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ABSTRACT

In this dissertation we study gravitational-wave data analysis techniques for binary

neutron star and black hole mergers. During its first observing run, the Advanced

Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) reported the

first, direct observations of gravitational waves from two binary black hole mergers.

We present the results from the search for binary black hole mergers which unambigu-

ously detected the binary black hole mergers. We determine the effect of calibration

errors on the detection statistic of the search. Since the search is not designed to pre-

cisely measure the astrophysical parameters of the binary neutron star and black hole

mergers, we use Bayesian methods to develop a new parameter estimation analysis.

We demonstrate the performance of the analysis on the binary black hole mergers

detected during Advanced LIGO’s first observing run. We use the parameter estima-

tion analysis to assess the ability of gravitational-wave observatories to observe a gap

in the black hole mass distribution between 52 M� and 133 M� due to pair-instability

supernovae. Finally, we use simulated signals added to the Advanced LIGO detec-

tors to validate the search and parameter estimation analyses used to publish the

detection of the astrophysical events.
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Chapter 1

Introduction

1.1 Gravitational waves and binary black hole mergers

In 1915, Albert Einstein published the theory of General Relativity, a geometric

description of gravitation that generalizes Newtonian mechanics and special relativity.

One year later, Einstein predicted the existence of gravitational waves [9, 10] which

are wave solutions to the linearized Einstein field equations. These solutions imply

that as a gravitational wave passes it changes the distance between free falling objects.

Einstein realized that the amplitude of gravitational waves would be too small to be

detected by contemporary experiments. The very existence of gravitational waves

was debated for several decades as it was thought that they may be an unphysical

effect of changing coordinates. Einstein began to accept that gravitational waves are

real in 1936 [11], but it was not until 1957 at the Chapel Hill conference that the

existence of gravitational waves became widely accepted [12, 13].

The amplitude of gravitational waves is small and the most promising observable

sources are of astrophysical origin which produce fractional changes in length less

than 10−21. Massive objects moving at relativistic velocities can generate detectable

gravitational waves; examples include binary neutron star and black holes mergers.

There are several proposed channels of stellar evolution that allow black holes to

form binaries and coalesce within the Hubble time. These formation channels in-

clude classical isolated binary evolution in low-metallicity environments [14, 15, 16],

dynamical formation in dense stellar environments [17, 18, 19, 20, 21], homogenous

chemical evolution in rapidly rotating binaries [22, 23, 24], and binaries of Population
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III stars [25, 26]. Binary neutron star and black holes lose energy through gravita-

tional waves which causes the two compact-objects to spiral in towards each other.

At the merger, the component masses in a binary neutron star and black hole mergers

will reach relativistic velocities and their mass will be converted into gravitational en-

ergy and travel outward as gravitational waves [27]. After the merger, the final black

hole oscillates, still emitting gravitational waves, before settling down to a stationary

Kerr black hole.

Advances in waveform modeling over the last century have provided accurate

models of the gravitational waveforms radiated by binary neutron star and black hole

mergers. In 1916, Karl Schwarzschild published a solution of the field equations [28]

for the geometry of spacetime around an uncharged, spherically-symmetric, and non-

rotating body. This solution was later understood to describe a black hole [29, 30].

In 1963, Roy Kerr generalized Schwarzschild’s solution to describe rotating black

holes [31], and Phillip Peters and Jon Matthews used the Einstein quadrupole for-

mula to determine the gravitational wave emission from stars in Keplerian orbits [32].

Quasinormal modes [33, 34, 35] were later used to model the ringdown of the final re-

sultant black hole. Further studies of higher-order post-Newtonian calculations [36],

analytical studies of relativistic two-body dynamics [37, 38], and advances in numer-

ical relativity [39, 40, 41] led to the waveform models [42, 43, 44, 45] used in the

search [46] and parameter estimation [47] of binary black hole mergers.

In 1975, Russell Hulse and Joseph Taylor [48] found PSR-B1913+16 which is a

binary neutron star where one of the neutron stars emits a collimated electromagnetic

jet that aligns with the line of sight with Earth. Subsequent observations of its

energy loss by Taylor and Joel Weisberg [49] provided compelling evidence for the

the existence of gravitational waves. Taylor and Weisberg showed that the decay of

the binary’s orbital period matches the expected orbital decay due to energy loss from

the emission of gravitational waves.

Binary black hole mergers had not been observed prior to September 14, 2015;

however, several black hole candidates in binaries with ordinary stars (main sequence

stars, white dwarfs, or evolved main sequence stars) have been identified through

X-ray observations [50, 51, 52].
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1.2 Advanced LIGO

The first experiments designed to detect gravitational waves began in the 1960s us-

ing resonant mass detectors [53] and an international network of cryogenic resonant

mass detectors was constructed [54]. In 1956, Felix Pirani suggested gravitational

waves are observable if you compare the spacetime positions of nearby masses with

light [55], and interferometric detectors were suggested in the 1960s [56] and the

1970s [57]. Interferometric detectors showed potential for higher sensitivity to gravi-

tational waves than resonant mass detectors [58] which led to proposals for a network

of interferometric gravitational-wave detectors [59, 60, 61, 62].

Construction of the first-generation interferometric gravitational-wave detectors

began in the 1990s including TAMA 300 [63], GEO 600 [64], the Laser Interferometer

Gravitational-Wave Observatory (Initial LIGO) [65], and Virgo [66]. Initial LIGO

was a network of two interferometric gravitational-wave detectors located in Hanford,

WA, and Livingston, LA [65]. Initial LIGO and Virgo conducted joint observing

runs from 2002 to 2010 which set an upper limit on the rate of binary black hole

mergers [67, 68, 69, 70, 71].

In September 2015, the Advanced Laser Interferometer Gravitational-Wave Obser-

vatory (Advanced LIGO) began observing after a major upgrade targeting a tenfold

improvement in sensitivity over the initial LIGO detectors [72]. The detectors were

not operating at design sensitivity. However, both detectors reached an instrument

noise 3-4 times lower than the Initial LIGO detectors in their most sensitive fre-

quency band between 100 Hz and 300 Hz, and several orders of magnitude at lower

frequencies [73].

A schematic of one of the Advanced LIGO observatories [74] is shown in Figure 1.

A beam of light from a laser is passed through electro-optic modulators which intro-

duce radio-frequency sidebands a into the beam’s optical field. The beam then passes

through the input mode cleaner which rejects higher-order optical modes of the beam;

only the TEM00 mode which has a Gaussian intensity profile is transmitted. Then,

the beam is transmitted through the power recycling mirror, is split by a beamsplitter,

and is directed down the two 4 km arms of the interferometer. Half of the light from

the beam is directed toward one input test mass and half of the light from the beam

is directed toward the other input test mass. Gravitational waves cause differential
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Figure 1 : A schematic of the layout of an Advanced Laser Interferometer Gravitational-Wave

Observatory (Advanced LIGO) detector from Ref. [1].

changes in the length of the arm cavities which results in a difference in the path a

beam travels in each arm. This causes a phase difference between the beams in the

two arms which introduces two sidebands offset from the laser’s carrier frequency. If

there is a gravitational wave signal in the recombined beam, then a small amount

of light is directed toward and transmitted through the signal recycling cavity. The

output mode cleaner removes higher-order optical modes, isolates the TEM00 mode,

and removes the radio-frequency sidebands. The gravitational wave sidebands have

a low frequency offset from the laser frequency such that they are allowed to trans-

mit through the output mode cleaner. The signal transmitted from the output mode

cleaner is read out on a photodiode. The photodiode measures power, and therefore it

witnesses the beat frequencies between the beam optical field and gravitational-wave

sideband. The power measured from the photodiode is used as the gravitational-wave

readout port.
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1.3 Advanced LIGO’s first observing run

Advanced LIGO’s first observing run began on September 12, 2015, and concluded

on January 19, 2016. During the first observing run, the detectors were sensitive to

gravitational waves over a range of frequencies from 30 Hz up to several kHz [73]. This

frequency band covers the frequencies of gravitational waves emitted during the late

inspiral, merger, and ringdown of binary neutron star and stellar-mass binary black

hole mergers. Advanced LIGO observed two binary black hole mergers (GW150914

and GW151226) and a detection candidate (LVT151012) in its first observing run [74,

75].

The PyCBC search unambiguously identified the two binary black hole mergers

and the candidate event [76, 77] in Advanced LIGO’s first observing run. This search

uses matched filtering which correlates the data from each detector with a bank of

template waveforms that model the gravitational waves generated from binary neu-

tron star and black hole mergers [46]. The first event, called GW150914, was observed

on September 14, 2015, at 09:50:45 UTC [76], and the second event, called GW151226,

was observed on December 26, 2015, at 03:38:53 UTC [77]. Both of these signals were

observed with a statistical significance greater than 5 σ. A third candidate event

called LVT151012 is consistent with a binary black hole merger. LVT151012 was

observed on October 12, 2015, at 09:54:43 UTC with a significance .2 σ [76]. Al-

though LVT151012 is not significant enough to claim an unambiguous detection, an

analysis to constrain the rate of binary black hole mergers in the Universe found the

probability that LVT151012 is of astrophysical origin is 87% [2, 78].

Advanced LIGO’s searches for binary black hole mergers are designed to identify

astrophysical signals with high significance; however they are not designed to provide

measurements of the parameters of the detected sources. For example, the template

bank [79] is discretized which results in a sub-optimal measurement of the masses and

spins. The astrophysical parameters from a binary black hole may lie between points

in the discretized template bank and not directly at one of the points in the bank.

In this case, we lose a fraction of signal-to-noise ratio; however, we construct our

templates banks such that there is enough overlap between the astrophysical signal

and nearby points in the template bank to limit the loss to <3% [80, 81, 82, 83].

Therefore, follow-up analyses that use Bayesian inference methods must be used to
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estimate the astrophysical parameters of binary black hole mergers after the search

has identified a candidate event [84, 75, 47]. This Bayesian framework makes it

possible to construct an estimate of the posterior probability density functions of

astrophysical parameters that describe a given model.

The Advanced LIGO detectors’ noise budget is comprised of fundamental noise,

technical noise, and environmental noise. Fundamental noise such as thermal noise or

quantum noise determine the ultimate sensitivity of the detector [85, 86]. Technical

noise sources include the electronics and feedback loops used to control the position

of the test masses [85]. Examples of environmental noise include seismic motion

or magnetic fields [85, 87]. In the left panel of Fig. 2, for both detectors we show

the amplitude spectral density
√
S(f) of the total strain noise calibrated in units

of strain per
√

Hz [3] for a typical time during Advanced LIGO’s first observing

run. Overlaid on the noise curves of the detectors are the waveforms of GW150914,

GW151226, and LVT151012. Since the amplitude of the majority of gravitational-

wave sources will be comparable to the noise background [88], and compact-objects

can be modeled, then it is natural to use matched filtering to distinguish signals from

the noise background [89]. The expected matched-filter signal-to-noise ratio ρ of a

signal h(t) in a detector can be expressed as [2]

ρ2 =

∫ ∞
0

(
2|h̃(f)|√f

)2

Sn(f)
d ln(f) , (1.1)

where h̃(f) is the Fourier transform of the signal. Writing it in this form motivates

the normalization of the waveform plotted in Fig. 2, where the area between the signal

and noise curves is indicative of the matched-filter signal-to-noise ratio of the events.

The gravitational-wave signal from a binary black hole merger has a characteris-

tic “chirp” time-frequency evolution that increases in frequency and amplitude as the

black holes spiral inwards. The corresponding time series of GW150914, GW151226,

and LVT151012 are plotted in the right panel of Fig. 2 to visualize the difference

in duration of the signals in the Advanced LIGO frequency band, as well as their

amplitude measured in strain in the left panel. The amplitude of the signal is maxi-

mum at the merger, after which it decays rapidly as the final black hole rings down

to equilibrium. In the frequency domain, the amplitude decreases with frequency

during inspiral, as the signal spends a greater number of cycles at lower frequencies.
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Figure 2 : The left panel shows the amplitude spectral densities
√
S(f) of the total strain noise in

units of strain per
√

Hz, and the recovered signals of GW150914, GW151226, and LVT51012. The

relative amplitudes can be related to the matched-filter signal-to-noise ratio of the signal. The right

panel shows the 90% credible regions of the LIGO Hanford signal reconstructions from a coherent

Bayesian analysis using a non-precessing spin waveform model [2].

This is followed by a slower falloff during merger and then a steep decrease during

the ringdown. The amplitude of GW150914 is significantly larger than the other two

events, and at the time of the merger, the gravitational-wave signal lies well above

the noise. GW151226 has a lower amplitude but sweeps across the entire frequency

band up to nearly 800 Hz as shown in Fig. 2. GW150914 lasts only a few cycles,

while LVT151012 and GW151226 have lower amplitudes but persist in the Advanced

LIGO band longer.
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Chapter 2

The detection of binary black hole

mergers in Advanced LIGO’s first

observing run

2.1 Introduction

The purpose of the PyCBC search [79, 46, 90] is to identify gravitational-wave sig-

nals from binary neutron star and black hole mergers and measure the statistical

significance of candidate events [46]. We expect the amplitude of the majority of

gravitational-wave sources is comparable to the noise background [88], therefore sig-

nal processing techniques are required to identify candidate events. Even for loud

sources, the statistical significance of candidate detections must be empirically mea-

sured since there it is not possible to shield the detectors from gravitational waves

and no theoretical model of the detector noise exists. Even if it were possible to shield

the detectors from gravitational-wave sources and accumulate a distribution of noise,

then the observations of background time would need to be split with the time ob-

serving astrophysical sources. In addition, we would need to block gravitational-wave

signals from the detector and observe for 5.0× 106 years in order to obtain the same

limit on the false-alarm rate reported in the search here. Therefore, we measure the

distribution of noise events in the search for assigning the statistical significance of

candidate events.

We present the details and results of the PyCBC search for stellar-mass binary
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black hole mergers. Section 2.2 describes how the search identifies candidate events

and Sec. 2.3 describes the parameter space that was searched during Advanced LIGO’s

first observing run. Sections 2.4 and 2.5 explain the additional steps that are taken

to mitigate the impact of noise transients on the significance of candidate events.

We explain how the search assesses the statistical significance of candidate events

in Sec. 2.6. In Sec. 2.7 we provide an overview of the Advanced LIGO detectors

during their first observing run, as well as the data used for the search. Section 2.8

presents the results from the PyCBC search for binary black hole mergers in Advanced

LIGO’s first observing run. Details of the two gravitational-wave events GW150914

and GW151226, and the candidate event LVT151012 are discussed in Sec. 2.8. Finally,

we summarize the results of the search for binary black hole mergers in Sec. 6.5.

2.2 Matched filter

Since the parameters of astrophysical signals are not known in advance, each detec-

tor’s gravitational-wave strain time series is correlated with a discrete bank of binary

black hole merger waveforms [46]; the construction of this template bank is described

in Sec. 2.3. Numerical and analytical waveform modeling [91, 92, 38, 42, 43] provides

accurate models of the waveforms from binary black hole mergers. These waveforms

depend sensitively on the astrophysical parameters of the binary black hole merger

such as the masses and spins of the black holes.

The correlation operation is referred to as match filtering. In match filtering, the

data and waveform are correlated in the frequency domain and the product is weighted

by the noise in the detector. The matched filter is the optimal linear filter for the

detection of a known waveform in stationary, Gaussian noise [93]. The matched-

filter signal-to-noise ratio (SNR) ρ(t) for each waveform and each detector’s data as

a function of time is calculated according to [94]

ρ2(t) =
[
〈s(t)|hc(t)〉2 (t) + 〈s(t)|hs(t)〉2 (t)

]
, (2.1)

where the correlation is defined by

〈s(t)|h(t)〉 (t) = 4<
∫ ∞

0

s̃(f)h̃∗(f)

Sn(f)
e2πiftdf , (2.2)

and where hc(t) and hs(t) are the normalized orthogonal sine and cosine parts of

the template waveform. s(t) is the gravitational-wave strain from the detector and
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s̃(f) is used to denote the Fourier transform of the time domain quantity s(t). Here,

Sn(f) denotes the one-sided average power spectral density of the detector noise. The

waveform components hc(t) and hs(t) are normalized such that the expected value of

〈s(t)|hi(t)〉2 (t) = 1 in stationary, Gaussian noise [95].

A local maximum in the ρ(t) time series which exceeds a matched-filter SNR

threshold of 5.5 is called a trigger. Triggers may be caused by astrophysical signals or

noise in the data, and there may be several points in the ρ(t) time series that exceed

the threshold value. However, the ρ(t) time series from a real signal in Gaussian noise

would have a single narrow peak. Therefore a maximum of one trigger is stored in

each 1 s window of the matched-filter SNR time series. The threshold and window size

were chosen to limit the number of triggers stored from noise transients, while also

making sure that no detectable binary black hole mergers are excluded. In addition

to the time of the trigger, we store the parameters of the template waveform and

the result from the signal consistency test that helps distinguish astrophysical signals

from noise transients; the signal consistency test is described in Sec. 2.5.

2.3 Template bank

Each template waveform in the bank is characterized by the masses and spins of

the two black holes. In the post-Newtonian expansion, at leading order the phase

evolution during the inspiral depends on the chirp massM of the binary [32, 27, 96]

M≡ (m1m2)3/5

(m1 +m2)1/5
, (2.3)

where m1 and m2 are the masses of the two compact-objects. At subsequent orders

in the post-Newtonian expansion, the phase evolution depends predominately on the

asymmetric mass ratio [97]

η =
m1m2

(m1 +m2)2
, (2.4)

and the effective spin [98, 99, 100, 101, 102, 103]

χeff =
m1χ1 +m2χ2

m1 +m2

, (2.5)

where χi is the component of the black hole’s angular momentum aligned with the

direction of the orbital angular momentum, ~L, of the binary which is given by [47, 84]

χi =
c

Gm2
i

~Si · L̂ . (2.6)
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Here, ~Si is the spin of the black hole where i = {1, 2}, c is the speed of light, and G is

the gravitational constant. We restrict this template bank to circular binaries since

the loss in energy and angular momentum from gravitational waves will circularize the

orbit by the time the binaries enter the Advanced LIGO frequency band [27]. We use

template waveforms where the spin of each black hole is aligned (or anti-aligned) with

the orbital angular momentum of the binary. These waveforms can recover systems

with spins misaligned with the angular momentum of the binary, which will exhibit

orbital precession, with good sensitivity over much of the parameter space [104]. In

principle, black hole spins can lie anywhere in the range from χi = −1 (maximal and

anti-aligned) to χi = 1 (maximal and aligned); however, in practice, waveform models

do not produce valid waveforms for all spins.

The choice of parameters for the templates depends on the shape of the power

spectrum of the detector noise [46]. The average noise power spectral density of the

Advanced LIGO detectors was measured over the period September 12 to September

26, 2015. The harmonic mean of these noise spectra from the two detectors was used

to place a single template bank that was employed for the duration of Advanced

LIGO’s first observing run [46]. The templates are placed using a combination of

geometric and stochastic methods [80, 81, 82, 83] such that the loss in matched-filter

SNR caused by the discrete nature of the template bank is <3%.

The template bank used in Advanced LIGO’s first observing run includes template

waveforms with individual masses from 1 M� to 99 M� and a total mass less than

100 M�. The template bank assumes that the spins of the two compact objects are

aligned with the orbital angular momentum. We limit the spin magnitude to less

than 0.9895 which is the region over which the reduced-order SEOBNRv2 waveform

model [42, 43] used in the search is able to generate valid template waveforms. This

waveform model includes the inspiral, merger, and ringdown of gravitational-waves

emitted from aligned (or anti-aligned) binary black holes using the effective-one body

approach [38]. The 249,077 template waveforms used to cover the parameter space

in Advanced LIGO’s first observing run are shown in Fig. 3.

The template bank does include template waveforms for binary neutron star and

neutron star-black hole mergers. Results from the searches for binary neutron star

and neutron star-black hole mergers obtained with the PyCBC search are reported

in Ref. [105] and are not discussed here.
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2.4 Data conditioning

The PyCBC search includes a data conditioning step prior to correlating the data

from each detector with the template bank. The gravitational-wave strain time series

is high-pass filtered such that the frequency content below 30 Hz is suppressed. In

addition, loud and short instrumental transients are excised from the data by apply-

ing an inverse-Tukey window function that smoothly transitions the time series to

zero [46]. This is different than detector characterization and data quality studies

which identify noise transients and poor quality data prior to beginning the match

filtering analysis. The data removed from detector characterization is discussed in

Section 2.7.

Here, we describe how noise transients are identified in the data conditioning

step. An initial identification of large excursions in the gravitational-wave strain

time series are identified by whitening the time series and comparing the magnitude

of each sample against a threshold value. The procedure was tuned by modifying

the threshold value and adjusting the width of the window function to remove data

around each transient. Samples within a time window of ±0.5 s are clustered together,

then for every sample with a whitened strain time series value greater than 100 an

inverse-Tukey window is centered at the time of the loudest sample in the cluster.

A whitened strain time series value of 100 is much larger than the typical value of

the magnitude in Gaussian noise and also larger than the value expected from any

gravitational-wave signal from binaries at astrophysical distances with masses and

spins within our search space.

Figures 4, 5, and 6 show the whitened gravitational-wave time series for GW150914,

GW151226, and LVT151012 respectively. We see that the whitened strain amplitudes

are much lower than the threshold value set to 100.

2.5 Signal-consistency test

The search implements a signal-consistency test [106] to distinguish between astro-

physical signals and non-Gaussian noise transients that were not excised from the data

during the data conditioning step. The χ2 signal-consistency test quantifies whether

the signal power in a number of non-overlapping frequency bands is consistent with
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that expected from the waveform template [106]. The χ2 signal-consistency test is

defined as

χ2
r =

p

2p− 2

p∑
i=2

[
ρi −

ρ

p

]2

, (2.7)

where p denotes the number of frequency bands and ρi is the matched-filter SNR in the

i-th frequency band. The frequency bands are constructed such that the expected

signal power in each band is equal. For data containing only Gaussian noise, or

Gaussian noise and a signal exactly matching the template waveform, the expected

value of this statistic will be 1. For data containing non-Gaussian artifacts, or a signal

not matching well with the template waveform, this value will be elevated.

The number of frequency bands p used to compute the χ2 signal-consistency

test [106] was optimized using data from the first month of Advanced LIGO’s first

observing run. An improved background rejection was found when adopting the

following, template-dependent expression for the number of frequency bands

p = 1.75×
[
fpeak

1 Hz
− 60

]1/2

, (2.8)

where fpeak is the frequency corresponding to the maximum amplitude of the template

waveform using the models described in Ref. [42], and p is rounded to the nearest inte-

ger. This choice was adopted for the full analysis of Advanced LIGO’s first observing

run, where all waveforms have peak frequencies greater than 60 Hz.

If the detector noise was Gaussian it would be sufficient to use the matched fil-

ter signal-to-noise ratio to rank the significance of events. Since our data contains

non-Gaussian transients, we use a detection statistic which is a combination of the

matched-filter SNR and the χ2 signal-consistency test value. For a single-detector

trigger, the detection statistic ρ̂ is defined as

ρ̂ =

{
ρ [(1 + (χ2

r)
3)/2]

−1/6
, if χ2

r > 1,

ρ, if χ2
r ≤ 1.

(2.9)

The functional form of ρ̂ was empirically determined comparing noise triggers and

simulated signals. In Chapter 6 we present a study that shows how this choice of

detection statistic discriminates between noise triggers and astrophysical signals.
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2.6 Significance measurement

Candidate events must be coincident between the detectors. Only Hanford-Livingston

trigger pairs that occur within ±15 ms window of each other are considered as possible

candidate events. The 15 ms window is determined by the 10 ms intersite propagation

time plus 5 ms for uncertainty in accurately determining the measured arrival time of

weak signals. The search assesses the significance of all coincident Hanford-Livingston

trigger pairs.

Each Hanford-Livingston coincidence is ranked with a network detection statistic

ρ̂c, defined as the quadrature sum of the detection statistic ρ̂ in each observatory

ρ̂c =

√√√√ N∑
i=1

ρ̂2
i , (2.10)

where ρ̂i is the detection statistic in the i-th detector calculated using Equation 2.9.

The significance of a candidate event is determined by comparing the detection

statistic ρ̂c to the search background. The rate of background events as a function of

ρ̂c is estimated from the data by repeating the analysis after artificially time-shifting

the triggers from one detector relative to the other [46]. Time shifts in multiples of

100 ms were performed in Advanced LIGO’s first observing run. The 100 ms time shift

is ∼ 3 times larger than the autocorrelation length of the waveforms in the template

bank, therefore time shifts do not find coincidences between triggers associated with

the same event. From this we are able to determine the rate at which detector noise

produces events with a detection statistic value equal to or higher than the candidate

event; this is called the false-alarm rate (FAR).

The results from the search are a list of candidate events with each candidate event

assigned a FAR and a p-value. The p-value describes the probability of observing

another signal from noise alone that has a detection statistic greater than or equal to

a candidate event’s detection statistic ρ̂∗c given the background distribution [46]. We

can write the p-value as [46]

p-value = p(≥ 1 above ρ̂∗c |Nb) =
∑
Ne

p(≥ 1 above ρ̂∗c |Ne, Nb)p(Ne|Nb) , (2.11)

where Ne is the number of candidates events and Nb is the number of background

events. The p-value is the product of p(≥ 1 above ρ̂∗c |Ne, Nb) which is the probability
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that at least one candidate events is louder than ρ̂∗c given the number of candidate

events and background events, and p(Ne|Nb) which is the probability of the number

of candidate events given the number of background events. We can find expressions

for both of these probabilities. First, we find an expression for p(≥ 1 above ρ̂∗c |Ne, Nb)

which is the probability that at least one candidate events is louder than ρ̂∗c . For a

single candidate event, the probability that one random coincident noise event lies

above ρ̂∗c is [46]

p(ρ̂c ≥ ρ̂∗c |Ne = 1, Nb) =
1 + n∗b(ρ̂

∗
c)

1 +Nb

, (2.12)

where nb(ρ̂
∗
c) is the number of background triggers greater than or equal to ρ̂∗c . There-

fore, the probability that no candidate event out of Ne candidate events are above

this threshold ρ̂∗c is

p(none above ρ̂∗c |Ne = 1, Nb) =

[
1− 1 + n∗b(ρ̂

∗
c)

1 +Nb

]Ne
. (2.13)

And the probability that at least one candidate event is above ρ̂∗c is the complement

which is equal to

p(≥ 1 above ρ̂∗c |Ne = 1, Nb) = 1−
[
1− 1 + n∗b(ρ̂

∗
c)

1 +Nb

]Ne
. (2.14)

Equation 2.14 can be substituted into Equation 2.11. Now, we model the coincident

noise events as a Poisson distribution, where the probability p(Ne|Nb) of the number

of candidate events Ne given the number of background events Nb is [46]

p(Ne|Nb) ≡ p(Ne|µ) = µNe
e−µ

Ne!
, (2.15)

where µ = NbT/Tb is the Poisson rate, and T is the amount of time observed and

Tb is the amount of background time in the analysis. In Ref. [46] it has been shown

that Equations 2.14 and 2.15 can be substituted into Equation 2.11 and simplified to

obtain

p-value = 1− e−FAR T , (2.16)

where FAR is the false-alarm rate and T is the amount of time observed.

A small p-value tells us that our hypothesis (the candidate event is due to noise)

may not explain our observation. If we assume a Gaussian probability density function

for our observation of candidate events due to Gaussian noise, then the p-value can
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be related to the significance quoted in terms of σ. To find the significance we can

integrate the one-tailed area under the standard normal curve according to [4]

significance = −
√

2 erf−1(1− (1− p-value)2) , (2.17)

where erf−1(x) is the inverse error function. Candidates events with a low FAR have

a high significance and are identified as possible gravitational-wave signals.

In Advanced LIGO’s first observing run, there were 46.1 days of coincident data

that was searched for candidate events; the triggers during these times are time-

shifted to acquire an equivalent of 5.0 × 106 years of background time analyzed in

Advanced LIGO’s first observing run. This amount of background time allows us to

measure the FAR of a candidate event down to 6.0× 10−7 yr−1.

The distribution of background noise events over ρ̂c can vary strongly as a function

of the template waveform. To account for this variation, the parameter space is

divided into several regions which are treated as independent searches [46, 107]. Each

coincident trigger is assigned a FAR based on the background distribution in the

region containing the coincidence and incorporating a trials factor equal to the number

of regions. We split the parameter space into three regions defined by (i) M <

1.74 M�, (ii) M ≥ 1.74 M� and fpeak ≥ 100 Hz, and (iii) M ≥ 1.74 M� and

fpeak < 100 Hz. In Section 2.8 we present the results from region (iii) which covers

the parameter space of binary black hole mergers.

2.7 Data selection

The analysis from September 12, 2015, to January 19, 2016, contains a total coincident

analysis time of 51.5 days accumulated when both detectors were operating in their

normal state. Prior to measuring the significance of the coincident trigger, the non-

coincident, single-detector triggers are reviewed to identify data with excess noise.

When an interval of data with excessive noise is identified, the contaminated data are

removed from the analysis data set, if a systematic instrumental condition without

any regard for the presence of gravitational wave signals can be found [87]. The

removal of data with excessive noise treats all data equally and has the chance to

remove real gravitational-wave signals as well [87]. If the cause of the noise can

be determined, then it is fixed as soon as possible. Data from either detector with
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excessive noise typically contains non-stationary and non-Gaussian features in the

form of noise transients of varying durations [87, 108].

Longer duration noise transients, such as non-stationary behavior in the interfer-

ometer noise, are not very detrimental to the PyCBC search as they occur on a time

scale that is much longer than any waveform in the template bank. However, shorter

duration artifacts can pollute the noise background distribution [85, 87]. In partic-

ular, above 30 Hz the Advanced LIGO detectors are sensitive to only the final few

cycles of inspiral plus merger of higher mass binaries which makes their analysis more

susceptible to noise transients. Many of these artifacts have distinct signatures [1]

visible in data channels from the larger number of sensors used to monitor instrumen-

tal or environmental disturbances at each observatory site [109]. After applying this

data quality process [87] the remaining coincident analysis time in Advanced LIGO’s

first observing run is 48.6 days.

The search analyzes stretches of data longer than a minimum duration to ensure

that the detectors are operating stably and that there is enough data to perform

the match filtering operation. In Advanced LIGO’s first observing run, the mini-

mum duration was 2048 s and this choice reduced the available data of 48.6 days to

46.1 days.

2.8 Results

Figure 7 shows the results from the search for binary black hole mergers using tem-

plate waveforms with M ≥ 1.74 M� and fpeak < 100 Hz. The figure shows the

observed distribution of events as well as the background distribution used to as-

sess the significance. There are three events that lie above the estimated background:

GW150914, GW151226, and LVT151012. All three of these are consistent with binary

black hole merger signals and the templates that produced the highest significance for

each event are indicated in Fig. 3. Figure 8 shows the mapping between the detection

statistic from Fig. 7 and the FAR, p-value, and significance.

The search’s signal-consistency test shows no sign that GW150914, GW151226, or

LVT151012 are noise transients. The matched-filter SNR ρ(t), detection statistic ρ̂(t),

and signal-consistency test value χ2
r(t) time series for the best-matching template at

the time of GW150914, GW151226, and LVT151015 are shown in Figures 10, 11,
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and 12 respectively. For astrophysical signals that match the template waveform we

expect that ρ̂ ≈ ρ. Figures 10, 11, and 12 shows for both detectors the matched-filter

SNR and detection statistic time series peak as the gravitational waves from each

event passes through the detector. Checks of the instrumental data reveal no data

quality issues at the times of the events [87].

All other observed events are consistent with the noise background for the search.

A follow-up of the coincident events with ρ̂c ≈ 9 suggests that they are likely

due to noise fluctuations or poor data quality, rather than a population of weaker

gravitational-wave signals.

GW150914 was observed on September 14, 2015, at 09:50:45 UTC with a combined

matched-filter SNR of 23.7 and a detection statistic ρ̂c = 22.7. GW150914 is the most

significant event in the analysis as shown in Figure 7. We can only calculate a limit

on the FAR for GW150914 since there are no background events with significance

equal to or greater than GW150914. Using the time-shift method to estimate the

background distribution we limit the FAR of GW150914 to be < 6.0 × 10−7 yr−1.

This corresponds to a p-value of 7.5× 10−8 yr−1 or a significance of > 5.3 σ.

Figure 7 shows that at high significance the background distribution is dominated

by the presence of GW150914 in the data. Since we can limit GW150914’s significance

to be > 5.3 σ we are confident it is an astrophysical signal. Once an event has been

confidently identified as an astrophysical signal, we remove triggers associated with

it from the background in order to get an accurate estimate of the noise background

for the lower amplitude events. In Fig. 9 we show the search results with GW150914

removed from both the foreground and background distributions. Figure 13 shows

the mapping between the detection statistic from Figure 13 and the FAR, p-value,

and significance with GW150914 removed from both the foreground and background

distributions.

GW151226 was identified as the second most significant event with a a combined

matched-filter SNR of 13.0 and a detection statistic ρ̂c = 12.8. GW151226 was

observed on December 26, 2015, at 03:38:53 UTC. After the removal of GW150914

from the background, now GW151226 is the most significant event that contributes

to the background distribution. GW151226 is more significant than all background

events as well. Since GW151226 is more significant than all the background events,

we cannot measure its significance; however, we limit the FAR to be < 6.0×10−7 yr−1.
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This corresponds to a p-value of 7.5× 10−8 yr−1 or a significance of > 5.3 σ.

We continue removing signals from the background distribution as long as the

event is more significant than all the background triggers. The background distribu-

tion for events less significant than GW151226 are not dominated by the presence of

GW150914 or GW151226. Therefore, the removal of GW151226 has no significant

effect on assessing the significance of events with a ρ̂c less than GW151226.

The third most significant event in Advanced LIGO’s first observing run is LVT151012

observed on October 12, 2015, at 09:54:43 UTC. It was observed with a combined

matched-filter SNR of 9.7 and detection statistic ρ̂c = 9.7. The matched-filter SNR

of this event is considerably lower than GW150914 and GW151226, and the FAR of

LVT151012 is 1 per 2.7 years. This corresponds to a p-value of 0.045 or a significance

of 1.7 σ. Removing the triggers associated with GW150914 or GW151226 from the

background does not have a large effect on the significance of LVT151012.

At the significance of LVT151012, we do not confidently claim this event as a

gravitational-wave signal. This is why we assigned this candidate event a designation

beginning with “LVT” (for LIGO-Virgo trigger) instead of “GW” (for gravitational

wave). However, it is more likely to be a gravitational-wave signal than noise transient

based on our estimate for the rate of gravitational-wave signals. Detector character-

ization studies have not identified an instrumental or environmental source for this

candidate event [108] and the signal-consistency test shows no signs it is a noise

transient.

Heavier chirp masses and closer distances increase the amplitude of the gravitational-

wave signal from binary black hole mergers. The combination of the chirp mass,

distance, and orientation of GW150914 [110] produces a signal that accumulates a

loud matched-filter SNR over ∼0.2 s in the Advanced LIGO frequency band. This

makes GW150914 easily visible in the data. Figure 14 shows a whitened spectro-

gram where the time-frequency evolution of the signal in both detectors’ data is

visible. GW151226 is located at approximately the same distance as GW150914 but

has a lower chirp mass [77], therefore GW151226 accumulates a lower matched-filter

SNR in the Advanced LIGO frequency band over a longer duration. Similarly if

LVT151012 is an astrophysical signal, its distance is further and its chirp mass is less

than GW150914 [76] which reduces our ability to visualize a distinct signature in the

data. Whitened spectrograms of GW151226 and LVT151012 are shown in Figures 15



20

and 16. Neither GW151226 or LVT151012 can easily be seen in the data. This em-

phasizes the need for a matched-filter search that can detect distant or lower-mass

binaries that are not easily be visualized in the data.

2.9 Conclusions

The PyCBC search employs matched filtering which correlates Advanced LIGO data

with binary neutron star and black hole merger waveforms given by models based

on general relativity. The search detected two stellar-mass binary black hole mergers

with a significance > 5 σ and another candidate event that is likely to be a binary

black hole merger. The signals from Advanced LIGO’s first observing run have several

astrophysical implications, as well as being the first, direct observations of gravita-

tional waves. The detection of GW150914 and GW151226 confirm the existence of

binary black holes and stellar-mass black holes with masses > 25 M�.
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Figure 3 : The four-dimensional search parameter space covered by the template bank shown pro-

jected into the component-mass plane, where m1 > m2. The lines bound mass regions with different

limits on the dimensionless aligned-spin parameters χ1 and χ2. Each point indicates the position

of a template in the bank. The markers indicate the best-matching template waveform for each

event. Since the template bank includes a diverse set of waveforms, we search regions of the bank

separately; this is discussed in Sec. 2.6. The green region corresponds to binary neutron stars, the

red region corresponds to neutron star-black hole binaries, and the blue region corresponds to binary

black holes.
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Figure 4 : The whitened gravitational-wave strain time series at the time of GW150914. The left

panel shows the Hanford data and the right panel shows the Livingston data. The gravitational-wave

strain is whitened with the amplitude spectral density to remove the strong instrumental lines seen

in Fig. 2. In this figure, an additional 43-300 Hz bandpass filter was applied to the whitened time

series.
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Figure 5 : The whitened gravitational-wave strain time series at the time of GW151226. The left

panel shows the Hanford data and the right panel shows the Livingston data. The gravitational-wave

strain is whitened with the amplitude spectral density to remove the strong instrumental lines seen

in Fig. 2. In this figure, an additional 43-800 Hz bandpass filter was applied to the whitened time

series.
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Figure 6 : The whitened gravitational-wave strain time series at the time of LVT15101. The left

panel shows the Hanford data and the right panel shows the Livingston data2. The gravitational-

wave strain is whitened with the amplitude spectral density to remove the strong instrumental lines

seen in Fig. 2. In this figure, an additional 43-400 Hz bandpass filter was applied to the whitened

time series.
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Figure 7 : The results from the search for binary black hole mergers in Advanced LIGO’s first

observing run. The result for signals with chirp massM > 1.74M� (the chirp mass of a m1 = m2 =

2M� binary) and fpeak > 100 Hz are shown. Here we show the histogram of the detection statistic

ρ̂. GW150914 is the most significant event in the data and is more significant than any background

event in the data. GW150914 is identified with a significance > 5 σ.
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Figure 8 : The results from the search for binary black hole mergers in Advanced LIGO’s first

observing run. The result for signals with chirp mass M > 1.74M� (the chirp mass of a m1 =

m2 = 2M� binary) and fpeak > 100 Hz are shown. This histogram shows the mapping between the

detection statistic and the false-alarm rate, p-value, and significance.
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Figure 9 : The results from the search for binary black hole mergers in Advanced LIGO’s first

observing run with GW150914 removed. Here we show the histogram of the detection statistic ρ̂.

GW151226 is identified as the most significant event remaining in the data. GW151226 is more

significant than the remaining background in the analysis with a significance > 5 σ. The third most

significant event in the search, LVT151012, is identified with a significance of 1.7 σ. The significance

obtained for LVT151012 is not greatly affected by including or removing background contributions

from GW150914 and GW151226.
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Figure 10 : The matched-filter signal-to-noise ratio ρ(t) (blue), detection statistic ρ̂c(t) (purple),

and signal-consistency test value χ2
r(t) (green) versus time using the best-matching template at the

time of GW150914. The top plot shows the Hanford detector (H1) and the bottom plot shows the

Livingston detector (L1).
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Figure 11 : The matched-filter signal-to-noise ratio ρ(t) (blue), detection statistic ρ̂c(t) (purple),

and signal-consistency test value χ2
r(t) (green) versus time using the best-matching template at the

time of GW151226. The top plot shows the Hanford detector (H1) and the bottom plot shows the

Livingston detector (L1).
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Figure 12 : The matched-filter signal-to-noise ratio ρ(t) (blue), detection statistic ρ̂c(t) (purple),

and signal-consistency test value χ2
r(t) (green) versus time using the best-matching template at the

time of LVT151012. The top plot shows the Hanford detector (H1) and the bottom plot shows the

Livingston detector (L1).
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Figure 13 : The results from the search for binary black hole mergers in Advanced LIGO’s first

observing run with GW150914 removed. The result for signals with chirp mass M > 1.74M� (the

chirp mass of a m1 = m2 = 2M� binary) and fpeak > 100 Hz are shown. This histogram shows the

mapping between the detection statistic and the false-alarm rate, p-value, and significance.
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Figure 14 : A spectrogram of the whitened gravitational-wave strain time series from Figure 4. The

left panel shows the Hanford data and the right panel shows the Livingston data at the time of

GW150914.
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Figure 15 : A spectrogram of the whitened gravitational-wave strain time series from Figure 5. The

left panel shows the Hanford data and the right panel shows the Livingston data at the time of

GW151226.
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Figure 16 : A spectrogram of the whitened gravitational-wave strain time series from Figure 6. The

left panel shows the Hanford data and the right panel shows the Livingston data at the time of

LVT151012.
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Chapter 3

The impact of calibration errors on

the detection of binary black hole

mergers in Advanced LIGO data

3.1 Introduction

The detection of astrophysical sources such as binary black hole mergers with Ad-

vanced LIGO requires the detectors’ data to be calibrated properly [111]. Searches

for binary neutron star and black hole mergers use matched filtering to correlate the

calibrated gravitational-wave strain data with a bank of templates [112, 46]. Calibra-

tion errors directly affect the uncertainty in the gravitational-wave strain analyzed

by the PyCBC search. The uncertainty in the gravitational-wave strain could reduce

the matched-filter signal-to-noise ratio [113, 114]. Previous studies have shown that

the loss in the matched-filter signal-to-noise ratio and the loss in the detection statis-

tic [46] in the PyCBC search have a quadratic relation with respect to calibration

errors [113, 114, 4].

We can show that these calibration errors that reduce the matched-filter signal-

to-noise ratio will adversely affect the sensitive volume of a search as well as the

detection rate. The detection rate R which can be characterized as

R =
N

V T
∼ 1

D3
, (3.1)

where N is the number of detections, V is the sensitive volume of the search which
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depends on the cube of the horizon distance D averaged over all sky positions and

binary orientations [115], and T is the time observed. For a single detector, the

horizon distance is defined as the distance at which an optimally-oriented, overhead

source can be detected with an optimal matched-filter signal-to-noise ratio ρ equal to

8 [115], where the optimal matched-filter signal-to-noise ratio is

ρ =

√
4<
∫ ∞

0

|h̃(f)|2
S(f)

df , (3.2)

where h̃(f) is the frequency-domain gravitational waveform, S(f) is the power spectral

density, and < denotes the real part of a complex number. Here, we see the calibration

errors that reduce the matched-filter signal-to-noise lowers the horizon distance which

reduces the detection rate [116]. Therefore its important that Advanced LIGO’s

calibration is accurate since a significant deviation from the correct calibration could

cause a loss in signal-to-noise ratio that will reduce the detection rate of binary

neutron star and black hole mergers.

Advanced LIGO measures variations in differential arm length ∆Lfree = Lx − Ly
between its two arms caused by gravitational waves [74]. A feedback loop controls

the error signal between the laser frequency and the resonant frequency of the arm

cavities which is referred to as locking the arm cavities [74, 3]. Figure 17 depicts

the feedback loop that controls the differential displacement of the detector’s arms

∆Lfree which sends the error signal derr(t) through a set of digital filters to produce

a control signal dctrl(t), and then the control signal is sent to the actuator systems

which displace the test masses [117, 3]. In Advanced LIGO the mirrors act as freely

falling test masses that detect gravitational waves [117, 3].

The searches for binary black hole mergers analyze a calibrated gravitational-wave

strain h(t) which is the fractional variation in the Advanced LIGO differential arm

length defined as

h(t) ≡ ∆Lfree(t)

L
, (3.3)

where L is the length of the arms.

We can derive an expression for h(t) from the feedback loop in Figure 17. In

Figure 17 we see that

∆Lres(t) = ∆Lfree(t)−∆Lctrl(t) , (3.4)
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where ∆Lctrl(t) is the control displacement applied to physically move the test masses

in opposition of the differential displacement and ∆Lres(t) is the residual displacement

that is the difference between ∆Lfree(t) and ∆Lctrl(t). Therefore, we can find an

expression for ∆Lfree(t) from the feedback loop in Figure 17 which gives us

Lh(t) = ∆Lfree(t) = ∆Lres(t) + ∆Lctrl(t) (3.5)

=
1

C(m)(f, t)
derr(t) + A(m)(f, t)dctrl(t) , (3.6)

where f is the gravitational-wave frequency, t is the time, C(m)(f, t) is a model of

the sensing function that describes the response of the detector to changes in the

arm lengths, and A(m)(f, t) is a model of the actuation function that describes the

motion of the test mass when driven by the control signal dctrl(t). Here, we write

the sensing and actuation functions as dependent on frequency and time because

they consist of frequency domain functions with time-dependent coefficients. This

formulation of ∆Lfree(t) is convenient since the digital filters have already been applied

to dctrl(t). The calibration of the gravitational-wave strain is depicted on the right

side of Figure 17.

Both C(m)(f, t) and A(m)(f, t) are generated from measurements that have uncer-

tainties and systematic errors. From Equations 3.3 and 3.5 we see that uncertainties

and systematic errors in these models and model parameters directly impact the un-

certainties and systematic errors of the calibrated gravitational-wave strain. These

errors can reduce the signal-to-noise ratio of astrophysical signals as previously dis-

cussed.

One source of systematic errors while calibrating the gravitational-wave strain is

time-dependent drift of the state of the detector from the state described by the model

of the sensing and actuation functions [118]. The time dependence of the sensing func-

tion is due to changes in the alignment and thermal state of the detectors’ optics [118].

Slow variations in the charging of actuators introduce time-dependent changes to the

actuation functions [118]. Advanced LIGO tracks these time-dependent variations

by monitoring the response of the error signal from the differential arm length error

servo to injected signals [118]. Applying the time-dependent correction factors im-

proves systematic errors in the magnitude of the reconstructed differential arm length

by several percent [118].
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Figure 17 : A schematic of the feedback loop that controls the differential arm length ∆Lfree and

calibration from Ref. [3]. The sensing function C, digital filters D, and actuation function A are the

components of the feedback loop. Models of the sensing function C(model) and actuation function

A(model) are used to calibrate the error signal derr and control signal dctrl to obtain the gravitational-

wave strain h. x
(PC)
T represents sinusoidal excitations at select frequencies called calibration lines.

Calibration lines are used to monitor time-dependent changes in the sensing and actuation functions.

This chapter describes the impact of time-dependent calibration errors on the

detection of binary neutron star and black hole mergers. We demonstrate their impact

with real and simulated signals analyzed by the PyCBC search [79, 46, 90]. Section 3.3

describes the Advanced LIGO calibration and our method for simulating calibration

errors in Advanced LIGO data. This is the same method used to initially evaluate the

impact of calibration errors on the detection of GW150914 in Ref. [4]. We consider

the impact of the time-dependent calibration parameters in the calibration on the

matched-filter signal-to-noise ratio of binary neutron star and black hole mergers

with masses up to 100 M� in Sec. 3.4. In Sections 3.7 and 3.8 we present results

from evaluating the impact of these temporal variations on the PyCBC detection

statistic [46]. Finally, Sec. 3.9 summarizes the impact of time-dependent calibration

errors on the detection of binary neutron star and black hole mergers in Advanced

LIGO.
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3.2 Models of the sensing function and actuation function

Models of the sensing function and actuation function are used to calibrate the gravi-

tational wave strain as shown in Figure 17. These models compensate for the temporal

variations the in sensing and actuation functions [118]. In this section, we describe

how Advanced LIGO incorporates temporal corrections into the models of the sensing

function and actuation function.

The frequency dependence of C(f, t) andA(f, t) is periodically measured to update

the models of the sensing and actuation functions. Observing runs are divided into

calibration epochs which correspond to times between these measurements. At the

start time t0 of a calibration epoch, the frequency-dependence of C(f, t) and A(f, t)

are modeled such that C(f, t0) = C
(m)
0 (f) and A(f, t0) = A

(m)
0 (f). The digital filter

D(f) = D0(f) is a known, exact function but D(f) is manually changed from time

to time to improve the performance of the detector. C
(m)
0 (f), A

(m)
0 (f), and D0(f) are

unchanged throughout a calibration epoch. The drift from C
(m)
0 (f) and A

(m)
0 (f) at the

start of the calibration epoch is monitored by actuating the test masses at specific

frequencies called calibration lines [111] which are used to update time-dependent

calibration parameters in the sensing and actuation functions [118].

The sensing function C(f, t) converts the residual test mass differential displace-

ment ∆L̃res(f) to the digitized error signal d̃err(f) representing the laser power fluc-

tuation at the gravitational-wave readout port. The sensing function includes the

detector’s response converting differential displacement to the laser power fluctuation

at the readout port which is determined by the arm cavity test mass reflectivities,

the reflectivity of the signal recycling mirror, the length of the arm cavities, and the

length of the signal recycling cavity [3]. In addition, the sensing function includes the

response of the photodiodes and their analog readout electronics, and effects from the

digitization of the signal from the photodiodes [76].

The Advanced LIGO calibration uses a model of the sensing function C(m)(f, t)

that models a signal-recycled Fabry-Perot interferometer [119]. The model from

Ref. [119] has been simplified to a single coupled cavity pole system [120]. The

signal recycling cavity is detuned and during Advanced LIGO’s first observing run,

there was a small, unintentional offset of the detuning phase [120]. This is likely due

to an offset in the angular control of the signal recycling mirror and this detuning
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induces an optical anti-spring [120]. We include corrections for the optical anti-spring

in the model of the sensing function which is [3, 120]

C(m)(f, t) = Cres(f)

[
κC(t)

1 + i f
fc(t)

][
f 2

f 2 − ifs(t)
Q(t)

f + f 2
s (t)

]
, (3.7)

where Cres(f) is the time-independent residual of the sensing function which is given

by

Cres(f) = C0(f)

[
1 + i

f

fc(t0)

][
f 2 − ifs(t0)

Q(t0)
f + f 2

s (t0)

f 2

]
. (3.8)

The drift in the sensing function is described by a real gain κC(t) and cavity pole

frequency fc(t). In this chapter we consider data from both Advanced LIGO’s first

and second observing runs. In Advanced LIGO’s second observing run, the the optical

spring frequency fs(t) and the dimensionless quality factor Q(t) of the signal recycling

cavity [74] were tracked but not compensated for; however, we include fs(t) and Q(t)

in our model while analyzing data from Advanced LIGO’s second observing run. The

term including fs(t) and Q(t) is omitted while analyzing data from Advanced LIGO’s

first observing run.

The interferometer differential arm length is controlled by actuating on the quadru-

ple suspension system of the test masses. Each of suspension systems consists of four

coupled pendulums [3, 121] which isolates the test masses from motion that is not

suppressed by the isolation system [3, 121]. There is an independent pendulum sys-

tem that hangs beside the test mass. This pendulum system is used to generate

reaction forces on each mass of the test mass pendulum. A diagram of one of these

suspension systems is shown in Fig. 18. The contributions to the actuation function

A(f, t) from three lowest stages in the suspension system are modeled in A(m)(f, t).

The upper-intermediate stage actuators are dominant below 5 Hz, the penultimate

stage actuators are dominant between 5 Hz and 20 Hz, and the test stage actuator

are dominant above 20 Hz [118]. The actuation from the top mass in the pendulum

system is negligible compared to the three masses that hang below it. Therefore, the

model actuation function A(m)(f, t) is decomposed into the sum of these three com-

ponents: the actuation of the test mass A
(m)
tst (f, t), the actuation of the penultimate

mass A
(m)
pu (f, t), and the actuation of the upper-intermediate mass A

(m)
uim(f, t). The
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actuation function model is

A(m)(f, t) = κtst(t)A
(m)
tst,0(f) + κ(m)

pu (t)(A
(m)
pu,0(f) + A

(m)
uim,0(f)) . (3.9)

The drift in the actuation function is parameterized by the complex gain in the

actuation of the test mass κtst(t) and another complex gain which is the combination

of the actuation of the penultimate mass and the upper-intermediate mass κpu(t).

The nominal values for the time-dependent gains are κC(t0) = 1, κtst(t0) = 1,

and κpu(t0) = 1. Prior to a calibration epoch fc(t0), fs(t0), and Q(t0) are measured.

During the observing run these parameters will vary from their nominal values. For

example, κtst(t) drifts from 1 due to electrostatic charging of the test mass [118]. κC(t)

and fc(t) vary due to changes in the alignment and thermal state of the interferometer

optics, and thermally distorted mirrors can result in optical mode mismatch between

the arm cavities and the signal recycling cavity [118].

3.3 Simulating calibration errors in Advanced LIGO data

In this section, we present the method we use to simulate calibration errors in Ad-

vanced LIGO data for our studies examining the impact of systematic errors from

time-dependent variations in C(m)(f, t) and A(m)(f, t) on the detection of binary neu-

tron star and black hole mergers. Although the Advanced LIGO calibration is done

in the time-domain, we simulate calibration errors in the frequency-domain. Since

the matched-filter calculation is done in the frequency-domain its more convenient

to adjust the calibration in the frequency domain as well. Equation 3.5 can be

rewritten in terms of just the differential arm length error signal using the relation

d̃ctrl(f) = D(f)d̃err(f) [117] where D(f) are the set of known digital filters in the

detectors and d̃ctrl(f) denotes the Fourier transform of the time series dctrl(t). The

differential displacement arm length along the two arms becomes

∆L̃free(f) = R(f, t)d̃err(f) , (3.10)

where R(f, t) is the response function of the detector. R(f, t) is given by

R(f, t) =
1 +G(f, t)

C(m)(f, t)
, (3.11)
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Figure 18 : A schematic of the quadruple pendulum system from Ref. [3]. There is an independent

pendulum system which is used to generate reaction forces on each mass of the test mass pendulum.

where G(f, t) is the open loop transfer function which is given by

G(f, t) = C(m)(f, t)D0(f)A(m)(f, t) . (3.12)

If we insert the models for the sensing function from Equation 3.8 and the model

for the actuation function from Equation 3.9, then the time evolution of the response
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functions is modeled as

R(f, t) =
1

κC(t)Cres(f)

[
1 + i

f

fc(t)

]−1
[
f 2 − ifs(t)

Q(t)
f + f 2

s (t)

f 2

]−1

+

D0(f) [κtst(t)Atst,0(f) + κpu(t)(Apu,0(f) + Auim,0(f))] . (3.13)

The response function from Equation 3.13 will have systematic and measurement

uncertainties from C0(f) and A0(f) as well as time-dependent drift. At time t, this

can be expressed as the relation between the response function with no errors from

the amplitude or phase Rt(f) and the response function that includes errors from

the amplitude and phase Rm(f). We use the subscript t to denote the “true” value

(without calibration errors), and the subscript m to denote the “measured” value

which contains calibration errors. We define Rt(f) in polar form as

Rt(f) = A(f)eiφ(f), (3.14)

where A(f) is the amplitude of the response function and φ(f) is the phase of the

response function. We define Rm(f) in polar form as

Rm(f) = [A(f) + δA(f)] ei[φ(f)+φ(f)] (3.15)

= A(f)

[
1 +

δA(f)

A(f)

]
eiφ(f)eiδφ(f) , (3.16)

where δA(f) is the change in the amplitude of the response function due to errors and

δφ(f) is the change in the phase of the response function due to errors. The amplitude

A(f) and phase φ(f) in Equations 3.14 and 3.15 are equivalent. The relation between

Rt(f) and Rm(f) is the error function K(f) which is defined in polar form as

K(f) =
Rt(f)

Rm(f)
=

[
1 +

δA(f)

A(f)

]
eiδφ(f) . (3.17)

In Figures 19, 20, 21, and 22 we show the fractional amplitude error δA(f)/A(f) and

phase error φ(f) as each time-dependent calibration parameter is varied. The model

from the calibration epoch beginning on January 3, 2017, during Advanced LIGO’s

second observing run was used to generate these results.

We simulate calibration errors by multiplying the frequency-domain gravitational-

wave strain h̃(f) from the detector by the error function K(f, t) = Rm(f, t)/Rt(f, t)

such that

h̃′(f) = Rm(f, t)d̃err(f) = K(f, t)h̃(f) , (3.18)
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where h̃′(f) is the gravitational-wave strain with simulated calibration errors.

3.4 Derivation of the impact of calibration errors on the

matched-filter signal-to-noise ratio

Changes in the response function alter the amplitude and phase of the gravitational-

wave strain which reduces the match between the template waveform and the as-

trophysical signal in the calibrated data. Mismatches between the matched-filter

template waveform and the calibrated gravitational-wave strain from the detectors

reduces the recovered matched-filter signal-to-noise ratio. Therefore, calibration er-

rors which are introduced through the response function impact the matched-filter

signal-to-noise ratio used in the PyCBC search. In this section, we follow the method

from Ref. [122] to derive the change in the expectation value of the optimal matched-

filter signal-to-noise ratio 〈δρ〉 from errors in the response function’s amplitude and

phase. This derivation has two steps: we express the change in the optimal matched-

filter signal-to-noise ratio δρ in terms of the amplitude error δA(f) and phase error

δφ(f) of the response function, and then we find the expectation of value 〈δρ〉. The

optimal matched-filter signal-to-noise ratio ρ is defined as

ρ =

〈
s̃(f)|h̃(f)

〉
√〈

h̃(f)|h̃(f)
〉 , (3.19)

where s̃(f) is the gravitational-wave strain, h̃(f) is the gravitational waveform tem-

plate that matches the astrophysical waveform, and the inner product
〈
s̃(f)|h̃(f)

〉
is defined as 〈

s̃(f)|h̃(f)
〉

= 4<
∫ ∞

0

s̃(f)h̃∗(f)

S(f)
df , (3.20)

where S(f) is the power spectral density defined as

1

2
δ(f − f ′)S(f) = 〈ñt(f)ñ∗t (f

′)〉 . (3.21)
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The change in the optimal matched-filter signal-to-noise ratio δρ is defined as

δρ = ρm − ρt (3.22)

=

〈
s̃m(f)|h̃(f)

〉
m√〈

h̃(f)|h̃(f)
〉
m

−

〈
s̃t(f)|h̃(f)

〉
t√〈

h̃(f)|h̃(f)
〉
t

, (3.23)

where the inner products from Equation 3.22 are〈
s̃t(f)|h̃(f)

〉
t

= 4<
∫ ∞

0

s̃t(f)h̃∗(f)

St(f)
df , (3.24)

and 〈
s̃m(f)|h̃(f)

〉
m

= 4<
∫ ∞

0

s̃m(f)h̃∗(f)

Sm(f)
df . (3.25)

The subscript t indicates that we use a gravitational-wave strain calibrated from a

response function with no errors in the amplitude or phase, and the subscript m

indicates that we use a gravitational-wave strain calibrated from a response func-

tion with errors in the amplitude and phase. Therefore, s̃t(f) and St(f) represent

an ideal, error-free, calibrated gravitational-wave strain and power spectral density

respectively, while s̃m(f) and Sm(f) represent a calibrated gravitational-wave strain

and power spectral density from the detectors which will contain uncertainties and

errors in the response function at some level.

The first step in this derivation is to express δρ in terms of the amplitude error

and the phase error from the response function. In Equation 3.22, the errors from the

response function are introduced into δρ through s̃m(f) and Sm(f). Therefore, we

need to find expressions for s̃m(f) and Sm(f) in terms of the amplitude error δA(f)

and phase error δφ(f) of the response function. Neither s̃t(f) or St(f) have any error

from the response function so they do not depend on δA(f) or δφ(f). We can use

the relation between the response function with no errors Rt(f) and the response

function with errors in the amplitude and phase Rm(f) from Equations 3.14, 3.15,

and 3.17 to find expressions for s̃m(f) and Sm(f) in terms of A(f), φ(f) δA(f), δφ(f),

s̃t(f), and St(f). The expressions for s̃m(f) and Sm(f) can then be substituted into

Equation 3.22 to find the dependence of δρ on δA(f) and δφ(f). The expression for
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s̃m(f) can be found using Equation 3.14 and 3.15 which gives

s̃m(f) = Rm(f)d̃err(f) (3.26)

= A(f)

[
1 +

δA(f)

A(f)

]
eiφ(f)eiδφ(f)d̃err(f) (3.27)

=

[
1 +

δA(f)

A(f)

]
eiδφ(f)s̃t(f) (3.28)

= K(f)s̃t(f) . (3.29)

Now, we need to find Sm(f) in terms of δA(f) and δφ(f) as well. The gravitational-

wave strain s̃t(f) is composed of noise ñt(f) and the astrophysical signals h̃(f) such

that

s̃t(f) = ñt(f) + h̃(f) = K(f)s̃m(f) , (3.30)

and the single-sided power spectral density St(f) is defined as

1

2
δ(f − f ′)St(f) = 〈ñt(f)ñ∗t (f

′)〉 . (3.31)

We can use Equations 3.30 and 3.31 to find the single-sided power spectral density

calculated from the response function with errors in the amplitude and phase Sm(f)

which is defined as

1

2
δ(f − f ′)Sm(f) = 〈ñm(f)ñ∗m(f ′)〉 (3.32)

= 〈K(f)ñt(f)K∗(f)ñ∗t (f
′)〉 (3.33)

= |K(f)|2 〈ñt(f)ñ∗t (f
′)〉 , (3.34)

where ñm(f) = K(f)ñt(f). Therefore, we can rewrite Sm(f) as

Sm(t) = |K(f)|2St(f) =

[
1 +

δA(f)

A(f)

]2

St(f) . (3.35)

Now, we have expressions for s̃m(f) and Sm(f) in terms of δA(f) and δφ(f). We can

substitute Equations 3.24, 3.25, 3.26, and 3.35 into Equation 3.22, and we find the
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dependence of δρ on δA(f) and δφ(f) is

δρ =

4<
∫∞

0
eiδφs̃t(f)h̃∗(f)

[1+
δA(f)
A(f) ]St(f)

df√
4<
∫∞

0
|h̃(f)|2

[1+
δA(f)
A(f) ]

2
St(f)

df
−

4<
∫∞

0
s̃t(f)h̃∗(f)

[1+
δA(f)
A(f) ]

2
St(f)

df√
4<
∫∞

0
|h|2

[1+
δA(f)
A(f) ]

2
St(f)

df
(3.36)

= 2

 <
∫∞

0
eiδφs̃t(f)h̃∗(f)

[1+
δA(f)
A(f) ]St(f)

df√
<
∫∞

0
|h̃(f)|2

[1+
δA(f)
A(f) ]

2
St(f)

df
−
√√√√< ∫ ∞

0

s̃t(f)h̃∗(f)[
1 + δA(f)

A(f)

]
St(f)

df

 . (3.37)

The dependence of the expectation value of the change in the optimal matched-

filter signal-to-noise ratio 〈δρ〉 on δA(f) and δφ(f) can easily be found from Equa-

tion 3.36 since it removes the dependence on s̃t(f). Here, we will show that the

expectation value of the gravitational-wave strain 〈s̃t(f)〉 = h̃(f). In stationary,

Gaussian noise 〈s̃t(f)〉 is

〈s̃t(f)〉 = 〈ñt(f)〉+
〈
h̃(f)

〉
(3.38)

= 0 + h̃(f) , (3.39)

where
〈
h̃(f)

〉
= h̃(f) since the astrophysical signal is not a random process and

the expectation value of stationary, Gaussian noise in the time-domain nt(t) has the

expectation value 〈nt(t)〉 = µ where µ is the mean of nt(t); however, for simplicity,

we set µ = 0 since we are only interested in determining the leading order depen-

dence of 〈δρ〉 on δA(f) and δφ(f). Therefore, 〈ñt(f)〉 = 0. Now, we can substitute

Equation 3.38 into δρ from Equation 3.36 and find the expectation value which is

〈δρ〉 = 〈ρm〉 − 〈ρt〉 (3.40)

= 2


∫∞

0
cos(δφ(t))|h̃(t)|2

[1+
δA(f)
A(f) ]St

df√∫∞
0

|h̃(t)|2

[1+
δA(f)
A(f) ]

2
St
df
−
√∫ ∞

0

|h̃(t)|2
St

df

 , (3.41)

where we use the identity

<e±iθ = < [cos(θ) + i sin(θ)] = cos(θ). (3.42)

In order to determine the leading order dependence of 〈δρ〉 on δA and δφ we will

simplify each term in Equation 3.40 separately, and then evaluate 〈δρ〉. We denote
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the three terms in 〈δρ〉 from Equation 3.40 as

X1 =

∫ ∞
0

cos(δφ)|ht|2[
1 + δA(f)

A(f)

]
St
df , (3.43)

and

X2 =

√√√√∫ ∞
0

|ht|2[
1 + δA(f)

A(f)

]2

St

df , (3.44)

and

X3 =

√∫ ∞
0

|ht|2
St

df , (3.45)

such that

〈δρ〉 = 2

[
X1

X2

−X3

]
. (3.46)

First, we simplify X1. We find that

X1 =

∫ ∞
0

cos(δφ)|ht|2[
1 + δA(f)

A(f)

]
St
df (3.47)

=

∫ ∞
0

|h2
t |
St

[
1− 1

2!
(δφ)2 +O

(
(δφ)4

)] [
1− δA

A
+

(
δA

A

)2

+O
(
(δA(f))3

)]
df

(3.48)

≈
∫ ∞

0

|h2
t |
St

[
1− 1

2
(δφ)2 − δA

A
+

(
δA

A

)2
]

df , (3.49)

where we use the Taylor expansions

cos(x) = 1− 1

2!
x2 +O(x4) , (3.50)

and

(1 + x)−1 = 1− x+ x2 +O(x3) . (3.51)

Since X1 was the only term in 〈δρ〉 with dependence on δφ, we see from Equation 3.47

that 〈δρ〉 has a quadratic dependence on changes in the phase of the response function.

We will have to evaluateX1, X2, andX3 to determine the dependence of 〈δρ〉 on δA(f)
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since all three terms depend on δA(f). Now, we simplify X2 which is

X2
2 =

∫ ∞
0

|ht|2[
1 + δA(f)

A(f)

]2

St

df (3.52)

=

∫ ∞
0

|ht|2
St

[
1− 2

δA

A
+ 3

(
δA

A

)2

+O
(
(δA(f))3

)]
df (3.53)

≈
∫ ∞

0

|ht|2
St

[
1− 2

δA

A
+ 3

(
δA

A

)2
]

df , (3.54)

where we use the Taylor expansion

(1 + x)−2 = 1− 2x+ 3x2 +O(x3) . (3.55)

We do not need to simplify X3 since it is a term within X1 from Equation 3.47.

Therefore, for brevity later, we define the three terms within X1, X2, and X3 as

x0 =

∫ ∞
0

|h2
t |
St

df , (3.56)

and

x1 =

∫ ∞
0

|h2
t | δAA
St

df , (3.57)

and

x2 =

∫ ∞
0

|ht|2
(
δA
A

)2

St
df . (3.58)

We write X1 as

X1 ≈ x0 + x1 , (3.59)

and we write X2 as

X2 ≈ (x0 − 2x1 + 3x2)−1/2 = x
1/2
0

[
1− 2

x1

x0

+ 3
x2

x0

]−1/2

(3.60)

≈ x
−1/2
0

[
1− 1

2

(
−2

x1

x0

+ 3
x2

x0

)
+O

((
−2

x1

x0

+ 3
x2

x0

)3
)]

(3.61)

≈ x
1/2
0

[
1 +

x1

x0

]
, (3.62)

where we used the Taylor expansion

(1 + x)−1/2 = 1− 1

2
x+

3

8
x2 +O

(
x3
)
. (3.63)
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Finally, we see that X3 can be written as

X3 = x
1/2
0 . (3.64)

Now, we can find the dependence of 〈δρ〉 on δA which is given by

〈δρ〉 ≈ 2

[
x
−1/2
0 [x0 − x1]

[
1 +

x1

x0

]
− x1/2

0

]
= 2

[
x

1/2
0

[
1−

(
x1

x0

)2
]
− x1/2

0

]
(3.65)

= −2

[
x1

x0

]2

(3.66)

= O
((

δA(f)

A(f)

)2
)
. (3.67)

Therefore, 〈δρ〉 has quadratic dependence on both changes in the amplitude and phase

of the response function.

Now that we know the dependence of 〈δρ〉 on the amplitude error and phase error

from the response function we can set requirements on the calibration errors that limit

loss in the detection rate. Since the matched-filter signal-to-noise ratio is inversely

proportional to the distance and the detection rate is proportional to volume of the

Universe which is observed by the detector, then we can find a relation between the

loss in the matched-filter signal-to-noise ratio and the detection rate. For example,

the template banks used in the PyCBC search are placed such that there is not more

than a 3.5% loss in the matched-filter signal-to-noise ratio [79]. Therefore, a 3.5%

loss in the matched-filter signal-to-noise ratio corresponds to a fractional loss in the

detection rate equal to 1− (1− 0.035)3 = 0.1 or 10%. We can use this to set required

bounds on the response function such that the loss in the detection rate is not greater

than 10%. This limit on the loss in the detection rate requires in the most extreme

cases where all the error only comes from the amplitude or phase which corresponds

to (
δA(f)

A(f)

)2

≤ 0.035 , (3.68)

and

(δφ(f))2 ≤ 0.035 . (3.69)

Therefore, the requirement on the amplitude error and phase error to limit the loss in

the detection rate to 10% is δA(f)/A(f) ≤ 19% and δφ(f) ≤ 0.19 rad = 11 degrees.
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3.5 Impact of calibration errors on the matched-filter signal-

to-noise ratio of GW150914

In Figures 23, 24, and 25 we show the change in the matched-filter signal-to-noise

ratio ρ for GW150914 when each time-dependent calibration parameter is varied. We

adjusted only one time-dependent calibration parameter to quantify the decrease in

ρ for each parameter separately. We present the results from the Hanford detector;

however, we observe similar results in both the Hanford and Livingston detectors.

We omit results for fs(t) and Q(t) since these parameters were not tracked during

Advanced LIGO’s first observing run. The waveform used in the matched-filter calcu-

lation was generated with the reduced-order SEOBNRv2 waveform model [42, 43] using

the best-fit parameters that the search reported for GW150914 in Ref. [4]; the compo-

nent masses m1 and m2 are 47.93 M� and 36.60 M�, and the component dimensionless

spins [47] χz1 and χz2 aligned with the angular momentum of the binary are 0.96 and

-0.90. The loss in the matched-filter signal-to-noise ratio depends quadratically on

the calibration parameters.

We include results from two calibrations of H1 data between 30 Hz and 2048 Hz.

The initial calibration called C01 was used in Ref. [4] to show the impact of calibration

errors on the detection of GW150914, and in Figures 23, 24, and 25 we present

results using the final calibrated gravitational-wave strain data called C02. The final

calibrated data includes time-dependent corrections for the sensing and actuation

functions.

Figures 23, 24, and 25 include histograms of the measured calibration parameters

for 2048 s on September 14, 2015, which encompasses the time of GW150914. These

parameters are found to typically deviate from their nominal values by less than∼ 5%.

Table 3.5 shows the minimum, maximum, and median of the measured calibration

parameters shown in these figures. Overall, the errors from typical measured values

of the time-dependent calibration parameters lead to a 1% loss in the matched-filter

signal-to-noise ratio. Therefore, even if these temporal variations in the sensing and

actuation functions were not modeled, then the errors from the calibration would not

have a significant impact on the matched-filter signal-to-noise ratio of GW150914.
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Parameter (Units) Minimum Maximum Median (90% Percentile)

<κtst 1.029 1.043 1.037+0.004
−0.005

=κtst -0.021 -0.008 −0.013+0.004
−0.006

<κpu 1.029 1.043 1.037+0.004
−0.005

=κpu -0.028 -0.010 −0.020+0.008
−0.005

κC 0.990 1.006 0.997+0.005
−0.005

∆fc (Hz) -9.807 7.021 −1.393+7.097
−7.211

Table 1 : Table of measured time-dependent calibration parameter values for analysis time on

September 15. 2015. The 90% percentile is the interval that contains 90% of the total samples. The

change in the cavity pole frequency ∆fc is offset from the measured value of 341 Hz.

3.6 Impact of calibration errors on the matched-filter signal-

to-noise ratio of binary neutron star and black hole merg-

ers with a total mass up to 100 M�

To assess the impact of time-dependent calibration errors for a range of masses and

spins we generate a population of simulated signals and calculate the match [5] as we

vary each time-dependent calibration parameter separately. The match is the maxi-

mum overlap of two waveforms marginalized over time and phase [5] which represents

the fraction of the optimal matched-filter signal-to-noise ratio [115] of the frequency-

domain signal h̃t(f) captured by the template waveform h̃m(f). Here, the loss is due

to calibration errors and we defined the match as

Match = max
t, φ

〈
h̃t(f)|h̃m(f)

〉
, (3.70)

where the inner product is defined as〈
h̃t(f)|h̃m(f)

〉
= 4<

∫ ∞
0

h̃t(f)h̃∗m(f)

Sn(f)
df , (3.71)

where Sn(f) is the one-sided average power spectral density of the detector.

We generate 200 simulated binary neutron star mergers with both m1 and m2

between 1 M�and 2 M�, 200 simulated neutron star-black hole mergers with m1

between 2 M� and 99 M� and m2 between 1 M� and 2 M�, and 1100 simulated

binary black hole mergers with m1 and m2 between 2 M� and 99 M�. The limit on

the dimensionless spins of the component masses match the search space in Ref. [75]



51

which is informed by radio and X-ray observations of compact-object binaries. We

limit the dimensionless spin of masses < 2 M� to 0.05 which is higher than the

shortest observed pulsar period observed in a double neutron star system [123]. For

masses > 2 M� the spin magnitude is limited to 0.9895 which is the upper limit of

our ability to generate valid template waveforms at high spins with the SEBONRv2

waveform model [42].

Figures 26, 27, 28, and 29 shows the difference from each time-dependent calibra-

tion parameter’s nominal value that corresponds to a 1% loss in the matched-filter

SNR. The analysis that produces Figures 26, 27, 28, and 29 uses the calibration model

from the calibration epoch beginning January 3, 2017, in Advanced LIGO’s second

observing run and includes fs(t) and Q(t). Figures 26, 27, 28, and 29 shows that all

time-varying calibration parameters lose >1% matched-filter SNR beyond the typical

observed values of the time-dependent calibration parameters during the calibration

epoch. The search uses template banks that limit the loss in the matched-filter

signal-to-noise ratio due to the discrete nature of the bank to <3% [80, 81, 82, 83].

For typical measured values of the time-dependent calibration parameters, we see

the loss in matched-filter signal-to-noise ratio from uncertainty in the calibration is

less than the loss in matched-filter signal-to-noise ratio from the discretization of the

template bank.

3.7 Impact of calibration errors on the detection statistic of

GW150914

In Advanced LIGO’s first observing run the PyCBC search used a detection statis-

tic [46] ρ̂ that weights the matched-filter signal-to-noise ratio ρ by a signal consistency

test χ2 [106]. The detection statistic ρ̂ is defined as

ρ̂ = ρ

[
1

2

(
1 +

(
χ2

ndof

)3
)]−1/6

, (3.72)

where the number of degrees of freedom is determined by the number of equal-power

frequency bins p by ndof = 2p− 2 [106]. From Equation 3.72 we see that the decrease

in matched-filter signal-to-noise ratio from calibration errors examined in Sec. 3.4 will

affect the detection statistic.
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Parameter (Units) Minimum Maximum Median (90% Percentile)

<κtst 1.027 1.049 1.037+0.004
−0.005

=κtst -0.024 -0.005 −0.013+0.004
−0.005

<κpu 1.027 1.049 1.037+0.004
−0.005

=κpu -0.032 -0.005 −0.018+0.006
−0.007

κC 0.986 1.032 1.002+0.021
−0.009

∆fc (Hz) -5.785 9.011 1.889+3.470
−4.196

Table 2 : Table of measured time-dependent calibration parameter values for analysis time on

September 14 and September 15. 2015. The 90% percentile is the interval that contains 90% of the

total samples. The change in the cavity pole frequency ∆fc is offset from the measured value of

341 Hz.

The method described in Section 3.3 is used to assess the impact of temporal varia-

tions in the calibration. We generate simulated signals, add them to the gravitational-

wave strain from the detector, and then adjusting the gravitational-wave strain with

artificial values of the time-dependent calibration parameters. The simulated signals

use the same gravitational waveform which is generated with the parameters of the

best-fit template waveform for GW150914. We add the gravitational waveform into

16 different noise realizations from Advanced LIGO’s first observing run on Septem-

ber 14, and September 15, 2015. These two days were chosen so we could sample

noise realizations around the time GW150914. In Figures 30, 31, and 32, we show the

results for variations in κC(t), fc(t), <κtst(t), =κtst(t), <κpu(t), and =κpu(t). Large

amplitude noise due to fluctuations in the boundaries of the χ2 bins used in the χ2

calculation dominates over any trend due to the artificially varied time-dependent

calibration parameters. We fit a quadratic curve to the ensemble of 16 simulated

signals. For extreme variations in these parameters the loss in the expectation value

of ρ̂ can be as much as 20%; however, as shown by the histograms, these parameters

rarely deviate by more than 5% from their nominal values. Table 3.7 shows the min-

imum, maximum, and median values for the time-dependent calibration parameters

during these times. For this range of values, the loss in the expectation value of ρ̂ is

less than 3%. Since in practice the detection statistic is used to calculate sensitive

volume of the PyCBC search, then the loss in the detection rate due to calibration

errors in less than 10%.
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Parameter (Units) Minimum Maximum Median (90% Percentile)

<κtst 1.002 1.010 1.006+0.002
−0.002

=κtst -0.008 -0.004 −0.006+0.001
−0.001

<κpu 1.002 1.010 1.006+0.002
−0.002

=κpu -0.001 0.012 0.008+0.002
−0.008

κC 1.019 1.056 1.035+0.013
−0.010

∆fc (Hz) -18.206 -2.583 −12.981+7.317
−3.331

∆fs (Hz) -0.737 2.676 1.337+0.750
−1.204

∆Q−1 -0.490 0.356 −0.083+0.184
−0.203

Table 3 : Table of measured time-dependent calibration parameter values for analysis time on

January 19 and January 20, 2016. The 90% percentile is the interval that contains 90% of the total

samples. The change in the cavity pole frequency ∆fc, optical spring frequency ∆fs, and inverse

dimensionless quality factor ∆Q−1 are offset from their measured values of 360 Hz, 6.9 Hz and 0.05

respectively.

3.8 Impact of calibration errors on the detection statistic of

a simulated 30-30 M� binary black hole merger

The results from Section 3.8 do not include corrections for time-depedent changes in

the signal recycling cavity. In Figures 33, 34, 35, and 36 we show the results from

a simulated non-spinning, 30-30 M� in 16 noise realizations from Advanced LIGO’s

second observing run on January 19 and January 20, 2017, which includes results for

fs(t) and Q(t). For typical values of fs(t) and Q(t) the expectation value of loss in

ρ̂ is less than 3% as well. The minimum, maximum, and median of the measured

calibration parameters for these times are listed in Table 3.8.

3.9 Conclusions

We present the method used for simulating calibration errors in Advanced LIGO data

to assess the impact of time-dependent calibration errors for GW150914. The model

considers the impact of calibration errors from temporal drift in the Advanced LIGO

sensing and actuation functions.

We use this method to show the impact of time-dependent calibration errors on

GW150914 using the final Advanced LIGO calibration. We show the loss in the
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matched filter signal-to-noise ratio is quadratic when the time-dependent calibration

parameters are varied, and they account for a 1% loss in signal-to-noise ratio for

typical measured values of the parameters. Over the same range of values, the expec-

tation value of the detection statistic was found to lose up to 3% from the quadratic

fit. Extreme temporal variations may cause up to a 20% loss in the detection statistic;

however, the time-dependent calibration parameters are tracked and do not deviate

from the nominal values this much. Therefore, under normal operating conditions,

calibration errors from the time-dependent variations would not have strongly impact

the detection of signals like GW150914.

Using a population of simulated signals with total mass up to 100 M�, we find

that the loss in matched-filter signal-to-noise ratio due to time-dependent calibration

errors is <1%.

For Advanced LIGO’s second observing run we extended our models to include

corrections for temporal drift in the signal recycling cavity. We examined the loss in

the matched-filter signal-to-noise ratio for a population of simulated binary neutron

star, neutron star-black hole, and binary black hole mergers. We found that the loss in

signal-to-noise ratio from calibration errors is less than the loss from the discretization

of the template bank. Finally, we show the loss in detection statistic from temporal

drift in the signal recycling cavity spring frequency and dimensionless quality factor

for a non-spinning 30-30 M� binary black hole merger. We found for typical measured

values of the signal recycling cavity parameters the loss was up to 3% which is similar

to the other time-dependent calibration parameters.
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Figure 19 : The fractional amplitude error δA(f, t)/A(f, t) and phase error δφ(f, t) as <κtst and

=κtst varied. Here, we use the model from the calibration epoch beginning on January 3, 2017,

during Advanced LIGO’s second observing run.
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Figure 20 : The fractional amplitude error δA(f, t)/A(f, t) and phase error δφ(f, t) as <κpu and

=κpu are varied. Here, we use the model from the calibration epoch beginning on January 3, 2017,

during Advanced LIGO’s second observing run.
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Figure 21 : The fractional amplitude error δA(f, t)/A(f, t) and phase error δφ(f, t) as κC and ∆fc

are varied. Here, we use the model from the calibration epoch beginning on January 3, 2017, during

Advanced LIGO’s second observing run.
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Figure 22 : The fractional amplitude error δA(f, t)/A(f, t) and phase error δφ(f, t) as ∆fs and

∆Q−1 are varied. Here, we use the model from the calibration epoch beginning on January 3, 2017,

during Advanced LIGO’s second observing run.
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Figure 23 : Variation in the matched-filter signal-to-noise ratio ρ when <κtst and =κtest are adjusted

for GW150914. The best-fit waveform parameters from the search results reported in Ref. [4] were

used to generate the template waveform to calculate ρ. The blue curve was computed using the initial

calibration and the orange curve was computed using the final calibration from Advanced LIGO’s

first observing run. The black histogram represents the measured values of the time-dependent

calibration parameters for times used in the analysis on September 14, 2015.
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Figure 24 : Variation in the matched-filter signal-to-noise ratio ρ when <κpu and =κpu are adjusted

for GW150914. The best-fit waveform parameters from the search results reported in Ref. [4] were

used to generate the template waveform to calculate ρ. The blue curve was computed using the initial

calibration and the orange curve was computed using the final calibration from Advanced LIGO’s

first observing run. The black histogram represents the measured values of the time-dependent

calibration parameters for times used in the analysis on September 14, 2015.
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Figure 25 : Variation in the matched-filter signal-to-noise ratio ρ when κC and ∆fc are adjusted for

GW150914. The best-fit waveform parameters from the search results reported in Ref. [4] were used

to generate the template waveform to calculate ρ. The blue curve was computed using the initial

calibration and the orange curve was computed using the final calibration from Advanced LIGO’s

first observing run. The black histogram represents the measured values of the time-dependent

calibration parameters for times used in the analysis on September 14, 2015. The change in the

cavity pole frequency ∆fc is offset from the measured value of 341 Hz.
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Figure 26 : The difference from the nominal value that corresponds to a match [5] of 0.99 which

is a 1% loss in the matched-filter signal-to-noise ratio. Smaller differences corresponds to a steeper

quadratic dependence.
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Figure 27 : The difference from the nominal value that corresponds to a match [5] of 0.99 which

is a 1% loss in the matched-filter signal-to-noise ratio. Smaller differences corresponds to a steeper

quadratic dependence.
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Figure 28 : The difference from the nominal value that corresponds to a match [5] of 0.99 which

is a 1% loss in the matched-filter signal-to-noise ratio. Smaller differences corresponds to a steeper

quadratic dependence.
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Figure 29 : The difference from the nominal value that corresponds to a match [5] of 0.99 which

is a 1% loss in the matched-filter signal-to-noise ratio. Smaller differences corresponds to a steeper

quadratic dependence.
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Figure 30 : Variation in the detection statistic ρ̂ when the time-dependent calibration parameters

are adjusted for GW150914. The best-fit waveform parameters from the search results reported in

Ref. [4] were used to generate the template waveform to calculate ρ̂. The blue solid curve represents

ρ̂ averaged over 16 noise realizations in Advanced LIGO’s first observing run. The orange dashed

curve is a quadratic fit, and it represents the approximate behavior of ρ̂ for a large population of

simulated signals. The maximum ρ̂ recovered over all 16 noise realizations is denoted as ρ̂max. The

black histogram represents the measured values of the time-dependent calibration parameters for

times used in the analysis on September 14 and September 15, 2015.
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Figure 31 : Variation in the detection statistic ρ̂ when the time-dependent calibration parameters

are adjusted for GW150914. The best-fit waveform parameters from the search results reported in

Ref. [4] were used to generate the template waveform to calculate ρ̂. The blue solid curve represents

ρ̂ averaged over 16 noise realizations in Advanced LIGO’s first observing run. The orange dashed

curve is a quadratic fit, and it represents the approximate behavior of ρ̂ for a large population of

simulated signals. The maximum ρ̂ recovered over all 16 noise realizations is denoted as ρ̂max. The

black histogram represents the measured values of the time-dependent calibration parameters for

times used in the analysis on September 14 and September 15, 2015.
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Figure 32 : Variation in the detection statistic ρ̂ when the time-dependent calibration parameters

are adjusted for GW150914. The best-fit waveform parameters from the search results reported in

Ref. [4] were used to generate the template waveform to calculate ρ̂. The blue solid curve represents

ρ̂ averaged over 16 noise realizations in Advanced LIGO’s first observing run. The orange dashed

curve is a quadratic fit, and it represents the approximate behavior of ρ̂ for a large population of

simulated signals. The maximum ρ̂ recovered over all 16 noise realizations is denoted as ρ̂max. The

black histogram represents the measured values of the time-dependent calibration parameters for

times used in the analysis on September 14 and September 15, 2015. The change in the cavity pole

frequency ∆fc is offset from the measured value of 341 Hz.
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Figure 33 : Variation in the detection statistic ρ̂ when the time-dependent calibration parameters

are adjusted for a non-spinning 30-30 M� binary black hole merger simulated signal. The blue solid

curve represents ρ̂ averaged over 16 noise realizations in Advanced LIGO’s second observing run.

The orange dashed curve is a quadratic fit, and it represents the approximate behavior of ρ̂ for

a large population of simulated signals. The maximum ρ̂ recovered over all 16 noise realizations

is denoted as ρ̂max. The black histogram represents the measured values of the time-dependent

calibration parameters for times used in the analysis on January 19 and January 20, 2017.
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Figure 34 : Variation in the detection statistic ρ̂ when the time-dependent calibration parameters

are adjusted for a non-spinning 30-30 M� binary black hole merger simulated signal. The blue solid

curve represents ρ̂ averaged over 16 noise realizations in Advanced LIGO’s second observing run.

The orange dashed curve is a quadratic fit, and it represents the approximate behavior of ρ̂ for

a large population of simulated signals. The maximum ρ̂ recovered over all 16 noise realizations

is denoted as ρ̂max. The black histogram represents the measured values of the time-dependent

calibration parameters for times used in the analysis on January 19 and January 20, 2017.
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Figure 35 : Variation in the detection statistic ρ̂ when the time-dependent calibration parameters

are adjusted for a non-spinning 30-30 M� binary black hole merger simulated signal. The blue solid

curve represents ρ̂ averaged over 16 noise realizations in Advanced LIGO’s second observing run.

The orange dashed curve is a quadratic fit, and it represents the approximate behavior of ρ̂ for a large

population of simulated signals. The maximum ρ̂ recovered over all 16 noise realizations is denoted

as ρ̂max. The black histogram represents the measured values of the time-dependent calibration

parameters for times used in the analysis on January 19 and January 20, 2017. The change in the

cavity pole frequency ∆fc is offset from the measured values of 360 Hz.
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Figure 36 : Variation in the detection statistic ρ̂ when the time-dependent calibration parameters

are adjusted for a non-spinning 30-30 M� binary black hole merger simulated signal. The blue solid

curve represents ρ̂ averaged over 16 noise realizations in Advanced LIGO’s second observing run.

The orange dashed curve is a quadratic fit, and it represents the approximate behavior of ρ̂ for a large

population of simulated signals. The maximum ρ̂ recovered over all 16 noise realizations is denoted

as ρ̂max. The black histogram represents the measured values of the time-dependent calibration

parameters for times used in the analysis on January 19 and January 20, 2017. The change in the

optical spring frequency ∆fs, and inverse dimensionless quality factor ∆Q−1 are offset from their

measured values of 6.9 Hz and 0.05 respectively.
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Chapter 4

A parameter estimation pipeline

for binary neutron star and black

hole mergers in Advanced LIGO

data

4.1 Introduction

The primary science product of the parameter estimation analyses is the posterior

probability density function p(~θ|{di(t)}, H) which describes the probability of obtain-

ing a set of astrophysical parameters ~θ in a model of gravitational radiation from

compact-object mergers H and a gravitational-wave observatory network dataset

{di(t), 1 < i < N} with N detectors. Precessing binary neutron star and black

hole mergers depend on 15 astrophysical parameters which can include: the compo-

nent masses m1 and m2 (2 parameters), the component spins of the compact objects

in three-dimensions (6 parameters), the luminosity distance dL to the binary (1 pa-

rameter), the right ascension α and the declination δ of the binary (2 parameters),

its polarization ψ (1 parameter), the binary inclination angle ι (1 parameter), the

coalescence time tc (1 parameter), and the phase at the time of coalescence φc (1

parameter). The domains of these 15 model parameters are shown in Table 4.

The posterior probability density function can be computed using Bayes’ theorem
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which describes the posterior probability density function as

p(~θ|{di(t)}, H) =
p(~θ|H)p({di(t)}|~θ,H)

p({di(t)}|H)
, (4.1)

where p(~θ|H) is the prior probability density function which describes our knowledge

about the parameters before evaluating the posterior probability density function,

p({di(t)}|~θ,H) is the likelihood which is the probability of obtaining the dataset given

the parameters, and p({di(t)}|H) is the evidence. The evidence is a normalization

constant that does not affect estimating the parameters with a single model. However,

the evidence allows us to compare different models [47, 124]. In this chapter, we do

not explore Bayesian model selection and restrict our investigations to estimating the

posterior probability density functions.

Stochastic sampling techniques, and in particular Markov-chain Monte Carlo

methods, have been used to numerically evaluate the posterior probability density

function of binary black hole mergers [47, 2]. In ensemble Markov chain Monte Carlo

sampling algorithms, an ensemble of Markov chains move around the parameter space

according to a set of rules. Markov chains are members of the ensemble which keep a

record of where they have traveled in the parameter space. Eventually the ensemble

of Markov chains converge to a distribution that is a sampling of the posterior prob-

ability density function. The astrophysical parameters ~θ can then be estimated from

histograms of the position of the Markov chains in the parameter space.

In this chapter, we present PyCBC Inference: a new Bayesian analysis framework

for estimating the parameters of compact-object mergers. In Sec. 4.2 we explain our

model of the likelihood function used in the calculation of the posterior probability

density function for a candidate event. Section 4.3 describes how we evaluate and

sample the choices of priors. PyCBC Inference is a flexible framework which allows

the choice of multiple sampling algorithms. We have included methods to import

two open-source, independent, ensemble Markov-chain Monte Carlo sampling algo-

rithms. We describe ensemble Markov chain Monte Carlo sampling in Section 4.4.

Then, in Sections 4.5 and 4.6, we summarize the two sampling algorithms that have

been added. In Section 4.7, we present the similarities and differences between Py-

CBC Inference and the LALInference parameter estimation package which was used

to publish the parameter estimates of the binary black hole mergers observed dur-

ing Advanced LIGO’s first observing run. In Sec. 4.8 we use the binary black hole
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Parameter Symbol Unconstrained Domain

Right ascension α [0, 2π)

Declination δ [−π
2
, π

2
]

Polarization angle ψ [0, 2π)

Primary mass m1 >0 M�

Secondary mass m2 >0 M�

Luminosity distance dL >0 Mpc

Inclination ι [−π
2
, π

2
]

Coalescence time tc (−∞,∞)

Coalescence phase φc [0, 2π)

Dimensionless spin magnitude χi [0,1], i ∈ {1, 2}
Dimensionless spin azimuthal angle θai [0, 2π), i ∈ {1, 2}
Dimensionless spin polar angle θpi [−π

2
, π

2
], i ∈ {1, 2}

Table 4 : Table of model parameters. Note that not all waveform models include every parameter,

and may only be valid for particular choices of mass and spin parameters. Spin parameters are

expressed in spherical coordinates where θpi = π
2 is aligned with the angular momentum of the binary.

Some models may choose to use mass or spin parameters that are functions of the component masses

and spins as well. In this convention, ι = −π2 corresponds to a face-on binary (line of sight parallel to

binary angular momentum), ι = 0 corresponds to an edge-on binary (line of sight perpendicular to

binary angular momentum), and ι = π
2 corresponds to a face-away binary (line of sight anti-parallel

to binary angular momentum).

mergers observed during Advanced LIGO’s first observing run to demonstrate Py-

CBC Inference. Finally, in Sec. 4.9 we suggest future development plans for PyCBC

Inference.

4.2 Likelihood

In order to evaluate the posterior probability density function p(~θ|{di(t)}, H) we need

a model of the likelihood p({di(t)}|~θ,H) and a choice of prior p(~θ|H) probability

density functions. Our model for the likelihood assumes that the noise in the dataset

{di(t)} is stationary and Gaussian [47]. The gravitational-wave strain time series for

a single detector is di(t), and the single-detector detector data can be decomposed

into di(t) = si(t) + ni(t) where si(t) is the astrophysical signal and ni(t) is detector

noise. Since we do not know the true signal si(t) we choose a model H to generate
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h̃i(f, ~θ) which is the frequency-domain gravitational waveform with parameters ~θ.

The natural logarithm of the likelihood is

log p({di(t)}|~θ) = −1

2

N∑
i=1

〈ñi(f)|ñi(f)〉 (4.2)

= −1

2

N∑
i=1

〈
d̃i(f)− h̃i(f, ~θ)|d̃i(f)− h̃i(f, ~θ)

〉
, (4.3)

where ñ(f) denotes the Fourier transform of time series n(t), and the inner product〈
ã(f)|b̃(f)

〉
is given by

〈
ã(f)|b̃(f)

〉
= 4<

∫ ∞
0

ã(f)b̃(f)

Sn(f)
df . (4.4)

Since the detectors are at different locations on Earth, we must account for the

relative time delay and sensitivity to a particular sky position for each detector in

Equation 4.2. The astrophysical gravitational-wave waveform h̃i,~θ(f) generated with

model H and astrophysical parameter set ~θ in a particular detector can be written as

h̃i(f, ~θ) =
[
F+,i(α, δ, ψ)h̃+(f, ~θ′) + F×,i(α, δ, ψ)h̃×(f, ~θ′)

]
, (4.5)

where F+,i(α, δ, ψ) and F×,i(α, δ, ψ) are the antenna pattern of the detector which gives

the amplitude response of the antenna to the two gravitational-wave polarizations

h̃+(f, ~θ′) and h̃×(f, ~θ′) [125]. The antenna patterns are known functions that depend

on the Euler angles that transform from the detector frame to the radiation frame;

physically these Euler angles are the sky position (right ascension α and declination

δ) and the polarization ψ of the astrophysical source [125]. The two polarizations

h+(t, ~θ′) and h×(t, ~θ′) depend on the waveform model H that is selected to compute

h̃i(f, ~θ) where ~θ′ = ~θ \ {α, δ, ψ}.
The likelihood from parameter estimation and the matched-filter signal-to-noise

ratio are closely related quantities. The matched-filter search’s goal is to maximize

the likelihood ratio Λ [126]. The likelihood ratio comes from finding the ratio of the

probability that a signal is present given the dataset p(s(t)|{di(t)}) and the probability

there is no signal given the dataset p({0|di(t)}) = 1− p(s(t)|{di(t)}). We use Bayes’
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theorem to find that [126]

p({di(t)}|s(t)) =
p(h)p(s(t)|h(t))

p(s(t))
(4.6)

=
p(h(t))p(s(t)|h(t))

p(h(t))p(s(t)|h(t)) + p(0)p(s(t)|0)
(4.7)

=

p(s(t)|h(t))
p(s(t)|0)

p(s(t)|h(t))
p(s(t)|0)

+ p(0)
p(h(t))

(4.8)

=
Λ

Λ + p(0)
p(h(t))

(4.9)

where Λ = p(s(t)|h(t))/p(s(t)|0) is the likelihood ratio. Now, we can find the ratio of

the probabilities which is

p({s(t)|di(t)})
p({0|di(t)})

=
p({s(t)|di(t)})

1− p({s(t)|di(t)})
= Λ

p(h(t))

p(0)
, (4.10)

since p(h(t))/p(0) is a constant the search needs to find the maximums in the likeli-

hood ratio.

We can evaluate the likelihood ratio using the probability of obtaining the inter-

ferometer output in the absence of signal s(t) = n(t) and the probability density of

obtaining s(t) in the presence of a signal s(t) = n(t) + h(t). We can write Λ in terms

of s(t) and h(t) which is given by [126]

Λ =
p(h(t)|s(t))
p(0|s(t)) (4.11)

=
p(s(t)− h(t))

p(n(t))
(4.12)

= e−
1
2
〈s(t)−h(t)|s(t)−h(t)〉e

1
2
〈s(t)|s(t)〉 , (4.13)

and the natural logarithm of Λ is

log(Λ) = −1

2
〈s(t)− h(t)|s(t)− h(t)〉+

1

2
〈s(t)|s(t)〉 . (4.14)

If we compare Equations 4.2 we see that the likelihood from parameter estimation

and likelihood ratio from the search are closely related quantities. If we simplify

Equation 4.14 we find that

log(Λ) = 〈s(t)|h(t)〉 − 1

2
〈h(t)|h(t)〉 . (4.15)

In practice, the search chooses to only compute 〈s(t)|h(t)〉 which is the matched-filter

signal-to-noise ratio to maximize log(Λ).
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4.3 Priors

The prior p(~θ|H) represents our knowledge about the parameters in model H before

the dataset {di(t)} is analyzed. The prior is a known set of probability distributions

for each parameter in ~θ. Here, we treat each parameter independently such that

p(~θ|H) =
N∏
i=1

p(θi) , (4.16)

where N is the number of parameters in ~θ and p(θi) is the prior probability density

function for a single parameter θi.

We try to choose priors that make minimal assumptions about the distribution of

the parameters. Models of precessing binary black hole mergers depend on 15 param-

eters: the component masses m1 and m2, the component spins in three-dimensions,

the luminosity distance dL, the right ascension α, the declination δ, the polarization

ψ, the binary inclination angle ι, the coalescence time tc, and the phase at the time of

coalescence φc. Here, we describe the distribution uniform in a power law, isotropic

distributions, and distributions that are uniform in the logarithm. Specific choices for

the bounds of distributions are described for their respective analysis in Section 4.8.

For each distribution we find the probability density function to evaluate the prior in

the computation of the posterior, and we show how to draw samples from each dis-

tribution. These distributions are used to generate distributions of simulated signals

as well.

We choose a uniform prior for the component masses, coalescence time, and spin

magnitudes, and a distribution that is uniform in volume for the distance. Both

the uniform distribution and the distribution of the radial component in spherical

coordinates that is uniform in volume are part of a family of probability density

functions with the form

p(x) ∼ xn , (4.17)

where n is a real number and x is bounded between a and b. We can find a general

expression that describes both of these probability density functions which we have

implemented in PyCBC Inference. We can use the cumulative distribution function

to normalize the probability density function

p(x) = cxn , (4.18)
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where c is an unknown constant. The cumulative distribution function is the integral

of the probability density function which is given by

P (x) =

∫ b

a

cxndx =
c

n+ 1
xn+1 + k , (4.19)

where k is a constant of integration. From the definition of the cumulative distribution

function we know that P (a) = 0 and P (b) = 1. We can solve for c using the following

system of equations

P (a) = 0 =
c

n+ 1
an+1 + k (4.20)

P (b) = 1 =
c

n+ 1
bn+1 + k , (4.21)

to get

c =
n+ 1

bn+1 − an+1
. (4.22)

If we substitute c into the expression for P (a) = 0, then we can solve for k where

k = − c

n+ 1
an+1 = − an+1

bn+1 − an+1
. (4.23)

Therefore the normalize probability density function is

p(x) =
n+ 1

bn+1 − an+1
xn , (4.24)

and the normalized cumulative distribution function is

P (x) =
1

bn+1 − an+1
xn+1 − an+1

bn+1 − an+1
. (4.25)

We also need the capability to sample these two distributions. Now we can use the

probability integral transform method [127] to find a general expression that uses

a uniform distribution of numbers u between 0 and 1 to sampling the distribution.

The generalized expression can be found by finding P−1(u) which is the inverse of

the cumulative probability density function evaluated for uniform numbers u on the

interval between 0 and 1. To find P−1(u) we solve P (x) = u for x. This gives

P (x) = u (4.26)

1

bn+1 − an+1
xn+1 − an+1

bn+1 − an+1
= u (4.27)

x =
[
(bn+1 − an+1)u− an+1

] 1
n+1 . (4.28)
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This expression is used to sample the probability density function p(x) = cxn by

drawing uniform numbers between 0 and 1 and then evaluating Equation 4.26.

The uniform distribution used for the component mass, coalescence time, and

spin magnitude priors corresponds to the n = 0 case. We see the probability density

function for the uniform distribution is

p(x) =
1

b− a . (4.29)

Sampling this uniform distribution is simply an offset from sampling the uniform

distribution between 0 and 1 which is given by

x = (b− a)u+ a . (4.30)

Some analyses use uniform priors that are more complex than an n-sided cube of

uniform distribution and we provide a method for properly normalizing these distri-

butions. For example, the analysis of GW151226 [110] used a uniform prior in the

component masses bounded by chirp masses between 9.5 M� and 10.5 M�, and mass

ratio between 1 and 18; however, using this more complex geometry requires us to

carefully normalize the prior probability density function. If we have multidimen-

sional uniform prior p′(~θ) for parameters ~θ with arbitrary bounds, then we can choose

an n-sided cube of uniform prior p(~θ) with bounds that encompass the entire param-

eter space of p′(~θ). Then, we can perform rejection sampling which entails drawing

points from p(~θ) and rejecting all draws that lie outside the bounds of p′(~θ). Now, the

normalized uniform probability density function p′(~θ) can be found evaluated from

p′(~θ) = ξp(~θ) , (4.31)

where ξ is the fraction of samples accepted from rejection sampling p′(~θ) with the

bounds of p(~θ). This method is applicable to uniform distributions, and for non-

uniform, arbitrary distributions we have implemented a method that fits Gaussians

to the distribution called Gaussian kernel-density estimation; however, we do not

describe that method here since it is not used in this analysis.

The n = 2 case from this family of distributions can be used to sample a distri-

bution uniform in volume where the distance is the radial component and the right

ascension and declination are the angular components in spherical coordinates. In
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the radial dimension, the cumulative distribution function of a distribution that is

uniform in volume is the ratio of volumes

P (x) =
V (x)− V (a)

V (b)
, (4.32)

where V (x) is the volume of a sphere

V (x) =
4

3
πx3 , (4.33)

therefore the cumulative distribution function is

P (x) ∼ x3 . (4.34)

This corresponds to the n = 2 case in Equations 4.24 and 4.26 which gives a proba-

bility density function

p(x) =
3

b3 − a3
x2 , (4.35)

that can be sampled using

x =
[
(b3 − a3)u+ a3

]1/3
. (4.36)

Alternatively, we provide a method to use rejection sampling for sampling a sphere

uniformly. We draw samples in a cube where each dimension is a uniform distribution,

then discard samples that are outside the sphere. The fraction of samples discarded

is found by calculating the probability a point is inside a sphere given the point is in

inside a cube which is

p(in sphere|in cube) =
4
3
πx3

8x3
= 0.52 . (4.37)

Note that we use 8x3 for the volume because we define the length of one side of the

cube to be twice the radius of the sphere which is 2x.

Models of binary neutron star and black hole mergers have a number of angular

parameters which cannot be placed uniformly on the surface of a sphere with only

the family of distributions described above. We use an isotropic prior which does

place points uniform on a sphere for the angular sky position and orientation param-

eters which includes the right ascension, the declination, polarization, the inclination,

the coalescence phase, and the component spin angles. We can follow the same pre-

scription to determine the probability density function of the isotropic distribution
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and how to draw points from the isotropic distribution. In spherical coordinates,

we will need to determine these functions for the azimuthal and polar angles. The

azimuthal angle in an isotropic distribution is simply a uniform distribution from 0

to 2π; therefore, we use a uniform distribution for the right ascension, the polariza-

tion, the coalescence phase, and the azimuthal spin angles. The probability density

function of the polar angle in spherical coordinates is

p(x) = c sin(x) , (4.38)

where c is a constant and x is bounded between a = −π/2 and b = π/2. We use this

probability density function for declination, inclination, and polar spin angles. From

this we see that the cumulative distribution function is

P (x) = −c cos(x) + k , (4.39)

and solving for c and k using P (a) = 0 and P (b) = 1 gives

c = − 1

cos(b)− cos(a)
, (4.40)

and

k = − cos(a)

cos(b)− cos(a)
. (4.41)

Therefore we can evaluate the probability density function for declination and incli-

nation as

p(x) = − 1

cos(b)− cos(a)
sin(x)− cos(a)

cos(b)− cos(a)
, (4.42)

and draw samples from the distribution with

x = arccos

(
(cos(b)− cos(a))u+

cos(a)

cos(b)− cos(a)

)
. (4.43)

One additional distribution used in Chapter 5 to draw distances for a population

of simulated signals is a distribution uniform in the logarithm. This distribution was

chosen instead of a uniform volume distribution of sources in the Universe because a

uniform volume distribution has more probability of drawing further distances which

results in more simulated signals with low signal-to-noise ratio. Here, we find the

probability density function in base 10. We want the distribution that can be samples

log10(x) = u/c − k where c and k are constants and u is a sampling of uniform
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numbers between 0 and 1. This corresponds to the cumulative distribution function

P (x) = c log10(x) + k with the system of equations where P (a) = 0 and P (b) = 1.

We find that

c =
1

log10(b)− log10(a)
, (4.44)

and

k = − log10(a)

log10(b)− log10(a)
. (4.45)

Using the fact that the probability density function is the derivative of the cumulative

distribution function, d
dx
P (x) = p(x), we get

p(x) =
1

log10(b)− log10(a)

1

log(10)x
, (4.46)

where log(10) denotes the natural logarithm of 10. This distribution can be sampled

with

x = 10(log10(b)−log10(a))u+log10(a) . (4.47)

The probability density function that is uniform in the base 10 logarithm is the

same as other probability density functions that are uniform in a different base. Here,

we show that their probability density functions are equivalent. We can generalized

Equation 4.47 to sample a uniform distribution in the base B logarithm as

x = B(logB(b)−logB(a))u+logB(a) , (4.48)

which has a cumulative distribution function of

P (x) =
1

logB(b)− logB(a)
logB(x)− logB(a)

logB(b)− logB(a)
. (4.49)

The probability density function is p(x) = d
dx
P (x) so we find that the probability

density function is

p(x) =
1

logB(b)− logB(a)

d

dx
(logB(x)) (4.50)

=
1

(logB(b)− logB(a)) log(B)

1

x
. (4.51)

We can rewrite Equation 4.50 using the identity

logA(B) logB(x) =
log(x)

log(A)
, (4.52)
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where A and B are two bases, and log is the natural logarithm. In our case A = e

and Equation 4.52 reduces to

log(B) logB(x) = log(x) . (4.53)

Using Equation 4.53 we can reduce Equation 4.50 to

p(x) =
1

log(b)− log(a)

1

x
. (4.54)

Equations 4.46 and 4.54 are equivalent; however, in our analysis, we have chosen to

evaluate the distribution in base 10.

4.4 Ensemble Markov-chain Monte Carlo sampling

Ensemble Markov-chain Monte Carlo sampling algorithms initialize a set of Markov

chains in the parameter space. A simple choice to initialize the i-th Markov chain

in the ensemble is to draw a set of parameters ~θ
(i)
0 from a given prior probability

density function. The Markov chains move around the parameter space according

to the following set of rules. At iteration n, the i-th Markov chain has the set of

parameters ~θ
(i)
n . The sampling algorithm chooses a new proposed set of parameters

~θ
(i)
k with probability q(~θ

(i)
n , ~θ

(i)
k ). When a new set of parameters is proposed the sampler

computes an acceptance probability α which determines if the Markov chain should

move to the proposed parameter set ~θ
(i)
k such that ~θ

(i)
n+1 = ~θ

(i)
k . If ~θ

(i)
k is rejected, then

~θ
(i)
n+1 = ~θ

(i)
n . Different sampling algorithms make particular choices for the proposal

probability q(~θ
(i)
n , ~θ

(i)
k ) and acceptance probability α.

We would like a diagnostic statistic that tells us if our analysis has not yet con-

verged; however, tests for convergence should not be accepted without further eval-

uation. The Gelman−Rubin convergence statistic [128] measures the potential to

improve an estimate of the variance of the astrophysical parameter θ which could be

achieved by continuing to advance the ensemble. When little improvement estimating

the variance of the distribution of θ can be gained, then the ensemble is considered

to be converged. This method compares the estimated between-chains variance B

which accounts for variance between Markov chains, and within-chain variance W

which accounts for the variance within each single Markov chain. Large differences
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between these variances indicates that the ensemble has not converged yet. The

between-chains variance is defined as

B =
N

M − 1

M∑
m=1

(
θ̂(m) − θ̂

)2

, (4.55)

where N is the length of the Markov-chains, M is the number of Markov-chains, θ̂(m)

is the mean of parameter θ from the m-th Markov chain, and θ̂ is the mean of all

within-chain means given by

θ̂ =
1

M

M∑
m=1

θ̂(m) . (4.56)

The within-chain variances is defined as

W =
1

M

M∑
m=1

(σ̂(m)
a )2 , (4.57)

where (σ̂
(m)
a )2 is the variance of the m-th Markov chain. The between-chains variance

and within-chain variance are combined into a pooled variance V̂ such that it is an

unbiased estimator of the variance of the posterior distribution for the astrophysical

parameter θ [128]. This means that as the number of iterations N → ∞ then V̂ is

approximately the variance of the posterior distribution of our parameter var(θ). We

define V̂ as [128]

V̂ =
N − 1

N
W +

M + 1

MN
B . (4.58)

We see that V̂ overestimates var(θ) if the ensemble covers more of the parameter

space than the posterior distribution since B will be large, and if the Markov chains

are in the process of converging W will be large as well. Therefore, we use a statistic

that measures reductions in V̂ . The ratio of the pooled variance V̂ and within-chain

variances W is called the potential scale reduction factor R̂ which converges to 1 as

the ensemble of Markov chains converge. R̂ is defined as [128, 129]

R̂ =

√
d+ 3

d+ 1

V̂

W
, (4.59)

where d is an estimate of the degrees of freedom in a Student’s t distribution given

by [128]

d = 2
V̂

var(V̂ )
, (4.60)
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where var(V̂ ) is the variance of V̂ given by [130]

var(V̂ ) =

(
N − 1

N

)2

var(W ) +

(
M + 1

MN

)2

var(B) + 2
(M − 1)(N − 1)

MN2
cov(W,B) ,

(4.61)

where cov(W,B) denotes the covariance between W and B. As the Markov chains

advance, once the point scale reduction factor has passed an minimum number of

iterations and R̂ goes below a threshold, then the ensemble is considered converged

and the posterior probability density function can be sampled from the position of

the Markov chains.

Since the Markov chains keep the history of their position in the parameter space,

we can use that history to find more independent samples rather than just using only

their current position in the parameter space. Since the Markov chains’ position at

iteration n+1 depends on their position at iteration n, then the points in the Markov

chain are correlated. Therefore, not all iterations in the Markov chain can be used in

constructing the histograms that estimate the posterior probability density function of

the binary black hole merger. We need to select independent samples within a Markov

chain that are not correlated with each other or the initial conditions. We compute

the autocorrelation length (ACL) from the autocorrelation function of the Markov

chain and use samples at least an ACL away from each other in the Markov chain to

construct the histograms that sample the posterior probability density function. We

can estimate the autocorrelation function R̂
(i)
θ (k) of a single parameter θ from the

i-th Markov chain using

R̂
(i)
θ (k) =

1

nσ2

n−k∑
t=1

[
θ

(i)
t − µ

] [
θ

(i)
t+k − µ

]
, (4.62)

where n is the length of the i-th Markov chain, θ
(i)
t is the parameter θ from the i-th

Markov chain at iteration t, σ2 is the variance of {θ(i)
t , 1 < t < n}, and µ is the mean

of {θ(i)
t , 1 < t < n}. Equation 4.62 normalizes R̂

(i)
θ (k) such that R̂

(i)
θ (0) = 1. We can

calculate the ACL for θ from R̂
(i)
θ (k). The ACL is defined as

ACL = 1 + 2
l∑

k=1

R̂
(i)
θ (k) <

k

m
, (4.63)

where l is the length of the R̂
(i)
θ (k) to use to compute ACL, and m controls the length
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of the window that is summed to compute the ACL. A canonical choice for l is half

the length of R̂
(i)
θ (k) and m = 5.

The independent samples from all Markov chains are used to construct the one-

dimensional histograms of each parameter that represents a sampling of the posterior

probability density function. In results from Advanced LIGO’s first observing run,

the parameters of binary black hole mergers are quoted in terms of the median and

the bounds of 90% credible interval as x+a
−b where x is the median, a is the difference

between the median and the lower bound of the 90% credible interval, and b is the

difference between the upper bound of the 90% credible interval and the median. The

90% credible interval is the interval that contains 90% percent of the probability from

the probability density function. We find credible intervals from the histograms of

independent samples. The 90% credible interval is calculated by finding the 5-th and

95-th percentile of the histograms. The percentile p is the value at p/100 of the way

from the minimum to the maximum in a sorted list of the histogram values. The

50-th percentile corresponds to the median of the probability density function.

PyCBC Inference has two choices of ensemble Markov-chain Monte Carlo sampling

algorithms: emcee [131] and kombine [132, 133]. The emcee sampling algorithm is

an open-source project with a number of developers and it has already been used for

many scientific studies [134]. We summarize the methods used in the emcee sampling

algorithm in Sec. 4.5. The kombine sampling algorithm has been developed by Ben

Farr and we summarize its methods in Sec. 4.6.

4.5 emcee sampling algorithm

PyCBC Inference has an interface to the emcee sampling algorithm [131]. The

emcee sampling algorithm introduces tempering which modifies the likelihood func-

tion with a “temperature” parameter. The natural logarithm of a tempered likelihood

pT ({di(t)}|~θ) has the form [131]

log pT ({di(t)}|~θ) = −1

2

N∑
i=1

〈
d̃i(f)− s̃i(f, ~θ)|d̃i(f)− s̃i(f, ~θ)

〉 1
T
, (4.64)

where T is the temperature and T = 1 corresponds to the original likelihood function.

As T increases it broadens the maximums in the parameter space which reduces the

contrast between modes the parameter space. At high T the posterior probability
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density function is approximately the prior and ensembles with high T are more

likely to explore the entire parameter space.

Markov chains can become isolated on a single mode in a multi-modal parameter

space and parallel-tempering is implemented in the emcee sampling algorithm to

avoid these cases. Parallel-tempering advances multiple ensembles with a different

temperatures; however, only samples from the ensemble with T = 1 are used to

construct the posterior probability density function. Parallel tempering helps prevent

Markov chains in the T = 1 ensemble from becoming isolated on a single mode in

a multi-modal parameter space. Ensembles with T > 1 are only used to inform the

T = 1 ensemble and to calculate the evidence [131]. The T > 1 ensembles are not used

to construct the histograms that estimate the posterior probability density function.

Ensembles with high temperatures explore more of the parameter space and inform

the T = 1 ensemble by periodically switching the position of their Markov chains.

The swap between an ensemble with temperature Ti and another with temperature

Tj is accepted at a rate rs = min(1, ωij) where

ωij =

[
pTj({di(t)}|~θj)
pTi({di(t)}|~θi)

] 1
Ti
− 1
Tj

, (4.65)

where Ti < Tj.

The emcee sampling algorithm uses the parallel stretch move [131] to propose a

new set of parameters. The parallel stretch move splits an ensemble of K Markov

chains into two sets defined as S(0) = {Xk, 1 ≤ k ≤ K/2} and S(1) = {Xk, K/2 + 1 <

k < K}. Then for the i-th Markov chain ~θ
(i,0)
a in S(0) another Markov chain ~θ

(j,1)
b in

the complementary set is randomly chosen and the new set of proposed parameters

~θ
(i,0)
c is [131]

~θ(i,0)
c = ~θ(i,0)

a + z
[
~θ

(j,1)
b − ~θ(i,0)

a

]
, (4.66)

where z is drawn from the probability density function p(z) ∼ z−
1
2 on the interval a−1

to a where a is a tunable parameter; canonically, this is set to 2 [131, 135]. Finally,

the point is accepted with probability

α = min

(
1, zn−1

~θ
(i,0)
c

~θ
(i,0)
a

)
, (4.67)

where n is the number of astrophysical parameters. The parallel stretch move can
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be parallelized for all Markov chains in a single set. Once the new position for S(0)

Markov chains have been decided, then the Markov chains from S(1) are updated.

4.6 kombine sampling algorithm

PyCBC Inference is a flexible framework that allows the use of multiple sampling

algorithms to estimate the parameters of binary neutron star and black hole mergers.

We include methods to import the kombine sampling algorithm which uses a clustered

kernel-density estimate to construct its proposal distribution [132, 133]. Proposals

are accepted then using the Metropolis-Hastings acceptance condition [136] which is

a common choice for the acceptance probability α [137]. The Metropolis-Hastings

acceptance condition is [136]

α = min

{
1,
p({di}|~θ(i)

k )

p({di}|~θ(i)
n )

q(~θ
(i)
k ,

~θ
(i)
n )

q(~θ
(i)
n , ~θ

(i)
k )

}
, (4.68)

where q(~θ
(i)
k ,

~θ
(i)
n ) is the probability of the i-th Markov chain moving from the pro-

posed set of parameters ~θ
(i)
k to the current set of parameters ~θ

(i)
n using the parallel

stretch move. In this section, we summarize the methods that the kombine sampling

algorithm uses to construct the clustered kernel-density estimator.

The kombine sampling algorithm models the current position of all Markov chains

in the parameter space and uses that model as the proposal distribution. It uses a

Gaussian kernel density estimator which effectively fits a set of Gaussians to the

Markov chain positions to estimate the posterior probability density function. In

general, an estimate of the probability density function p(~y) at point ~y within a set of

n points {~xi, 1 < i < N} is found using the kernel density estimator which is defined

as

p(~y) =
N∑
i=1

K(~y − ~xi, h) , (4.69)

where K(~x, h) is the kernel which is a non-negative function that integrates to one

and has a mean equal to zero and h is the bandwidth parameter which scales the

size of the kernel. The standard choice in the kombine sampling algorithm is to use

a multi-variate Gaussian kernel which is given by

K(~x, h) ∼ e−
|~x|2
2h2 , (4.70)
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and the bandwidth parameter h is set using

h = n−1/(n+4)Σ1/2 , (4.71)

where n is the number of parameters and Σ is the covariance matrix of the astrophys-

ical parameters in ~x.

The posterior probability density function for binary black hole mergers has com-

plex correlations between parameters, therefore we need more than a single kernel

to describe the parameters’ distributions. The kombine sampling algorithm uses k-

means clustering [133, 138] to create a set of Gaussian kernel-density estimators from

the position of the Markov chains; the set of Gaussian kernel-density estimators are

used to evaluate the proposal probability q(~θ
(i)
k ). The k-means clustering is a two-step,

iterative procedure. First, k points are placed in the parameter space; these points

are referred to as centroids. Each Markov chain is assigned to the nearest centroid

using the Euclidean distance. The second step is to update the value of each centroid

with the arithmetic mean of the Markov chains clustered to it. The set of all current

Markov chains positions S
(i)
t associated with the i-th centroid on the t-th iteration is

S
(i)
t =

{
~xp : |~xp − ~m

(i)
t |2 < |~xp − ~m

(j)
i |2 ∀j, 1 < j < k

}
, (4.72)

where m
(i)
t is the i-th centroid on the t-th iteration and {~xp} is the set of all current

Markov chain positions in the ensemble. This process continues until the value of the

centroids stop changing.

The k-means clustering requires knowing the number of centroids to initialize in

the parameter space. It is possible to increase the likelihood by adding many free

parameters but doing so will result in overfitting. The kombine sampling algorithm

uses the Bayesian information criterion (BIC) to select the number of centroids to

use in its kernel-density estimation model. The BIC is a commonly used method in

model selection that attempts to resolve the problem of overfitting by introducing a

penalty term for the number of parameters in the model. For determining the number

of centroids to use the kombine sampling algorithm uses

BIC = log(pmax({di(t)}|~θ))−
dm
2

log(N) , (4.73)

where dm is the number of dimensions (or centroids) of the kernel-density estimation

model, pmax({di(t)}|~θ) is the maximized likelihood function of the model, and N is

the total number of Markov chains being fit.
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The proposal distribution is then estimated by combining the individual kernel-

density estimator from each mean, weighted by the fraction of samples assigned to

each cluster. This proposal distribution is used to draw new proposals and to evaluate

the Metropolis-Hastings acceptance condition.

4.7 The state of parameter estimation pipelines in Advanced

LIGO’s first and second observing runs

In Advanced LIGO’s first and second observing runs, the LALInference pipeline [47,

139] was used to publish the measured parameters of observed binary black hole merg-

ers [110, 140, 75]. PyCBC Inference has not been used to publish parameter estimates

of observations in Advanced LIGO’s first or second observing runs. At a high-level

abstraction, both LALInference and PyCBC Inference use the same concepts to es-

timate the parameters of binary black hole merger. Both pipelines provide a thin

layer of code that allows the choice from multiple sampling algorithms to compute

the posterior probability density functions. The likelihood function from Section 4.2

and the choice of priors in Section 4.3 are implemented in LALInference and Py-

CBC Inference, and both pipelines provide choices of ensemble Markov-chain Monte

Carlo sampling algorithms. In this section, we describe some techniques implemented

in LALInference which are used in the published Advanced LIGO parameter esti-

mation results but are not included in the PyCBC Inference analyses presented in

this dissertation. This includes: nested sampling, cycling through different proposal

distributions, and marginalizing over calibration uncertainties.

There are other methods aside from ensemble Markov-chain Monte Carlo sam-

pling algorithms to estimate the posterior probability density function. Nested sam-

pling [141] is a Monte Carlo method to efficiently calculate the evidence p(di(t)|H).

Nested sampling has the benefit that the the posterior probability density function

for model parameters can be estimated from the results of the analysis. The re-

sults from Markov-chain Monte Carlo sampling algorithms and nested sampling al-

gorithms should agreement, and both stochastic sampling methods have been pre-

sented in the parameter estimation results from Advanced LIGO’s first observing

run [142]. LALInference has a couple choices of nested sampling algorithms de-

scribed in Refs. [47, 143, 144, 145].
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If the likelihood has isolated modes, then a Markov chain must take improbable

draws from the proposal distribution across regions with a low acceptance probabil-

ity. One optimization for multi-modal parameter spaces which is used with ensemble

Markov-chain Monte Carlo sampling algorithms is the parallel tempering technique

described in Section 4.5. There is another optimization for parameters which are

strongly correlated, if the proposal distributions are constructed along these corre-

lations [47]. LALInference includes choices of proposal distributions to more effi-

ciently sample the parameter space by taking into account these correlations that

shape the structure of the likelihood function. The set of proposal distributions in

LALInference, which is listed in Ref. [47], includes distributions that are specific

to the binary black hole merger parameters. At the beginning of an analysis, the

set of proposal distributions are randomly ordered, and as the Markov chains ad-

vance LALInference cycles through the proposal distributions. A single method for

constructing the proposal distribution is used in each iteration. This is referred to

as “jump proposal cycling” and LALInference provides jump proposal cycling for

Markov-chain Monte Carlo and nested sampling algorithms. In contrast, PyCBC

Inference uses the same method for constructing the proposal distribution for all

iterations in a single analysis.

In Chapter 3 we assessed the impact of calibration errors on the search. Calibra-

tion errors will affect the parameter estimation analyses as well. LALInference has

the option to marginalize over calibration errors; however, LALInference does not use

the physical model of the calibration errors described in Chapter 3. In LALInference,

the calibration errors are modeled in the frequency domain as [146]

h̃m(f) = [1 + δA(f)] h̃t(f)eiδφ(f) (4.74)

= [1 + δA(f)] h̃(f)
2 + iδφ(f)

2− iδφ(f)
, (4.75)

where δA(f) is the change in amplitude due to calibration errors, δφ(f) is the change

in phase due to calibration errors, h̃t(f) is the gravitational-wave strain waveform

without errors, and h̃m(f) is the gravitational-wave strain waveform with errors. In

Equation 4.74, the Taylor expansion of the phase change to third order is

eiδφ(f) = 1 + iδφ(f)− (δφ(f))2

2
+O

(
(δφ(f))3

)
, (4.76)
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and since the Taylor expansion

2 + iδφ(f)

2− iδφ(f)
= 1 + iδφ(f)− (δφ(f))2

2
+O

(
(δφ(f))3

)
, (4.77)

is equivalent to third order, if we assume the calibration errors are small then (2 +

iδφ(f))/(2 − iδφ(f)) may substituted into Equation 4.74. This is a more efficient

implementation since it includes only algebraic expressions [146]. LALInference uses

a spline model to evaluate the calibration errors in δA(f) and δφ(f). The change in

amplitude is

δA(f) = ps(f, {fi, δAi}) , (4.78)

and the change in phase is

δψ(f) = ps(f, {fi, δψi}) , (4.79)

and where ps(f, {fi, δAi}) and ps(f, {fi, δφi}) represent cubic spline polynomials of

N nodes {fi, δAi, δφi, 1 < i < N}, fi are the nodes of the polynomial in frequency,

and δAi and δφi are the values of the spline at those nodes. Each detector will have

an independent set of calibration parameters and the total number of calibration

parameters sampled for a single detector is 2N (one for each δAi and δφi).

4.8 Parameter estimation of binary black hole mergers from

Advanced LIGO’s first observing run

In this section, we use PyCBC Inference to infer the source parameters of GW150914,

GW151226, and LVT151012 assuming that the signals each originate from a compact-

object binary coalescence as described by general relativity. This analysis uses the

IMRPhenomPv2 effective precessing spin waveform model [44, 45]. Our choices of priors

and data selection for each event is chosen to match the choices in Ref. [75] which

presents the parameter estimation results of the binary black hole mergers observed in

Advanced LIGO’s first observing run. We analyze the frequency band between 20 Hz

and 2048 Hz from 8 s of data around the time of GW150914 and GW151226, and

24 s of data around LVT151012. We choose uniform priors in the coalescence time

±2 s around each event and spin magnitude. We use isotropic priors for sky position

and orientations, and we assume a uniform distribution of sources in the Universe.
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Figure 37 : An ensemble of 5,000 Markov chains while estimating the source-frame component mass

of the larger black hole msrc
1 . Initially the Markov chains are distributed according to the prior and

as the Markov chains advance they converge.

Astrophysical parameters for the three events obtained using the kombine sampling

algorithm with an ensemble of 5,000 Markov chains are included in Table 5.

In Figure 37 we show a demonstration of an ensemble of 5,000 Markov chains

converging while estimating the source-frame primary mass msrc
1 of GW150914. The

position of the Markov chains are drawn from the prior, and eventually they converge

as the sampling algorithm iteratively advances the ensemble of Markov chains. In

Figure 38 shows the Gelman-Rubin convergence statistic for this ensemble which

shows convergences as the ensemble advances as well. In this section, we only select

independent samples from the last iteration of each Markov chain.

Posterior probability density functions of the mass parameters are shown in Figs. 39

and 40. The component masses for each event are constrained above the maximum
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Figure 38 : The Gelman-Rubin convergence statistic (Point Scale Reduction Factor) for an ensemble

of 5,000 Markov chains while estimating the source-frame component mass of the larger black hole

msrc
1 . The red dashed line corresponds to 1 which indicates the ensemble has converged.

mass of a neuron star masses which is ∼ 3 M� [147, 148]. The black holes observed

in Advanced LIGO’s first observing run cover a mass range between 8.4+1.52
−1.86 M� and

35.0+5.1
−3.0 M�. The component masses inferred from the Advanced LIGO events are

in a region of the mass space (>25 M�) that has previously not been explored by

stellar-mass black holes measured through X-ray observations [52, 149, 150]. Our ob-

servations extend beyond the X-ray observations into an area of the mass distribution

of black holes not previously observed.

For the range of binary black hole masses observed we expect qualitative dif-

ferences in the 90% credible interval contours of the posterior probability density

functions of in the msrc
1 and msrc

2 plane. Since higher mass binaries merge at lower

frequencies, then the ringdown has a larger contribution to the signal-to-noise ratio.



96

The inspiral predominantly constrains the chirp mass, and the ringdown is predomi-

nantly constrains the total mass. In Figure 39 we see that the posterior probability

density functions for GW151226 and LVT15102 follow contours of constant chirp

mass, and GW150914 follows a constant total mass contour.

We can only weakly constrain the component spins. The effects of the compo-

nents’ spins on the waveform are weaker in comparison to the masses. We are able to

constrain the spin of the primary black hole more easily, since the spin of the primary

black hole has a greater impact than the spin of the secondary black hole on the wave-

form during the inspiral. Figure 40 shows the posterior probability density function

of χeff for each event. We can rule out spin configurations where both component

spins are large and aligned, or large and anti-aligned to the angular momentum of

the binary. We are able to rule out these configurations since all three events are

consistent with |χeff | < 0.28. Component spins misaligned with the orbital angu-

lar momentum cause orbital precession, therefore in Figure 42, we show the posterior

probability density functions of the spin magnitude and polar spin angle. The inferred

spins are similar to the prior probability density functions and therefore we cannot

see indications of precession. Either the binaries do not have much precession or the

orientation of the binary is either face-on or face-away (when the angular momentum

is parallel or anti-parallel to the line of sight with respect to the Earth) with respect

to the Earth which makes observing the effects of precession difficult; however, the

inclination is only weakly constrained as well.

Information about the distance and the inclination of the binary is also encoded

into the waveform. The inclination is weakly constrained; however, the posterior

probability density functions do have maximums near face-on or face-off orientations.

These orientations produces larger gravitational-wave amplitude than inclinations

that are edge-on (when the angular momentum is perpendicular to the line of sight

with respect to the Earth) which corresponds to further distances. In Figure 41 we

show the posterior probability density function of the distance. We see that the binary

black hole mergers observed by Advanced LIGO have distances constrained to less

than 2 Gpc.

Since the sky location is predominantly determined by triangulating the arrival

times in the detector, a two-detector network has a characteristic ring-shaped pos-

terior probability density function. An astrophysical signal will also have a phase
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Figure 39 : The posterior probability density function of the source-frame primary mass msrc
1 and

secondary mass msrc
2 for GW150914 (blue), GW151226 (orange), and LVT151012 (green).

difference because of the orientation of the detectors with respect to each other which

factors into the sky localization as well. Adding more detectors improves the sky

localization. The sky localizations of GW150914, GW151226, and LVT151012 are

shown in Figures 43, 44, and 45 respectively.

4.9 Conclusions

We have presented PyCBC Inference which is a parameter estimation analysis for

compact-object mergers and we demonstrated the methods using the three candi-

date events from Advanced LIGO’s first observing run. We find that the black

hole masses range between 8.4+1.52
−1.86 M�and 35.0+5.1

−3.0 M� which encompasses a pre-

viously unobserved region of the black hole mass distribution. The spins of the black

holes are weakly constrained but we can rule out large aligned or large anti-aligned

spin configurations. Our results are in general agreement with the published re-

sults for the parameters in Ref. [2]. Future development work will focus on more
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Figure 40 : the posterior probability density function of mass ratio q = m1/m2 where m1 > m2,

and effective spin χeff for GW150914 (blue), GW151226 (orange), and LVT151012 (green).

detailed comparisons between the sampling methods between PyCBC Inference and

the LALInference parameter estimation analysis used in Ref. [2].
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Figure 42 : The posterior probability density functions of the dimensionless spin magnitude as a

function of the polar spin angle. The first row shows GW150914, the second row shows GW151226,

and the third row shows LVT151012.
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Figure 43 : The sky locaization of GW150914 in celestial coordinates.

Figure 44 : The sky localization of GW151226 in celestial coordinates.
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Figure 45 : The sky localization of LVT151012 in celestial coordinates.
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Parameter (Units) Symbol 90% Credible Interval

GW150914 GW151226 LVT151012

Source-frame primary mass (M�) msrc
1 35.0+5.1

−3.0 12.3+4.2
−2.0 21.5.3+8.7

−4.3

Source-frame secondary mass (M�) msrc
2 29.7+2.9

−4.0 8.4+1.52
−1.86 13.5+3.4

−3.8

Source-frame total mass (M�) M src 64.8+3.3
−3.1 20.8+2.3

−0.8 35.4+5.2
−3.0

Source-frame chirp mass (M�) Msrc 28.0+1.4
−1.3 8.83+0.26

−0.22 14.7+1.2
−1.0

Detector-frame primary mass (M�) mdet
1 38.8+5.5

−3.3 13.5+4.6
−2.1 26.5+10.4

−5.1

Detector-frame secondary mass (M�) mdet
2 32.8+3.2

−4.5 9.25+1.68
−2.05 16.7+4.0

−4.7

Luminosity distance (Mpc) dL 521+111
−139 477+145

−154 1.22+0.49
−0.47 × 103

Redshift z 0.108+0.021
−0.027 0.100+0.028

−0.031 0.0234+0.081
−0.083

Effective spin χeff −0.03+0.11
−0.12 0.18+0.10

−0.06 0.01+0.18
−0.17

Table 5 : Table of inferred astrophysical parameters using PyCBC Inference for GW150914, GW151226, and LVT151012. Muplitply the

detector-frame parameters by (1 + z) to convert to the source-frame, where z is redshift.
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Chapter 5

The capability of

gravitational-wave observatories to

probe the black hole mass gap due

to pair-instability supernovae

5.1 Introduction

It has been known for some time that stars with core masses greater than about 30 M�

become dynamically unstable due to electron-positron pair production [151, 152, 153,

154]. The conversion of energy to rest mass, rather than thermal energy alters the

equation of state of the core and hydrostatic equilibrium cannot be maintained. If

a sufficiently large amount of the core is in the pair formation regime (adiabatic

index Γ1 < 4/3), then the core will become dynamically unstable. The resulting

explosive oxygen burning can create pulses that drive off the outer layers of the star

before eventual core collapse, called pulsation-pair instability supernovae (PPISN),

or destroy the star entirely before a black hole can be formed, called pair-instability

supernova (PISN).

Ref. [155] has explored the compact-object remnant masses of black holes in

PPISN and PISN using the KEPLER code and claimed that no black holes between

52 M� and 133 M� are expected from stellar evolution in close binaries. Since no

remnant of the massive star is formed, then there is an expected gap in the black hole
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mass distribution between 52 M� and 133 M� [156, 24, 157].

All gravitational-wave signals from binary black hole mergers detected by Ad-

vanced LIGO to date have been produced from binary black hole mergers below the

PISN mass gap. GW150914 and GW151226 were produced from binary black holes

with component masses 36 M� and 29 M�, and 14 M� and 8 M� respectively [76, 77].

A third possible signal, LVT151012, was also identified with component masses 23 M�

and 13 M� with a lower significance [158]. Over the next three years, the Advanced

LIGO and Advanced Virgo observatories will be commissioned to design sensitivity

and signals may be expected daily [6]. In this era of gravitational-wave astronomy,

the population of detected sources could be used to resolve the black hole mass dis-

tribution and to determine the existence of the PISN mass gap.

In this chapter, we assess the capability of an Advanced LIGO and Advanced

Virgo network at design sensitivity to unambiguously constrain the mass of a black

hole between 52 M� and 133 M�, and their ability to observe the PISN mass gap.

Section 5.2 describes the analysis of a population of binary black hole mergers that

encompasses the PISN mass gap. Sec. 5.3 details the recovery of the component

masses. Finally, in Sec. 5.4 we summarize the capability of the Advanced LIGO and

Advanced Virgo network to probe the PISN mass gap.

5.2 Methods

Astrophysical properties of binary black hole mergers in Advanced LIGO data have

been constrained using Bayesian inference [47, 76, 77]. We use the PyCBC Inference

parameter estimation analysis described in Chapter 4 to measure the source compo-

nent masses for a population of simulated binary black hole mergers. Here, we use

the kombine sampling algorithm to sample the posterior probability density function.

The simulated signals were generated with the SEOBNRv4 waveform model [159]

which parameterizes binary black hole mergers by the masses, spins aligned with

the angular momentum of the binary, distance, sky location, and orientation of the

binary. We use the SEOBNRv4 ROM reduced-order waveform model [159] to generate

the waveform in the likelihood function. This waveform model belongs to one of the

waveform families that has been used to measure the parameters of GW150914 and

GW151226 [76, 77].
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Above 10 Hz, this mass region has waveforms that have time durations from a

fraction of a second up to ∼10 s. Using more time series data from the detectors in

the likelihood function increases the computational time of the analysis. Therefore,

we split the region into two mass regions based on the time duration of the waveforms.

The two regions are divided based on the source-frame chirp mass Msrc: 25 M� ≤
Msrc ≤ 52 M� and 52 M� <Msrc < 133 M�. Our likelihood function uses 16 s of

data between 10 Hz and 2048 Hz around the time of the simulated signal for binaries

whereMsrc ≤ 52 M�. These systems are recovered with a uniform prior in component

mass bounded by the detector-frame chirp mass Mdet > 20, mass ratio 1 < q < 10

where msrc
1 > msrc

2 , and detector-frame total mass Mdet
T < 500 M�. Since higher mass

systems have shorter waveforms we use 8 s of data between 10 Hz and 2048 Hz for

the analysis of simulated signals where Msrc > 52 M�. These systems are recovered

with a uniform prior in component mass bounded by Msrc > 35, 1 < q < 10, and

Mdet
T < 500 M�. All simulated signals use uniform priors for the coalescence time

±0.2 s around the time of the simulated signal, component spins aligned with the

angular momentum of the binary between -0.9895 and 0.9895, and isotropic priors in

sky position and orientation.

The simulated signals are coherently added to a gravitational-wave strain data

from a gravitational-wave observatory network comprised of three interferometers:

two Advanced LIGO and one Advanced Virgo observatory. The observatories’ data

were simulated with Gaussian noise recolored using the design amplitude spectral

densities [6]. Figure 46 shows the design amplitude spectral densities.

The entire population of simulated signals is shown in Fig. 47. We generate

simulated signals with a source-frame chirp mass Msrc between 25 M� and 113 M�,

and 1 < q < 8. We generate a total of 2,407 simulated signals distributed isotropically

in sky position and orientation. Black holes formed from metal poor massive stars

through the pulsation pair-instability supernova are expected to have low spins <0.15;

however, black holes can be produced with spins up to 0.7 from more metal-rich

massive stars which experience chemically homogeneous evolution [156]. We generate

all simulated signals with component spins aligned with the angular momentum of

the binary drawn from a uniform distribution between ±0.7. In Fig. 47, we show the

effective spin χeff of the population of simulated signals. The simulated signals were

drawn from several distributions of mass and distance.
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Figure 46 : The amplitude spectral density of Advanced LIGO and Advanced Virgo at design

sensitivity [6].

We analyze 743 simulated signals whose distance is distributed uniformly in the

logarithm. The distance scales the network signal-to-noise (SNR) of the simulated

signals; the network SNR distribution for this sub-population of simulated signals is

shown in Figure 48. In this sub-population there are: 100 simulated signals with

25 M� ≤ Msrc < 52 M�, 112 simulated signals with 52 M� ≤ Msrc < 113 M�,

198 signals with msrc
1 = 52 M� and 25 M� ≤ Msrc < 52 M�, 134 signals with

msrc
1 = 133 M� and 25 M� ≤ Msrc < 52 M�, and 199 signals with msrc

1 = 133 M�

and 52 M� ≤Msrc < 113 M�. These simulated signals are recovered with a distance

prior that assumed a uniform volume distribution of sources in the Universe; this

corresponds to a prior probability density function p(dL) ∼ d2
L.

We analyze 832 simulated signals whose network SNR is distributed around 29.
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Figure 47 : The component masses msrc
1 and msrc

2 of all 2,407 simulated signals colored by the

effective spin χeff . The dashed magenta lines represent the PISN mass gap between 52 M� and

113 M�.

The network SNR distribution of this sub-population is shown in Figure 48. This sub-

population of 832 simulated signals are drawn from two mass regions: 431 simulated

signals with component masses uniform between 25 M� ≤ Msrc < 52 M�, and 401

simulated signals with component masses uniform between 52 M� ≤Msrc < 113 M�.

We create another sub-population of 832 simulated signals by scaling each simulated

signal’s distance by a factor of 2. These two sub-populations contain 1,664 simulated

signals which we recover with a uniform prior for distance.

5.3 Results

In this section, we present the 90% credible interval of the component masses ob-

tained with PyCBC Inference from the 2,407 simulated signals described in Sec. 5.2.
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Figures 49 and 50 show the 90% credible intervals of msrc
1 and msrc

2 versus the injected

mass. In Figures 49 and 50, we see that the width of the 90% credible intervals of

msrc
1 and msrc

2 from simulated signals in the PISN mass gap (msrc
i between 52 M�

and 133 M�) can be smaller than 81 M� which is the width of the PISN mass gap.

Therefore, it is possible to unambiguously observe a binary black hole inside the PISN

mass gap with the Advanced LIGO and Advanced Virgo network.

If the widths of the 90% credible intervals of msrc
1 are sufficiently small, then the

measurements of the component masses should show a distinct gap for a population

of binaries with no black hole masses in the PISN mass gap. The width of the 90%

credible intervals shrink as as a function of network SNR as seen in Figure 49. There-

fore, we show in Figure 51 the 90% credible interval of msrc
1 for simulated signals

generated with msrc
1 outside the PISN mass gap boundaries versus the network SNR.

At network SNR .27.5 we see that the 90% credible intervals of msrc
1 from the pop-

ulation can cover the full range of the PISN mass gap. At network SNR >27.5, we

are able to resolve a distinct gap where the 90% credible intervals from simulated

signals generated with msrc
1 > 133 M� do not overlap with the 90% credible intervals

from simulated signals generated with msrc
1 < 52 M�. This gap widens as the network

SNR increases. This suggests that it may be possible to resolve the mass gap with a

population of binary black holes that have a network SNR >27.5. We focus only on

msrc
1 since we did not simulate any signals with msrc

2 above the PISN mass gap.

The Advanced LIGO and Advanced Virgo network is capable of distinguishing

msrc
1 inside the PISN mass gap; however, we caution against claiming that a single

detection challenges the existence of the PISN mass gap if msrc
1 does not fall in the

region identified in Figure 51. Since we used several different distance distributions

for priors and generating our population of simulated signals, we expect our analysis

to have a lower efficiency and provide more conservative results than if we have

generated and recovered with the same distributions. We found our analysis was able

to recover the simulated signals’ msrc
1 within the 90% credible interval for 81% of

the simulated signals, msrc
2 within the 90% credible interval for 84% of the simulated

signals, and both msrc
1 and msrc

2 within the 90% credible interval for 69% of the

simulated signals. In particular, simulated signals with black hole masses near the

PISN mass gap boundaries could incorrectly be identified as a source from within the

PISN mass gap; we found 5% of the simulated signals were incorrectly identified as a
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source from within the PISN mass gap. The simulated signals with either msrc
1 or msrc

2

not recovered in the 90% credible interval are colored gray in Figures 49, 50, and 51.

We see from Figure 51 that our ability to constrain the network SNR at which we can

claim a detection unambiguously inside the PISN mass gap is predominantly limited

due to this subset of the simulated signals.

The source-frame masses are strongly influenced by uncertainties and errors from

inferring the detector-frame masses and redshift since msrc
i = mdet

i /(1 + z) where z is

the redshift. Recovering a larger redshift underestimates the source-frame mass since

msrc
i ∼ 1/(1 + z). We found most of these simulated signals have recovered a larger

redshift. Figure 52 shows the 90% credible interval of redshift versus the injected

redshift only for the simulated signals where either the msrc
1 or msrc

2 used to generate

the simulated signal was not contained within the 90% credible interval.

We can find the regions of the parameter space most able to distinguish that a

black hole is in the PISN mass gap, if there is a formation channel that produces black

holes with masses between 52 M� and 133 M�. Figures 53 and 54 show the fraction

of simulated signals across the mass space where the 90% credible interval of msrc
1 is

constrained unambiguously inside the PISN mass gap. We repeat this procedure for

msrc
2 . Figures 55 and 56 show the fraction of simulated signals across the mass space

where the 90% credible interval of msrc
2 is constrained unambiguously inside the PISN

mass gap.

5.4 Conclusions

In this chapter, we explored the capability of the Advanced LIGO and Advanced Virgo

network to resolve the PISN mass gap between 52 M� and 133 M�. We measured

the component masses for 2,407 simulated, aligned-spin binary black holes withMsrc

between 25 M� and 113 M�. We find that the Advanced LIGO and Advanced Virgo

network is able to unambiguously distinguish black hole masses inside the PISN mass

gap. We find that a population of signals with network SNR >27.5 may be able to

resolve the mass gap, and a signal observed in this mass region above network SNR

27.5 could challenge the existence of PISN mass gap. Finally, we present the mass

regions our analysis was most able to constrain at least one black holem mass between

52 M� and 133 M�.
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Figure 48 : Histogram of the simulated signals’ median network signal-to-noise ratio (SNR) from the

posterior distributions. The solid red histogram represents the simulated signals with their distance

distributed uniformly in the logarithm. The dashed purple histogram represents the simulated

signals with m1 = 52 M�. The dashed-dotted green histogram represents the simulated signals with

m1 = 133 M�. The solid blue histogram represents the 832 simulated signals with their network

SNR distributed around 29. The dashed orange histogram represents the 832 simulated signals from

the blue histogram with their distance scaled by a factor of 2.
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Figure 49 : The 90% credible interval of the source-frame primary mass msrc
1 versus the msrc

1 used

to generate the simulated signal. The dashed magenta lines represent the PISN mass gap between

52 M� and 113 M�. The dashed gray line represent the 1:1 ratio which is an exact match. Simulated

signals with either msrc
1 or msrc

2 not recovered in the 90% credible interval are colored gray.
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Figure 50 : The 90% credible interval of the source-frame secondary mass msrc
2 versus the msrc

2 used

to generate the simulated signal. The dashed magenta lines represent the PISN mass gap between

52 M� and 113 M�. The dashed gray line represent the 1:1 ratio which is an exact match. Simulated

signals with either msrc
1 or msrc

2 not recovered in the 90% credible interval are colored gray.
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2 not recovered in
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Figure 52 : The 90% credible interval of redshift z for simulated signals generated with msrc
1 outside

the PISN mass gap ( 52 < msrc
1 < 133) but recovered with 52 < msrc

1 < 133.
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Figure 53 : The fraction of simulated signals generated in the mass bin that have their 90% credible

interval for the primary mass msrc
1 contained entirely inside the PISN mass gap; this is labeled as

ξin
1 . Results for simulated signals recovered with a median network SNR ≤ 22. The dashed magenta

lines represent the PISN mass gap between 52 M� and 113 M�.
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Figure 54 : The fraction of simulated signals generated in the mass bin that have their 90% credible

interval for the primary mass msrc
1 contained entirely inside the PISN mass gap; this is labeled as

ξin
1 . Results for simulated signals recovered with a median network SNR > 22. The dashed magenta

lines represent the PISN mass gap between 52 M� and 113 M�.
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Figure 55 : The fraction of simulated signals generated in the mass bin that have their 90% credible

interval for the secondary mass msrc
2 contained entirely inside the PISN mass gap; this is labeled as

ξin
2 . Results for simulated signals recovered with a median network SNR ≤ 22. The dashed magenta

lines represent the PISN mass gap between 52 M� and 113 M�.
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Figure 56 : The fraction of simulated signals generated in the mass bin that have their 90% credible

interval for the secondary mass msrc
2 contained entirely inside the PISN mass gap; this is labeled as

ξin
2 . Results for simulated signals recovered with a median network SNR > 22. The dashed magenta

lines represent the PISN mass gap between 52 M� and 113 M�.
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Chapter 6

The Advanced LIGO hardware

injection system

6.1 Introduction

In order to understand the response of the Advanced LIGO detectors to gravitational

waves, we perform “hardware injections” in which we simulate the detectors’ response

to a gravitational-wave signal. To simulate the response we apply a force to one of

the interferometer mirrors which moves the mirror in a pattern as if it were caused by

a gravitational wave. Hardware injections are used to validate both detector charac-

terization analyses and astrophysical searches. For example, hardware injections are

used to validate “software injections”, where simulated signals are added to the data

as part of an analysis pipeline without any physical actuation occurring; software

injections are used for high-statistics evaluation of the performance of analyses. An-

other use for hardware injection in Initial LIGO were “blind injections” which were

hardware injections known only to a small team [160, 161]. Blind injections simulate

the detection and characterization of a real astrophysical signal. No blind injections

were carried out during Advanced LIGO’s first observing run. There are no plans to

perform blind injections in future observing runs.

Hardware injections have several other uses. Following a detection candidate,

we study simulated gravitational-wave signals with parameters similar to the event

through the use of hardware injections. These hardware injections provide an end-to-

end check of the search and parameter estimation analyses to recover signals in the
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detectors’ data. The recovery of hardware injections provides an additional check of

the sign of the calibration between the Advanced LIGO detectors using astrophysical

waveforms; however, the calibration of the detectors is verified by other means as

well [162, 111]. The recovery of hardware injections also measures the time delay of

the signal in the controls system.

To create a hardware injection we physically displace the detectors’ test masses.

The mirrors in the arms act as “freely falling” test masses [163]. Advanced LIGO

measures the differential displacement along the two arms ∆L = Lx − Ly, and the

output channel to analyses is gravitational-wave strain h = ∆L/L where L = (Lx +

Ly)/2 [163]. The differential displacement of the test masses mimics the detectors’

response to a gravitational-wave signal.

Hardware injections are also used to can check for instrumental and environmental

channels that respond to changes in differential arm length variations. The detectors’

response to a true gravitational-wave is not exactly the same as the detectors’ re-

sponse to physically displacing the test masses [164, 165], and the actuators apply

a force to the test masses in their suspensions whereas a true gravitational-wave

does not. However, the difference is well understood, and it is only relevant at high

frequencies [164, 165].

Advanced LIGO uses different actuators to control the test masses than Initial

LIGO. In Initial LIGO, the test masses were displaced using magnets mounted on

the optic itself, however, these actuators are no longer mounted on the test masses

due to displacement noise [166, 167]. In Advanced LIGO’s first observing run, hard-

ware injections were realized with two different actuation methods: electrostatic drive

systems [121] and photon radiation pressure actuators referred to as “photon calibra-

tors” [168]. Starting in December 2015 the photon calibrators have been the only

actuator used to perform hardware injections since their actuation range available for

hardware injections is larger.

During Advanced LIGO’s first observing run a wide variety of waveforms were

injected. Advanced LIGO is sensitive to astrophysical sources of gravitational waves

including: binary black hole and/or neutron star mergers [169, 75], the stochastic

gravitational-wave background [170], and spinning neutron stars [171]. Hardware

injections for each of these astrophysical sources were performed. In addition, detector

characterization studies injected series of sine-Gaussians across the Advanced LIGO
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frequency range.

This chapter describes how we inject signals into the Advanced LIGO detectors

with the photon calibrators in Section 6.2. Sections 6.3 and 6.4 describe results from

analyses that used hardware injections in Advanced LIGO’s first observing run. We

focus the recovery of binary black hole merger signals in Section 6.3 and the detector

characterization analysis to check the response of instrumental and environmental

changes to differential displacement of the test masses in Section 6.4. Finally, Sec-

tion 6.5 summarizes the hardware injections from Advanced LIGO’s first observing

run.

6.2 Hardware injection procedure

Each different type of astrophysical source has different signal characteristics and

properties, and hence different technical requirements for the hardware injection sys-

tem. In particular, the astrophysical sources are observable in the Advanced LIGO

frequency band for a wide range of time durations.

Compact-object binary mergers can last a fraction of a second to minutes depend-

ing on the component masses in Advanced LIGO’s frequency range. The signal enters

Advanced LIGO’s most sensitive frequency range at 20 Hz, and as the two component

masses inspiral closer together they sweep upward in frequency [110]. The merger’s

termination frequency and waveform length are determined by the masses of the

two objects. For example, GW150914 terminates at 250 Hz after about 0.2 s above

35 Hz [110], whereas the inspiral-only portion of a binary neutron star waveform with

both component masses equal to 1.4 M� terminates at 1527 Hz after about 36 s above

35 Hz.

The two other modeled sources of gravitational waves that are added to the de-

tectors’ data through the Advanced LIGO hardware injection system are spinning

neutron stars and the stochastic gravitational wave background. These sources per-

sist in Advanced LIGO’s most sensitive frequency band for longer time durations

than the compact-object binary mergers. Spinning neutron stars emit continuous

gravitational waves at an almost constant frequency which is Doppler modulated by

Earth’s motion [171], and the gravitational-wave frequency slowly evolves as the pul-

sar spins down [171]. Therefore, gravitational waves from a spinning neutron star
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will be present in the data for the full duration of an observing run. The stochastic

background is the superposition of many events that combine to create a low-level,

broadband, non-deterministic signal [170]. Therefore, the stochastic gravitational-

wave background will persist in the data throughout the observing run as well.

We also add non-astrophysically motivated injections to the detectors’ data for

detector characterization studies. These studies use a succession of short duration

(< 1 s) sine-Gaussians across Advanced LIGO’s frequency range.

We categorize hardware injections into two classes: “transient injections” that are

localized in time, and “continuous-wave injections” that are active throughout the

duration of the observing run. Examples of transient injections include simulated

binary black hole and/or neutron star mergers, sine-Gaussians, and stochastic back-

ground signals. These signals have a waveform that is finite duration. The simulated

stochastic background is included as a transient injection since we increase the ampli-

tude of the waveform in order to limit it to a short segment of data. Continuous-wave

injections simulate a synthetic population of rapidly spinning neutron stars (which

we designate in shorthand as pulsars, although such a source need not emit electro-

magnetic pulsations detectable at the Earth).

Separate automation processes control transient and continuous-wave injections.

Fig. 57 shows a schematic of the two pathways that generate and transmit gravitational-

wave strain time series to the photon calibrator. In this section we work through

Fig. 57, beginning at the top-left and working clockwise, in order to describe the

processes that control the transient and continuous-wave injections.
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We generate the simulated gravitational waveforms for transient injection signals

prior to injection. The system for managing the automated processes of the Ad-

vanced LIGO detector subsystems is known as Guardian [172]. Guardian manages

the transient hardware injections, it reads the next scheduled injection’s time series

and transmits the data to the digital control system of the detector at the scheduled

time.

Continuous-wave injections are generated in real-time. A streaming time series of

simulated gravitational waves from a synthetic population of spinning neutron stars,

described by astrophysical parameters, including the strain amplitude, sky location,

and initial frequency, is transmitted to the digital controls system of the detector.

A driver program called psinject (“pulsar injection”) coordinates the simultaneous

generation and buffering of multiple streams of signals representing pulsars [139].

The transient and continuous-wave signals in the digital controls system of the de-

tector are sent to an actuator that displaces the test masses to simulate the detector’s

response to a gravitational wave signal. In Advanced LIGO’s first observing run, we

used the electrostatic drive systems [121] and photon calibrators [168] as actuators

for hardware injections. Each actuator has its own actuation pathway in the controls

system; however, in Fig. 57 we show only the photon calibrators’ pathway.

Hardware injections are carried out by actuating one of the end test masses (ETM)

of the interferometer and thus inducing differential interferometer strain variations

that simulate the response to an incident gravitational wave. We only need to apply

a force on one ETM to induce differential strain variations in the interferometer. The

common arm length degree of freedom of the interferometer, (Lx+Ly)/2, is controlled

by its own servo. If an actuator lengthens the x-arm by applying a force on the ETM,

then the common arm length servo will promptly shorten the y-arm length to suppress

the change in the common arm length degree of freedom. This creates differential

interferometer strain variations that are partially suppressed by the differential arm

length feedback servo.

The differential arm length degree of freedom of the interferometer is controlled by

a feedback servo loop that actuates the longitudinal position of one of the ETMs [111].

The differential arm length feedback control loop suppresses apparent ETM displace-

ments resulting from noise sources, signal injections, and gravitational waves. Be-

cause this servo suppresses the injected waveform, reconstructing the unsuppressed
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injected strain requires correcting for the action of this servo. The correction for the

response of the common and differential arm length servos used in reconstructing the

gravitational-wave strain is described in [111].

The actuators for the servo that controls the differential arm length degree of

freedom are electrostatic drive systems. These actuators apply forces via fringing

field gradients from electrodes patterned onto a reaction mass separated by a few

millimeters from the back surface of the ETM [121]. The electrostatic drive systems

were used at the beginning of Advanced LIGO’s first observing run for injecting

simulated signals. They successfully injected the waveforms for the GW150914 and

stochastic background hardware injection analyses. However, the actuation range

available for hardware injections is restricted because they are part of the differential

arm length servo which consumes a significant fraction of its total actuation range in

maintaining stable servo operation.

In order to inject a larger parameter space of waveforms, for example binary

black hole and/or neutron star mergers at closer distances, we transitioned to photon

calibrators for hardware injections. Since December 2015, we use a photon calibration

system to displace the ETM in a way that simulates the effect of a gravitational wave

signal. This is depicted on the right of Fig. 57.

A photon calibrator system uses an auxiliary, power-modulated laser with two

beams impinging on the ETM located at the end of the x-arm of the interferometer.

The photon calibrator on the other arm, the y-arm, is used for calibrating the detector

output [168]. The two beams are diametrically opposed on the surface of the ETM,

adjusted to have equal powers, and positioned to minimize unintended torques and

deformations of the surface which could cause errors in the expected displacement.

The Advanced LIGO photon calibrators employ a feedback control system referred to

as the “optical follower servo” [168, 173]. This servo, with a bandwidth of ∼100 kHz,

facilitates simulated signal injection via ETM actuation. This ensures that the laser

output power modulation closely follows the analog voltage waveform injected at the

servo input.

Digital infinite impulse response (IIR) compensation filters, called the “inverse

actuation filters,” convert the requested interferometer strain signal (a digital signal)

into an estimate of the photon calibrator optical follower servo input signal (an analog

signal) required to achieve the desired length actuation. There is an analogous set of
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filters for the electrostatic drive system; however, we focus on the photon calibrators

here. These filters are designed to compensate for several factors. There is compen-

sation for: (i) the force-to-length transfer function of the suspended ETM, (ii) the

signal conditioning electronics that includes a digital anti-imaging filter, the digital to

analog converter gain, and an analog anti-imaging filter, and (iii) the optical follower

servo transfer function. Phase delays of the anti-imaging filters and physical time

delays of the digital control system cannot be compensated by the inverse actuation

filters because the digital IIR filters allowed by the Advanced LIGO control system

must be causal. These delays, on the order of 240 µs, are taken into account during

injection recovery.

The digital signals from the transient and continuous-wave injection pathways

are passed through the inverse actuation filters, summed, and sent to the photon

calibrator; see Fig. 57. Sporadic, unintended interruptions occurred in the Hanford

injection system during Advanced LIGO’s first observing run, in which the buffering

failed to keep up with real-time injection. The cause was not tracked down because the

interruptions occurred at apparently random times, but the drop-outs may be related

to periods of high traffic on the controls system computer network. The sudden

termination introduces a step function to the inverse actuation filters that has a large

response at high frequencies. The effect of these dropouts, should they recur, will be

mitigated by the use of point-by-point, Fourier-domain inverse actuation functions,

using a separate, constant coefficient for each of the injected spinning neutron stars,

all of which are extremely narrowband. This is shown in the continuous-wave injection

pathway in Fig. 57. Transient injections were not affected. Guardian sets the gain

after the inverse actuation filters to zero while there is no active transient injection

so unintended signals do not propagate into the detector data.

The strain actually injected into the interferometer is determined using the photon

calibrator read-back signal generated by a power sensor that monitors the laser light

reflected from the ETM, as shown at the bottom of Fig. 57. The output of this

sensor is converted to injected interferometer strain using the read-back filter that

compensates for the force-to-length transfer function as well as digital and analog

filters in the signal read-back pathway. In the case of hardware injections, however, the

excitation channel is calibrated by taking a transfer function measurement between

the excitation channel and the read-back photodetectors. This transfer function is
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then incorporated within the inverse actuation filters. This provides a calibration

accuracy on the order of a few percent, sufficient for the hardware injection analysis.

For better calibration, however, we can compare the recovered signal and the injected

signal as measured by the read-back photodetector.

There are some limitations to the photon calibrator system. First, the photon

calibrator has a limited actuation strength. Fig. 58 shows the maximal displacement

of the ETM using the photon calibrator system. The photon calibrator can provide

up to ∼1 W of peak power, but the force-to-length response of the ETM transfer

function scales as the inverse-square of frequency [174]. Thus, the photon calibrator is

limited in the amount of induced ETM displacement, especially at higher frequencies.

Second, signal fidelity above 1 kHz is limited due to the shape of the anti-imaging

filters and the desire to roll off the compensation filters close to the Nyquist frequency

such that the compensation filters remain stable. Nonetheless, the photon calibrator

is able to provide precise, calibrated displacements of the ETM in response to many

astrophysical waveforms.

6.3 Binary black hole merger hardware injections

Advanced LIGO observed two binary black hole mergers (GW150914 and GW151226)

and a third detection candidate (LVT151012) during its first observing run [110,

140]. After each detection was made, hardware injections were used to simulate

gravitational-wave sources with similar parameters to each event in the detector.

Verifying that these hardware injections were recovered by the search and parameter

estimation analyses was part of the validation of each detection. Compact binary

coalescence searches use matched filtering to correlate Advanced LIGO data with

a bank of gravitational-wave templates [94]. Here we consider hardware injections

analyzed by the PyCBC search for gravitational waves [8, 175] described in [4, 75].

Parameter estimation analyses were used to analyze the hardware injections and

check for consistency with GW150914 and GW151226. We ran the same code used to

characterize the detected events [47, 84]. We show the recovery of hardware injections

with parameters taken from posterior distributions of parameter estimation results

for GW150914 [84] and GW151226 [140, 75].

For GW150914 and GW151226, we injected ten waveforms coherently into the
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two detectors. The waveforms were injected into the detectors’ data after collecting

enough data to measure a false-alarm rate to 6.0 × 10−7 yr−1 or significance greater

than 5 σ after each detection. The GW150914 hardware injections were generated

with the SEOBNRv2 waveform approximant and included systems with component

spins aligned with the angular momentum of the binary [7]. The GW150914 wave-

forms had a total mass from [68 M�, 79 M�] in the source frame, mass ratios from

1 to 1.8, and distances from [250 Mpc, 530 Mpc]. Mass ratio is defined as m1/m2

where m1 > m2. These signals were injected October 2 to October 6, 2015. The

GW151226 hardware injections were generated with the precessing waveform approx-

imant IMRPhenomPv2 [44, 45] and injected on January 11, 2016. The GW151226

waveforms had a total mass from [25 M�, 30 M�] in the source frame, mass ratios

from 1 to 4.3, and distances from [240 Mpc, 580 Mpc]. For both the GW150914 and

GW151226 waveforms the sky positions were selected to be on the same triangulation

ring as the corresponding astrophysical event.

Figure 59 shows the reported PyCBC matched-filter signal-to-noise ratio ρ ver-

sus the expected ρ. The normalization of ρ implies that the ρ measured for a

population of identical signals in different realizations of the detector noise will be∫
df |h̃(f)|2/Sh(f) [94]. We test this with software injections in which signals are

added to the data without any physical actuation. We added the same software

injection waveform into 47 noise realizations and compute the matched-filter singal-

to-noise rato. The recovered software injections were found to be consistent with the

expectation. In Figure 59 we show the expected ρ computed from our population of

software injections.

Fig. 59 includes 19 of the 20 hardware injections performed for GW150914 and

GW151226. Detector data within hours of the hardware injections was selected for

adding software injections since the sensitivity of the detectors does not significantly

vary on these timescales [176].

Hanford and Livingston have their own angular sensitivity and noise spectra that

affects the matched-filter SNR for an event [163]. All of the hardware injections are

coherent but an astrophysical signal can have a different matched-filter SNR in each

detector. Analysis of one of the simulated GW150914 hardware injections reported

ρ < 5.5 in Livingston. In order to manage computational considerations, the analysis

requires a single-detector signal-to-noise ratio of at least 5.5. Thus, this injection
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was not “detected.” A signal-to-noise ratio < 5.5 for this injection, with an expected

signal-to-noise ratio of 6, is consistent with the variation of the matched-filter output

in Gaussian noise [94].

In Fig. 59 there is one GW150914 hardware injection that was recovered with a

signal-to-noise ratio of 16.1 and 10.9 in Hanford and Livingston respectively; however,

the injection had an expected signal-to-noise ratio of 22.1 and 13.4. This injection

was recovered with a lower signal-to-noise ratio because a loud transient noise artifact

was present in the Livingston data shortly after the hardware injection.

While hardware injections are an important end-to-end test, software injections

are useful because a large number can be performed without disturbing the detector

or significantly reducing the duty cycle of the detectors. Fig. 59 shows the software

injections to be consistent with the recovery of signals that propagate through the

detectors, therefore we can generate large populations of software injections that are

used in other studies to evaluate the search efficiency [8], detections [4], and binary

merger rates [75, 169].

Fig. 60 shows the PyCBC signal-consistency test [177] value χ2
r versus the matched-

filter SNR ρ for hardware injections, a large population of software injections, and

noise transients. Astrophysical events are indicated with stars. Hardware injections

are indicated with squares. Software injections are denoted by pluses. These software

simulations repeat the analysis many times to test the search across a large param-

eter space. The software injections in Fig. 60 were generated from a population of

aligned-spin binaries with source-frame component masses between 2 to 98 M� using

the SEOBNRv2 waveform approximant [7]. The population of software injections is

randomly distributed in sky location, orientation, distance, and time. The injection

times are within the 39 day period around GW150914 reported in [4].

In Fig. 60 a highly significant astrophysical signal should be clearly separated

from the background distributions. We see a separation of the software injections

with high significance (false-alarm rate < 1/100 yr−1) and background distributions.

All ten GW150914 hardware injections are recovered with high significance. Although

the GW151226 Livingston hardware injections are not visibly distinguishable from the

background distribution in Fig. 60, seven hardware injections have a highly significant

false-alarm rate (< 1/100 yr−1) since we combine data from both detectors. Two

hardware injections were recovered with 1/10 yr−1 > false-alarm rate > 1/100 yr−1,
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a significance comparable to the gravitational-wave candidate LVT151012 (1/2 yr−1)

reported in Advanced LIGO’s first observing run [110]. The software and hardware

injections with similar parameters to GW150914 and GW151226 found with high

significance validates the search’s ability to detect similar systems.

Following the detection of a candidate event the parameters are estimated using

Bayesian inference methods [47, 76, 77]. If a detection candidate is a true gravita-

tional wave, we should be able to reproduce the morphology of the posterior distri-

butions using the hardware injections as well as with software injection. Conversely

any significant differences have the potential to highlight discrepancies between the

observation and our waveform models, or errors in our data analysis. Here we focus

on two parameters: chirp mass and sky location.

The chirp massM is typically the best estimated parameter of a compact binary

coalescence signal, since it dominates the phase evolution during inspiral. In Fig. 62

we show for all the simulated GW151226-like hardware injections the posterior dis-

tributions of the chirp mass minus the respective injected values, using the precessing

waveform approximant IMRPhenomPv2 [44, 45]. Most posteriors have comparable

width. Hardware injections with low signal-to-noise ratio have broader distributions

and in one case shows bimodality. The width of the 90% credible interval for the

detector-frame chirp mass for GW151226 is ∼ 0.12 M� [75], which is comparable to

that found with the hardware injections. Verifying that the width and shape of the

posterior distribution for the chirp mass of the candidate events is similar to those of

the hardware injection analyses has been part of validating the parameter estimation

results for each detection.

Sky maps from the parameter estimation analysis of GW150914 and GW151226

were shared with electromagnetic observatories [178, 179] and are shown in [75, 180].

In Fig. 61, we show a reconstructed Earth-bound coordinate sky map for GW151226

along with sky maps for two hardware injections. One of the two hardware injections

(at GPS time 1136588346) has low signal-to-noise ratio and thus spans a larger sky

area, although still near to the same triangulation ring. The other injection (at GPS

time 136592747) is instead representative of the typical map: all other maps look

similar to this and are not shown to avoid overcrowding.
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Figure 58 : The maximum displacement of an ETM using the photon calibrator (blue). For the

sinusoidal force induced by sinusoidally power modulated laser beams, F = mA implies that the

induced displacemnet is given by x = −F/(mω)2. The dashed blue curve indicates that the fidelity

of the induced displacements degrades above 1kHz due to the need to roll off the inverse actuation

filters to maintain stability near the Nyquist frequency. The maximum displacement of the ETM

required for two optimally-oriented compact binary waveforms that contain an inspiral, merger, and

ringdown are shown for reference. A 3-30 M� binary at 100 Mpc (yellow) and 1.4-1.4 M� binary

at 100 Mpc (red) were generated using the SEOBNRv2 approximant [7]. Note that the required

displacement for the 1.4-1.4 M� binary exceeds the maximal photon calibrator displacement at high

frequencies.
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Figure 59 : A comparison of the signal-to-noise ratio ρ from software injections and the recovered

signal-to-noise ratio of the hardware injection. Parameters for the hardware injections were drawn

from the posterior distributions for GW150914 (circles) and GW151226 (triangles). The software

injection ρ is the mean and 1σ error from the recovery of 50 software injections filtered with the

injected waveform near the time of the injection. The threshold on ρ is indicated by the gray region.

The arrows indicate the coherent injection affected by a nearby noise transient.
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Figure 60 : PyCBC χ2
r statistic versus matched-filter signal-to-noise ratio ρ for each detector. Soft-

ware injections are represented as pluses that are colored by false-alarm rate. The false-alarm rate is

calculated using the time-slide algorithm described in [8]. The gravitational-wave events GW150914

and GW151226 are shown as stars. Hardware injections for GW150914 and GW151226 are repre-

sented as boxes. These are coherent software and hardware injections, therefore the H1 and L1 plots

are dependent on each other. Single-detector background distributions (black dots) are plotted;

there was a threshold applied indicated by the gray region. Lines of constant detection statistic ρ̂

are shown (gray dashed lines); plotted are ρ̂ = {8, 10, 14, 20}.
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Figure 61 : The 90% confidence interval skymaps for two hardware injection (red and green) and GW151226 (magenta). The skymaps are

shown in Earth-bound coordinates. H+ and L+ mark the Hanford and Livingston sites, and H- and L- indicate antipodal points; H-L and

L-H mark the poles of the line connecting the two detectors (the points of maximal time delay). The two hardware injections are chosen to be

representative of an average event (green) and a sub-threshold event (red). We notice how all sky maps have support near the same ring of

equal time delay between the two Advanced LIGO detectors.
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6.4 Loud hardware injections for detector characterization

Noise artifacts in Advanced LIGO data adversely affect the output of gravitational-

wave search analyses [176, 162]. In searches for transient gravitational waves, some

periods of time are excluded from the analysis to remove periods of poor data qual-

ity and known transient noise. These are known as “data quality vetoes” [176, 162].

Removing periods of time with excess noise improves the performance of gravitational-

wave searches [176, 162]. Some of these data quality vetoes are derived from informa-

tion recorded in auxiliary channels. Auxiliary channels include instrumental channels

that record degrees of freedom of the interferometer and its isolation systems as well

as channels that monitor the environmental conditions around the instrument [181].

The environmental monitoring system includes seismic, acoustic, and electromagnetic

data.

To avoid discarding true gravitational-wave signals, any auxiliary channels used for

vetoes are first checked to ensure that they do not respond to gravitational-wave-like

signals; i.e., changes in differential arm length. This process is referred to as a “safety

check,” since a channel that has no sensitivity to gravitational waves is considered

“safe” for use when constructing a veto. To test whether auxiliary channels respond

to differential arm length changes, three sets of 12 loud (matched-filter signal-to-noise

ratios > 100) transient hardware injections were performed at both detectors, and

the auxiliary channel data were examined both qualitatively and quantitatively for

signs of coupling.

Spectrograms were manually inspected at the time of hardware injections. These

signals were very strong and clear, with high signal-to-noise ratio, in channels that

were expected to record differential displacement, e.g. interferometer differential sens-

ing and actuation, and closely related degrees of freedom. No signs of coupling were

found in thousands of other auxiliary channels, indicating that they may be used

to construct vetoes. Hundreds of time-frequency representations of auxiliary chan-

nels were also inspected at the times of GW150914 and GW151226 with the same

outcome [176].

Loud hardware injections were used to statistically assess the coupling. An algo-

rithm based on a transformation using sine-Gaussians [182] was used to identify and

parameterize noise transients by their time, frequency, and signal-to-noise ratio. The



137

Figure 62 : Posterior probability density functions (PDF) for the chirp mass inferred from GW151226

hardware injections. The true value has been removed to center all distributions around zero.

Hardware injections with very low signal-to-noise ratio show large width and in one case bimodality.

The bimodal distribution comes from the injection at GPS time 1136588346 which is also shown in

Fig. 61.

time of noise transient is compared with the times of the loud hardware injections.

For each channel, the number of noise transients that occurred within 100 ms of

loud injections are counted and compared to the number that would be expected based

on chance [183]. For any channel exhibiting a higher number of overlaps than expected

by chance, the time-frequency behavior of the raw data is further investigated to see

if there is a plausible connection. We find that only obviously related channels, such

as those in the sensing and actuation chain for the differential length control loop,

were sensitive to the loud hardware injections.

6.5 Conclusions

This chapter presents the Advanced LIGO hardware injection system infrastructure

for injecting simulated gravitational-wave signals into the detectors by displacing
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the test masses, and results from Advanced LIGO’s first observing run. Hardware

injections were used for validating analyses after a gravitational-wave detection, as

an additional check of the calibration, and characterizing the detectors’ response to

differential arm length variations.

After the detection of GW150914 and GW151226, sets of binary black hole merger

waveforms with similar parameters were injected to validate the search and parameter

estimation analyses. The recovered signals were checked for consistency with the

parameters of the injected waveforms, including signal-to-noise ratio, chirp mass, and

sky position. Similarly, the stochastic background and continuous-wave searches used

simulated waveforms as an end-to-end test.

In order to detect and estimate the parameters of astrophysical signals the cal-

ibration must be correct, and the hardware injections provided an additional check

of the calibration sign. The overall sign of the calibration is important in order to

detect and estimate the parameters of astrophysical signals correctly. An incorrect

sign on the calibration would invert the signal in one detector and the parameter

estimates would be incorrect. The binary black hole merger hardware injections were

used to check the sign of the electrostatic drive and photon calibrator pathways. The

continuous-wave injections were used as an additional check on the sign of the cali-

bration between the Advanced LIGO detectors. We found the sign of the calibration

to be correct.

Data quality vetoes are used to increase the performance of search analyses, and

detector characterization hardware injections were used to identify output channels

in the control system that can be used to construct data quality vetoes. After each

gravitational-wave detection, we carried out a study to check for cross-couplings with

the detectors’ output gravitational-wave strain channel. Channels that contained a

trace of the injected signal were considered unsafe and excluded from data quality

veto studies.

In the future, we plan to exclusively use the photon calibrators to inject simulated

gravitational waves.
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Chapter 7

A pipeline for validating the

Advanced LIGO hardware

injection state information

7.1 Introduction

It is critical for Advanced LIGO to maintain a record of all hardware injections so

searches can exclude data containing a hardware injection. Since hardware injec-

tions can pollute the results from background estimation methods or falsely claim

a hardware injection as a new astrophysical detection. Advanced LIGO will also

publicly release its observing run data [184]. As part of this data release, it is impor-

tant to provide a comprehensive list of hardware injections in the data sets for the

gravitational-wave astronomy community; since hardware injections may adversely

affect their analyses.

Advanced LIGO monitors the state of the hardware injection system. Since anal-

yses have different requirements, information about the state of the hardware injec-

tion system is transmitted and stored in several locations. For example, low-latency

searches need to receive a continuous stream that describes the state of the Ad-

vanced LIGO hardware injection system to prevent hardware injections from initi-

ating the process that sends an alert to electromagnetic observatories. In contrast,

offline searches such as the PyCBC search are run on the order of weeks, therefore

offline searches can use a processed version of the output of monitoring systems in
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the interferometers’ control system which more concisely summarize the state of the

hardware injection system.

In this chapter, we describe a pipeline that was used in Advanced LIGO’s first

observing run to validate that accurate state information about the Advanced LIGO

hardware injection system is provided to the searches. The output of this pipeline is an

exhaustive list of hardware injections that was used to inform the LIGO Open Science

Center which is responsible for Advanced LIGO’s public data releases. Section 7.2

describes how the state of the Advanced LIGO hardware injection system is tracked

and how the state information is provided to the searches. In Sec. 7.3 we present

the details of the pipeline that validates the state information about the hardware

injection system. Finally, in Sec. 7.4 we summarize the application of the pipeline

to validate the state of the Advanced LIGO hardware injection system in Advanced

LIGO’s first observing run and improvements made after the observing run.

7.2 Hardware injection state information

There are two independent processes that transmit hardware injection time series

data to the actuators; one process for transient hardware injections and another

process for continuous hardware injections [185]. In this section, we focus on transient

hardware injections and follow Figure 63 which depicts a block diagram that describes

the locations where state information about the transient hardware injections inject

through Advanced LIGO hardware injection system is stored.

During Advanced LIGO’s first observing run, a continuously running script called

tinj controlled when a transient hardware injection was added to the data. Transient

hardware injections were scheduled at a designated time by appending a schedule

file which contains the time and path to the time-domain gravitational-wave strain

waveform data to be injected. Once it was time to perform a scheduled hardware

injection, tinj would read and transmit the time series data to the controls system.

As part of the validation process, we check that each transient hardware injection in

Advanced LIGO’s first observing run was scheduled.

Prior to injecting a signal, the team that schedules hardware injections manually

creates an entry in the database that collects candidate events called Gravitational-

wave Candidate Event Database (GraCEDb) [186]. We use database queries to check
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Figure 63 : Block diagram depicting the flow of state information about the hardware injection during

Advanced LIGO’s first observing run. A team of hardware injectors schedule hardware injections

using tinj and upload entries to the Gravitational-wave Event Candidate Database (GraCEDb).

The scheduling program tinj transmits the hardware injection time-domain waveform data to the

controls system. The controls system stores the injected time series into excitation channels and

the state of the inverse actuation filters to the switch channels. The Online Data Characterization

(ODC) system monitors these channels in the controls systems and produces bit vectors that indicate

if a hardware injection has occurred. The Data Monitoring Tool receives the ODC bit vectors and

records them to the data files that low-latency searches read and the segment database that offline

searches query for state information about the hardware injection system.

that an entry exists for all hardware injections during Advanced LIGO’s first observing

run.

The time series data is sent to an excitation channel which is continuously recorded

to disk. Instrumental channels are test points in the controls system that record the

time series of a readout from the detector, for example a photodiode, seismometer,

or digital signal. The excitation channel is the entry point of the hardware injection

time series data into the interferometers’ controls system. There were two actuators

used to inject hardware injections during Advanced LIGO’s first observing run [185],

the electrostatic drive systems [121] and the photon calibrators [168]. Therefore we

search the electrostatic drive systems transient hardware injection excitation channel

(CAL-INJ TRANSIENT OUTPUT) and the photon calibrator transient hardware injection

excitation channel (CAL-PINJX TRANSIENT OUTPUT). The excitation channels are zero
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except when a hardware injection is present, therefore we search each excitation

channel and record the start and end times of contiguous samples with a non-zero

value.

After the transient hardware injection is recorded to the excitation channel, it

is summed with the continuous hardware injection time series and then the com-

bined signal passes through the inverse actuation filters [185]. This is described in

Chapter 6. The inverse actuation filters have switches to turned the filters “off.”

If a filter is off, then the output from the filter is a time series of zeros; there-

fore, no hardware injection signal goes to the actuator. We search the electro-

static drive inverse actuation filter switch channels (CAL-INJ TRANSIENT SWSTAT and

CAL-INJ HARDWARE SWSTAT) and the photon calibrator inverse actuation filter switch

channels (CAL-PINJX TRANSIENT SWSTAT and CAL-PINJX HARDWARE SWSTAT) for all

contiguous sets of samples where the switches were on. We record the start time and

the end times of each contiguous set.

Searches receive meta-data about the state of the hardware injection system from

monitoring systems in the detectors’ controls system. The hardware injection ex-

citation channels and filtered time series channels are monitored and logged within

the Online Detector Characterization (ODC) system [187]. The ODC system is con-

ducted in real-time within the detectors’ controls system. The ODC system produces

meta-data that indicates whether there is any non-zero signal in the excitation and

filtered time series channels for more than two samples. If there is an active hardware

injection signal, then a bit is flipped to indicate that a hardware injection is actively

being injected. The ODC system organizes bits into bit vectors that summarizes the

state of a subsystem in the interferometer. Each ODC bit vector is written to disk as

a time series and a bitmask is used to resolve an individual bit in the bit vector. The

hardware injection system has its own bit vector in the ODC system. Additional bits

in the hardware injection bit vector are set to indicate which type of injection is being

injected; the types of injections include compact-object binaries, burst, continuous,

detector characterization, and stochastic gravitational-wave signals [187]. Figure 64

shows the state of the hardware injection system’s ODC bit vector during January

16, 2016.

Since two different actuators were used during Advanced LIGO’s first observ-

ing run to inject hardware injection signals there is a hardware injection ODC bit



143

Figure 64 : The hardware injection ODC bit vector for the Hanford detector on January 16, 2016. At

the top, the 0-th bit is the summary bit that describes if the hardware injection system is operating

in its nominal state. Green indicates that it is. Bits 1 through 6 indicate that the filters, filter

gains, and switches are in their nominal state. Bits 7 and 8 indicate that the continuous hardware

injections are active. Bits 9 through 13 describe when and what type of transient injection was

injected throughout the day. At the bottom is a bit time series that indicates if the detector was

observing; green indicates that the detector was observing and red indicates that the detector was

not observing.

vector for both actuators. These two bit vectors are each recorded as a separate

channels (CAL-INJ ODC CHANNEL OUT DQ and CAL-PINJX ODC CHANNEL OUT DQ). We

cross-check bits in the ODC bit vector with times when there is a non-zero signal in

the excitation channels, switch channels, and the schedule file to validate that ODC

is properly monitoring the state of the hardware injection system.

The ODC system has a bit vector that describes the overall state of the detector

called ODC Master. The ODC Master bit vector contains a bit for the state of the

hardware injection system as well as which type of injection is being injected; the bit

is set to 1 if there is an active hardware injection. The hardware injection bits in ODC

Master are consumed by software run in the Data Monitoring Tool [188] infrastructure

in low-latency, and the bits that indicate whether each type of injection are active are

copied into files sent to low-latency analyses. Low-latency analyses use this bit time

series channel (DCS-CALIB STATE VECTOR C02) to determine whether or not each type
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Figure 65 : The state of each hardware injection segment in the segment database for the Hanford

detector on January, 16, 2016. This plot shows that the continuous hardware injections were active

the entire day, there were seven burst hardware injections, and there was one compact binary

coalescence hardware injection. At the bottom is a bit time series that indicates if the detector was

observing; green indicates that the detector was observing and red indicates that the detector was

not observing.

of injection is occurring.

The Data Monitoring Tool infrastructure also generates integer second segments

that indicate whether or not each type of injection is occurring. There is a seg-

ment name for each injection type: compact binary coalescence hardware injections

(ODC-INJECTION CBC), burst hardware injections (ODC-INJECTION BURST), stochas-

tic hardware injections (ODC-INJECTION STOCHASTIC), and detector characterization

hardware injections (ODC-INJECTION DETCHAR). These segments are padded from the

higher sampling rate of the ODC system outward such that each second that con-

tains any portion of an active injection is marked as having that injection active.

These segments are then published to the segment database which is queried by the

offline searches to determine when hardware injections occurred. Figure 65 shows the

segments added to the segment database on January, 16, 2016.
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7.3 Pipeline topology

In Sec. 7.2 we described seven sources that store information about the state informa-

tion about the hardware injection system: the transient hardware injection schedule

file, GraCEDb, the two excitation channels, the four inverse actuation switch chan-

nels, the two ODC bit vector channels, the low-latency ODC bit vector channel, and

the segment database. Most of these sources contain bit vectors sampled ≥ 16 Hz

that need to be searched with several bitmasks over four months; however, this is a

naturally parallelizable problem since searching a finite time series for changes does

not need to communicate with other processes. We have implemented a pipeline that

parallelizes searching each source and then associates records from different sources

with overlapping timestamps together as a single hardware injection event.

The continuous hardware injections were validated with other methods; however,

the pipeline described here is flexible and could be used to validate continuous hard-

ware injections as well.

Figure 66 shows a block schematic of the pipeline. We split the observing run

data into 2048 s segments and search each source independently. Reading the tran-

sient hardware injection schedule file, querying GraCEDb, and querying the segment

database are done independently at the beginning. The set of ODC bit vector chan-

nels, low-latency ODC bit vector channel, and switch channels are searched with

bitmasks for times when a bit indicates a hardware injection has been added to the

data. The excitation channels are searched for times when there is a non-zero value.

After all channels and databases have been searched, we find coincidences between

the sources of state information. When a contiguous series of samples is found in at

least one source, then it is saved as a hardware injection event which contains the

start time of the set of contiguous samples, the end time of the set of contiguous

samples, and the set of sources that indicate an active hardware injection during the

samples. A hardware injection should have a record from each source.

7.4 Conclusions

We presented the flow of information describing the state of transient hardware in-

jections from Advanced LIGO’s hardware injection system and a pipeline to validate
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the state information. The pipeline described in Sec. 7.3 was used to document the

hardware injections added to the data during Advanced LIGO’s first observing run.

The results from this pipeline is a hardware injections which was presented to mem-

bers of the LIGO Open Science Center. The pipeline was automated to validate the

state information as hardware injections are added during Advanced LIGO’s second

observing run.

After Advanced LIGO’s first observing run, the transient hardware injections con-

trols were integrated into Guardian which is the automation framework for the Ad-

vanced LIGO interferometers [172]. Guardian continuously records its state which

describes what task its currently executing. There is a state that designates that a

hardware injection is actively being sent to the controls system. Beginning in Ad-

vanced LIGO’s second observing run, the Guardian state channels should be searched

as well.
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Figure 66 : Block diagram of the pipeline. The observing run is split into n 2048 s segments. The

ODC bit vector channels, the low-latency ODC bit vector channel, and switch channels use bitmasks

to check the state of individual bits in each 2048 s segment. There are h ODC bit vector channels

that are searched with i bitmasks, the low-latency ODC bit vector is searched with j bitmasks, and

there are k switch channel that are searched with l bitmasks. There are m excitation channels that

are searched for non-zero samples in each 2048 s. There are s segment names queried in the segment

database. The list of events found in each 2048 s segments are concatenated and combined with the

schedule file and GraCEDb entries to find coincidences. A results table is rendered at the end that

lists all coincidences.
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Chapter 8

Conclusions

In this disseration, we have reported the detection of gravitational waves from two

binary black hole mergers (GW150914 and GW151226) and a detection candidate

(LVT151012) consistent with a binary black hole merger. These are the first observed

binary black hole system and the individual black hole masses are larger than other

stellar-mass black holes previously observed. This search enabled many other analyses

including measuring the rates of binary black hole mergers [2], testing the strong field

dynamics of gravity [2], and bounding the rates of binary neutron star and neutron

star-black hole mergers [105]. In the future, with a population of detections Advanced

LIGO could begin to determine the mass and spin distributions of black holes, and

possibly use more precise measurements of the spins, as the sensitivity of the detectors

increase, to infer formation channels for events.

We determined the impact of calibration errors on the detection of binary black

hole mergers. For GW150914, we find the loss in the detection statistic averaged over

many noise realizations is <3% and applying corrections for time-dependent changes

to the calibration would not have strongly impacted the detection of GW150914.

Across a template bank with total mass up to 100 M� we see the loss in the matched-

filter signal-to-noise ratio for typical operating conditions is < 1%. Future stud-

ies can focus on quantifying the loss in the detection statistic across the bank, as

well as the impact calibration errors have on parameter estimation. Uncertainties

in the gravitational-wave strain from calibration can increase the uncertainties in

parameter estimation analyses [189]. The current parameter estimation analysis

(LALInference [47]) Advanced LIGO uses to publish results do marginalize over
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calibration uncertainties; however, it does not use a physical model of the calibration.

Interesting studies could be done evaluating the impact of calibration on parameter

estimation using a physical model of the detector. It is important to understand the

impact calibrations errors have on sky localization since electromagnetic observatories

will rely on the Advanced LIGO to decide where to direct their observations. Alerts

are sent to electromagnetic observatories for complementary observations on much

shorter timescales than the final, carefully-checked calibration is produced. The sky

localization of a signal is impacted by changes in the timing and phase. Therefore,

its important to understand how changes in the timing and phase impact the sky

localization results sent to electromagnetic observations.

We have presented a Bayesian parameter estimation analysis called PyCBC In-

ference. PyCBC Inference uses ensemble Markov-chain Monte Carlo methods to

estimate the posterior probability density functions of the astrophysical parameters.

We demonstrate the method on GW150914, GW151226, and LVT151012. We find

that the black hole masses range between 8.4+1.52
−1.86 M� and 35.0+5.1

−3.0 M�. The spins

of the black holes are weakly constrained but we can rule out large aligned or large

anti-aligned spin configurations. It is difficult to measure the precession effects of the

binary and we have already begun investigating how the choice of prior for the com-

ponent spins impacts the spin measurement. These results agree with the published

results in Ref. [2], and in the future, we plan to carry out a more detailed comparison

of the two parameter estimation analyses. As far as new developments in parameter

estimation of binary black hole mergers, we have already begun to explore how our

choice of priors impacts our spin measurements.

We assess the capability of the Advanced LIGO and Advanced Virgo network at

design sensitivity to observe the gap in the black hole mass distribution due to pair-

instability supernovae. This is the first large-scale analysis with PyCBC Inference.

We find the network is able to constrain the component masses of a population of

simulated signals within the mass gap due to pair-instability supernovae which is

between 52 M� and 133 M�. We find that a population of detections with network

SNR > 29 may observe the mass gap, and on the contrary, if a signal is observed with

a network SNR > 29 inside the mass gap it could challenge the theory of the mass

gap. The detection of binary black hole mergers with higher total mass are more

strongly affected by noise transients, and a natural progression of this work would
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be to predict the feasibility to detect these binaries, and how many detections would

Advanced LIGO need before we confidently observe the mass gap.
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[10] A. Einstein. Über Gravitationswellen. Sitzungsber. K. Preuss. Akad. Wiss.,

1:154–167, 1918.

[11] Albert Einstein and N. Rosen. On Gravitational waves. J. Franklin Inst.,

223:43–54, 1937.

[12] D. Kennefick. Traveling at the Speed of Thought: Einstein and the Quest for

Gravitational Waves. Princeton University Press, 2007.

[13] Peter R. Saulson. Josh goldberg and the physical reality of gravitational waves.

General Relativity and Gravitation, 43(12):3289–3299, 2011.

[14] A. Tutukov and L. Yungelson. Evolution of massive close binaries. Nauchnye

Informatsii, 27:70, 1973.

[15] Vassiliki Kalogera, K. Belczynski, C. Kim, Richard W. O’Shaughnessy, and

B. Willems. Formation of Double Compact Objects. Phys. Rept., 442:75–108,

2007.

[16] Krzysztof Belczynski, Daniel E. Holz, Tomasz Bulik, and Richard

O’Shaughnessy. The first gravitational-wave source from the isolated evolution

of two 40-100 Msun stars. Nature, 534:512, 2016.

[17] S. Sigurdsson and L. Hernquist. Primordial black holes in globular clusters.

Nat., 364:423–425, July 1993.

[18] M. C. Miller and V. M. Lauburg. Mergers of Stellar-Mass Black Holes in Nuclear

Star Clusters. Astrophysical J., 692:917–923, February 2009.

[19] C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J. Haster,

and F. A. Rasio. Binary Black Hole Mergers from Globular Clusters: Implica-

tions for Advanced LIGO. Physical Review Letters, 115(5):051101, July 2015.



153

[20] Fabio Antonini, Sourav Chatterjee, Carl L. Rodriguez, Meagan Morscher,

Bharath Pattabiraman, Vicky Kalogera, and Frederic A. Rasio. Black hole

mergers and blue stragglers from hierarchical triples formed in globular clus-

ters. Astrophys. J., 816:65, 2016.

[21] Carl L. Rodriguez, Sourav Chatterjee, and Frederic A. Rasio. Binary Black

Hole Mergers from Globular Clusters: Masses, Merger Rates, and the Impact

of Stellar Evolution. Phys. Rev., D93(8):084029, 2016.

[22] I. Mandel and S. E. de Mink. Merging binary black holes formed through

chemically homogeneous evolution in short-period stellar binaries. Mon. Not.

Roy. Astr. Soc., February 2016.

[23] S. E. de Mink and I. Mandel. The chemically homogeneous evolutionary channel

for binary black hole mergers: rates and properties of gravitational-wave events

detectable by advanced LIGO. Mon. Not. Roy. Astron. Soc., 460(4):3545–3553,

2016.

[24] Pablo Marchant, Norbert Langer, Philipp Podsiadlowski, Thomas M. Tauris,

and Takashi J. Moriya. A new route towards merging massive black holes.

Astron. Astrophys., 588:A50, 2016.

[25] Tilman Hartwig, Marta Volonteri, Volker Bromm, Ralf S. Klessen, Enrico Ba-

rausse, Mattis Magg, and Athena Stacy. Gravitational Waves from the Rem-

nants of the First Stars. MNRAS, 460:L74–78, 2016.

[26] K. Inayoshi, K. Kashiyama, E. Visbal, and Z. Haiman. Strong gravitational

wave background from Population III binary black holes consistent with cosmic

reionization. ArXiv e-prints, March 2016.

[27] P. C. Peters. Gravitational Radiation and the Motion of Two Point Masses.

Phys. Rev., 136:B1224–B1232, 1964.

[28] K. Schwarzschild. On the gravitational field of a mass point according to Ein-

stein’s theory. Sitzungsber. K. Preuss. Akad. Wiss., 1:189–196, 1916.

[29] David Finkelstein. Past-future asymmetry of the gravitational field of a point

particle. Phys. Rev., 110:965–967, May 1958.



154

[30] M. D. Kruskal. Maximal extension of schwarzschild metric. Phys. Rev.,

119:1743–1745, Sep 1960.

[31] Roy P. Kerr. Gravitational field of a spinning mass as an example of alge-

braically special metrics. Phys. Rev. Lett., 11:237–238, Sep 1963.

[32] P. C. Peters and J. Mathews. Gravitational radiation from point masses in a

Keplerian orbit. Phys. Rev., 131:435–439, 1963.

[33] W. H. Press. Long Wave Trains of Gravitational Waves from a Vibrating Black

Hole. ApJL, 170:L105+, December 1971.

[34] S. Chandrasekhar and S. Detweiler. The quasi-normal modes of the

schwarzschild black hole. Proceedings of the Royal Society of London A: Math-

ematical, Physical and Engineering Sciences, 344(1639):441–452, 1975.

[35] C. V. Vishveshwara. Scattering of Gravitational Radiation by a Schwarzschild

Black-hole. Nature, 227:936–938, 1970.

[36] Luc Blanchet, Thibault Damour, Bala R. Iyer, Clifford M. Will, and Alan G.

Wiseman. Gravitational-radiation damping of compact binary systems to sec-

ond post-newtonian order. Phys. Rev. Lett., 74:3515–3518, May 1995.

[37] Luc Blanchet. Gravitational radiation from post-Newtonian sources and inspi-

ralling compact binaries. Living Rev. Rel., 5:3, 2002.

[38] A. Buonanno and T. Damour. Effective one-body approach to general relativis-

tic two-body dynamics. Phys. Rev. D, 59:084006, 1999.

[39] Frans Pretorius. Evolution of binary black hole spacetimes. Phys. Rev. Lett.,

95:121101, 2005.

[40] Manuela Campanelli, C. O. Lousto, and Y. Zlochower. Spinning-black-hole

binaries: The orbital hang up. Phys. Rev. D, 74:041501, 2006.

[41] John G. Baker, James R. van Meter, Sean T. McWilliams, Joan Centrella, and

Bernard J. Kelly. Consistency of post-Newtonian waveforms with numerical

relativity. Phys. Rev. Lett., 99:181101, 2007.



155

[42] Andrea Taracchini, Alessandra Buonanno, Yi Pan, Tanja Hinderer, Michael

Boyle, et al. Effective-one-body model for black-hole binaries with generic mass

ratios and spins. Phys.Rev., D89:061502, 2014.

[43] Michael Pürrer. Frequency domain reduced order model of aligned-spin

effective-one-body waveforms with generic mass-ratios and spins. Phys. Rev.

D, 93:064041, Mar 2016.

[44] Patricia Schmidt, Frank Ohme, and Mark Hannam. Towards models of gravi-

tational waveforms from generic binaries II: Modelling precession effects with a

single effective precession parameter. Phys. Rev., D91(2):024043, 2015.

[45] Mark Hannam, Patricia Schmidt, Alejandro Bohè, Lela Haegel, Sascha Husa,
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