
vi

TABLE OF CONTENTS

1 INTRODUCTION .. 1

1.1 CONTRIBUTIONS ... 4

2 SCALABLE LINEAR PIPELINE FRAMEWORK .. 6

2.1 PIPELINE MODEL .. 10

2.2 DYNAMIC DATA DEPENDENCY .. 17

2.3 PERFORMANCE MODEL OF SLP... 20

2.4 RESOURCE MAPPING FOR MAXIMUM THROUGHPUT .. 22

2.4.1 MINIMUM FEASIBLE SOLUTION ... 25

2.4.2 SLACK BASED TOPOLOGY CREATION ... 26

2.4.3 THROUGHPUT OPTIMIZATION ... 29

2.5 STRUCTURE BASED RUNTIME SCHEDULING ... 31

2.6 ANALYTICAL SIMULATION RESULTS .. 33

3 SLP VALIDATION .. 37

3.1 INTELLIGENT TEXT RECOGNITION SYSTEM ... 37

3.2 UNIFORM INTER-MODULE COMMUNICATION ... 40

3.3 COMMUNICATION PROTOCOL... 42

3.4 ITRS MICRO PIPELINES .. 44

3.4.1 IMAGE PROCESSING LAYER ... 45

3.4.2 PATTERN MATCHING LAYER ... 50

3.4.3 WORD CONFABULATION LAYER ... 52

3.4.4 SENTENCE CONFABULATION LAYER .. 55

3.4.5 RESULT GATHER LAYER .. 58

3.5 ITRS PERFORMANCE MODEL.. 58

3.6 EXPERIMENTS AND RESULTS ... 59

4 SPIKING NEURAL NETWORKS WITH DISTRIBUTED ONLINE LEARNING 65

4.1 BAYESIAN NEURON MODEL .. 67

4.2 SPIKING RECTIFIED LINEAR UNIT NEURON MODEL (RELU) .. 70

4.3 WINNER TAKES ALL .. 70

5 HIGH PERFORMANCE SIMULATOR FOR SPIKING NEURAL NETWORKS 72

16

Therefore, SLP requires a minimum of 3 layers to support the fork and converge design

methodology. The number of upstream layer tasks required to resolve one task in the current

layer cannot be known at design time. Such information is only available during runtime.

However, the general fork and converge structure is known at design time. Using this knowledge

structure based runtime scheduler is proposed to resolve these dynamic task dependencies. We

discuss this in section 2.5.

In the proposed design methodology, the communication happens asynchronously and in

parallel to computation. Therefore, the communication latency is hidden. Let 𝐿𝑠𝑐 represent the

link delay between a given pair of adjacent layer modules (𝑚𝑠, 𝑚𝑐) where subscript 𝑠 stands for

source and 𝑐 stands for consumer. Since the latency is hidden 𝐿𝑠𝑐 is not a critical parameter in our

model. For SLP to guarantee deadlock free operation the input of every module must have input

buffers large enough to accommodate partial results from previous layers till the task of that layer

is resolved. It must have output buffers as well to temporarily store the results from the micro

pipeline till the results can be forwarded to the next downstream module. If the output buffer is

full then it stalls the micro pipeline, till there is room to store new results. However, it is straight

forward to compute the minimum size of input and output buffers of a module by accounting for

the variance in the rate of messages received and the rate of messages processed. In this work, we

target a computing cluster, more specifically a heterogeneous cluster instead of a wide area

network of computing resources. Therefore, the latencies 𝐿𝑠𝑐 are small. Our model can be easily

extended to a wide area network scenario with larger input and output buffers to account for the

variability of message arrival rates and link latencies.

17

2.2 DYNAMIC DATA DEPENDENCY

To accommodate scaling at layer level, the modularization strategy was based on breaking

complex tasks into multilevel data dependencies and creating large number of small independent

workloads which can be processed parallelly by different modules in a layer. This results in

dynamic data dependencies which need to be resolved in real time. The first layer creates small

independent tasks which are forked to the next layer hence, there is one-to-one task dependency

with the second layer as shown in Fig. 5(a). The dependency is one-to-one because bottom-up

approach is used and the first layer created the leaf tasks which must be now processed in the next

layer.

All other consecutive layers have convergent task dependence as shown in Fig. 5(b). A

workload is a group of tasks which is transmitted as messages from one module to other across

consecutive layers over point to point links. Since all tasks in a layer are independent, all tasks

with in any given workload are mutually exclusive. However, those tasks have dependencies

across layers. Depending on the resources available and the input these tasks complete

asynchronously. Task 𝑡𝑥 at the 𝑘𝑡ℎ layer is resolved if the set of dependent tasks Γ𝑥𝑘−1 from the

previous layer in the graph are computed which is denoted as

𝑋(𝑡𝑥𝑘) =∧∀𝑡𝑖∈Γ𝑥𝑘
(𝑋(𝑡𝑖))

(a) (b)

Fig. 5. (a) Task dependency between 1st and 2nd layer (b) Task dependence between
consecutive layers except 1st and 2nd layer

𝑡11

𝑡12

𝑡21

𝑡22

𝑡 1

𝑡 2

𝑡1𝑘−1

𝑡1𝑘

𝑡2𝑘−1 𝑡𝑥𝑘−1 𝑡 𝑘−1

𝑡 𝑘

𝑡 +1
𝑘−1

𝑡 𝑘−1

18

The results of the subset of tasks belonging to Γ𝑥𝑘−1 which are not yet resolved must be

buffered at the input of every module until 𝑋(𝑡𝑥𝑘) is resolved. Once 𝑋(𝑡𝑥𝑘) is resolved, task 𝑡𝑥𝑘

is scheduled for computation. The rate at which 𝑋(𝑡𝑥𝑘) is resolved depends on the input and the

compute resources available, therefore it is critical to have multiple such tasks queued up to

increase resource utilization. This condition can be met by having large number of tasks in the

workloads and having multiple redundant paths of execution in the scaled pipeline which is

determined by the width of the pipeline at that layer.

To support such task resolution in a de-centralized manner we apply constraints on the

connectivity pattern among modules between every consecutive layer. We use point-to-point

connectivity between modules of consecutive layers to keep the data flow de-centralized. Two

types of connectivity patterns are used to support the fork and converge model described earlier

as shown in Fig. 6.

Fig. 6(a) shows the connectivity constraints between the first two layers of the pipeline, it has

one-to-many connectivity (C1M) pattern. Fig. 6(b) shows the connectivity constraints between all

consecutive layers except 1st and 2nd layer. This pattern has many-to-one connectivity (CM1). For

the case of C1M the module 𝑚1𝑥 breaks up its workload into small tasks and schedules it to one

of its out-going paths thereby performing a fork operation. CM1 on the other hand performs the

converge operation by reducing the results from several upstream tasks. Since CM1 is present

(a) (b)

Fig. 6. (a) Single fan-in, multi fan-out connectivity (b) Multi fan-in, single fan-out
connectivity

𝑚1𝑥

𝑚21 𝑚22 𝑚2

𝑚𝑘1 𝑚𝑘2 𝑚𝑘𝑥

𝑚𝑘+1

19

between many layers, the reduction happens hierarchically. Therefore, the connectivity

constraints which help in determining the number of source and consumer modules is expressed

as

C1M constraint: |𝑚𝑠| ≤ |𝑚𝑐|

CM1 constraint: |𝑚𝑠| ≥ |𝑚𝑐|

We try to match the performance of each layer by managing the level of parallelism in each

layer. The the number of modules required in each layer is determined to achieve the required

performance, we refer to this as scaling. After determining the scaling of each layer, these

modules are interconnected based on the connectivity constraints. The resulting pipeline graph is

called as System Topology Graph (STG). Fig. 7 shows an example of a typical STG for the SLP.

This example has 5 layers with 2,5,3,2,1 scaling in layers 1 through 5 respectively. It is interesting

to note that SLP is a super-model of LP model. If we restrict one module per layer and restrict

that each workload is one task then SLP reduces to a LP model.

Fig. 7. A typical system topology graph

𝑚11

𝑚21 𝑚22 𝑚2

𝑚 1 𝑚 2

𝑚 1

𝑚12

𝑚2 𝑚2

layer 1

layer 2

layer 3

layer 4

(C1M)

(CM1)

(CM1)

𝑚

𝑚 2

𝑚 1

(CM1)

layer 5

20

2.3 PERFORMANCE MODEL OF SLP

Every module of the 𝑘𝑡ℎ layer, 𝑚 ∈ 𝑚𝑘1, 𝑚𝑘2, 𝑚𝑘 , … ,𝑚𝑘𝑖 can run with different

configurations resulting in different throughput ∈ 𝑘1, 𝑘2, 𝑘 , … , 𝑘𝑖. Those configurations

include the number of threads in the software implementation, the assignment of hardware

platform, or other algorithm based settings. Different binaries can also be developed to run the

same module on different hardware architecture. These binaries are individual processes

represented as 𝑝 ∈ 𝑝1, 𝑝2, 𝑝 , … , 𝑝𝑢 where 𝑢 is the maximum number of processes for any

given module 𝑚. Therefore, 𝑐 ∈ 𝑐1, 𝑐2, 𝑐 , … , 𝑐 represent configurations where, 𝑛 is the

maximum number of unique set of process-parameters associated with each given process 𝑝 of a

module 𝑚. In other words, a module 𝑚 can be realized by any of 𝑐1 to 𝑐 configurations. Where

each configuration represents a process binary for a given hardware architecture along with the

associated parameters. Each layer can run a mixture of these configurations hence SLP has a

large design space.

It is a common practice to model the processing performance of different hardware nodes

used in the system to be normalized across performance of different modules. This abstraction

encapsulates the processing speed, memory, bus speed etc. and makes mapping algorithms

simpler however, this adds an approximation to the model. Instead of modeling the system using

normalized processing requirements for modules and the available hardware resources, we

perform dry runs to collect empirical data for reliable performance modeling. However, this is not

a limiting factor, as the same model can be used with normalized representation of performance

requirements. For every server 𝑠 ∈ 𝑠1, 𝑠2, 𝑠 , … , 𝑠𝑟 with 𝑟 nodes in the heterogeneous cluster,

let 𝑇𝑚𝑎𝑥,𝑠 denote the number of logical cores in 𝑠, and 𝑀𝑚𝑎𝑥,𝑠its peak memory bandwidth. This

gives us the upper limit of the supported compute and memory bandwidth capacity for every

21

server 𝑠.

Next, we determine the CPU level thread concurrency 𝑇 and the memory bandwidth 𝑀

needed to run every configuration 𝑐 of each module along with its run time 𝜏. It is necessary to

measure the CPU level concurrency as each module configuration consists of threads performing

different tasks which are not always concurrent, this way we obtain the actual impact of the

configuration on specific compute resource. To enable this data collection, each process along

with its set of parameters must be analyzed independently i.e. ∀𝑐 ∈ 𝑚. The value of 𝜏 recorded is

the run time achievable for the given configuration 𝑐. The value of 𝜏 is normalized to the unit task

the end-to-end pipeline is processing to get per unit work of runtime. 𝑇 and 𝑀 are not normalized

as they represent the steady state requirements to run a configuration. Rate is computed as =

1/𝜏 which represents the number of unit work processed per second for every 𝑐 ∈ 𝑚.

For SLP to run at maximum performance all modules must be processing at maximum

capacity. This is possible when every module is receiving tasks at maximum input rate.

Therefore, to determine the performance of such a pipeline we measure the performance of

individual modules in a standalone manner for maximum input rate. Using the standalone

performance as building blocks, we determine the SLP performance. In practice, it is not practical

to assume that all the modules have same performance. The performance of SLP is determined

by the layer with least throughput, i.e. max runtime. Therefore, we model the throughput 𝑃 of

SLP as

 𝑃 = 𝑚𝑖𝑛𝑘=1 𝑡𝑜 𝑙(∑ 𝑘𝑖𝑖=|𝑚𝑘|)

Mapping hardware resources to run different modules and to determine the STG for such

mapping while optimizing the end-to-end throughput is a non-trivial task. We provide the

solution for this challenge in section 2.4 based on the performance model discussed here.

22

2.4 RESOURCE MAPPING FOR MAXIMUM THROUGHPUT

To achieve high performance, all pipeline stages should have the same throughput. However,

the workloads of different layers differ significantly. A layer with heavy load should be able to

grab more computing resources and scale accordingly. Each software module which runs on a

hardware node can employ multi-threading or any hardware platform specific acceleration and

optimization to achieve maximum efficiency possible. The performance of a module

(configurations 𝑐) and the number of modules in a layer are parameters that are determined to

keep a balanced pipeline. To allocate more resources to a particular layer, we simply need to

instantiate more modules or use different configuration of a module of that layer. In a

heterogeneous system, their selection not only depend on the layer a module belongs to but also

the hardware that the modules and its configurations that can run on it.

The goal of resource mapping is to find the best SLP structure and a mapping between SLP

modules and hardware computing resources to achieve optimum throughput. During this

procedure, we add or remove SLP modules to balance the throughput among layers, therefore the

structure of SLP and the mapping scheme evolve simultaneously. Please note that in a

heterogeneous system, maximum resource utilization does not necessary mean maximum

throughput.

Resource mapping for maximum performance is a hard combinatorial problem. Our heuristic

algorithm consists of two major steps. First, we find a minimum feasible solution (MFS) such that

one module from every layer is assigned a compute resource. Then we improve the MFS by

allocating additional modules to available compute resources to eliminate bottlenecks and

achieve a desired throughput. The throughput of every module and end-to-end throughput of the

pipeline is measured in terms of number of unit-work processed per second.

23

Many constrained resource matching problems are solved using dynamic programming,

which has pseudo-polynomial time complexity. To apply dynamic programming, we must be

able to construct the optimal solution of the problem based on the optimal solution of its sub-

problems. This requires the solution space to be discretized resulting in re-use of sub-problem

solutions. The work presented in [25] solves a resource mapping problem for a linear pipeline

using dynamic programming techniques. They propose an algorithm called Efficient Linear

Pipeline Configuration (ELPC) with a constraint that a hardware resource is not concurrently

running multiple modules while optimizing for end-to-end throughput. ELPC however allows

interval based resource sharing with different modules which is again non-concurrent sharing. In

the proposed pipeline model each module has multiple configurations who are candidates for

resource mapping to hardware resource which is already mapped with a configuration which has

partially utilized that resource. This kind of mapping improves resource utilization efficiency.

Therefore, the proposed model is more efficient than ELPC as it tries to utilize the hardware

resources to the maximum extent possible. Since SLP allows simultaneous resource sharing, the

sub-problems of partial resource allocation can’t be guaranteed to have optimal solution due to

fractional allocation of resources. The sub-problem solution can’t guarantee optimal sharing of a

resource till all the configurations of not yet visited sub-problems are analyzed. Therefore, we

propose a solution based on backtracking methodology.

For solving the mapping and throughput optimization problem we make use of a resource

allocation graph with some enhancements to keep track of resource sharing, we call this

Simultaneous Resource Allocation Graph (SRAG) as shown in Fig. 8. Every edge represents a

configuration 𝑐 of a module 𝑚. A request edge represents a resource allocation request from a

module to a hardware resource. The assignment edge represents a mapping between module and

24

hardware. We introduce another type of edge called invalid edge which is represents a

configuration that was deemed infeasible for mapping based on the available resources.

Therefore, to run a module there are a set of associated configurations which can be allocated to

hardware resources based on their availability in the cluster. Each configuration has an associated

cost in terms of required concurrency, memory bandwidth, number and type of accelerator cards

etc.

We now introduce the properties and methods of SRAG. The SRAG is used to keep track of

module assignments. It evolves iteratively till a final solution is obtained. Each iteration consists

of updating an edge state of SRAG which involve setting an edge type as assignment, request or

invalid. A request edge of SRAG is transformed to an assignment edge if the hardware has

enough resources available as required by the cost of the edge, if not than this edge is transformed

to an invalid edge. Whenever an edge is transformed from request or invalid type to assignment

type then the edge-cost amount is deducted from the available resources for that server, indicating

the amount of hardware resource used up for this assignment. Inversely, when an edge is

transformed from assignment type to request or invalid type then the edge-cost amount is added

back to the available resources of that server, indicating freeing up of hardware resources.

An evolution of SRAG is defined as a set of iterations of SRAG which result in assigning

minimum number of modules which results in an increase of overall throughput. After every

Fig. 8. A typical simultaneous resource allocation graph

Assignment

Request

Invalid

Module

Module

Module

Module

Server Server Server

25

evolution of SRAG the corresponding STG is computed. It is important to note that a module can

have only one assignment edge associated with it as it can run on only one server at a time. In

contrast, STG consists of connections between the modules which represents the actual system

topology of the modularized distributed application which runs on the heterogeneous cluster.

2.4.1 MINIMUM FEASIBLE SOLUTION

Initial SRAG is created with one modules each for a layer. It also has as many resource

vertices as the number of available servers. The SRAG at this point has only request edges, which

represent all possible configurations 𝑐 to work with. The MFS algorithm is a recursive function

based on backtracking principles. Backtracking performs exhaustive recursion which can be

potentially very expensive. For every recursive call, we make a decision-point for getting a

feasible assignment and continue further to explore next feasible assignment. If further such

assignment is not possible then we backtrack to the decision-point and try other alternatives. In

this way, we backtrack only as far as needed. We apply a heuristic by pre-processing the input to

the algorithm to reduce the recursion depth for average case.

A list of request edges is made by selecting one edge per module from the request edges

belonging to each module. The selected edge has minimum run time among all the request edges

of that module. While comparing a tie on run time is broken with the edge having minimum

memory bandwidth and a tie on this is further broken with the layer priority of the module.

Modules in layer 1 have highest priority and modules of layer 𝑙 have the least priority. This list

represents the best possible assignment each module can potentially get. It is logical to map

upstream modules before the downstream ones so that potential bottleneck may appear in lower

layers hence reducing future optimization effort. For this reason, layer priority is used as a tie

breaker. These selected edges are now sorted with the same comparison policy but in descending

26

order. Therefore, the edge with highest runtime is on top in the sorted edge list. We now make a

two-dimensional jagged array (modEdgeLists 𝑚𝑒𝑙) with each row containing all the request

edges of a module. The order of rows of this array is same as the module order associated with

the sorted edge list. The row order represents the possible bottleneck layer hence this module will

be mapped first. Each column of a row in 𝑚𝑒𝑙 represents the possible configurations the module

represented by that row can have. The elements of every row are sorted in ascending order with

the comparison policy mentioned above. From this ordering of 𝑚𝑒𝑙 we can say that; potential

bottleneck layer is assigned its best configuration first. Ordering of 𝑚𝑒𝑙 which is the adjacency

list of SRAG constitutes the pre-processing of initial conditions to the algorithm.

2.4.2 SLACK BASED TOPOLOGY CREATION

Each module vertex has 3 parameters; input rate slack (IRS), output rate slack (ORS) and

maximum output rate (MOR). MOR is the inverse of compute time of the assigned edge to that

Algorithm 1. Minimum Feasible Solution
Function MFS

Input: modEdgeLists 𝑚𝑒𝑙, module index 𝑚𝐼𝑑𝑥

Output: feasible edge assigned

for each edge 𝑒 ∈ 𝑚𝑒𝑙[𝑚𝐼𝑑𝑥] do

 if e=type Request then

 if assignment of 𝑒 is possible then

 set 𝑒 type ← Assign

 edgAssigned ← true

 if 𝑚𝐼𝑑𝑥 ≠ 𝑙 then

 𝑚𝐼𝑑𝑥 ← 𝑚𝐼𝑑𝑥 + 1

 if MFS(𝑚𝑒𝑙, 𝑚𝐼𝑑𝑥)=false then

 set 𝑒 type ← Invalid

 edgAssigned ← false

 𝑚𝐼𝑑𝑥 ← 𝑚𝐼𝑑𝑥 − 1

 If edgAssigned = true then

 break

 else

 set 𝑒 type ← Invalid

if edgAssigned = false then

 for each edge 𝑒 ∈ 𝑚𝑒𝑙[𝑚𝐼𝑑𝑥] do

 set 𝑒 type ← Request

 return false

return true

27

module, which is a constant value for a given configuration, i.e. the hardware platform, process

and its parameters. These parameters are used to keep track of the rate at which a module can

process input and generates output.

We know that the connections between modules can be of type C1M or CM1. Between any

two consecutive layers, the modules which generate the output are called Source Modules (SM)

and the downstream modules are called Consumer Modules (CM). For the case of C1M

connectivity, the number of possible connections is equal to the number of fan in slots possible

which is equal to the number of CMs. On the other hand, for CM1 connectivity the number of

connections is equal to number of SMs. Algorithm 2 shows how the connections between

processes are made. These connections are made between assigned modules of SRAG hence,

generating an STG which will be used to run the application on the heterogeneous cluster. The

algorithm uses a max priority queue called sharedConVrtxQ. This queue holds module vertices

with a parameterized comparison policy to either compare IRS values of member modules or

ORS.

In Algorithm 2, the Clear existing topology mapping step not only removes all module to

module connections it initializes the IRS and ORS values to be equal to MOR. When a

connection between two processes is made then slack updates are made as follows, where a

subscript ‘c’ representing consumer module parameter and subscript ‘s’ representing source

module parameter;

if 𝐼𝑅𝑆𝑐 ≥ 𝑂𝑅𝑆𝑠then

𝐼𝑅𝑆𝑐 = 𝐼𝑅𝑆𝑐 − 𝑂𝑅𝑆𝑠 and 𝑂𝑅𝑆𝑠 = 0.

On the contrary if 𝐼𝑅𝑆𝑐 < 𝑂𝑅𝑆𝑠then

𝑂𝑅𝑆𝑠 = 𝑂𝑅𝑆𝑠 − 𝐼𝑅𝑆𝑐 and 𝐼𝑅𝑆𝑐 = 0.

28

These module node parameter updates help in keeping track of what is the available slack per

module based on the connectivity. This information will be used in the throughput optimization

algorithm to determine the bottleneck layer based on the number of modules in that layer and the

associated input and output connectivity of modules.

Once the module parameters, IRS and ORS are computed based on the system topology, the

effective output rate (EOR) for every assigned module in the topology and the layer effective

output rate (LEOR) is computed for every layer in the topology. EOR for any given module 𝑚 is

computed as,

𝐸𝑂𝑅𝑚 = 𝑀𝑂𝑅𝑚 − 𝑂𝑅𝑆𝑚

Finally, the LEOR a layer 𝑘 ∈ 𝑙 is computed as,

𝐿𝐸𝑂𝑅𝑘 = ∑ 𝐸𝑂𝑅𝑚𝑚∈𝑣𝑘

Where 𝑣𝑘 ∈ 𝑣𝑚 for the given layer 𝑘.

Algorithm 2. System Topology Creation
Input: modVertices 𝑣𝑚

Output: system topology

Clear existing topology mapping

srcLyr←first element ∈ 𝑙
for each consLyr | consLyr ← ∀ 𝑙 except first element do

 if (connectivity type(srcLyr, consLyr) ∈ C1M connectivity then

 set sharedConVrtxQ compare policy ←ORS

 insert 𝑚 ∈ 𝑣𝑚|𝑚 ∈ srcLyr in sharedConVrtxQ

 insert 𝑚 ∈ 𝑣𝑚|𝑚 ∈ consLyr in array oneConVrtx

 sort oneConVrtx in descending order of IRS

 else

 set sharedConVrtxQ compare policy ←IRS

 insert 𝑚 ∈ 𝑣𝑚|𝑚 ∈ consLyr in sharedConVrtxQ

 insert 𝑚 ∈ 𝑣𝑚|𝑚 ∈ srcLyr in array oneConVrtx

 sort oneConVrtx in descending order of ORS

 for each module 𝑚 of oneConVrtx do

 if sharedConVrtxQ not empty then

 𝑠𝑐𝑚 ← dequeue sharedConVrtxQ

 if (connectivity type(srcLyr, consLyr) ∈ C1M connectivity then

 make connection from 𝑠𝑐𝑚 to 𝑚

 if ORS of 𝑠𝑐𝑚 ≠ 0 then

 insert 𝑠𝑐𝑚 in sharedConVrtxQ

 else

 make connection from 𝑚 to 𝑠𝑐𝑚

 if IRS of 𝑠𝑐𝑚 ≠ 0 then

 insert 𝑠𝑐𝑚 in sharedConVrtxQ

29

2.4.3 THROUGHPUT OPTIMIZATION

The process of throughput optimization involves identifying bottlenecks and removing them

layer after layer. If a MFS exists then, STG must be analyzed for bottlenecks. A bottleneck occurs

if a layer with higher priority has higher throughput compared to its immediate layer with lower

priority. The end-to-end throughput 𝑃 of the pipeline and the bottleneck 𝐵𝐿 layer is

 𝑃 = 𝑚𝑖𝑛𝑘=1 𝑡𝑜 𝑙(𝐿𝐸𝑂𝑅𝑘)

𝐵𝐿 = 𝑘 ∈ 𝑃

While comparing 𝐿𝐸𝑂𝑅 values, the layer priority is used as a tie breaker. Therefore, if

multiple layers have same output rate then the upstream layer is correctly identified as bottleneck

layer, we call this operation as getBottleneckLyr. 𝐵𝐿 may not be the effective bottleneck layer

when we are trying to scale the number of modules in a layer as we need to satisfy two kinds of

constraints; slack and connectivity constraints at the bottleneck layer. Based on these constraints

the effective bottleneck layer (ebl) is determined. The slack constraints (𝑆𝐿𝐶) are defined as

𝑆𝐿𝐶 = {
∑ 𝑂𝑅𝑆𝑚𝑚∈𝑣

= 0 , 𝑖𝑓 𝐵𝐿 = 1

∑ 𝐼𝑅𝑆𝑚𝑚∈𝑣𝐵𝐿+
≠ 0, 𝑖𝑓 1 < 𝐵𝐿 < 𝑙

If the bottleneck is at the first layer then the aggregate 𝑂𝑅𝑆 must be saturated to warrant a

scaling of this layer. On the other hand, when the SMs have saturated the input capacity of the

CMs for 1 < 𝐵𝐿 < 𝑙 while SMs belong to bottleneck layer then, scaling SMs will have no

increase of overall throughput. Therefore, ebl would be the layer of CMs and this layer must be

scaled. After ebl is determined the layers that must be scaled to resolve the bottleneck is

determined based on the C1M and CM1 constraints. A list of these layers is called as affected

layers (AL). The expression for connectivity constraints (𝐶𝑂𝐶) used in the algorithm to determine

AL which is based on based on C1M and CM1 is defined as

30

𝐶𝑂𝐶 = {

|𝑚1| + 1 ≤ |𝑚2| , 𝑖𝑓 𝐵𝐿 = 1
|𝑚2| + 1 ≥ |𝑚1| , 𝑖𝑓 𝐵𝐿 = 2
|𝑚𝑐| + 1 ≤ |𝑚𝑠| , 𝑖𝑓 2 < 𝐵𝐿 < 𝑙

The candidate layer for scaling is the layer which satisfies 𝑆𝐿𝐶 and 𝐶𝑂𝐶 constraints is the

effective bottleneck layer. Algorithm 3 shows the details of steps involved in throughput

optimization. In the algorithm while cloning a vertex we clone its request and assigned edges

only as these are still viable options for mapping.

If the last layer is the bottleneck layer then and if further scaling is required the (talk about

Algorithm 3. Throughput Optimization
Input: modVertices 𝑣𝑚

Output: optimized SRAG and corrosponding STG

create STG

done ← false

while ¬done do

 ebl ← getBottleneckLyr

 for each lyr ← btlnkLyr to 𝑙 do

 ebl ← lyr

 if 𝑆𝐿𝐶 for lyr is satisfied then

 break

 if ebl = 𝑙 then

 break

 clear 𝐴𝐿

 if 𝑒𝑏𝑙 = 1 then

 insert 𝑒𝑏𝑙 to AL

 if 𝐶𝑂𝐶 is not satisfied for 𝑒𝑏𝑙 then

 𝑒𝑏𝑙 ← 𝑒𝑏𝑙 + 1

 insert lyr to AL| lyr ∈ ebl to 2, until COC is satisfied

 for each lyr ∈ AL do

 𝑒𝑟 ← edges of type Request or Assign ∀𝑣𝑚 ∈ 𝑙𝑦𝑟

 if |𝑒𝑟| = 0 then

 done ← true

 break

 else

 sort 𝑒𝑟 in ascinding order of 𝜏

 madeAssignment ← false

 for each edge 𝑒 ∈ 𝑒𝑟 do

 if assignment of 𝑒 is possible then

 𝑣′ ←clone process vertex of 𝑒

 set 𝑒′ type ← Assign | clone of 𝑒, 𝑒′ ∈ 𝑣′

 create STG

 madeAssignment ← true

 break

 else

 set 𝑒 type ← Invalid

 if madeAssignment = false then

 done ← true

 break

31

extension of this work where this problem is treated recursively in a bottom up approach for a

larger pipeline of SLP pipelines.)

2.5 STRUCTURE BASED RUNTIME SCHEDULING

The number of modules in the STG varies based on the available cluster resources and the

connectivity between the modules is not pre-determined at application design time though the

connectivity pattern is fixed. Due to these reasons, the STG can vary for the same application

running on the same cluster for different runs. This poses a challenge for scheduling tasks for

such a non-deterministic setup. The connections in the STG are point-to-point therefore special

care must be given to ensure deadlocks at the system level don’t occur due to improperly

scheduled workloads. We address this problem by employing novel structure based scheduling

which is capable of both dynamic load balancing and congestion control in a de-centralized way.

SLP works on fork and converge methodology. This has an advantage that a high-level

scheduler for the overall pipeline is required only in the first layer. This scheduler has the

knowledge of the topology graph and makes decisions such that all dependent tasks converge to

the same downstream module for task resolution so, we call this Structure Based Scheduler

(SBS). SBS analyzes STG from bottom-to-top to determine the connectivity and creates sets of

hierarchical groupings of modules present in the second layer as scheduling is done only at the

first layer. The levels in this hierarchy is defined as 1 ≤ 𝐿 ≤ 𝑙 − 3. SBS is present in every

module of first layer and while analyzing the STG it looks at paths that are only visible to it. Each

level of the hierarch represents a reduction (converge) operation of tasks in its corresponding

layer. The different groups of a level imply number of independent parallel tasks that can be

scheduled for the layer corresponding to that grouping level. Each group is a contains layer 2

55

3.4.4 SENTENCE CONFABULATION LAYER

Sentence level confabulation model defines three levels of lexicons. The first and second level

lexicons represent single words and pairs of adjacent words; while the third level of lexicons

represent the parts-of-speech (POS) tags of the corresponding word. During recall, those word

and word-pair symbols corresponding to the outputs from word level confabulation are set as

active, and all POS tag symbols are also set as active. If a lexicon has more than one active

symbol, it is said to have ambiguity. The goal of sentence confabulation is to resolve the

ambiguity iteratively through a recall procedure similar to belief propagation and finally form a

meaningful sentence. The general confabulation recall algorithm can is described as follows in

Algorithm 4.

As Algorithm 4 shows, for each lexicon that has multiple symbols activated, we calculate the

excitation level of each activated symbol. The N highest excited symbols in this lexicon are kept

active. These symbols will further excite the symbols in other ambiguous lexicons. This

procedure will continue until the activated symbols in all lexicons do not change anymore. If the

convergence cannot be reached after a given number of iterations, then we will force the

procedure to converge. Then value of N will be reduced by 1 and we repeat the above procedure.

In the end, N is reduced to 0 which means there is only one active symbol in each lexicon. Then

ambiguity is eliminated in all lexicons.

In sentence confabulation, the excitation level of a candidate is the weighted sum of excitation

levels of active symbols in other lexicons. Intuitively, however, different source lexicons do not

contribute equally to a target lexicon. For example, the lexicon right next to an unknown word

obviously gives more information in determining the unknown word than the lexicon that is five

words away. Thus the significance of a KL can be measured by weight and quantified by the

56

mutual information(MI) [38] Mutual information of two random variables is a measure of

variables’ mutual independence, calculated as

𝐼(𝐴; 𝐵) = ∑ ∑ 𝑝(𝑎, 𝑏)𝑙𝑜𝑔

𝑎∈𝐴𝑏∈𝐵

(
𝑝(𝑎, 𝑏)

𝑝(𝑎)𝑝(𝑏)
)

where A is the source lexicon and a represents symbols in A; B is the target lexicon and b

represents symbols in B. 𝑝(𝑎, 𝑏) is the joint probability of symbol a and b; 𝑝(𝑎) and 𝑝(𝑏) are

the margin probability of symbol a and b respectively. 𝐼(𝐴; 𝐵) is nonnegative. The value of

𝐼(𝐴; 𝐵) will increase when the correlation of symbols in lexicon A and B get stronger. We

defined the weight of KL (i.e. 𝑤𝑘𝑙) from A to B as positive linear function of MI of A and B.

The sentence confabulation model in Algorithm 4 considers all initial symbols equally

Algorithm 4. Baseline sentence confabulation recall algorithm
Input: an ambiguous sentence 𝒮, predefined maxAmbiguity, maxIteration

Output: a confabulated sentence 𝒮′

for each known lexicon* 𝑙𝑘 ∈ 𝒮 do

set symbol 𝑠 ∈ 𝑙𝑘 active

end for

N ← maxAmbiguity

while N > 1do

converged ← false

iterationCount ← 0;

while ¬converged do

 for each unknown lexicon 𝑙𝑢 ∈ 𝒮 do

 for each symbol 𝑠 ∈ 𝑙𝑢 do

 calculate el(s)

 end for

 sort(𝑙𝑢)

 for i ← [0,N-1] do

 set symbol 𝑠𝑖 ∈ 𝑙𝑢 active

 end for

 end for

iterationCount ← iterationCount +1

if active symbol set 𝒞 unchanged

 or iterationCount ≥ maxIteration then

 converged ← true

 end if

end while

N ← N - 1

end for

update lexicons to 𝒮′

output 𝒮′

*lexicons who has only one symbol candidate are denoted as known lexicons, others are

unknown lexicons.

74

work, we develop Spiking Neural network Simulator (SpNSim), a flexible, multithreaded and

vectorized spiking neural network simulator using C++. SpNSim has the ability to

simultaneously simulate and train heterogeneous neural networks, i.e., networks consisting of

different spiking neuron models with different behaviors including activation functions and

STDP rules. This is a key feature in implementing complex neural networks with distinct

subnetworks. The function of the simulator is validated using two networks representing two

different applications from unsupervised feature extraction to inference based sentence

construction.

5.1 ARCHITECTURE

The SpNSim is designed to be modular and extendable. Its overall architecture is shown in

Fig. 34. SpNSim architecture

75

Fig. 34. There are three main layers in the design. First layer is Network layer where network

definitions are read from user-provided XML files and neural networks are created. It also writes

the trained networks back to XML files. Internally the network representation is maintained as a

3D graph in a Cartesian coordinate system, with vertices representing neurons and edges

representing connections. The second layer is the simulation engine, which takes care of

simulating the network in a multi-threaded environment. Finally, the visualizer layer helps in

debugging and rendering the complex SNNs in 3D. All the subcomponents of SpNSim are

described in detail in the following sections. The simulation treats time in discrete time steps

called ticks.

5.2 EVALUATION ROUTINES FOR NEURON MODEL

SIMULATION

We use interface class to make developing neuron models flexible so that any kind of

behavior can be integrated. Neuron models are represented as evaluation routines (ER). ER

provides platform for multi-threaded execution and thread synchronization. By default only one

thread per ER is assigned, but based on the model requirement it is scalable. Each instance of ER

is capable of holding data for any number of neurons of its type. The key advantage of this

approach is that all data including weights and neuron parameters for numerous neurons of the

same type are stored in arrays. These arrays are dynamically created and memory aligned to the

processors vectorization boundary during initialization. The functions for the compute logic is

developed such that there are no data dependencies across iterations of loops (i.e. no inter neuron

data dependency), which is a prerequisite for enabling vectorization of code. The spike

propagation is handled using pointers for quick communication. To avoid data dependency while

computing current spike status we use two arrays, one is called current spike and the other is

76

called pending spike. For any given tick the status of the neuron is computed using current spike

and the results are stored in pending spike to avoid data corruption as all the neurons are being

evaluated in parallel. Later the pending spike will be copied to current spike. This constitutes to

spike communication in a hazardless manner. Since all the compute logic and data is available in

the ER, it is straightforward to optimize them for use with accelerators like GPGPU or Intel Xeon

Phi. Though this kind of acceleration is possible, it not tested for current implementation.

5.3 RUNTIME POLICY

Runtime policy (RP) is a feature defined in the network definition file. This specifies dynamic

behavior of the network, such as the starting and ending time of training and recall phases. Also at

run time certain neuron parameters can be overridden for debug purposes or for modeling certain

biological behaviors where the presence of neurotransmitters modulates the behavior of neurons

for example providing reward and penalty behavior to neurons. The run time policies are defined

as operations to be performed on the specified set of neurons. These operations are associated

with triggers, which can be activated by certain conditions. Triggers can be of different types.

Currently we have only implemented time triggers, with room for expansion to other kinds of

triggers in the future. Time triggers are defined with activation expression, which always resolves

to absolute simulation time. The expression can also be constructed based on other triggers plus

relative time. Time triggers can also be defined as sequences or patterns, which resolve to a list of

time steps. This rich way of defining triggers allows complex dynamic behavior of the network.

5.4 SIMULATION ENGINE

This module is core of the simulator. Once the network is created, a list of ER instances is

77

registered with the simulation engine (SE). This process links up every thread from all the ERs

with thread-safe blocking queues for two-way communication. Using blocking queue allows a

thread to go to sleep while the queue is empty, thus freeing up resources for other operations. SE

communicates with ER threads using command and response messages. Simulation engine

implements a state machine with three states; Compute, Deliver and Done. Transition to next

state is done only after a Sync operation where the responses of all the threads is received. The

Sync operation enables the discretization of simulation time and also enables the computation of

all neurons asynchronously with in each state.

The basic control flow is shown in Fig. 35. Simulation time is advanced in compute state and

compute command is broadcast to all threads. After receiving their responses, the state transitions

to deliver state. Here the output spike status generated during this tick is delivered as inputs to

downstream neurons, which will be used for computation during next tick. This task primarily

boils down to copying data from pending spike array to current spike array. Once the simulation

time reaches the user-defined limit, it sends termination commands to all the threads. After

receiving all responses, the simulation terminates. This ensures that all threads have safely

Fig. 35. Simulation engine control flow

78

terminated and released all the resources back to the system.

The runtime policies including their triggers, operations and the set of associated neurons are

resolved before the start of simulation. This information is registered with the SE. During the

compute state SE checks for any triggered events. If any one of them are activated then the

actions associated with the corresponding operations are included in the command messages to

ERs, which encapsulates the list of specific neurons affected by that operation.

5.5 NETWORK SPECIFICATION AND CREATION

In biological nervous system, the neurons form well defined circuits performing specific tasks.

To accommodate such complex neural circuits in SpNSim we define templates, which is a

subnetwork comprising several neurons of any type with their associated connectivity. Instances

of those templates can be placed at any given location in 3D space. Each neuron in that instance is

referred hierarchically, using a concatenation of the instance name and its relative 3D location

within the template. The intention of using template is to have a library of frequently used sub-

networks and also to save trained networks, which can be reused as sub-circuits in more complex

designs.

Two types of templates can be defined to realize neurons; group template and column

template. Group template has a 2D structure, it defines placement of neurons in the X-Y plane. A

column template has a 3D structure which is built by instantiating group templates along X, Y

and Z directions. A column template also defines the connectivity among the instantiated group

templates, hence creating a template of connected sub network. Since group instances in a

column template results in building the column template, no physical neuron is realized until this

column template is instantiated in the network. Like column templates the group templated can

79

be instantiated directly in the network to realize physical neurons.

The input of the simulator consists of one network definition file and any number of template

definition files. All of them are specified in XML format. The template definitions can be

included in the network definition file however, the use of template definition files provide the

power of modularity and re-usability by lending support for developing a library of trained/re-

usable sub-networks. The network definition file is responsible for instantiating all neurons within

templates to build a network. The runtime policy is also specified in the network definition file for

controlling the dynamic behavior of the network.

The connectivity among neurons can be specified as explicit connection or as a group. Explicit

connectivity specifies connections from multiple source neurons to only one target neuron,

whereas group specification makes multiple connections from specified list of source neurons to

a list of target neurons. Depending on the requirement different patterns of connectivity can be

assigned for example, full connectivity where all sources are connected to all targets or one-is-to-

one connectivity where one source neuron only connects to corresponding target neuron in the

list. Apart from this, probability values can be associated to the connectivity specification, so that

links are established randomly. Weight patterns, including specific and random weight

assignments, are defined for these connections as well. For example, a given weight is applied to

all the connections or random weights with in the specified range are applied. Other connection

parameters can be defined for example, an incoming connection to a neuron can have its learning

mode enabled or disabled.

After running the simulation the learned network can be saved back to XML format. The

network can be saved as network definition file or template definition file. The network definition

file can be loaded back and run at a later time from the previous state. This allows snapshots of

80

simulation to be saved. If the network was saved as template definition file then it can be

imported by any other network definition file and be used as trained sub-network.

SpNSim creates the network in a three-step process. In the first step we read all the definition

files. These XML files are parsed and a XML tree structure is created. In the next step, using this

tree a compact network representation is created. The reason behind creating this is to determine

the total amount of memory required to build the SNN. The total memory requirement is not

directly evident from the XML tree as templates can overlap in certain situations resulting in

fewer neurons for such cases. Knowing the exact amount of memory is critical as this memory

must be dynamically allocated such that it is memory aligned to the processors vectorization

requirement. Finally, the actual spiking neural network is created. During the network creation

process, first all the neurons are created then the connections are made, hence avoiding complex

network graph traversals. To resolve name conflicts across network and template definition files,

all file names in the project are required to be unique. In the internal representation of data

elements all items are renamed with respect to their scope including file scope, hence making all

names across files unique and a name resolution lookup is maintained to identify the right

element.

Neuron types defined in the XML file result in ERs being created. These ERs behave as

containers for neurons as described earlier. A neuron factory is used to create neurons in the

appropriate ER based on the neuron type. If there are a large number of neurons of the same type,

then extra instances of ERs can be created to increase the number of threads to evaluate them

without modifying the underlying ER code.

