 =
e
W
(
hdK−1

e

)
+1 − 1

hd
∀χ < χ∗. (6.20)

where W(·) is Lambert function, and χ∗ is the maximum demand at which efficiency-

maximizing input satisfies the required harvested energy.

Proof: See Appendix P.

The above theorem explicitly shows how the transmitted power level from the NEHU

changes with the harvested energy demand at the EHU. Accordingly, we observe that an in-

creases in χ reduces K, or σ2 in general, as the Lambert function is non-decreasing function.

Hence, we claim that the power level decreases with χ, and this leads to the fact that op-

portunistically harvesting energy improves the system energy efficiency. Mathematically, let

us first substitute (6.20) into (6.13). Then, the expression for the optimal energy efficiency

becomes

η∗EE =
hd

ln(2)

[
W
(

Ω
e

)
+ 1

Ω + eW(Ω
e )+1

]
(6.21)

where Ω = hdK − 1. Applying first order derivative on (6.21) with respect to the new

parameter Ω, we get

∂η∗EE
∂Ω

=
hd

ln(2)

∂

∂Ω

[
W
(

Ω
e

)
+ 1

Ω + eW(Ω
e )+1

]

=

[
1

Ω + eW(Ω
e )+1

]
W ′
(

Ω

e

)
−
[
W
(

Ω

e

)
+ 1

]
1 +W ′

(
Ω
e

)
eW(Ω

e )+1

(Ω + eW(Ω
e )+1)2

.

(6.22)

After several manipulations, we have

∂η∗EE
∂Ω

= −
(1− 1

e
)ΩW ′

(
Ω
e

)
+W

(
Ω
e

)
+ 1

(Ω + eW(Ω
e )+1)2

. (6.23)
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Thus, it is obvious that
∂η∗EE
∂Ω

< 0 and hence optimal energy efficiency function decreases with

each incremental value of Ω. However, Ω increases with a reduction in χ, which then implies

EE is clearly an increasing function of the required harvested energy χ so long as it is below

the threshold level χ∗. Within this range, the system energy efficiency improves with the

demand while satisfying the harvested energy constraint with inequality, i.e., Ehv > χ. The

threshold χ∗, i.e., the maximum demand which can be satisfied with the energy-efficiency-

maximizing input, is at a point where Ehv = χ∗, and this can be obtained by substituting

(6.20) into (6.5) with φ = 0. This leads to the following equation:

hd(χ
∗ − rPA) = z

(
e
W
(
hd(Pc+PA−χ

∗)−1

e

)
+1 − 1

)
. (6.24)

While this is an implicit equation and obtaining a closed-form expression is unlikely, (6.24)

can be easily solved for χ∗ using standard numerical tools.

Constraint Satisfied with Equality

When the required harvested energy exceeds the threshold χ∗, the constraint given in (6.14b)

is active, and in such a case the optimal way is to satisfy the demand is with strict equality.

In such a case, the optimization problem given in (PR:6.2) becomes

(PR:6.2b) max
P∈P

η
EE

s.t. Ehv = χ.

(6.25)

This is a concave-linear fractional problem, and (PR:6.2b) can be equivalently solved using

its dual problem which is given as

min
γ,λ

G(γ, λ) (6.26)
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where G(γ, λ) = maxσ2,φ L(σ2, φ, γ, λ) and the Lagrange function L is as defined in (6.15).

We know that applying the KKT conditions in (6.16a) lead to (6.17), but now the solution

for information-bearing component σ2 and the mean φ of the signal from NEHU depends on

its transmitted power level. Hence, we consider two possible scenarios as follows:

Case I - Inactive peak power constraint: In this case, the optimal transmitted power is

beyond the energy-efficiency maximizing input with zero-mean but it still satisfies the peak

power constraint with strict inequality, i.e., P ∗ < P pk. This forces constraint in (6.14c)

to be inactive, and hence the slackness conditions given in (6.16b) result in λ = 0. Thus,

substituting this into (6.17), we have

hd
(1 + hdσ2)(K + P )

=
log(1 + hdσ

2)

(K + P )2
− γhe

log(1 + hdσ
2)

(K + P )2
− γhe =

γα

2φ
.

(6.27)

Despite the difficulty in getting analytical expression for the optimal solution of σ2 and φ,

the above equations in (6.27) can be easily solved using numerical tools, which then can be

used to evaluate G(γ, λ).

Case II - Active peak power constraint: In such a case, it is required to utilize all the available

resource, i.e., the peak power, to satisfy the harvested energy constraint in (6.14b). Then,

K+P becomes a constant given the energy demand, and let us denote this with ka = K+P pk.

Thus, simplifying the expressions in (6.17) according to the current scenario, we have

kahd
(1 + hdσ2)

=
γαk2

a

2φ
(6.28)

which leads to

φ = β

(
1

hd
+ σ2

)
(6.29)
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where β = 0.5γαka. Substituting σ2 = P k − φ2 into (6.29), and solving for φ, we get

φ =
−b+

√
b2 + 4c

2
(6.30)

where b = 1
β

and c = 1
hd

+ P pk. Note that these are solutions given the lagrange multiplies,

and hence once σ2 and φ are determined using either (6.27) or (6.30) depending the existing

constraints, solutions are substituted into L to obtain G(γ) and iteratively update the la-

grange multipliers. The detail procedure is given in Algorithm 10, and sub-gradient method

is applied to determine the optimal solution.

Algorithm 10 Algorithm for EE full-duplex WIPT

1: Given: Tolerance ε
2: Compute E ′hv at σ2 = P pk

3: if E ′hv < χ then
4: λ = 0, φ = 0
5: Compute σ2 using 6.20
6: else
7: repeat
8: Solve (6.30,) for φ,
9: Compute σ2 = P pk − φ

10: update γ and λ using subgradient method
11: until γ and λ converge to the accuracy ε
12: end if
13: update the solution for σ2 and φ

6.3.2 Optimal Strategy for Multiuser Settings

Extending the discussion in the previous section to multiple NEHUs, the system energy

efficiency is modified as

η =
log2

(
1 +

∑N
i=1 riσ

2
i

)
∑N

i=1 σ
2
i + φ2

i + PA + P tot
C − χ

(6.31)

where P tot
C is the total circuit power consumption of the system. Here, the goal is to deter-

mine an optimal allocation of information-bearing and non-zero mean component to each

transmitting node so that the system energy efficiency is maximized while the harvested en-
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ergy constraint is satisfied. Except adding more parameters to control, neither the pseudo-

concavity of the objective function nor the characteristics of the optimization problem given

for two-users model are changed. Thus, the KKT conditions given in (6.16a) can be directly

applied, and these result the following condition:

hid
ln(2)

(1 + hidσ
2
i )(K +

∑N
i=1 Pi)

− log2(1 + hidσ
2
i )

(K +
∑N

i=1 Pi)
2

+ γhe + λi = 0

−2φ log2(1 + hidσ
2
i )

(K +
∑N

i=1 Pi)
2

+ γ(2φhe + α) + λi = 0

(6.32)

where λi is the lagrange multiplier for the ith user peak power constraint. From the same

argument stated in the proof of Theorem 4.2.1, an energy-efficient strategy allows the user

with the best link to transmit and keep the rest silent. In fact, this is the true solution

provided that the optimal solution satisfies the harvested energy constraint with inequality.

Any incremental in the harvested energy demand could require to transmit at the peak,

and beyond this point, the decision relies on whether to allow the NEHU with the second

best link to transmit or introduce non-zero-mean at the previous NEHU. Similar approach

is followed when the constraint is satisfied with equality, but details are omitted for brevity.

6.4 Numerical Results

In this section, we provide simulation results to justify the theoretical frameworks presented

in previous sections. For the analysis, we consider that hd = 0.8 and he = 0.35. In addition,

PA = 10dB and Pc = 1dB. In order to compare the performance improvement and identify

the effect of non-zero mean input, we consider two different values based on the channel

characteristics, i.e., α ∈ {0.1, 0.75} and g ∈ {0.1, 0.75} where α 6= g as indicated in the

figures.

Fig. 6.2a and Fig. 6.3a illustrate the optimal power allocation strategies based on the

required harvested energy. As can be seen in Fig. 6.2a, zero-mean input is optimal until

140



0 5 10 15 20 25
Required harvested energy ( µJ)

0

2

4

6

8

10

O
p

ti
m

a
l 
tr

a
n

s
m

it
 p

o
w

e
r 

Non-zero mean

component, φ
2

Information-bearing

component, σ
2

X: 19

Y: 1.8

X: 19

Y: 8.2

P∗< Ppk

(a) variance and mean-square (W) vs. required harvested energy

0 5 10 15 20 25
Required harvested energy ( µJ)

0

0.05

0.1

0.15

0.2

0.25

0.3

O
p

ti
m

a
l 
e

n
e

rg
y
 e

ff
ic

ie
n

c
y

P
c
=0dB

P
c
=7dB

P
c
=10dB

(b) Energy efficiency vs. required harvested energy, χ

Figure 6.2: Performance parameters under more favorable channel conditions between EHU
and AP, i.e., α = 0.75 and g = 0.75

the demand exceeds a certain threshold. In addition, in this region, the transmitted power

level decreases with χ. However, once the demand exceeds the threshold, the transmitted
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power level increases with the demand until the sum of information-bearing and non-zero

mean components reaches the peak. Similar trends is observed in Fig. 6.3a except that, in

this case, the optimal policy encourages to transmit with zero-mean. This is because the

link between EH and NEHU experiences very bad channel condition. Hence, we observe

that introducing non-zero mean into the information-bearing signal have significance impact

when the wireless link from AP to each user has better channel gain compared with between

the users, i.e., α � hd. Likewise, α � hd encourages NEHU to transmit the signal with

zero-mean as can be seen in Fig. 6.3a. On the other hand, the variance and non-zero mean

component increases with χ until the total transmitted power reaches the peak. This is

clearly shown in Fig. 6.2a, and once P = P pk, any incremental energy demand is satisfied

by sacrificing the data conveying component, i.e., by reducing σ2.

On the other hand, Fig. 6.2b and Fig. 6.3b demonstrate how the system energy efficiency

changes with the required harvested energy. We observe that the optimal energy efficiency

improves as the demand increases. This is because when the demand is satisfied by the

energy-efficiency maximizing input, opportunistic harvesting leads to smaller overall energy

consumption, i.e., the net consumed energy is reduced. However, this depends on the channel

characteristics, as noted earlier, and the circuit power consumption. This is due to the fact

that each incremental energy demand ∆χ is satisfied by the increasing transmitted power

level or equivalently the variance of the data signal, and hence there is still a gain in the

number of bits transferred. Whereas, since relatively higher α value encourages introducing

the non-zero mean component when the energy demand increases beyond the threshold χ∗

indicated in (6.20), this hurts the system energy efficiency as can be seen from Fig. 6.2b.

Although it is difficult to observe the significance of the non-zero mean component on the

overall energy efficiency in Fig. 6.3b, it is more clear to understand in Fig. 6.2b. In this

figure, if NEHU transmits the information-bearing component only, the maximum harvested

energy is much lower than that can be obtained with non-zero mean component. In addition,

while η for the zero-mean input starts to decrease, i.e., the slope becomes negative, introduc-
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Figure 6.3: Performance parameters under less favorable channel conditions between EHU
and AP, i.e, α = 0.1 and g = 0.1

ing a non-zero mean component achieves better efficiency with positive slope. Furthermore,

it becomes possible to meet higher energy demand with better efficiency in the presence of
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Figure 6.4: Effect of peak power under α = 0.75 and g = 0.75

non-zero mean compared with the input having zero mean.
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We also demonstrate in Fig. 6.4a the impact of peak power level of the transmitted

signal from the NEHU on the variance and non-zero mean component for a given required

harvested energy χ. As can be seen from the figure, the optimal allocation policies for σ2
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and φ vary with P pk depending on whether the transmitted power is fully utilized or not.

When the available peak power is higher than the optimal transmitted power level for the

given harvested energy constraint, i.e., P ∗ < P pk, the solution of the variance and the mean

become independent of the peak power constraint. In regard to system energy efficiency

ηEE, we observe from Fig. 6.5 that there is an information transfer as long as the available

resource is at least sufficient enough to satisfy the required harvested energy.
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Figure 6.6: Transmit power level (W) vs. harvested energy constraint α1 = 0.75, α2 = 0.5,
a and g = 0.75

In the presence of multiple NEHUs, the optimal power allocation strategy depends on

their channel characteristics and the performance metric to maximize. For instance, in the

case of energy efficiency maximization, since UE has higher channel gain both with the AP

and EHU, it starts to transmit until the required harvested energy forces to UE 2 to introduce

non-zero mean component as can be seen from Fig. 6.6a. Further increment in χ encourages

to give more weight to the non-zero mean component, and the information-bearing com-

ponent begins to decrease when the total transmitted power from the corresponding user

reaches the peak. On the other hand, in 6.6b, both users transmit at peak power without

having non-zero mean component so long as the harvested energy constraint is not binding.

Once this constraint is active, the harvested energy constraint overrides the throughput-

efficient solution, and hence non-zero mean becomes important to satisfy the additional
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demand. Thus, the information-bearing components of both users decrease with incremen-

tal of χ until the demand reaches the maximum energy that can be supported by the users

under the given channel condition.
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Chapter 7

Analysis of Wireless-Powered Cellular

Networks

In this chapter, performance analysis of energy harvesting communication networks with

randomly distributed access points and user equipments is well studied considering three

different scenarios, i.e., downlink WPT and uplink WIT, downlink SWIPT and uplink WIT,

and downlink WPT and uplink WPT with mmWave. In all the three scenarios, average

harvested energy, SINR coverage probabilities, average achievable rate, and system energy

efficiency are characterized as a function of uplink and downlink operating intervals, and

other relevant parameters such as AP density and directivity gain. We introduce system

model and fundamental concepts in Section 7.1. Then, performance analysis is explicitly

carried out for each scenario in Section 7.2, Section 7.3 and Section 7.4. Finally, numerical

results are illustrated in Section 7.5.
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7.1 System Model and Preliminaries

7.1.1 Cellular Networks Model

We consider a cellular wireless communication networks in which APs and energy-harvesting

UEs are spatially distributed according to an independent and homogeneous Poisson point

process (HPPP) Φ and ΦUE with spatial density λ and λUE, respectively. We assume that

these UEs are more densely deployed compared with the APs, i.e., λUE > λ, and hence in

the cellular region partitioned into Voroni cells as shown in Fig. 7.1 every AP serves at least

one UEs within its coverage area. Without loss of generality, due to Sylvinyak Theorem [96]

and stationary property of HPPP, the analysis is performed for the typical UE located at

the origin of coordinate system. The AP associated with the typical UE is denoted by AP0,

whereas the set containing interfering APs is denoted by Φ/0.

Figure 7.1: Voroni tessellation for the wireless-powered cellular network

Physically, UEs are designed without having an embedded power source, but they operate

based on harvest-then-transmit protocol. We assume that APs are directly connected to

external power supply, and every active AP operates in two sequential phases: In the first

phase, it broadcasts a signal with power Pa over the downlink channel to energize the nearby

UEs. Indeed, the typical UE harvests energy not only from the associated AP, but also

from the interfering APs located outside the cell. In the case of wireless power transfer,
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Figure 7.2: Downlink energy broadcasting and uplink information transfer

interference has a positive contribution to the performance of UE, i.e., additional energy

can be harvested. All UEs harvest energy simultaneously during the downlink operation

from all the APs located within and outside their cell. Then in the second phase, APs

receive faded information-bearing signals transmitted uplink by these UEs. Since UEs are

highly dense, multiple UEs can be located in a given cell coverage area. In such a case,

we assume that the corresponding AP receives information-bearing signals from each UE

over non-overlapping time intervals. This avoids any interference from the UEs in the same

cell, i.e., intercell interference. However, depending on the distance and transmit power

level, APs may still experience interference arising from the signals transmitted by UEs

in the other cells as shown in Fig. 7.2. Symbolically, τB denotes the fraction of time

allocated for the downlink operation, and hence T − τB becomes available for the uplink

data transfer. We assume block fading scenario, and the downlink and uplink operation

intervals remain the same over the consecutive fading state realizations. Without loss of

generality, we use a normalized unit for each block, i.e., T = 1, in the sequel. Similar to
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the remark in [64], UEs can store the harvested energy in a battery equipped with a super

capacitor which eliminates the randomness of instantaneous received power and provides

fixed transmit power. Furthermore, we assume that each wireless-powered user fully utilizes

the harvested energy to support data transmission in one cycle or a communication block.

7.1.2 Channel Model

As noted above, we assume that fading state realizations, channel gain, and related channel

characteristics parameters are constant over a block duration. In order to mathematically

model the wireless link, we consider the distance dependent path loss and the small-scale

multipath fading. More specifically, the path loss model between a UE and the corresponding

AP is given by

g = [max(d, r)]−α (7.1)

where α is path loss exponent, r is the Euclidean distance between the UE and AP, and

d ≥ 1 is used to avoid model inaccuracy for a very short distance [13]. Similarly, gi denotes

the path loss for the ith AP and its respective active UE. The probability density function

(PDF) of the distance between a typical user and its serving AP is given as

fr(r) = 2πλre−πλr
2

. (7.2)

In addition, the link between UE and serving AP experiences Rayleigh fading, and the

magnitude square of the fading coefficient, which is exponentially distributed with mean µ,

is denoted by hi ∼ exp(µ) where i ∈ Φ. Note that i = 0 for the serving AP, i.e., associated

to the typical user.

Assuming densely deployed UEs, we stated that each active AP serves at least one UE in

its coverage area. However, how a typical UE is associated to a particular AP needs certain

criteria. For instance, smallest path loss and highest received power are two ways among

other cell association criterion. In this section, we consider that a single cell consists of all
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the UEs that achieve the lowest path loss, which is formulated as

g0 = min
i∈Φ

{
g(r(i))

}
(7.3)

where r(i) denotes the Euclidean distance between a typical UE and a serving AP.

7.1.3 Downlink Harvested Energy

As mentioned above, every AP operates in half-duplex mode, i.e., it broadcasts energy in the

first phase and then decodes the received signals transmitted by wireless-powered UEs in the

second phase. Depending on the distance and strength of the transmitted signal, there could

be considerable interference due to the AP and UEs in the downlink and uplink operations,

respectively. It is obvious that the interference in the second phase reduces the received

SINR and degrades the performance, i.e., throughput. Nevertheless, wireless-powered UEs

benefit from the interfering APs while harvesting energy from the AP within the associated

cell, and this can support to transfer additional bits of information.

Thus, the amount of harvested energy at the typical UE during the downlink operation

interval can be computed using

Ehv
0 = τBE

Pah0g0 +
∑
i∈Φ\0

Pahigi

 (7.4)

where the second term describes opportunistically harvested energy from all active interfering

APs located outside the associated cell. The above equation can be simply rewritten as

Ehv
0 = τB

(
P0 + PI

)
= τBP

hv
0

(7.5)
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and the explicit expressions for P0 and PI are as follow:

P0 = E
{
Pah0g0

}
= µPaEr

{[
max(r, d)

]−α}
= µPa

[∫ d

0

d−αfr(r)dr +

∫ ∞
d

r−αfr(r)dr

]
=
µPa

2

[
d−α
(
− e−Cd2

+ 1
)

+ C
α
2 Γ
(−α + 2

2
, Cd2

)]
(7.6)

where Γ(a, x) is the incomplete gamma function, and C = 2πλ. In addition, the second

equality above uses the fact that E{h0} = µ. Similarly,

PI = E

∑
i∈Φ\0

Pahigi


= E

∑
i∈Φ\0

Pahi

[
max(xi, d)

]−α
(7.7)

where xi is the distance between the typical user and an interfering AP, and indeed xi >

r. Applying Campbell’s theorem, which states that E
{∑

x∈N f(x)
}

= λ

∫
Rd
f(x)dx where

N denotes a stationary point process defined on the d-dimensional Euclidean space, (7.7)

becomes

PI = 2πλµPa

∫ ∞
0

[ ∫ ∞
r

[
max(u, d)

]−α
udu

]
fr(r)dr (7.8)

which leads to

PI = 2πλµPa

[∫ d

0

[
.5d−α+2 − 0.5d−αr2 − d−α+2

2− α

]
fr(r)dr +

∫ ∞
d

r−α+2

α− 2
fr(r)dr

]

= µPa

[
d−α+2

2

(1

2
− 1

2− α

)(
− e−Cd2

+ 1
)

+
d−α

4C

[(
Cd2 + 1

)
e−Cd

2−1

]
+
C

α
2
−1

2α− 4
Γ
(−α + 4

2
, Cd2

)]
.

(7.9)
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On the other hand, the amount of harvested energy at UEs which are not near the generic

AP can be easily determined using

Ehv
i = τB

[∑
k∈Φ

Pahk[max(y, d)]−α

]

= τBP
hv
i

(7.10)

where y denotes the distance between UE in the ith cell and any active AP.

7.2 WP Cellular Networks with Harvest-then-Transmit

Protocol

In this section, we analyze energy efficiency and throughput of the energy harvesting cellular

networks as a function of the downlink-uplink operating intervals. In fact, there is always

a tradeoff in allocating time for the downlink energy broadcasting and uplink information

transfer since the performance of wireless-powered nodes rely on how much time is allocated

for the energy harvesting operation. In addition, the transmit power level from the APs

as well as their spatial density have an impact on the network throughput and energy con-

sumption. Hence, in our performance analysis, we initially derive the expressions for SINR

coverage probability and achievable data rate as a function of the parameters to be optimized

such as harvesting interval.

7.2.1 Received Signal-to-Interference-Noise Ratio

In the uplink information transfer phase, each UE sends an information-bearing signal to the

AP that has the lowest path loss link. In case there are multiple UEs associated to a given

AP, they will transmit over orthogonal time intervals based on the time-division multiplexing

scheme. As noted above, a typical AP in the uplink phase can experience interference from

the UEs in the nearby cells. But, the overall impact depends on channel characteristics and
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uplink transmitted signal power level of each UE. We assume that each UE utilizes β fraction

of the harvested energy to transmit information while the rest is consumed by the circuitry

to carry out the transmission process. Hence, the uplink transmitted signal power level by

the UE that is associated with the kth cell is given as

P u
k = ζβk

τBP
hv
k

1− τB
(7.11)

where k ∈ Φ, and ζ is the RF-to-DC conversion efficiency, and without loss of generality,

we assume that all UEs have the same conversion efficiency. Thus, the received signal-to-

interference-noise ratio (SINR) at the typical AP over the uplink transmission interval is

given as

SINR0 =
a0h0g0

σ2
a +

∑
i∈Φ\0 aihigi

(7.12)

where σ2
a = σ2 1−τB

τB
, a0 = ζβ0P

hv
0 , and ai = ζβiP

hv
i for i ∈ Φ \ 0. In addition, gi =

[max(d, y)]−α denotes the pathloss for the link between generic AP and an interfering UE

which is found at a distance y.

The interference from wireless-powered nodes might be small, specially when they are

distant and transmit at low power level, and in such cases, noised-limited scenario is an

approximately best model and further simplification can be done to carry out performance

analysis. On the other hand, the higher density of UEs might result a significant interference

compared with the noise power, and this leads to interference-limited scenario. In the fol-

lowing sections, we formulate mathematical expressions for the achievable ergodic rates and

outage capacities considering noise-limited and interference-limited scenarios, and study the

corresponding system performance. Thus, we begin with a generalized model considering

both noise and interference simultaneously, and then we specifically analyze the characteri-

zation for each scenario.
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7.2.2 Coverage Probability

For energy-harvesting UEs, the uplink transmission coverage probability describes the proba-

bility that the received signal from UEs at a randomly chosen AP exceeds a certain threshold.

Given the target SINR, γT , the coverage probability is defined as

Pc =

∫ ∞
0

Pr

{
SINR > γT

∣∣r}fr(r)dr. (7.13)

Substituting (7.29) into (7.13), and simplifying the expression, we obtain

Pc =

∫ ∞
0

Pr

{
h0 >

γT (Iint + σ2
a)r

α

a0

∣∣r} fr(r)dr
=

∫ ∞
0

e
− γT µσ

2
a

a0
rαE
{

exp(sIint)
}
fr(r)dr

(7.14)

where s = µγT r
α

a0
, Iint =

∑
i∈Φ\0 aihigi. Applying Campbell’s Theorem to E

{
exp(sIint)

}
and

computing the expectation over the variable hi, we get

E
{
esIint

}
= E

{
es
∑
i∈Φ/0 aihigi

}

= E

 ∏
i∈Φ/0

e−saihiy
−α


a
= exp

(
− 2πλ

∫ ∞
r

[
1− E

{
e−saihiy

−α
}]
ydy
)

b
= exp

(
− 2πλ

∫ ∞
r

[ saiy
−α

µ+ saiy−α

]
ydy
)
.

(7.15)
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Thus, the probability that the received SINR at a typical AP exceeds a given threshold γT

in the uplink information transmission phase can be expressed as

Pc =

∫ ∞
0

e
− γT µσ

2
a

a0
rα

exp
(
− 2πλ

∫ ∞
r

saiy
−α

µ+ saiy−α
ydy
)
fr(r)dr

=

∫ ∞
0

e
− γT µσ

2
a

a0
rα

exp

(
− πλr2−α

µ(−2 + α)
2F1

([
1,
−2 + α

α

]
; 2− 2

α
;−sair

−α

µ

))
fr(r)dr.

(7.16)

Proposition 7.2.1 In the energy-harvesting cellular communication network, coverage prob-

ability is an increasing function of the harvesting interval τB under noise-limited scenario.

Proof: See Appendix Q

According to Lemma 7.2.1, we see that allocating more time for downlink energy broad-

casting improves uplink SNR coverage probability, i.e., as τB → 1, we have Pc → 1. However,

this does not necessarily imply that the achievable data rate also increases with τB as will

be discussed in the following section.

7.2.3 Achievable Data Rate

One of the performance parameter for the wireless-powered cellular network illustrated in

Section 7.1.1 is the number of bits successfully received by a typical AP during the uplink

transmission interval, and mathematically this can be formulated as

R =

∫ ∞
0

E
{

(1− τB) log2

(
1 + SINR

)}
fr(r)dr (7.17)

which can be further expressed as

R =

∫ ∞
0

[ ∫ ∞
0

Pr

{
SINR > γa

}
fr(r)dr

]
dt (7.18)
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where γa = 2
t

1−τB − 1. The inner integral is indeed the SINR coverage probability for the

threshold γa, and this can be computed using the explicit expression provided in (7.33) by

replacing γT with γa. Thus, substituting (7.33) into (7.18), we have

R =

∫ ∞
0

∫ ∞
0

K(r, t) exp
(
H(r) 2F1

([
1, b
]
; c; d

))
fr(r)drdt (7.19)

where K(r, t) = e−
µγaσ

2
a

ao
rα , H(r) = − πλr2−α

µ(−2+α)
, b = −2+α

α
, c = 2 − 2

α
, and d = −γa aia0

. This

is a general expression that takes into account of both noise and interference, and in the

following subsections, we explicitly consider noise-limited and interference-limited scenarios.

Noise-limited scenario

In this scenario, the thermal noise at the receiving end is assumed to dominate the interfer-

ence signal from other UEs outside the associated cell, and in such a case, the rate expression

given in (7.19) becomes

RNL =

∫ ∞
0

Er

e−
[
c0

1−τB
τB

(
2

t
1−τB −1

)
rα

] dt (7.20)

where co(r) = µσ2rα

a0
. Since expectation preserves convexity/concavity and exponential func-

tion is convex, the characteristics of rate expression formulated above depends on the function

on the exponent, i.e., H = 1−τB
τB

[
2

t
1−τB − 1

]
. Applying first order derivative to H, we have

dH
dτB

= −(1− τB)(2
t

1−τB − 1)

τ 2
B

− 2
t

1−τB − 1

τB
+
t log(2)2

t
1−τB

(1− τB)τB
. (7.21)

This is neither an increasing nor a decreasing function of τB, and hence, unlike to the

characteristics of SNR coverage probability described in Proposition7.2.1, it is obvious from

(7.21) that the achievable data rate given in 7.20 is not a monotonically increasing function

of harvesting interval.
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Interference-limited scenario

Due to the highly dense network deployment, noise power could be negligible compare with

the aggregated interference power. In this scenario, there is a very strong interference at a

typical AP in the uplink transmission compared to the thermal noise, i.e., σ2
a � IInt, and

hence the signal-to-interference ratio (SIR) is derived from the SINR as follows:

SINR =

τB
1−τB

(
ζβ0P

hv
0 h0g0

)
σ2 +

∑
i∈Φ/0

τB
1−τB

(
ζβiP hv

i higi

)
≈ ah0r

−α∑
i∈Φ/0 aihigi

= SIR.

(7.22)

Since both the information-bearing signal and the interference change by the same factor

τB
1−τB

given the harvesting interval, it is interesting to observe from (7.22) that τB does

not have an impact on the received SIR. Nevertheless, the achievable data rate, which is

expressed as

RIL =

∫ ∞
0

[∫ ∞
0

Pr
{ ah0r

−α∑
i∈Φ/0 aihigi

> γa

}
dt

]
fr(r)dr, (7.23)

still depends on the harvesting interval as the threshold γa is a function of τB. The expression

given in (7.23) can be simplified as

RIL =

∫ ∞
0

Er

{
exp

(
− πλr2−α

µ(−2 + α)
2F1

([
1, b
]
; c;−γa

ai
a0

))}
dt (7.24)

where b = −2+α
α

, and c = 2− 2
α

.

7.2.4 Energy Efficiency

An energy-efficient strategy is an essential in the presence of energy constrained nodes in

wireless communication systems, and the system energy efficiency can be quantitatively
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measured as the bits of information reliably transferred to a receiver per unit consumed

energy at the transmitter as well as the receiver. Basically, energy is required in the system

to transmit energy-bearing signal to the harvesting nodes as well as due to static power

consumption including signal processing, cooling, and so on at the AP. Since the circuitry

consumption at the users is supplied by the harvested energy, it will not be included in

the net system energy consumption. Let PD
T and PU

T denote the total power consumption

during downlink and uplink operation intervals, respectively. As mentioned above, the energy

consumption during the harvesting interval τB is due to the transmitted energy-bearing signal

and the required energy to carry out the signal process, i.e., PD
T = ζPa + PD

c , where 1
ζ

is

the efficiency of the power amplifier. On the other hand, energy is consumed at the APs

during the uplink operation interval in order to decode the received information, and hence

PU
T = PU

c . Thus, the average energy consumption of APs in the cellular network is given as

Etot = λτB(PD
c + ζPa) + λ(1− τB)PU

c (7.25)

where PU
c and PD

C denote the static power consumption of a typical AP. Thus, the system

energy efficiency of a wireless-powered cellular network, denoted as ηCell, can be defined as

the ratio of network throughput to the average power consumption of the system, i.e.,

ηCell =
Network throughput

Ptot
. (7.26)

The expression for the cellular throughput of the energy-harvesting network modeled in

Section 7.1.1 is given as λR where R is as defined in (7.19). Therefore, the system energy

efficiency can be expressed as

ηcell(τB) =
R(τB)

τBPD
T + (1− τB)PU

T

(7.27)
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where R ∈ {RNL, RIL}. Based on the above characterizations, we understand that there is

a trade-off between the time allocated for the downlink harvesting and uplink information

transfer. Indeed, if UEs are allowed to scavenge energy over a longer time, they can harvest

more energy, but there might not be enough time to support data transfer. Thus, it is

necessary to investigate how operating intervals affect the network throughput as well as

system energy efficiency.

7.3 WP Cellular Network with Downlink SWIPT

In this section, we consider that the randomly distributed APs jointly transfers information

and power to the UEs during the downlink operation interval. These UEs are assumed to

be equipped with information decoding and energy harvesting components, and hence the

transmitted signal from the AP not only targets to power nearby UEs but also conveys

information to establish data connectivity. In fact, these users also send their data uplink

to their associated APs using the harvested energy. As mentioned earlier, the analysis is

conducted for a typical UE located at the origin based on the Slivnyak theorem [96]. We

address the performance analysis applying power-splitting scheme at the typical UE, and

details are provided for the downlink and uplink operation intervals as follow.

Phase I: Downlink operation

A serving AP broadcasts a signal to the typical user for an interval of τB sec., and the

harvested energy during this time can be computed as

Ehv
0 = τB(1− ρ0)(P0 + PI) (7.28)

where ρ denotes the fraction of power allocated to the ID component. Note that the explicit

expression for P0 and PI are as given in (7.6) and (7.9), respectively. As can be seen from

the equation, the presence of interference allows to harvest additional energy, and hence PI
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could help to allocate more power to the information decoding component which in turn

support data rate. The received SINR at UE0 during the downlink operation is given as

SINRDL
0 =

Pah0g0

σ2
c

ρ
+ σ2 +

∑
i∈Φ\0 Pahigi

(7.29)

where σ2
c is the noise component introduced due to the conversion of the received bandpass

signal to baseband, and in practice, this could be higher than the thermal noise component,

i.e., σ2 � σ2
c . Intuitively, when the interference dominates the noise power, the SIR becomes

independent of the splitting factor ρ, and this encourages to allocate more power to the

energy harvesting component. Mathematically, the downlink ergodic rate can be expressed

as

RDL
erg =

∫ ∞
0

E
{
τB log2

(
1 + SINRDL

0

)}
fr(r)dr (7.30)

which leads to

RDL
erg (ρ, τB) =

∫ ∞
0

∫ ∞
0

e−
µγσ2

ρPa
rα exp

(
− πλr2−α

µ(−2 + α)
2F1

([
1,
−2 + α

α

]
; 2− 2

α
;−γ′a

))
fr(r)drdt

(7.31)

where γ′a = 2
t
τB − 1, and assuming that ρi = ρ0 = ρ. It is clear that the downlink achievable

data rate is a function of both the harvesting interval and the power splitting factor. Indeed,

allocating more time for the downlink operation improves not only the harvested energy but

also the downlink information transfer rate. However, performance for the uplink operation,

i.e., uplink data rate, depends on the advantage of the additional harvested energy and the

penalty due to less available time for information transfer.

Similarly, the outage capacity when the generic AP transmit data at a fixed rate during

the downlink operation can be determined using

RDL
out (τB, ρ0) = PDL

c (ρ0)τB log2(1 + γT ) (7.32)
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where PDL
c is the coverage probability, which is given as

PDL
c =

∫ ∞
0

Pr

{
Pah0g0

σ2
c

ρ
+ σ2 +

∑
i∈Φ\0 Pahigi

> γT
∣∣r}fr(r)dr

=

∫ ∞
0

e−
γT µσ

2

ρPa
rα exp

(
− πλr2−α

µ(−2 + α)
2F1

([
1,
−2 + α

α

]
; 2− 2

α
;−γT

))
fr(r)dr.

(7.33)

Note that the coverage probability depends only on the power splitting factor, but the

outage capacity is still benefits from longer harvesting interval. Further simplification can be

done considering noise-limited and interference-limited scenarios. For instance, the coverage

probability expression in (7.14) under noise-limited scenario becomes

PDL
c (τB, ρ0) =

∫ ∞
0

Pr

{
h0 >

γTσ
2
cr
α

ρ0Pa

∣∣r} fr(r)dr
=

∫ ∞
0

e
− γT µσ

2
c

ρ0Pa
rα
fr(r)dr

(7.34)

Now, the coverage probability is dependent on not only the downlink operating interval

but also the power splitting factor at the UE. In addition to the coverage probability, we

are also interested in the joint complementary cumulative distribution function (JCCDF) of

harvested energy and achievable data rate, which is given as

FDL(Rmn, χ) = Pr
{
E
{
RDL
∗ ≥ Rmn, E

DL
hv ≥ χ

}
(7.35)

where ∗ ∈ {erg, out}.

Phase II: Uplink operation

In the second phase, UEs send information-bearing signal to their serving AP simultaneously

over the entire uplink operation interval. The transmitted signal power level at the typical
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UE depends on the amount of harvested energy, and it is expressed as

PUL
0 = ζβ0

(1− ρ0)Ehv
0

1− τB
(7.36)

where Ehv
0 is as defined in (7.5). Hence, received SINR at the serving AP during the uplink

interval is given as

SINRUL
0 =

(1− ρ0)a0h0g0

σ2
a +

∑
i∈Φ\0(1− ρi)aihigi

. (7.37)

As can be seen from the above equation, the downlink power splitting factor affects the

performance of uplink information transfer . More specifically, in noise-limited scenario, each

incremental of ρ0 at the typical user degrades the SNRUL
0 linearly, and this has an impact

on the energy efficiency as well as throughput of the system. However, every additional bits

of information transferred in the first phase counts toward the overall performance. Thus,

following similar procedure as mentioned earlier in Section 7.2, the coverage probability and

the ergodic capacity for the wireless-powered cellular network during the uplink operation

interval can be explicitly expressed as follow:

PUL
c =

∫ ∞
0

Pr

{
SINRUL

0 > γT
∣∣r}fr(r)dr (7.38a)

RUL
erg =

∫ ∞
0

E
{

(1− τB) log2

(
1 + SINRUL

0

)}
fr(r)dr (7.38b)

which lead to

PUL
c =

∫ ∞
0

e
− γT µσ

2
a

(1−ρ0)a0
rα

exp
(
− 2πλ

∫ ∞
r

s(1− ρi)aiy−α

µ+ s(1− ρi)aiy−α
ydy
)
fr(r)dr

=

∫ ∞
0

e
− γT µσ

2
a

(1−ρ0)a0
rα

exp

(
− πλr2−α

µ(−2 + α)
2F1

([
1,
−2 + α

α

]
; 2− 2

α
;−s(1− ρi)air

−α

µ

))
fr(r)dr

(7.39)
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and

RUL
erg =

∫ ∞
0

∫ ∞
0

e
− µγaσ

2
a

(1−ρ0)a0
rα

exp

(
− πλr2−α

µ(−2 + α)
2F1

([
1,
−2 + α

α

]
; 2− 2

α
;−γa

(1− ρi)ai
(1− ρ0)a0

))
fr(r)drdt.

(7.40)

Therefore, the total throughput and the system energy efficiency can be computed as

R(τB, ρ) = RDL
erg +RUL

erg (7.41a)

η =
Rtot

τB(PD
c + ζPa) + (1− τB)PU

c

(7.41b)

7.4 WP-Cellular Network with Uplink mm-Wave

In order to increase spectral efficiency, mm-wave is considered as one of promising solution for

the ever increasing demand of bandwidth in Internet-of-Things (IoT) where billions of devices

will get data connectivity. With this motivation, we assumed that randomly distributed APs

can broadcast the energy-bearing signal to the nearby UEs on the unlicensed frequency band,

but these users send their data uplink to the corresponding serving APs using mm-wave

frequency band. In such a case, the channel modeling for the uplink information transfer

experiences different characteristics since the wave length of GHz signals is so small that

the mm-wave signals are very sensitive to the blockage effects [72]. Hence, the wireless link

between the UEs and APs could be either line-of-sight (LOS) or non line-of-sight (NLOS).

According to channel measurements for the LOS/NLOS propagation characteristics, the

probability function for being LOS/NLOS can be modeled as exponential function such that

p(r) = e−βr where β is a constant which depends on the channel characteristics and r is the

Euclidean distance for the link between AP and UE. Intuitively, the larger the distance, the

lesser the probability to establish LOS link. In fact, the geometry of the surrounding and the

presence of blockage materials, e.g., buildings, have also significant impact on this probability.

Furthermore, the distance-dependent path loss in both scenarios will be different, and they
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are defined as vL(r) = KLr
−αL and vNL(r) = KNLr

−αNL for the LOS and NLOS, respectively.

Note that αL and αNL are the corresponding path loss exponents, and it is expected that

αNL > αL. We assume that the typical UE and generic AP adjust their antenna steering

orientations to maximize the directivity gain, and hence UE0 establishes LOS link with the

serving AP. However, the interfering links could be either in LOS or NLOS. As noted in the

literature, an equivalent LOS ball, which is an approximate model for the irregular shape of

LOS region, is considered to simplify analysis, and in this section, we assume that the generic

AP certainly has LOS link with the nearby the UEs located at a distance r < RB where RB

is the radius of the ball, and otherwise it forms NLOS link. In addition to the path loss,

we assume that the every link between UE and AP experiences a small-scale fading, and

ui denotes the Gamma function for the channel gain assuming an independent Nakagami

fading between a generic AP and UE in the ith cell coverage area.

Assuming sectored antenna model, the array gains for the main lobe and side lobe are

constant, and denoted by M∗ and m∗, respectively. Note that the subscript ∗ ∈ {u, a}

describes whether the antenna directivity gain is for the UE or AP. We assume that there

is perfect beam alignment between a typical UE and generic AP, i.e., G = MuMa where

G is total antenna array again. Meanwhile, the beam direction of the interfering nodes is

uniformly distributed on [0, 2π], and the antenna gain for the link between the generic AP

and the UE served by the interfering AP have a discrete probability which is defined as

p1 =
(
θa
2π

) (
θu
2π

)
for the gain G1 = MaMa

p2 =
(
θa
2π

) (
θ̄u
2π

)
for the gain G2 = Mamu

p3 =
(
θ̄a
2π

) (
θu
2π

)
for the gain G3 = Muma

p4 =
(
θ̄a
2π

)(
θ̄u
2π

)
for the gain G4 = mamu

(7.42)

where θ∗ and θ̄∗ for ∗ ∈ {a, u} denote the beam width of the main lobe and side lobe,

respectively.

As mentioned above, we apply a new operation protocol, known as harvest-then-(mm-
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W)transmit, in which downlink and uplink operations are carried out over different frequency

bands, i.e, the UEs transmit information in mm-wave frequency band during uplink operation

interval, but the downlink energy broadcasting is performed at lower frequencies. Hence, the

harvested energy at the typical UE is given as

Ehv
0 = τBE

PaGDL
0 h0g0 +

∑
i∈Φ\0

4∑
k=1

PahiG
DL
k gi


= τB

(
P0 + PI

) (7.43)

where GDL
∗ is the directivity gain of the antenna array between thel UE and associated AP.

The explicit expressions for P0 and PI are as follow:

PDL
0 = E

{
PaG

DL
0 h0g0

}
= µPaG

DL
0 Er

{[
max(r, d)

]−α}
= µPaG

DL
0

[∫ d

0

d−αfr(r)dr +

∫ ∞
d

r−αfr(r)dr

]
=
µPaG

DL
0

2

[
d−α
(
− e−Cd2

+ 1
)

+ C
α
2 Γ
(−α + 2

2
, Cd2

)]
(7.44)

where Γ(a, x) is the incomplete gamma function, and C = 2πλ. In addition, the second

equality above uses the fact that E{h0} = µ. Similarly,

PDL
I = E

∑
i∈Φ\0

4∑
k=1

PaG
DL
k higi


=

4∑
k=1

E

∑
i∈Φ\0

PaG
DL
k hi

[
max(xi, d)

]−α
=

4∑
k=1

P k
I

(7.45)

where xi is the distance between the typical user and an interfering AP, and indeed xi >

r. Applying Campbell’s theorem, which states that E
{∑

x∈N f(x)
}

= λ

∫
Rd
f(x)dx where
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N denotes a stationary point process defined on the d-dimensional Euclidean space, (7.7)

becomes

P k
I = 2πλµPaG

DL
k

∫ ∞
0

[ ∫ ∞
r

[
max(u, d)

]−α
udu

]
fr(r)dr (7.46)

which leads to

P k
I = 2πλµPaG

DL
k

[∫ d

0

[
.5d−α+2 − 0.5d−αr2 − d−α+2

2− α

]
fr(r)dr +

∫ ∞
d

r−α+2

α− 2
fr(r)dr

]

= µPaG
DL
k

[
d−α+2

2

(1

2
− 1

2− α

)(
− e−Cd2

+ 1
)

+
d−α

4C

[(
Cd2 + 1

)
e−Cd

2−1

]
+
C

α
2
−1

2α− 4
Γ
(−α + 4

2
, Cd2

)]
.

(7.47)

During the uplink operation interval, the typical UE sends information-bearing signal to

its serving AP uplink over mm-wave bandwidth, and the received SINR is given as

SINRmm−W
0 =

P1p1G1u0v0

σ2 + Pint
(7.48)

where Pint is the total interference power, and u0 and v0 are denote fading power gain and

path loss, respectively, in the presence of mm-wave propagation. From Lemma 1 in [72], we

note that the probability density function for the distance to the nearest LOS AP given that

the typical UE observes at least one LOS AP is expressed as

f(r) =
2πrp(r)

BL

e−2πλ
∫ r
0 xp(x)dx (7.49)

where BL = 1 − e−2πλ
∫∞
0 xp(x)dx. According to our assumption, p(r) = 1 for r < RB and

p(r) = 0 otherwise, and hence we have BL = 1 and (7.49) becomes

f(r) = 2πxe−πλr
2

. (7.50)
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Thus, the conditional coverage probability of a wireless-powered network that operates with

harvest-then-mm-transmit protocol is given as

Pc(γT , τB) =

∫ ∞
0

Pr

{
P0p1G1u0v0

σ2 + Pint
> γT

}
f(r)dr

=

∫ ∞
0

Pr

{
u0 >

γT r
αL(σ2 + Pint)

P0KLp1G1

}
f(r)dr

(7.51)

where P0 =
E0
hv

1−τB
σ2, and |u0|2 is a normalized gamma random variable with parameter NL

for the link between the typical UE and the generic AP. Based on the tight approximation

given in Lemma 6 in [72], we have

Pr

{
u0 >

γT r
αL(σ2 + Pint)

P0KLp1G1

}
=

NL∑
n=1

(−1)n+1

(
NL

n

)
E
[
e
−naγT r

αL (σ2+Pint)

P0KLp1G1

]

=

NL∑
n=1

(−1)n+1

(
NL

n

)
e
−naγT r

αLσ2

P0p1G1 E
[
e
−naγT r

αLPint
P0KLp1G1

] (7.52)

where a = NL(NL)
− 1
NL . The term in the expectation is due to the interference signal, and it

can be explicitly expressed considering the LOS and NLOS links as indicated below.

E
[
e
−naγT r

αLPint
P0p1G1

]
= E

[
e
−
naγT r

αL
∑4
k=1

∑
l∈ΦL/0

vlPlpkGkr
−αL
l

P0KLp1G1

]
E

[
e
−
naγT r

αL
∑4
k=1

∑
l∈ΦNL/0

vlPlpkGkr
−αL
l

P0KLp1G1

]
(7.53)
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where Φ = ΦL∪ΦNL, and ΦL/ΦNL denote the PPP in which the the AP is forms LOS/NLOS

link with the UEs. The first expectation in (7.53) can be further simplified as follow

E

[
e
−
naγT r

αL
∑4
k=1

∑
l∈Φ/0 vlPlpkGkr

−αL
l

P0KLp1G1

]
=

4∏
k=1

e
−2πλPlpk

∫RB
r

(
1−E
[
e
−nγT nL|ul|

2 Gk
P0G1

( rt )αL
])

p(t)tdt

=
4∏

k=1

e

−2πλpk
∫RB
r

1− 1(
1+

nγT nL
KL
KL

PlGk
P1G1

( rt )αL

NL

)NL
p(t)tdt

(7.54)

Similarly, for the NLOS link, we have

E

[
e
−
naγT r

αL
∑4
k=1

∑
l∈Φ/0 vlpkGkKNLr

−αNL
l

P0KLp1G1

]
=

4∏
k=1

e

−2πλpk
∫RB
r

1− 1(
1+

nγT nL
KNLPlGk
P0KLG1

( rt )αNL

NL

)NL
p(t)tdt

(7.55)

Note that based on our assumption, p(t) = 1 inside the ball, and hence we can substitute in

the above equations accordingly. Therefore, the achievable data rate for a wireless-powered

networks operating at mmWave frequency band is given as

R =

∫ ∞
0

(1− τB)E
{

log2

(
1 + SINRmm−W

0

)}
fr(r)dr

=

∫ ∞
0

[∫ ∞
0

Pr
{
SINRmm−W

0 > γb
}
fr(r)dr

]
dt

=

∫ ∞
0

Pc(γb, τB)dt

(7.56)

where γb = 2
t

1−τB
−1

, and Pc(γb, τB) is the coverage probability defined in (7.51).

On the other hand, the system energy efficiency for the wireless-powered network with
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uplink mm-Wave can be computed using

ηcell =
R

τBPD
T + (1− τB)λPU

T

(7.57)

7.5 Numerical Analysis

In this section, we provide numerical results on the performance analysis and optimal resource

allocation strategies considering throughput maximization and energy efficiency maximiza-

tion problems. In both cases, we assume that the uplink and downlink channels of a given

UE have the same characteristics, and the channel gains are exponentially distributed with

means β1 and β2, respectively.

Fig. 7.3a illustrates how the downlink/uplink operation intervals affect the network

throughput. As can be observed from the figure, allocating more time for energy harvesting

initially improves the uplink information transfer rate, but once it reaches an optimal point,

each incremental harvesting time sacrifices data rate. Besides, the optimal point which max-

imizes the network throughput depends on the downlink transmit power level. As expected,

transmitting energy-bearing signal at higher power level reduces time allocated for energy

harvesting operation, for instant τ ∗B = 0.25 for Pa = 10dB whereas τ ∗B = 0.16 for Pa = 20dB.

Furthermore, we observe that this benefits the uplink information transfer. On the other

hand, Fig. 7.4b shows that SINR coverage probability improves with harvesting interval, but

the characteristics of the curve change with the threshold. We observe that higher threshold

forces the allocation of more time to energy harvesting in order to secure SINR coverage.

The impact of downlink transmitted power level on the maximum energy efficiency is

shown in Fig. 7.4a. From the figure, we observe that broadcasting at higher power achieves

better system energy efficiency, and this is because, more energy can be harvested with

shorter downlink operation interval, and hence there will be less power consumption. In

addition, this provides extra time for uplink information transfer. As can be seen from the
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Figure 7.3: Impact of downlink/uplink operating interval on the network performance
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figure, the energy efficiency increases significantly comparing at Pa = 10dB and Pa = 20dB

if the circuit consumption is dominant, i.e., Pc � Pa. On the other hand, AP density also

has an affect on the system energy efficiency as illustrated in Fig. 7.4b. It is interesting to

observe that there is an optimal AP density at which maximum energy efficiency is obtained.

In fact, when the APs are located more densely, the distance between UE and nearby serv-

ing AP is expected to reduce, and as a result more energy can be harvested over a given

duration. This helps to improve the energy efficiency. However, these characteristics can

not be achieved if λ exceeds a certain threshold. Furthermore, circuit power consumption

determines the impact of AP density on the overall performance. As can be seen from the

figure, the uplink consumption has significant effect on average energy efficiency compared

with the downlink circuit power consumption. For instance, the maximum EE reaches close

to 3.5 b/J for PU
c = 1 whereas it is below 1b/J when the uplink consumption is increased

five fold.

Figure 7.5: Impact of AP density and τB (Sec.) on the network throughput (bps/Hz)

In regard to downlink SWIPT with uplink information transfer for wireless-powered net-
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work discussed in Section 7.3, Figure 7.5 and Fig. 7.6 illustrate impact of network parameters

in the achievable data rate while maximizing the system energy efficiency. As can be seen

from Fig. 7.5, when the AP are densely deployed, the network throughput improves. This

is because the distance between the generic AP and typical user decreases, and this reduces

the path loss significantly compared with the increase in the aggregate interference. Further-

more, the power splitting factor and the time allocated for the downlink operation affects

the system performance, and we observe that allocating too small or too much time for the

energy harvesting hurts the network throughput, especially when the density of AP is higher

λ values.

Similarly, Fig. 7.6a and Fig.7.6b show that increasing the downlink transmit power level

improves the network throughput, as expected, and for a given downlink operating interval,

the point at which maximum achievable data rate is obtained changes accordingly. For in-

stance, at τB = 0.9, higher data rate is obtained for Pa = 10 when ρ = 0.36, but this changes

to ρ = 0.45 for Pa = 15. In addition, comparing these two figures, we observe that the time

allocated for energy harvesting has an impact on the network throughput, even for the same

downlink transmit power level.

On the other hand Fig. 7.7 shows how the system energy efficiency changes in response

to the AP density and the power splitting factor at the UE. It is interesting to observe that

the energy efficiency improves when the APs are densely populated, and we claim that there

exists an energy-efficient downlink/uplink interval given the harvested energy constraint at

the UE. In addition, this energy demand has direct impact on the characteristics of the

system energy efficiency curve, and more importantly the maximum achievable operating

point.
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Chapter 8

NOMA-Based Energy-Efficient

Wireless Powered Communications

In the previous chapters, we considered that multiple transmitting nodes transfer information

employing either TDMA or MAC scheme. In this chapter, we study the significance of non-

orthogonal transmission for wireless information and power transfer, and the system model

is described in Section 8.1. Assuming delay-tolerant sources, optimization strategies are well

investigated for half-duplex and asynchronous transmission in Section 8.2. Subsequently,

energy-efficient time allocation for the above mentioned protocols are investigated in Section

8.3 for delay-sensitive sources. Despite the difficulty of obtaining analytical expressions for

uplink and downlink operating intervals, optimal solution can be obtained numerically and

algorithms are included to summarize the procedure.

8.1 System Model

We consider multiple energy harvesting nodes as shown in Fig. 8.1, which operate based

on the harvest-then-transmit protocol. The wireless power transmitter (WPT) has an em-

bedded power source, and it broadcasts a deterministic signal, denoted by Wa with power

Pa = |Wa|2, over the downlink channel to power the nearby UEs. We employ similar as-
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sumptions as in [49] and [56] that each user fully utilizes the harvested energy to support

data transmission and circuit power consumption in one cycle. Without loss of generality,

we use a normalized unit for each cycle, i.e., T = 1.

Figure 8.1: Network model

In regard to the harvest-then-transmit protocol, UEs first harvest energy from the dedi-

cated source (i.e., WPT), and then transmit data uplink to the access point (AP) employing

the NOMA scheme1. More explicitly, we consider two scenarios, namely half-duplex op-

eration and asynchronous transmission, based on how downlink and uplink operations are

coordinated.

Half-duplex operation:

Here, the downlink and uplink operations are carried out over non-overlapping time intervals,

i.e., all the UEs harvest energy while WPT transfers power through the downlink wireless

channel over a duration τ0, and then they simultaneously transmit information-bearing sig-

nals to the AP for the rest of the period, i.e., 1− τ0, as shown in Fig. 8.2a. In such a case,

the harvested energy at user i ∈ S = {1, 2, · · · , N} in one cycle can be expressed as2

Ehd
i = τ0giPa (Joules) (8.1)

1Although the WPT and AP are depicted as separate nodes in Fig. 8.1, they can also be co-located or
be the same node.

2Note that the formula for the harvested energy generally includes an energy harvesting efficiency factor,
which we assume, without any loss of generality, to be equal to one.
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(a) Half-duplex operation

(b) Asynchronous transmission

Figure 8.2: WPCN uplink-downlink operation schemes

where τ0 is the downlink energy harvesting interval which is allocated to all the users, and

gi denotes the fading coefficient between the ith user and WPT, and hence |gi|2 is the chan-

nel power gain. We assume that the WPT-user links and user-AP links all experience

frequency-flat fading, and uplink as well as downlink fading coefficients stay fixed in each

frame duration. Thus, the received signal at the AP is expressed as

Y =
N∑
i=1

hiXi +Nap (8.2)

where hi is fading coefficient capturing the effect of path loss as well as small scale fading

for the wireless link between user i and AP, and Nap ∼ CN (0, 1) is the circularly symmetric,

complex Gaussian noise at the AP with unit variance. In addition, Xi for i ∈ S denotes

the uplink signal from UE i transmitted with power Pi based on power domain NOMA

scheme such that Pi > Pj for |hi| < |hj|. Moreover, the AP decodes the information sent

from the users in the reverse order of improving channel qualities, i.e., signal from the UE

with the best channel condition is decoded last without any interference from the signals

transmitted by other UEs, while the signal from UE with the worst channel is decoded first

in the presence of interference from all other users.
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If, without loss of generality, we assume that |h1| < |h2| < . . . < |hN |, then the achievable

instantaneous information transfer rate of user i over an uplink operation interval of 1− τ0

is given as

Ri = (1− τ0) log2

(
1 +

γi

1 +
∑N

k=i+1 γk

)
bps/Hz (8.3)

where γi = |hi|2Pi is the received SNR from user i. Therefore, the throughput or sum-rate

capacity for the half-duplex scenario becomes

Rsum =
N∑
i=1

Ri = (1− τ0) log2

(
1 +

N∑
i=1

γi

)
bps/Hz. (8.4)

Asynchronous transmission

In this scenario, UEs start harvesting energy at the same time, but as the name implies,

they begin transmitting data signals to the AP at different time instants, as depicted in Fig.

8.2b. The advantage of this approach is that it provides an opportunity for some UEs to

harvest more energy while others are scheduled for uplink information transfer. Without

loss of generality, we assume that UEs are ordered according to their uplink transmission

starting sequence, i.e., UE 1 begins sending data first, then user 2 and so on. Hence, the

harvested energy at the ith UE is given as follows:

Eat
i =

(
τ0 +

i−1∑
j=1

τj

)
|gi|2Pa (Joules) (8.5)

where τi is the time interval between the uplink starting points of ith and (i+ 1)th UEs such

that
N∑
i=1

τi ≤ 1− τ0. (8.6)

Once each UE has harvested the required energy, it transfers information to the AP until

the end of the cycle. This implies that i number of UEs simultaneously carry out the uplink

information transfer operation during the interval τi. Thus, the received signal at AP during
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interval τi is expressed as

Yi =
i∑

k=1

hkXk +Nap. (8.7)

In addition to the amount of harvested energy, each UE’s transmit power level directly

depends on the information decoding order applied at the AP. As noted above, we consider

power domain NOMA scheme which encourages the UE with the best channel condition to

transmit at the lowest power level as well as to be decoded without interference. As a result,

the achievable information rate of UE j ∈ {1, 2, · · · , i} over the interval τi is given as

Rj = τi log2

(
1 +

γj

1 +
∑i

k=j+1 γk

)
bps/Hz (8.8)

where |hj| < |hk| for k = j + 1, j + 2, . . . , i. Note that following each incremental operating

interval, one or more UEs join the uplink operation, and hence the information decoding

order at the receiving end is modified accordingly. Therefore, the total throughput becomes

the sum of the sum-rate capacity of the system over each interval until the end of τN .

Mathematically, we have

Rsum =
k∑
i=1

τi log2

(
1 +

i∑
j=1

γj

)
. (8.9)

8.2 Energy-Efficient Time Allocation without Statisti-

cal QoS Constraint

In this section, we analyze time allocation strategies for energy harvesting and data transmis-

sion phases, considering both half-duplex and asynchronous operations. No delay or buffer

constraints are imposed initially. Delay-sensitive sources and statistical QoS constraints are

introduced into the analysis in Section IV. We consider system energy efficiency which is

defined as

η =
Throughput

Total consumed energy
(bits/Joule), (8.10)
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and let PcD denote the circuit power consumption at WPT during downlink operation, and

assume that it is independent of the transmitted power level for Pa > 0. However, if no

wireless power is transferred, there is no consumption, i.e., Pa = 0 and PcD = 0. Hence,

the total energy consumption during the entire downlink-uplink operation of a given cycle

becomes

Etot =


τ0PDT + (1− τ0)PcU Half-duplex

(
τ0 +

∑N−1
i=1 τi

)
PDT + PcU

∑N
i=1 τi Asynchronous

(8.11)

where PDT = PcD + Pa, and PcU is the power consumption at the receiver for decoding

information during uplink operation.

8.2.1 Optimal Harvesting Interval in the Half-Duplex Protocol

Assuming that the harvesting interval depends on the fading state realizations, the uplink

transmitted signal power level from the ith user becomes

Pi = ξi|gi|2Pa
τ0

1− τ0

. (8.12)

Note that ξi denotes the fraction of harvested energy utilized for data transmission while the

rest, i.e., the fraction of 1 − ξi, is consumed by the circuit to carry out the process. Then,

substituting (8.12) into (8.3) and simplifying the expression, we get

Ri(τ0) = (1− τ0) log2

(
1 +

αiτ0

1− τ0 +
∑N

j=i+1 αjτ0

)
(8.13)

where αi = ξi|gi|2|hi|2Pa. We first have the following characterization.

Lemma 8.2.1 The individual achievable rate of a wireless-powered UE operating in half-

duplex mode with uplink NOMA strategy is concave in the harvesting interval τ0.
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Proof : See Appendix R.

Note that the total throughput, i.e., the sum of individual achievable data rates, is given

by

Rsum(τ0) =
N∑
i=1

Ri(τ0)

=(1− τ0) log2

(
1 +

N∑
i=1

αi
τ0

1− τ0

)
.

(8.14)

Therefore, the system energy efficiency (EE), which measures the numbers of bits of infor-

mation reliably transmitted to the AP per consumed unit energy, is given as

ηHD(τ0) =

(1− τ0) log2

(
1 +

∑N
i=1 αi

τ0
1−τ0

)
τ0

(
PcD + Pa − PcU

)
+ PcU

. (8.15)

Note that each UE’s circuit power consumption is supported by the harvested energy, and

hence it is not necessary to consider these explicitly while defining the total energy consump-

tion of the system.

Proposition 8.2.1 The system EE of a wireless-powered communication network given in

(8.15) is a pseudo-concave function of the harvesting interval τ0.

Proof : See Appendix S.

Proposition 8.2.1 guarantees that there is a unique optimal time allocation strategy that

maximizes the system EE such that the harvesting interval is within the feasible set. In order

to obtain the optimal time allocation for downlink and uplink operations that maximizes

the system energy efficiency, we formulate the following optimization problem:

(PR:8.1) max
τ0

ηHD(τ0) (8.16a)

subject to τ0(1− τ0) > 0. (8.16b)
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The constraint in (8.16b) dictates that the optimizing parameter τ0 is always within the

feasible set, i.e., 0 ≤ τ0 ≤ 1. Since this constraint is convex, and the objective function is

the ratio of a concave function over an affine function, it is obvious that (PR:1) is a concave-

linear fractional programming (CLFP) problem. As noted in [93], Dinkelbach’s method can

be used to solve concave-convex and concave-linear fractional programming problems, and

we employ this method to identify the optimal solution. Thus, (PR:8.1) can be equivalently

expressed as

min
λ

{
max
τ0
L(τ0)

}
(8.17a)

subject to (8.16b) (8.17b)

where L(τ0)=(1−τ0) log2

(
1+αT τ0

1−τ0

)
−λ
(
τ0P∆+PcD

)
, αT =

∑N
i=1 αi and P∆ = PcD +Pa−PcU .

Since L(τ0) is a concave function and the constraint is convex, Karush-Kuhn-Tucker (KKT)

conditions, i.e.,

∂L
∂τ0

∣∣∣∣
τ0=τ∗0

=0 (8.18a)

µ∗
(
τ0 − τ 2

0

)
= 0, κ∗τ ∗0 =0, (8.18b)

are necessary and sufficient for the global optimality of the solution of the inner maximization

problem. From the characteristics of the EE curve, when τ ∗0 = 0 or τ ∗0 = 1, we have

ηHD(τ ∗0 ) = 0 for PcD 6= 0. But, this cannot be the optimal value, which implies 0 < τ ∗0 < 1.

As a result, µ∗ = 0 and κ∗ = 0 in order to satisfy the complementary slackness conditions

given in (8.18b). Taking these into account, and applying the first order optimality criteria

given in (8.18a), we obtain

αT
1− τ0 + αT τ0

− ln

(
1 + αT

τ0

1− τ0

)
−ln(2)λP∆ = 0 (8.19)
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which leads to

z ln(z) + Ωz = α′ (8.20)

or equivalently

eln(zeΩ) ln(zeΩ) = α′eΩ (8.21)

where z = 1 + αT
τ0

1−τ0 , Ω = ln(2)λP∆ − 1, and α′ = αT − 1. Mathematically, (8.21) has

the form of XeX = Y whose solution is given by the Lambert function, i.e., X =W(Y ) for

Y ≥ −1
e
. Thus, the solution to (8.21) can be analytically expressed as

z∗ = e[W(α′.eΩ)−Ω]. (8.22)

Therefore, the optimal harvesting time as a function of λ is

τ ∗0 (λ) =
α′ −W

(
α′.e(λP ′−1)

)
α′
[
1 +W

(
α′.e(λP ′−1)

)] (8.23)

where P ′ = ln(2)P∆. The parameter λ is iteratively updated until the optimal solution

satisfies Rsum(τ ∗)− λ∗Etot(τ ∗) = 0. We provide the complete procedure below in Algorithm

11.

Algorithm 11 EE maximization using Dinkelbach’s algorithm

1: Given: ε, λ0

2: n← 0
3: repeat
4: Determine τ ∗0 using (8.23)
5: F(λn, τ

∗
0 ) = Rsum(τ ∗0 )− λnEtot(τ ∗0 )

6: λn+1 =
Rsum(τ∗0 )

Etot(τ∗0 )

7: n← n+ 1
8: until |F(λn, τ

∗
0 )| < ε

9: Set τ ∗0 = τn0 .
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8.2.2 Energy-Efficient Intervals with Asynchronous Transmission

In this section, we consider overlapping and non-overlapping scenarios for the uplink opera-

tion as follow.

Overlapping uplink operation

As noted above in Section II, asynchronous transmission is defined in such a way that UEs

do not necessarily begin sending information-bearing signals to the AP at the same time in

each downlink-uplink operation cycle. However, if a UE has started transmission, it stays

active until the end of the cycle. Assuming that UEs are ordered according to their uplink

starting point as mentioned earlier, the transmitted signal power level from UE i is given as

Pi =ξi
Eat
i∑N

k=i τk

=ξi|gi|2Pa

[
τ0 +

∑i−1
j=1 τj∑N

k=i τk

] (8.24)

where Eat
i denotes the harvested energy by UE i in the asynchronous scheme, and ξi is the

fraction of harvested energy utilized for data transmission while the rest, i.e., the fraction of

1− ξi, is consumed by the circuit to carry out the process.

Then, we substitute (8.24) into (8.8), and derive the expression for the sum-rate capacity

(within the interval of duration τi in which i users are transmitting) as a function of the

operating intervals as

Ri
sum(τ0, τN) = τi log2

(
1 +

i∑
l=1

bl
τ0 +

∑l−1
j=1 τj∑N

k=l τk

)
(8.25)

which leads to

Ri
sum(τ0, τN) = τi log2

(
ai +

i∑
l=1

bl∑N
k=l τk

)
(8.26)
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where bi = ξi|gi|2Pa, ai = 1−
∑i

l=1 bl and τN = [τ1, τ2, · · · , τN ].

Proposition 8.2.2 The achievable sum-rate capacity for the two-user setting during the

transmission interval of duration τi is jointly concave over the operating intervals (τ0, τ1, τ2).

Proof : See Appendix T.

From Proposition 8.2.2, we conclude that the system throughput is a jointly concave

function since concavity is preserved under summation. Note that the total sum-rate capacity

is given as

Rtot(τN) =
2∑
i=1

τi log2

(
ai +

i∑
l=1

bl∑2
k=l τk

)
. (8.27)

Then, the system energy efficiency (EE) for asynchronous transmission scenario becomes

ηAT (τ0, τ1, τ2)=

τ1 log2

(
a1+ b1

τ1+τ2

)
+τ2 log2

(
a2+ b1

τ1+τ2
+ b2
τ2

)
PDT

(
τ0 + τ1

)
+
(
τ1P 1

cU
+ τ2P 2

cU

) (8.28)

where P i
cU

denotes the total uplink circuit power consumption during the interval τi.

Since the throughput is proved to be a concave function, and the total consumed power

is an affine function of the operation intervals, the system EE given in (8.28) satisfies the

criteria for pseudo-concavity based on Proposition 2.9 stated in [93]. Unlike the previous

scenario where we had only one parameter to adjust, i.e., τ0, to achieve maximum energy

efficiency, now there are 3 optimizing parameters, i.e., τ0, τ1, τ2, and hence obtaining the

optimal time allocation strategy which maximizes the EE is a more challenging task. Thus,

we formulate the following optimization problem:

(PR:8.2) max
τ0,τN

ηAT (8.29a)

subject to
N∑
i=1

τi ≤ 1− τ0 (8.29b)

τi ≥ 0, i ∈ {0, 1, 2, · · · , N}. (8.29c)
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As noted above, the objective function in (8.29a) is pseudo-concave since the total achiev-

able sum-rate capacity is jointly concave with respect to operating intervals (τ0, τ1, τ2). In

addition, the constraints (8.29b) and (8.29c), which define the feasible operating intervals,

are convex. Thus, the optimization problem (PR:8.2) is also a concave-linear fractional pro-

gramming problem, and hence it can be easily solved using Dinkelbach’s algorithm following

a similar procedure as in the earlier scenario, but we skip the details for brevity.

Non-overlapping uplink operation

In this subsection, we consider a special scenario where energy harvesting by a user can still

occur concurrently with the data transmission of other users, but the uplink data transmis-

sion among users follows time-division multiple access instead of allowing the activated user

to use the channel until the end of the block duration. Hence, data transmissions by the

users occur over non-overlapping time intervals. In such a case, the system energy efficiency

expression for N users is given by

ηAT (τ0, τN) =

∑N
i=1 τi log2

(
1 + bi

∑i−1
k=0 τk
τi

)
PDT

(
τ0 +

∑N−1
i=1 τi

)
+ PcU

∑N
i=1 τi

(8.30)

where PcU denotes the circuit power consumption of a UE assuming that each UE consumes

the same amount. Therefore, the optimization problem is reformulated as follows:

(PR:8.3) max
τ0,τN

ηAT (8.31a)

subject to
N∑
i=1

τi ≤ 1− τ0 (8.31b)

Ri(τ0, τ i) ≥ Ri
min (8.31c)

where

Ri(τ0, τ i) = τi log2

(
1 + bi

τ0 +
∑i−1

j=1 τj

τi

)
(8.32)
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and τ i = [τ1, · · · , τi]. The additional constraint given in (8.31c) is introduced in order to

guarantee that each user’s rate is above a certain minimum level when non-overlapping time

slots are being allocated to the users. From Lemma 2 in [56], we know that Ri is a jointly

concave function of downlink and uplink time intervals, i.e., τ0 and τ i. Thus, the above

optimization problem is still a concave-linear fractional programming problem, and (PR:8.3)

can be equivalently expressed as

min
λ,µ

{
max
τ0,τ i

G(τ0, τ i)

}
(8.33a)

subject to (8.31b) and (8.31c) (8.33b)

where G(τ0, τ i) =τi log2

(
1+ bi

τ0+
∑i−1
j=1τj

τi

)
− λ

(
PDT

(
τ0 +

∑N−1
i=1 τi

)
+ PcU

∑N
i=1 τi

)
, and P∆ =

PDT − PcU . Given λ, the objective function for the inner maximization problem G(τ0) is a

concave function while the constraints are convex, and hence Karush-Kuhn-Tucker (KKT)

conditions, i.e.,

∂L
∂τ0

∣∣∣∣
τ0=τ∗0

= 0,
∂L
∂τi

∣∣∣∣
τi=τ∗i

= 0 (8.34a)

ζ∗
( N∑
i=0

τi − 1) = 0, κ∗
(
Ri(τ0, τ i)−Ri

min

)
= 0, (8.34b)

are necessary and sufficient for global optimality where the Lagrangian is given as

L = G(τ0, τ i) + β
( N∑
i=0

τi − 1
)

+ κ
(
Ri(τ0, τ i)−Ri

min

)
. (8.35)
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Applying the first order optimality criterion in (8.34a), we obtain

∂L
∂τ0

=
N∑
k=1

(1− κk)bk
ln(2)

(
1+ bk

τ0+
∑i−1
j=1τj

τk

) − λPDT − β = 0 (8.36a)

∂L
∂τi

=
N∑
k>i

(1− κk)bk
ln(2)

(
1+ bk

τ0+
∑i−1
j=1τj

τk

) + (1− κi) log2

(
1+ bi

τ0 +
∑i−1

j=1τj

τi

)
−

(1− κi)bi
τ0+

∑i−1
j=1τj

τi

ln(2)
(
1+ bi

τ0+
∑i−1
j=1τj

τi

) − Z = 0

(8.36b)

∂L
∂τN

= (1− κN) log2

(
1 + bi

τ0 +
∑N−1

j=1 τj

τN

)
−

(1− κN)bN
τ0+

∑N−1
j=1 τj

τN

ln(2)
(

1 + bN
τ0+

∑N−1
j=1 τj

τN

) − λPcU − β = 0

(8.36c)

where Z = λ(PDT + PcU )− β. Taking the difference of (8.36a) and (8.36b), we have

−
i∑

k=1

(1− κk)bk
1 + bkzk

+ (1− ki)Zi(zi) + λPcU ln(2) = 0 (8.37)

which leads to

Zi(zi)−
bi

1 + bizi
=
λPcU ln(2)

1− κi
+

i−1∑
j=1

bj
1 + bjzj

(8.38)

where Zi(zi) = ln(1 + bizi)− bizi
1+bizi

and zk =
τ0+

∑k−1
j=1 τj

τk
. Similarly, from (8.36c), we have

ZN(zN)− bN
1 + bNzN

=
λ(PDT + PcU ) ln(2)

1− kN
+

N−1∑
k=1

bk
1 + bkzk

. (8.39)

Applying a similar approach as in [56], the optimal time allocations are given as

τ ∗N =
1

1 + zN
(8.40a)

τ ∗i =
1−

∑N
j=i+1 τ

∗
j

1 + zi
(8.40b)
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where

zi =
1

bi

[
e
W
(

bi−1

eφi+1

)
+φi+1

− 1

]
, (8.41)

∀i ∈ S = {1, 2, · · · , N} with

φi =
λPcU ln(2)

1− κi
+

i−1∑
j=1

bj
1 + bjzj

and (8.42a)

φN =
λ
(
PDT + PcU

)
ln(2)

1− kN
+

N−1∑
k=1

bk
1 + bkzk

. (8.42b)

Hence, the optimal time interval, τ0, becomes τ ∗0 = 1 −
∑N

i=1 τ
∗
i . From the above expres-

sions, we observe that the energy-efficient time allocation depends on the minimum data

rate constraint. For instance, if this constraint is inactive for all UEs, then κi = 0 ∀i due

to complementary slackness conditions. However, if it is active for any UE, then the corre-

sponding optimal solution will be changed in such a way that the constraint is satisfied while

maximizing the system energy efficiency. Therefore, we first determine the best solution as-

suming all the rate constraints are satisfied with inequality, i.e., κi = 0 ∀i ∈ S and then

check if the optimal solution satisfies the rate constraint for each UE. For any constraint

violation, the optimal time allocation policy will be updated taking into account all of the

active constraints, and the detailed procedure is provided below in Algorithm 12.

8.3 Impact of Statistical Queuing Constraints

In this section, we analyze the impact of QoS constraints on the optimal time allocation

strategies that target the maximization of the system energy efficiency. Since effective ca-

pacity describes the maximum constant data arrival rates, i.e. characterizes the throughput

in the presence of delay-limited data sources, we focus on the effective-EE to determine the

number arriving bits that can be supported per one joule of consumed energy by the system

in the presence of statistical queuing constraints. Let us first address half-duplex opera-
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Algorithm 12 Energy-efficient time allocation for non-overlapping scheme

1: Given: ε

2: Define: F(τN) =E
{
τi log2

(
1+ bi

τ0+
∑i−1
j=1τj

τi

)}
g(τN)=

(
E
{
(PcD)

(
τ0+

∑N−1
i=1 τi

)
+ PcU

∑N
i=1 τi

})
3: n← 0
4: Initialize λ, κ1 = κ2 = · · · = κN = 0
5: repeat
6: r ← 0
7: repeat
8: Determine zi using (8.41)
9: Update τi using (8.40)

10: Update τ0 = 1−
∑N

i=1 τi
11: r ← r + 1
12: for i=1 to N do
13: if |Ri −Ri

min| > ε then
14: κi 6= 0
15: Update ki using gradient method
16: end if
17: end for
18: until |Ri −Ri

min| < ε
19: Determine ∆n = F(τN)− λng(τN)

20: λn+1 = F(τN )
g(τN )

21: n← n+ 1
22: until |∆n| < ε
23: Set τ ∗0 = τ0 and τ ∗i = τi.

tion. Since UEs harvest energy simultaneously and send information-bearing signals to the

AP using NOMA, harvesting time becomes the only parameter to optimize for maximum

performance. In the case in which each user harvests energy to support data transfer with

half-duplex operation, the corresponding effective capacity expression of user i given in (2.5)

is modified by incorporating the additional parameter τ0, i.e., the harvesting interval, as

follows

Ce
i (θi, τ0) = − 1

Tθi
log

(
E

{
e
−(1−τ0)θi log2

(
1+

αiτ0
1+ωiτ0

)})
. (8.43)
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The sum effective capacity of users transmitting through a multiple access channel can be

determined by summing up the individual effective capacities:

Ce(θ, τ0) =
N∑
i=1

Ce
i (θi, τ0) (8.44)

where the vector of QoS exponents of different users is denoted as θ = [θ1, θ2, · · · , θN ].

Now, the optimization problem for maximizing the effective-EE with half-duplex operation

is formulated as follows:

(PR:8.4a) max
τ0

−
N∑
i=1

log

(
E

{
e
−(1−τ0)θi log2

(
1+

αiτ0
1+ωiτ0

)})
TθiE

{
τ0PDT + PcU (1− τ0)

} (8.45a)

subject to τ0(1− τ0) ≤ 0 (8.45b)

Note that in (8.45), the objective function is the system effective energy efficiency while the

constraint specifies the feasible range of the harvesting interval.

Proposition 8.3.1 The effective-EE of energy-harvesting UEs with half-duplex protocol is

pseudo-concave with respect to the harvesting interval τ0.

Proof : See Appendix U.

Based on Proposition 8.3.1, the objective function of (PR:8.4a) is pseudo-concave and

hence the problem is a concave-linear fractional problem, and the optimization procedure

described in earlier sections can easily be applied to obtain the optimal solution. Similarly,

for the asynchronous transmission scenario, we have

(PR:8.5) max
τ0,τ

∑N
i=1 C

e
i (θi, τB)

E
{
PDT

(
τ0 +

∑N−1
i=1 τi

)
+ PcU

∑N
i=1 τi

} (8.46a)

subject to
N∑
i=1

τi ≤ 1− τ0 (8.46b)
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where

Ce
i (θi, τB) = − 1

Tθi
log2

(
E

{
e
−Φi log

(
1+

bipi

1+
∑i−1
l=1

blpl

)})
(8.47)

with θ = [θ1, θ2, · · · , θN ], Φi = τiθi and pi =
∑i−1
k=0 τk∑N
j=i τj

. Again, similar algorithmic approaches

can be employed to solve (PR:8.5).

8.4 Numerical Analysis

In this section, we provide numerical results considering two energy harvesting UEs commu-

nicating with an AP. We assume that the channel gain for the link between UE i ∈ {1, 2}

and the AP is exponentially distributed with mean βi. In order to compare the performance

gains, we consider three cases denoted by I, II and III. In the first case, we focus on energy ef-

ficient solutions that are obtained for both half-duplex and asynchronous transmissions using

uplink NOMA, as discussed in this paper. In the second case, we determine the throughput

maximizing time allocations for the same problems, and in the last case we apply energy-

efficiency maximization for time-division multiple access (TDMA). Additionally, we consider

two values, i.e., PcU = 5dB and PcU = 15dB, for the uplink power consumption in order to

capture its impact on the overall characteristics.

Fig. 8.3 illustrates the performance of WPCN operating in half duplex mode with uplink

NOMA. According to Fig. 8.3a, we observe that broadcasting the downlink signal at a higher

power level improves the system energy efficiency for case I. This is because, as Pa increases,

more energy can be harvested over a smaller time duration τ0 as shown in Fig. 8.3b, and

hence the UEs get an opportunity to transfer information over a longer time period which

in turn benefits the energy efficiency. Meanwhile, comparing case I and case II as shown

in Fig. 8.3a, we notice that allocating the harvesting interval with the goal to maximize

the throughput hurts the system energy efficiency, and the degradation becomes more sig-
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Figure 8.3: Impact of downlink transmit power level Pa with half-duplex downlink-uplink
operation

nificant at higher values of the downlink transmit power level. Furthermore, comparing all

the three cases, we observe that NOMA based uplink information transfer outperforms up-

link TDMA. According to the figure, throughput maximizing time allocation strategy using
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uplink NOMA is more energy-efficient than energy-efficiency maximizing policy for uplink

TDMA. One reason for this could be that the latter approach requires more time for down-

link operation, and this means more energy consumption over the interval τ0. However, this

is not necessarily the case for very high Pa values.
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Figure 8.4: Achievable rates (bps/Hz) vs. Pa

In regard to the achievable data rates, intuitively we expect throughput in case II to

be higher than that in case I, and Fig. 8.4 demonstrates this fact, i.e., Ri@ Case II >

Ri@ Case I ∀Pa where i ∈ {1, 2}. As can be seen from the figure, the performance gain

in terms of throughput is not significant at lower downlink transmit power levels, but this

changes as Pa increases. Furthermore, comparing the individual data rates, UE 1 always

achieves better channel capacity, but the gap is smaller for case II than case I and this re-

veals that uplink NOMA encourages fairness in data rate among UEs. It is also interesting

to observe that the performance difference between uplink NOMA and uplink TDMA lies

in the optimal time allocated to each UE to transmit data uplink to the receiver. As can

be seen from Fig. 8.3b, energy-efficient downlink operating intervals for Case I and Case III

are very close specially for higher Pa values, and hence the way uplink interval is allocated
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determines the system performance.
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Figure 8.5: Average energy efficiency (bpJ/Hz) vs. PcU

Figs. 8.5 - 8.7 demonstrate the system performance and the corresponding optimal oper-

ating parameters when the UEs operate in the asynchronous transmission mode. As can be

seen in Fig. 8.5, the system energy efficiency decreases with an increase in circuit power con-

sumption at the receiving end, and this tradeoff characteristic depends on the wireless link

power gain between each UE and the receiver. More specifically, when UEs have relatively

favorable channel conditions, i.e., higher gains, each incremental circuit power hurts the EE

significantly. This is because the energy efficient strategy dictates both users to harvest

and to transmit synchronously, i.e, τ1 = 0 (as seen in the case with β1 = 10 and β2 = 2).

Besides, more time is allocated to information transfer. On the other hand, worse channel

characteristics lead to τ1 6= 0, and the reduction in the average energy efficiency decreases

as AP circuit power consumption increases. In such a case, more time is allocated to energy

harvesting, and this in turn reduces throughput and system energy efficiency. Intuitively,

the impact of WPT circuit power depends on the downlink transmit power level and for
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Figure 8.6: Effect of uplink (receiver) circuit power consumption PcU on the performance
with asynchronous transmission

higher values of Pa, i.e., when Pa � PcD , the change in EE along with PcD is expected to

be small. Meanwhile, from Fig. 8.7, we observe that EE increases with downlink transmit

power level (similarly as discussed earlier for the half-duplex operation) unless throughput

maximization is the goal as in Case II. In addition, WPCN with uplink NOMA achieves

better energy efficiency compared to case III in which TDMA is considered.
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Figure 8.7: Performance gain of asynchronous transmission

The impact of QoS parameter on the optimal time allocation strategy and the corre-

sponding system energy efficiency is illustrated in Figs. 8.8a and 8.8b. In general, stricter

QoS constraint (i.e., higher value for the QoS exponent θ) degrades the system energy ef-

ficiency as can be seen from Fig. 8.8a, and higher circuit power consumption hurts the

efficiency further as expected. In addition, we observe that uplink NOMA outperforms the

TDMA approach regardless of the value of θ. However, the performance gain due to uplink

NOMA diminishes with an increase in the aggregate circuit power consumption of UEs. In

regard to the optimal time allocation strategy for TDMA, we observe that higher θ forces

to allocate more time for energy harvesting, i.e., leads to increased τ0, which in turn reduces

the time for uplink information transfer.
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Chapter 9

Conclusion

9.1 Summary

In this thesis, performance analysis of wireless information and power transfer in WPCNs

has been studied in terms of network throughput and energy efficiency, and optimal resource

allocation schemes for SWIPT with orthogonal and non-orthogonal MACs have been deter-

mined in the presence of delay-limited sources. Specifically, the contribution of this thesis

are summarized below.

In Chapter 3, we studied SWIPT with finite-alphabets input focusing on the through-

put for single user and multiple users settings. In this chapter, we introduced non-uniform

probability distribution which assigns probability to each signal in the constellation space

based on its energy level. This novel approach considers practically appealing finite signal

constellations, and we investigated the significance of non-uniform probability assignment

to these signals in order to improve the tradeoff in SWIPT. We explicitly defined two ap-

proaches, namely static slope and dynamic slope characteristics, to determine each alphabet

probability according to the required harvested energy. In both single user and multiple

user settings, we discussed that assigning higher probability to the signals with higher en-

ergy level allows to allocate more power to the ID component, assuming the receiver applies
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power-splitting scheme to perform information-decoding and energy-harvesting operations.

We formulated optimization problems that maximize information rates subject to harvested

energy constraint and boundaries to the alphabets probabilities. Since obtaining closed form

expression for the receiver power-splitting factor is difficult, we provided an algorithm to

solve the optimization problem using standard numerical tools. Furthermore, we incorpo-

rated delay-sensitive sources and analyzed the impact of exponential decaying QoS exponent

on SWIPT. In such a case, we provided explicit expression for the network throughput,

i.e., effective capacity, as a function of power-splitting factor and signals probabilities. We

considered time-division multiple access scheme for the transmitters, and operating time

intervals, signal probabilities and receiver power-splitting factor are optimally adjusted ac-

cording to the minimum harvested energy constraint such that the performance metric, i.e.,

effective capacity or system energy efficiency, is maximized. Theoretical formulations are

justified using numerical results. According to the rate-energy tradeoff characteristics, we

observed that non-uniform probability assignment improved the network throughput given

the required harvested energy constraint. In addition, static slope characteristics has better

performance compared to the dynamic scheme for lower energy demand. Furthermore, for

looser QoS constraint, higher network throughput was attained.

In Chapter 4, we studied the optimal resource allocation strategies for MACs taking en-

ergy efficiency as the major performance metric. We provided energy-efficient node selection

and power control policy by formulating an optimization problem which maximizes the sys-

tem energy efficiency subject to peak power constraint. From the control policy, we noted

that the node with the best link, i.e., with the highest channel gain, is selected to transmit

while the rest nodes are kept silent. Activation of multiple UEs, for instance with the second

highest channel gain, is possible when the mathematical solution for the optimal power of

the activated UE exceeds its peak power constraint. Furthermore, we observed that the opti-

mal transmitted power follows channel inversion approach, i.e., more power is required when

the wireless link experiences very poor condition. Besides, an increase in the circuit power
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consumption shifts the optimal transmit power level. On the other hand, we studied energy-

efficient SWIPT in MAC considering two types of receiving architecture, namely separated

antenna architecture and common antenna architecture. We formulated optimization prob-

lems in both scenarios to determine optimal policies, and we provided explicit expressions

for the energy-efficient transmission strategies as well as the system energy efficiency. We

noted that the node selection, i.e., activation of UEs, and the corresponding optimal trans-

mit power level depend not only on the peak power level but also on the required harvested

energy. In addition, the system energy efficiency is always a non-increasing function for the

common antenna architecture, but for the separated architecture, there exists a constraint

at which the system energy efficiency achieves the highest value. Numerical results justified

the theoretical characterizations and impact of peak power constraint on the power alloca-

tion policy among the transmitting nodes. In addition, impact of circuit power consumption

on the energy-efficient transmit power level and the optimal average energy efficiency were

illustrated. We observed that the optimal splitting factor changes logarithmically when the

transmitted power is below the peak power level, but once it reaches the peak, the factor

linearly changes as the harvested energy increases.

In Chapter 5, we studied the performance of WPCNs in terms of throughput and en-

ergy efficiency under various wireless information and power transfer protocols, namely syn-

chronous TDMA, synchronous MAC and asynchronous TDMA. In addition, we investigated

the impact of statistical QoS constraints on the optimal harvesting time as well as overall

performance of the networks in the presence of delay limited sources. For each operation

protocol mentioned above, we formulated throughput maximizing and energy-efficiency max-

imizing optimization problems. Assuming that the harvesting interval is dependent of the

fading state, we determined the KKT conditions to identify the optimal operating inter-

vals. We provided analytical expressions for the operating time intervals in the synchronous

MAC protocol, and suboptimal solution for the TDMA protocols. Also, because of the dif-

ficulty in obtaining closed-form solution in some cases, we proposed algorithms to solve the
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problems numerically. Finally, several insightful observations were made through numerical

results. We observed that asynchronous TDMA achieves highest throughput compared with

other protocols, but synchronous MAC is an energy efficient protocol. In addition, as the

exponential decaying component θ increases, more time will be allocated for the downlink

operation, i.e., energy harvesting, and hence there is less time for information transfer which

in turn hurts the sum effective capacity. Meanwhile, we observed that the QoS constraint

can override the doubly near-far problem mentioned in the literature, i.e. UEs closer to the

AP might not transmit at higher data rate when the distant UEs have loser constraint or

lower buffer overflow probability. Furthermore, increasing the downlink transmit power level

improves the system average energy efficiency of WPCNs. However, higher θ value still hurts

EE.

In Chapter 6, we investigated the significance of introducing non-zero mean component

on the information-bearing signal for full-duplex wireless information and power transfer.

We modeled a hybrid system having energy harvesting and non-energy harvesting UEs, and

formulated optimization problem subject to harvested energy and peak power constraints

considering throughput and energy efficiency as the major performance metrics. In order

to offset the channel phase shift and benefit the harvested energy, we applied pre-channel

co-phasing to the transmitted signals by the AP and NEHU. Throughput-maximising power

control strategies were identified, and an iterative algorithm was proposed to obtain optimal

solution numerically. Furthermore, we derived energy efficient policies for two-users model

taking various scenarios for the harvested energy constraint. According to the analytical ex-

pressions, signals transmitted from the NEHU with zero-mean were considered to be energy-

efficient when the harvested energy constraint was not binding, i.e., for smaller demand.

Furthermore, simulation results illustrated that introducing a non-zero mean information-

bearing signal achieved higher energy efficiency compared with zero-mean based on the

harvested energy constraint and channel characteristics. On the other hand, we observed

that the optimal energy efficiency improved while the harvested energy demand increased
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within certain boundaries. Any additional increment beyond the boundary hurts the EE.

In Chapter 7, we studied the impact of harvesting time interval, AP density, transmitted

power level and related parameters on the overall performance of energy-harvesting cellular

networks using stochastic geometry. We provided analytical framework to compute the SINR

coverage probabilities, average data rate and energy efficiency for different types of downlink-

uplink operation schemes that are categorized as WPT-WIT protocol, SWIPT-WIT protocol

and WPT-WIT(mmWave) protocol. For the wireless-powered cellular network operating on

lower frequency band with harvest-then-transmit protocol, i.e., WPT-WIT, we explicitly

characterized coverage probabilities considering noise-limited and interference limited sce-

narios. We noted that SNR coverage probability is an increasing function of harvesting

interval, but not achievable data rate. Meanwhile, in the case of SWIPT-WIT protocol, al-

locating more time for energy harvesting benefited the downlink data rate since the splitting

factor became higher but the uplink data rate suffered from shorter duration for informa-

tion transfer despite sufficient energy being harvested. On the other hand, we explicitly

characterized average harvested energy and average throughput of cellular UEs when uplink

information transfer is done on mmWave frequency band. Finally, several insightful obser-

vations have been made through numerical results. More specifically, densely deployed AP

improves both the throughput and energy efficiency of WP cellular networks. In addition,

transmitting the downlink WPT signal enhances the average energy efficiency. In the case

of downlink SWIPT, there exists an optimal power-splitting factor that achieves maximum

throughput or energy efficiency, and the downlink transmit power level and the harvesting

time interval affects this optimal solution given the AP intensity.

In Chapter 8, we considered energy efficiency as a performance metric, and we investi-

gated impact of uplink-NOMA on the overall performance of energy-harvesting communica-

tion networks. We took into account half-duplex and asynchronous transmission downlink-

uplink operation modes, and formulated optimization problems in both cases focusing on the

maximization of the system energy efficiency. Since these are concave-linear fractional pro-
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gramming problems, Dinkelbach’s method can be directly applied. With this, we obtained

closed-form characterizations for the optimal time intervals and provided an algorithm to

obtain the optimal solution for half duplex operation. Meanwhile, because of the difficulty

in obtaining closed-form solutions for asynchronous transmission, we analyzed the optimal

solution using standard numerical tools. Finally, several insightful observations were made

through numerical results. According to the these results, we observed that downlink trans-

mit power improved the system energy efficiency. In addition, circuit power consumption

hurts EE, but this was dependent on the channel characteristics. Time intervals for energy

harvesting and data transmission display intricate dependence on system parameters and op-

erational modes. Finally, we noted that stricter delay constraints could lead to degradation

in energy efficiency.

9.2 Future Research Directions

9.2.1 Analysis of SWIPT in MIMO Networks with Finite-Alphabet

Inputs

In Chapter 3, we studied optimal resource allocation for SWIPT with finite-alphabet input

assuming that the transmitter and receiver are equipped with single antenna. On the other

hand, in the presence of multiple antennas at both ends, we can exploit more by introducing

not only non-uniform probability distribution but also non-zero mean component. In such a

case, channel co-phasing can be applied and constellation shifting can be designed so as to

improve the overall performance.

9.2.2 NOMA-based SWIPT under Delay-Limited Sources

In Chapter 8, NOMA technique is well investigated for wireless-powered communication

networks considering various harvest-then-transmit protocols. This work can be extended
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taking into account of delay-limited sources as well as simultaneous transfer of information

and power. Indeed, this introduces more variables to control and additional characteristics

curves to analyze.

9.2.3 Optimal Resource Allocation for WPCNs with finite block-

lenghth

In Chapter 5 and Chapter 8, we assumed that energy harvesting UEs transfer information

uplink approximately without error , i.e. infinite block length. However, when finite block

length is considered, each UEs uplink and donwlink operating interval, i.e., transmitting

block length, will be affected and the overall performance changes accordingly.
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Appendix A

Proof Theorem 3.1.1

We consider n being even and odd scenarios separately as follows.

I. Square Geometry: n-even

Under this assumption, let the constellation has Ns×Ns square configuration with (x, y) co-

ordinates in a 2-dimensional space where x, y ∈ {−K, . . . ,−3,−1, 1, 3, . . . K}, K =
√
M − 1

and Ns = K + 1. Assuming the constellation is centered at the origin, it can be divided into

four Ns/2×Ns/2 symmetrical sub-squares in which the number of different energy levels in

the constellation space, N , is the same as in one of the quadrants. Without loss of generality,

considering the 1st quadrant, x, y ∈ {1, 3, . . . K}, we have

Es =

∣∣∣∣∣∣∣∣∣∣∣∣∣

E11 E13 . . . E1K

E31 E33 . . . E3K

. . . . . . . . . . . .

EK1 EK3 . . . EKK

∣∣∣∣∣∣∣∣∣∣∣∣∣
where Es is a matrix consisting of each signal energy level, Eij = |X(i,j)|2, at constellation

coordinate point (i, j) in the square QAM constellation. For Eij = Eji, it is optimal to have

pij = pji, where pij is the probability of the signal located at (i, j). Let Q be a vector having

only different energy levels, i.e., Q = {E11, . . . , EKK} for i, j = {1, 3, . . . K} with i < j. Note
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that Es is symmetrical, and hence the number of different energy levels in this quadrant,

N1 = |Q|, can be determined using either upper or lower diagonal matrix of Es as follows

N1 =

[(Ns

2
− 1
)

+ · · ·+
(Ns

2
−
(Ns

2
− 1
))]

+
Ns

2

=

Ns
2
−1∑

i=0

(Ns

2
− i
)
.

(A.1)

Therefore, based on the fact that N = N1, the total number of different energy levels can

be expressed as in (3.31a).

II. Rectangular geometry: n-odd

In this case, let each signal coordinate be denoted as (x, y) where x ∈ {−Ka,· · · ,−3,−1,1, 3, · · ·Ka},

Ka =
√
M/2− 1 and y ∈ {−Kb, . . . ,−3, −1, 1, 3, . . . Kb}, Kb =

√
2M − 1. The constellation

has Na×Nb rectangular configuration with Na = Ka + 1 and Nb = Kb + 1, and using similar

arguments as stated above, we consider the 1st quadrant to determine the number of different

energy levels. Hence, we have

Er =

∣∣∣∣∣∣∣∣∣∣∣∣∣

E11 E13 . . . E1Kb

E31 E33 . . . E1Kb

. . . . . . . . . . . .

EKa1 EKa3 . . . EKaKb

∣∣∣∣∣∣∣∣∣∣∣∣∣
where Er is a matrix consisting of each signal’s energy level in the rectangular constellation.

Since Na/2 < Nb/2, Er can be partitioned into two sub-matrices Eaar = Na/2 × Na/2 and

Eabr = Na/2 × (Nb/2 − Na/2) whose numbers of different energy levels are denoted as Naa

and Na(b−a), respectively. Since Eaar has square configuration, Naa can be easily determined

using (A.1), whereas in the case of EabR , it is obvious that each coordinate has a unique energy

level. Hence,
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Naa =

Na
2
−1∑

i=0

(Na

2
− i
)

(A.2a)

Na(b−a) =
Na

2

(
Nb

2
− Na

2

)
. (A.2b)

Therefore, the total number of different energy levels in Na×Nb constellation space becomes

N = Naa +Na(b−a), which is the same as given in (3.31b) after a minor substitution.
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Appendix B

Proof of Proposition 3.1.1

As noted in Theorem 3.1.1, signals are grouped based on energy levels so that it is possible to

adjust their probabilities in such a way that the subset with the highest energy level signals,

SN ∈ Ssc, gets high priority for transmission as the minimum required harvested energy

level increases. Considering the boundaries, when X = 0 input is uniformly distributed

with pj = 1
|S| , ∀Xj ∈ S according to Remark 3.1.1, whereas when X = Emx, only highest

energy signals are chosen, i.e., pj = 0, ∀Xj /∈ SN . In the latter case, assuming |SN | 6= 1, the

transmitted signal can be either among these signals that are equiprobable, pj = 1
|SN |

, or one

of them almost a surely, i.e, {Xa, Xb} ∈ SN with Pr{X = Xa} = 1 but Pr{X = Xb} = 0,

∀b = {1, 2, . . . , |SN |} and b 6= a. In both cases, the same amount of energy is harvested;

however, equpiprobable assignment benefits information transfer under opportunistic or ideal

harvesting/decoding scheme.
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Appendix C

Proof of Proposition 3.1.2

First, let us re-write the achievable rate expression given in 3.19 as follows:

R(ρ) = −
M∑
k=1

pk
πN0

∫ ∞
−∞

∫ ∞
−∞

e−|v|
2

fk(ρ)dv1dv2 (C.1)

where

f(ρ) = log

[
M∑
j=1

pje
aiρ

]
(C.2)

and ai = −|v+γd|2 + |v|2. Since non-negative weighted summation and integration preserves

convexity, it is necessary and sufficient to show the convexity of the function f(ρ) in order

to verify that R(ρ) is concave in ρ. Thus, applying second-order derivative, we get

∂2f(ρ)

∂ρ2
=

∑
i pia

2
i e
aiρ∑

i pie
aiρ
−

(∑
i piaie

aiρ
)(∑

i piaie
aiρ
)

(∑
i pie

aiρ
)2 (C.3)
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=
1(∑

i pie
aiρ
)2

[(∑
i

pia
2
i e
aiρ
)(∑

i

pie
aiρ
)
−
(∑

i

piaie
aiρ
)2
]

=
1(∑

i pie
aiρ
)2

[(∑
i

p2
i a

2
i

)(∑
i

e2aiρ
)
−
(∑

i

piaie
aiρ
)2
]

=
1(∑

i pie
aiρ
)2

[(
zT z
)(
vTv
)
−
(
zTv
)]

(C.4)

where z = [p1a1, p2a2, · · · , pnan] and v = [ea1ρ, ea2ρ, · · · , eanρ]. From the Cauchy-Schwarz

inequality, we know that

|〈X,Y 〉|2 ≤ 〈X,X〉 · 〈Y ,Y 〉 (C.5)

whereX and Y are vectors, and 〈·, ·〉 is the inner product. Hence, we claim that
(
zT z
)(
vTv
)
≥(

zTv
)
, and this guarantees ∂2f(ρ)

∂ρ2 ≥ 0. Therefore, f(ρ) is a convex function of ρ.
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Appendix D

Proof of Theorem 4.2.1

Without loss of generality, we assume that h1 < h2 < · · · < hN . The Lagrangian of (PR:3.1)

is

L =
log2

(
1 +

∑N
i=1 γi

)
PC +

∑N
i=1 Pi

−
N∑
i=1

φiPi(Pi − Pmx
i ) (D.1)

where φis are the Lagrange multipliers associated with the power constraints. Hence, the

corresponding KKT conditions are

∂L
∂Pi

= 0, φiPi
(
Pi − Pmx

i

)
= 0 (D.2)

where i ∈ S. Based on the complementary slackness condition, φi = 0 for 0 < Pi < Pmx
i , and

the boundary conditions Pi = Pmx
i will be considered later. Now, the first order optimality

criterion is given by

∂η

∂Pi
=

hi

ln(2)
(

1 +
∑N

i=1 γi

)(
PC +

∑N
i=1 Pi

) − log2

(
1 +

∑N
i=1 γi

)
(
PC +

∑N
i=1 Pi

)2 = 0 (D.3)

By rearranging the terms, we can rewrite (D.3) as

ω ln(ω)− ω = ΓN (D.4)
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which can be further expressed as

eln(ω
e

) ln
(ω
e

)
=

ΓN
e

(D.5)

where ΓN =
∑N−1

j=1 (hN − hj)Pj − 1 + hNPC and ω = 1 +
∑N

i=1 γi. Mathematically, (D.5) has

the functional form of XeX = Y whose solution is given by the Lambert function W , i.e.,

X =W(Y ) for Y ≥ −1
e
. Thus, the solution to (D.5) can be analytically expressed as

ω∗ = eW
(

ΓN
e

)
+1, ΓN ≥ −1. (D.6)

Given P ∗j for j = 1, . . . , N − 1, the optimal transmit power level from node N becomes

P̃N =
ω∗ − 1−

∑N−1
j=1 γj

hN
. (D.7)

Substituting (D.6) and (D.7) into (4.6), we have

η(ΓN) = c
W(ΓN

e
) + 1

(ΓN + eW(
ΓN
e

)+1)
(D.8)

where c = hN
ln(2)

. Thus, the optimal efficiency depends on ΓN , and considering its slope char-

acteristics using W ′(x) = W(x)
x+xW(x)

, we obtain

∂η

∂ΓN
= −c

[
W(ΓN

e
) + 1

(ΓN + eW(
ΓN
e

)+1)2

]
≤ 0. (D.9)

This implies that energy efficiency is a decreasing function of ΓN , and hence the maximum

energy efficiency is achieved at the lowest value of ΓN . This occurs when Pj = 0 for all

hj < hN and j ∈ {1, 2, · · · , N − 1}. Therefore, the user with the highest channel gain will

be active, and its optimal transmit power is given as

P̃N =
eW(

ΓN
e

)+1 − 1

hN

∣∣∣∣
∀Pj=0,PC=Pc

. (D.10)
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However, if P̃N exceeds the peak, then node N operates at P ∗N = Pmx
N . In such a case,

other nodes could be allowed to transmit based on the corresponding optimal strategy. Let

us assume that the nodes N,N−1, . . . , k+1 are transmitting at their peak power levels, i.e.,

P ∗N = Pmx
N , · · · , P ∗k+1 = Pmx

k+1. Then, the transmit power for node k, under the assumption

hN > · · · > hk+1 > hk, needs to be determined in such a way that the system energy

efficiency

η =
log2(1 + γk +

∑N
j=k+1 hjP

mx
j )

P k
c +

∑N
j=k+1 P

mx
j + Pk

(D.11)

is maximized. Applying the optimality criteria and following a similar procedure as noted

earlier, we get

P̃k =
eW(

Γk
e

)+1 − 1−
∑N

j=k+1 hjP
mx
j

hk
(D.12)

where Γk =
∑N

j=k+1(hk − hj)Pmx
j − 1 + hkP

k
c . Note again that unless P̃k exceeds the peak

power level, we again have to set P ∗i = 0 for i = 1, . . . , k−1 in order to maximize the energy

efficiency.
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Appendix E

Proof of Theorem 4.3.1

Without loss of generality, we again assume that h1 < h2 < · · · < hN . The Lagrangian for

problem (PR:4.2a) is expressed as

L =
log2

(
1 +

∑N
i=1 γi

)
κ+

∑N
i=1 Pi

−
N∑
i=1

φiPi(Pi − Pmx
i ) (E.1)

where {φi} are the Lagrange multipliers associated with the power constraints. The com-

plementary slackness condition is the same as stated in (D.2), and KKT conditions for the

first order optimality are

∂ηs
∂Pi

=
hi

ln(2)
(

1 +
∑N

i=1 γi

)(
PC +

∑N
i=1(1− gi)Pi

) − (1− gi) log2

(
1 +

∑N
i=1 γi

)
(
PC +

∑N
i=1(1− gi)Pi

)2 = 0, for B > χ

(E.2a)

∂ηs
∂Pi

=
hi

ln(2)
(

1 +
∑N

i=1 γi

)(
PC +

∑N
i=1 Pi − χ

) − log2

(
1 +

∑N
i=1 γi

)
(
PC +

∑N
i=1 Pi − χ

)2 = 0, B = χ

(E.2b)
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i) B > χ : When the additional harvested energy beyond the demand can be stored, we

have (E.2a) and this can be expressed as

ω ln(ω)− ω = Γi (E.3)

where ω = 1 +
∑N

i=1 γi and Γi =
∑N

j=1,j 6=i(hi − hj)Pj − 1 + hi
PC

1−gi . Based on (E.3), the

problem is feasible if

Γi = Γj (E.4)

when nodes i and j are transmitting. Following a similar procedure as in the proof of

Theorem 4.2.1, we conclude that η is a decreasing function of Γi and hence energy efficiency

is maximized at the lowest possible value of the corresponding Γi. As a result, we have

ΓN = −1 + hN
Pc

1− gN
(E.5a)

assuming Pj = 0,∀j ∈ {1, ...N − 1}, and

ΓN−k = −1 + hN−k
P k
c

1− gN−k
+

k−1∑
j=0

(
hN−k − hN−j

)
PN−j (E.5b)

for k = 1, 2, · · · , N − 1, assuming Pj = 0, ∀j ∈ {1, ...N−k−1}. It seems there are N different

node selection strategies, but we show by contradiction that the one with the best channel

link should be active for maximum energy efficiency. For instance, let us consider ΓN−1, and

in this case, both PN 6= 0 and PN−1 6= 0 implying node N and node N − 1 are active. This

leads to ΓN−1 > Γ′N = −1 +hN
Pc

1−gN
+ (hN −hN−1)PN−1 for PN−1

c > Pc, but Γ′N > ΓN which

contradicts the optimality condition in (E.4). Therefore, Pj = 0,∀j ∈ {1, ...N − 1} and

P̃N =
e
W
(
hN

Pc
1−gN

−1

e

)
+1

− 1

hN
. (E.6)
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ii) B = χ : In case there is a limited capacity to store harvested energy, i.e., B = χ, the

optimality condition given in (E.2b) is similar to (D.3) except the additional term χ. Hence,

applying the same procedure as in the proof of Theorem 4.3.1, we get Pj = 0 ∀hj < hN and

P̃N =
e
W
(
hN (Pc−χ)

e

)
+1 − 1

hN
. (E.7)

In both cases above, when the optimal solution P̃N exceeds the peak power constraint,

the transmitted power level from node N is kept at Pmx
N , and similar steps can be followed

as in Appendix D to determine P̃N−1 and iteratively the other power levels if peak power

constraints become active. Furthermore, the threshold at which the harvested energy con-

straint becomes active can be determined, for instance, by substituting P̃N = χ∗

βgN
into (E.6)

or (E.7) and solving for χ∗. Thus, we have

W
(hNΦ− 1

e

)
+ 1 = ln

(
1 +

hN
gN

χ∗
)

(E.8)

where

Φ =


Pc

1− gi
B > χ (E.9a)

Pc − χ B = χ. (E.9b)

It is difficult to get a closed-form expression for χ∗ from this equation, which, nevertheless,

can be easily solved using numerical tools.
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Appendix F

Proof of Proposition 4.3.1

Without loss of generality, we assume that hi > hj for i, j ∈ {1, 2}, and the conditions in

(4.26) are explicitly expressed as

hi

ln(2)
(

1 +
∑N

i=1 γi

)(
PC +

∑N
i=1 Pi − χ

) − log2

(
1 +

∑N
i=1 γi

)
(
PC +

∑N
i=1 Pi − χ

)2 = µgi

hj

ln(2)
(

1 +
∑N

i=1 γi

)(
PC +

∑N
i=1 Pi − χ

) − log2

(
1 +

∑N
i=1 γi

)
(
PC +

∑N
i=1 Pi − χ

)2 = µgj,

(F.1)

assuming the two-user setup. Accordingly, there are two possible conditions that need to be

addressed independently.

(a) hi > hj and gi > gj : When user i has higher power gains with the ID and EH components

than user j, (F.1) holds true if either Pi = 0 or Pj = 0. Since user j achieves a lower EE for

the same transmit power, it is better to keep user j in silent mode and let user i to transmit.

The maximum energy that can be harvested from user i is χ′a = giP
mx
i . When the demand

exceeds this, user j begins transmission to satisfy the extra energy demand ∆χ = χ− χ′a.

(b) hi > hj but gi < gj : In this case, (F.1) can be satisfied with Pi 6= 0 and Pj 6= 0. Now,

we have (
hi
gi
− hj
gj

)
1(

1 +
∑

i γi
) =

(
1

gi
− 1

gj

)
ln
(
1 +

∑
i γi
)(

Pc + Pi + Pj − χ
) (F.2)
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which leads to

A = z ln(z)− z (F.3)

where A = Pc

(
higj−hjgi
gj−gi

)
+ χ

(
1−gj
gj

(higj−hjgi
gj−gi

)
− hj

gj

)
− 1 and z = 1 + χ

hj
gj

+ Pi

(
hi − hjgi

gj

)
.

Hence, solving for Pi, we obtain

P ∗i =
gje
W(A

e
)+1 − gj − hjχ

gjhi − gihj
(F.4)

and substituting this into gjP
∗
j = χ− giP ∗i , we get

P ∗j =
−gieW(A

e
)+1 + gi + hiχ

gjhi − gihj
. (F.5)

Then, the maximum energy χ′b that can be harvested from user i while user j is silent can

be obtained by setting P ∗j = 0 and χ = χ′b in (F.5). This results in

ln
(hi
gi
χ′b + 1

)
=W

(
A

e

) ∣∣∣
χ=χ′b

+ 1, (F.6)

which can be solved numerically. Thus, user j becomes active when χ > χ′b, and this

continues until Pj = Pmx
j which occurs at χ = χ′′. Any additional demand ∆χ = χ−χ′′ will

be satisfied by user i until it reaches its peak.
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Appendix G

Proof of Theorem 4.3.2

The Lagrangian of (PR:4.3) is given by

L = ηc −
N∑
i=1

κi(Pi − Pmx
i ) +

N∑
i=1

φiPi. (G.1)

Applying similar procedure as in proof of Theorem 4.2.1, the first order criteria, which is

given as

∂ηc
∂Pi

=
hi

ln(2)
(

1 +
∑N

i=1 γi − χ
)(
PC +

∑N
i=1 Pi − χ

) − log2

(
1 +

∑N
i=1 γi − χ

)
(
PC +

∑N
i=1 Pi − χ

)2 = 0, (G.2)

can not be satisfied, i.e., ∂ηc
∂Pi
6= ∂ηc

∂Pj
for hi 6= hj, unless a single node is active at a time while

the rest silent. Since the energy-efficient approach is to let the node with the highest channel

gain transmit, from (G.2) we have

φ lnφ− φ = ΩN (G.3)
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where ΩN = hNPc − 1 + χ(1 − hN) and φ = 1 + γN − χ, and the corresponding optimal

transmit power becomes

P ∗N =
eW( Ω

e
)+1 + χ− 1

hN
. (G.4)

An increment in harvested energy requires transmission at a higher power level, and

eventually this leads to transmission at the peak power. Hence, the maximum demand χmxN

that can be satisfied by node N is obtained by solving

hNP
mx
N + 1 = eW

(
hNPc−1+χmxN (1−hN )

e

)
+1 + χmxN (G.5)

which is derived from (G.4). The threshold at which node N − 1 becomes active depends on

its the impact on the optimal energy efficiency. For χ > χmxN , we have

ηc =
log2

(
1 + hNP

mx
N + hN−1PN−1 − χ

)
P 1
c + Pmx

N + PN−1 − χ
, (G.6)

and following the same procedure as in the previous cases, the transmitted power level from

node N − 1 becomes

P ∗N−1 =
eW
(
hN−1b1−a1

e

)
+1 − a1

hN−1

(G.7)

where a1 = 1 + hNP
mx
N − χ and b1 = P 1

c + Pmx
N − χ. Mathematically, P ∗N−1 can take any

value, but note that it is feasible only for P ∗N−1 ≥ 0. Hence, the maximum demand at which

node N−1 is still silent can be computed by substituting P ∗N−1 = 0 in (G.7), and this results

in

W
(cN−1 + dN−1χ

e

)∣∣∣∣
χ=χmnN−1

+ 1 = ln
(
1 + hNP

mx
N − χ

)∣∣∣∣
χ=χmnN−1

(G.8)

where cN−1 = hN−1Pc +
(
hN−1 − hN

)
Pmx
N − 1 and dN−1 = 1− hN−1. Therefore, for χmnN−1 >

χ > χmxN the optimal strategy dictates node N − 1 to be silent while node N transmits at

its peak. Beyond this threshold, node N − 1 operates based on (G.7) until P ∗N−1 = Pmx
N−1. In
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general, for node N − k, its transmitted signal power level is determined as follows:

P ∗N−k =
eW
(
hN−kbk−ak

e

)
+1 − ak

hN−k
(G.9)

where ak = 1+
∑N

j=k hjP
mx
j −χ and bk = P k

c +
∑N

j=k P
mx
j −χ. Correspondingly, the minimum

and maximum demand, i.e., χmnk and χmxk , for which node k operates within the boundaries

can be obtained by substituting P ∗N−k = 0 and P ∗N−k = Pmx
N−k into (G.9) and solving for χ.

224



Appendix H

Proof of Proposition 5.1.1

Applying second-order derivative criterion to the instantaneous service rate of user i, we get

ln(2)
∂Ri(τB)

∂τB
= − ln

(
1 +

aiτB
(1− τB) + τBa∗

)
+ (1− τB)

ai(
1 + τB(ai + a∗ − 1)

)(
1− τB + a∗τB

)
ln(2)

∂2Ri(τB)

∂τ 2
B

= −


(

1− τB
)(

2aia∗ + a2
i

)
+ 2aia∗τB

(
a∗ + ai

)
(

1− τB + a∗τB

)2(
1− τB + aiτB + a∗τB

)2

 .
(H.1)

Hence, it can be inferred from (H.1) that ∂2Ri
∂τ2
B

< 0 for all τB ∈ (0, 1), and hence the

instantaneous service rate is concave in the domain set. This completes the proof.
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Appendix I

Proof of Proposition 5.1.2

First, let us consider that the downlink and uplink operating intervals, i.e., τB, τ1, · · · , τN ,

are non-overlapping. Let Hi denote the Hessian of Ri(τB, τ i) with respect to τB and τi where

i ∈ S. Thus, the diagonal and off-diagonal entries given in [56] are modified as:

d(i)
m,m =



− aimτi

(τi + aiBτB +
∑i−1

j=1 ajτj)
2
, m < i

−
(aiBτB +

∑i−1
j=1 ajτj)

2

τi(τi + aiBτB +
∑i−1

j=1 ajτj)
2
, m = i

0 otherwise

(I.1)

d(i)
m,n =



− aima
i
nτi

(τi + aiBτB +
∑i−1

j=1 ajτj)
2
, m < i and n < i

am(aiBτB +
∑i−1

j=1 ajτj)

(τi + aiBτB +
∑i−1

j=1 ajτj)
2
, m < i and n = i

0 otherwise

(I.2)

Hence, for every non-zero column vector denoted by z = [z1, z2, · · · , zi−1]T , we have

zTHiz = − 1

τi(τi + βi)2

(
τi

i−1∑
m=1

zmam − ziβi
)2

≤ 0 (I.3)
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where βi = aiBτB +
∑i−1

j=1 ajτj. This shows that Hi is a negative semi-definite matrix, and

hence based on Theorem 21.5 given in [97], Ri(τ i) is a concave function of operation intervals,

and this completes the proof.
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Appendix J

Proof of Theorem 5.2.1

First, let hi(τB) = (1− τB) log
(

1 +
aki τB

1+
(
ak∗−1

)
τB

)
and Hi(τB) = − 1

θi
log
(
E{e−θihi(τB)}

)
where

θi’s are assumed to be known. Earlier from (U.1), we observed that hi(τB) is concave or

−hi(τB) is convex in the domain set. Applying the second-order derivative criterion to

hi(τB), we get

ln(2)
∂h(τB)

∂τB
= − log

(
1 +

aiτB
(1− τB) + τBa∗

)
+ (1− τB)

ai(
1 + τB(ai + a∗ − 1)

)(
1− τB + a∗τB

)
ln(2)

∂2h(τB)

∂τ 2
B

= −


(

1− τB
)(

2aia∗ + a2
i

)
+ 2aia∗τB

(
a∗ + ai

)
(

1− τB + a∗τB

)2(
1− τB + aiτB + a∗τB

)2

 .
(J.1)

It can be inferred from (U.1) that ∂2hi(τB)

∂τ2
B

< 0 for all τB ∈ (0, 1), and hence hi(τB) is

concave or −hi(τB) is convex in the domain set. This implies that e−h(τB) is log-convex,

and E{e−h(τB)} is log-convex as well, as log-convexity is preserved under sums. Noting that

log(g(·)) is convex for log-convex g(·) [98], clearly H(τB) is a concave function of τB for

0 < τB < 1. Meanwhile, the sum effective capacity can be re-written as

Ce(τB) =
Hsm(τB)

T
(J.2)
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where Hsm =
∑2

i=1Hi(τB, θi). Since convexity/concavity is preserved under sums, it is

obvious that Hsm is also a concave function. Thus, Ce(τB), is a concave function. Theorem

5.2.1 is then proved.
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Appendix K

Proof of Proposition 5.2.1

First, the Lagrangian of (PR:5.1) is

L = − 1

Tθ1

log
(
E
{
e−θ1R1

})
+ λ(τB(1− τB)). (K.1)

Since the problem is convex, KKT conditions are necessary and sufficient for optimality, and

they are given as

∂L
∂τB

= 0 (K.2a)

λ∗(τ ∗B − τ ∗B
2) = 0. (K.2b)

In regard to the complementary slackness condition given in (K.2b), we have λ∗ 6= 0 provided

τ ∗ = 0 or τ ∗ = 1. However, in both cases it is not possible to transfer a single bit of

information. Hence, the optimal solution lies 0 < τ ∗B < 1, and this implies λ∗ = 0. Thus, we

have

e−θ1R1

TE{e−θ1R1}
∂R1

∂τB
= 0 (K.3)
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which leads to

ln
(

1 +
a1τB

1− τB

)
− a1

1− τB + a1τB
= 0. (K.4)

After several manipulations, we get

eln(ω
e

) ln
(ω
e

)
=
A

e
(K.5)

where A = a1 − 1 and ω = 1 + a1τB
1−τB

. The above equation has the form of XeX = Y whose

solution is given by the Lambert function, i.e., X = W(Y ) for Y ≥ −1
e
. Thus, the solution

to (K.5) can be analytically expressed as

z∗ =

eW
(
A
e

)
+1, A ≥ −1 (K.6a)

eW−1

(
A
e

)
+1 −1 ≤ A ≤ 0. (K.6b)

Hence, the optimal harvesting time interval during kth fading state is determined by

τ ∗B =
z∗ − 1

z∗ − 1 + a1

. (K.7)

Accordingly, τ ∗B has two mathematical solutions when −1 ≤ Γ ≤ 0, but only one of them is

the solution as will be noted later. Using the fact that τB is neither negative nor zero, i.e.,

τB > 0, we have

z∗ > 1 (K.8)

Substituting (K.6a) and (K.6b) into (K.8), it results

W
(
A

e

)
> −1 (K.9a)

W−1

(
A

e

)
> −1 (K.9b)
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Nevertheless, (K.9a) cannot be satisfied with strict inequality as W−1(A/e) < −1 for −1 <

A < 0, whereas (K.9b) is always feasible based on its definition. Therefore, the solution

becomes

z∗ = eW(A
e

)+1. (K.10)

The harvesting interval is independent of the exponential decay component, and this com-

pletes the proof.
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Appendix L

Proof of Proposition 5.2.2

Knowing that service rates of wireless-powered users are concave function of operating in-

tervals for TDMA scheme as stated in Section II, we claim that each user effective capacity,

and the total throughput, preserves concavity for the same argument given in the proof of

Theorem 5.2.1.
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Appendix M

Proof of Lemma 6.1.1

Assuming that f(x) and g(y) are convex function, their sum h(x, y) = f(x) + g(y) will be

convex if

h(λx1 + (1− λ)x2, λy1 + (1− λ)y2) ≤ λh(x1, y1) + (1− λ)h(x2, y2). (M.1)

In order to compare, let us simplify the LHS and RHS as follow:

h(λx1 + (1− λ)x2, λy1 + (1− λ)y2) = f(λx1 + (1− λ)x2) + g(λy1 + (1− λ)y2) (M.2)

λh(x1, y1) + (1− λ)h(x2, y2) = λf(x1) + (1− λ)f(x2) + λg(y1) + (1− λ)g(y2) (M.3)

which leads to

f(λx1 + (1− λ)x2) + g(λy1 + (1− λ)y2) ≤ λf(x1) + (1− λ)f(x2) + λg(y1) + (1− λ)g(y2)

f∆ + g∆ ≤ 0

(M.4)

where f∆ = f(λx1 +(1−λ)x2)−λf(x1)+(1−λ)f(x2) and g∆ = g(λy1 +(1−λ)y2)−λg(y1)+

(1 − λ)g(y2). Based on the fact that f(x) and g(y) are convex, we claim that f∆ ≤ 0 and

g∆ ≤ 0. Therefore, f∆ + g∆ ≤ 0 which guarantees that g(x, y) is convex.
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Appendix N

Proof of Proposition 6.1.1

First of all, it is obvious that f(σ2) is an affine function of σ2
i , and hence it is convex/concave.

Then, let g(Φ) =
∑N

i=1 hi(Φi) where hi = ziΦ
2
i +αiφi+Ci and Ci = C

N
. Here also, we can see

that hi is a quadratic function, and hence it is convex since zi > 0. According to Lemma 6.1.1,

g(Φ) is also a convex function of Φ1,Φ2, · · · ,ΦN . Therefore, again Lemma 6.1.1 guarantees

that the harvested energy function Ehv is also jointly convex since both f(σ2) and g(Φ) are

convex.
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Appendix O

Proof of Proposition 6.3.1

First, let us express η
EE

= q(·)
p(·) . According to Proposition 2.9 stated in [93], ηEE is a

pseudo-concave provided that q(·) and p(·) are concave and convex, respectively. In addition,

both should be differentiable, and non-negative. In this case, it is obvious that q(σ2) =

log2

(
1 + rσ2

)
is a concave function as ∂2q(·)

∂(σ2)2 ≤ 0. Meanwhile, the denominator can be

equivalently expressed as p(σ2, φ) = Pk + σ2 + φ2 where Pk = Pc + PA − χ is a constant for

a given harvested energy demand. In order to check convexity, we determine the Hessian

matrix

M =

 M11 M12

M21 M22

 .
for which we have

MT∇2p(·)M = 2M2
22 ≥ 0 (O.1)

This implies p(·) is a convex function. Hence, η
EE

is a pseudo-concave function.
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Appendix P

Proof of Corollary 6.3.1

Substituting γ = 0 and φ = 0 into (6.17), we have

hd
ln(2)

(1 + hdσ2)(K + σ2)
− log2(1 + hdσ

2)

(K + σ2)2
+ λ = 0. (P.1)

Based on the slackness conditions given in (6.16b), we know that λ 6= 0 only when σ2 = P pk.

Otherwise, λ = 0 and (P.1) is simplified as

hd(K + σ2) = (1 + hdσ
2) ln(1 + hdσ

2)

Ω = z ln(z)− z
(P.2)

where Ω = hdK − 1 and z = 1 + hdσ
2. The above equation has the form of XeX = Y whose

solution is given by the Lambert function, i.e., X =W(Y ) for Y ≥ −1
e
. After several steps,

the solution becomes

z∗ = eW(Ω
e )+1. (P.3)

Therefore,

σ2 =
z∗ − 1

hd
. (P.4)
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Appendix Q

Proof of Proposition 7.2.1

When the interference signals from energy harvesting UEs are assumed to be insignificant

compared with the thermal noise, the signal-to-noise (SNR) coverage probability becomes

Pr
c

=

∫ ∞
0

e−lG(τB)fr(r)dr (Q.1)

where G(τB) = 1−τB
τB

and l = γTµσ
2rα

a0
. Applying the first order derivative to G(τB), we get

− 1
τ2
B

, and this shows that G is a decreasing function of τB ∈ [0, 1]. Since exponential functions

are monotonic, we immediately observe that e−lG is an increasing function. Furthermore,

noting that e−lG is monotonically increasing function and integration preserves monotonicity

for nonnegative measurable functions [99], we have, Prc is an increasing function of τB.
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Appendix R

Proof of Proposition 8.2.1

The expression given in (8.13) can be re-written as

Ri(τ0) = (1− τ0) log2

(
1 +

αiτ0

1 + ωiτ0

)
(R.1)

where ωi = −1 +
∑N

j=i+1 αj. Hence, applying the second order derivative criteria to (R.1),

we have

∂2Ri(τ0)

∂τ 2
0

=−αi
[
αi((2ωi + 1)τ0 + 1) + 2(ωi + 1)(ωiτ0 + 1)

(ωiτ0)2(αiτ0 + ωiτ0 + 1)2

]
(R.2)

Knowing ωi ≥ −1 and 0 < τ0 < 1, it is obvious that (2ωi + 1)τ0 ≤ 1 if ωi < 0, otherwise

(2ωi + 1)τ0 > 1. This guarantees ∂2Ri(τ0)

∂τ2
0

< 0 for any αi 6= 0, and hence Ri is a concave

function.
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Appendix S

Proof of Proposition 8.2.1

Proof : Since the system EE in (8.15) is a fractional function, it will satisfy pseudo-concavity

according to Proposition 2.9 stated in [93] if the numerator is concave and denominator is

convex. In this case, the denominator is an affine function, and hence we only need to show

that the throughput, i.e., the numerator, is concave with respect to τ0. Using the fact that

concavity is preserved under summation and Ri(τ0) is a concave function of τ0 based on

Lemma 1, we conclude that Rsum, i.e., the throughput, is concave as well.
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Appendix T

Proof of Proposition 8.2.2

For the case of two users, we have τ1 and τ2, and hence we show that the throughput in each

interval is jointly concave with respect to the opeating intervals:

(i) During τ1: In this case, only UE 1 transmits information uplink to the access point, i.e.,

R1
sum = τ1 log2

(
a1 +

b1

τ1 + τ2

)
. (T.1)

Let Fi denote the Hessian matrix of Ri
sum with respect to τ1 and τ2. Then, applying the

second-order derivatives, we get

F 1
11 =

∂2R1
sum

∂τ 2
1

= −b1(2a1τ2(τ2 + τ1)) + b1(2τ2 + τ1)

(τ1 + τ2)2(a1(τ1 + τ2) + b1)2

F 1
22 =

∂2R1
sum

∂τ 2
2

=
b1τ1(2a1(τ2 + τ1)) + b1

(τ1 + τ2)2(a1(τ1 + τ2) + b1)2

F 1
12 =

∂2R1
sum

∂τ1∂τ2

= −b1(a1(τ2 − τ1)(τ2 + τ1) + b1τ2)

(τ1 + τ2)2(a1(τ1 + τ2) + b1)2
.

(T.2)

Since F 1
11F

1
22 − (F 1

12)2 ≤ 0, the Hessian F is a negative semi-definite matrix. Based on

Theorem 21.5 given in [97], R1
sum is a jointly concave function of τ1 and τ2.

(ii) During τ2: Here, both UE 1 and UE 2 are transmitting, and the corresponding achievable
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sum-rate capacity is given as

R2
sum = τ2 log2

(
a2 +

b1

τ1 + τ2

+
b2

τ2

)
, (T.3)

and applying the second order derivative, we get

F 2
11 =

∂2R2
sum

∂τ 2
1

=
2b1(τ1 + τ2)(a2 + b2

τ2
) + b2

1

(τ1 + τ2)4(a2 + b1
τ1+τ2

+ b2
τ2

)2

F 2
22 =

∂2R2
sum

∂τ 2
2

= −
2b1y

(τ1+τ2)3

a2 + b1
τ1+τ2

+ b2
τ2

−
τ1(− b2

τ2
2
− b1

(τ1+τ2)2 )2

(a2 + b1
τ1+τ2

+ b2
τ2

)2

F 2
12 =

∂2R2
sum

∂τ1∂τ2

= −
b1τ2(a2τ2(τ1 − τ2) + τ1(2b2 + b1

τ2
τ1+τ2

))

(τ1 + τ2)3(τ2(a2 + b1
τ1+τ2

) + b2)2
.

(T.4)

It is obvious that F 2
11F

2
22 − (F 2

12)2 ≤ 0 and hence R2
sum is also a jointly concave function of

the operating intervals using a similar argument as stated above.
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Appendix U

Proof of Proposition 8.3.1

First, let hi(τB) = (1− τB) log2

(
1 + aiτB

1+
(
a∗−1

)
τB

)
and Hi(τB) = − 1

θi
log
(
E{e−θihi(τB)}

)
where

θi’s are assumed to be known. Applying the second-order derivative criterion to hi(τB), we

get

ln(2)
∂h(τB)

∂τB
= − log

(
1 +

aiτB
(1− τB) + τBa∗

)
+ (1− τB)

ai(
1 + τB(ai + a∗ − 1)

)(
1− τB + a∗τB

)
ln(2)

∂2h(τB)

∂τ 2
B

= −


(

1− τB
)(

2aia∗ + a2
i

)
+ 2aia∗τB

(
a∗ + ai

)
(

1− τB + a∗τB

)2(
1− τB + aiτB + a∗τB

)2


(U.1)

, and it can be inferred from (U.1) that ∂2hi(τB)

∂τ2
B

< 0 for all τB ∈ (0, 1), and hence hi(τB)

is concave or −hi(τB) is convex in the domain set. This implies that e−h(τB) is log-convex,

and E{e−h(τB)} is log-convex as well, as log-convexity is preserved under sums. Noting that

log(g(·)) is convex for log-convex g(·) [98], clearly H(τB) is a concave function of τB for

0 < τB < 1. Meanwhile, the sum effective capacity can be re-written as

Ce(τB) =
Hsm(τB)

T
(U.2)
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where Hsm =
∑N

i=1Hi(τB, θi). Since convexity/concavity is preserved under sums, it is

obvious that Hsm is also a concave function. Thus, Ce(τB), is a concave function, completing

the proof.
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