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Abstract

This thesis describes the development of a hybrid quantum electromechanical system. In

this system the mechanical resonator is capacitively coupled to a superconducting trans-

mon which is embedded in a superconducting coplanar waveguide (CPW) cavity. The

difficulty of achieving high quality of superconducting qubit in a high-quality voltage-

biased cavity is overcome by integrating a superconducting reflective T-filter to the cav-

ity. Further spectroscopic and pulsed measurements of the hybrid system demonstrate

interactions between the ultra-high frequency mechanical resonator and transmon qubit.

The noise of mechanical resonator close to ground state is measured by looking at the

spectroscopy of the transmon. At last, fabrication and tests of membrane resonators are

discussed.
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Chapter 1

Introduction

1.1 History and introduction

The origin of the quantum electromechanical system dates back to the early development

of gravitational wave(GW) detection using mass-resonance transducer, and a noise tem-

perature of 1.1 mK was achieved.[2, 3]. Thereafter superconducting technology played a

more important role in GW detecting with low temperature superconducting bars and su-

perconducting quantum interference devices (SQUID)[4] or superconducting microwave

resonators[5].

A second path traces back to the development of new superconducting devices - like

the superconducting single-electron transistor[4] - and new mechanical fabrication and

detection techniques in the 1990s. These developments lead in the following decade to

the emergence of nanoelectromechanical systems with integrated superconducting cir-

cuitry, which enabled detection of nanomechanical motion with sensitivity approaching

the quantum limit[7]. This showed the way to a new frontier and great potential for
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Figure 1.1: Figure from Ref.[6]. (a) Mechanical model of antenna with tranducer mass.
(b) Circuit diagram of the transducer.
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using these systems to explore macroscopic quantum effects[8].

Figure 1.2: SEM micrograph of an undercut Si beam from [1].

Over the last decade more developments in superconducting circuit technology - including

superconducting quantum bit (Qubits) and circuit QED - began to enable the study of

basic quantum effects in mechanical structures on a micro to nanoscale.

The first demonstration of the interaction of flexural mode of nano-mechanical resonator

and a superconducting phase qubit was conducted in in 2009[9]. In this experiment a

charge qubit or cooper pair box (CPB) is far detuned with nano-mechanical resonator.

Interaction built by electrical fluctuation between qubit and mechanical resonator diper-

sively shifts the resonance of nano-mechanical resonator depend on the state of the qubit.

In 2010 a big improvement was done in demonstrating the first use of superconducting

charge qubit to measure the quantum property of mechanical piezo-disk[10]. Further sin-

gle quantum excitation in phonon was shown, taking the first step to complete quantum

control of a mechanical system. This work was a milestone in quantum physics com-
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munity. More recently in 2013, dispersive interactions between a transmon qubit and a

mechanical drumhead was observed.[11] This result shows the evidence of Stark shifts in

qubit’s energy, which is proportional to the number of quanta in mechanical resonator.

The goal of this research in this thesis is to develop a new quantum electromechanical

system using the qubit and superconducting circuit technology developed in the last

decade to develop a platform for performing more advanced quantum measurements of

mechanical systems.

(a) (b)

(c)

Figure 1.3: SEM images of quantum electromechanical systems. (a)Ref.[9],(b)[10],(c)[11]

1.2 Organization of thesis

The thesis is organized as following: Chapter 2 gives a basic description of cQED and the-

ory exploring the hybrid system of qubit coupled mechanical system. Chapter 3 connects
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the basic theory to experimental realization of each separate element of the hybrid sys-

tem, voltage biased cavity, transmon qubit and mechanical resonator. In Chapter 4 fridge

wiring and signal processing is discussed in details. Next chapter 5 shows the design and

fabrication of the cavity, qubit and mechanical resonator. This section contains technical

considerations and recipes of each step. Chapter 6 to chapter 8 present successive exper-

imental results of voltage biased cavity, transmon, the coupled transmon+qubit system.

Chapter 6 demonstrates the realization of T-filter biased superconducting CPW cavity,

which serves as a tool to probe the state of qubit whose characteristics are presented

in Chapter 7. Chapter 8 is the main results of hybrid electro-mechanical system which

consists of a transmon qubit coupled nano-mechanical resonator embedded in T-filter

biased CPW cavity. In chapter 9 represents separated results of membrane developed

very recently, which can be incorporate into qubit coupled system in the future.
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Chapter 2

Theory

Electro-mechanical systems usually involve separate elements with various different de-

gree of freedom. For example in superconducting qubit, Cooper pairs staying in a Bose-

Einstein condensed state can be described by a free variable: the phase of wave-function.

While in a mechanical resonator, collective movement of atoms in a bulk of metal forms

the motional degree of freedom. In this chapter I will theoretically analyze the hybrid

system by studying the basics of each element and get into the description of the coupled

system in different regime of coupling and dissipation strength.

2.1 cQED

2.1.1 Microwave cavity

Microwave cavities are used in cQED as a very basic tool to generate and control pho-

tons at discrete frequencies with high quality factor. There are different types of super-
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(a)

(b)
1 2

Figure 2.1: (a) Schematic drawing of a CPW cavity which if formed by breaking the
center line of a transmission line. The blue color indicates ground planes and center line
made by a thin layer of metal. The two break points function as input/output capacitors
Cin/Cout coupling to the external circuitry, as well as define the position of anti-nodes of
eigen modes (dashed lines). The equivalent inductance and capacitance of the cavity is
denoted as LT and CT . (b) equivalent impedance network of CPW cavity.

conducting microwave cavities: 2-dimensional (2-d) or 3-dimensional (3-d), reflective or

transmissional, transmission line type or lumped element type. Here we first show the

classical analysis of a half-wave co-planar wave-guide (CPW) cavity using equivalent but

general lumped element circuit model, which can be applied to all types of microwave

cavity.

A CPW cavity is a segment of 2d transmission line, which is only capacitively coupled to

ground plane and input/output transmission lines, see Fig 2.1(a). The length of center

line determines the frequencies of modes inside the cavity by constraining the the break

points as anti-nodes of eigen modes. The fundamental mode has electrical field node

in the center and anti-nodes at two ends. In our experiments, the length of cavities is

about 10 mm, resulting a fundamental mode ∼5 GHz. The frequency response of each

cavity mode can be probed by applying microwaves to the input port and measuring the

transmitted signal at the output port. Such transmission measurements provide a way

to probe the CPW mode’s interaction with other systems, such as a nanoresonator or

7



superconducting qubit.

-0.001 0 0.001
0

0.2

0.4

0.6

0.8

1

-0.001 0 0.001
-1

-0.5

0

0.5

1

Figure 2.2: Simulated transmitted signal of a CPW-type cavity mode. (a) the square of
the amplitude |S21| is proportional to the power passing through the cavity. The curve
has a lorentz shape with a quality factor ≈ 104. The FWHM δω is indicated by arrows.
(b) the phase of S21 in the unit of π.

CPW cavity To model the transmission characteristics of the CPW-type cavity, a

simplified circuit model is employed, as shown in Fig 2.1(b). In this model CT and LT

are the capacitance and inductance of the cavity, and the resistor is added to account for

internal loss such as substrate dissipation. Following the standard method of network

analysis [12], the total impedance of the cavity tank is

ZT =
1

iωCT +
1

iωLT

+
1

R

(2.1)

With the input(output) impedance Zin(out) = Z0 +
1

iωCin(out)
, we can build the impedance

matrix

Z =

Zin + ZT ZT

ZT Zout + ZT
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The scatter matrix is S = (Z−Z0I)/(Z+Z0I), where Z0 = 50Ω and I is the unit matrix.

The transmitted amplitude is given by

S21 =
2Z0ZT

(Zout + Zin + 2Z0)ZT + ZinZout + Z0(Zin + Zout) + Z2
0

(2.2)

The transmission function takes a form of

S21 =
1

1 + i2Q(ω − ωc)/ωc

(2.3)

where ωc =
1

LT (CT + Cin + Cout)
, as shown in Fig 2.2. The quality factor

Q =

(
1

Qi

+
1

Qc

)−1

where Qi = CTωcR is the internal quality factor and Qc =
CT

ωcZ0(C 2
in+C 2

out)
called coupling

quality factor describe how fast the photon are tunneled to external circuit from the

cavity. The “full width at half maximum” (FWHM)= ωc/Q is the width of the curve

measured between points are half of the maximum on vertical axis.

2.1.2 Quantization of Electrical Harmonic Oscillator

C L
Q

-Q

Figure 2.3: Sketch drawing of an electrical harmonic oscillator. It consists of a capacitor
C and inductor L. The current following in the circuit is denoted as I, and the charge
on the capacitor is Q.
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In cQED it is typical to model cavities as a quantum harmonic oscillator. To develop

theory in a concrete way, I’ll start with quantization of a electrical harmonic oscillator

consisting of a capacitor and an inductor in parallel, see Fig 2.3. One can choose charge

Q as the free variable of the system and write the Lagrangian L as

L =
1

2
LQ̇2 − 1

2

Q2

C
(2.4)

Following the standard method in classical mechanics we can find the canonical momen-

tum of free variable Q:

Φ =
∂L
∂Q̇

= LQ̇

and from Lagrangian L we can find out its Hamiltonian H

H = Φ · Q̇− L

=
1

2

Φ̂2

L
+

1

2

Q̂2

C
(2.5)

Where Φ̂ is the canonical momentum operator of Q̂ and is the magnetic flux inside induc-

tor L. The energy of the system is exchanging between the inductor and the capacitor

at a angular frequency ω = 1
LC

. We can further define “ladder operator” developed by

Paul Dirac to simplify the Hamiltonian:

â =
1√
2~ω

(
Q̂√
C

+ i
Φ̂√
L
)

â† =
1√
2~ω

(
Q̂√
C

− i
Φ̂√
L
)

H = (â†â+
1

2
)~ω (2.6)

This is exact the same form as standard quantum harmonic oscillator with equally spaced
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energy eigen-states.

2.1.3 Josephson junction

S I S

IV

IS

CJ

(a)

(b)

(c)

Figure 2.4: Sketch drawing of a Josephson junction. (a) Josephson junction structure
consisting two superconducting metal (denoted as “S”) sandwiching a thin layer insulator
(“I”). (b) Pseudo-wavefunction of Cooper pairs in different regime. The red line indicates
decay of wavefunction from superconductor to insulator. (c) Equivalent electrical circuit
of a Josephson junction. The “cross” represents an ideal Josephson junction and the
capacitor represents its junction capacitance CJ

Josephson junction is a crucial element in transmon qubit system. It consists of two

superconducting metal connecting by a non-superconducting inter-layer. In our experi-

ment, we use insulator to form a S-I-S structure, where the superconductor is aluminum

and the insulator is aluminum oxide, as shown in Fig 2.4(a).

GL theory The behavior of the Josephson junction can be described by a macroscopic

method called “Ginzburg-Landau theory”.The state of Cooper pairs is described by a

complex pseu-wavefunction ψ(r), whose amplitude is related with local density of cooper

pairs |ψ(r)|2 = n(r).
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The basic postulate of GL is that ψ varies slowly in space, which is valid in our system.

The size of junction is usually 100nm to microns in area and ∼10 nm in thickness, which

is much smaller than the wavelength (millimeters) of microwave signal (gigahertz).

As shown in Fig 2.4(b), the pseudo-wavefunction in the superconductors has constant

charge density and different phases: φL and φR, the change is φ = φR − φL. Inside

of insulator the wavefunctions extend and decay spatially as the red line shows. By

combining the wavefunction and GL current expression (not shown here), we can obtain

the relation between the superconducting current Is and phase different φ

Is = Ic sinφ (2.7)

where Ic = π∆(0K)/2eRn is the critical current of this junction and Rn is the resistance

in normal state and ∆(T ) is the gap energy at temperature T . The voltage across the

junction is related with the phase difference V = Φ̇ =
ϕ0

2π
φ̇. The potential energy of the

junction can be calculated by integrating the electrical work

U(φ) =

∫
Is · V dt =

∫
Is
ϕ0

2π
dφ = const. − EJ cosφ (2.8)

where EJ ≡ ~Ic
2e

is called the Josephson energy of the junction.

Note this is the case with no presence of magnetic field. A SQUID system with magnetic

field applied will be discussed later.
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Vg

Cg

CJ

q

-q
Cshunt

Figure 2.5: Schematic drawing of a voltage biased Josephson junction. The blue metal,
usually called “island” is an isolated metal connected through a Josephson junction to
ground and capacitively(Cg) coupled to voltage bias V . The wave-function phase of
island is Φ. The capacitance of junction is denoted as CJ . In many cases, the junction
is also shunted with a classical capacitor Cshunt

2.1.4 Cooper Pair Box

A voltage shunted Josephson junction is one of simplest quantum system, usually called

Cooper pair box (CPB). In the limit that the junction capacitance is small, Coulomb

Blockade effects dominant over the Josephson effect, and thus in this limit charge is a

”good” quantum number of the system.

CPB Hamiltonian To describe the system, first we can write the Lagrangian of the

system, without the loss of generality, the magnetic phase of ground superconductor is

0, the magnetic phase of island is Φ,

L =
1

2
Cg(Vg − Φ̇)2 +

1

2
CJΦ̇

2 + EJ cos(2π
Φ

Φ0

)

where Vg is the bias gate voltage and follow the standard method in classical mechanics

finding the canonical momentum, which is equivalent to charge, PΦ = ∂L
∂Φ̇

= −CgVg+CΣΦ̇,

where CΣ = Cg + CJ is the total capacitance of the island. In many cases the island

shunted with a classic capacitor Cshunt, this capacitance can be absorbed in to total

13



capacitance CΣ = Cg + CJ + Cshunt.

The Hamiltonian of the system is obtained

HCPB = PΦ · Φ̇− L

=
1

2CΣ

(PΦ + CgVg)
2 − EJ cosφ

where φ = 2π Φ
Φ0

. This can be further simplified by letting PΦ = −2ne, n is the number

of excessive Cooper pairs on the island and ng = CgVg/2e.

HCPB = 4EC(n− ng)
2 − EJ cosφ (2.9)

where EC = e2

2CΣ
is the energy needed to transfer one electron onto the island.

Commutation relation The commutation relation of charge number operator n̂ = i ∂
∂φ

and φ̂ inherited from Φ and PΦ is

[n̂, φ̂] = i, ∆n ·∆φ > 1 (2.10)

In the CPB limit where the total capacitance of island is small, EC ≫ EJ . The energy

eigen-states are very close to charge number state, the energy of the system is dominated

by how many pairs of electrons are tunneled on the island, and n describing the number

Cooper pairs on the island is a good quantum number.
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2.1.5 SQUID or Split junction

Gauge invariant phase In the presence of magnetic field, the phase difference φ does

not have unique value. To overcome this difficulty, the phase is replaced by “gauge

invariant phase”

φ̃ ≡ φ− (2π/Φ0)

∫
A · ds

where A is the potential vector of magnetic field, and the integration loop goes from

one side of junction to the other side. In terms of φ̃, the superconducting current is

generalized as

Is = Ic sin φ̃

As long as no magnetic field is applied, A = 0, φ̃ and φ are equivalent and exchangeable.

I1

(a)

(b)

I2

Im

Figure 2.6: (a)Schematic drawing and (b) equivalent circuit of a split junction consisting
of two identical junctions.
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Split junction A SQUID has two Josephson junctions in parallel forming a loop.

Magnetic field B⃗ is applied inside the loop. We can also assume the wavefunction phase

of left superconductor is 0 and that of the right is φ. In the presence of the magnetic field,

we calculate the gauge invariant phase φ̃1 and φ̃2 across the top and bottom junction

respectively.

φ̃1 = φ− 2π

Φ0

∫
1

A · ds

φ̃2 = φ− 2π

Φ0

∫
2

A · ds

The total flux integrated across a hole has to be the multiples of flux quanta
∮

hole A ·ds =

N · Φ0, thus

φ̃1 − φ̃2 =
2πϕ

Φ0

(mod 2π)

where ϕ = B × Area is the total magnetic flux applied in the loop. In the case the two

junctions are identical, the total potential energy of the system is

U(φ) = −EJ1 cos φ̃1 − EJ2 cos φ̃2

= −EJ,eff

∣∣∣∣cos(πϕΦ0

)

∣∣∣∣ cosφ (2.11)

The result indicates that by applying external magnetic field, the effective Josephson

energy is adjustable.
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(a) (b)

Figure 2.7: (a) Schematic drawing of a transmon with split junctions. (b) Schematic
drawing of first four energy eigen-states. The red solid (dashed) lines represents transition
allowed (forbidden) in golden roles or single photo excitation.

2.1.6 Transmon with adjustable Josephson energy

A transmon qubit is a CPB shunted with a large capacitor Cshunt ≫ CJ , Cg in Figure 2.7,

the Hamiltonian of the system has a similar form of a CPB system[13, 14]

Ĥ = 4EC(n̂− ng)
2 − EJ,eff(ϕ) cos φ̂ (2.12)

= 4EC(n− ng)
2 |n⟩⟨n| − 1

2
EJ,eff(ϕ)(|n⟩⟨n+ 1|+ |n+ 1⟩⟨n|) (2.13)

where

EJ,eff = (EJ1 + EJ1) cos

(
πΦ

Φ0

)√
1 + d2 tan2

(
πΦ

Φ0

)
(2.14)

and d =
EJ1 − EJ2

EJ1 + EJ2
is the asymmetry of the junctions. |n⟩ is the charge number eigen-

state of operator n̂ |n⟩ = n |n⟩, representing n excessive cooper pairs reside on the island.

The energy eigen-states are denoted as |g⟩, |e⟩, |f⟩, |h⟩ and etc. as shown in Figure 2.8.

Unlike the harmonic oscillator, these states are not equally spaced. If we consider only

the lowest two states, the system can be treated as two-level system, or a qubit. In the

limit of EJ ≫ EC , the system behaves more “linearly”; the energy difference between

levels approximates as Ej1 ≈ (j − 1)
√

8EJEC − j(j − 1)

2
Ec and energy difference of

adjacent states goes to EC as shown in Figure 2.9.
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Figure 2.8: Analytic solution of CPB/transmon system’s eigen-energies. In each plot,
the four lowest energy eigen-states are plotted, same states are plotted in same color:
purple-|g⟩, blue-|e⟩, green-|g⟩, red-|h⟩. The solid (dashed) line is the solution at ng = 0
(ng = 0.5).

18



The transmon/CPB system is normally capacitively coupled to other system or external

detection circuits, resulting in an interaction strength that is proportional to n̂, thus it

is useful to check the overlap elements of operator ⟨i| n̂ |j⟩. See shown in Figure 2.10.

20 40 60 80 100

5

10

15

20

25

Figure 2.9: Energy difference of adjacent energy eigen-states as a function of EJ/EC .
The solid (dashed) line is the solution at ng = 0 (ng = 0.5).

Figure 2.10: Analytic calculation of overlap elements of operator n̂. The solid (dashed)
line is the solution at ng = 0 (ng = 0.5).
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2.2 Mechanical resonator

L 

w t
x

y

L 0

(a) (b)
y

x

z

Figure 2.11: (a) sketch drawing of a long thin beam with two ends clamped. (b) Shape
of fundamental mode of equivalent 1d string.

The mechanical resonator in our system is a beam or membrane whose degrees of freedom

reprent the vibrational motion of the different modes of the mechanical structure. Such

resonators have been studied and utilized in many different context [10, 11, 13, 15, 16], and

are well known to be accurately modelled by continuum elasticity theory. Here I will focus

on the case of thin beam with clamped-clamped boundary conditions. The movement can

be detect using qubit, opto-mechanical cavity, or magneto-motive detection or impedance

match circuits. In this section ,I will focus on the classical description of a doubly clamped

beam as shown in Figure 2.11. The quantization of mechanical resonator is similar to

that of electrical field, and for detailed process, please refer to Dr. Elinor Irish’s thesis

[17].

Assume the two side of of long beam are clamped, and only movement on y and z direction

are allowed. If we only care about the flexural movement on y-direction (coupling of the

other directions are negligible), we can simply it to a 1-d beam with two ends at x = 0

and x = L are fixed. Because the whole side walls of the beam are clamped, the two

ends of 1d string are flat. In the linear regime, the displacement of beam at position x
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and time t, Y (x, t) obeys the Euler-Bernoulli beam theory

ρ(x)S(x)
∂2Y

∂t2
= − ∂2

∂x2

[
E(x)I(x)

∂2Y

∂x2

]
(2.15)

where ρ is the density of mass, E is Young’s elastic module and I(x) =
∫
y2 dydz is

the second moment of area. We further assume the cross section S(x), and material

properties are uniform. The general solution for this differential equation is

Y (x, t) = y(x)eiωt (2.16)

= (A1 sin(kx) + A2 cos(kx) + A3 sinh(kx) + A4 cosh(kx)) e
iωt (2.17)

Assuming the clamped-clamped boundary conditions:

 y(0) = y(L) = 0

y′(0) = y′(L) = 0
(2.18)

we can get 

cos(knL) · cosh(knL) = 1

rn =
A1

A2

= −A4

A3

=
sin(knL) + sinh(kn)

cos(knL)− cosh(kn)

ωn =

√
EIk4n
ρS

=

√
Et2k4n
12ρ

2.3 Hybrid system of Mechanical resonator, Qubit

and Cavity

In the foregoing sections I have discussed the basics of all individual components. Now I

will consider the whole hybrid system in which they are all coupled. First, the mechanical
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(a)

(b)

Figure 2.12: (a) schematic drawing of an atom coupled to a cavity and mechanical res-
onator. (b) Simplified circuit of a qubit capacitively coupled to a cavity V̂c and mechanical
resonator x̂.
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resonator is capacitively (CMR) coupled to transmon island, and when the mechancial

resonator vibrates, the change of position results in change of capacitance. Along with

biased voltage VMR on the mechanical resonator, fluctuation in position degree of freedom

generates charge fluctuation on qubit island and affects the state of qubit. To read out the

state of the transmon qubit, the cavity is capacitively coupled through gate capacitance

Cg. In this section, I will model the interaction between transmon with mechanical

resonator and cavity.

Similarly to the case of CPB, the total applied charge on the transmon island is

Q = Vc · Cg + VMR · CMR (2.19)

where Vc is the voltage fluctuation of the cavity coupled through gate Cg. VMR and CMR

are the voltage bias on the mechanical resonator and its capacitance between the qubit

island. We can separate the charge Q into two parts: the dc part can be canceled by

Cooper pairs tunneling onto the island. The rf part is

∆Q = Vc · Cg + VMR ·∆CMR (2.20)

in which the first term is the standard interaction between cavity and qubit and the

second term proportional to the change in CMR is an effect of mechanical displacement.

The Hamiltonian of transmon can be written as

Hq = 4EC(n̂− V̂cCg

2e
− VMR∆Ĉ

2e
)2 + Ej cos φ̂ (2.21)

≈ 4Ecn̂
2 + Ej cos φ̂− 4ECCg

e
n̂ · V̂c −

4ECVMR

e

∂CMR

∂x
n̂ · x̂ (2.22)

where x is the displacement of mechanical resonator, and ∂CMR

∂x
≃ CMR

d
is the change in
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transmon-MR capacitance respect to change in displacement. The first two terms are

original Hamiltonian for transmon qubit and the last two are interactions with cavity

and mechanical resonator. The terms including V̂c x̂ describes the cross talk between

cavity can mechanical resonator is normally very small and neglected (not shown). So

the Hamiltonian of the whole system can be written by adding energies of cavity can

mechanical resonator which we showed before

H =Hq +Hc +HMR +Hq,c +Hq,MR

= ~ωj |j⟩⟨j|+ ~ωc(ĉ
†ĉ+ 1/2) + ~ωMR(b̂

†b̂+ 1/2)

~g(ĉ† + ĉ) · n̂+ ~λ(b̂† + b̂) · n̂ (2.23)

where |j⟩ is the energy eigen states of transmon [18], ĉ is the annihilation operator for

cavity and b̂ is the annihilation operator for mechanical resonator.

g =
2βeVzp

~
(2.24)

is the coupling strength of transmon-cavity interaction, and Vzp is the zero-point voltage

fluctuation of cavity. It is also useful to define ggij = g ⟨i|n |j⟩, which is the matrix

element representing the coupling term.

λ = −4ECVMR

e ~
∂CMR

∂x
xzp λij = λ ⟨i|n |j⟩ (2.25)

is the is the coupling strength of transmon-MR interaction, and xzp is the zero-point

displacement fluctuation of mechanical resonator.

24



2.4 dispersive coupling limit and rotating wave ap-

proximation

In our hybrid system, the cavity and and qubit is dispersively coupled, g ≪ |ωc − ωq|.

Also we can tune the frequency of qubit such that λ ≪ |ωMR − ωq|. It is useful to

consider a general case where a qubit is dispersively coupled to a harmonic oscillator,

and the analysis can be applied to explain behaviors such as dispersive shift, number

splitting in both MR-qubit and cavity-qubit system.

2.4.1 Rotating wave approximation

Consider the general case when I qubit (denoted as q) and a harmonic oscillator (HO),

the Hamiltonian of the system in Schrodinger picture

H = Hq +HHO +Hint = ~ωqσz + ~ωHOa
†a+ ~g(a+ a†)σx (2.26)

where a,a† are ladder operator of a harmonic oscillator, which could represent a cavity

or a mechanical resonator. This Hamiltonian can be rotated into interaction picture

H̃(t) =
~g
2

(
aσ−e−i(ωq+ωHO)t + a†σ+ei(ωq+ωHO)t

+aσ+e−i(ωq−ωHO)t + a†σ−e−i(ωq−ωHO)t
)

(2.27)

It has term containing slow rotating ωq − ωHO and fast rotating ωq + ωHO components.

Since |ωHO − ωq| ≪ ωHO+ωq is assumed, the fast rotating terms will automatically aver-

aged out and thus can be removed. This is called James Cummings rotating wave approx-

imation. Then the interaction picture Hamiltonian is transformed back into Schrodinger
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picture

HJC = ~ωqσz + ~− ωHOa
†a+ ~g(aσ+ + a†σ−) (2.28)

2.4.2 cavity dispersive shift

Figure 2.13: Simulated cavity response showing dispersive shift by interacting with qubit.
The original cavity frequency is ωc(dashed black line) and is shifted to ωc−χge(blue solid
line) or ωc + χge(red solid line) depends on qubit state |g⟩ or |e⟩.

In our transmon-cavity system, or the hybrid MR-tramson-cavity system descibed by

equation 2.23, if we make the transmon-MR coupling λ = 0 by setting the voltage to

0V, we can analyze the dispersive behavior of the cavity. By applying rotating wave

approximation, we can get

H ′ = ~ω |j⟩⟨j|+ ~ |j⟩⟨j|

+ ~a†a (ωc + (χj−1,j − χj,j+1) |j⟩⟨j|) (2.29)

where χi,j =
⟨i| n̂ |j⟩2

ωj − ωi − ωc

denotes dispersive shift due to transmon state transitions. To

make the equation symmetric and uniform, I manually added non-existing term χ−1,0
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and let it be zero (This equation is the same result as equation3 in [18], and by adding

non-existing term, the terms outside the Σ are absorbed). To clarify, the numbers 0,1,etc

here are representing transmon state |g⟩, |e⟩, etc. We can see the effective energy for

cavity is shifted, depending on the state of transmon

ω′
c = ωc − χge |g⟩⟨g|+ (χge − χef ) |e⟩⟨e|+ · · · (2.30)

The energy of cavity now is transmon-state depended and can be used as a method to

measure the state of qubit[13, 14].

2.4.3 dispersive shift for transmon energy

photon number splitting This sections aims to discuss the basics of harmonic os-

cillator induced shift in qubit energy. In our transmon-cavity experiment in chapter 7

and hybrid MR-transmon-cavity experiment, we clearly see multiple peaks of transmon

energies. This so-called “photon number splitting” was first done by Schuster et al[19]

in dispersive limit in circuit QED. And coherent number state of phonon was observed

by O’Connel[10].

Here I will derive the induced number splitting and follow Clerk’s analytical method[20]

to simulate the peaks. Similarly we can calculate the effective energy for transmon states

ω′
j = ωj − χj−1,j + (χj−1,j − χj,j+1)a

†a (2.31)

There is a term that is proportional to a†a, which is the number operator of the harmonic

oscillator. It suggests that, the original degenerate states are now shifted depending on

the number state of harmonic oscillator. If we further assume a strong dispersive coupling
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that the dispersive shift is bigger than all relevant dissipation, such as coherence time

2π/T1, 2π/T ∗
2 for qubit, κc for cavity, κMR for mechanical resonator

χj−1,j − χj,j+1 & [Γq, κa, other dissipation] (2.32)

then the individual peaks are separate far enough to distinguish individual number state.

0 10 20
0

0.2
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0.8

1

0 10 20

Figure 2.14: Simulated number splitting for qubit. Qubit energy ωq = 4GHz, and har-
monic oscillator frequency ωHO = 100MHz, and the coupling strength λ = 10MHz. In
(a), the average harmonic oscillator number nHO = 5, and in (b) nHO = 2. The blue
curves are in strong dispersive limit where κHO = 1MHz and Γq = 1MHz, while the red
curves are in weaker regime where the dissipation are both 10MHz. It is clear that in
strong dispersive limit, individual peaks are sharp enough to observe number state.

2.5 Mechanical resonator as a dissipative bath

Noise is an unavoidable topic in classic and quantum system. In this section, I will

focus on only the quantum noise generated from the mechanical resonator. In quantum

mechanics, even when a system is at absolute zero temperature, there will be quantum
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fluctuation due to zero-point fluctuation [21, 22]. Here I also discuss a special case

where the transmon energy and Mechanical resonator is close, λ ∼ |ωge − ωMR| and the

coupling strength is smaller than the dissipation rate of mechanical resonator λ . κMR.

In this limit, the mechanical resonator is treated as a dissipative bath coupled to the

transmon. Using perturbation theory and expanding to the lowest order, the noise from

the resonator’s position fluctuation is added to the background noise of the qubit.

We consider only the lowest two states of the transmon as a two level quantum system

that is coupled to a mechanical resonator though

Hint =
λ

xzp
x̂(t)σ̂x (2.33)

where λ = λge in equation 2.25. xzp is the zero-point fluctuation of mechanical resonator,

x̂(t) = b̂† + b̂ in equation 2.23 is the position operator as a function of t.

We define Sx(±ω) as the displacement spectral density, which can be related to the imag-

inary part of its response function χ′′
x(ω), by well-known fluctuation-dissipation theorem

as

Sx(ω) = 2~⟨n(ω) + 1⟩χ′′
x(ω) Sx(−ω) = 2~⟨n(ω)⟩χ′′

x(ω) (2.34)

where

χ′′
x(ω) =

1

m

κMRω

(ω2
MR − ω2)2 + 4ω2(κMR/2)2

(2.35)

where n(ω) is the thermal occupation number as a function of resonator frequency. At
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regime near resonator frequency ω ≈ ±ωMR, we can show that

Sx(ω) = x2zp
κMR⟨n+ 1⟩

(ω − ωMR)2 + (κMR/2)2
(2.36)

Sx(−ω) = x2zp
κMR⟨n⟩

(ω − ωMR)2 + (κMR/2)2
(2.37)

The MR-induced decay and excitation of qubit is

Γ↑,MR(ωge) =
λ2

x2zp~2
Sx(−ωge) Γ↓,MR(ωge) =

λ2

x2zp~2
Sx(ωge) (2.38)

Here the qubit energy ωge is treated as a variable that be tuned experimentally. We

assume that other source of relaxation and dissipation for the qubit ΓB is uncorrelated

with the displacement degree of freedom of mechanical resonator. For narrow enough

range that ωge varies, ∆ωge ∼ ΓMR ≪ ωge, ΓB is independent with frequency. The total

qubit linewidth is written as

γ(ωge) = Γ↑,MR + Γ↓,MR + ΓB =
λ2

x2zp~2
(Sx(−ωge) + Sx(ωge)) + ΓB (2.39)

then, in the limit of ⟨n⟩ ≪ 1, the qubit linewidth has a simple Lorentz form:

γ(ωge) =
λ2

~2
κMR

(ωge − ωMR)2 + (κMR/2)2
+ ΓB (2.40)
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Chapter 3

Design consideration

In this chapter, I will discuss important design considerations and realistic parameter

ranges for implementing our experiments. The discussion will be divided into three parts:

cavity, qubit and mechanical resonator. In each part I will talk about the advantages

and disadvantages for different parameter regime and show related simulations.

3.1 Broadband Filter and biased CPW cavity

In this section, I will present the design of a reflective stop band filter. This function of

this filter is to supply dc voltage bias into the low-loss superconducting co-planar waveg-

uide (CPW) cavity, and thus control the coupling strength of mechanical resonator to

transmon qubit. The characteristics of the filter is studied using numerical simulation and

demonstrated insertion losses greater than 20 dB in the range of 3-10 GHz, which enables

the suitability of filter in a number of applications including qubit-coupled mechanical

system and circuit QED.
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3.1.1 Leakage and isolation of bias circuitry

Leakage The integration of biasing circuitry in microwave cavity is one of the impor-

tant technical issues in realization of qubit and cavity coupled mechanical system, cQED

and quantum dynamics[11, 23, 24]. In these scenarios, these inserted biasing lines, such

as potentials and currents, serve a variety of functions such as maintaining a device’s

operating state or establishing tunable electrostatic interactions between devices. How-

ever, if not carefully engineered, the introduction of the bias circuitry may degrade the

quality of a cavity through increased external circuit loading and radiative losses.

Qubit

CPW cavity

Flux bias line

dc Voltage

Ground plane
with flux traps

Figure 3.1: Optical image of a second version qubit coupled mechanical resonator em-
bedded in CPW cavity. The dc voltage bias line is directly inserted into the pocket.

In regard to our system, the issue rises when a flux line and a voltage bias line are

introduced to the pocket of qubit. The additional biasing lines are in close proximity to
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CPW center line resulting in unwanted leakage: the coupling between biasing line and

cavity center line causes a significant decrease in quality factor of cavity. To prove this,

I measured the transmission of sample with directly inserted dc voltage line (design in

Figure 3.1), and as a comparison I shorted the dc voltage line by wire bonding and then

dip-tested the transmission property of the cavity at 4K, see Fig. 3.2. It is observed that

the peak at fundamental mode gets broader and wider, also a second peak appears at

higher frequency, indicating strong spurious coupling inside the cavity.
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Figure 3.2: Comparison of CPW cavity resonance (5.425 GHz) with a voltage bias cir-
cuitry. The blue cross lines are from CPW with dc and flux biasing lines added directly.
The red circled lines are from the same sample but biasing circuits removed by wire bond
shorting. It is apparent that the main peak(around 5.43GHz) is degraded and shifted
by biasing circuitry, and also second peak appears due to unwanted cross-talk. Note the
maximum amplitude of red curve is far from 0dB because of high temperature.

The intuitive solution to this issue is: first, better isolation between CPW and inserted

circuity, normally this is limited by the distance and pattern of design; second, protection

of signal from going outside the superconducting cavity by adding a reflective filter on

bias line.
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3.1.2 Ground planes to protect from cross-talk

In the ideal case when the cavity center line is inside on a total closure of metal, there

could be no any cross-talk to external circuitry. This indicates bigger ground area and

closer ground plane may help with decreasing cross-talk. To study this effect, I did

simulation using Sonnet, See Figure 3.3. Number “1”(“3”) represents the coupling finger

from cavity, “2”(“4”) reprensents the dc voltage gate. The floating metal in between

is the island of qubit. The three metal are patterned in a way similar to our second

version sample. As a comparison in (b), more ground planes are added to surround the

electrodes to increase the capacitance of 3 and ground, 4 and ground, without changing

the capacitance between 3 and island, 4 and island. Numerical simulation of transmission

property shows great suppression in cross-talk between the two ports.

3.1.3 Lumped element reflective filter

Filter property The second method is by inserting a reflective filter on the bias cir-

cuitry. For a successful filter design, a few requirements have to be satisfied: first, the

microwave signal, usually GHz range, leaking through the bias line is reflected back with

little dissipation and phase change, so that the equivalent impedance of the bias line is

sufficiently high; Second, dc and low frequency is allowed to pass with no attenuation;

Third, the dimension needs to be appropriate so that it can be engineered on the same

chip together with cavity, for our sample, smaller than 4mm.

There are several ways to design this reflective filter. It could be a narrow band-stop

filter, which has a very high isolation at specific frequency but is disadvantageous when

the cavity frequency might change from temperature change, dispersive shift from qubit,

fabrication difference, coupling capacitor change, etc, the isolation varies a lot. Instead
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Figure 3.3: Comparison of cross-talk with more ground plane. (a) and (b) are snapshots
of original CAD files. The metal pieces connected to the edges are grounded. There is a
floating island in the center representing qubit island. “1,2,3,4” are the microwave ports
ended with 50Ω. (c) Finite element simulation result using Sonnet. The blue (red) curve
is the transmission from 1 to 2 (3 to 4) receptively. A 10dB smaller amplitude indicates
the cross-talk being suppressed one order of magnitude.
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I chose to design a broadband reflective filter with high enough isolation in stop band,

and the lifetime of qubit is not limited by radiative loss through the filter.

The filter can be building either using lumped element or transmission lines as in these

work ([25, 26]. I tried both ways and both work from simulation. The reason I chose

lumped element is that it is more condensed in dimension. A smaller dimension gives

more flexibility to integrate with other circuits, and the higher order modes are usually

pushed up to higher frequency.

1

0.5mm

2

LF

1 2CF

LF

LF CF LF

(b) 

(a) 

Figure 3.4: Design of reflective T-filter. (a) A snapshot of CAD file for reflective filter.
The input and output ports are on at two ends. The filter consists of 3 parts: 2 meander
inductor LF sandwiching a inter-digit capacitor CF . (b) Schematic drawing of reflective
filter. The blue area indicates the filter capacitor and inductor. 1 and 2 are input/output
ports to external 50Ω lines.

Figure 3.4(a) shows the CAD file of our reflective T-filter, which consists of two meander

inductor sandwiching a inter-digit capacitor. Ideally arbitrary large values for LF and

CF will give better isolation, however these parameters are limited by the realistic size

of the meander and interdigit capacitor. A feasible choice is: the inductance of each

inductor LF=5.5 nH, and the filter capacitor CF=1500 fF.
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Figure 3.5: Transmission property of reflective T-filter. The red (blue) solid line is
numerical simulation using Sonnet. The yellow dashed line is analytic result using lumped
element model. Purple dashed line is analytic result using modified lumped element. The
data of measurement see chapter 6

The microwave property were investigated using analytical analyze and numerical simu-

lation using commercial software Sonnet 1. See Figure 3.5. At low frequency the meander

and inductor behave as a lumped element, giving a stop band from from its filter res-

onance ωF = 1/
√
LFCF ≈ 2GHz, and the isolation at 5GHz is around 25dB. As the

frequency increases, the wavelength get closer to the dimension of the inductor and ca-

pacitor, ∼1mm, the lumped element approximation is no longer valid. At 13GHz the

meander inductor’s self-resonance dominates the behavior resulting a second minimum

in isolation. The self-resonance is further proved by checking the current density inside

the filter, see Figure 3.6.
1www.sonnetsoftware.com
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Figure 3.6: Current density map of T-filter at the first self-resonance at around 13GHz.
The color scale indicates the density of current. The color in the capacitor fingers is
uniform. Current minimum in inductor proves a self-resonance and is no longer valid
being treated as a lumped element.

3.1.4 T-filter biased CPW cavity

To integrate the bias in to cavity, we connect a third line to the center of CPW cavity. It

is a voltage node of the fundamental mode thus bringing minimal change to the cavity.

But it is a anti-node for the second mode, so bigger damping is expected for the 10GHz

mode. See Figure 3.7.

3.1.5 Radiation loss of qubit though the filter

For our goal of using qubit to probe the motion of mechanical resonator, it is critical to

engineer a protected environment for qubit embedded in the cavity. To investigate the

filter induced damping, we estimated the lifetime T1 of qubit embedded near the anti-

node of cavity fundamental mode, by calculating the admittance seen by the qubit as a

function of frequency, following the method in Houck’s work. The shunt capacitance of

qubit is Cshunt=100 fF and is coupled to the cavity by Cc=10 fF. The cavity is assumed

to have symmetric coupling capacitors Ck=10 fF.
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Figure 3.7: Numerical simulation of Filter biased CPW cavity. The first two modes
are plotted. The inlet is a zoom-in a S21 of the fundamental peak with quality factor
QL,1=53k and the second peak with quality factor QL,2=2.7k.
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Figure 3.8: Estimated relaxation lifetime T1 of transmon/charge type qubit embedded
in filter-biased CPW cavity. The colored solid lines indicate scenarios with different LF .
For comparison, the black dashed line is for a CPW cavity without inserted dc voltage
line and filter, and the blue line for with dc voltage line without filter.
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Figure 3.8 shows the expected relaxation time of qubit respected to qubit’s frequency. For

the chosen parameters LF=10 nH and CF=1500 fF, it increases dramatically the lifetime

of qubit in the range >3 GHz, and around 5 GHz, the qubit lifetime is limited by Purcell

effect of the cavity itself.

3.2 Single resonance lumped LC

Besides co-planer waveguide cavity, I also designed cavity using lumped element. Unlike

CPW cavity, the dimension of lumped element cavity is usually much smaller than the

wavelength and thus higher order resonance is pushed to high frequency, leaving only

one single resonance at a relatively large range. Figure 3.9 shows the design of a lumped

LC cavity design, which consists two inter-digit capacitors and one meander inductor in

the center. The cavity is capacitively coupled to input/output ports denoted as “1” and

“2”. The sample (red) is put in a pocket and is capacitively coupled to cavity finger and

a bias line denoted as “3”.

Figure 3.9: CAD drawing of a lumped element LC transmission cavity.
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The response property of the cavity is studied numerically using Sonnet finite element

simulation, see Figure 3.10.

5 10 15 20

-150

-100

-50

5.337 5.3372

-30
-20
-10

0

Figure 3.10: Numerical simulation of transmission property of a lumped element LC
cavity, as shown in Figure 3.9. Only one peak is observed at 5GHz within range of 0-
20GHz. The inlet is a zoom-in at the peaks of curves. The leakage S31 is more than
20dB small than the S21 indicating good isolation between the cavity and gate.

3.3 Transmon design

The interaction between a CPB/transmon and a mechanical resonator is

Hq,MR = ~λ(b† + b)n̂ (3.1)

and it can be separated into two parts

Hq,MR =

(
4EC

~
n̂

)
·
(
VMR

e

∂CMR

∂x
xzp x̂

)
(3.2)
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where the first part acts on the transmon resulting in dispersive shift χij as discussed

in chapter 2, the second term acts on the mechanical resonator system resulting in total

charge fluctuation.

One of our goal for this system is to probe the number state of mechanical resonator. To

achieve this goal, we need to engineer the system in strong dispersive limit: the coupling

strength of transmon-qubit interaction needs to be dominant compared to all dissipation

in the system, the dephasing time T2, the dissipation rate of nano-mechanical resonator

κMR

λ > [
2π

T1
,
2π

T ∗
2

, κMR, etc.] (3.3)

3.3.1 Relaxation and spontaneous emission

Relaxation is a process when an exited qubit gets back to its ground state (at sufficiently

low temperature). Relaxation time T1 can be influenced by many factors such as prop-

erties of materials, fabrication defects, material agings and design of external circuitry.

The intrinsic loss of qubit is usually dominated by the materials, and the external loss

mechanism, or spontaneous emission is controlled by circuitry coupled to the qubit. In

the section, I will discuss the estimation of T1 based on spontaneous emission. For more

detailed discussion, refer to Ref. [39].

In our system, qubit is embedded in a superconducting qubit and it is capacitively coupled

to cavity, which is used to dispersively detect the state of qubit. Here I will assume the

qubit is only coupled to the fundamental mode of cavity, because higher harmonic modes

are even further detuned from qubit energy. This analysis can be generalized to all other

42



modes. It is shown the Purcell rate for a dispersive decay is

γq = (
g

∆
)2κ (3.4)

where g is the coupling of qubit to external circuitry, ∆ = |ωq − ωc| is the energy difference

of cavity and qubit, and κ is loss rate of photons in external circuity. One can further find

the energy loss rate by calculating the electrical conductance Y (ω) = 1/Z(ω) of external

circuitry, the relaxation is

T1 ≤
Cq

Re[Y (ω)]
(3.5)

This method is applied to analyze the radiation loss of qubit through filter biased cavity,

see figure 3.8

3.3.2 Dephasing time

Dephasing is a mechanism of quantum system returning to classic behavior. In solid-

state systems, microscopic modes and noise is a strong source of decoherence of qubit,

such as charge background fluctuation, current or magnetic field variance from material

or control circuits. And because the linewidth of qubit, or the dephasing time T ∗
2 highly

depends on dephasing rate

1/T ∗
2 = Γϕ + 1/2T1 (3.6)

it is important to estimate the dephasing rate of qubit.

It is shown in Hutching’s paper[27], dephasing rate

Γϕ = 2π
√
Aϕ |ln 2πfIF t|

∂fge
∂ϕ

(3.7)
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where the flux noise power spectrum is Sϕ(f) = Aϕ/ |f | and fIF is the infrared cut-off

frequency, t is on the order of 1/Γϕ, ϕ is the flux bias in the unit of Φ0. Here I first show

the numerical calculations of qubit energies fge and its derivatives against flux bias ϕ,

see figure 3.11.
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Figure 3.11: Numerically calculated qubit energy, and the derivatives of energy respected
to ϕ. The transmon parameters are the same as in chapter 8

To gain a numerical estimation of dephasing time of our qubit, I will use the same value

in Hutching’s paper8. A1/2
ϕ = 1.4µΦ0, t = 1µs, fIR = 1Hz. At ϕ = 0.32, where the qubit

is in resonance with mechanical resonator, ∂fge
∂ϕ

= 10 and in chapter 8, and at fge = 4GHz,
∂fge
∂ϕ

= 6. For relaxation time, I use T1 = 15µs. One can find T ∗
2 (fge=4GHz) = 4.6µs,

and T ∗
2 (fge=3.5GHz) = 2.9µs. This is very close to the value we found in hybrid cavity-

transmon-MR experiment.
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3.4 Mechanical resonator

There are different types of mechanical resonator, doubly clamped beam, suspended

cantilever, metal membranes, piezo-sheets, oscillation modes in diamond and etc.. Among

them, doubly clamped beam has the least difficulty to fabricate and to model.

3.4.1 Beam

Length dependence For a doubly clamped beam, the first question is what dimen-

sions give the biggest zero-point fluctuations? For the following discussion, the MR

frequency ωMR is fixed. Also for the sake of fabrication, the thickness of the metal layer

has very little flexibility, so we fix the width of the , one can show that

xzp · L3/2 = constant (3.8)

where L is the length of the beam, xzp is zero-point fluctuation in displacement degree

of freedom. Along with MR-transmon coupling capacitance CMR = ϵ0
S
d
∝ L, I obtain:

Hq,MR =

(
4EC

~
n̂

)
·
(
VMR

e

∂CMR

∂x
xzp x̂

)
∝ ∂CMR

∂x
xzp ∝ L− 1

2 (3.9)

This suggests that to enhance the coupling strength, smaller length of beam is preferred.

In the end it will be limited by the fabrication techniques, especially the thickness (10s

of nanometers) of beam.

Simulation results Most metal or metalized beam resonators’ fundamental mode are

in radio frequency range 104 ∼ 108Hz. To couple with qubit in resonance limit, we chose
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to use the third modes of beam.

Figure 3.12 shows the COMSOL simulation results of our mechanical resonator. The

dimensions of the beam is 700nm×45nm×100nm. The surface is set to be a 3nm thick

aluminum oxide layer, which has roughly 3 times bigger Young’s Module compared to

aluminum, and is critical especially for small dimensions. The numerical result is shown

in Figure 3.12. The fundamental flexural mode is 708MHz and the third mode is 3.4GHz.

Figure 3.12: Finite element simulation using COMSOL. Color scale represents the dis-
placement at different position. (a) Fundamental mode at 708MHz. (b) Third mode at
3.4GHz.

3.4.2 Membrane

Membrane style resonator is advantageous for its possibility of big area and thus big

capacitance. But the frequency is relatively lower than beam resonator. It is designed to

engineer dispersive coupling with qubit.

The most common membrane is edge clamped membrane. It is easier to model and

simulate, and also easier to fabricate using standard nanotechnologies.The other type I

am developing is called “free-free” membrane, because the two ends are free with anchors.

The fabrication details are described in chapter 5 and here I am only showing the the

simulation results of the two types of membrane.
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Figure 3.13: Finite element COMSOL simulation of doubly clamped membrane (4.5µm×
3µm× 250nm). The membrane are clamped on both longitude edges. The nine subplots
are nine lowest flexural mode with frequency labeled below it. Color scale represents the
displacement at different position.
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Figure 3.14: Finite element COMSOL simulation of free-free membrane (5µm× 2.5µm×
250nm). The membrane is clamped at the four ear-like anchors whose position is op-
timized to have minimal loss. The nine subplots are nine lowest flexural mode with
frequency labeled below it. Color scale represents the displacement at different position.
f3 is the desired “free-free” mode.
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3.4.3 Clamping loss

The displacement degree of freedom of a mechanical resonator is a collective movement of

atoms. Different loss mechanism present limit the coherent dynamics of the system. For

a nanometer-scale mechanical system, clamping loss is a major one: the elastic collective

wave are scattered and lost through its supports. This mechanism is carefully studied

by Wilson-rae. The mechanical resonator is coupled to a thermal bath of harmonic

oscillators though the supports. The final clampling quality factor is shown in table.I in

[28].

For our 3.4GHz mechanical resonator mode, comparing the calculated quality factor and

measured factor, we believe clamping loss is one of the dominating mechanism.

Figure 3.15: Numerical simulated force |Fs| as a function of support position xs. The
bending mode shape is shown in the inlet. At xs ≈ 1.47µm, the force reaches is minimum
suggesting a minimal clamping loss.

One of the method to reduce clamping loss is to move the supports to the nodes, where

the displacement is zero and therefore no first order elastic force applied. This optimal

point can be found when the overall displacement of the mode is zero. When I design
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the free-free membrane, the important step is simulate the forces on the supports. This

is done by moving the position (xs) of the symmetric supports shown in inlet of Figure

3.15. Fs is the vertical force applied on the anchor, whose amplitude is plotted in Figure

3.15. The force reaches a minimum at xs ≈ 1.47µm.

3.4.4 Differential mode of coupling

Simulated results in Figure 3.12 shows that unlike the doubly clamped membrane, there

are more modes at lower frequency that might couple with gate pad, resulting in spurious

peaks or broadening of the peak. Here I propose a different “differential mode” to couple

with the transmon pads. The two pads from transmon are denoted as “+” and “-” in

Figure 3.16, “-” pads sitting one the side are connected with a wire. By making the total

area of “+” and “-” pads, it is possible to avoid coupling with all other mode, leaving

only the free-free mode coupled with transmon. Table. 3.1 summarizes the coupling
∂CMR

∂x
mode i relative to ∂CMR

∂x
mode 3, where i is the order number in Figure 3.14.

mode number i fi (MHz) coupling ratio
1 38 9.28E-3
2 40 9.05E-4
3 46 1
4 89 5.70E-5
5 108 1.56E-5
6 112 2.87E-5
7 117 1.59E-5
8 132 3.53E-5
9 186 7.35E-2

Table 3.1: The relative coupling strength ∂CMR

∂x mode i as a function of order number of a
free-free membrane. Besides the desired mode 3, coupling of all the other modes are high
suppressed.
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(a)

(b)

(c)

Figure 3.16: Differential coupling mode of free-free membrane to a and two pads (denoted
as “+” and “-”) of a transmon. (a) (top view)Schematic drawing of bottom pads (blue)
ans top suspended free-free membrane. (b) (side view) The top membrane is in the 3rd
“free-free” mode. The blue(red) area represents the capacitance change to “+”(“-”) pad.
(c) same view as in (b) but for a spurious mode in which the upward and downward
displacements cancel the total coupling.
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Chapter 4

Fridge and measurement setup

In this chapter, the experimental setup is discussed. The dilution fridge and cryogenic

environment provides a cold and quite environment for the sample by controlling the

temperature and transmits the signal into and outside from the sample. The signal is

analyzed by external hardware software. The characteristic of the sample is retrieved

from the measurement signal.

4.1 Cryogenics cables and Filtering

The fridge has multiple temperature stages ranging from room temperature to 30mK as

shown in Figure 4.1. In order to perform measurements down to single photon level in

cavity, ⟨nc⟩ ∼ 1, both thermal noise isolation and measurement efficiency are critical in

the set up, where the former offers a “quite” environment for the sample and the latter

guarantees acceptable speed of measurement. A careful trade-off has to be made between

both. The rules and princibles of cryogenic design can be found in Pobell’s book[29].
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The concern of isolation of thermal noise includes 4 different pathways: the RF input

line, the RF output line, the dc input line, and the magnetic flux (current) control input

line.
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Figure 4.1: Schematic drawing of cable setup through different stages on fridge. Different
stages are represented by thick light gray horizontal lines with its temperature (300K,
4K and etc.) on the right side. The sample locating at bottom of the figure, is clamped
at the coldest stage of fridge. There are four lines connecting to it as shown on the top
of figure. The color of cable indicates different materiel: black for stainless steel, orange
for copper, and blue for superconducting metal. The big black points represents thermal
anchor to stage.
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Heat conduction consideration The material of the cable is also determined by

heat transfer consideration between stages. If the connecting cable is within the same

stage, copper is normally preferred. It is favored for its ease of bending and low loss of

microwave signal. Copper is a good thermal conductor, 100s W/m·K[29]. Considering

the thermal conductance, stainless steel cable is used to connect between stages. Stainless

cable has much smaller thermal conductivity, tens W/m·K, it also brings extra microwave

attenuation. In terms of heat conductivity, Superconducting material is much lower than

normal metal, and is also advantageous for its low microwave loss ∼0.1 dB/m. However

compared to copper and stainless steel, it is more expensive in terms of price. Thus it is

used On the output line.

4.1.1 RF input

Attenuation for thermal noise The RF input line serves for offering microwave

driving power to the cavity as well as microwave control pulse for qubit. The noise

outside the fridge at room temperature is added to the microwave signal injected. The

frequency of microwave ranges from hundreds of MHz to more than 10GHz. For such a

wide range of frequency, the simplest way is to filter out using broad band attenuators.

The attenuation between stages is determined by thermal noise that radiates from higher

temperature stage to sample. The noise spectrum of a resistive element is S(ω) = 4kBTZ0

or P (ω) = kBT ∆f , where Z0 = 50Ω is standard impedance for RF lines, ∆f is frequency

bandwidth to integrate power. For example, the first attenuator is placed between the

room temperature stage at the top of the fridge and 1K stage which is thermalized with

1K-pot, S300K = −173dBm/
√
Hz and S1.4K = −197dBm/

√
Hz, the attenuation cutting

all noise from the upper stage, should be bigger than 197−173 ≈ 25dB. To secure enough

isolation, we insert a 30dB attenuator coaxial cables. Both the cables and attenuators
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are tightly clamped in order to get fully thermalized to its stage.
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Figure 4.2: Transmission measurement of RF input line. The inset plot shows the whole
range. Measured at room temperature.

Although bigger attenuation gives better isolation, it is not always feasible to increase

total attenuation on the input line too much. For our filtered CPW cavity with Q ∼

20000, to have average one photon in the cavity, ∼-143dBm is needed on the input port

of cavity. Most of pulsed measurements to characterize qubit, around a hundred photons

require -120dBm on the sample and -40dBm on top of fridge. However to perform

bright-state measurement[30] or cavity side-band measurements[15, 31, 32], up to 109

phonon(this is huge power) or -50dBm is demanded. High attenuation on the input

line sets the upper limit of power, and increases the complexity of outside circuits with

more amplifiers. Furthermore a higher power may cause a high heat dissipation on the

attenuators, eg, -30dBm=1µW on mixing chamber, could easily heat up the fridge above

the base temperature.
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Note 75dB isolation in our setup,as shown in Figure 4.2, is more than needed,

S300K/S30mK = −173dBm/(−216dBm) = 40dB

The reason we put extra attenuation on the input line is that we once observed higher

order excitation of qubit, and more aggressive attenuation helped us to rule out ther-

mal noise problem from the fridge. The discussion of qubit temperature is discussed in

Chapter 8.

4.1.2 RF output

The RF output is the microwave readout circuit for cavity. The design needs more

delicate consideration: it requires isolation of noise from outside fridge and hotter stages,

while signals from the sample can go out with no attenuation in an ideal case. This

is possible by using circulators, which provide asymmetric transmission property. Each

circulator has a very low loss on forward direction, and ∼15dB attenuation for reverse

direction. Two circulators in series provide roughly 35dB isolation, which is sufficient to

cut off noise from HEMT amplifier located at 4K stage.

Before reaching 4K stage, 2 segments of Nb superconducting cables are used, in order to

introduce the least attenuation on the output line and isolate thermal conduct between

mixing chamber and higher temperature stages.

Because the signal is too small (maybe smaller than -130dBm, much smaller than room

temperature noise floor) compared to noise figure of room temperature amplifiers or read-

out apparatus, it is amplified first by HEMT manufactured by Caltech1 when reaching
1http://www.caltechmicrowave.org/amplifiers
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4K stage. HEMP, high-electron-mobility-transistor is a high power (35dB) amplifier with

very low noise(∼3K) over a wide bandwidth (1-20GHz). After 4K, the noise figure of the

signal is dominated by HEMT noise and can be amplified even more outside the fridge

at room temperature.

4.1.3 dc Input line
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Figure 4.3: Transmission measurement of dc line 5 at room temperature.

The dc input lines provide voltage bias for MR-qubit coupling. It requires passing of dc

or low frequency voltage signal and filtering all high frequency noise. Flexible stainless

steel coaxial cable (Lakeshore Ultra miniature coaxial cable, type SS) is used from room

temperature to mixing chamber for its low thermal conductivity and high attenuation

(18 dB/m at 1 GHz). Four dc line are installed on fridge, on each of them two powder

filters are inserted. Powder filter[33] has high attenuation and no self-resonance at high

frequency (>1GHz). I made two different types of powder filters, stainless steel powder

filter has a bigger attenuation than copper ones, but it is usually used only at 100mK or
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above for the concern of no being fully thermalized [34, 35] and its potential anomalous

heat capacity.

4.1.4 Flux bias line

The flux bias line controls the magnetic flux ϕ, changing total Josephson energy of qubit

and thus changing the energy difference of qubit states. This line differs from the rest

because it carries high, up to 10mA, current, compared to nano-amps to micro-amp in

RF lines. Even 1Ω resistance on this line generates (10mA)2 × 1Ω = 10−4W = 100µW

of heat load, which can heat up mixing chamber to 100 mK! The only way to avoid

this heating is to use superconducting cable at cold stages. The superconducting wire,

usually thin and resistive at normal state, needs to very well thermalized at bobbins to

keep below its transition temperature, otherwise heat generated at some point can heat

up and turn the whole wire to normal state. For wire above 4K, we use twisted copper

wire. The joint of copper and superconducting wire is thermalized at 4K stage.

The whole flux wire is twisted 200 turns/meter. Because adjacent loops in twisted pair

cable have opposite direction thus it is much less affected by magnetic fluctuation[36].

Also the self-inductance of twisted pair is higher than straight wire, thus more reluctant

to high frequency noise.

4.2 Magnetic shielding

The effective Josephson energy of the qubit EJ,eff = EJ,0 ·
∣∣∣cos(πϕϕ0

)
∣∣∣ is controlled by

external magnetic field ϕ. In experiments, we use on-chip current line to provide the

magnetic field. In order to have a few, say 3, flux periods in a 30µm × 15µm square
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Figure 4.5: Photo of Cyroperm magnetic shielding.
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loop from 100µm away, a magnetic field of 0.2 Gauss is needed. This is comparable with

the Earth’s magnetic field. And Other stuff such as a permanent magnet or a steel chair

may cause a magnetic fluctuation roughly on the same order of magnitude. All these

sources of flux noise can degrade the stability of system. In cancel the noise the sample

is protected by commercial Cryoperm2 magnetic shielding. This shield is cooled down to

fridge base temperature using tight thermal contact as shown in Figure 4.5.

4.3 Demodulation

The frequency of cavity is ∼ 5GHz. However we don’t have a hardware to sampling

and convert the signal at high enough speed (sampling rate must be higher than tens of

giga-hertz). In order to extract the information, amplitude and phase, the GHz signal

is usually mixed or down-converted to mega-hertz or dc range to digitize. Generally

there are two methods, homodyne detection using IQ mixers or heterodyne detection by

introducing another GHz signal detuned from the carrier frequency.

The homodyne detection is favored for two reasons, it requires a simpler circuit (less

filtering, less sources and etc.) and thus is easier to work at a wider bandwidth. But

the smaller dc offset (maybe frequency dependent) and drifts from IQ mixer limits the

resolution for small signal. So we changed heterodyne detection from homodyne to get rid

of dc offset problem. The giga-hertz signal is first mixed with a RF signal close to carrier

frequency, and down-converted to IF frequency. The converted wave is furthermore

digitally recorded by acquisition card, and the recorded signal is combined to extract

both quadrature of original signal, which is called digital homodyne.
2http://www.cryopermshielding.com/
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4.3.1 heterodyne detection and heterodyne board

Figure 4.6: Photo of home-made heterodyne board.

IF frequency Because the information is encoded in IF signal, the heterodyne detec-

tion is much less affected by dc offset or 1/f noise by filtering around IF frequency.

The choice of IF frequency is limited by some factors. The first one is sampling rate of

acquisition card. The maximum speed of our Alazar card3 is 1GB/s for single channel ,or

500MB/s for two channels. In order to get the complete wave of signal, the number of

points per cycle needs be much bigger than 4, which limits fIF ≪ 100MHz. But running

at full speed of acquisition would result in more data to store in buffer and to transfer

to memory, eventually slowing down data processing and increase total time of measure-

ment without obtaining any new information. Secondly the lower bound of IF frequency

is limited by the measurement time of one trace. Usually for continuous measurement,

it is ∼ 100µs, and for pulsed measurement, it is 4µs. In single trace of data, the number

of cycles needs to be much bigger than one, so fIF ≫ 0.25MHz. In earlier measurements,
3http://www.alazartech.com
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we chose to use 4MHz. And then we changed to 10.7MHz because we found a narrow

band-pass filter from Minicircuit4 centering at 10.7MHz (now shown in Figure 4.7), to

filter out noise outside IF band.
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Figure 4.7: Schematic drawing of heterodyne detection circuit. The black squares repre-
sent electrical components in the whole circuit, including microwave sources and sample
not on the board.

Signal processing The signal processing is first converted on home-made heterodyne

board, see Figure 4.7. The 5GHz carrier frequency is generated from Source I, after

passing by a splitter, it is sent to the sample located at the bottom right corner in Figure

4.7. The transmitted signal from the sample is first mixed with another RF signal with

frequency slightly different fIF = fSour I − fSour II = 10.7MHz generated from Source II.

The converted signal is then sent to Channel B to get digitally recorded. The other IF

signal sent to Channel A is also mixed from Source I and II without passing the sample.

It serves as a reference to canceling out the random initial phase difference ϕ1(t)− ϕ2(t)

4http://www.cryopermshielding.com/
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between two sources. By comparing two down-converted signals using digital homodyne,

both quadrature can be extracted.

cross-talk Introduction of a second RF frequency (the first one is splitted and sent

to sample) causes cross-talk problem. There are two major cross-talks: first, the RF

frequency from Source I can leak to the mixer through the other half of circuit (red in

Figure 4.7), and similarly reference IF signal (blue in Figure 4.7) can go back-forward and

arrive to Channel B. Adding up to original signal, these cross-talk may highly decrease

the resolution of the system.

To avoid cross talk, I added attenuators and filters to improve isolation and clean the sig-

nals. Filters picks the correct frequency line, and kill noise outside the band. Attenuators

between sources and mixers are used to damp reflected signals as well as coupled signals

going backwards. In Figure 4.7, I calculated the power of 3 different signals: black texts

indicating 5GHz forward signal; the coupled signal is in red text; and blue represents RF

signals. The numbers are based on typical values from datasheet of components.

4.3.2 Digital homodyne and IQ extraction

The RF signals down-converted from home-made heterodyne board are filtered and am-

plified using series of SRS Preamplifiers, and then sent to Alazar acquisition board in-

stalled on the computer’s mother board. The data is sampled at 100M samples/sec from

both channels. To increase the speed of data processing, the raw data is processed using

self-complied dynamic link library file called by Labview. In the text following, I will

show the strategy of quadrature extraction, also known as IQ extraction.
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The reference signal sent to Channel A is

IFr = sin(2πfIFt+ ϕ1(t)− ϕ2(t))

where ϕ1(t), ϕ2(t) are time dependent phases from source I and II. The amplitude of

reference signal is constant within working rage, so its amplitude is normalized to unity.

The Channel B IF signal is in similar form

IFs = A(t) sin(2πfIFt+ ϕ1(t)− ϕ2(t) + ∆ϕ(t))

where A(t) is the amplitude and ∆ϕ is phase delay coming from sample and connecting

cables. The two IF signals are multiplied

I =< IFr · IFs >

=< sin(2πfIF t) · A(t) sin(2πfIF t+∆ϕ(t)) >

= A(t) cos
(
∆ϕ(t)

)
/2 (4.1)

For Q, a π
2

phase-shifted reference IF is need. Since there is no such signal generated

directly from hardware, it can be generated numerically inside software. Because both

frequency and phase would shift over time on the time scale of second and even longer,

a more practical way is by shifting the trace using interpolation. The shifted distance is

calculated using fitted frequency, and this will be resulting in only phase and amplitude

inaccuracy/noise, and amplitude noise can be re-calibrated by fitting its amplitude. Using
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shifted reference, Q can be recovered as

Q =< sin(2πfIF t) · A(t) cos(2πfIF t+∆ϕ(t)) >

= A(t) sin
(
∆ϕ(t)

)
/2 (4.2)

as well as

A = 4
√
I2 +Q2

∆ϕ = arctan(
I

Q
)

4.3.3 Result
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Figure 4.8: Transmissional test of home-made Heterodyne board. The curve shows a
transmission measurement of a blue cable using Heterodyne board. Blue cable is a low
loss transmission line. So the measurement is a test to characterize of the board and
can also be used as a calibration for board. In the range of 4 to 6GHz, the amplitude is
almost flat, with slightly change close to 6GHz. This slope is a result of all imperfection
from all electrical components.

The test of Heterodyne board is done by measuring a blue cable from minicircuit, which
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transmits microwave signal with almost constant low loss. The data acquisition is done

by home-made Labview programs. See Figure 4.8 for details. The tested result for the

blue cable shows small change (4dB over 2GHz), indicating the homemade Heterodyne

board works as expected. And this curve also serves as the calibration for measurement

done by this setup.

4.4 Measurement signal setup

In our measurement, there are two basic types of measurement, continuous measurement

and pulsed measurement. Continuous measurement uses very long time (milliseconds),

or always-on microwave to drive and measure the transmitted signal at the same time. It

is advantageous for its simplicity in setup and control. Since the microwave is always on,

one can only get average-over-time information of the sample. To fulfill state control and

measurement, Pulses are used in time domain measurement of qubit. In this section, I

will discuss the generation, synchronization and recording of pulses to drive and measure

qubit at specific state.

4.4.1 Instrument setup

Pulses generation There are two types of pulses in the setup, pulsed square voltages

and pulse microwave signals. The former is usually used to trigger or set components

into specific state, and the latter is a short period of microwave signal at a constant

frequency, to manipulate the state of qubit or cavity.

Pulsed squares in our setup is generated from Tektronix signal generator. Both channels

are set in “Pulse” mode, generating pulsed square-shape signal. The amplitude is 5V to
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Figure 4.9: Schematic drawing of instrument setup of pulse synchronization and analysis
circuit.

meet default settings of other components. Pulsed microwaves can be generated from

different ways. Our Agilent microwave source can generate pulsed waves using built-in

pulse module at specified frequency and amplitude. For sources without build-in function,

pulsed microwave can be shaped with the help of 50Ω microwave switches, which can be

controlled by pulsed square signals. The switch changes transmission of output port

depending on the voltage state of control port. Pulsed squares simply turn on and off

the switch to shape the envelop of the output microwave signal.

Synchronization Synchronization is crucial in time domain measurements. Control-

ling, detection and reading of the system requires time resolution down to nanoseconds.

To keep the instruments in step, we use Tektronix as a timer. Two channels are matched

by build-in clock. Channel I is used to start pulses to manipulate qubit: Agilent source

runs in pulse mode, and the rising-up edge of square triggers source to output a pulsed

microwave signal at specific frequency. Channel II is used to ramp up cavity to fulfill

the “measurement” and trigger data acquisition. A microwave switch changes its output

ports based on the Channel II voltage, thus turning “On” or “OFF” the transmitted
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microwave to ring up or down the cavity. Channel II also triggers the acquisition card

to digitize the input signal and save it in buffer.

data acquisition and processing Each time acquisition card is triggered, the input

voltage is digitized and saved in its buffer in series. After a set of triggers, usually

hundreds even thousands, all data are transferred to computer memory at once. Because

the data is too large in size to save in hard disk, they are immediately processed in

memory to extract amplitude and phase. This process is done by dynamic linked library

compiled from C code.

Averaging and converting To increase the signal to noise, one usually repeat the

measurement many times to reduce the noise and clean up the signal. The order of

converting data and averaging needs delicate thinking. One option is to measure the

same signal with same phase and average on acquisition card before IQ conversion, but

this is not supported by our Alazar card. Or the repeated data can be averaged using

software on computer. Either way requires accurate sharp trigger to line up the initial

phase of each trace. When I tested this method, I saw drifts in phase between traces

if the acquisition is trigger by reference signal in Channel A, thus straight averaging

repeated traces would kill the signal. The third way is to extract I and Q for each trace,

and then average Is and Qs to reduce noise. This method takes more CPU time to do

more multiplication, but it is favored for being not sensitive to initial phase offset. While

the time difference between two channels of Alazar in each triggered trace is 1ns, this is

constant and much smaller than 1/10MHz=100ns.
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4.4.2 Time-domain Pulses

The time-domain measurement of qubit includes state manipulation and state detection.

At the coldest stage of dilution fridge, T=30mK, for a qubit with 0-1 transition around

4GHz, kBT/~ωq ≪ 1, it will relax to its ground state |g⟩. The first pulse usually matches

the qubit transition frequency and rotates the qubit along some axis. Similarly the

cavity with a fundamental mode ωc/2π ≈5GHz, stays on vacuum state |n = 0⟩. Due

to dispersive interaction with qubit, the cavity frequency is no longer bare frequency,

but changed by a dispersive shift δωc depending on the state of qubit. Because the

measurement pulse’s frequency is fixed, thus the state of qubit can be detected by whether

this signal can excite the cavity[37, 38].

In the following I am showing the pulse sequences used to measure different properties

of qubit.

Quasi Continuous

I start the measurement process by finding the qubit 0-1 transition frequency. This is can

be done easily using continuous measurement setup. Or using the pulse measurement

setup, we can do quasi-continuous measurement to pin down the qubit frequency.

Ideally the best way is to rotate qubit to its excited state |e⟩ and then apply a measure-

ment pulse to detect. However either the exact frequency or the optimistic strength of

pulse is not decided yet. Instead, one can drive the qubit long enough and strong enough

so it will end up on a mixed state. And the a measurement pulse is sent to distinguish

between ground state and mixed state. The length of pulse is chosen at 40µs, much

longer than expected relaxation time of qubit. Followed is a 4µs pulse driving the cavity
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Figure 4.10: Schematic drawing of Pulses doing quasi-continuous measurement of qubit
spectroscopy.

and 60µs with no pules to relax the qubit back to ground state. See Figure 7.11

Rabi oscillation

Rabi oscillation, also known as Rabi cycle, is a process using coherent drive to “flip” the

qubit between ground state |g⟩ and excited state |e⟩. One normally varies the length

and frequency of the pulse to drive qubit, and perform a straight-away measurement to

determine if the qubit is in |g⟩ or |e⟩.

Relaxation time

Relaxation time of a qubit describes how fast the qubit would return to its equilibrium

(ground state in our measurement) from its excited state |e⟩. This process obeys a

simple exponential law in time Pe = exp(−t/T1)[39]. First a π-pulse, whose length and

frequency is decided from Rabi oscillation, is applied to flip the qubit to its excited state
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Figure 4.11: Schematic drawing of Pulses doing Rabi oscillation.
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Figure 4.12: Schematic drawing of Pulses doing relaxation measurement.

71



|e⟩. The system will then evolve only with dissipation due to internal or external noise.

The measurement is then performed after a time delay ∆t1. In the end the system is left

to a full relaxation back to its initial state.

Ramsey oscillation

Qubit
Exitation
Pulse:

Cavity
Pulse:

π/2-pulse

70nsrdelay

5V

100μs

4μs

controlled
byrswitch

TektronixrI:

TektronixrII:

Δt2

π/2-pulse

Figure 4.13: Schematic drawing of Pulses doing Ramsey oscillation.

Ramsey oscillation was first developed to measure atomic transition frequencies[40] and

is widely used in superconducting qubits[41, 42]. As shown in Figure 4.13, three pulses

are sent to the fridge. The first two pulses are at qubit frequency. Each rotates the

qubit for quarter circle with a time space ∆t2 between them. Followed the second pulse

immediately is a measurement pulse finding the possibility of qubit staying on ground

state. Ramsey oscillation is sensitive to phase noise of qubit, so it is a good method to

measure the dephasing time T2∗.
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Chapter 5

Fabrication

Micro-fabrication and nano-fabrication are a processes of manufacturing structures on

micrometer scale or even nano-meter scale widely used in many areas of science and

engineering. In our transmon-MR coupled system, the sample is composed of three

different elements: a filter-biased CPW cavity, a 2d transmon qubit and a suspended

mechanical resonator. Fab performed Cornell National Facility (CNF)1 and the lab of

Prof Britton Plourde at Syracuse University.

Elements in the system The filter-biased CPW cavity serves as environment seen by

transmon qubit and mechanical resonator, it affects the the state of coupled system and

detects the state. For a standard CPW cavity[5], also in our filter biased CPW cavity[43],

the length of it determines it fundamental frequency. For ωc/2π ≈ 5GHz, the length of

center line is λ/2 ≈11mm, seesee Figure 5.2.

The transmon qubit is an artificial quantum system with unequal spaced energy eigen-
1www.cnf.cornell.edu
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1mm
100μm

a) Whole chip b) Transmon pads and cavity stub

c) Transmon junctions d) Etched MR5μm 100nm

Figure 5.1: Optical picture and SEM images of sample at different scale. (a) A optical
picture of the whole chip attached. Wire bonds connect the chip to printed circuit board
(PCB) board. The black area is plain Nb and bright-looking area is patterned with flux
traps on Nb. (b) SEM image of transmon area. The two big round-corner squares are
island and shunt pad made of Nb. The stub on the top is connected to CPW center line.
And the bottom line is flux bias control line. Between the 2 big pad are two Josephson
junctions, and between cavity stub and island pad is the mechanical resonator made of
Aluminum. (c) SEM image of Josephson junction area. The two gray color at top and
bottom are transmon pad and dark area in the middle is Si substrate. Two white strips
connecting the pads are Josephson junctions. (d) SEM image of suspended mechanical
resonator. The 45nm wide beam clamped on both sides is the mechanical resonator,
35nm away from gate. Underneath is etched silicon hole.
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states, among which the lowest two can be treated as two-level system[14]. Unlike an

ideal harmonic oscillator system, this property of nonlinearity comes from its Josephson

junctions, which has nonlinear inductance. A Josephson junction used in our sample is

composed of two superconducting metals sandwiching a thin layer of insulation. The

size of junction giving EJ ∼ 6GHz is designed to be ∼ 100nm×100nm, which is roughly

100-1000 smaller in size compared to transmon pads and 105 smaller than CPW cavity,

see Figure 5.6.

The third element is a suspended beam or membrane. Mechanical resonator varies a lot

in size from millimeters to nanometers. In our experiment in order to achieve coupling

with transmon qubit at different regime (resonance limit, dispersive limit) and coupling

strength as big as possible, the width and gap between mechanical resonator and qubit

is design to be tens of nanometers. It is very challenging to protect the structures while

lift-off and releasing processes.

5.1 photolithography

Photolithography is a process using masks and lights to transfer pattern. Various photo-

resist is used to protect or expose defined area on the substrate in other process(etching,

deposition, etc.). There are mainly two different type of transferring pattern: negative

pattern to etch, or positive pattern to deposit metal. In fabrication making our Nb

cavities and transmon pads, etching process is more often used. And in recently developed

membrane recipe, both methods are used sequentially to achieve multi-level structure.
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1:
spin0
positive0resist
Pattern
using0ASML
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Remove0
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Resist
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Figure 5.2: Sketch map of photolithography using etching and lift-off process. The
left column shows the process using etching where the unwanted metal is etched out
(negative pattern). The right column is using lift-off process where only desired metal
can be deposited to the substrate (positive pattern) and kept after lift-off. The redish
color indicates photo resist and yellow indicates metal.
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5.1.1 Negative pattern and etching

Mask preparation Before working with wafer using steppers, a mask needs to be

prepared using mask writer. A mask is a square glass covered with thin-layer chrome

and photo-resist. The pattern of cavity and transmon pads are first designed and drawn

using CAD software. Most of time I use KLayout2 to draw and modify. Then the pattern

is “written” onto the mask using Heidelberg Mask Writer DWL2000 at CNF.

Transfer pattern using stepper The substrate is first prepared with one thin layer

of metal(Al or Nb) fully covering the wafer surface. This can be done by sputtering or

ebeam deposition (step 0 in Figure 5.2). Then the wafer is covered with positive resist,

the exposed part of which will be removed by specific solvent. The pattern is transferred

by blocking and letting light pass to shine at different position of wafer. The exposed

resist is then removed in “develop” process.

I usually use ASML 300C DUV Stepper at CNF to print pattern onto wafer, because it

has the best resolution, usability and speed among all steppers.

Reactive ion etching (RIE) Etching process uses chemical reaction to remove metal,

silicon, polymer or other materials. Usually a reactive plasma is created using RF power

source and bombardment of ions break the chemical bonds and remove materials. The

directionality of the RIE etch is typically controlled by adjusting biasing voltage and gas

pressure.

For Nb pattern in our sample, etching was done using PT770/740 Etcher at CNF.
2www.klayout.de
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(a) Exact etch (b) Over etch

Figure 5.3: SEM images of two membrane samples showing an exact etch and an over
etch. In both images, the bottom metal is made from Nb etching.

Etch rate and time are critical parameters. Typically the goal of this process is to accu-

rately remove Nb without damaging silicon substrate or other protected Nb. Removing

silicon substrate (over-etch) leaves deeper groove between metals and changes the effec-

tive dielectric constant of system. And as a result the total impedance of transmission

line and mutual capacitance between each metal is off the designed value. Exact etching

is very critical in membrane fabrication, because the gap distance control is delicate and

very sensitive to manufacturing error in thickness. In some cases over etch can be in-

tended: such as increasing the effective distance between metals and decreasing leaking

current.

When the metal pattern is done correctly, the resist needs to be removed. This is done

by dissolving resist in heated “hot bath” at CNF.
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5.1.2 Positive pattern and lift-off

The lift-off process starts from an empty clean wafer. And negative resist is spun on the

wafer. Similar stepper writing and develop steps are followed. Then the metal needs to

be deposit on the wafer through sputtering or e beam deposition like step 0 in etching

process. The last step is lift-off, where resist is removed using solvent along with metal

deposited on resist. Only desired metal straight attached to substrate is kept.

One common problem of lift-off process is flagging. It happens when the resist is being

stripped off, small pieces of thin metal on the wall of resist that is connected with bulk

of metal on substrate fall down on the metal of substrate, see Figure 5.4. The flagging

might touch with nearby metal if the gap is small.

Figure 5.4: flagging from lift-off process.
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5.1.3 CPW fabrication recipe

Here I will present the detailed photolithography recipe to fabricate filter biased CPW

cavity and pads for transmon. This recipe also apply to similar patterns with dimensions

in the range of µm to mm. It generates a uniform thickness single layer pattern made by

niobium. The process is conducted at CNF.

1. Spin anti-reflective coating DSK manually or Gamma #1076

• 3750rpm, 30sec, 1000rmp/s2

2. bake at 185 ◦C, 90sec

3. Spin photo resist UV210-Gs 0.6 manually or Gamma #1003

• 2825rpm, 30sec, 1000rmp/s2

• thickness=600nm

4. bake at 135 ◦C, 90sec

5. ASML writing pattern, dose=25

6. Post bake at 135 ◦C, 60sec

7. Develop UV210 manually or Gamma #2008

• Hamatech Program #3: 726-mif-120sec-dp

5.1.4 Nb etching recipe using PT720

• Batch file: doeal1.prc

• main etch time: 4min 15sec

• gap: 20Ar + 20BCl3 + 10Cl2

• pressure: start=30mtorr; main=20mtorr
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• power: DC 300V, ∼85Watt

• mode: RIE

5.2 E-beam lithography

Electron-beam (e-beam) lithography is a technique of using focused electron beam to

draw shapes on electron-sensitive materials. Accelerated electrons (primary electrons)

by high voltage (up to tens of kilo-Volts) are absorbed by e-beam resist, and produce

low speed electrons (secondary electron) through inelastic collision. Secondary electron

are capable of breaking chemical bonds of e-beam resist and changing its solubility.

The scattering effect of primary and secondary electrons limits the resolution of e-beam

lithography, known as proximity effect. The newest generation of e-beam lithography

system at CNF is JEOL 9500 has point resolution up to 4nm!

In fabrication of Josephson junction and mechanical resonator, polymethyl methacry-

late (PMMA) and copolymer (MMA) from MicroChem are developed using mixed 1:3

MIBK:IPA, to achieve the best resolution. The exposed e-beam resist needs to develop

as soon as possible. According my and some of my colleagues’ experience, the exposed

area grows over time if not develop in time.

5.2.1 Double angle evaporation and Josephson junctions

Double angle evaporation also known as Niemeyer–Dolan technique is a technique to

create multi-layer overlapping structure[44, 45]. It is used to create Josephson junctions

for qubit, SQUID and other superconducting devices. The key structure of the resist is

a suspended resist layer, see Figure 5.5. It is generated by two layer of resists, where the
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MMA

Si
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2:ODevelop

3:O1stOLayer
deposition

4:OOxidation

5:O2ndOLayer
deposition
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Figure 5.5: Diagram of double angle evaporation process. 1) Bi-layer e-beam resist is
exposed to electron focused beam. The thick MMA layer is more sensitive than the top
PMMA layer. The black line indicates the area affected by electron induced chemical
reaction. 2) Resists after develop step. 3) 1st deposition at a tilted angle. 4) Oxidation
step. 5) 2nd layer deposition at a different angle. 6) Lift-off step to remove unwanted
metal and e-beam resist.
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(a) top layer (b) 1st deposition (c) small Josephson junction

Figure 5.6: SEM images of evaporation and Josephson junction. (a) SEM image of bi-
layer resist pattern after a straight deposition. (b) 1st layer Aluminum deposition. Note
the suspended bridge is broken. (c) SEM image a Josephson junction with a small area
(87×170nm2) overlap.

thick bottom layer is more sensitive to electron than the top layer. We use 70nm PMMA

as top layer and 600nm MMA as bottom layer. The dose of electron exposure is adjusted

so that designed pattern is exactly printed on top layer. Because of scattering and high

sensitivity the bottom layer is “over-dosed”, a undercut structure is formed in the develop

step. In the two steps of Aluminum deposition (3) and (5) in Figure 5.5, the sample is

tilted in two different angles, so the deposition are shifted to form overlaps. After the

first deposition, low pressure oxygen gas, sometimes mixed with Argon, is introduced to

generate insulation layer of the junctions. After the second layer of deposition, I add a

post-oxidation step to grow aluminum oxide on the surface of Aluminum to protect the

junction. In the end, the resists is removed in lift-off step.

5.2.2 Josephson junction e-beam recipe

Below presents the detailed e-beam lithography recipe to write patterns of Josephson

junctions. The thickness of MMA and PMMA is optimized for small junction(tens of

nanometers to sub-microns). The process is conducted at CNF. The deposition of metal

is described in the next recipe.
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1. 1st layer MMA

• MMA(8.5)MMA El(11%), 8.5 in ethyl

• 2100rmp, 1000rmp/s2, 60sec

• thickness=600nm

• bake 170 ◦C, 10min

2. 2nd layer PMMA

• 2% 495MW PMMA in anasole

• 2500rmp, 1000rmp/s2, 60sec

• thickness=70nm

• bake 170 ◦C, 10min

3. E-beam dose=1000µC/cm2 (this value changes over time)

4. develop

• 80sec MIBK:IPA 1:3

• 80sec IPA

• Blow dry by nitrogen gas

5.2.3 double angle evaporation recipe

This recipe is to deposit double layer Aluminum Josephson junctions using written and

developed resist pattern which is generated in the last recipe. One can also modify the

recipe to deposit single layer Aluminum pattern. This process is conducted in Britton

Plourde’s Lab at Syracuse.

Note the deposition rate of Aluminum is not set directly by evaporation controller, it is

affected by several conditions, such as the power of electron beam to heat the Aluminum
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target, the size and temperature of Aluminum target and other uncontrollable parame-

ters. Because some of conditions varies overtime, it is necessary change the e-beam power

to keep the deposition in an acceptable range. The effect of deposition rate is carefully

studied in Bordo’s paper[46], and his results are consistent with my own observation.

1. load and pump chamber to ∼ 10−8torr

2. ion milling 11sec

pressure: 2-3×10−4 torr

3. 1st layer deposition

angle= −10◦

1.5-2Å/s, 35nm

4. oxidation step

time ∼ 20min

pressure: 200 torr at Oxygen chamber

conditions above changes with junction size and resistance needed

5. 2nd layer deposition

• angle= 5◦

• thickness: 70nm

6. post oxidation

5.3 Mechanical resonator deposition and releasing

One type of mechanical resonator in our system is a suspended beam. To achieve a high

frequency (hundreds of MHz) and a high coupling strength, the width of beam is designed
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Figure 5.7: Diagram of Mechanical resonator deposition and releasing. (1) The MR is
patterned on one single layer of PMMA using e-beam lithography. (2) develop. (3)
Straight deposition of Aluminum mechanical resonator. (4) lift-off. (5) The hole is
patterned on bi layer resist using e-beam. (6) Develop. (7) The unprotected silicon is
etched using mixed Sulfur hexafluoride SF6 and Oxygen O2, to release suspended beam.
(8) Resist stripping.
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to be very small, ∼50 nm. Because small gap distance gives bigger capacitance change
∂CMR

∂x
, we want the gap to be as small as possible, see eq. 2.25. To achieve these goals,

we chose to use single layer PMMA resist, which has the best resolution. Since electrons

always scatter in resist, the thickness of resist shouldn’t be too high to have straight

walls. The height(to clarify this is the thickness of the layer) of beam is 100nm, thus

the thickness of PMMA needs to be bigger and is chosen to be 200nm. The MR pattern

is written using e-beam lithography, and developed in 1:3 MIBK:IPA. The Aluminum is

then straight deposited to form the beam, and then the resist is stripped.

The releasing process starts with patterning the “hole” on a PMMA-MMA resist. Because

in etch step, both resist and silicon substrate are etched and the resist serves as protect

layer for substrate. Instead of using very thick (∼600 nm) layer of PMMA, we choose

to use a bi-layer PMMA-MMA resist, so we can apply the same dose in the e-beam

recipe. After e-beam patterning and developing, the unprotected Si is then removed

using SF6/O2 RIE etch. The pressure and power of etch process is adjusted to have

more isotropic reaction, to remove silicon underneath the beam. Eventually the resist is

stripped.

5.3.1 MR e-beam recipie

This recipe is to write single layer mechanical beam pattern using e-beam lithography

at CNF. After the pattern is written and developed, one can deposit 100nm Aluminum

using e-beam evaporator.

1. Single layer PMMA

• 495 PMMA A4
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(a) test arrays of mechanical resonator (b) broken beam

(c) snap-in beam (d) False colored etched MR

Figure 5.8: SEM images of different mechanical resonators.
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• 2000rmp, 1000rmp/s2, 60sec

• thickness=200nm

• bake 170 ◦C, 10min

2. E-beam dose=1250µC/cm2

3. develop in MIBK:IPA 1:3

5.3.2 MR hole etch recipe

After the mechanical resonator is deposited, the substrate underneath needs to be re-

moved to release the mechanical resonator. This is done by first writing the hole using

e-beam lithography and then etch the silicon under the mechanical resonator. The latter

step is discussed in the next subsection.

1. bi-layer same as Josephson junction recipe

2. e-beam writing dose: 1000

3. Etch Silicon using Oxford 82

• Recipe name: SF6/O2, SF6=30sccm, O2=10sccm

• pressure: 200

• time: 20sec

• power: 100W

• DC bias: 34V

4. Strip resisting using DCM, rinsed by IPA and blow-dry.
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(a) (b) (c) (d)

(e)

Figure 5.9: SEM images of membrane. (a)(b) top view of doubly-clamped/free-free
membrane. (c)(d) side view of doubly-clamped/free-free membrane. (e) side view of
free-free membrane with measurement bars

90



1:5Patterned5artifitial5layer

PMMA

UV210

Silicon

2:5develop5

3:5O25Plasma5etch5PMMA5

4:5Pattern5top5layer

5:5develop

6:5Al5ebeam5deposition

7:5Lift5off5in5solvent

8:5O25Plazma5to5clean
resist5residuals

Al

UV210

Residual

Figure 5.10: Diagram of membrane resonator deposition and releasing. (1) The MR
is patterned on one single layer of PMMA using e-beam lithography. (2) develop. (3)
Straight deposition of Aluminum mechanical resonator. (4) lift-off. (5) The hole is
patterned on bi layer resist using e-beam. (6) Develop. (7) The unprotected silicon is
etched using mixed Sulfur hexafluoride SF6 and Oxygen O2, to release suspended beam.
(8) Resist stripping.
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5.4 Membrane

Our membrane mechanical system is a multi-layer structure. It is advantageous for its

bigger capacitance and coupling strength, but it adds complexity in fabrication.

The membrane fabrication uses PMMA as sacrificial layer to create gap between top

and bottom layer. PMMA is favored for it resolution (up to a few nano-meters) and

easy handing of its thickness, which will be the gap distance of membrane. Also PMMA

is organic resist and can be easily removed using solvents commonly used in Josephson

junction fabrication. Furthermore, removal of sacrificial layer doesn’t require long time

of etching, thus bringing less damage or contamination to system, especially along with

fragile Josephson junctions.

The bottom metallic layer is fabricated using standard photolithography method. The

thickness of bottom layer is very crucial in defining the gap distance, over-etch of silicon

should be avoided by careful calibration of etch and deposition time. Because both the

Nb sputtering rate and RIE etch rate vary over time, I usually set the etch time at a

minimal limit, and perform additional etches for small amount of time if needed.

The sacrificial layer of PMMA is then spun over the bottom layer and heated to decrease

its solubility in the next develop step for photo resist. Then aligned pattern of gap

is pattern using photolithography technique, written by ASML at CNF. The exposed

PMMA is removed using anisotropic or directional oxygen plasma etching. Then the

top layer is patterned using similar photolithography steps and then deposited using

either Niobium sputtering or Aluminum e-beam deposition. The last step is to remove

the sacrificial layer of PMMA: most of it can be easily dissolved in dichloromethane,

Remover PG or acetone. The residues of resist is burned out in oxygen plasma asher.
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Resist residue

(a) resist residues

Resist residue gone

(b) residues removed

Resist Residue

Hanging-ups

(c)

Figure 5.11: Comparison of removing resist residues. (a) SEM image of mem-
brane showing resist residues on the sidewall of membrane after standard lift-off using
dichloromethane and isopropyl alcohol. (b) SEM image of membrane showing the re-
sist residue is removed using additional oxygen plasma ashing. (c) side view of doubly
clamped membrane. Residue on the side and hunging-ups in the gap are observed.
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Residues of photo resist The residues of photo resist is normally on the scale of

nanometers and thus invisible in optical microscope. However they strongly affect the

property of mechanical movement of resonator as well as electro-magnetic dissipation[47,

48]. When I measure membrane resonator, I couldn’t even see membrane signal before

cleaning, See chapter 9. The amount of residues could differ from sample to sample.

From some samples, it is possible to observe small hanging-ups inside the gap. Judging

from the shape and color, I believe they are resist residues with strong chemical bonds

to surface atoms. Further research needs to be done to understand this. See Fig 5.11 for

comparison.

5.4.1 Membrane recipe

1. Bottom layer same as photolithography

• Niobium thickness: 50nm

• ASML writing bottom layer pattern, dose: MR=25, surrounding=28

• etch time: 2min 30sec

2. sacrificial layer PMMA

• 2% PMMA, 495PMMA A2

• 1500rpm, 60sec, 1000rpm/s2

• bake 170 ◦C, 10min

3. Photo resist UV210

• 2825rpm, 30sec, 1000rpm/s2

• bake 135 ◦C, 90sec

4. ASML writing sacrificial layer patttern, dose=22
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5. post-bake

6. develop using Hamatech #3

7. Oxygen plasma etch sacrificial layer

• recipe name: O2 stripping

• time:20sec

• Pressure: 60

• Oxygen flow rate: 50sccm

• power: 150

• etch rate: 5nm/s

8. ASML flood expose with dose=150

9. post-bake and develop using Hamatech #3

10. Top layer spin UV210

11. ASML writing top layer pattern with dose=25

12. post-bake and develop

13. Aluminum e-beam deposition

• deposition rate: 1.5-2Å/s

• thickness: 250nm

14. lift-off

(a) Remover PG, heated at 70 ◦C, 2 hours

(b) DCM, heated at 45 ◦C, 1 hour

(c) rinsed in IPA and blow dry.

15. Oxygen Plasma ashing

• Power: 900W

• flow rate: 500sccm
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• pressure: ∼1000mTorr

• time: 6min
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Chapter 6

Filtered CPW cavity

Superconducting 2-d cavity is an import tool in circuit QED, and it serves as tool to study

characteristics of superconducting electrons as well coupled elements inside the cavity,

such as spins [24], Nitrogen Vacancy superconducting qubits[37], mechanical systems[9–

11, 20, 49–54] and other quantum systems. To build and control the embedded system,

extra circuits needs to be integrated into cavity. However if the introduces circuitry are

not carefully designed, both the quality of the cavity and the embedded system may be

highly degraded through external circuit loading or radiative loss[39].

In our qubit coupled mechanical resonator system, the coupling between the mechanical

resonator and the transmon is proportional to the voltage applied to the mechanical res-

onator. In order to engineer a high quality cavity, we did separate experiments to inves-

tigate the microwave and other related properties of our T-filter biased superconducting

cavity. In this chapter, first I will present the characteristic of a separate superconducting

lumped element T-filter. And then I will show the results of filter biased cavity. Most of

the results are published in Hao et al[43].
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6.1 Reflective T-filter

1 2

1 2

a)

b)

Figure 6.1: (a) Optical image of a T-filter. (b) Sketch drawing of the T-filter. The
capacitance and inductance of the filter are denoted as CF and LF . The “1” and “2” are
ports for transmission measurement.

We first perform transmission and reflection measurement if reflective T-filter described

in chapter 2. The sample was cooled down to 4K on a dip probe and measured by Agilent

N5230 Network Analyzer. No additional cryogenic attenuators and amplifiers were used.

The calibrated data is shown in Figure 6.2. From the transmission measurement, S21 is

observed to cut off around 2GHz, with a roll-off of 60dB/decade up to 4GHz, in agreement

with both analytical estimation and Sonnet simulation. For frequency above 4GHz, the

simple lumped element approximation no long works, refer to Chapter 2 for detailed

discussion.

6.2 Filter biased CPW cavity

To understand the characteristic of our T-Filter biased CPW cavity, we anchored the

sample on our dilution fridge and cooled down to 30mK. Transmission measurements
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Figure 6.2: Measured and simulated transmission S21 and reflection S11 characteristics of
a reflective T-filter (see inset) from 0.1 to 14GHz. The blue circles (red squares) represent
the magnitude of S11 (S21) measured at 4K. The black (red) solid line is the magnitude
of simulated result from Sonnet. The black dotted lines shows the numerical result using
lumped element network analyze.
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Figure 6.3: Schematic drawing of T-filter biased CPW cavity.
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were performed at different conditions.

We cooled three samples with different length of coupling capacitor, 5, 15, 20µm, cor-

responding to coupling capacitance Ck ≈1, 2, 2.5fF. We denote the device I, II and III

respectively.

6.2.1 Frequency dependence of transmission

4.5   5 5.5   6
-110

-100

-90

-80

-70

Figure 6.4: Transmission measurement of Filter biased CPW cavity, device I in a wide
span. Input Power on the cavity is -100dBm. Only one peak shows up at 5.1GHz,
which is the fundamental mode of the cavity. At all the other frequencies, the reading is
dominated by HEMP thermal noise.

The frequency transmission of T-filter biased CPW cavity is measured using heterodyne

board at continuous mode (refer to Chapter 4). A constant continuous high power (-

100dBm at cavity input) microwave signal drives the cavity at a driven state, and the

transmitted data is amplified and recorded. Figure 6.4 shows the transmission in a wide

span. Only one sharp peak is observed at 5.1GHz, which is the fundamental mode of the

cavity. A closer look up is shown in Figure 6.5. The quality factor and center frequency is
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determined by fitting it to a Lorentzian shape function[5]. The extracted center frequency

is 5.1366GHz in agreement with the design. The loaded quality factor Ql=244K with

full transmission -8.21dB , which we believe is working at almost under-coupled region

where Qi . Qc. This is the highest quality factor, also with smallest coupling capacitor,

among all filter biased cavity we fabricated.
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-80
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Figure 6.5: Transmission measurement of Filter biased CPW cavity, device I at fridge
base temperature 30mK, measured by Heterodyne Board. The measured amplitude of
S21 is shown as red circles in linear scale (top) and logarithm scale (bottom). The data is
fitted to a Lorentzian shape which is represented by the black solid line. The extracted
loaded quality factor Q ≈ 245k at large power -100dBm, corresponding to 2×105 photons
in the cavity mode.

6.2.2 Power dependence

The excess noise of the 2-d thin film superconducting microwave resonators were carefully

studied [5, 55]. It is believed a major source of the noise is from two-level systems (TLSs)
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Figure 6.6: Extracted quality factors QL and center frequencies at different power of
device I. The power is changed by controlling external digital attenuator. Integration
time, number of averages and other experimental parameters were kept the same, so
when the signal get small at low power, the error bar is bigger.
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in dielectric materials[56, 57]. The TLS is assumed to be distributed and is observed to

saturate at high power.

The total quality factor Q is determined by loss to external circuits and internal loss

which is caused by TLS noise
1

Q
=

1

Qc

+
1

Qi

(6.1)

where Qc is the coupling quality factor, and the Qi is the internal quality factor.

The power dependence of our cavity is measured by varying the attenuation on the input

line outside the fridge. A tunable digital attenuator is inserted after Heterodyne Board

output. We measure transmission signal at different attenuation without changing inte-

gration time and other parameters, then extract the quality factor and center frequency

by fitting to Lorentzian shape as shown in Figure 6.6. The quality factor drops as the

power decreases as the typical CPW cavity.

6.2.3 Gate dependence

One goal of the inserted biased line is to apply voltage to the mechanical resonator, to

control the coupling with transmon. In the standard model of transmon, cavity and

mechanical resonator, it is assumed that the voltage brings no direct change in cavity

response. It is essential to test dependence of gate voltage bias.

For our filter biased CPW cavity, we are able to apply high dc voltage at the center line of

cavity. The gate voltage Vg controlling the coupling strength of mechanical resonator and

qubit, see equation 2.25, is applied by external voltage source. In the model of qubit-MR

system, it is assumed that the property of cavity (Q, power, frequency, and etc) is not

directly dependent on gate Voltage. Thus it is necessary to study the dependence of gate
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Figure 6.7: Extracted quality factors QL and center frequencies ωc at different Gate
voltage Vg.
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voltage.

The gate dependence measurement is performed by varying the gate voltage Vg applied

on Port 3 through one of the fridge DC lines with 2 powder filters. The voltage is

varied from 0V to 20V. See Figure 6.7, each point is extracted from fitting a transmission

measurement of cavity S21 at a high input power -100dBm. Up to 20V, there is no

obvious change in quality factor QL ∼ 2.46 × 105. The fitted center frequency shows

no change up to 10V and a drop ∼2kHz up to 20V, much smaller than the linewidth of

resonance ωc

2πQl

= 21kHz.

To test the limit of our system, we measured the transmission at 0V and 20V, at high

power and single-photon limit low power. The results are shown in Figure 6.8. For a

well-averaged curve, there is very little change in both center frequency ωc and quality

factor Ql.

6.2.4 Coupling strength dependence

The typical CPW cavity Qc increases proportionally to 1/C2
k [5]. To test this dependence

of coupling capacitance, we tested three samples with different coupling capacitors. As

the standard method, we define QL ≡ 1/Qi + 1/Qc, where Qc accounts for the losses to

external circuitry through coupling capacitors, and Qi stands for internal cavity losses.

See Figure 6.9, we use Qi = 0.7 × 106 at high power (solid line) and Qi = 0.2 × 106 at

low power (dashed line), where unsaturated two-level systems make a grater contribution

to the internal dissipation. We can also estimate the contribution of filter loss to Qi by

measuring S31 through the filter Port 3

ILF = S31(ωc)/S21(ωc) (6.2)
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Figure 6.8: Traces of transmission measurements at 0V and 20V with high power (top)
and low power (bottom) of device II.
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Figure 6.9: Loaded quality factor of cavity vs coupling capacitance

Read from inlet of Figure 6.9, ILF = −30dB, indicating that 0.1% of the power escapes

through the filter Port 3. This is corresponds to a filter quality factor of
√
1000Qc =

3× 106, and suggests that this bias circuit design can be integrated into cavities with Qi

as high as 106, without degrading the total quality factor.

6.2.5 First harmonic of the cavity

To characterize the positioning from filter connecting to the voltage anti-node rather a

node, we simulated and measured the transmission between cavity port and filter port

at the first harmonic mode near 10GHz, see Figure 6.10. Transmission of S21 and S31 of

the first harmonic is also performed using Agilent network analyzer, see Figure 6.11 and

Figure 6.12. The loaded quality factor QL,1 ≈ 2 − 3 × 103, which agrees with well with
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Sonnet simulation.

Figure 6.10: Sonnet simulation of transmission properties of Filter biased CPW caivty.
The fundamental and 1st harmonics is shown.

Figure 6.11: Transmission of S21 (a) in a wider span. (b) near the 1st harmonic.
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Figure 6.12: Transmission of S31 (a) in a wider span. (b) near the 1st harmonic.

109



Chapter 7

Transmon characteristic

RF input

Flux Bias

T-Filter
RF output

Figure 7.1: Schematic drawing of transmon capacitively coupled to T-filter biased CPW
cavity.

This chapter will focus on exploring the characteristic of transmon I develop for our

experiments. It is capacitively coupled to T-filter biased CPW cavity though coupling

capacitor Cg. The bias flux ϕ of transmon is controlled by external flux line. The

same design of transmon is then used to couple to a mechanical resonator in the next

chapter. These results could serve as a good comparison for the transmon used in the

qubit-coupled mechanical resonator experiment. Note despite the design is kept the

110



same, some paramters are improved in experiments due to better magnetic shielding

and fabrication uncertainties. The transmon serves as a probe to charge or potential

fluctuations induced by the mechanical resonator. The transmon and cavity system is

identical to those in the hybrid cavity+transmon+mechanical resonator system. This

experiment was done before we measured the hybrid system in order to extract the

parameters in an independent experiment.

Parameter Value
ωc/2π 4.937GHz
EC/h 0.23GHz
EJ0/h 13.5GHz
T1 12µs
T ∗
2 0.43µs
β 0.17

g/2π 120MHz
λ/(2πVNR) ≈ 300kHz/V
κc/2π 0.25MHz

Table 7.1: Summery of transmon and cavity parameters of sample in cavity-qubit ex-
periment. The first set of values shows the CPW and transmon’s characteristic energies,
and T1 and T ∗

2 for ωge/2π ≃ 4.3GHz. Note relaxation time T1 and decoherence time T ∗
2

are lower than those in cavity-qubit-MR experiments with better magnetic shielding in
Chapter 8

7.1 Single tone spectroscopy

We started our measurement by finding the resonance of cavity using continuous mea-

surement setup. Based on the estimation of design parameters, the coupling strength is

much smaller than detune g ≪ |ωeg − ωc|, the coupled system should stay on a dressed

state and qubit is very little excited. See Figure 7.2. The resonance of coupled system

ω/2π ∼ 4.9GHz is dispersive shifted cavity resonance when qubit is at ground state |g⟩.
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Figure 7.2: Cavity resonance at 2 different flux bias. Quality factor Q is extracted by
fitting the resonance to Lorentz shape. The resonance shift between the 2 traces is due
to dispersive coupling with qubit.

The loaded quality factor of cavity resonance QL >15k at base temperature.

7.1.1 Flux dependence

When the resonance of qubit ωge and cavity ωc are far detuned from each other |ωc − ωge| ≪

ωc + ωge, which is the case in this sample, it can be shown the resonance of the cavity is

dispersively shifted due to interaction with qubit, see equation 2.30, depend on the state

of qubit

ω′
c = ωc ∓ χge (7.1)

In order to demonstrate this dispersive coupling, we vary the flux bias ϕ of transmon by

changing the current of flux line, and sweep the frequency of cavity spectrum tone ω.

See Figure 7.3. In this continuous single tone setup, refer to 4.3.1, the qubit and driven
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Figure 7.3: Dispersive shift of cavity resonance as a function of transmon flux bias ϕ.
The color scale indicates the amplitude of transmitted signal. The black solid line is a
simulation result using standard transmon cavity model.
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cavity is on a dressed state. And because the transmon and cavity are far detuned,the

qubit is very little excited, only one line of cavity spectroscopy is observed indicating

qubit staying on |g⟩.

flux The flux bias ϕ is controlled by external applied magnetic flux, more specifically

the current in flux line supplied from applying DC voltage to a 500Ω resistor at room

temperature. Because flux bias ϕ determines the effective total Josephson energy

EJ,eff = EJ,0

∣∣∣∣cos(πϕΦ0

)

∣∣∣∣ (7.2)

it should shows a periodicity of flux quanta Φ0.

This single-tone cavity spectrum, see Figure 7.3, shows the pull from transmon de-

pending on flux bias, and is explained by standard transmon-cavity model in dispersive

regime[13, 14]. The simulation result agrees well with design and fitting parameters, see

Table 7.1, for transmon qubits in cavity-transmon experiment and cavity-transmon-MR

experiment.[cite Kock2007]

7.1.2 Stability of flux period

To build a quiet magnetic environment, the sample is first protected using Cryoperm

shielding 1 (see Figure 4.5)and superconducting metals to isolate macroscopic magnetic

field outside from the earth and etc. On the chip, local magnetic fluctuation is further

reduced by flux traps (holes on superconducting plain). Thus besides unavoidable fabri-

cation error in dimension, the flux period or flux dependence should be constant within

one cool-down and very small different between samples. To check this property, we
1www.cryopermshielding.com
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Figure 7.4: A summary of flux period extracted from flux dependence maps measured
from several cool downs of two samples. The x-axis is the numbering of maps. No.1
is from a cavity-transmon measurement, and No.2 to 8 are from cavity-transmon-MR
measurement. The transmon designs and fabrication steps are identical. The y-axis
shows the fitted period as voltage of source, which supplies the current through a 500Ω
resistor.

perform flux dependence measurements as in Figure 7.3 and extract the period using

fitting program. We plotted the summary in Figure 7.4. We observe that for one sample,

even after warming-ups and cooling-downs, the flux period changes very little.

7.1.3 Resonance limit of cavity and transmon higher states

Although the transmon g-e and cavity are in dispersive limit, the transmon’s higher order

excited states, are expected to have a cross or in resonance limit with cavity. To prove

this, we zoom in the small gaps near bottom of cavity resonance, i.e. ϕ ∼ 0.6ϕ0, as shown

in Figure 7.5. A detailed map shows there are 3 major visible gaps on cavity dispersive

spectrum line. They are explained by a generalized model with a multi-level transmon

the cavity. 6 lowest energy eigen-states (|g⟩, |e⟩, |f⟩, |h⟩, and etc.) are considered. I
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Figure 7.5: Qubit induced splitting in cavity response..Zoom-in of transmission of cavity
as function of flux bias ϕ, showing qubit higher excited states crossing cavity resonance.
The red dashed lines are simulated qubit transitions, where transmon is modeled as a 6-
level system. Because the slope of dashed lines versus flux are very large in this frequency
versus flux scale, they appear to be vertical.
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plot 3 red lines to indicate transitions that match well with the gaps. The first gap is

the avoided level crossing of g-h and cavity, similar to g-e with cavity. The second tiny

gap matches transmon g-f transition, but it can not be explained by linear multi-level-

transmon-cavity model since the coupling term ⟨g| n̂ |f⟩. One possible explanation turns

to nonlinear higher order terms neglected in standard model. The third one is a double-

track structure, and its frequency matches e-h transition in the model. The emergence

of the gap is not predicted by the standard model because of low occupation number on

the excited state, also refer to discussion of temperature of components in section 8.5.

7.2 Two tone spectroscopy

To directly observe the transition between transmon states, a second tone, qubit spectrum

tone, is applied to the cavity with the cavity spectrum tone. The measurement is per-

formed first in continuous mode where qubit and cavity are both constantly driven. The

system evolves while the “measurement” is taken. Because measurement time (∼1ms)

is much longer than relaxation (∼ 10µs) or dephasing time (. 1µs) of qubit, during the

measurement the qubit can be treated as a mixed state.

7.2.1 Qubit spectroscopy

Two step measurement To find the spectroscopy of transmon qubit, a high power of

qubit spectrum tone is applied to excite all possible transitions in the transmon-cavity

system. To get the best contrast , a two step measurement is performed. First a single-

tone cavity response map is taken to locate resonance ω′
c(ϕ) numerically using Matlab.

Then in the two tone measurement, for each flux bias ϕ, the cavity spectrum tone is fixed

117



 0.6 0.65  0.7 0.75
1.5

2

2.5

3

3.5

4

4.5

-25

-20

-15

-10

-5

0

Figure 7.6: Two-tone spectroscopy of qubit-cavity system versus flux bias ϕ using high
power excitation. For each flux bias, the frequency of cavity spectrum tone measuring
the state of qubit is fixed at its resonance. Change in transmitted amplitude due to
transitions of the coupled system appears as a dip (darker color). Colorred dashed lines
are numerical simulated transitions in the system [14]. Because driving power is high,
along with single excitation, two-photon process are also visible. They are represented
by “/2”, eg ωge/2 describes transmon absorbs two photons and gets excited from |g⟩ to
|e⟩.
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at resonance ω′
c(ϕ), and qubit spectrum tone is swept to excite the system. When the

qubit is excited, the dispersive shift changes its sign, resulting a different effective cavity

resonance ω′
c = ωc + χge. When the resonance of the cavity changes and the transmitted

signal shows a smaller amplitude and different phase.

Because in this particular measurement the power of qubit spectrum tone is sufficiently

high, both single-photon transition, eg. ωge, and multi-photon qubit transition ωgh/2

are visible, as well as two photon cavity excitation ωc/2. All bands can be explained by

standard model of multi-level transmon-cavity interaction. See Figure 7.6.
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Figure 7.7: Spectroscopy of transmon at different spectrum power. At high power, both
single-photon transition ωge and two-photon transition ωef are visible. When the power
decrease, the multi-photon process will disappear and leave only single photon transition.

Power dependence When the driving power is high, the non-linearity plays an import

role. Although for some transitions the first order coupling is zero, multiple-photon

processes excite system though virtual states. [citeBraumuller2015multiphoton]

ωd = ωj0/j (7.3)
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As the power reduces, the multi-photon process are dramatically suppressed. In the low

power limit, only single photon excitation is visible. We use this to distinguish and rule

out higher order transitions. Fig 7.5 shows two set transmon spectrum data using high

and low power of excitation. We decrease the excitation power until only one dip is

left. The blue curve has 20dB lower amplitude than the high power (red) one. The dip

at lower frequency ≈4.24GHz corresponds to two photon process ωgf/2, and the right

corresponds to ωge. The difference of the two is

ωge − ωgf/2 ≈ Ec/2~ = 2π · 0.12GHz (7.4)

For our set up, the 75dB attenuation on RF input cable limits the total microwave power

we can apply, thus we couldn’t see higher order multi-photon transitions.

7.2.2 Cavity photon number splitting

As discussed in Chapter 2 the energy of transmon is shifted depends on the photon

number in the cavity.

ω′
j = ωj − χj−1,j + (χj−1,j − χj,j+1)c

†c (7.5)

where c†/c is the create/destroy operator for cavity photon. And when the linewidth of

qubit resonance is thin enough,

(χj−1,j − χj,j+1) >

[
2π

T ∗
2

,
2π

T1
, κc, etc.

]
(7.6)

separate peaks for different photon number are possible to see. Each peak corresponds

to a photon number state of cavity, known as photon number splitting [19]. Here we
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Figure 7.8: Two tone spectroscopy of transmon single photon g-e transition and g-f two
photon transition, showing qubit energies split depending on number states of cavity
photon, which are denoted using Arabic numbers.
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show that using single-photon g-e transition and two-photon g-f transition of transmon,

we observe number splitting, indicating coherent state of cavity, see Figure 7.8.

In this measurement, we use two tone continuous measurement set up. The cavity spec-

trum tone is fixed at maximum transmission when the transmon is in ground state |g⟩.

The cavity drive is applied continuously with fixed power such that there are only a few

photon (nave ≈ 3) in the cavity. The qubit spectrum excites the transmon to excited

state |e⟩ or |f⟩, driving the transmon rotating between ground state and excited state.

In Figure 7.8 we show the measurement of number splitting for g-e (red) and g-f (blue)

transition. Separate peaks are observed for each set of data. The corresponding photon

number state are denoted using numbers. For the two sets of data, the cavity driving

power is kept the same ∼130dBm, and thus the envelop of two are the same. The driving

power of qubit excitation is optimized for each curve.

Qubit driving power dependence Qubit driving power Pd determines the speed

of Rabi-oscillation or flip-over of qubit. To detect the photon number state, the Rabi-

oscillation frequency should be smaller than g, such that each photon measures a constant

state of transmon. Also it should be bigger than the relaxation rate of excited state to

saturate the excitation probability of qubit. To optimize the qubit driving power Pd, I

took a map of qubit spectrum respect to qubit driving power. See Figure 7.9. For a small

enough drive, Pd ∼-130dBm, the signal to noise is too small, thus the signal is not seen.

And when the drive is too large Pd > −105dBm, the separate peak are merged into one

big broad peak.

Driven state of cavity We first measure the number splitting at finite temperature.

Especially in the “strong measurement limit” where the driven strength is much bigger
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Figure 7.9: Qubit number splitting as a function of qubit driving power. The color scale
indicates the amplitude of transmitted signal in the unit of dBm.
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than the dissipation of system

λd ≫ κc,
2π

T1
,
2π

T2
(7.7)

the spectrum accurately reflects the number statistics of the mode.[citeClerk2007PhotonNumber]

In our experiment, the driven strength is close to dissipation of photon and qubit. It is

expected the absorption of higher number state increases with driven power. Figure 7.10

shows the dependence of number splitting on cavity driving power. Curves are shifted

manually for better display.
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Figure 7.10: Qubit number splitting as a function of cavity driving power.

Thermal state of cavity To observe the thermal state of cavity, the cavity and trans-

mon system needs to evolve freely without coherent driving on cavity. This is done by

measuring the qubit spectroscopy in quasi-continuous mode. Different than continuous

mode, the system is initially prepared at its equilibrium state by turning off all mi-
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Figure 7.11: Power dependence of qubit spectrum at quasi-continuous mode. The hori-
zontal axis is the frequency of qubit spectrum tone and vertical axis is the driving power
at microwave source. The color scale is the output amplitude of output signal in the unit
of dBm. At high power, only one broad dip is located at ωge. At low power, two sharp
dips are observable and they correspond to the |0⟩ and |1⟩. The inset is average of two
curves with lowest power plotted in linear scale.
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crowave inputs. At the base temperature of fridge, thermal excitation is highly suppress,

kBT/~ωge ≪ 1, it is believed the system is relaxed to its ground state. The experiment

cycle starts by applying a coherent driving pulse at close to qubit transition frequency

ωd ≈ ωge for a time longer than its relaxation, the qubit undergoes many periods of Rabi

oscillation and loses it coherence. After this excitation pulse, a cavity spectrum pulse is

sent to probe the state of the qubit by measuring the transmission.

Figure 7.11 shows the result of transmon spectrum ωge in quasi-continuous mode at

different driving power. In low power limit .-15dBm, only one peak is bigger than

the noise floor corresponding to |0⟩ of cavity. As power increase, a second peak on the

left shows up, which corresponds to |1⟩ of cavity. At even larger power, the first peak

saturates and then the two merge into a broad peak. I also plotted the curve of low power

limit in linear scale, see inset. From the amplitude we can estimate the upper limit of

cavity photon number

n̄ < (0.04× 1 + 0.4× 0)/0.04 + 0.4 = 0.091

which correspond to cavity temperature Tc <100mK.

This quasi-continuous spectroscopy is also advantageous for several reasons than continu-

ous measurement. First in continuous mode, the qubit resonance changes with the power

of cavity spectrum tone and qubit excitation tone, while in quasi-continuous mode, the

first resonance ωge,nc=0 does not change. Second reason is that because the power of cav-

ity spectrum measurement pulse can be tens to hundreds of photons, the signal-to-noise

is better than in continuous measurement.
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7.3 Time domain measurement

7.3.1 Rabi oscillation

 2  4  6  8
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Figure 7.12: Rabi oscillation measurement. The red points are experimental data. The
vertical axis is amplitude of transmitted cavity tone converted in linear scale. The data
is fitted to a1 + a2 exp(−t/Trabi) cos(2πνrabit)(black solid line).

Rabi oscillation or Rabi cycle is a cyclic behavior of a two-level quantum system in the

presence of coherent driving field. In our measurement, the qubit become “excited” after

absorbing a excitation photon and re-emits it in stimulated emission process. The time of

a cycle is 1/νrabi, where νrabi is called Rabi frequency. A multi-period Rabi oscillation is

shown in Figure 7.12. The maximum and minimum in amplitude indicates qubit rotating

along x axis in Bloch sphere, whose total phase change is indicated as π, 2π and etc. in

the inset. However due to longitude and transverse noise of transmon, the coherence is

lost over time resulting decrease in the envelop.

When Rabi pulse is applied, the cavity stays on its ground state |n = 0⟩ (nc ≪ 1),

frequencies of Rabi map is chosen near |n = 0⟩ peak in the number splitting Figure 7.10
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Figure 7.13: Rabi map of transmon qubit. The horizontal axis is the frequency qubit
excitation pulse ωd ≈ ωge. The vertical axis is the length of Rabi pulse. The color scale
is the amplitude of transmitted signal, whose frequency is fixed at the resonance when
qubit is on ground state. The text “π-pulse” indicates the pulse rotating qubit about
x-axis for an angle of ϕ to its excited state |e⟩.
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or quasi-continuous spectrum Figure 7.11, ωd ≈ ωeg,nc=0. First we fixed the power of

pulse and vary the length of Rabi pulse, and a cavity spectrum pulse is sent to measure

the state of qubit. See Figure 7.13. Symmetric fringes in the plot indicate 4 Rabi cycles,

and each cycle is a 2π rotation about x-axis in Bloch sphere.
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Figure 7.14: Power dependence of Rabi oscillation. (a) is measurement data of Rabi
oscillations at different pulse power. The horizontal axis is the length of Rabi pulse and
the vertical axis is the power of Rabi pulse at microwave source. The color scale is the
amplitude of transmitted cavity tone. (b) is Rabi frequency νrabi extracted from (a)
versus converted voltage at microwave source. Both axes are in logarithm scale. The
Rabi frequency shows clear linear dependence on driving amplitude.

Driven strength dependence The frequency of Rabi oscillation is proportional to

the driving amplitude

νrabi ∝ Ad ∝ Vd (7.8)
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which is controlled by driving voltage. To demonstrate this, Rabi oscillation measurement

is performed as a function of driving power, See Figure 7.14(a). The Rabi frequency of

each curve is extracted and plotted respected to driving amplitude in linear scale, see

Figure 7.14(b).

7.3.2 Longitude Relaxation measurement
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Figure 7.15: Relaxation measurement of transmon qubit. The data is fitted to exponen-
tial shape and extracted relaxation time T1 is 12µs.

Relaxation time T1 characterizes how long time can qubit stay on its excited state before

it is relaxed to its ground state. This measurement starts by applying a π-pulse on the

qubit initially at its ground state |g⟩. The the power of π-pulse is adjusted, so that its

length is around 200ns, much smaller than its relaxation T1. When it is fully excited to its

excited state |e⟩, the system is allowed to evolve freely for δt1 until a cavity measurement

pulse is sent to detect the state of qubit. The probability to find the qubit on |e⟩ decays

over time

Pe = exp(−t/T1) (7.9)
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Figure 7.15 shows the measurement result of transmon at ωge ≈ 4GHz. T1 = 12µs is

achieved.

7.3.3 Ramsey interference and dephasing measurement
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Figure 7.16: (a) Frequency and power dependence of Ramsey pulses. The color scale
indicates output power of transmitted amplitude. The blue center at 3.98GHz and -
5dBm is a π/2 pulse. (b) is the same measurement with fixed frequency thought the
arrow above (a). Periodic oscillations in amplitude come from cycles qubit rotating
along x-axis in Bloch sphere.

The Ramsey interference is a technique to measure the dephasing rate of two-level system.

It is performed by applying two phase coherent π/2-pulses separated by a time interval

∆t2. Ideally two π/2-pulses together rotate qubit as a π/2-pulse to excited state.

Because of imperfection of pulse shape, the time of a π
2
-pulse is not just half of π-Pulse. In

order to manipulate qubit accurately, the pulse length needs to be adjusted. The desired
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Ramsey pulse time is around 100ns, much smaller than T2. However the resolution of

pulse time generated by Agilent is 10ns. So instead of changing pulse length, we vary the

power of pulse which has a resolution of 0.01dBm to achieve the most accuracy. This is

done by performing Ramsey oscillation respected to pulse power with a fixed small delay

∆t2. Figure 7.16 shows multiple cycles of qubit rotation. Unexpected among the dips,

the 3π/2-pulse has the bigger change than π/2 pulse. The reason is not fully understood

yet, but I tested both in T ∗
2 measurement and they gave the same result.
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Figure 7.17: Ramsey oscillation of a transmon qubit at ωge = 3.98GHz. Dephasing time
is fitted to be 430ns.
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Chapter 8

Hybrid system of

Cavity-Transmon-MR

In this chapter, I will present the central experimental results of my thesis involving the

measurements of a qubit coupled mechanical resonator system embedded in a T-filter bi-

ased superconducting CPW cavity. We demonstrate that the mechanical resonator and

transmon have commensurate energies and the transmon coherence times are an order

of magnitude larger than in any previously reported qubit-coupled mechanical resonator

systems. Moreover this work is the first experimental investigation of the interaction

between an ultra-high frequency nano-mechanical resonator and a high-quality transmon

qubit. From this work, we believe this system has the potential, given further devel-

opment, to serve as a platform for more advanced experiments probing the quantum

properties of motion in nano- and micro-scale systems. Some of work in this chapter are

published in my paper Rouxinol et al[58].

In this chapter, I will present the experimental results of measuring the coupled transmon-
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Figure 8.1: Schematic drawing of cavity-transmon-MR hybrid system.

MR system embedded in a filter-biased CPW cavity. We demonstrate that the mechan-

ical resonator and transmon have commensurate energies and that the transmon coher-

ence times are an order of magnitude larger than any previously reported qubit-coupled

mechanical resonators.

8.1 Continuous single tone

We started by doing single tone continuous measurement for cavity. Microwave near

cavity frequency is sent to the cavity and the transmitted signal is amplified and then

recorded using Heterodyne detection circuits.

8.1.1 Single tone cavity spectroscopy at 0V

The gate voltage is first set at 0V. This sets the coupling strength λ between transmon

and mechanical resonator zero, leaving only coupling between the transmon and CPW

cavity[13, 14]. The cavity response behaves as the standard transmon dispersive coupled
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Parameter Value
ωcpw/2π 4.95GHz
EC/h 0.227GHz
EJ0/h 15.4GHz
T1 15µs
T ∗
2 1.4µs

ωMR/2π 3.4GHz
ωMR,meas/2π ≃3.47GHz

m 7fg
w 45nm
L 700nm

thickness 100nm
ρ 2.8g/cm3

xzp 25fm
α 0.447
β 0.17

g/2π 120MHz
λ/(2πVNR) ≈ 300kHz/V

QMR 150
QMR,calc 280
κc/2π 0.25MHz
κMR/2π 23MHz

Table 8.1: Experimental parameters characterizing the sample. The first set of values
shows the CPW and transmon’s characteristic energies, and T1 and T ∗

2 for ωge/2π ≃
4.2GHz. The nano-mechanical resonator mechanical properties are shown at the second
set, and the last set displays the measured coupling and decoherence rates.

135



0.2 0.4 0.6 0.8 1.0 1.2

4.94

4.945

4.95

4.955

4.96

4.965

Figure 8.2: One tone spectrum of cavity-transmon-MR system. The bias voltage Vg = 0
turns off the coupling between transmon and mechanical resonator. The color scale
shows the amplitude of the transmitted signal |S21|. The red dotted line is a numerical
simulation of the response.

cavity. The coupling between cavity and transmon is given by standard expression using

in Chapter 2

g = 2
βeVzp
~

where β = Cg/CΣ = 0.17 is the effective ratio CPW-transmon mutual capacitance. Vzp =√
~ωc/2CT is the rms zero-point fluctuations of CPW cavity. Fitting the cavity spectrum,

the coupling strength is g/2π ≈120MHz, close to the designed value, achieving strong

dispersive coupling between cavity and transmon, where the effective dispersive coupling

strength χ exceeded the linewidth of both the cavity and transmon (i.e. χge/2π >[
2π
T1
, 2π
T ∗
2
, κc

]
).
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(a)

(b)

Figure 8.3: Cavity spectrum of hybrid system. VMR = −9.5V. (a) Amplitude of trans-
mitted signal. (b) Calibrated phase of transmitted signal. The split-up of the cavity
spectrum in half of period, ϕ ∈ [0.5, 1]Φ0. are marked using black dots. The three at
lower cavity spectrum frequency are due to transmon energies in resonance with cavity,
and the higher three are believed to be transmon-MR in resonance.
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Figure 8.4: Comparison of split-up positions with transmon-MR resonances. This plot
combines two parts: the black dots are the same as in Figure 8.3, and the colored lines
are simulated dispersive shift of transmon. The peaks of χij,eff locating roughly the same
position of the three dots, is a strong evidence of MR resonance ωMR crossing transmon
energies ωij.
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8.1.2 One tone cavity spectroscopy with gate voltage

In order to find the intersection of transmon and the third mode of mechanical resonator,

we turned the bias voltage VMR as high as possible. The highest voltage from our SRS dc

voltage source is ±20V. However unexpectedly we observed heating on the sample and

fridge. I will discuss the heating effect later in this chapter. So I chose voltage when the

heating is slow and the mixing chamber thermometer shows no change in temperature,

i.e. RMC >200KΩ. During the whole process of measurement for this sample, we had

several times of warming up and cooling down. We saw this critical heating voltage

changed (from ∼10V to ∼8V) after warming up.

Figure 8.3 is single-tone cavity spectroscopy at VMR=-9.5V, (a) is the amplitude of trans-

mitted signal. Tracing the maximum of the data, one can see six split-ups in half of the

period. The three (labeled as “Transmon crossing cavity”) at lower cavity spectrum fre-

quencies are the same as in Figure 7.5. The other three (labeled as “Transmon crossing

MR”) at higher cavity spectrum frequencies are new after turning on bias voltage VMR,

which will be proven in details later. We believe they are lowest transmon states inter-

sects with the third mode of mechanical resonator. To be clear, in this chapter, ωMR

refers to the third mode of MR.

The first proof of this to compare the position of the three higher splits. In Figure 8.8,

the six black points are copied from Figure 8.7. Then I plot the dispersive shift of a

harmonic oscillator (representing the MR) with frequency ωMR = 3.47GHz coupled to

this transmon. The goal of this figure is only to check the position matching of flux bias

when the mechanical resonator in resonance transmon energy differences.
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8.1.3 Voltage dependence
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Figure 8.5: Measurements and simulation of single-tone spectroscopy of the cavity mode
around ωcpw as a function of ϕ over a range where ωeg ≈ ωMR. The color scale indicates
the amplitude of the transmitted signal. (a)-(c)The measurement data are plotted for
three different bias voltage VMR=-4.5V, -5.5V, -6.5V. (d)-(f) The simulation result for
λ=1.35, 1.65, 1.95MHz; TMR=30, 100, 180mK.

To see clear voltage dependence of transmon and mechanical resonator, we choose to zoom

in split-up at ϕ ≈ 0.32Φ0. This one is thought to be two lowest transmon states (|g⟩ to

|e⟩) and mechanical resonator crossing and it is also the biggest and the most clear one.

Figure 8.5 is the measurement(a-c) and simulation(d-f) of single-tone spectrum near the

gap ϕ ≈ 0.32Φ0. It is evident that for low coupling voltage (VMR . 5V), the cavity only

varied from transmon cavity interaction. However as VMR increases (5V. VMR .7.5V),

the transmon-MR interaction became prominent, producing a gap at ϕ ≈ 0.32Φ0, where

ωge ≈3.47GHz (see Figure 8.11). For larger values of coupling, VMR &8V (not shown),

the cavity response are broadened significantly, the feature became obscure.

This behavior can be explained as the interplay between two different effects. First, as

VMR increases from zero, the corresponding growth of λ should lead to hybridization of
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MR and transmon energy levels when ωge ≈ ωMR, producing well-known phenomenon

of Rabi doublets in the coupled system. For the environment temperature at which the

transmission measurements were made, both the transmon and the mechanical resonator

should state in their ground state, nth ≈ 0.004, at T=30mK. The joint ground state

|nMR = 0; g⟩ made no change in the transmission responce. However, the increase in VMR

was accompanied by heating of the resonator. Refer to section 8.5.2 for details of spurious

heating. This results in non-negligible thermal population of the MR (nMR > 0.1).

Qualitatively through the coupling λ, the thermally excited MR served as an effective

thermal bath for the transmon, increasing the probability for transmon to be found in

the excited states, eg. |e⟩, and leading to a thermally averaged dispersive shift of cavity

response.

8.2 Pulsed Cavity spectrum

8.2.1 Pulsed one tone

To observe the free evolution of the hybrid transmon-MR system near ϕ = 0.32Φ0,

pulsed measurement is performed at the same range of continuous measurements. The

cavity is let relaxed to its ground state for a long enough time (∼ 50µs), at which

time the transmon and mechanical resonator system evolves freely. And then a pulse of

measurement microwave detects the state of the transmon. In this measurement setup,

the MR-induced dispersive shift of cavity is not averaged out.

The Figure 8.8 shows plot of pulsed single tone measurement. Besides the measurement

data, I also plotted the simulated shift of cavity spectrum when transmon is on the lowest

three states |g⟩, |e⟩ and |f⟩, to be comparison with data and a guidance for eye. It is
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Figure 8.6: Numerical simulations (solid lines) of the expected populations of the trans-
mon ground state(panels (a) and (c)) and first excited (panels (b) and (d)) states as
a function of applied magnetic flux bias ϕ. The model assumes that the transmon is
directly coupled to a T=30mK thermal reservoir. As the transmon and nanoresonator
are almost on resonance ϕ ≈ 0.32Φ0, it is observed that the transmon state population
deviate from those imposed by 30mK reservoir (greed dashed line), to ones much more
related with a thermal reservoir at the MR temperature TMR (orange dotted line). Panels
(a) and (b) ((c) and (d)) show the case VMR=-5.5V (-6.5V).
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Figure 8.7: Pulsed measurement of single-tone cavity spectroscopy as a function of flux
bias ϕ near ϕ ≈ 0.32Φ0. The bias voltage is VMR=-5.5V. The grayness scale indicates
the amplitude of the transmitted signal. The colored solid lines are simulated cavity
response dispersively shifted by the state of the transmon. The blue (red, green) is when
transmon is on |g⟩ (|e⟩, |f⟩) respectively.
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observed that at ϕ ≈ 0.32Φ0, the main response peak (where the blue line locates) breaks

up (smaller amplitude, brighter color). On contrary, an increase in amplitude shows up

at lower cavity spectrum frequency, whose positions accurately locate on red and green

line, indicating explicitly the transmon is at least partly excited to excited states due to

interaction with mechanical resonator.

8.2.2 Voltage dependence
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Figure 8.8: A set of pulsed measurement of single-tone cavity spectroscopy at different
bias voltage VMR.

Like continuous measurement, the voltage dependence is also studied using pulsed single-

tone cavity spectrum. At VMR=0V, the transmon-MR coupling is zero, and only transmon-

induced cavity dispersive shift is observe. When voltage increases VMR=-5V, both cou-

pling and heating takes place, the second peak starts to show up indicating small popula-
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tion of transmon staying on |e⟩. Changing from -5V to -5.5V, the coupling only changes

10%. The bigger gap in the main peak suggests that the nonlinear increasing heating

plays a more important role. At larger voltage VMR < −7V , the heating effect dramat-

ically reduces the linewidth of the cavity spectrum, dimming the fine features near the

gap.
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Figure 8.9: Comparison of cavity spectrum when qubit is excited by heated MR or
coherent microwave.

To experimentally compare the difference of excitation between classical microwave driv-

ing and dissipative quantum bath generated by mechanical resonator, I did 2 sets mea-

surements. The first one Figure 8.9(a) is quantum bath excitation versus bias voltage

VMR. The bias point is chosen right on the gap ϕ = 0.32Φ0 and the cavity spectrum fre-

quency is swept near the cavity resonance at different biasing voltage VMR ∈ [−3V,−7V].

As shown in Figure 8.8, three separate peaks are observed below VMR &-6V, indicating

three lowest transmon states. The main peak starts to drop at around -4.5V, and the
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second and the third shows up. The main peak totally disappear at around -6.5V, and at

even larger the separate became mixed. The classical comparison (b) is performed simi-

larly. To avoid possible effect of mechanical resonator, I chose a slightly different flux bias

ϕcl and accordingly y-axis is shifted to match the main peak in plot. The frequency of

the qubit drive tone is the transmon g-e energy at this flux bias ωd = ωge(ϕcl). With this

drive applied continuously at different power (x-axis in (b)), the cavity spectrum is swept

and the pulsed transmitted signal is recorded. It is observed that at minimal power, the

main peak (4.946GHz) is present with a weak peak at 4.942GHz, where matches |e⟩ state

of transmon. Then a third tone shows up at 4.944GHz and became one at large power

(∼-100dBm). The mechanism of this two measurements are yet not fully understood.

8.3 Continuous Qubit spectrum

Two tone spectroscopy is a tool to directly measure the absorption and emission spectrum

of MR-coupled transmon. I first performed continuous two tone measurement where both

cavity spectrum tone and transmon excitation tone are continuously applied.

To get a good map, the choice of bias voltage VMR is critical and needs delicate thoughts.

If the voltage is too small, then both the coupling strength and the excitation of transmon

and MR are not excited enough, some transitions between higher levels of transmon is

not seen. Or if the voltage VMR is too big, even a lot before the cavity spectrum became

over-dissipative, the gap is too deep so that the lines inside the gap lose their contrast.

When I did the measurement, I carefully increase the voltage with small step until I can

see as much transitions as possible. For Figure 8.10, VMR = −4.7V .

I took the measurement using two different qubit excitation power, and all the other
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parameters are the same. With two different power, it enables distinguishing between

single-photon transition and multi-photon transition, providing more information to un-

derstand the system. In Figure 8.10(c) gives the simulated spectrum (color dashed lines)

and can be used as a guide to understand the spectroscopy lines in (a)(low power) and

(b)(high power). Because the bias voltage VMR is low, the excitation of transmon is weak,

the biggest spectroscopy line is g-e transition ωge(blue in (c)). The second line (yellow in

(c)) is a two-photon excitation of transmon g-f transition, which significantly increases

from low power to high power. The third line (red in (c)) is single photon excitation of

e-f transition, which has bigger change inside than outside the gap, directly indicating a

population of transmon staying on |e⟩. The fourth line (purple in (c)) is a two-photon

excitation of transmon e-h. It is not visible in low power and at high power, it shows

inside the gap. Noted there is a thin spectrum line (noted as “a white line” in (c)) that

has no corresponding simulated spectrum. I tried different possibilities but none of them

fits the line perfectly. The closest is the green line in (c), it is a transition between

dressed states 0.9 |nc = 0;f⟩+0.1 |nc = 1;e⟩ to |nc = 2;g⟩ and they have same slope. The

most interesting feature the of white line is that unlike all the other spectroscopy lines, it

is an emission line visible only inside the cavity, which suggests the excited transmon is

“cooled” back down to its ground state by stimulated radiation. And this is the property

of 0.9 |nc = 0;f⟩+ 0.1 |nc = 1;e⟩ to |nc = 2;g⟩ transition.

8.4 Pulsed Qubit spectrum

To study the dissipation of the transmon induced by mechanical resonator, one could do

time-domain measurement, such as T1, T2 measurement, or pulsed two-tone spectrum.

The latter is advantageous for its simplicity to perform. Pulsed two tone spectrum is free
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(a) (b)

(c)

Figure 8.10: Two tone continuous spectroscopy versus flux bias at ϕ ≈ 0.32Φ0 at VMR=-
4.7V. (a) Low qubit excitation power. (b) High qubit excitation power. (c) Low power
map with simulated spectroscopy (color dashed lines). The color scale in (a) (b) and
grayness in (c) is the amplitude of transmitted signal of cavity spectrum.
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Figure 8.11: Pulsed two tone spectroscopy of transmon near MR frequency ωge ≈ ωMR =
3.47GHz as a function of flux bias ϕ. The color scale indicates the amplitude of trans-
mitted signal. For each flux, the cavity spectrum tone is fixed at its peak detecting the
ground state of transmon. The red-ish color of the background at ϕ ≈ 0.32Φ0 implies
the gap in single tone spectroscopy. The two inlets are two curves from the map. The
left one chosen far from the gap (3.5GHz) has a bigger background (-89.5dBm) and a
narrower dip. The right one chosen inside the gap (3.47GHz) has a smaller background
(-90dBm) and a broader dap. The black solid line in each inlet is a numerical Lorentz
fitting.
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of broadening or mixing from cavity photon number splitting, makes it straightforward

to extract the linewidth of the qubit, the inverse of which is the qubit relaxation rate γ

discussed in chapter 2.

The complexity of this measurement is much higher than standard spectrum, it needs

multiple steps to calibrate and parametric control of setting points. First a single-tone

cavity spectrum versus flux bias phi is taken at a low or zero bias voltage. For each

flux bias ϕ, the cavity probe frequency is pointed at its peak detecting the ground state

of transmon ωb(ϕ). The second step is to perform a rough two tone spectrum map

with parametric cavity bias frequency ωb(ϕ). From this map, the transmon spectrum

frequency can be extracted. To get a well-averaged detailed map, it is very crucial to

focus close spectrum region to speed up the measurement before flux jumps happens. The

measurement shown in Figure 8.11 took one night to do average, if without focusing, it

might take several days. The bias voltage VMR = −5V is also carefully selected similar

as discussed for continuous measurement. The MR induced dissipation needs to be large

enough to be measurable, but cannot be too large to meet the low phonon number limit

⟨nMR⟩ ≪ 1.

Figure 8.11 the measurement of the pulsed two-tone spectroscopy. It is observed that from

from the gap (red-ish color), the peak is narrower. While inside the gap, the background

is smaller and the dip is broader implying more dissipation from mechanical resonator

interaction. For each curve, the width γ and center frequency are extracted by fitting it

to a Lorentz shape as shown in the inlets.

In Figure 8.12, the extracted transmon resonance linewidth is plotted against extracted

center frequency, which is the energy of g-e transition ωge. As discussed in chapter 2, the
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Figure 8.12: Extracted dip width (red points) from Figure 8.11 as a function of extracted
center frequency, which is the transmon g-e transition energy ωge. The black line is a
numerical Lorentz fitting with QMR ≈ 150.

qubit linewidth near MR frequency follow a simple Lorentz form Eq. 2.37

γ(ωge) =
λ2

~2
κMR

(ωge − ωMR)2 + (κMR/2)2
+ ΓB

One can fit the points to extract the MR frequency ωMR=3.47GHz, QMR = ωMR/κMR=150

and coupling strength λ/2πVMR=300kHz V−1. This is consistent with estimation from

the shape of sample.

8.4.1 Decoherence times

We measured the decoherence times at 0V when it is far-detuned from either the cavity

and mechanical resonator, fge = 4.2GHz. The process is the same in transmon-cavity

experiment. We achieved relaxation time T1 = 15µs and dephasing time T ∗
2 = 1.5µs. It

is believed that our relaxation time is limited by Purcell effect due to coupling to the
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cavity, refer to section 3.1.4. For T ∗
2 , flux noise is one of the dominating loss channel,

refer to section 3.3.2. These values are one order of magnitude better than the results in

similar qubit coupled electromechanical system [11].
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Figure 8.13: Relaxation measurement of transmon at fge = 4.2GHz. The fitted relaxation
time T1 = 15µs.
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Figure 8.14: Ramsey measurement of transmon at fge = 4.2GHz. The fitted dephasing
time T ∗

2 = 1.4µs.
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8.5 Temperature of system

8.5.1 effective temperature without voltage

Although the sample is anchored at the mixing chamber TMC=30mK, the effective tem-

perature of each part of system cannot be naturally assumed to be 30mK. Each element

of the system has its own temperature depends on the environment it is coupled to.

Cavity temperature The CPW cavity is cooled to 30mK and is capacitively coupled

to 50Ω transmission lines. We assume the cavity temperature Tc is limited by black-body

radiation from external circuitry. Because the cavity is engineered at over-coupled limit

(Ql ≈ Qc ≫ Qintrinsic ∼ 105), the photon number balance of the cavity is

κcnc = κinnin + κoutnout (8.1)

where nc is the number of background photons inside the cavity, and nin/out is in-

put/output photon number. In our symmetric cavity sample, κc = κin + κout = 2κin.

The incident photon number can be calculated from using temperature of each fridge

stage and resistive attenuation between them.

nin =
n300K

106.6
+

n1K

103.6
+
n400mK

103
+
n100mK

102
+ n30mK = 0.005 (8.2)

Similarly photons is assumed to be limited by thermal from HEMP at 4K and two

isolators on mixing chamber.

nin =
n4K

103.5
+ n30mK (8.3)
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And we can get Tc ≈45mK. For single-tone spectroscopy simulation in Figure 8.5, we set

Tc=45mK.
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Figure 8.15: Two tone spectroscopy of transmon single photon g-e transition in cavity-
transmon-MR experiment. The solid line is simulated curve done by Dr. Rouxinol using
Python QuTip package. The temperature of qubit is 30mK, the temperature of cavity
is 45mK.

We also observed cavity photon induced qubit energy splitting at -7V, see Figure 8.15.

Comparing the number splitting with and without voltage bias, we see there is little

change in photon distribution or peak width. This is another proof of cavity being cold

with voltage applied.

Transmon temperature The temperature of the transmon is studied by checking the

two tone spectroscopy far detuned from MR frequency. Two different power is used to

explicitly show the position of ωef . In Figure 8.16, in both low power (red solid line) and

high power (blue dashed line) no peak is visible, indicating the population of first excited
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Figure 8.16: Transmon temperature estimate. Two-tone spectroscopy measurements of
transmon at high and low power, illustrating the ωge and ωgf/2 transitions. The data is
taken at VMR=-5V. No peak is observed at the ωef transition frequency, indicating the
transmon remains “cold” when far-detuned from the MR frequency.

state |e⟩ is smaller than equivalent noise amplitude.

Pe =
1

e~ωef/kTq
≪ Age

Aef

= 0.051 (8.4)

from which we find the upper bound of transmon temperature Tq < 55mK. For single-tone

spectroscopy simulation in Figure 8.5, we set Tq = TMC = 30mK.

8.5.2 Heating at high voltage

Heating effect observed when high bias voltage applied is unexpected when designing

the sample. Among all seven samples we cooled down, the critical heating voltage varies

from sample to sample, from cooling down to cooling down. One of the sample of bare

cavity, no heating effect is observed through thermometer up to 20V. We believe it is

due to leakage current though silicon substrate. In the T-filter and transmission line, the
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distance between gate metal and ground is around 1µm and the voltage can be as high as

20V. The electrical field is 2×107V/m, already close to the breakdown voltage for silicon

3×107V/m1. To quantitatively study the heat effect, we measured, in one of the sample,

the current through voltage bias circuit as a function of voltage, see table. 8.2. Below

8V, the current is below the sensitivity of the measurement circuit(not shown here). And

the current grows significantly at VMR > 9.5V and mixing chamber temperature TMC

became unstable.

Bias Voltage VMR (V) Current (nA) Power (nW)
8 5 40
9 25 225

9.5 52 478

Table 8.2: Measured Leakage current of gate port when high voltage is applied. Below
8V, the current is below resolution of reading circuit. The data shows high nonlinearity.

Macroscopic picture The heating generated by leakage current can be qualitatively

simulated using COMSOL simulation. The total heat power is equally distributed on the

surface of gate-ground area. In our model we assume that the bottom of the silicon is

attached to a 30mK reservoir. I tried to add a thin (eg. 50µm) layer glue between silicon

and reservoir, and the change is very little and negligible. Because superconductor has

extremely low thermal conductivity[59, 60], the heat transportation is mainly though

silicon wafer,building up a temperature gradient is built up from gate-ground area to

bottom. Figure 8.17 shows simulated temperature of silicon in thermal equilibrium. The

temperature at MR position and transmon position is plotted separately in Figure 8.18

as a function of total heat power.
1www.el-cat.com/silicon-properties.htm
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Figure 8.17: Finite element simulation of thermal gradient under total 40nW heat load
on gate-ground area (black outline on top surface). The cubic is 0.5mm thick silicon
whose bottom is attached to a 30mK reservoir. Color scale indicates local temperature.
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Figure 8.18: Simulated temperature at transmon position and MR position as a function
of total heat power.
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Figure 8.19: Schematic drawing of thermal coupling of transmon and mechanical res-
onator.

microscopic picture In the ongoing discussion, we calculated classical heat trans-

portation in the substrate. Because the temperature is low, specific degree of freedom is

freezed out, such as in superconductors the phonons and cooper pairs are highly decou-

pled with each other, resulting in very different thermal conductivity. I assume the heat

is first generated by charge carriers inside silicon hitting silicon lattice (“local phonon”),

see Figure 8.19. The aluminum mechanical resonator is attached to “local” substrate, so

phonons in aluminum are in thermal equilibrium with “local phonon”. The local phonon

excitation is transferred through phonon to the reservoir eventually. Transmon niobium

pads locate geographically far from gate, thus niobium phonon thermalize with colder

“far phonon”. The Cooper pairs inside transmon pads highly decoupling with phonons,

remain cold at reservoir temperature. Noted that this is a simplified study to qualita-

tively explain the heat effect. A more systematic and quantitative research remains the

subject of future work.
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8.6 Conclusion

In conclusion, we have demonstrated a new hybrid quantum system that consists of an

ultra-high frequency nano-mechanical resonator coupled with a high-quality transmon.

The spectroscopy measurements of cavity and transmon proves interaction between the

hybrid system: The strongly damped nano-mechanical resonator serves as a dissipative

bath to the qubit. This system is well described by theoretical analysis and numerical

simulations using multi-mode Jaynes-Cummings Hamiltonian. We believe this device can

soon be compatible with state-of-art architecture currently being used in the development

of superconducting quantum processors, as well as a large range of experiments to study

the coherent quantum dynamics and quantum thermo-dynamics of complex system.
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Chapter 9

Membrane Resonator

In this chapter, we describe an independent membrane measurement using impedance

matching circuit. This technique probes the impedance change in LC resonator due to

coupling to MR. We first derive the equivalent circuit model of voltage biased MR, and

then the transmission is studied using transform network analysis. This technique is

demonstrated on a doubly clamped MR at 77K.

9.1 Motional capacitance of MR

When oscillating voltage Vdc + Vac(t) is applied, there will be oscillating force on gate

and MR pads. And this force will drive MR to vibrate, thus the capacitance will also

change with time. The whole system should be reaching a steady state, and this effect

is amplified a lot when driving frequency matches MR resonating frequency.
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Vdc+Vac(t)
+Q(t)

-Q(t)

Z1Vac(t)

C0

Cm

Lm

Rm

d

Figure 9.1: Electro-mechanical model of MR. The 2 plates are separated by a distance d,
and are connected to a ac and dc source. Because of time-dependent voltage Vdc+Vac(t),
charge ±Q(t) induced on two pads varies over time. This MR is described by a RLC
model. C0 is total static capacitance, and Cm,Lm,Rm are movement induced impedance,
the sum of which is denoted as Z1.

Q(t) = C(t) · U(t)

Q0 +Qac(t) = [C0(t) +
∂C

∂x
x(t)][Vdc + Vac(t)]

Q0 +Qace
iωt = [C0 +

∂C

∂x
xmaxe

iωt][Vdc + Vace
iωt]

where ω is the angular frequency of drive frequency. xmax is the maximum displacement

of MR vibration. If we only keep terms rotating at ω terms, and calculate current I(t):

Iac(t) =
dQ

dt
= iω

(
∂C

∂x
xmaxVdc + VacC0

)
eiωt

The current Iac consist of two parts, the second part related with Vac is usual term from

capacitor impedance, while the first part is new. It is a result of MR vibration.

I1(t) = iω
∂C

∂x
xmaxVdce

iωt (9.1)
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To resolve xmax we treat MR as a classical Harmonic oscillator(HO) with self-vibration

frequency ω0 and quality factor Q. xmax is determined by external driving and Q:

xmax =
F/K · ω0

2

ω0
2 − ω2 + iω0ω/Q

F =
ϵ0SVdcVac

d2
=
CVdcVac

d

where F is the force driving the HO, and ϵ0 is electric constant, and S is the area of the

parallel capacitor. Note there is valid for all ω and ω0.

We can calculate the effective impedance Z

Z1 =
Vace

iωt

I1(t)
=

(
∂C

∂x

ϵ0SVdc
2

d2K

)−1
1

iω

ω0
2 − ω2 + iω0ω/Q

ω0
2

(9.2)

to get the effective capacitance Cm and inductance Lm of MR vibration, we compare Z1

with equivalent circuit, as shown is Figure 9.1 in the limit of ω → 0, ω → ∞ and ω = ω0:

Z1|ω→∞ = (
∂C

∂x

ϵ0SVdc
2

d2K
)−1 1

iω
(−ω

2

ω0

) ≡ iωLm

Z1|ω→0 = (
∂C

∂x

ϵ0SVdc
2

d2K
)−1 1

iω
≡ 1

iωCm

Z1|ω=ω0 = (
∂C

∂x

ϵ0SVdc
2

d2K
)−1 1

ω0Q
≡ Rm
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we get equivalent for Cm and Lm:

Cm =
C2V 2

dc

d2K

Lm =
d2K

C2V 2
dcω0

2

Rm =
d2K

C2V 2
dcω0Q

(9.3)

9.2 MR coupled to LC resonator

In this section, we will calculate the effect of coupling this RLC model to a LC resonator

close to MR frequency.

Vg

Mircrowave
Source

Power
Splitter

Attenuator

Directional
Coupler

Bias-T
Co-axial

cable

dc
Source

LC0Resonator

dc-
Block

50Ω

Cm

Rm

Lm

In0vaccum,077K
Lock-in
Amplifer

Varactor
CT

Inductor
LT

Room0temperature

MR0on0chip

Figure 9.2: Sketch drawing of LC mis-match circuit. The ac signal generated from
microwave source is sent to sample through a directional coupler and a bias-T. A dc
source Vg controls the voltage bias Vdc. The LC resonator(red lines) and chip(green
lines) are clamped inside a vacuum chamber cooled down to 77K. The blue lines is extra
circuits to change the total impedance to 50Ω.

Impedance was first demonstrated by Patrick[61]. The impedance of a MR ≈ 1/ωC ∼

107 − 109Ω will have negligible impact on typical radio frequency circuits. But this situ-

ation will change if a voltage Vdc is applied. One can apply classical network analyze to

circuits in Figure 9.2, with or without the 50Ω in parallel, the movement induced induc-
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tance decreases the total impedance, resulting a measurable change in S21 measurement.
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Figure 9.3: Reflection measurement of tunable LC resonator at different gate voltage
Vg measured at room temperature. The LC resonator consists of an chip inductor and
analog tunable capacitor, or a varactor. Resonance(Yellow color in the plot) of LC circuit
changes with dc bias voltage. The frequency starts at 25MHz and saturates at ∼90MHz,
there is no significant change in quality factor ∼10.

Tunable LC resonance One of the requirement of this analyze is LC resonance close

to MR frequency. This is not always easily satisfied, especially when there is some uncer-

tainty from fabrication parameters. To account for this uncertain, we replace the fixed

capacitor with a varactor, which is an analog tunable capacitor and whose capacitance

can be tuned with bias voltage. This tunablity enable us to match the mechanical res-

onator frequency in a bigger range, especially in the early tests when the mechanical

frequency is unknown. Figure 9.3 shows the reflection measurement of one of the LC

resonator.

Difference of impedance match and impedance mismatch For nano-mechanical

resonator in Ref.[61] or our membrane resonator, the induced change in LC resonance is
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very small. And when the mechanical resonator frequency ωm matches cavity frequency

ω0, the MR signal sitting at the bottom of LC resonance is always lower than full trans-

mission, and this sets a limit of mechanical signal we can measure. However if we change

the LC reonance from a dip to a peak, limit no longer exists. Moreover Patrick’s method

requires accurate total impedance matching 50Ω at resonance, so that most of signal can

be dumped into the cavity. Since total impedance is a function of Rm, which varies from

sample to sample, or at different temperature, thus is adds more difficulties to achieve

ideal impedance matching. In my impedance mismatching method, a 50Ω is connected

in parallel with LC resonator, the total impedance is nearly 50Ω off resonance, and thus

there is no strict requirement for total impedance, which gives more flexibility of this

method.

9.3 Measurement Results

82 82.2 82.4 82.6 82.8

0.85

0.9

0.95

1

Figure 9.4: Response of a doubly clamped membrane coupled to LC impedance mismatch
circuit. The membrane has a frequency of 82.3MHz and the loaded quality factor is 1400.

Using impedance match/mismatch circuit, at a sufficiently high voltage, one can observe
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a small dip as shown in Figure 9.4. The doubly clamped membrane is coupled to LC50

home made PCB resonator circuit, the circuits is anchored in a vacuum (∼1mbar) probe

and cooled in liquid nitrogen (LN2). The frequency of the membrane is about 82.3MHz,

which is twice higher than numerical simulation using COMSOL. The change could be

a combined result of uncontrolled tension, inaccuracy from fabrication and needs more

investigation in the future work. The loaded quality factor is around 1400. We expect

this to get higher if we cool it down to milli-Kelvin temperature.

For several batches of samples I have tested at 77K, the successful rate of the doubly

clamped membrane is relatively high >90%. The free-free membrane is only about 50%.

9.3.1 Voltage dependence of doubly clamped Membrane

Figure 9.5: Voltage dependence of two doubly clamped membranes on the same chip.
The grayness indicates the amplitude of transmitted signal. The two red dashed line are
fitted results using 9.4. The inset shows the simulated mode shape of membrane.

When a voltage is applied on membrane, electrical potential decrease the distance of

membrane in mechanical balance. It can be shown that the frequency of a doubly clamped
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resonator is down-shifted by applied voltage Vg

∆f = − f0C0

2d2Keff
· V 2

g (9.4)

where f0 is the bare frequency at 0V. Keff = (2πf0)
2Keff=-1150N/m is the effective

spring constant of membrane. And this is proven by varying the voltage applied on the

membrane. Figure 9.5 shows the voltage dependence of two doubly clamped membrane

on the same chip. It is observed that the frequency decreases at larger voltage. And

the resonances can be fitted to parabola with second-order coefficient -1.35Hz/V2 is very

close to the estimation -2.78Hz/V2.

9.3.2 Voltage dependence of Free-free membrane

In the impedance matching method, the impedance change originates from periodic

change in capacitance between the top membrane layer and bottom ground layer. Thus

depends on the shape, different modes have different coupling strength, refer to Chapter

3. In the free-free membrane design, the bottom pads are devided in to three parts. Thus

the coupling of “differential mode” is zero and thus not detectable in this set up. But

the mode of whole membrane moving up and down (I call it push-up mode) is measur-

able. Figure 9.6 shows the voltage dependence of the resonance. I observed small peak

with lower quality factor at around 89MHz. It is interesting the voltage dependence of

free-free membrane is the opposite to doubly clamped ones, the frequency shift up at the

larger voltage. For membranes fabricated on the same wafer , the free-free membrane

has a lower success rate, I could measure only half of them using impedance method.

Also after applying high voltage (>10V), some free-free membranes got shorted. One
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differential mode push-up mode

Figure 9.6: Voltage dependence of a free-free membrane. The lines are shifted to spread
in position, and from bottom to top, Vg=4 to 8V.
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possible reason is that the free-free membrane is supported by four thin legs, thus by

applying high voltage, the electrical attraction pulls the membrane too much and results

in snapping-in. As shown in Figure 9.6, in this set of data, the 8V curve is clearly more

noisy than 7V. At higher voltage, the LC resonance becomes unstable, thus the data is

now shown here.

9.3.3 Power dependence of doubly Clamped membrane
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Figure 9.7: Membrane resonance at linear and nonlinear response. The set of curves
on the left are excited using 20dB bigger power (or 20dB smaller attenuation), and the
resonance shows more asymmetry.

In the ongoing discussion, the membrane is treated as harmonic oscillator, which is true

under small drive amplitude. If the drive increases, the mechanical system starts to be-

have non-linearly. Figure 9.7 shows two sets of doubly clamped membrane measurement

only with 20dB different driving strength(controlled by inserted attenuation).
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Figure 9.8: Temperature dependence of membrane resonance in the process of LN2 boiling
and transferring. The curves are shifted in y-axis so that the order of the line is from
bottom to top as time elapses. The time difference between each curve is 5 minute.
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9.3.4 Temperature dependence of doubly Clamped membrane

The successful realization of the measurement requires membrane staying at low temper-

ature. I didn’t intend to design and study the the effect of temperature on membrane

system. The Figure 9.8 shows the frequency changes in the process of temperature chang-

ing. The measurement started when the left LN2 was only enough to cool the bottom

of the probe, and the data taking continued as LN2 boiling off. One can observe the

frequency became lower as temperature (not explicitly shown) got higher. And the fre-

quency went back fast as soon as I transferred more LN2 in the dewar, and saturated at

86MHz.

9.4 Conclusion

I have developed a recipe to fabricate micro-meter sized superconducting membrane res-

onators. The gap between the top membrane layer and bottom gate electrode layer is

40-50nm, comparable with the best results in this field. The membrane resonator is

analyzed theoretically and simulated using finite element simulation software. The reso-

nance of membrane resonator is further tested using impedance matching and impedance

mismatching circuit. Quality factor of 1400 is achieved at 77K. This membrane resonator

could be utilized with transmon, cavity or other type of quantum system to develop more

complicated measurements.
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Chapter 10

Future work

In the foregoing chapters, I presented my theoretical and experimental work on a hybrid

MR-transmon-cavity system. We successfully proved interaction between the transmon

and the mechanical resonator in weak resonance limit. Other goals such as observing

phonon number state of mechanical resonator using dispersive shift of transmon qubit

have not achieve yet. To develop more advanced experiments using this system, such

as quantum thermal engine, building entanglement between mechanical resonators and

generating phonon Fock state, we need to improve the sensitivity (coherence, coupling,

and etc.) of transmon and improving the quality of mechanical resonator. Initial fabri-

cation and tests of 2nd generation membrane resonator are presented in chapter 9. In

this chapter, I will talk about how to increase the sensitivity using transmon as a probe.
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10.1 Dispersive shift of higher energy states

In the foregoing discussion in chapter 2, we naturally choose the lowest two energy states

of transmon |g⟩ and |e⟩ as the two level system. Now let’s take a look at the dispersive

shift of higher energy states. From he general equation 3.2. in chapter 2 for dispersive

shift, we can further write the energy difference ωj − ωi in form of

ωj − ωi = ~χij,eff b
†b+ the other terms (10.1)

where explicitly for the lowest three states


χge,eff = χge − χef/2

χgf,eff = (χge + χef − χfh)/2

χef,eff = χef − χge/2− χef/2

(10.2)

In transmon regime, χge and χef/2 are usually very close. One can expect that χge,eff ,

which is the difference of the previous two terms, is largely nullified. This is one of the

key reasons that transmon not being sensitive to charge noise in the background. On

the contrast, χgf,eff is not canceled out. To easily quantize the difference, I define a

dimensionless “qubit sensitivity” factor

ξij = χij,eff/ωge (10.3)

By dividing ωge, one can get a dimensionless variable. And it helps to compare the ratio

of change without worrying the frequency of transmon.

In Figure 10.1, I plot Xiij for three lowest states. One can see that in a large range of
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Figure 10.1: Numrically calculated ξij as a function of EJ/EC . To give better intuitive
understanding of ξ, ωge=4GHz is multiplied. Mechanical resonator frequency is assumed
ωMR/2π=100MHz.

10 < Ej/Ec < 40, ξgf is more than one order of magnitude bigger than ξge, suggesting

the same ξge nullification fact mentioned above. A good experimental proof of this is the

number splitting of g-e and g-f Figure 7.8 in chapter 7, it is apparent that the peaks in

two-photon g-f transition have better resolution (sharper peaks).

10.2 Using two photon g-f transition as a probe

In the early proposals [62, 63] about coupling nanomechanical resonator with qubits,

Cooper pair box in charge limit, which has EC ≪ EJ , is preferred for its big value of

charge energy or high sensitivity to charge fluctuation. However high value of Ec increases

the susceptibility of the CPB to charge noise, reducing it’s dephasing time, and in the end

degrading the sensitivity of qubit. Besides, the charge jump problem requires frequent

re-calibration of the bias point, adding up more difficulty to realize the measurement.
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I propose to use two photon g-f transition as a probe to measure phonon number of

mechanical resonator. First ξgf is more than ten times bigger, suggesting ten times bigger

sensitivity than using g-e transition. At the same time, because the first order coupling

⟨g|n |f⟩ is zero, the charge noise induced relaxation is zero. Because the relaxation

between |e⟩ and |f⟩ still exists, the width of resonance is going to be limit.

Optimistic EJ/EC Another question is choice of aspect ratio of EJ and EC . In order

to decreasing the width of qubit transition, or achieving longer dephasing time T2, one

can push more to transmon limit (larger EJ/EC). However one will not benefit more by

simply increasing ratio of EJ/EC : the coherence times will be limited by other conditions,

such as Purcell limit[39], dielectric loss, flux noise and etc [27, 39, 64, 65]. And at the

same time ,the coupling strength λ between MR and tranmon, which is proportional to

EC , will decrease fast. It is difficult to directly point out the sweet point of EJ/EC . The

optimized method is to choose a relatively low aspect ratio EJ/EC such that coherence

times are limited by radiation loss though coupling capacitor to cavity. Using single

junction transmon or asymmetric junctions always help to improve dephasing time.

10.3 Comparison of splitting in g-e and g-f transition

To numerically investigate the advantage of two photon g-f transition, I use Python

Qutip package [66] to simulate the behavior of transmon. In this simulation, I use

time-dependent evolution and finds the quasi-steady state of the system. Assuming

Ec = 0.23GHz and EJ = 10GHz, the transmon has ωge ∼ 4GHz and ωge/2 ∼ 3.9GHz.

The mechanical resonator’s resonance is ωMR = 100MHz. The coupling strength between

MR and transmon is 20MHz, an feasible value using membrane resonator.
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Figure 10.2: Simulation of transmon spectrum against microwave power.
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Figure 10.3: Simulation of transmon spectrum of (g-e single photon transition (a) and
two0-photon transition (b).Γq = 0.1MHz, QMR = 10000, κc = 0.28MHz, thermal popu-
lation of MR nth = 1.
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Figure 10.4: Simulation of transmon spectrum of (g-e single photon transition (a) and
two0-photon transition (b).Γq = 0.05MHz, QMR = 10000, κc = 0.28MHz, thermal popu-
lation of MR nth = 3.
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Chapter 11

Conclusion

The results of the this thesis is the development of hybrid system of qubit coupled me-

chanical resonator system. It is a platform to study coherent dynamics of hybrid electrical

and mechanical degree of freedom in macroscopic eletro-mechanical systems. We first de-

signed, fabricated, and measured a filter biased superconducting CPW cavity with the

best loaded quality factor Ql ≈ 200k at least one order of magnitude bigger than the

results in biased CPW cavity system, which enable us to probe the microwave properties

of the embedded hybrid system. Moreover this work is the first experimental inves-

tigation of the interaction between an ultra-high frequency nano-mechanical resonator

and a high-quality transmon qubit. Then we fabricated and measured superconducting

transmon qubit embedded in our filter biased CPW cavity. We performed continuous

and time domain measurements of qubit, demonstrating basic state control and manip-

ulation of the system. Third we designed, fabricated and measured the hybrid system

of transmon qubit coupled mechanical resonator embedded in a voltage biased cavity.

The best relaxation of transmon in this hybrid system is T1 > 15µs and T ∗
2 = 1.4µs,

which is also one order of magnitude bigger than the results in electro-mechanical system
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officially published. These values of cavity quality factor and qubit lifetimes move one

step forward to engineer the electro-mechanical system in strong dispersive limit, where

dispersive shift χ dominates all other dissipation. Truly reaching the strong coupling

limit will require the quality factor of mechanical resonator to be improved by at least

one order of magnitude. To achieve this goal, we designed, fabricated and measured

membrane type resonator and proved quality factor QMR ∼ 1400 at 77 K. This value, I

believe, can be largely improved by cooling down to mili-Kelvin temperature and fur-

thermore using free-free type membrane. Ultimately this will enable us to achieve strong

dispersive limit of the hybrid system.

Based on the results presented in this thesis, the hybrid electro-mechanical system has

at three potential for future research. The first is using transmon as a spectrometer to

measure the noise and furthermore the asymmetry of the quantum noise of mechanical

system. This asymmetry can be resolved by comparing the relaxation T1 and polarization

in the vicinity of ωMR. Because it doesn’t require the simultaneous use of sideband

cooling/damping, it can provide a complimentary approach to recent experiments on

quantum noise in cavity opto-mechanical system.[67][68] The second direction is to use

the mechanical resonator as a reservoir with controllable coupling strength.The third

direction is to use this hybrid system as a platform to explore the quantum coherent

dynamics and related fundamental topics in quantum information and sensing. The

tunability of transmon energy and coupling strength provide the possibility to study the

system in both dispersive and resonant regime.[69],[70] [71]
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Chapter 12

Appendix

12.1 High angle SEM tricks

Taking high angle(≈ 90 ◦) SEM image is a tool to directly check the vacuum gap of

membrane. It needs more steps and preparation than simply rotating the camera. For

the image of membrane in chapter 5, whose angle from horizontal is θ < atan(50/2500) ≈

1 ◦, the electrons have to move along the surface. Before arriving the the sample, the

electron are very likely to be distorted or absorbed, resulting in charging the surface

before aiming area. And when charging accumulates over time, the electron beam became

highly unstable and impossible to get focused. In Figure 12.1, I am showing an SEM

image distorted by charging effect.

To get a good high angle image, the sample needs to cut properly. It is better to have the

membrane as close to the cross-section as possible, so the the electrons get least affected

by the substrate. I used dicing saw to perform the cutting whose accuracy is about 10µm.

More than six membranes are fabricated on one line, so after a very close cutting, I was
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Figure 12.1: Distorted SEM image of free-free membrane by charging effect. The sample
was not pre-cut.
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able to have a few samples about several microns away from the edge. The dicing saw

uses tap water to cool the blade, so the sample needs to be clean in isoproponal right

after taking out

When imaging the membrane, the sample is prepared at a relative big angle ∼ 60 ◦. I

use a high accelerating voltage (>10kV) to reduce bending of the beam. Changing the

angle must be accomplished slowly with shifting the sample at the same time to keep it

in the center of view. I also need to change the focus intermittently. The ratio of scatter

(SE2) and reflected (InLens) electrons needs to be balanced, because reflected electrons

see better the side wall of membrane and electrons passing through the gap can only

be captured using secondary scattered electrons. The brightness and contrast set-points

are way off compared to vertical imaging. To see both (SE2 and InLens) electrons, the

contrast needs to be very small and brightness is bigger.

12.2 Tools

12.2.1 Super cable Cutter

12.2.2 Twisted pair

Superconducting twisted pair is used to conduct flux bias current in our setup. Good

uniformity of twisted pair increases magnetic shielding to flux noise. I develop the setup

schematically shown in Figure 12.3. The key to uniformity is a constant and controllable

tension. The wire is not cut into two pieces before twisting. The wire pass through

the hole of a plastic washer, so that the tension everywhere on both sides of the wire

is uniform. Then the washer is fixed at the end of a long spring, whose the other end

183



Cable insert here

Figure 12.2: Schematic drawing of making superconducting twisted pair.

T

T

washer

long
spring

wire

Figure 12.3: Schematic drawing of making superconducting twisted pair.
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is fixed. The controllable tension is controlled by transversely bending the spring. It is

advantageous for two reasons: the tension is easily controlled by pulling the ends and

watched by spring bending; small movement or shaking of the wire does not lead to

radical tension change.

12.3 Best MR coupling mode

In many MR electrically/optically coupled system, the freedom that is coupled is dis-

placement x̂. In the quantum regime limit, the distance is no longer a independent

parameter: the zero-point displacement x̂zp is (not only) limited by the mode shape,

as it is well know the higher order modes have much smaller zero-point displacement

because of high elastic bending energy Eel, thus the total coupling strength is highly

limited. So one would ask what is the best mode to maximize this coupling, i.e., what is

the shape to maximize the ratio of x̂/Eel.

for mode shape Before going to complicated math, several confinements can be made

to simplify the search. First we are looking for symmetric curves, curves such as ϕ =

k · x giving displacement with no elastic energy are ruled out. Second, without losing

generality, we can assume the mode shape ϕ(x) are place on the origin point. And further

more, we can scale x axis, so we can study only half of the shape with x ∈ [0, 1]. So

ϕ′(0) = 0, and ϕ(0) = 0.

The total elastic bending energy Eel =
1
2
EI

∫ 1

0
|ϕ′′(x)|2 dx. For any ϕ(x), if ϕ(x1) < 0,

we can always construct a new curve phi1 that satisfies ϕ′′
1(x) = |ϕ′′(x)|, so that the new

curve ϕ1 has the same bending energy but gives a bigger displacement. This suggests

that it is also reasonable to assume ϕ′′(x) > 0. Moreover, ϕ′(x) > 0 is preferred.
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Equation of extreme value condition In quantum limit, zero point displacement is

the quantized xzp = xmax√
N

, and N is the number of energy quanta N = Eel

~ω . We can get

xzp =
xmax

√
~ω√

Eel
∝ xmax√

Eel
.

In systems such as MR capacitively coupled to qubit, the change in capacitance ∆C =

and g =
ϵ0S

d2
xzp

∫ 1

0

ϕdx ∝
∫
ϕdx(∫

(ϕ′′)2dx
)1/2 or

g2 ∝
(∫

ϕdx
)2∫

(ϕ′′)2dx
≡ Fy

2

FE

≡ P

where Fy and FE represent the integrals. P is the value we want to maximize by varying

ϕ. One can calculate the functional derivatives of P ,

δP

δϕ
=

2Fy
2

FE

δFy

δϕ
− Fy

2

FE
2

δFE

δϕ
= 0

. And from definition we can get

Fy =

∫
ϕdx ⇒ δFy =

∫
ϕdx ⇒ δFy

δϕ
= 1

and
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FE =

∫
(ϕ′′)2dx

δFE =

∫
2ϕ′′ · δϕ′′dx

=

∫
2ϕ′′ · ∂

∂x
(δϕ′)dx

= 2

∫
∂

∂x
(ϕ′′δϕ′)− δϕ′ ∂

∂x
(ϕ′′)dx

= 2ϕ′′δϕ′
∣∣∣1
0
− 2

∫
δϕ′ · ϕ′′′dx

= 2ϕ′′δϕ′
∣∣∣1
0
− 2

∫
∂

∂x
(δϕ) · ϕ′′′dx

= (2ϕ′′δϕ′ − 2δϕ · ϕ′′′)
∣∣∣1
0
+ 2

∫
δϕ · ϕ′′′′dx

So
δFE

δϕ
= ϕ′′′′

. Combined with δP
δϕ

, we can get

ϕ′′′′ =
FE

Fy

(12.1)

Note this means ϕ′′′′ is independent with x, indicating ϕ(x) = ax4+bx3+cx2+dx+e. With

the condition ϕ(0) = 0 and ϕ′(0) = 0, it is further simplified to ϕ(x) = ax4 + bx3 + cx2.

Then one can substitute this in P„ and find out the partial derivatives

∂P

∂qi
= 0

∂2P

∂qi2
< 0

 for qi = a, b, c
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The solutions can be found a = 1
6
, b = −2

3
, c = 1.

ϕ(x) = x2 − 2

3
x3 +

1

6
x4. (12.2)

Discussion This form is exact the same shape as a uniformly pressed beam clamped

hung at center[25]. This is no coincidence: imagine a beam bent by gravitational force,

and maximization of P is equivalent with minimization of Gibbs energy. P as an indica-

tion of coupling strength of specific mode shape, we can calculate and compare this value

for different mode. For best case, P = 0.05. For a doubly clamped MR, P = 0.0022.

For a free-free clamped MR, P = 0, but if we expand the definition of displacement to

|ϕ(x)|, P = 0.02446.

12.4 Transmon Capacitance matrix

To estimate the effective capacitance Ceff and charge evergy EC ,we can follow the method

as in Kock’s paper[14]. See Figure 12.4, because the scale of transmon pads are much

smaller than cavity frequency wavelength, the network can be treated as plain dc capac-

itances Cij, where i, j = 1, 2, 3, 4. One can build a capacitance matrix

C =



C11 C12 C13 C14

C12 C22 C23 C24

C13 C23 C33 C34

C14 C24 C34 C44


where Cii = −

∑
i ̸=j

Cij is the total self-capacitance. Each metal is also associated with

a voltage potential Vi, and a net charge Qi. These obey linear equations, and can be
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Figure 12.4: schematic drawing of transmon qubit and full network of capacitance matrix.
4 gray pieces are representing superconducting metals. Only metal near the qubit is
shown. The size of transmon pad, ∼100um, are much smaller than GHz wavelength, so
we can apply dc analyze to the network. Cij is the mutual capacitance between metals.
CJ is the capacitance of Josephson junction, which is usually much smaller than C23 and
can be absorbed into C23 or simply neglected.
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written as Qi = Cij · Vj or Q = C · V .

voltage division The voltage division β in equation 2.24 can be calculated by adding

opposite charges on gate and Ground,i.e. Q = (1, 0, 0,−1)ᵀ, and voltage potentials can

be calculate from inverse of capacitance matrix V = C−1 ·Q. According to definition,

β =
V2 − V3
V1 − V4

=
C12C34 − C13C24

C22C33 − C2
23

(12.3)

Note that I applied the approximation: C44 ∼ C34 ≫ C11 ∼ C14 ≫ all the others.

Effective capacitance Similarly we can find the effective capacitance of transmon

qubit by adding opposite charges on island and shunt metal,i.e. Q = (0, 1,−1, 0)ᵀ.

Ceff = 1/(V2 − V3)

=
C22C33 − C2

23

C33 + 2C23 + C22

= −

C23 +
1

1

C24 + C12

+
1

C34 + C13

 (12.4)

12.5 Interesting images
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Figure 12.5: I’ve got wifi!! (a) A popular comics “he’s got wifi”. (b) A Ramsey oscillation
versus excitation frequency. Color scale is adjusted manually.

Figure 12.6: On fire!! Same data as Figure 7.9, color scale is manually adjusted to appear
like fire.
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1 2

3

Figure 12.7: Rainbow of photo resist in microscope. This is optical reflection interference
of a multi-layer photo resist. The resist is teared up from the right bottom corner and
continue folding up, explained using schematic drawings denoted as “1”, “2”, “3”.
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Figure 12.8: Eye mask of Ninja Turtle. One tone spectroscopy of 1st generation Lumped
LC resonator coupled to a Cooper pair box. Color scale is manually changed.
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