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Abstract

This thesis presents analytical and numerical studies of the nonequilibrium dynamics of

active nematic liquid crystals. Active nematics are a new class of liquid crystals consist-

ing of elongated rod-like units that convert energy into motion and spontaneously orga-

nize in large-scale structures with orientational order and self-sustained flows. Examples

include suspensions of cytoskeletal filaments and associated motor proteins, monolay-

ers of epithelial cells plated on a substrate, and bacteria swimming in a nematic liquid

crystal. In these systems activity drives the continuous generation and annihilation of

topological defects and streaming flows, resulting in spatio-temporal chaotic dynam-

ics akin to fluid turbulence, but that occurs in a regime of flow of vanishing Reynolds

number, where inertia is negligible. Quantifying the origin of this nonequilibrium dy-

namics has implications for understanding phenomena ranging from bacterial swarming

to cytoplasmic flows in living cells.

After a brief review (Chapter 2) of the properties of equilibrium or passive nematic liq-

uid crystals, in Chapter 3 we discuss how the hydrodynamic equations of nematic liquid

crystals can be modified to account for the effect of activity. We then use these equations

of active nemato-hydrodynamics to characterize analytically the nonequilibrium steady

states of the system and their stability. We supplement the analytical work with nu-

merical solution of the full nonlinear equations for the active suspension and construct a

phase diagram that identifies the various emergent patterns as a function of activity and

nematic stiffness. In Chapter 4 we compare results obtained with two distinct hydrody-

namic models that have been employed in previous studies. In both models we find that

the chaotic spatio-temporal dynamics in the regime of fully developed active turbulence

is controlled by a single active scale determined by the balance of active and elastic

stresses. This work provides a unified understanding of apparent discrepancies in the

previous literature and demonstrate that the essential physics is robust to the choice of

model. Finally, in Chapter 5 we examine the dynamics of a compressible active nematic

on a substrate. When frictional damping dominates over viscous dissipation, we elimi-

nate flow in favor of active stresses to obtain a minimal model with renormalized elastic

constants driven negative by activity. We show that spatially inhomogeneous patterns

are selected via a mechanism analogous to that responsible for modulated phases at an

equilibrium Lifshitz point.
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Chapter 1

Introduction

1.1 Introduction

Understanding the mechanical and statistical properties of “active matter” [2] has

been a topic of great interest for last few decades in the community of condensed

matter physics. Active systems are composed of self-driven units, active parti-

cles. Each unit converts stored free energy into systematic movement. Active

particles are often elongated and their direction of self-propulsion is set by their

own anisotropy, rather than fixed by an external field. Elongated active parti-

cles can order in states with long-range orientational order, forming “living liquid

crystal” phases. Examples of such active systems that can exhibit orientational

order include bacterial suspensions, the cell cytoskeleton, and in-vitro suspension

of cytoskeleton filament and associated motor proteins. The length scales of active

matter range from the sub-micron scale to the macro scale, as shown in Fig 1.1.

There are many phenomena occurring in active matter at all scales that are still

a mystery to us. Due to the complex structure and far-from-equilibrium nature of

active systems, it is hard to model them in terms of a small number of physical
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(a) (b) (c)

Figure 1.1: Collective motion in (a) Microtubules bundles [1] at subcellular
scale, (b) myxobacteria colony [2] at micro scale, and (c) fish school at macro

scale.

quantities. Nonetheless, global principles, such as conservation laws and symme-

tries, constrain the possible dynamical behavior of active matter [2].

It is well established that the dynamics of collective systems can be very different

from that of an individual unit. Even collections of multiple passive units can

create system-wide ordering in the process of finding a stable state, e.g., atoms

forming liquids or solids. External forces at boundaries, such as a shear stress, can

drive these passive systems out of equilibrium but as soon as the constraints are

relaxed, passive systems go back to their equilibrium state. Active matter, in con-

trast, is maintained out of equilibrium by a sustained energy input. Novel effects

that have been predicted theoretically or observed in simulations and experiments

include spontaneous laminar flow [6, 7, 8], large density fluctuations [9, 10, 11], un-

usual rheological properties [12, 13, 14], excitability [15, 16], low Reynolds number

“turbulence” [15, 16, 17, 18, 19, 20, 21] and flocking [22, 23, 24, 25].

1.2 Classification of Active Systems

Active systems can be classified according to the symmetry of individual units and

the type of interaction with the surrounding medium.

2
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(a) (b) (c)

(d)
(f)(e)

Figure 1.2: (a) Polar active particle, (b) apolar active particle, (c) self pro-
pelled rod, (d) polar order of polar particles, (e) nematic order of apolar parti-

cles, (f) nematic order of polar particles.

1.2.1 Classification based on Symmetry

Ordered liquid crystalline phases of active matter can be classified according to

their symmetry. Many active particles have a head and a tail, hence are intrin-

sically polar, such as birds and bacteria [26, 27]. These polar particles can form

states with polar or ferromagnetic order, as shown in Figure 1.2d. Such ordered

state has nonzero mean motion, i.e., it is a flocking state. Polar active particles

can also form apolar or nematic states by aligning in opposite directions on the

same axis. [3]. If the direction of the mean order is denoted by a unit vector n, the

ordered state is invariant under n→ −n and has zero mean velocity. Then the

system is in an apolar or nematic state, as shown in Figure 1.2f. We can also get

a nematic state through ordering of intrinsically apolar active units, as shown in

Figure 1.2e, such as vibrated rods [11], melanocytes [28] and some fibroblasts [29].
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(a) (b)

Figure 1.3: (a) Actomyosin behaving like contractile system, (b) microtubule-
kinesin bundle behaving like extensile system.

1.2.2 Classification based on forces on the medium

Active systems can be classified by the nature of the forces the active units exert

on their environment. Such forces are internal forces, so the total force exerted by

an active particle on the medium is zero. When we write down the distribution

of active force density f (r) in terms of a multipole expansion, the leading terms

would then be a dipole as the linear term being the net force is zero.

These dipoles can be contractile (see Fig. 1.3a), as in actomyosin networks or in

migrating cell layers, or extensile (see Fig. 1.3b), as in suspensions of microtubule

bundles or in most bacteria [2]. In the context of swimming microorganisms or

artificial swimmers, units that exert extensile forces on the surrounding fluid are

known as pushers, while those that exert contractile forces are known as pullers.

Most bacteria are pushers, while the alga Chlamydomonas is an example of a

puller. The extensile or contractile nature of active stresses can affect the stability

of ordered states [30]

1.2.3 Classification Based on damping

Active particles move through a medium or on a substrate that provides fric-

tional damping and mediates interactions. Systems where the frictional damping
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is negligible compared to viscous dissipation are referred to as “wet”. In this case

the medium mediates long-range hydrodynamic interactions between the active

units. Systems where dissipation is mainly controlled by friction are referred to as

“dry”. In “wet” systems, such as suspension of bipolar catalytic rods and swim-

ming bacteria in bulk, the total momentum is conserved, which means momentum

density is a slow, conserved variable and long-range hydrodynamic interactions

between nearby active units play a vital role in the dynamics. In “dry” systems

such as bacteria gliding on a surface [31], animal herds on land [32], or vibrated

granular rods on a plate[33, 11, 9], the momentum of the active systems is not

conserved because it is dissipated into the substrate. In systems dominated by

friction, momentum density is a fast variable and hydrodynamic interactions may

be important depending on the length scales of the system. For active particles

in a viscous fluid of viscosity η and frictional drag γ, hydrodynamic flows can be

neglected for length scales larger than
√
η/γ.

We will focus on the rich dynamics of active liquid crystals with nematic symmetry.

We consider both contractile and extensile systems in our study. We will also

explore both the “wet” and “dry” range of active systems.

A useful theoretical framework to describe the macroscopic properties of active

matter is provided by generalized hydrodynamics - a coarse-grained description of

the large-scale, long-time behavior of the system in terms of a small number of

continuum fields. The evolution of these fields is governed by a set of continuum

or hydrodynamic equations that can be obtained by modifying the hydrodynam-

ics of passive fluids [5, 34] to include new nonequilibrium terms that arise from

activity [35, 36, 7, 37, 15, 16, 2].
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(A) (B)

Figure 1.4: (a) Disclinations forming in MT bundles due to nematic symmetry
of MT bundle in Dogic’s group experiments [3, 4], (b) Microtubule-Kinesin polar
rods leading to aster and vortex formation in Nedelec et. al. [5] due to polar

symmetry in an individual MT.

1.3 Experimental motivation

The theoretical interest [36, 38, 39, 40, 41, 42, 30] in active nematics was first fueled

by the observation of spontaneously flowing and turbulent states in suspensions

of microtubule-kinesin bundles [3, 43] by the group of Zvonimir Dogic at Bran-

deis University. Other recent experimental realizations were obtained from the

Lavrentovich’s lab by immersing living swimming bacteria (specifically E. coli) in

a lyotropic liquid crystal [44], and from the Silberzan’s lab by plating dense layers

of fibroblasts on substrates [29]. Microtubule bundles and E. coli exert active ex-

tensile force dipoles on their surroundings, which, in turn, couple to orientational

order and induce spontaneous flows and self-sustained turbulent dynamics with

proliferation of topological defects.

Topological defects are inhomogeneous configurations of the order field that pro-

vide a distinctive signature of liquid crystalline order and have been extensively

studied in passive nematics. For passive nematics, defects may be generated
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through boundary conditions, externally applied fields, or via sufficiently rapid

quenches from the disordered to the ordered state [45, 46, 47]. When the con-

straints are removed or the system is given time to equilibrate, the defects ul-

timately annihilate and the system reaches the homogeneous ordered state that

minimizes the free energy. The structure of the topological defects is intimately

related to the broken symmetry of the ordered state and effectively provides a

“fingerprint” of such a symmetry. When the ordered state has ferromagnetic

(polar) symmetry, the lowest energy defect configurations are vortices and asters

(monopoles) (see Fig. 1.4b), while in states with nematic symmetry, disclinations

(see Fig. 1.4a), are possible [34] and have the lowest energy. The structure of the

topological defects therefore provides an important tool for classifying the broken

symmetry of liquid crystalline states.

In active liquid crystals, in contrast to passive ones, defect configurations can oc-

cur spontaneously in the bulk and be continuously regenerated by the local energy

input, as demonstrated in experiments [28, 3, 44, 29]. While the aster and vortex

defects that occur in polar active systems [5, 48] have been studied for some time

[35, 36, 27, 26], the properties of defects in active nematics have only recently be-

come the focus of experimental and theoretical attention. Disclinations have been

identified in monolayers of vibrated granular rods [11], in active nematic gels as-

sembled in vitro from microtubules and kinesins, in dense cell monolayers [28, 29],

and in living liquid crystals obtained by injecting bacteria in chromonic liquid

crystals [44]. In bulk suspensions of microtubule bundles the defects were shown

to drive spontaneous flows [3]. When confined at an oil/water interface, further-

more, the same suspensions form a two-dimensional active nematic film, with

self-sustained flows resembling cytoplasmic streaming and the continuous creation

and annihilation of defect pairs [3].

Recent work by Giomi et al [49] and others [18, 38, 19, 20, 21] had begun to

systematically examine the effect of activity on the dynamics of disclinations in
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a nematic liquid crystalline film. They demonstrated that +1/2 disclinations in

active liquid crystals behave like self-propelled particles with an active speed pro-

portional to activity. The direction of active motion is controlled by the tensile or

contractile nature of the active stresses. For certain relative orientations of pairs

of defects of opposite strength, this self propulsion can overcome the equilibrium

repulsive interaction among pairs of opposite-sign defects, allowing for dynamical

states with an average sustained concentration of defect-antidefect pairs. In re-

lated work, Thampi et al. [18] suggested that the mean distance between defects

in these turbulent states may be strongly correlated with the correlation length of

fluctuations in the flow velocity, and only weakly dependent on activity.

In this thesis, I will mainly model the active material used in the experiments

by Dogic’s group [4]. This consists of microtubule (MT) filaments linked by clus-

ters of motor proteins from the kinesin family. Individual MTs are polar. In

early experiments by Nedelec et. al. [5] and Surrey et. al. [48], active mixtures

of individual MT and kinesin were reported to have asters and spirals like de-

fect structures (see Fig. 1.4B) demonstrating the polar nature of the system. In

Dogic’s experiment, however, due to the depletion mechanism, after adding a non-

adsorbing polymer Poly Ethylene Glycol (PEG), these filaments form bundles (see

Fig. 1.5b). Kinesin motors covert the chemical energy from the hydrolysis of ATP

into mechanical work to exert force on the MTs and drive the system far from

equilibrium. Kinesins are assembled into multi-motor clusters by streptavidin.

These clusters can simultaneously bind and move along multiple MTs, displac-

ing MTs within a bundle relative to each other, so that the bundle is an active

unit [3]. Individual MTs are polar, and kinesin motors always move towards the

+ end of the microtubule. As a result motor-induced sliding of aligned MTs de-

pends on their polarity. If MTs are of the same polarity then there will not be

any induced sliding but if MTs are of the opposite polarity then kinesin clusters

generate sliding forces. Active MT bundles in contrast, are on average composed
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(a) (b)

Figure 1.5: (A) Microtubule-Kinesin polar rods leading to aster formation in
Nedelec et. al. [5], (B) microtubule-kinesin bundle formation due to PEG in

Dogic’s group experiments [3, 4].

of equal number of oppositely directed filaments and are apolar active units that

exert extensile forces on the surrounding medium. Stabilizing these MT bundles

at a 2D flat oil-water interface using a surfactant gives rise to an active 2D ne-

matic fluid with fast streaming flows and defect unbinding. The nematic nature of

Dogic’s MT suspension is demonstrated by the appearance of half-integer charge

disclinations (see Fig. 1.4A). Understanding the structure and dynamics of defects

in these active systems can be an important method to understand the dynamics

of the whole system.

1.4 Thesis Outline

In this thesis, we provide a theoretical and computational study of active nematics

and of their complex dynamics. We will focus on pattern formations, including

the proliferation of topological defects and their characterization.
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In chapter 2, we review the dynamics of passive nematic liquid crystals and intro-

duce the notion of topological defects and their properties.

In chapter 3, we present the results of a systematic numerical study of active

nematic LC and of the various flow regimes induced by activity. Each regime

is characterized in terms of flow patterns and defect proliferation. The chaotic

regime exhibits a steady number of defects that persists in time.

In chapter 4, we show that the chaotic spatio-temporal dynamics in the regime

of fully developed active turbulence is controlled by a single active length scale

determined by the balance of active and elastic stresses, regardless of whether the

active stress is extensile or contractile in nature.

In chapter 5, we consider a dry active nematic fluid, where the energy input from

active stresses is balanced solely by frictional damping. By eliminating the flow

velocity in the favor of active stresses we obtain a single equation for the nematic

order parameter, with elastic constant renormalized by activity. We show that ac-

tivity can drive such elastic constants to negative values, providing a mechanism for

pattern formation capable of describing in a unified manner all the spatio-temporal

structures obtained in previous models. A remarkable phenomenon reported by

several authors is the orientational ordering of the axes of the comet-like +1/2

disclinations. In experiments in suspensions of microtubule bundles the +1/2 de-

fects were observed to organize in nematically ordered states. In our model we

have also observed these defect-ordered structures.
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Passive Nematic Liquid Crystals

2.1 Introduction

Liquid crystals (LCs) as the name suggests are an intermediate state of matter.

They have properties of both liquids and crystals. They flow like fluids, but they

also have some crystalline properties such as strong anisotropy in their response

to external fields. LCs can be formed by molecules with anisotropic shapes, like

rods or discs. The simplest LC is a liquid of elongated rod-like molecules that

can form isotropic or nematic phases [50, 51]. In the isotropic state, the molecules

have random position and orientation (see Fig. 2.1a) and the system is an isotropic

fluid with no positional nor orientational order. By decreasing the temperature

or increasing the density one can drive the trasition to nematic state where, the

molecules align along a preferred orientation while retaining random positions (see

Fig. 2.1b) [50, 51].

If we consider a fluid with thin hard rods, we will realize that, at very low density

rods can easily orient in any random direction thus remaining in the isotropic

phase. But if we increase the density it becomes increasingly difficult for rods

to orient in a random direction. A fluid of hard rods undergoes a density driven
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x x

y

Isotropic State Nematic State(a) (b)

Figure 2.1: (a) Nematic LCs in an isotropic state with each unit having
random orientation, (b) Nematic LCs in nematic state with average ordering in

the x direction.

transition to orientationaly ordered anisotropic phase with uniaxial symmetry i.e.,

a nematic phase. In fact, Onsager proved that this phase transition from the

isotropic state (I) to the nematic state (N) does indeed happen [51]. Onsager’s

theory about this IN phase transition is based on the effect of excluded volume

associated with arrangement of hard rods on the entropy of the system [50, 51].

In order to find the steady state, we need to minimize the free energy. Since the

potential energy in the case of hard rods is constant, we can achieve free energy

minimization by maximizing the system’s entropy. The entropy of our system

has two contributions, translational entropy and orientational entropy. The IN

phase transition exists due to the competition between these two contributions.

Above a critical density ρIN , rods tend to align in a preferred orientation. This

makes the negative contribution due to orientational entropy smaller than the

positive contribution due to translational entropy. Hence, the net entropy of the

12
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fluid increases. So, for ρ < ρIN the system remains in isotropic phase, while for

ρ > ρIN the system transitions to a nematic phase.

2.2 Order parameter tensor

To characterize nematic order, let us first introduce a unit vector ui oriented

along the axis of ith rod-shaped molecule which describes its orientation. Since the

nematic molecules either have a center of inversion or equal probability of pointing

parallel or anti-parallel to any given direction, both ui and −ui are equivalent. For

this reason, it is not useful to introduce a vector order parameter for liquid crystals

analogous to the magnetization in a ferromagnet because its average value vanishes

in the nematic phase. We therefore need a second rank tensor to characterize

nematic [50]. We require the order parameter to be zero in the isotropic phase

but non zero in the nematic phase. We construct the order parameter from the

symmetric traceless tensor [50, 51] formed from ui as following,

Qαβ(r) = 〈 1

N
Σi(u

(i)
α u

(i)
β −

1

3
δαβ)〉, (2.1)

where the sum is over all the N molecules in a small but macroscopic volume

located at the point r; indexes α, β = (x, y, z) and 〈· · · 〉 represents the average

over all particles. Let Q be the tensor with components Qαβ. Since ui is a unit

vector, Tr[Q] = 0. In the ordered state the average order parameter tensor, Q is

not zero. For simple uniaxial nematic LCs, we can write Q as [50],

Qαβ = S(nαnβ −
1

3
δαβ). (2.2)
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Figure 2.2: The angle θi between molecular axis and the director n

where, the unit vector n, called the Frank director, specifies the direction of spon-

taneously broken symmetry ofQαβ and S = 1
2
〈(3 cos2 θi−1)〉 is the order parameter

with S = 0 in the isotropic and S 6= 0 in the nematic, and θi is the angle between

the molecular axis and the director n (see Fig. 2.2).

2.3 Landau free energy

We can now construct a Landau free energy [52, 50, 51] for nematic LCs. The free

energy density must be invariant under all rotations thus can only be function of

the scalar combination of Tr [Qp], where p = 2, 3 · · · that is,

fb = A
2
(3

2
Tr [Q2])−B(9

2
Tr [Q3]) + C(3

2
Tr [Q2])2

= A
2
S2 −B S3 + C S4

(2.3)

where A = a(ρ− ρ∗), B and C are constant, positive, and independent of density.

The cubic term in the free energy density leads to an asymmetry in f as a function

of S and the emergence of secondary minimum at finite S. That means that there

is a critical density ρIN above ρ∗, there is a first-order transition at ρIN , where

the system goes from the disordered or the isotropic phase to the ordered or the

nematic phase. We can find out the critical density ρIN by minimizing the free

energy by making first order derivative of free energy density fb with respect to
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the order parameter S zero at critical density ρIN and the second order derivative

with respect to the order parameter S positive [50, 51]. That is,

∂fb
∂S

= (A− 3 B S + 4 C S2)S = 0 (2.4)

We take the root with largest magnitude among Sc = {0, 3 B±
√

9 B2−16 A C
8C

}. By

requiring ∂2fb
∂S2 > 0 at the critical point, we can find the component A at critical

density ρIN , Ac = a(ρIN − ρ∗) = 9B2

16 C
. The form of the critical density ρIN can

then be written as following,

ρIN = ρ∗ +
9B2

16 a C
(2.5)

In 2d, however, Tr [Q3] is identically zero because Q is symmetric and traceless.

The free energy then becomes,

fb2d =
A

2
S2 + C S4 (2.6)

Now when we minimize the free energy with respect to the order parameter S, we

get Sc = {0,
√
−A
4 C
}. The second order derivative of the free energy with respect

to S at critical density
∂2fb2d
∂S2 |Sc = A + 12 C S2 = −2 A. In this case we find a

continuous phase transition from the isotropic to the nematic phase at A = 0 i.e.

ρIN = ρ∗. The system exists in the isotropic phase for A > 0 and it transitions to

the nematic phase for A < 0 [51].

So far we have only considered the free energy associated with homogeneous state.

We now examine the role of spatially inhomogeneous fluctuations in the nematic

state. To lowest order in gradients of Q, the free energy density is then given by

f = fb + fQ, with the elastic energy fQ in terms of Q [40] as follows,

fQ =
L1

2
(∂αQβγ)

2 +
L2

2
(∂αQαγ)(∂βQβγ) +

L3

2
Qαβ(∂αQγε)(∂βQγε) (2.7)
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Figure 2.3: (a) Twist deformation, (b) Bend deformation, (c) Splay deforma-
tion.

where L1, L2 and L3 are coefficients to the distortion costs in gradients of Q.

Taking into consideration that n is a unit vector, assuming the system is deep

in the nematic phase, the order parameter S can be assumed to be constant

S0 throughout the system, so that only the distortions in the director n will be

important here. The elastic free energy of fluctuating nematic phase becomes,

fn =
1

2

∫
ddx{K1(∇ · n)2 +K2[n · (∇× n)]2 +K3[n× (∇× n)]2} (2.8)

Above form of free energy is also known as Frank free energy [50, 51] where

K1, K2 and K3 are Frank elastic constants that measure the deformation cost. K1

measures the energy cost of splay deformations (see Fig. 2.3c), corresponding to

nonzero ∇·n, K2 measures twist (see Fig. 2.3a), with nonzero n · (∇×n), and K3

measures bend (see Fig. 2.3b), with nonzero n × (∇ × n). The elastic constants

K1, K2 and K3 have units of energy/length. In 2D, however, K2 does not play a

role because twist does not occur as n · (∇× n) is identically zero.

Comparison between Eq. 2.7 and Eq. 2.8 using Qαβ = S0(nαnβ − δαβ/3) gives the

following relations between the Li’s and the Frank constants,

L1 =
3K2 −K1 +K3

6S2
0

; L2 =
K1 −K2

S2
0

; L3 =
K3 −K1

2S3
0

(2.9)

Furthermore for simplification we will consider below the one-elastic constant limit
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so that K1 = K2 = K3 = K hence L2 = L3 = 0 and L1 = K
3S2

0
. In 2d, however, with

one-elastic constant K1 = K3 = K approximation we get L3 = 0 and L1 = K/S2
0 .

Since deep in the nematic phase, S0 is constant, so for simplification, we will

assume L1 = K without loss of generality. We can then write the elastic energy

in terms of gradient of Q as following,

fQ =
K

2
|∇Q|2 (2.10)

Adding Eq. 2.10 to the Eq. 2.3 discussed above results in the full form of the

Landau free energy density as following,

fLdG =
A

2
Tr
[
Q2
]
−B Tr

[
Q3
]

+ C Tr
[
Q2
]2

+
K

2
|∇Q|2 (2.11)

2.4 Topological defects

In the nematic state, orientational symmetry is broken spontaneously leading to

a very rich physics [50, 51]. Even though the system may carry a global nematic

order, at the local level it can still exhibit inhomogeneous configurations in the

order fields. Topological defects are spatially inhomogeneous configurations of the

order parameter field that cannot be eliminated via a continuous deformation.

The presence of the topological defects not only changes the physical properties

in their vicinity, but also increases the overall free energy of the system. Con-

sequently, an ideal ordered medium is free of defects. However, the influence of

the external fields, surfaces, or a lowering of the symmetry (isotropic to nematic

transition) can spontaneously and/or controllably create and stabilize topolog-

ical defects [51]. The physics of topological defects is also very rich and had

been studied in regards to cosmology and condensed matter system equally for

a long period of time [51]. Consider a planar structure in which the director is
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(a) +1 defect (b) +1 defect

(c) +1/2 defect (d) -1/2 defect
Figure 2.4: (a) -1 defect structure (

∮
dθ = −2π) or asters in polar system

, (b) +1 defect structure (
∮
dθ = 2π) or vortices in polar systems, (c) +1/2

defect structure (
∮
dθ = π) in nematic suspension, (d) -1/2 defect structure

(
∮
dθ = −π) in nematic suspension. The green clockwise circle signifies the

direction in which the loop integration is performed.

confined to the xy plane (the z axis being normal to the film). For elastically

isotropic (one-elastic constant approximation) system with director components

as nx = cosφ, ny = sinφ, nz = 0, the Landau free energy reduces to F = K
2

(∇φ)2.

Using Eq. 2.18, we can arrive at the steady state solution of the φ by solving,

0 =
1

γ
Hij (2.12)

Since, Hij = −∂F
∂φ

= K
2
∇2φ. Substituting Hij to Eq. 2.12 we get a Laplace equation

∇2φ = 0. Simple solutions of this Laplace equation will be φ = 0, φ = sα + c,

where α = tan−1(y/x) and c is a constant. The director configuration around the

disclination can be described by non-zero solution of φ as the director orientation

changes by 2kπ, on going round the loop around the core of the defect [51].

A mapping from some loop Γ in real space onto the order parameter space such

that physical order parameter remains single-valued in a complete circuit of Γ can
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be used to characterize these defects [50]. For the polar state, this implies

∮
dθ =

∮
Γ

dθ

ds
ds = 2kπ (2.13)

where k is called the winding number and k = 0,±1, · · · , s [50, 51]. In 2d the line

integral about the core is taken in the counterclockwise direction. These defects

are called vortices (see Fig. 2.4a,b). In the polar state, vortices are lowest energy

defect configurations [50, 51].

For the nematic phase, since positive and negative directions of the director are

equivalent, physical configurations in the nematic are invariant under inversion

of the director (n → −n), and the order parameter space is the unit circle with

opposite points identified (i.e. θ = 0 and θ = π are equivalent). Because of this,

there is a topologically stable defect in which θ changes by ±π on the circuit

enclosing the core. Hence k in Eq. 2.13, can also attain half integer values, k =

0,±1/2,±1, ,±3/2, · · · [50, 51] for the nematic state. These defects with half-

integral winding number are not possible in polar state. Since nematic defects

involve rotations, they are often called disclinations (see Fig. 2.4c,d). In the

nematic state, disclinations are lowest energy defect configurations [45, 46, 47, 53].

The structure of topological defects is intimately related to the broken symmetry

of the ordered state and effectively provides a “fingerprint” of such a symmetry.

A topological defect is in general characterized by a core region (e.g., a point or a

line) where the order is destroyed and a far field region where an elastic variable

changes very slowly in the space.

Topological defects may be generated by applying external forces on boundaries

or applying electric field in the bulk of the system. In equilibrium, opposite sign

defects attract each other and ultimately annihilate leading to a uniform ordered

state [50, 51].
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2.5 Nemato-hydrodynamics

Next we discuss the hydrodynamics of equilibrium nematic LCs. Physical proper-

ties exhibited by the nematic phase, such as unusual flow properties or its response

to boundary forces as well as electric and magnetic fields can be studied by regard-

ing liquid crystal as a continuous medium [51]. We will closely follow the contin-

uum theory laid out by Ericksen and Leslie [51], formulated on the basis of general

conservation laws and constitutive equations describing the mechanical behavior

of the nematic state. Here we construct the continuum model phenomenologically

but it has been shown that it can be derived from microscopic models [50, 51].

At large length scales and long time we describe the dynamics of the system in

terms of flow fields, i.e. ones whose fluctuation becomes long lived at long wave-

length. These correspond to conserved quantities, the total density of the system

ρ, the momentum density ρv and the nematogen concentration c. Additionally,

we also consider the dynamics of the nematic order tensor Q [50]. From now on,

we will restrict ourselves to 2d nematics. We will also assume that the system is

incompressible.

2.5.1 Dynamics of density

We consider a concentration c of nematogens of mass M and length `, suspended

in a solvent of density ρs. The total density of the system, ρ = Mc+ρs is conserved

hence satisfies a continuity equation, given by,

∂ρ

∂t
= ∇ · (ρv) (2.14)
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We assume that the fluid is incompressible or ρ = constant, which means ∇·v = 0.

The concentration c, of nematogens obeys a diffusion equation:

Dc

Dt
= ∂i[Dij∂jc], (2.15)

where D/Dt = ∂t + v ·∇ is the material derivative and Dij = D0δij +D1Qij is the

anisotropic diffusion tensor [54].

2.5.2 Dynamics of momentum density

The dynamics of the momentum density is governed by the Navier-Stokes equation,

given by,

ρ
Dvi
Dt

= η∇2vi − ∂ip+ ∂jσij, (2.16)

where η is the shear viscosity, p is the pressure, and σij is the stress tensor. The

elastic stress tensor is, σij = −λSHij + QikHkj − HikQkj. The molecular tensor

Hij = −δFLdG/δQij is the driving force for the relaxation dynamics of the nematic

LC with FLdG =
∫
dAfLdG [54], where fLdG is given by Eq. 2.11. For 2D case, the

term associated with constant B is identically zero in Eq. 2.11 hence,

fLdG =
A

2
Tr(Q)2 +

C

4
Tr(Q2)2 +

K

2
|∇Q|2 (2.17)

The coefficients A and C determine the location of continuous transition from

homogeneous isotropic state to a homogeneous nematic state in 2D.

2.5.3 Dynamics of order parameter tensor

Finally, the dynamics of the nematic order parameter tensor Qij is governed by,

DQij

Dt
= λSuij +Qikωkj − ωikQkj +

1

γ
Hij, (2.18)
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where uij = (∂ivj + ∂jvi)/2 and ωij = (∂ivj − ∂jvi)/2 are the symmetric and

antisymmetric parts of velocity gradient, corresponding to strain rate and vorticity

tensor respectively. The parameter γ is an orientational viscosity and λ is the

nematic alignment parameter. In Eq. 2.18 first three terms, on the right hand side

couple flow and order. The last term represents the relaxation dynamics due to

the molecular tensor Hij.
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Chapter 3

Hydrodynamics of active

nematics

This chapter is based on the article “Defect dynamics in active nematics” published

in “Phil. Trans. R. Soc. A:2014 372 20130365” by Luca Giomi, Mark J. Bowick,

Prashant Mishra, Rastko Sknepnek, and M. Cristina Marchetti. I was responsible

for generating the simulation results discussed in section 5 of the paper.

3.1 Introduction

In this chapter we focus on the rich dynamics of active liquid crystals with ne-

matic symmetry. We consider both extensile [3, 44] and contractile [29] systems.

Previous work has highlighted the rich dynamics that arises in active nematics

from the interplay of activity, orientational order and flow [6, 7, 8, 15, 26, 16].

More recently it was suggested that topological defects play an important role in

mediating and driving turbulent-like active flows [3, 49, 18, 19, 20, 21].
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We first review the hydrodynamic description of active nematics and the instabil-

ities of the homogeneous ordered state. In Section 3.5 we present the results of

a systematic numerical study of the various flow regimes induced by activity, as

summarized in the phase diagram shown in Fig. 3.7. Each regime is characterized

in terms of flow patterns and defect proliferation. The chaotic regime exhibits a

steady number of defects that persist in time. This is made possible by active flows

that drive directed motion of the comet-like +1/2 defects, generating, for certain

relative orientations of two opposite sign defects, an effective repulsive interaction

between the pair. The mechanisms for this active defect dynamics are analyzed

in Sections 3.3 and 3.4, where we discuss individual defect dynamics and pair an-

nihilation in active nematics, respectively. We conclude with a brief discussion

highlighting open questions.

3.2 Active nematodynamics

3.2.1 Governing Equations

We consider a uniaxial active nematic liquid crystal in two dimensions. The two-

dimensional limit is appropriate to describe the experiments by Sanchez et al. [3],

where the microtubule bundles confined to a water-oil interface form an effectively

two-dimensional dense nematic suspension, but also of considerable interest in

its own right. The hydrodynamic equations of active nematic liquid crystals have

been derived by coarse-graining a semi-microscopic model of cytoskeletal filaments

crosslinked by clusters of motor proteins [39]. They can also simply be obtained

from the hydrodynamic equations of passive systems by the addition of nonequi-

librium stresses and currents due to activity [35, 36, 7, 37, 15, 16, 2]. We consider

here an incompressible suspension where the total density ρ of active bundles and

solvent is constant. The equations are formulated in terms of the concentration c
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of active units, the flow velocity v of the suspension and the nematic tensor order

parameter Qij = S (ninj − δij/2), with n the director field. The alignment tensor

Qij is traceless and symmetric, and hence has only two independent components

in two dimensions. The constraint of constant density ρ requires ∇ · v = 0. The

hydrodynamic equations are given by [15]

Dc

Dt
= ∂i

[
Dij∂jc+ α1c

2∂jQij

]
, (3.1a)

ρ
Dvi
Dt

= η∇2vi − ∂ip+ ∂jσij , (3.1b)

DQij

Dt
= λSuij +Qikωkj − ωikQkj +

1

γ
Hij , (3.1c)

where D/Dt = ∂t + v · ∇ indicates the material derivative, Dij = D0δij + D1Qij

is the anisotropic diffusion tensor, η the viscosity, p the pressure, λ the nematic

alignment parameter, and γ the rotational viscosity. Here uij = (∂ivj + ∂jvi)/2

and ωij = (∂ivj − ∂jvi)/2 are the strain rate and vorticity tensor, respectively,

representing the symmetric and antisymmetric parts of the velocity gradient. The

molecular field Hij = −δFLdG/δQij embodies the relaxational dynamics of the

nematic obtained from the variation of the two-dimensional Landau-de Gennes

free energy FLdG =
∫
dA fLdG [34], with

fLdG = 1
2
ATr

[
Q2
]

+ 1
4
C(Tr

[
Q2
]
)2 + 1

2
K|∇Q|2 , (3.2)

where K is an elastic constant with dimensions of energy. For simplicity we restrict

ourselves here to the one-elastic constant approximation to the Frank free energy:

i.e. equal bend and splay moduli. The coefficients A and C determine the location

of the continuous transition from a homogeneous isotropic state with S = 0 to

a homogeneous nematic state with finite value of S, given by S =
√
−2A/C

(where we have used Tr [Q2] = S2/2). We are interested here in a system where

the transition is driven by the concentration of nematogens, as is the case for a
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fluid of hard rods of length ` that exhibits an isotropic-nematic (IN) transition

at a concentration c? = 3π/2`2 in two dimensions. Noting that A and C have

dimensions of energy density (in two dimensions), we choose A = K (c? − c) /2

and C = Kc [16]. This gives S = S0 =
√

1− c?/c0 in a homogeneous state of

density c0, so that S0 = 0 for c0 � c? and S0 ≈ 1 for c0 � c?. The ratio
√
K/|A|

defines a length scale that corresponds to the equilibrium correlation length of

order parameter fluctuations and diverges at the continuous IN transition [46].

Here we restrict ourselves to mean values of concentration well above c?, where

this equilibrium correlation length is microscopic and is of the order of the size

` of the nematogens, which will be used as our unit of length in the numerical

simulation. Finally, the stress tensor σij = σr
ij +σa

ij is the sum of the elastic stress

due to nematic elasticity,

σr
ij = −λSHij +QikHkj −HikQkj , (3.3)

where for simplicity we have neglected the Eriksen stress, and an active contribu-

tion, given by [2]

σa
ij = α2c

2Qij , (3.4)

which describes stresses exerted by the active particles. The sign of α2 depends

on whether the active particles generate contractile or extensile stresses, with

α2 > 0 for the contractile case and α2 < 0 for extensile systems. Activity yields

also a curvature-induced current given by the last term on the right hand side

of Eq. (3.1a), ja = −α1c
2∇ ·Q, that drives active units from regions populated

by fast moving particles to regions of slow moving particles. The c2 dependence

of the active stress and current is appropriate for systems where activity arises

from pair interactions among the filaments via crosslinking motor proteins. The

active parameters α1 and α2 will be treated here as phenomenological quantities.

In microscopic models they are found to depend on the concentration of active
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crosslinkers and on the consumption rate of adenosine triphosphate (ATP) [55, 56].

3.2.2 Linear Stability

The hydrodynamic equations of an active nematic have two homogeneous sta-

tionary solutions, with c = c0 and v = 0. For c0 < c? the homogeneous state

is disordered with S0 = 0. For c0 > c? the homogeneous solution is an ordered

nematic state with S0 =
√

1− c?/c0. The linear stability of the ordered state has

been studied in detail for the case of a L×L periodic domain [15, 16]. It is found

that above a critical activity the homogenous state is unstable to a laminar flowing

state. This instability corresponds to the spontaneous flow instability well-studied

in a channel geometry [6, 8, 40]. The critical activity value associated with the

instability of the homogeneous state is given by [16]

α±2 = ±4π2K[2η + γS2
0 (1∓ λ)2]

γc2
0L

2S0 (1∓ λ)
. (3.5)

For |α2| > |α+
2 | the system is subject to spontaneous splay deformations charac-

terized by the instability of the first transverse mode. For |α2| > |α−2 | on the other

hand, the instability is determined by the first longitudinal mode corresponding

to bending deformations. Note that the sign of α±2 depends both on the sign of

the fraction and the sign of the term 1∓λ at the denominator. Thus flow-aligning

nematics (|λ| > 1) are unstable to splay under the effect of an extensile active

stress (α2 < α+
2 < 0) and to bending under the effect of a contractile active stress

(α2 > α−2 > 0). Vice versa, flow-tumbling nematics (−1 < λ < 1) are unstable to

bending under the effect of an extensile active stress (α2 < α−2 < 0) and to splay

under the effect of a contractile active stress (α2 > α+
2 > 0). In this paper we

focus exclusively on flow-tumbling systems and discuss both the cases of extensile

and contractile stresses.

27



Chapter 3. Hydrodynamics of active nematics

Figure 3.1: Schematic representation of the region where an active nematic is
linearly unstable to splay (green) and to bend (gray) fluctuations in the plane
of the alignment parameter λ and the activity α = c2

0α2. The unstable regions
are bounded by the critical activity given in Eq. (3.5). Flow tumbling extensile
nematic with |λ| < 1 are unstable to bend when active stresses are extensile
(α < 0) and to splay when active stresses are contractile (α > 0). Conversely,
strongly flow aligning (|λ| � 1) are unstable to splay when active stresses are

extensile (α < 0) and to bend when active stresses are contractile (α > 0).

3.2.3 Dimensionless Units and Numerical Methods

To render Eqs. (3.1) dimensionless, we scale distances by the length of the active

nematogens `, set by the critical concentration c?, stresses by the elastic stress of

the nematic phase σ = K/`2 and time by τ = η`2/K representing the ratio between

viscous and elastic stress. In these dimensionless units we take α1 = |α2|/2 and

we introduce

α = α2c
2
0 , (3.6)
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Figure 3.2: Example of a +1/2 (left) and −1/2 (right) disclination. The solid
red lines are tangent to the director field n = (cos θd, sin θd) with θd = kφ
and k = ±1/2. The background shows the active backflow associated with
the disclinations and obtained by solving the Stokes equation (3.12) with no-
slip boundary conditions on a circle (dashed black line). The intensity of the
background color is proportional to the magnitude of the flow velocity. The

white streamlines are given by Eq. (3.15).

representing the fundamental scale of active stress. This will serve as the control

parameter throughout this work.

The numerical calculations presented in Sec. 3.4 and 3.5 are performed via finite

differences on a collocated grid of 2562 points. The time integration was performed

via a fourth order Runge-Kutta method with time step ∆t = 10−3. Except where

mentioned otherwise, the numerical calculations described in this section use the

parameter values D0 = D1 = 1(simplification), λ = 0.1(flow tumbling regime),

c0 = 2c? (corresponding to S0 = 0.707) and L = 20.

3.3 Dynamics of an isolated disclination

Topological defects are spatially inohomogeneous configurations of the director

field that cannot be transformed continuously into a uniform state. In equilibrium,

defects can occur upon quench from the disordered into the ordered phase or upon
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application of external electric or magnetic fields. Geometry or suitable boundary

conditions can also be used to generate and maintain defects in the system. For

instance, in a spherical nematic droplet with boundary condition such that the

director is normal to the droplet surface, the equilibrium configuration consists of

a radial director field with a point defect at the center of the droplet. In the absence

of such constraints or external fields, when the system is allowed enough time to

equilibrate, defects of opposite sign always annihilate and the system settles into

the uniform equilibrium state [57, 58].

In two dimensions defects are point-like. The strength of a disclination depends

on how much the director field rotates around the defect core in one loop. In two

dimensions, this can be expressed in terms of a single scalar field θ representing

the angle formed by the director n = (cos θ, sin θ) with the horizontal axis of a

Cartesian frame. This gives ∮
dθ = 2πk , (3.7)

where the integral is calculated along an arbitrary contour enclosing the defect.

The integer k is called strength of the defect and is analogous to the winding

number of vortex defects in polar systems. In two-dimensional uniaxial nematics

the lowest energy defect configurations consists of half-strength disclinations with

k = ±1/2. In the presence of an isolated defect located at the origin, a solution

θ = θd that minimizes the energy (3.2) and satisfies the constraint (3.7) is given

by

θd = kφ , (3.8)

with φ the usual polar angle. The corresponding energy is given by

F = πKk2 log(R/a) + εc , (3.9)

where R is the size of the system and a is the core radius, defined as the radius

of the region in the immediate proximity of the defect where the order parameter
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drops from its equilibrium value to zero. The quantity εc is the contribution to

the total energy due to the normal defect core.

Point defects in nematic liquid crystals have several particle-like features. Like

charged particles, opposite-sign defects attract and same-sign defects repel ([34]

and Sec. 3.4). It is well established that the dynamics of an isolated disclination

that evolves according to Eqs. (3.1) can be cast in the form of an overdamped

equation of motion, given by

ζ

(
dA

dt
− v

)
= F , (3.10)

where r is the defect position, F is the net force acting on the defect, due to

interaction with other defects or externally imposed perturbations, and v the

local flow velocity at the position of the defect, which includes both external and

self-generated flows. Finally, ζ is an effective drag coefficient proportional to the

rotational friction γ in Eq. (3.1c) and possibly space-dependent.

In the absence of fluid flow, an isolated disclination moves only in response to an

externally imposed distortion and relaxes to the minimal energy texture θd given

in Eq. (3.8). Following Denniston [53], one can then set θ = θd + θext, where θext

expresses the departure from the optimal defective configuration θd, and calculate

the energy variation with respect to a small virtual displacement of the defect core.

For small deformations, this gives F = −2πkK∇⊥θext, with ∇⊥ = (−∂y, ∂x), and

ζ = πγk2

∫ ∞
Er

dxK2
1(x)I1(2x) ≈ 226πγk2 , (3.11)

where K1 and I1 are Bessel functions and Er = γa|ṙ|/K is the Erickesn number

at the length scale of the defect core. The second equality in Eq. (3.11) implies

a ≈ 0, while at finite core radius introduces a dependence of the effective friction

ζ on the defect velocity. We refer the reader to Refs. [53, 59, 60] for details.
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The hydrodynamic coupling between the local orientation of the director and the

flow gives rise to a self-generated flow, known as backflow, that in turn advects the

defect core. When the dynamics of the flow is much faster than the orientational

dynamics of the director, and in the absence of external forces, one can neglect F

in Eq. (3.10) and calculate the flow velocity v from the Stokes equation,

η∇2v −∇p+ f = 0 , ∇ · v = 0 , (3.12)

where f = f a + f e = ∇ · (σa + σr) is the force arising from the active and

elastic stresses acting in the system. In the case of isolated defects this scenario is

generally realistic for η/γ � 1 and even in a system containing multiple defects this

purely advective dynamics continues to hold as long as the defects are sufficiently

far apart (see Sec. 3.4). The general case in which both v and F are non-zero was

discussed by Kats et al. [61].

In the remainder of this section we consider the regime in which η/γ � 1 and

calculate the backflow due to the stresses arising in the presence of isolated k =

±1/2 disclinations. Let us then consider a ±1/2 disclination located at the origin

of a circular domain of size R. The domain might represent either the entire

system or, more realistically, the defect-free portion of the system surrounding a

given central defect. We will refer to this as the range of a defect. Because of

the linearity of the Stokes equation, the solution of Eq. (3.12) can be written as

v = v0 + va + ve, where v0 is the solution of the homogeneous Stokes equation,

while va and ve are the flows produced by the active and elastic force, respectively.

The solution can be expressed as the convolution of the two-dimensional Oseen

tensor with the force per unit area,

vi(r) =

∫
dA′Gij(r − r′)fj(r′) , (3.13)

32



Chapter 3. Hydrodynamics of active nematics

where Gij is the two-dimensional Oseen tensor [62], given by

Gij(r) =
1

4πη

[(
log
L
r
− 1

)
δij +

rirj
r2

]
, (3.14)

with L a length scale adjusted to obtain the desired behavior at the boundary.

Taking n = (cos kφ, sin kφ), with k = ±1/2, and assuming uniform concentration

and nematic order parameter outside the defect core, the body force due to activity

can be calculated straightforwardly as

f a = ∇ · σa =
α

2r


x̂ k = +1/2 ,

− cos 2φ x̂+ sin 2φ ŷ k = −1/2 ,

where, for simplicity, we have assumed S0 = 1 outside the core. Using this in Eq.

(3.13), and using (3.14), yields, after some algebraic manipulation,

va
+(r, φ) =

α

12η
{[3(R− r) + r cos 2φ] x̂+ r sin 2φ ŷ} , (3.15a)

va
−(r, φ) =

αr

12ηR

{[(
3

4
r −R

)
cos 2φ− R

5
cos 4φ

]
x̂−

[(
3

4
r −R

)
sin 2φ+

R

5
sin 4φ

]
ŷ

}
.

(3.15b)

A plot of these flow fields is shown in Fig. 3.2. Setting v = va
+(0, φ) in Eq. (3.10)

we find that active +1/2 disclinations self-propel at constant speed along their

symmetry axis (x̂ in this setting), and their equation of motion can be written as

ζ
dA+

dt
= v0x̂ , (3.16)

where v0 = αR/(4η). On the other hand, va
−(0, φ) = 0, and so −1/2 disclinations

are not propelled by the active backflow, but rather move solely under the effect

of the elastic force produced by other defects. It is crucial to notice that the self-

propulsion velocity v0 scales linearly with the active stress α and so disclinations
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in contractile (α > 0) and extensile (α < 0) active nematic suspensions self-propel

in opposite directions.

Equations (3.15) can be complemented with various kinds of boundary conditions,

which, however, have no effect on the qualitative feature of the solution and, more

importantly, on the dynamics of the defects. To illustrate this point we consider

a slippery interface, such that vr(R, φ) = 0 and σa
rφ = −ξvφ(R, φ), where ξ is the

coefficient associated with the frictional force exerted by the interface on the fluid.

If the domain of Eq. (3.12) is interpreted as a container, then ξ is the actual

frictional coefficient of the container wall. On the other hand, if the domain is

interpreted as the range of a defect, then ξ ∼ ηh, where h is the thickness of

the boundary layer between the ranges of neighboring defects. No-slip boundary

conditions can be recovered in the limit ξ →∞.

A solution v0 of the homogeneous Stokes equation enforcing the boundary condi-

tions for the active backflow induced by the +1/2 disclination can be found from

the following biharmonic stream function

ψ+ = (a1r + b1r
3) sinφ , (3.17)

with a1 and b1 constants. The corresponding velocity field v0
+ = (∂yψ,−∂xψ) is

given by

v0
+(r, φ) = [a1 + b1r

2(2− cos 2φ)] x̂− b1r
2 sin 2φ ŷ . (3.18)

Then, setting r̂ · v+(R, φ) = 0 and φ̂ · v+(R, φ) = −σa+
rφ (R, φ)/ξ = α/(2ξ) sinφ,

with v+ = v0
+ + va

+, and solving for a1 and b1 yields

a1 = −αR
6η

+
α

4ξ
, b1 =

α

12ηR
− α

4ξR2
.
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The associated self-propulsion velocity v0 in Eq. (3.16) then becomes

v0 = α

(
R

12η
+

1

4ξ

)
, (3.19)

or v0 = αR/(12η) in the no-slip limit. Thus, as anticipated, incorporating the

effect of the boundary only changes the speed of the defects, without altering

their dynamics. Similarly, in the case of a −1/2 disclination, we can consider the

biharmonic stream function

ψ− = (a3r
3 + b3r

5) sin 3φ , (3.20)

whose associated velocity field is given by

v0
−(r, φ) =

[
r2(3a3 + 4b3r

2) cos 2φ− b3r
4 cos 4φ

]
x̂

−
[
r2(3a3 + 4b3r

2) sin 2φ+ b3r
4 sin 4φ

]
ŷ . (3.21)

Setting r̂ · v−(R, φ) = 0 and φ̂ · v−(R, φ) = −σa−
rφ (R, φ)/ξ = α/(2ξ) sin 3φ and

solving for a3 and b3 yields

a3 =
7α

240ηR
+

α

4ξR2
, b3 = − α

60ηR3
− α

4ξR4
.

Clearly this does not change the symmetry of the active backflow, and thus

negative-charge disclinations are stationary.

In summary, half-strength disclinations in active nematic liquid crystals can be

described as self-propelled particles with overdamped dynamics governed by an

equation of the form (3.10). In the absence of external forces, or forces due to

interactions with other defects, the disclination core is advected at constant speed

by a self-generated backflow provided the dynamics of the flow is faster then the
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relaxational dynamics of the director (i.e. η/γ � 1). As a result, positive discli-

nations travel along their symmetry axis at speed v0 ∼ αR/η, while negative

disclinations are stationary and move only as a consequence of their interaction

with other disclinations. The direction of motion is controlled by the sign of the

activity α, which in turns depends on whether the system is contractile (α > 0) or

extensile (α < 0). Thus the comet-like +1/2 disclination travels in the direction

of its “tail” in contractile systems and in the direction of its “head” in extensile

systems. We note that active curvature currents in the concentration equation

controlled by the parameter α1 have a similar effect, as noted by Narayan et al.

in a system of vibrated rods [11] and recently investigated by Shi and Ma through

extensive numerical simulations [41]. Such curvature driven currents control the

dynamics in systems with no momentum conservation, but are very small in the

regime discussed here.

Special attention should be devoted to the fact that the self-propulsion speed v0

depends linearly on the range R of a defect, this being defined as the defect-free

portion of the system surrounding a defect (and possibly coinciding with the entire

system). Although two-dimensional hydrodynamics is known to be plagued with

anomalies, such as the Stokes paradox [63], this behavior does not result solely

from the two-dimensionality of the problem. Point defects in three dimensions

would also yield a similar behavior. To see this we note that the deviatoric part

of the Oseen tensor scales like r2−D, with D the space dimension. On the other

hand, the active force f a = α∇ ·Q always scales like r−1. The backflow velocity

in D dimensions thus scales like va ∼
∫ R

0
dDr r2−Dr−1 = R, regardless of the

space dimension. In three dimensions disclinations are, however, line defects.

In this case, denoting by ξd the persistence length of the disclinations, i.e., the

length scale over which these line defects can be treated as straight lines, the

length R controlling the flow velocity induced by a +1/2 defect would scale as

R ∼ ξd log(L/a), with L the system size and a the core radius. These results
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could also be obtained on the basis of dimensional analysis by noting that va is

always proportional to α/η. Since α has dimensions of stress and η has dimensions

of stress over time, the resulting velocity must also be proportional to a length

scale. This length scale was first noted experimentally by Sanchez et al. [3] and

investigated numerically by Thampi et al. [18, 20]. It’s nature, however, remains

elusive (see Sec. 3.5 for further discussion on this matter).

The growth of the flow field generated by a defect at large distances can also be

cut off by a frictional force fs = −ζsv as may arise from the fact that the nematic

film is confined at an oil/water interface [64]. Such a frictional interaction with

the subphase removes energy from the flow at the length scale `s =
√
η/ζs, thus

controlling the decay of the velocity field. Finally, the limit where the friction

dominates viscous forces corresponding to a no-slip Hele-Shaw geometry has been

discussed in detail by Pismen [38]. In this case the flow generated by a single

disclination is found to decay as ∼ r−3 at large distances from the defect.

3.4 Annihilation dynamics of defect pairs

In this section we discuss the annihilation of a pair of oppositely charged discli-

nations. The study of the annihilation dynamics of defect-antidefect pairs is a

mature topic in the liquid crystals field and has been subject to numerous inves-

tigations [53, 59, 42, 65, 66, 67, 68]. In the simplest setting [34], one considers a

pair of k = ±1/2 disclinations located at r± = (x±, 0) and separated by a distance

∆ = x+ − x− (Fig. 3.3). The energy of the pair is given by

Epair = 2πk2K log(∆/a) + 2εc . (3.22)
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Figure 3.3: Snapshots of a disclination pair shortly after the beginning of
relaxation. (Top) Director field (black lines) superimposed on a heat map of
the nematic order parameter and (bottom) flow field (arrows) superimposed
on a heat map of the concentration for an extensile system with α = −0.8
(a),(c) and a contractile system with α = 0.8 (b),(d). In the top images the
color denotes the magnitude of the nematic order parameter S relative to its
equilibrium value S0 =

√
1− c?/c0 = 1/

√
2. In the bottom images the color

denotes the magnitude of the concentration c relative to the average value c0 =
2c?. Depending on the sign of α, the backflow tends to speed up (α > 0) or slow
down (α < 0) the annihilation process by increasing or decreasing the velocity
of the +1/2 disclination. For α negative and sufficiently large in magnitude, the

+1/2 defect reverses its direction of motion (c) and escapes annihilation.

Each defect experiences an elastic force of the form F± = −(∂Epair/∂x±) x̂ and

thus, in the absence of backflow, Eq. (3.10) can be cast in the form

dx±
dt

= ∓ κ

x+ − x−
, (3.23)
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where κ = 2πk2K/ζ. This yields

d∆

dt
= −2κ

∆
, (3.24)

so that the distance between annihilating defects decreases as a square-root, ∆(t) ∝
√
ta − t, with ta the annihilation time. More precise calculations have shown

that the effective friction is itself a function of the defect separation [59, 60],

ζ = ζ0 log(∆/a), although this does not imply substantial changes in the over-

all picture. This simple model predicts that the defect and antidefect approach

each other along symmetric trajectories and annihilate at ∆(0)/2 in a time ta =

∆2(0)/4κ. The backflow produced by the balance of elastic and viscous stresses

[42, 68], as well as the anchoring conditions at the boundary [65], can produce

an asymmetry in the trajectories of the annihilating defects or even suppress an-

nihilation when the defects are initially far from each other or the anchoring is

sufficiently strong.

To understand how activity changes the simple annihilation dynamics described

so far, we have integrated numerically Eqs. (3.1) for an initial configuration of

uniform concentration and zero flow velocity, with two disclinations of charge ±1/2

symmetrically located with respect to the center of the box along the x−axis.

Fig. 3.3 shows a snapshot of the order parameter and flow field shortly after

the beginning of the relaxation for both a contractile and extensile system, with

α = ±0.8 in the units defined in Sec. 3.2.3.

In contractile systems active backflow yields a net speed-up of the +1/2 defect

towards its antidefect for the annihilation geometry shown in Fig. 3.3b. In extensile

systems, with α < 0, backflow drives the +1/2 defect to move towards its head,

away from its −1/2 partner in the configuration of Fig. 3.3b, acting like an

effectively repulsive interaction. If the initial positions of the defects are exchanged,

the behavior is reversed. The effective attraction or repulsion between oppositively
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Figure 3.4: Schematic representation of the effective attractive/repulsive in-
teraction promoted by the active backflow. Depending on the sign of the active
stress α, +1/2 disclinations self-propel in the direction of their “tail” (contrac-
tile) or “head” (extensile). Based on the mutual orientation of the defects, this

can lead to an attractive or repulsive interaction.

Figure 3.5: Defect pair production in an active suspension of microtubules and
kinesin (top) and the same phenomenon observed in our numerical simulation of
an extensile nematic fluid with γ = 100 and α = −2. The experimental pictures
are reprinted with permission from T. Sanchez et al., Nature (London) 491, 431

(2012). Copyright 2012, Macmillan.

charged active defects is thus dictated by both the contractile or extensile nature

of the active stresses, which determines the direction of the backflow, and the

relative orientation of the defects, as summarized in Fig. 3.4. This effect has been

observed in experiments with extensile microtubules and kinesin assemblies [3]

and can be understood on the basis of the hydrodynamic approach embodied in
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Eqs. (3.1). In Fig. 3.5 we have reproduced from Ref. [3] a sequence of snapshots

showing a pair of ±1/2 disclinations moving apart from each other together with

the same behavior observed in our simulations.

Figs. 3.6a and 3.6b show the trajectories of the active defects, with the red and

blue line representing the +1/2 and −1/2 disclination respectively. The tracks end

when the cores of the two defects merge. For small activity and small values of the

rotational friction γ, the trajectories resemble those obtained for passive systems

[42, 68]. At large values of activity, however, the asymmetry in defect dynamics

becomes more pronounced, and when the activity dominates over orientational

relaxation, the +1/2 disclination moves independently along its symmetry axis

with a speed v0 ∼ αR/η (see Sec. 3.3) whose direction is dictated by the sign of

α. This behavior is clearly visible in Fig. 3.6c, showing the defect separation ∆(t)

as a function of time. For γ sufficiently large, the trajectories are characterized

by two regimes. For large separation the dynamics is dominated by the active

backflow, and thus ∆̇(t) ∝ −α and ∆(t) ∝ −αt. Once the defects are about to

annihilate, the attractive force takes over, and the defects behave as in the passive

case with ∆(t) ∝ √ta − t.

This behavior can be understood straightforwardly from the basic concepts of

active defect dynamics discussed in Sec. 3.3. Each defect in the pair travels in

space according to Eq. (3.10), with v given by v(x) = va
+(x − x+) + va

−(x − x−)

and v± given in Eqs. (3.15) plus a suitable homogeneous solution of the Stokes

equation that enforces the periodic boundary conditions. Next, we retain only the

active contribution to the backflow and replace the flow profiles by their constant

values at the core of the defect, with v+(x+) = v0x̂ ∝ α and v−(x−) = 0. This

yields the following simple equation for the pair separation

d∆

dt
= v0 −

2κ

∆
. (3.25)
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Figure 3.6: Defect trajectories and annihilation times obtained from a numer-
ical integration of Eqs. (3.1) for various γ and α values. (a) Defect trajectories
for γ = 5 and various α values (indicated in the plot). The upper (red) and
lower (blue) curves correspond to the positive and negative disclination, respec-
tively. The defects annihilate where the two curves merge. (b) The same plot
for γ = 10. Slowing down the relaxational dynamics of the nematic phase in-
creases the annihilation time and for α = −0.8 reverses the direction of motion
of the +1/2 disclination. (c) Defect separation as a function of time for α = 0.8
and various γ values. (d) Annihilation time normalized by the corresponding
annihilation time obtained at α = 0 (i.e., t0a). The line is a fit to the model

described in the text.

This equation explicitly captures the two regimes shown in Fig. 3.6(c) and de-

scribed earlier. The solution takes the form

∆(t) = ∆(0) + v0t−
2κ

v0

log

[
∆(t)− 2κ

v0

∆(0)− 2κ
v0

]
. (3.26)

The pair annihilation time ta is determined by ∆(ta) = 0 and is given by

ta = −∆(0)

v0

− 2κ

v2
0

log
[
1− v0

2κ
∆(0)

]
. (3.27)
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For passive systems (α = 0) this reduces to t0a = ∆2(0)/4κ. This predicts that the

annihilation time, normalized to its value in passive systems, ta/t
0
a, depends only

on ∆(0) v0/2κ ∼ αγ. Figure 3.6d shows a fit of the annihilation times extracted

from the numerics to this simple formula. The model qualitatively captures the

numerical behavior.

3.5 Defect proliferation

Pair annihilation is the fundamental mechanism behind defect coarsening in ne-

matic liquid crystals [58]. Once this mechanism is suppressed by activity, as de-

scribed in Sec. 3.4, the coarsening dynamics is replaced by a new steady state in

which pairs of ±1/2 disclinations are continuously produced and annihilated at

constant rate. The chaotic dynamics following from the continuous defect prolifer-

ation and annihilation results in a turbulent flow [49, 18, 19, 20, 21]. In this section

we describe the onset of chaos and the proliferation of defects that are observed

from numerical solutions of Eqs. (3.1) upon varying the activity parameter α and

the rotational friction γ. As initial configurations we take a homogeneous state

with the director field aligned along the x−axis and subject to a small random

perturbation in density and orientation. The equations were then integrated from

t = 0 to t = 2× 103τ (see Sec. 3.2.3 for a description of units).

Fig. 3.7 summarizes the various regimes obtained by exploring the (α, γ)−plane:

1 ) a homogeneous, quiescent ordered state; 2) a periodic flow marked by the emer-

gence of relaxation oscillations; 3) a non-periodic oscillatory flow characterized by

the formation of “walls” in the nematic phase and the unzipping of these walls

through the unbinding of defect pairs; 4) a chaotic or “turbulent” state associated

with a constant defect density. The latter three regimes are described in more

detail in the following.
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Figure 3.7: Phase diagram showing the various flow regimes of an active
nematic obtained by varying activity α and rotational friction γ for both con-
tractile (α > 0) and extensile (α < 0) systems. The dashed lines bounding the
region where the homogeneous ordered state (H) is stable are the boundaries
of linear stability given in Eq. (3.5). With increasing activity, the system ex-
hibits relaxation oscillations (O), non-periodic oscillations characterized by the

formation and unzipping of walls (W), and turbulence (T).

3.5.1 Relaxation Oscillations

As described in Refs. [15, 16], relaxation oscillations occur in active nematics when

|α| exceeds α±2 as the result of the competition of two time scales: the relaxation

τp = γ`2/K of the nematic structure and the time scale τa = η/|α| that controls

the rate at which active stresses are injected in the system. When τp < τa, the

microstructure can relax to accommodate the active forcing and the ordered state

is stable. This is a quiescent state, with uniform order parameter. Conversely,

44



Chapter 3. Hydrodynamics of active nematics

Figure 3.8: Dynamical states obtained from a numerical integration of Eqs.
(3.1) with γ = 20 and various values of activity for an extensile system. (a)
Average nematic order parameter versus time. The black line for α = −0.3 iden-
tifies the relaxation oscillations regime with the labels (b), (c) and (d) marking
the times corresponding to the snapshots on the top-left panel. The red line
for α = −0.8 indicates the non-periodic oscillatory regimes characterized by
the formation of walls (e) and the unzipping of walls through the unbinding of
defect pairs: (f) and (g). The symbols • and 4 mark the positions of +1/2 and
−1/2 disclinations respectively. The blue line for α = −1.2 corresponds to the
turbulent regime in which defects proliferate: (h), (i) and (j). In all the snap-
shots, the background colors are set by the magnitude of the vorticity ω and
the order parameter S rescaled by the equilibrium value S0 = 1/

√
2, while the

solid lines indicate velocity (top) and director field (bottom). Movies displaying
the time evolution of each state are included as the Supplementary Material.

when τp > τa, the relaxation of the nematic structure lags behind the injection

of active stresses, yielding various dynamical states with spatially and temporally

inhomogeneous order parameters.

In this regime the dynamics consists of a sequence of almost stationary passive

periods separated by active “bursts” in which the director switches abruptly be-

tween two orthogonal orientations (Fig. 3.8b-d). During passive periods, the

particle concentration and the nematic order parameter are nearly uniform across

the system, there is no appreciable flow, and the director field is either parallel or
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perpendicular to the x direction (due to the initial conditions). Eventually this

configuration breaks down and the director field rotates by 90◦. The rotation of

the director field is initially localized along narrow extended regions, generating

flowing bands similar to those obtained in active nematic films [6] (Fig. 3.8c). The

temporary distortion of the director field as well as the formation of the bands is

accompanied by the onset of flow along the longitudinal direction of the bands,

with neighboring bands flowing in opposite directions. The flow terminates after

the director field rotates and a uniform orientation is restored. The process then

repeats.

Depending on whether the active stress fueling the oscillatory dynamics is contrac-

tile or extensile, the rotation of the director occurs through an intermediate splay

or bending deformation. During bursts, the nematic order parameter, otherwise

equal to its equilibrium value, drops significantly (Fig. 3.8a, black line). Without

this transient melting the distortions of the director field required for a burst are

unfavorable for any level of activity.

The frequency of the oscillation is proportional to k2α, where k = 2π/L is the

wave number of the longest-wavelength mode to go unstable [15, 16]. In spite of

the strong elastic deformation and the dramatic drop in the order parameter, this

regime contains no unbound defects.

3.5.2 Wall formation and unzipping

For larger values of activity the bend and splay deformations of the director at

the band boundaries become large enough to drive creation of defect pairs, as

shown in Fig. 3.8e-g. The alignment of the bands again oscillates between two

orthogonal directions (x− and y−axis for the initial condition used here), but the

switching takes place through an intermediate more complex configuration with

lozenge-shaped ordered regions. Defect pairs then unbind and glide along the
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narrow regions separating two bands where elastic deformations and shear flows

are largest. These regions of high distortion and shear rate are commonly referred

to as “walls” in the liquid crystals literature [69]. Movies displaying the dynamics

of wall unzipping and defect creation for both extensile and contractile systems

are included as Supplementary Material.

The formation of walls and the “unzipping” of defects along the walls by the

creation of pairs of ±1/2 disclinations has been discussed in detail by Thampi et

al. [19] (see also Ref. [20] in this Themed Issue). Defect unbinding along the

walls relaxes both the excess elastic energy and the high shear stresses present

in these regions, where the nematic order parameter S is driven near zero. For

this reason wall formation and unzipping occurs often at the boundary between

pairs of vortices of opposite circulation (Fig. 3.9). In passive nematic liquid

crystals the strong bending deformation that leads to the formation of walls, and

preceedes defect unbinding, requires an external action, such as an applied electric

field or an externally imposed shear stress [70]. In active nematics, on the other

hand, a similar complex spatiotemporal dynamics occurs spontaneously, driven by

the local injection of active stresses, which are in turn balanced by spontaneous

distortions and flows as described in Section 3.2.2. Wall formation and unzipping

also combines here with the oscillatory dynamics described in Section 3.5.1 to give

rise to the periodic creation and annihilation of topological defects that marks the

transition to the turbulent regime.

Oscillating band structures of the type observed here are found in passive nematic

fluids under externally applied shear flows and are precursors to rheochaos [71, 72].

They have been predicted theoretically [73] and observed experimentally [74] in

suspensions of wormlike micelles, where the spatiotemporal dynamics is directly

correlated to shear banding [75] and to stress/shear fluctuations at the shear band

interface. In passive systems it has been argued that the route to rheochaos de-

pends on whether the stress or the strain rate is controlled during the experiment.
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Figure 3.9: A magnification of the snapshot of Fig. 3.8f, showing the creation
of a +1/2 (•) and a −1/2 (4) defect pair along a wall or α = −0.8 and γ = 20.
The black arrows indicate the flow velocity, while the background color is related
with the local vorticity. The wall is also the boundary between a pair of vortices
of opposite circulation. The flow field of opposite-signed vortices adds at the

wall, yielding a region of high shear that promotes defect unbinding.

It would be interesting to analyze in more detail the route to chaos in this case.

3.5.3 Turbulence

At even higher activity the bands/walls structure begins to bend and fold and the

dynamics becomes chaotic, resembling that of a “turbulent” fluid, as displayed in

Fig. 3.8h-j and in the movies included as Supplementary Material. The system

reaches a dynamical steady state where defect pairs are continuously created and

annihilated, but their mean number remains on average constant in time. Due to

topological charge conservation, at any time the system contains an equal number

of positive and negative defects. Unlike in equilibrium systems, however, in active

nematics it is possible for opposite-charge defects of certain orientations to repel

instead of attracting (see Sec. 3.4). This allows the formation of a defect-filled

steady state, with self-sustained flows and a constant mean number of defects.
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Figure 3.10: Defects area fraction Nπa2/L2 as a function of the active Er-
icksen number Erα = αγL2/(ηK) for contractile (symbols in red tones) and
extensile (symbols in blue tones) systems. In both cases the area fraction satu-
rates when the activity increase is compensated by a drop of the order parameter

which effectively reduces the injected active stress.

The defect-filled dynamics observed in the system is similar to that obtained in a

passive nematic subject to an externally imposed shear or to electrohydrodynamic

instabilities [76]. In active nematics, however, defects are generated in the absence

of any externally imposed forces or constraints, as a result of the spontaneous

distortion induced by the active stresses. After formation the defects are convected

by the swirling flow and interact with one another through distortional elasticity as

well as hydrodynamically through the modifications the defects themselves induce

on the flow field.

The sequence of flow regimes observed here is reminiscent of the evolution of

the dynamics of sheared tumbling nematic polymers with increasing shear rate,

known as the Ericksen number cascade [77]. In a nematic film sheared at a rate

ε̇ between two plates separated by a distance h, the Ericksen number Er provides

a dimensionless measure of the magnitude of viscous torques (∼ ε̇) relative to

elastic torques arising from spatial gradients in the average molecular orientation
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(∼ K/γh2), with Er = ε̇γh2/K. This suggest the definition of an active Ericksen

number Erα where the active stress α takes the place of viscous stresses ηε̇. The

active Ericksen number is then defined as Erα = αγL2/(ηK). With this definition,

Erα can also be interpreted as the ratio of the time scale τp = γL2/K for the

relaxation of an orientational deformation of the nematic order on the scale of the

entire system to the time τa = η/α controlling the injection of active stresses.

Fig. 3.10 shows a plot of the area fraction occupied by defects as a function of

the active Ericksen number Erα for both extensile and contractile systems. The

area fraction is defined as the relative area occupied by the core of the defects,

or Nπa2/L2, with N the number of defects. The core radius a resulting from the

hydrodynamic equations (3.1) is approximatively given by the size of the boundary

layer between the position of a defect, where S = 0, and surrounding space, where

S = S0. This is proportional to the coefficient A in the Landau-de Gennes free

energy (3.2)

a =

√
K

|A| ≈
1√
|c0 − c∗|

≈ ` . (3.28)

For larger activity the reduction of the nematic order parameter due to the un-

bound defects compensates the activity increase by effectively reducing the injected

local stress σa ≈ αS.

For the same magnitude of activity, extensile systems contain a larger mean num-

ber of defects than contractile ones. In both case defects pairs first unbind within

the walls, which are regions of large bend and splay deformations in extensile

and contractile systems, respectively. As the system evolves toward the regime of

chaotic dynamics, the walls begin to deform largely via bend deformations in both

systems [19, 20]. This asymmetry could be because the severe splay deformations

localized at the walls lead to a more drastic reduction of the nematic order pa-

rameter. Thus contractile flow-tumbling nematics, whose spontaneous distortion
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involves mostly splay deformations, are effectively less active than flow-tumbling

extensile systems.

3.6 Discussion and Conclusions

We have presented a detailed analytical and numerical study of the mechanics

of topological defects in active nematic liquid crystals. Topological defects are

distinctive signatures of liquid crystals and profoundly affect their viscoelastic

behavior by constraining the orientational structure of the fluid in a way that

inevitably requires system-wide (global) changes not achievable with any set of

local deformations. In ordered states of both passive and active nematics, the

topological defects are fingerprints of the broken symmetry in the ordered state.

In particular, the presence of strength ±1/2 defects clearly reveals the nematic na-

ture of the orientational order, in contrast to systems with polar (ferromagnetic)

symmetry where the lowest energy defects allowed have strength ±1. Active liq-

uid crystals have the additional feature that defects act as local sources of motion,

behaving as self-propelled particle-like objects (see Sec. 3.3). The direction of

motion of the strength +1/2 defects provides, furthermore, a clear signature of

the extensile or contractile nature of the active stresses, as the comet-like positive

defects are advected towards their head in extensile systems and towards their

tail in contractile ones. In passive liquid crystals defect dynamics is always tran-

sient, as oppositely charged defects attract and eventually annihilate. In active

nematics, on the other hand, the interplay between active and viscous stresses,

modulated by the director geometry induced by the defects, enriches the spec-

trum of defect-defect interactions by allowing for an effective repulsion between

defects and anti-defects (see Sec. 3.4). For highly active systems this mechanism

can arrest the process of coarsening, leading to a state where unbound pairs of
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defects are continuously created and annihilated, but with their mean density con-

stant in time (see Sec. 3.5). The chaotic dynamics originating from the continuous

defect proliferation and annihilation results in spontaneous low Reynolds number

turbulence, akin to the so-called director turbulence seen in sheared polymer and

micellar nematics [77].

Several open questions remain concerning the defect dynamics of active nematics.

The defect area fraction shown in Fig. 3.10 exhibits a crossover from growth at low

activity to saturation at high activity, but an understanding of the length scales

that control this behavior is still lacking. Both our work and work by Thampi et

al. [20] suggest that the mean separation between defects in the turbulent regime

coincides with the typical vortex size, but more work is needed to elucidate the

behavior of this length scale with activity over a wide range of parameters. While

defect generation in sheared nematics has been explained in terms of a simple

rate equation that balances creation and annihilation [77], a similar simple model

for active defects is still missing. On the basis of numerics, Thampi et al. have

suggested that the defect creation rate should scale like the square of the activ-

ity [20], but no simple argument is available to understand this counterintuitive

result. Finally, an important open question is the different behavior of extensile

and contractile systems apparent from Fig. 3.10. The turbulent state of contractile

systems is much less defective than that of extensile ones, suggesting that for equal

magnitude of the activity α, contractile nematics are effectively “less active” than

extensile ones. Some of these questions we will address in the next chapters.
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Appendix A

A.1 Active backflow of +1/2 disclinations

Finding the backflow produced by the positive disclination reduces then to calcu-

late the following two integrals:

I1 =

∫
dA′

1

r′

(
log

D

|r − r′| − 1

)
, (A.1a)

I2 =

∫
dA′

1

r′
(ri − r′i)(x− x′)
|r − r′|2 . (A.1b)

To calculate the first integral, we can make use of the following logarithmic ex-

pansion:

log
|r − r′|
L = log

(r>
L
)
−
∞∑
n=1

1

n

(
r<
r>

)n
cos[n(φ− φ′)] , (A.2)

where r> = max(|r|, |r′|) and r< = min(|r|, |r′|). The integral over the angle can

be immediately carried out using the orthogonality of trigonometric functions:∫ 2π

0
dφ′ cos[n(φ− φ′)] = δn0. The remaining radial integral is easy to compute:

∫
dr′ log

(r>
L
)

= r −R +R log

(
R

L

)
. (A.3)

Thus:

I1 = −2π

[
r +R log

(
R

L

)]
.
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To calculate the integral I2, we can make use of the fact that:

ri − r′i
|r − r′|2 =

∂

∂ri
log |r − r′| . (A.4)

Thus one can write:

I2 = x
∂

∂ri

∫
dr′ dφ′ log |r − r′| − ∂

∂ri

∫
dr′ dφ′ x′ log |r − r′| . (A.5)

The first integral is calculated straightforwardly from I2:

x
∂

∂ri

∫
dr′ dφ log |r − r′| = 2πxri

r
. (A.6)

The second integral, on the other hand, can be computed with the help of the

logarithmic expansion (A.2):

∫
dr′ dφ′ r cosφ′ log |r − r′| = −π cosφ

∫ R

0

dr′ r′
r<
r>

= −πr cosφ

(
R− 2

3
r

)
,

(A.7)

where we have used again the orthogonality of trigonometric functions:

∫ 2π

0

dφ′ cosn(φ− φ′) cosmφ′ = π cosmφδnm . (A.8)

Thus taking the derivative and combining with Eq. (A.6), yields:

I2 =
4π

3

xri
r

+ π

(
R− 2

3
r

)
δix . (A.9)

Adding together I1 and I2 and switching to polar coordinates gives:

vx =
α

12η

{[
3

(
3R

2
+ 3R log

L
R
− r
)

+ r cos 2φ

]}
, (A.10a)

vy =
α

12η
r sin 2φ . (A.10b)
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Setting L = R
√
e and expressing everything in polar coordinates one finally gets

Eq. (3.15a).

A.2 Active backflow of −1/2 disclinations

The calculation of the active backflow associated with a negative disclination re-

duces to the calculation of the following integrals:

I3 =

∫
dA′

1

r′

(
log

L
|r − r′| − 1

)
[sin 2φ′ ŷ − cos 2φ′ x̂] , (A.11)

I4 =

∫
dA′

1

r′
ri − r′i
|r − r′|2 [(y − y′) sin 2φ′ − (x− x′) cos 2φ′] . (A.12)

The first integral can be calculated with the help of the logarithmic expansion

(A.2) as well as the orthogonality condition (A.8). This yields:

I3 =
1

2
πr

(
4

3
− r

R

)
(sin 2φ ŷ − cos 2φx̂) . (A.13)

To calculate I4 we can use again Eq. (A.4). Thus:

I4 = y
∂

∂ri

∫
dr′dφ′ log |r − r′| sin 2φ′ − ∂

∂ri

∫
dr′dφ′ log |r − r′| y′ sin 2φ′

− x ∂

∂ri

∫
dr′dφ′ log |r − r′| cos 2φ′ +

∂

∂ri

∫
dr′dφ′ log |r − r′|x′ cos 2φ′ . (A.14)

The first and third integral in Eq. (A.14) are respectively the opposite of the y and

x of I3. The remaining two integrals, can be calculated straightforwardly using

Eq. (A.2) and (A.8). This gives:

∫
dr′dφ′ log |r−r′| f±(r′, φ′) = −π

2

[
r

(
R− 2

3
r

)
cosφ± 1

3
r2

(
6

5
− r

R

)
cos 3φ

]
,

(A.15)
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where f+(r′, φ′) = x′ cos 2φ′ and f−(r′, φ′) = y′ sin 2φ′. Combining I3 and I4 and

switching to polar coordinates finally gives Eq. (3.15b).
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Chapter 4

Correlation Lengths in active

nematics

This chapter is based on my co-authored article “Correlation lengths in hydrody-

namic models of active nematics” published in “Soft Matter, 2016,12, 7943-7952”

by Ewan J. Hemingway, Prashant Mishra, M. Cristina Marchetti and Suzanne M.

Fielding. I am the co-first author of this article. I was responsible for combining

the generalized model equations for two models used in the literature. I was also

responsible for the results related to the Model 1 discussed in the paper.

4.1 Introduction

In spite of previous theoretical work, including the one described in the previous

chapter, discrepancies still existed in the literature over the nature of the charac-

teristic length scales that control the spontaneous proliferation and annihilation

of topological defects, and the resulting dynamics in the so-called turbulent state.
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In particular, the dependence of such length scales on the strength of the active

forcing, |α|, remained unclear. A recent numerical study by Giomi [78] examined

the statistics of the activity-driven turbulent phase in two-dimensional nematic

films by measuring the distribution of vortex sizes for a selection of activities.

This work provided evidence that the key physics is determined by a single active

length scale, `α, proportional to |α|−1/2. In contrast, in a closely related work, but

on a different continuum model of a quasi-2D nematic, Thampi et al. performed

a detailed study that measured several orientational and hydrodynamical corre-

lation lengths, suggesting that the length scale of structure in the fluid instead

scales as |α|−1/4.

Additionaly, previous work had considered two different, but related, models of

active nematic liquid-crystal hydrodynamics that are commonly used in the lit-

erature on passive liquid crystal. Our group had considered a strictly 2D liquid

crystal film where the mean-field isotropic-nematic transition is continuous. The

group of Yeomans and collaborators had employed a 3D model where the isotropic-

nematic transition is first order and adopted it to a layer geometry by neglecting

spatial variation in the direction normal to the plane of the layer. These made it

impossible to systematically compare the results and reconcile previous apparently

conflicting reports. To resolve these conflicts we worked with Suzanne Fielding and

her student E. J. Hemingway of Durham University to compare these models using

two independently developed numerical codes. By varying the key dimensionless

parameters over several decades, we obtained data to support the conjecture that,

in both models, the mean defect spacing in the regime of full developed active

turbulence is set by the length scale `α ∼ (K/|α|)1/2, defined by the balance of

active and elastic stresses. Here |α| is the magnitude of the active stress (com-

monly referred to as the activity) and K parametrizes the free energy penalty that

results from spatial variations in the director field [7, 8, 2, 54, 78, 34]. We showed

that this result holds for both extensile and contractile systems, in both the flow
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aligning and the flow tumbling regimes. This active length scale also controls the

onset of spontaneous laminar flow in an active film, a phenomenon that has been

referred to in the literature as the spontaneous flow instability [6]. Our study

provides the first explicit demonstration that distinct constitutive models produce

the same emergent length scale, i.e., they both produce quantitatively consistent

scaling relations. We also demonstrate a regime of less highly developed turbu-

lence in which a weaker scaling `α ∼ |α|−1/4 appears consistent with our numerical

data.

In many experimental realizations active nematics are confined to quasi two-

dimensional geometries, e.g., on the surface of lipid vesicles [43], in flattened

water-in-oil droplets [3], or squeezed between parallel glass plates [44]. In any

numerical study, it is important to define carefully the considered dimensionality.

In what follows we denote by D the number of dimensions in which the relevant

fields (nematic order parameter tensor, fluid velocity, etc.) are allowed to vary;

and separately by d the number of dimensions in which the nematic director is

allowed to develop non-zero components. We shall perform two different studies.

In the first we take a strictly two-dimensional model of an active nematic sheet,

in which the order parameter tensor Q is allowed to develop non-zero compo-

nents only in the x − y directions (d = 2); and physical quantities are likewise

allowed to vary only in the x− y plane (D = 2). In the second study we consider

a three-dimensional nematic (d = 3) but in which all quantities are nonetheless

still assumed to be spatially homogeneous in the direction of the layer thickness

(D = 2). In the latter case the director can in principle point out of the simulated

plane, a phenomenon that can arise, e.g., in passive liquid-crystals under an ap-

plied shear-flow[79], though in practice we do not observe this in our simulations.

The chapter is structured as follows. In Section 4.2 we define the equations of

motion for both models, and outline the parameter ranges that we explore for

each. In Section 4.3, we define the observable length scales that can be used to
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characterize the fluid structure, and discuss the physical reasoning behind their

definition. The results of our study are presented in Section 4.4. In Section 4.5

we provide a comparison with other works and offer our conclusions.

4.2 Models

In D = 2 spatial dimensions we consider an incompressible uniaxial active nematic

liquid crystal with a director that can orient in d dimensions, with d = 2, 3 in

our two respective studies. The nematic orientational order is parametrized by a

symmetric and traceless tensor field Qij = Sd
2

(ninj − δij
d

), where S is the order

parameter magnitude and the director n is a headless unit vector that characterizes

the direction of broken orientational symmetry. The nematic is embedded in an

incompressible fluid of constant density, ρ, and constant viscosity, η. The fluid

velocity field is denoted by v. The associated pressure field p is determined by the

incompressibility condition ∇ · v = 0.

The equations of motion for an active nematic are derived from the well-known

hydrodynamic equations for a passive liquid-crystal [34]

ρDtv = η∇2v −∇p+ ∇ ·ΣT , (4.1)

DtQ = 2[Q ·Ω]A + M(d)(D,Q) +
1

γ
H , (4.2)

where Dt = (∂t + v ·∇) is the material derivative and γ is a rotational vis-

cosity. Here D and Ω denote the symmetric and antisymmetric parts of the

rate of strain tensor (∇v)ij ≡ ∂ivj, respectively, with Dij = 1
2

(∂ivj + ∂jvi) and

Ωij = 1
2

(∂ivj − ∂jvi). For other tensors the transpose, symmetric, antisymmetric

and traceless parts are denoted by the superscripts †, S, A and T , respectively.

For example, [B]A = 1
2

[
B−B†

]
.
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The relaxation dynamics of the alignment tensor in (4.2) is governed by the

molecular field, H = −[ δF
δQ

]ST , in which the Landau-de Gennes free energy [34],

F =
∫
dV (fb + fd), is the sum of contributions from a bulk free energy density

fb = GQ

{
A

2
Tr
[
Q2
]

+
B

3
Tr
[
Q3
]

+
C

4
Tr
[
Q2
]2}

, (4.3)

and the distortion free energy density

fd =
K

2
∂iQjk∂iQjk . (4.4)

Here GQ and K determine the bulk and distortion energy density scales respec-

tively. For simplicity we have adopted the one-elastic constant approximation in

the distortion free energy (Eq. 4.4).

The tensor M(d)(B,Q) is defined for an arbitrary tensor B as

M(d)(B,Q) =
2

d
ξB + ξ{B ·Q + Q ·B−2

d
ITr [Q ·B]}

− 2ξQTr [Q ·B] , (4.5)

where

ξ =
Sd

(d− 2)S + 2
λ . (4.6)

Here λ is the Leslie-Ericksen flow aligning parameter, which specifies how the

nematic director responds to a shear flow: |λ| > 1 corresponds to flow-aligning

nematics and |λ| < 1 corresponds to the flow-tumbling regime. (See Appendix A.)

The stress tensor Σ in (4.1) is the sum of passive liquid-crystal and active contri-

butions, Σ = ΣQ + Σa. The passive part of the stress tensor is given by

ΣQ = 2[Q ·H]A −M(d)(H,Q)−∇Q :
δF

δ∇Q
. (4.7)
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In an active nematic there is an additional active stress contribution that arises

from the dipolar forces exerted by active particles on their environment. This

active stress is Σa = αQ, where α > 0 describes contractile stresses and α < 0

extensile stresses. In the passive limit α→ 0, the equations just described reduce

to those of a passive liquid-crystal.

So far, the model that we have presented encompasses both of the numerical

studies performed. We now outline the specific choices for parameter values and

dimensionality made in each of the two numerical studies separately, and discuss

how these choices affects the form of the equations.

Model I (MI): This model describes a D = 2 dimensional nematic sheet with a

d = 2 dimensional nematic order parameter. In this case the symmetric second

rank tensor Q has only two independent components and Tr[Q3] = 0 identically.

In Model I the mean-field free energy ((4.3)) has coefficients A = 1−Γ
2

and C = Γ,

where Γ is a dimensionless parameter that controls the continuous transition from

an isotropic to a nematic state, with the transition occurring at Γ = 1. The

second term in (4.5) is also identically zero; the third term is of a higher order in

Q and can safely be neglected [75], so that M(2)(B,Q) = ξB. We also exclude the

last term in (4.7) in Model I. We assume a constant density ρ = 1 for which the

Reynolds number Re = ρV `Q/η = 1, where the velocity scale is V = `QGQ/η. We

choose Γ = 2 such that the system is deep in the nematic state, with S0 = 0.78.

According to (4.6), the system will be in the flow-aligning regime if |ξ| > 0.78 and

in the flow-tumbling regime for |ξ| < 0.78. All results shown below for Model I

correspond to ξ = ±0.1 (flow-tumbling regime). We also choose ξ > 0 for extensile

systems (α < 0) and ξ < 0 for contractile systems (α > 0) to guarantee αξ < 0, a

condition that is required in to observe the initial flow instability in the ordered

state [54].

Model II (MII): This model considers a D = 2 dimensional layer of nematic
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parameter description dimensions

α activity [σ]

K Frank constant [σ][L]2 (= 1 in MI)

GQ energy density scale [σ] (= 1 in MI, MII)

γ rotational viscosity [σ][T ] (= 1 in MII)

ξ alignment param. [1]

Γ IN control param. [1]

η solvent viscosity [σ][T ] (= 1 in MI)

ρ solvent density [M ][L]−d

Lx = Ly = L box size [L] (= 1 in MII)

Table 4.1: Summary of the various model parameters and their dimensions.
The choices for mass [M ] (or equivalently stress [σ] = [M ][L]d−2[T ]−2), length

[L] and time [T ] in each model are also indicated.

liquid crystal described by the full d = 3 Landau free energy given in (4.3), thereby

in principle allowing the director to explore all d = 3 dimensions. However it still

neglects all spatial variations in the direction of the layer thickness, so taking

D = 2 as noted above. In this case the free energy in (4.3) sets A = 1 − Γ
3
,

B = −Γ and C = Γ, yielding a first order isotropic-nematic transition at Γ = 2.7.

In the following we choose Γ = 3 which places us at the spinodal stability limit of

the isotropic phase and well within the nematic state, with S0 = 0.6. According

to (4.6), the system will be in the flow-aligning regime for |ξ| > 0.6 and in the

flow-tumbling regime for |ξ| < 0.6. In all simulations using Model II we have

fixed ξ = 0.7, corresponding to a flow-aligning system. We consider only extensile

systems with this model, i.e., values of α < 0. Finally, in MII we take the limit of

zero Reynolds number by setting ρ = 0.

The full list of nine parameters (for both models) is given in Table 4.1. We are
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free to choose units of mass [M ], length [L] and time [T ], or equivalently of stress

[σ] = [M ][L]d−2[T ]−2, length [L] and time [T ], and we have noted in Table 4.1

which quantities we chose to set equal to unity in each of the two studies. This

leaves six dimensionless groupings that we summarize in Table 4.2, three of which

are fixed throughout. Therefore even though we choose our units differently in

the two different simulation studies, all results are presented and compared in a

consistent adimensional way between the two models. We choose parameters that

produce flow-tumbling behaviour in Model I and flow-aligning in Model II. Note

that due to differences in parameter selections, the linear instability thresholds

in the two models differ by a factor O(103) (αc/GQ = 0.3 → 0.4 in Model I [54]

and αc/GQ = 4 × 10−5 → 4 × 10−4 in Model II [80]). Accordingly, the onset

of the turbulent regime in each model is separated by a similar factor, requiring

us to explore different ranges of dimensionless activity, as noted in Table 4.2. In

particular, in Model II we explore the transition from small to large activities,

whereas Model I focuses on larger activities still (i.e., deeper into the regime of

fully developed active turbulence).

4.2.1 Numerical details

In order to demonstrate the robustness of our results with respect to numerical

implementation, we use two independent codes (one for each model). In each

case we perform simulations in a square box of side L with biperiodic boundary

conditions. The Q dynamics in Model I is time-integrated numerically on a square

grid of 1282 points using a fourth order Runge-Kutta method, with a timestep

∆t = 10−3. Gradients of Q are computed using a finite difference scheme. In Model

II Q is integrated numerically using a Euler time-stepping scheme of timestep in

the range ∆t = 10−4 → 10−2 on a grid of 2562 → 20482 points (dependent on

the magnitude of activity) and gradients of Q are treated using a semi-implicit

Fourier method. In Model II, the velocities are determined instantaneously from
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parameter description MI value MII value

varied parameters

α/GQ dimensionless ac-
tivity

20↔ 103 0.05↔ 12.8

K
L2GQ

=
(
`Q
L

)2

ratio of micro-
to macroscopic
length scales

6.1× 10−5 2× 10−6 ↔ 10−5

γ/η ratio of viscosi-
ties

10↔ 40 0.567

fixed parameters

ξ alignment
param.

±0.1 0.7

Γ IN control
param.

2 3

Re =
ρ`QV

η
Reynolds num-
ber

1 0

Table 4.2: Summary of the dimensionless parameters and their values in both
models. The velocity scale V = `QGQ/η in our units.

the force balance equation, which we solve in Fourier space using a stream function

formulation. In Model I, we integrate the Navier-Stokes equation ((4.1)) with the

same scheme used for the order parameter equation to obtain the velocity at every

time step. We have verified that our results are quantitatively unchanged upon

decreasing the timestep or grid spacing.

4.3 Characteristic length scales

Irrespective of the specific details of the model used, we expect the resulting dy-

namics of the active nematic to be controlled by the interplay of key length- and

time scales that govern the basic physics.
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4.3.1 Model length scales

An inspection of the hydrodynamic equations and model geometry reveals three

underlying length scales. The first is simply the system size L. The second arises

from balancing the bulk and elastic-distortion free energy terms in Eqs. 4.3 and 4.4,

to obtain the equilibrium nematic persistence length, which deep in the nematic

state is given by

`Q =

√
K

GQ

. (4.8)

This is the length scale over which spatial correlations in the nematic field decay

deep in the nematic phase, where it is proportional to the defect core radius. The

third lengthscale arises by balancing the elastic stress ∼ K/`2 associated with a

deformation over a length ` with the active stress scale ∼ |α|, to give the active

length scale

`α =

√
K

|α| . (4.9)

To guarantee that any physics on these length scales `Q, `α is not contaminated

by finite size effects, we focus on the regime in which `Q � L and `α � L.

Alternatively, from a dynamical viewpoint one might consider the system to be

controlled by two timescales: the passive structural relaxation time τp = γ`2/K,

which controls the relaxation of a distortion to the nematic order on a length scale

`, and the active time scale τα = η/|α|, which controls the relative rates of injection

of active stresses and stress decay via viscous dissipation. The length scale that

results when these timescales are equated is then

`τ =

√
Kη

αγ
= `α

√
η

γ
. (4.10)
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4.3.2 Emergent length scales

The length scales discussed above were motivated by simple dimensional analysis

of the model parameters and flow geometry. In our numerical simulations, we

find that (for a high enough level of activity) an initially homogeneous state gives

way to a spatio-temporally complicated state with defects in the nematic director

field, and associated local flows in the velocity field, as found earlier by several

authors [49, 18] and shown in the snapshots of Figs. 4.2 and 4.3. An important

aim of the present work is to elucidate how the length scales associated with these

emergent structures depend on the underlying model length scales just discussed.

We denote these emergent length scales by the common symbol `∗, but in fact

there are multiple possible scales that we might choose to characterize the spatio-

temporal dynamics, as we now describe.

• Mean defect separation `d: We define the mean defect separation

`d = 1/
√
nd , (4.11)

where nd is the areal density of defects, calculated by adapting the defect

tracking method of Ref. [81].

• Director correlation length `θ: The normalised director correlation func-

tion defined as

Cθ(R) =
2〈n(R) · n(0)〉 − 1

2〈n(0) · n(0)〉 − 1
. (4.12)

This characterizes the probability that two director orientations a distance

R apart are the same (respecting the fact that n→ −n are equivalent for a

nematic). Here and throughout, the angular brackets 〈·〉 indicate an average

over space and time. We then choose `θ to be the length at which Cθ (`θ) = 1
2
,

as in Fig. 4.1 (inset).
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• Velocity correlation length `v: Analogously, the velocity correlation func-

tion,

Cv(R) =
〈v(R) · v(0)〉
〈v(0) · v(0)〉 , (4.13)

defines the velocity correlation length `v according to Cv(`v) = 1
2
.

• Vorticity correlation length `ω: Finally, we define the correlation func-

tion for the local vorticity, Ω = ∂xvy − ∂yvx, as

CΩ(R) =
〈Ω(R)Ω(0)〉
〈Ω(0)Ω(0)〉 , (4.14)

and define the vorticity correlation length `ω by CΩ(`ω) = 1
2
.

4.3.3 Scaling hypothesis

Simple dimensional analysis based on the model length scales discussed in Sec. 4.3.1

suggests that the length scales `∗ of Sec. 4.3.2 characterizing the emergent struc-

tures in the fluid (whether `d, `θ, `v or `ω) should obey a simple scaling relation of

the form

`∗

`Q
= F ∗

(
`α
`Q
,
L

`Q

)
, (4.15)

where F ∗ is a general scaling function.

Previous simulation studies[7, 14, 80, 78, 19] have shown that all characteristic

length scales, denoted generically by `∗, decrease with increasing activity |α|. At

low activity, typically just a few defects are seen in the simulation box, as in the

snapshots in Figs. 4.2c and 4.3b. At higher activity one obtains a state of fully

developed turbulence with a much higher density of defects (Figs. 4.2d and 4.3c).

In this highly turbulent regime we expect the emergent length scale `∗ to become

much smaller than, and therefore independent of, the system size L. The above
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Figure 4.1: Nematic correlation function Cθ defined in (4.12) obtained from
Model II for an extensile system in the regime of spatio-temporally chaotic
behavior for (`Q/L)2 = 5× 10−6 and activities in the range α/GQ = −0.4 (red)
to −12.8 (blue). Inset: Unscaled data, demonstrating our definition Cθ(`θ) = 1

2 .
Main: the same data collapse onto a single curve when rescaled by the active

length `α.

scaling form is then accordingly expected to reduce to

`∗

`Q
= F ∗

(
`α
`Q

)
. (4.16)

In our simulations all scaling law measurements are taken safely within this regime

of fully developed turbulence, such that the emergent length scales are free of finite

size effects. We also explicitly demonstrate that finite-size effects indeed return

when `α/L is no longer small, as illustrated by the snapshot of Fig. 4.2c.

It is also worth noting that at extremely large activities the defect density could in

principle become so large that the defect spacing approaches the microscopic length
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scale `Q. In this regime we would expect `∗ to be unable to decrease further upon

any additional increase in activity, and so to saturate. However our simulations

do not reach this limit and the inequality `Q < `∗ < L is always respected.

4.3.4 Form of the scaling function

Having proposed the existence of a scaling function in Eqn. 4.16, we now con-

sider possible specific forms for this functional dependence of `∗ on the model

parameters. Conflicting scaling laws for `∗ have been proposed in the existing

literature [19, 82, 78]. While all of these studies agree that `∗ ∝ K1/2 ∝ `Q, there

remains an apparent discrepancy over the scaling of `∗ with the activity.

Using Model II, Thampi et al. [19, 82] have proposed that `∗ ∝ α−1/4, which

would correspond to F ∗ in Eqn. 4.16 having a square root dependence on its

first argument. In contrast, using Model I Giomi [78] have suggested the relation

`∗ ∝ α−1/2, which would correspond to a linear dependence of F ∗ on its first

argument. A possible origin of this discrepancy is the differing dimensionality

of the order parameter Q between the two studies: while both have D = 2,

Refs. [19, 82] had d = 3, whereas Ref. [78] had d = 2. This motivates us to compare

numerical results for both d = 2, 3 within a single study. However our results below

will rule out differences in d as a source of discrepancy. Another potential reason

could be that the two studies in fact explored different parameter regimes given

the high dimensionality of the parameter space in these models. Therefore in order

to ascertain the generality of these scaling laws, we systematically explore wide

ranges for the three relevant adimensional parameters (α/GQ, `Q/L, γ/η) for both

models. Our results will show that both forms suggested by the earlier studies

can indeed apply, each in a different regime: one in the regime of fully developed

active turbulence, the other when the system size plays a non-trivial role.
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Figure 4.2: Results from Model II for the nematic correlation length `θ (empty
symbols) and defect spacing `d (filled symbols) as functions of the dimensionless
activity |α|/GQ for an extensile nematic (α < 0). (a) Lengthscales vs |α| for
various values of the microscopic correlation length: (`Q/L)2 = 2 × 10−6 (red
circles), 5× 10−6 (green squares), and 1× 10−5 (blue triangles). The remaining
parameter values are given in Table 4.2. At small activity we see saturation
due to finite size effects. (b) The curves collapse when `θ and `d are rescaled by
`Q. In both frames the black dashed lines show (|α|/GQ)−1/2. In Fig. 4.2a we
also mark the power law (|α|/GQ)−1/4 obtained by Thampi et al. as a purple
dot-dashed line. (c,d) Representative snapshots of (nxny)

2 for (c) |α|/GQ = 0.1
and (d) |α|/GQ = 6.4. We set (`Q/L)2 = 1 × 10−5 in both snapshots. Defects
of topological charge ±1/2 are identified by green dots (+) and red squares (-).

For videos see supplementary material.

4.4 Results

We now present the results of our simulations. We focus on the regime of fully de-

veloped turbulence, corresponding to activity large enough to avoid finite system-

size effects (`α < L) and yet small enough to avoid saturation of the defect spacing

at the microscopic length (`d > `Q). We systematically explore the functional de-

pendence of the emergent correlation lengths defined in Section 4.3.2 on the model

parameters. Specifically in Model I we vary the activity, α/GQ, and viscosity ra-

tio, γ/η, keeping all other parameters fixed to the values in Table 4.2. In Model

II we vary the activity α/GQ and the nematic persistence length `Q/L, with all

other parameters fixed to the values in Table 4.2. We will show that in the re-

gion of fully developed active turbulence all of the emergent length scales defined
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Figure 4.3: Results from Model I for the nematic correlation length `θ (empty
symbols) and defect spacing `d (filled symbols) as functions of the dimension-
less activity |α|γ/GQη for an extensile nematic (α < 0). (a) Length scales vs
|α| for various values of the viscosity ratio: γ/η = 10 (red circles), 20 (green
squares), 30 (blue triangles), and 40 (magenta diamonds). The values of the
other parameters are given in Table 4.2. The black dashed lines denote a slope
of −1/2. (b,c) Representative snapshots of the alignment tensor for η/γ = 20 in
(b) the low activity regime (|α|/GQ = 20) with low defect density and (c) the
high activity regime (|α|/GQ = 100) with high defect density. The color scale
represents the magnitude S of the order parameter and the black lines denote
the local orientation of the director field. Topological defects with charge ±1/2

are shown as green dots (+) and red squares (-).

above scale with the active length `α ∼ |α|−1/2, in both models. We will addition-

ally demonstrate that a weaker exponent might be obtained in the regime of less

well developed turbulence, where the typical size of the emergent structures is an

appreciable fraction of the box size.

4.4.1 Correlation lengths

In this section, we present our results for the correlation lengths defined in Sec. 4.3.2.

Our main focus will be on an extensile nematic, corresponding to α < 0. We shall

briefly discuss the contractile case at the end of this section.
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4.4.1.1 Extensile active matter

Orientational correlations. We begin by considering correlations in the nematic

order parameter Q. Figs. 4.2a and 4.3a shows the director correlation length `θ

and the defect spacing `d as obtained from Model II and Model I, respectively. For

sufficiently large activity α, we find that in both models both lengths obey a clear

scaling law `d, `θ ∼ (α/GQ)−1/2 (black dashed lines). Note that the defect spacing

correlation length `d is consistently larger than `θ by a factor ∼ 2− 3. This is to

be expected as correlations at the halfway point between two defects (`d/2) should

be similar to those at `θ.

At smaller activities (i.e., for |α|/GQ . 1) the data obtained with Model II show

a saturation in the power law (leftmost data points in Fig. 4.2a). This can be

attributed to that fact that the length scale of nematic structure now spans an

appreciable fraction of the system size, as seen in the snapshots of Fig. 4.2c. It

is possible that fitting a power law in this saturation regime could result in a less

negative exponent than the−1/2 found in the regime of fully developed turbulence.

Indeed we find that the scaling |α|−1/4 suggested by Thampi et al. (purple dashed

dotted line in Fig. 4.2a) matches our data reasonably well in this regime.

The data in Fig. 4.2a also suggests that both `d and `θ scale linearly with `Q.

We verify this scaling explicitly in Fig. 4.2b by plotting `d/`Q and `θ/`Q against

activity. The data for various values of `Q collapse neatly onto a single curve,

demonstrating a clear linear relation between both correlation lengths and `Q.

The data obtained with Model I shown in Fig. 4.3a focus on large activities and

verify that in this regime the scaling of both `d and `θ with (|α|/GQ)−1/2 holds

regardless of the model used. (They do not probe the saturation with system

size seen at lower activities in Model II.) Data obtained for different values of the

viscosity ratio γ/η can be collapsed when plotted as shown in Fig. 4.3b, suggesting
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Figure 4.4: Velocity (`v, filled symbols) and vorticity (`Ω, empty symbols)
correlation lengths, normalized by `Q for (a) an extensile (α < 0) and (b) a
contractile (α > 0) system. We explore several values of the viscosity ratio:
γ/η = 10 (red circles), 20 (green squares), 30 (blue triangles), and 40 (magenta
diamonds). Frame (c) shows the defect spacing `d (filled symbols) and the
director correlation length `θ (empty symbols) for a contractile (α > 0) active
nematic as a function of αγ/GQη for the same set of values of γ/η. All lengths

scale as (αγ/GQη)−1/2. The black dashed lines represent a slope of −1/2.

`∗/`Q ∼ `τ/`Q = [|α|γ/(GQη)]−1/2, although the range of variation of the viscosity

ratio is not sufficient to provide convincing evidence of scaling.

Taken together, the data obtained with the two models tests the functional de-

pendence of the two nematic correlation lengths with respect to activity and the

nematic persistence length `Q. Once free of the system size, we find that both

obey `∗/`Q ∼ `α/`Q. Consistent with this scaling, replotting in Fig. 4.1 (main)

the full director correlation function as a function of the rescaled coordinate R/`α

gives good data collapse. Additionally, the data obtained with Model I suggest

a scaling `∗/`Q ∼ (`α/`Q)
√
γ/η, but a larger range of γ values would be needed

to verify this. Next we demonstrate that the same scaling form is observed for

correlations lengths associated with the velocity field v.

Velocity and vorticity correlation lengths. Using data obtained with Model I, we
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explore the dependence of the velocity correlation length `v and the vorticity cor-

relation length `ω (as defined in Section 4.3.2) on activity. In light of the results

of the previous section, we directly plot both these lengths against the rescaled

activity |α|γ/GQη (see Fig. 4.4a). As shown previously for the orientation correla-

tion lengths, we again observe that both `v and `ω scale as ∼ (|α|γ/GQη)−1/2, with

all data sets falling approximately on a single curve. We stress that this behavior

is different from that reported in Ref. [19], where it was argued that `v does not

depend on activity, while `ω scale as α−1/4.

4.4.1.2 Contractile active matter.

So far we have presented data for extensile systems, corresponding to α < 0.

However many examples of contractile active matter are found in nature, e.g., sus-

pensions of Chlamydomonas algae [83], or cytoskeletal actomyosin networks [84].

Therefore in order to further demonstrate the generality of our results, we now

briefly consider the contractile case (α > 0). Since the linear instability of the

homogeneous state requires requires αξ < 0 [54], for contractile systems we use

ξ → −ξ = −0.1. Our data, shown in Figs. 4.4(b,c), support the idea that the

defect spacing (`d), director correlation length (`θ), velocity (`v) and vorticity (`ω)

correlation lengths are all controlled by a single active length scale `α ∼ |α|−1/2.

4.4.2 Kinetic energy and enstrophy

The above scaling relations were obtained using the correlation functions defined

in Section 4.3, which are normalised so that each function, e.g., Cv(R), approaches

unity as the separation distance R → 0. (See Fig. 4.1.) The normalization con-

stants themselves, however, (i.e., the denominators in Eqs. 4.13 and 4.14) also

provide useful information as they are directly proportional to the mean kinetic
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Figure 4.5: Scaling of kinetic energy (frames (a) and (c)) and enstrophy
(frames (b) and (d)) with activity for both Models I and II. The left figure
displays the results obtained from Model 1 by varying the viscosity ratio γ/η as
shown. The right figure displays the results obtained from Model II by varying
the nematic correlation length `Q/L. The inset of frame (d) shows the scaling
collapse of the kinetic energy when plotting v2

rms/`
2
Q against activity. In frame

(d), data is shown for two numerical resolutions: dashed lines for N = 1024,
and solid lines for N = 2048.

energy and enstrophy of the system, given by

Ek =
1

2
v2
rms =

1

2
〈v(r) · v(r)〉 , (4.17)

Es =
1

2
Ω2
rms =

1

2
〈Ω(r)Ω(r)〉 , (4.18)

where the angular brackets 〈·〉 again denote an average over space and time. These

quantities can be obtained experimentally, for instance by using particle image

velocity (PIV) to quantify the flow fields of active liquids, as done by Dunkel et

al. [85] in suspensions of extensile B. subtilis bacteria. We now use our earlier

findings to motivate the expected scaling relation of these flow properties with

activity, and then verify our predictions with further numerical data from both

models.

Using simple dimensional analysis, the characteristic velocity of activity-induced

shear flows associated with distortion of the local nematic order over a length scale
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`∗ can be obtained from the force balance condition ((4.1)) as

v ∼ |α|`∗/η. (4.19)

Our results indicate that for sufficiently large values of activity the physics is

controlled by a single active length scale `∗, with `∗ ∼ |α|−1/2. Using this in (4.19),

we find v ∼ |α|1/2 and < v2
rms >∼ |α|. The scaling of the vorticity can be estimated

as ω ∼ v/`∗, which gives an enstrophy Ω2
rms ∼ |α|2.

This scaling is consistent with the findings of Ref. [78] in which the author exam-

ined the typical size of vortex structures in the regime of spatio-temporal chaotic

dynamics using what we refer to here as Model I and found that both the vortex

size and the defect spacing appear to scale with the active lengthscale `α. Further

evidence for this scaling can be found in the experiments of Ref. [85], which found

that Ω2
rms = v2

rms/ (`∗)2 where `∗ is the characteristic vortex size: assuming that

`∗ ∼ `α, this implies that Ω2
rms ∼ |α|v2

rms as we have argued above. Our pro-

posed scaling is not, however, in agreement with the findings of Ref. [18, 82]. In

those studies it was found that v2
rms ∼ |α|2 and Ω2

rms ∼ |α|2, a result that cannot

seemingly be reconciled with the simple assumption that Ω ∼ v/`α.

In order to appraise these conflicting scaling laws, we perform simulations with

both Model I and Model II and measure the kinetic energy (v2
rms, see Figs. 4.5a,

b) and enstrophy (Ω2
rms, Figs. 4.5c, d). The data from both models clearly obey

our expected scaling laws v2
rms ∼ |α| and Ω2

rms ∼ |α|2 (black dashed lines). With

Model I our choice of units means that increasing the rotational viscosity γ is

equivalent to reducing the solvent viscosity η. Our dimensional analysis in (4.19)

suggests that increasing γ/η should increase the characteristic velocity. We indeed

observe this trend in our data in Figs. 4.4b, although simulations over a larger

range of γ/η would be required to determine the exact scaling. By the same

analysis, we also expect that v2
rms should be proportional to `2

Q for fixed GQ, since
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v2
rms ∼ (α`∗/η)2 ∼ (|α|GQ/η

2)`2
Q. Our data from Model II explores several values

of `Q, and plotting v2
rms/`

2
Q against activity indeed leads to a reasonable curve

collapse (Fig. 4.4d inset). Consistent with the findings of Giomi[78], we observe

no appreciable dependence of Ω2
rms on `Q. This follows again from the scaling,

Ω2
rms ∼ v2

rms/`
∗2 ∼ (α/η)2.

4.5 Discussion

Using two distinct continuum models that have been studied extensively within

the literature, we have performed a detailed numerical study of an active nematic

to examine the scaling with activity of a number of structural and hydrodynamic

correlation lengths, including the mean defect spacing. Our findings are consis-

tent with the suggestion first put forward in Ref. [78] that in the regime of fully

developed active turbulence defect proliferation, and the associated turbulent-like

dynamics of the active nematic, are controlled by a single length scale `α ∼ |α|−1/2.

This is also the length scale that controls the onset of spontaneous flow instability

of active films [6, 7, 40]. Our numerical data from both models show that all

measures of correlation length considered scale with this length scale, for both

extensile and contractile systems.

Two caveats must, however, be applied. First, for extremely large activities

(i.e., `α ∼ `Q) activity-induced deformations below the nematic persistence length

`Q are expected to be suppressed. Secondly, at low activities, structures can form

that span the system size, and correlation lengths will correspondingly saturate,

(i.e., `α ∼ O(L)). We have explicitly demonstrated this system-size saturation

in our simulations, a result that reconciles the apparently conflicting power-law

exponents previously reported in the literature.

79



Chapter 4. Correlation Lengths in active nematics

Finally, to further support our findings, we have calculated the average kinetic

energy and average enstrophy of the system, quantities that are readily obtainable

from experiment. Our numerical results show that the scaling of these quanti-

ties with activity is consistent with a simple dimensional analysis based on the

assumption that the physics is controlled by the single length scale `α.

Our results show that the key scaling relations hold for both strictly 2D and quasi-

2D models. Encouragingly, this implies that such models capture the dynamics of

active nematics in a generic way, i.e., independent of the specifics of the model.

How our results would compare with the equivalent fully-3D simulation of an

active nematic remains an interesting open question.
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Appendix B

B.1 Flow-aligning Parameter

We include here a comparison between the tumbling parameter ξ used here and

the Leslie-Erickson (LE) tumbling parameter λ (where |λ| > 1 corresponds to

flow-aligning regime and |λ| < 1 corresponds to flow-tumbling regime). This

comparison is presented in Appendix B of Ref. [7] for the case d = 3, but to our

knowledge has not been displayed before for the case d = 2.

In d dimensions the nematic tensor Qij of a uniaxial nematic can be written as

Qij =
d

(I/∆I)
S(ninj −

1

d
δij) , (B.1)

where I and ∆I are the sum and difference, respectively of the two principal

values of the moment of inertia tensor of uniaxial nematogens. In our case we use

I/∆I = 2 that corresponds to needle-like molecules[86].
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We write the dynamical equation for the alignment tensor in d dimension using

the notation of Olmsted[75],

DQij

Dt
= ΩikQkj −QikΩkj + β1Dij +

1

β2

Hij

+β5{QikDkj +DikQkj −
2

d
δijD : Q}

+β6{QikHkj +HikQkj −
2

d
δijH : Q},

(B.2)

where β1, β2, β5 and β6 are parameters that couple order and flow.

Substituting the expression given in (B.1) for the alignment tensor into the dy-

namical equation (B.2), and assuming S to be constant, we obtain an equation for

the director,

ṅi = (Ω× n̂)i +

[
(I/∆I)2

2β2(dS)2
+

(1− 2
d
)(I/∆I)β6

2dS

]
hi

+

[
(I/∆I)β1

dS
+

(
1− 2

d

)
β5

]
njDij.

(B.3)

Comparing (B.3) to the Leslie-Erickson equation [75],

ṅi = (Ω× n̂)i +
1

γ1

hi + λnjDij, (B.4)

we identify the correspondence between the Olmsted coefficients βi and the Leslie-

Erickson coefficients as

Sλ =
(I/∆I)

d
β1 +

(d− 2)

d
β5S +O(S2), (B.5)

S2

γ1

=
(I/∆I)2

2β2d2
+

(1− 2
d
)(I/∆I)

2d
β6S +O(S2). (B.6)

Using I/∆I = 2 in (B.5), we obtain

λ =
2

d

β1

S
+

(d− 2)

d
β5. (B.7)

82



Chapter 4. Correlation Lengths in active nematics

Finally, for the case β1 = β5 = ξ, we find

ξ =


λS for d = 2

3S
S+2

λ for d = 3

(B.8)

The d = 3 case was previously reported in Ref. [7].
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Chapter 5

Active Nematics on a Substrate

This chapter is based on the article “Negative stiffness and modulated states in

active nematics” published in “Soft Matter, 2016,12, 8214-8225” by Pragya Sri-

vastava, Prashant Mishra and M. Cristina Marchetti. My contribution to this

article was equal to the first author’s. I was responsible for working through the

linear stability analysis and the numerical analysis of the model used in the paper.

I also numerically compared our results with previously published work.

5.1 Introduction

Confinement has profound effects on active fluids. It damps the flow [87, 88]

and it suppresses the generic instability of unbound systems described in Chapter

3 resulting in a finite activity threshold for the onset of spontaneously flowing
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states [6, 89]. Frictional damping due to confinement plays a key role in exper-

imental realizations of active systems. In bacterial suspensions channel confine-

ment was shown to stabilize vortex structures, leading to a state with a steady

unidirectional circulation [90].

In confined nematics the energy input from active stresses is dissipated both via

viscous flows that mediate hydrodynamic interactions between the active units

and via friction with a substrate. Systems where viscous dissipation dominates

so that frictional damping is negligible and momentum is conserved are referred

to as ‘wet’, while those where dissipation is mainly controlled by friction are re-

ferred to as ‘dry’. Previous work has examined both wet [49, 18, 82, 19] and

dry [91, 41, 92, 20, 93] systems, as well as the crossover between the two [94],

revealing a rich dynamics driven by orientational instabilities and by the unbind-

ing and proliferation of topological defects. A detailed summary of recent work

most closely related to ours is given in Section 5.5. A remarkable phenomenon

reported by several authors is the orientational ordering of the axes of the comet-

like +1/2 disclinations. In experiments in suspensions of microtubule bundles the

+1/2 defects were observed to organize in nematically ordered states [4]. Numeri-

cal studies of dry systems have reported both nematic [92] and polar [4, 91] order

of the defect orientations and a remarkable defect-ordered state accompanied by a

flow-vortex lattice at the crossover between wet and dry regimes [94]. This range

of results indicates that more work is needed to understand what controls the

nature of defect ordering in these systems.

Finally, the dynamics of dry polar [17] and nematic [92] active fluids has also been

studied via minimal models where pattern formation is driven by diffusive currents

in the order parameter equations, with the assumption of a negative order parame-

ter stiffness, which provides an appealing and simple explanation for the instability

mechanisms. Recently, it has been shown that in systems with polar symmetry
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such a negative stiffness can arise from competing aligning and antialigning in-

teractions [95] or from the interplay of polar alignment and intermediate range

hydrodynamic interactions [96].

In this chapter, we consider a dry active nematic fluid, where the energy input

from active stresses is balanced solely by frictional damping. By eliminating the

flow velocity in favor of active stresses we obtain a single equation for the nematic

order parameter, with elastic constant renormalized by activity. We show that

activity can drive such elastic constants to negative values, providing a mechanism

for pattern formation capable of describing in a unified manner all the spatio-

temporal structures obtained in previous models. A linear stability analysis of

the homogeneous isotropic and ordered states highlights the analogy with the

onset of modulated states at a Lifshitz point in equilibrium systems and identifies

the length scales that control stable patterns. We construct a linear stability

phase diagram (Fig. 5.1) and show that all linear stability boundaries meet at

a single point that plays the role of a nonequilibrium multicritical point. The

linear analysis is supported by numerical integration of the nonlinear equations

that yield a succession of spatially and temporally inhomogeneous structures of

growing complexity with increasing activity.

In Section 5.2 we introduce the hydrodynamic model of a dry active nematic and

show that it can be reduced to a single equation for the nematic order parameter

tensor by eliminating the flow. We then discuss the linear stability phase diagram

in Section 5.3, and present the results of the numerical integration of the non-linear

equations in Section 5.4. We conclude with a comparison with previous work and

a brief discussion.
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5.2 Active Nematics on a Substrate

We consider a thin layer of active nematic liquid crystal on a substrate providing

frictional damping. This geometry is motivated by experiments on suspensions of

microtubule bundles at an oil water interface [3, 4], although it does not incorpo-

rate the full hydrodynamics of the system as described for instance in Ref. [21].

We focus on high density of active units and consider an effective one-component

fluid description, as done in much of the previous literature [97, 14]. We assume

a constant density, but do not enforce incompressibility, i.e., ∇ · v 6= 0. This

can be realized in systems where density conservation is broken, for instance,

by birth/death processes or because active units can enter or leave the nematic

layer through the surrounding bulk fluid. The long-wavelength dynamics is then

formulated in terms of the nematic tensor order parameter Q, of components

Qij = S
(
ninj − δij

2

)
with n the director field, and the flow velocity, v. The ab-

sence of the incompressibility constraint allows us to directly eliminate the flow to

obtain a minimal model in terms of Q dynamics only. We have also verified that

imposing incompressibility only changes the location of the linear stability bound-

aries between the various regimes, but leaves the results qualitatively unchanged

(see Appendix B).

The dynamics is then governed by an equation for the alignment tensor, coupled

to the Stokes equation describing local force balance,

(∂t + v ·∇) Q = S(Q,A) +
1

γ
H , (5.1)

Γv = η∇2v + α∇ ·Q . (5.2)

The first term on the right hand side of Eq. (5.1) is a symmetric traceless tensor

that describes the coupling of orientation and flow. In two dimensions it is given
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by

S = λ

(
D− 1

2
TrD

)
+ Q · ω − ω ·Q− λQTr[Q ·D] , (5.3)

where D and ω are the symmetric and antisymmetric strain rate tensors, Dij =

(Aij + Aji)/2 and ωij = (Aij − Aji)/2, with Aij = ∂ivj and λ the nematic flow

alignment parameter. It should be noted that the presence of a substrate breaks

Galilean invariance. As a result, the coefficients of the convective term on the left

hand side of Eq. (5.1) and of the coupling of orientation to vorticity in Eq. (5.3)

are not required to be unity. In addition, activity will modify the value of all

parameters coupling orientation and flow. The general form of the Q equation is

given in Appendix A. Here to decrease the number of parameters we have taken

the coefficients of the advective and vorticity coupling to be 1 and have introduced

a single flow coupling parameter λ as appropriate for passive 2d nematics. Note

that with this choice λ is known to be finite in the limit where the strength S of

nematic order vanishes [98, 99, 86].

The second term on the right hand side of Eq. (5.1) is the molecular field, H =

− (δF/δQ)T , where the superscript T denotes the traceless part of the tensor, γ

is the rotational friction, and F is the Landau-de Gennes free energy of a two-

dimensional nematic [34] , given by

F =
1

2

∫
r

{
A(1− r)TrQ2 + Ar

(
TrQ2

)2
+K (∂iQjk)

2 + κ(∂i∂jQkl)
2
}
. (5.4)

The first two terms in Eq. (5.4), with A > 0 an energy density scale, control the

isotropic-nematic transition in the passive system, which is continuous in mean-

field in two dimensions. The transition occurs at r = 1. For r < 1 the ground

state of the free energy is a disordered state with S = 0. For r > 1 the ground

state is an ordered nematic state with S = S0 =
√

(r − 1)/r. The third term

in F is the elastic energy cost for deformation of the order parameter, with K

a Frank constant. For simplicity we use a single elastic constant approximation
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Figure 5.1: Phase diagram in the (r, |α̃|) plane obtained by linear stability
analysis. The vertical black line at r = 1 is the mean-field transition between the
disordered and ordered nematic states. The disordered state (r < 1) becomes
unstable via an isotropic instability at the value of activity given in Eq. (5.12)
(orange line). The ordered state (r > 1) first becomes unstable to the growth
of bend fluctuations of the director field (blue line, Eq. (5.20) for ψ = 0). We
also show the lines corresponding to the change in sign of the growth rate of
splay fluctuations of the director (dark green line, Eq. (5.20) for ψ = π/2)
and the magnitude of the order parameter (purple line, Eq. (5.22)). These
additional instability lines correlate with the onset of more complex spatial
structures with increasing activity, as suggested by the shading of the various
regions, and eventually the onset of active turbulence (no shading). All the
instability boundaries meet at a multicritical point where the uniform isotropic,
uniform nematic and modulated phases coexist. Inset: the dispersion relation
ΩI (Eq. (5.11)) that controls the growth of order parameter fluctuations for
r < 1 as a function of wavevector for three values of |α̃| = 10, 13.26, 17 (from
bottom to top). At the transition only one critical mode q = qIc is unstable.

Above the transition the unstable modes lie in a band qI− < q < qI+.

which equates the cost of splay and bend deformations [34, 100]. The last term

in Eq. (5.4) describes an effective surface tension of phenomenological strength

κ, assumed isotropic for simplicity. This term provides stability at small length

scales. The molecular field is then given by

H = −A
[
1− r + 2rTr Q2

]
Q +K∇2Q− κ∇4Q . (5.5)

In the Stokes equation, Eq. (5.2), Γ is the friction from the substrate, η the shear
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viscosity, and α is a measure of activity, with dimensions of stress: α > 0 cor-

responds to contractile active stresses, as obtained for instance in monolayers of

fibroblasts [29], while α < 0 corresponds to extensile stresses, as obtained in sus-

pensions of microtubule bundles [3] or Bacillus subtilis swimming in a nematic

liquid crystal [44]. We have neglected elastic stresses that yield terms of higher

order in the gradients of the alignment tensor.

We focus on the situation where frictional damping exceeds viscous forces, corre-

sponding to length scales large compared to the hydrodynamic screening length

`η =
√
η/Γ. The Stokes equation can then be written as

v ' α

Γ
∇ ·Q . (5.6)

Using Eq. (5.6), the flow velocity v can be eliminated from Eq. (5.1) to yield a

description solely in terms of the dynamics of the order parameter field Q,

∂tQ +
α

Γ
[(∇ ·Q) · ∇]Q = −A

γ

(
1− r + rS2

)
Q +

K

γ
∇2Q

+
αλ

2Γ
[∇ (∇ ·Q)]ST +

α

2Γ
Ω[Q]− λα

Γ
B(Q)Q− κ

γ
∇4Q ,

(5.7)

where the superscript ST denotes the symmetric traceless part of a tensor, and we

have used Tr Q2 = S2/2. The antisymmetric tensor Ω[Q] arises from the coupling

of alignment and vorticity and has components Ωij = Qik (∇k∇lQlj −∇j∇lQlk)−

(∇i∇lQlk −∇k∇lQli)Qkj and B(Q) = Qij∇2Qij/2. In spite of the apparent com-

plexity of Eq. (5.7), the role of activity is transparent. The first term on the

the second line of Eq. (5.7) is proportional to ∇∇Q. Hence to linear order in

Q, activity renormalizes the Frank constant K, rendering it anisotropic and, as

we will see below, driving it to zero and even negative in a range of parameters.

This results in the instability of homogeneous states and the onset of spatially

modulated structures via a mechanism analogue to that of an equilibrium Lifshitz

point [101, 50]. A negative value of the order parameter stiffness was assumed in
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Refs. [17, 102, 92] as the mechanism responsible for driving pattern formation in

continuum models of dry polar and nematic active fluids inspired by the Toner-Tu

equations. Mechanisms that can lead to a negative stiffness have recently been

identified for polar fluids [95, 96]. In particular, Ref [96] shows that hydrodynamic

interactions mediated by active processes can drive a change in sign of the stiffness

of a polar active fluid. Our work shows that in active nematic even screened flows

in the overdamped limit can result in a negative nematic stiffness. Equation (5.7)

has the structure of a generalized Swift-Hohenberg type equation for a tensorial

order parameter, although it also includes nonlinearities usually neglected in the

simplest models of this type. By examining various terms of Eq. (5.7), we identify

two important length scales: the nematic correlation length `Q =
√
K/|A(1− r)|

that diverges at the mean-field transition and the length `κ =
√
κ/K obtained

by balancing order parameter stiffness and tension. In the following we exam-

ine the behavior of the system by tuning the parameter r that drives the system

across the mean-field isotropic-nematic transition and the activity α. We choose

`0
Q =

√
K/A as unit of length and τ = γ/A as unit of time. Eq. (5.7) can then be

written in terms of dimensionless quantities as

∂tQ + α̃[(∇ ·Q) · ∇]Q = −
(
1− r + rS2

)
Q +∇2Q

+
α̃λ

2
[∇ (∇ ·Q)]ST +

α̃

2
Ω[Q]− λα̃B(Q)Q− κ̃∇4Q .

(5.8)

Several other groups have studied overdamped active nematics. We present a

summary of previous work and comparison to our model in Section 5.5. Our

minimal model of active nematics is controlled by only three dimensionless pa-

rameters: r, which controls the passive transition between uniform isotropic and

ordered states, a dimensionless activity α̃ = αγ/ΓK, and a dimensionless tension

κ̃ = κA/K2 = (`κ/`
0
Q)2. Additionally the behavior depends on the flow alignment

parameter, λ. This microscopic parameter is controlled by molecular shape and
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degree of nematic order, with |λ| > 1 corresponding to flow alignment of the ne-

matic director in a shear flow and |λ| < 1 corresponding to flow tumbling [98].

Below we focus on elongated self-driven units, such as microtubule bundles or

bacteria, where λ is positive, and consider the flow aligning case, hence restrict

ourselves to |λ| > 1.

In the next section we examine the linear stability of both isotropic and nematic

states and show that activity can render both unstable.

5.3 Linear stability of homogeneous states and

“multicritical point”

In this section we examine the linear stability of the homogeneous, steady state

solutions of Eq. (5.7) by considering the linear dynamics of fluctuations δQ = Q−

Q0 of the order parameter from its uniform value, Q0. The disordered state (r < 1)

has Q0 = 0. In the ordered state (r > 1) we choose the x axis along the direction

of broken symmetry, so that Q0
ij = S0

2
(δixδjx − δiyδjy), with S0 =

√
(r − 1)/r. In

this section we use dimensionful quantities to better highlight the physics of the

various instabilities.

5.3.1 Isotropic state - r < 1

In this case Q0 = 0 and the linear dynamics of the fluctuations is controlled by

the equation

γ∂tδQ = −A(1− r)δQ +KI(α)∇2δQ− κ∇4δQ , (5.9)
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Figure 5.2: Numerical phase diagram and snapshots of the various steady
states for κ̃ = 10 and λ = 1.5. Left panel : Numerical phase diagram in the
(r, |α̃|) plane. The vertical black line at r = 1 is the mean-field I-N transition
from the isotropic (r < 1) to the nematic (r > 1) state. The symbols refer
to various steady state configurations obtained by numerical solution of the
nonlinear equations and quantified as described in the text. Open symbols are
used for states with r < 1 and filled symbols for states with r > 1, as follows:
uniform isotropic state (open black diamonds), uniform nematic (filled black
diamonds ), kink walls with defects (green stars), kink walls with no defects
(blue circles), bend modulations (filled magenta triangles), turbulent state (red
squares). The solid lines denote the various linear stability boundaries described
in Fig. 5.1. Figures (a-f) show typical snapshots of the various states: kinks
walls with (a and movie S1 in SI) and without (b and movie S2 in SI) defects
for r < 1; (c and movie S3 in SI) bend modulations, (d and movie S4 in SI)
kink walls with defects, (e and movie S5 in SI) kink walls with no defects, and
(f and movie S6 in SI) turbulent state. Snapshots (c-f) are for r > 1. The color
scale describes the magnitude of the order parameter S (the mean field value
is S0 = 0.78 in (c) to (f)). The black lines denote the direction of the director.
Each snapshot also shows a blow up of the structure in the upper right corner.
Disclination defects, when present, are denoted by green filled triangles (−1/2)
and black filled circles (+1/2), with a short black solid line indicating the tail
of the comet-like +1/2 defect. In the extensile case considered here the +1/2

defects move in the direction of the black dot.93
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where

KI(α) = K +
αλγ

2Γ
(5.10)

is an effective elastic constant renormalized by activity. By expanding the fluctu-

ation in Fourier components as δQ =
∫
r
Qq(t) exp(iq · r), we immediately obtain

the isotropic dispersion relation of the mode that controls the growth rate of fluc-

tuations as

ΩI = −
[
A(1− r) +KI(α)q2 + κq4

]
/γ . (5.11)

The evolution of the dispersion relation with activity is shown in the inset of

Fig. 5.1. The effective stiffness KI can become negative at large activity provided

αλ < 0, corresponding to either axially elongated active units (λ > 0) with ex-

tensile activity (α < 0) or oblate active units (λ < 0) with contractile activity

(α > 0). The duality between elongated pushers and oblate pullers has been dis-

cussed before in ‘wet’ active fluids [13]. Here we will restrict ourselves to the case

of elongated extensile swimmers with αλ < 0. In this case the relaxation rate ΩI

becomes positive for KI < −Kc, with Kc = 2
√
A|1− r|κ, corresponding to

|α| > αcI =
2Γ

γλ
(K +Kc) , (5.12)

and for a band of wave vectors qI− ≤ q ≤ qI+, with

qI± =

[
1

2κ

(
−KI(α)±

√
[KI(α)]2 −K2

c

)]1/2

. (5.13)

Note that Kc vanishes at the mean-field IN transition (r = 1). The wave vector of

the fastest growing mode, corresponding to the maximum of the dispersion relation

shown in the inset of Fig. 5.1, is qIm =
√
|KI(α)|/(2κ) =

√
Kc + γλ(|α| − αc)/(2Γ) ∼

(|α| − αc)
1/2, where the last approximate equality holds near the mean-field IN
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transition, where Kc = 0. The fastest growing mode controls the length scale of

the spatially modulated states. At onset (|α| = αc) a single mode of wave vector

qIc = qIm(αc) =
√
Kc/(2κ) becomes unstable. Away from the onset of the instabil-

ity, where |KI | > Kc, we find qI− '
√
A/|KI | and qI+ '

√
|KI |/κ. The instability

is driven by activity that softens the elastic energy cost of order parameter fluc-

tuations, allowing the formation of ordered regions in the isotropic state. At long

wavelengths (q < qI−) this destabilizing effect is balanced by the passive damping

of the order parameter controlled by the rate A/γ. At short wavelengths (q > qI+)

it is balanced by the surface tension κ associated with the creation of isotropic/ne-

matic interfaces. The threshold for the instability shifts to higher magnitudes of

activity as one moves deeper into the disordered state. This mechanism for pat-

tern formation is formally analogue to that described in Ref. [103] for reproducing

micro-organisms with a density-dependent diffusivity that can be driven to zero

or even to negative values by the suppression of motility due to crowding. The

instability of an isotropic suspension of pullers has been discussed before for polar

swimmers [30], but it is a new result of this work in the context of nematics.

5.3.2 Ordered state - r > 1

We now examine the stability of the homogeneous ordered state for r > 1. We

write directly linear equations for the Fourier components of δQxx and δQxy, given

by

γ∂tQxx(q) = −
[
2A(r − 1) +KS(α)q2 + κq4

]
Qxx(q) (5.14)

γ∂tQxy(q) = −
[
Kθ(α, ψ)q2 + κq4

]
Qxy(q) +

αγS0

Γ
qxqyQxx(q) ,

(5.15)
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Where

KS (α) = K +
αλγ

2Γ

(
1− S2

0

2

)
, (5.16)

Kθ (α, ψ) = K +
αγ

2Γ
(λ+ S0 cos 2ψ) , (5.17)

with ψ the angle between the wave vector q and the direction of order. The

dynamics of fluctuations in the magnitude of the order parameter (∼ Qxx) and the

direction of broken symmetry (∼ Qxy) are decoupled and the dispersion relation

of the corresponding eigen-modes are given by

ΩS = −
[
2A(r − 1) +KS(α)q2 + κq4

]
/γ , (5.18)

Ωθ = −
[
Kθ (α, ψ) q2 + κq4

]
/γ . (5.19)

Once again, activity renormalizes the bare elastic constant K. At the mean-field

transition at r = 1, S0 = 0 and KS = Kθ = KI , so that all three dispersion

relations ΩI , Ωθ and ΩS merge continuously. Both decay rates Ωθ and ΩS can

become positive for flow aligning (λ > 1) extensile (α < 0) nematics, signalling

the instability of the homogeneous ordered state.

The decay rate of fluctuations in the direction of nematic order controlled by Ωθ

is positive when Kθ(α, ψ) < 0, corresponding to

|α| > αθc (ψ) =
2KΓ

γ (λ+ S0 cos 2ψ)
(5.20)

and the fastest growing wave vector is

qθmax =

√
|Kθ(α, ψ)|

2κ
. (5.21)

The most unstable mode corresponds to bend fluctuations (ψ = 0), as expected

for extensile systems, with αbec = αθc(α, ψ = 0) = 2KΓ/[γ(λ+ S0)].
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The decay rate ΩS is positive when KS(α) < −
√

2Kc, corresponding to

|α| > αSc =
2Γ

γλ

2r

r + 1

(
K +

√
2Kc

)
. (5.22)

The instability occurs for a band of wavevectors qS− < q < qS+, with

qS± = ±
[

1

2κ

(
−KS(α) +

√
[KS(α)]2 − 2K2

c

)]1/2

(5.23)

and the wave vector of the fastest growing mode is qSm =
√
|KS(α)|/κ.

The linear stability phase diagram in the (r, |α̃|) plane is shown in Fig. 5.1 for an ex-

tensile system. All linear stability boundaries meet at r = 1 and |α| = 2KΓ/(γλ).

This represents a nonequilibrium multicritical point analogue to an equilibrium

Lifshitz point, where ordered, disordered and modulated phases coexist. The blue

line corresponds to the bend instability at αθc(θ, ψ = 0). Also shown is the on-

set of instability αθc(θ, ψ = π/2) of pure splay fluctuations (green line). This

‘bend-to-splay ’ crossover has previously been identified as the mechanism of defect

formation [20]. Finally, the purple line is the boundary αSc where fluctuations in

the magnitude of the order parameter become linearly unstable. The modulated

phase near onset is expected to have different structures for r above and below 1

because the instability is isotropic in wave vector for r < 1, but dominated by bend

fluctuations for r > 1. As we will see below, this is borne out by the numerical

solution of the nonlinear equations. In contractile systems, in contrast, the first

linear instability is controlled by splay fluctuations.
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Figure 5.3: Numerical phase diagram in the (κ̃, |α̃|) plane for r = 2. The lines
are the linear stability boundaries discussed in section 5.3: bend instability (blue
line), splay instability (orange line), instability of magnitude of order parameter

(red line). The various symbols have same meaning as in Fig. 5.2.

5.4 Numerical results: kink walls, defect align-

ment and turbulence

We have integrated numerically Eq. (5.8) in a square box of side L with bi-periodic

boundary conditions. The Q dynamics is integrated numerically on a square do-

main of grid size ∆x = ∆y = 1 using predictor-corrector method with the central

difference scheme and a time step ∆t = 10−3. We have considered system sizes

L = 50 and L = 100. Most of the numerical results for r > 1 have been obtained

by starting the system in a uniform nematic state ordered along the x-axis with

some superimposed noise. We also have verified that our results are robust against

the selection of initial conditions for all values of r.

We vary activity, the distance r from the mean-field order-disorder transition, and

the tension κ̃. As activity is increased at fixed r or fixed κ̃, we obtain a succession
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of increasingly disordered structures summarized in the phase diagrams shown in

Figs. 5.2 and 5.3.

To characterize the various states we have measured the local and global degree of

nematic order and the number of defects. We introduce two quantities to quantify

nematic order

〈S〉 = 2
√
〈Q2

xx +Q2
xy〉 , (5.24)

〈Q〉 = 2
√
〈Qxx〉2 + 〈Qxy〉2 , (5.25)

where the brackets denote a spatial average over the system. Both quantities will of

course be finite in a state with uniform nematic order. On the other hand, recalling

that Qxx = (S/2) cos 2θ and Qxy = (S/2) sin 2θ, it is easy to recognize that a state

with large but randomly oriented nematic domains will be characterized by a finite

value of 〈S〉 but a vanishing value of 〈Q〉 (in the limit of large system size). For

this reason we refer to 〈S〉 as a measure of the amount of local order in the system,

while 〈Q〉 characterizes global nematic order at the scale of the system size. Of

course in a uniform nematic state 〈S〉 = 〈Q〉.

Activity yields spatial structures : Activity drives uniform nematic states towards

more disordered configurations and builds up local nematic order in uniform

isotropic states. This is displayed in Fig. 5.4(a) that shows the evolution with

activity of local nematic order 〈S〉 for values of r below (red curves) and above

(blue curves) the mean field I-N transition. At low activity the system is in a

homogeneous state and 〈S〉 has its mean-field value. For r < 1 〈S〉 remains iden-

tically zero up to the value of activity corresponding to the linear instability of

the isotropic state, and then grows with activity. The result that activity builds

nematic order may seems surprising, but is consistent with recent results for wet

systems, where flows induced by active stresses were shown to renormalize the
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Figure 5.4: (a) 〈S〉 as a function of activity. The top three curves correspond
to r > 1 and show the decay of 〈S〉 with increasing activity from its mean-field
value S0 =

√
(r − 1)/r at zero activity. The bottom three curves correspond

to r < 1, where 〈S〉 ramps up sharply from its low activity value of zero at the
onset |αcI | of the linear instability. The curves through the data are a guide to
the eye. (b) The evolution with activity of the two measure of nematic order 〈Q〉
(red crosses) and 〈S〉 (blue squares) for r = 4, κ̃ = 10 and λ = 1.5. The shading
denotes the various regimes as estimated from the numerics. At low activity the
system is in a uniform nematic state (light green) and 〈Q〉 = 〈S〉 = S0 = 0.86.
In the region of bend modulations (white) 〈S〉 remains close to its maximum
value, while 〈Q〉 drops sharply, remaining close to zero in all subsequent regimes.
The slight increase of 〈Q〉 near the transition from KW to turbulence reflects the
alignment of KW in this region. (c) Number of defects as a function of time for
six values of activity for r = 4: |α̃| = 6, 7, corresponding to KW with defects
(green curves), |α̃| = 20, 30, corresponding to defect-free KW (blue curves),

and |α̃| = 40, 50, corresponding to the turbulent state (red curves).
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Figure 5.5: (a) Profiles of the angle θ of the director with the direction of
mean order for bend (blue curve, |α̃| = 3) and kink walls (red curve, |α̃| = 20),
κ̃ = 10 and λ = 1.5 The director profiles for both deformations are shown at the
top of the figure. (b) Width of kink walls versus activity for r = 2, 3, 4, κ̃ = 10

and λ = 1.5. The dashed line has slope −1/2.

location of the IN transition [93].

For r > 1 the system is in a uniform nematic state at zero activity with 〈S〉 =√
(r − 1)/r. Activity disorders the system driving the onset of spatial structures

of increasing complexity, and 〈S〉 decreases continuously. At large activity where

the system enters the turbulent regime, the distance r form the mean-field critical

point ceases to provide a distinction between states and both sets of curves ( r > 1

and r < 1 ) converge to the same value of 〈S〉. It should be stressed that of course

the line of I-N transition is itself generally renormalized by activity via coupling to

viscous flows [93]. These effects are however, not incorporated in our model that

considers length scales much larger than the hydrodynamic screening length `η.

We now characterize the various regimes obtained by increasing activity.

Bend modulations: When r > 1 the uniform active nematic state becomes unsta-

ble to bend fluctuations(see movie S3 in SI) of the director at |α| > αbec . This

yields a state with bands of alternating high and low value of the order parameter
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S and associated bend deformations of the director, as shown in Fig. 5.2(c). The

bands exhibit a high degree of smectic order. In wet systems this is the regime of

spontaneous flow [6], and was reported in most previous studies with and with-

out frictional damping [49, 16, 19], but not in Ref. [92]. The activity threshold

found numerically matches well the value obtained from linear stability analysis,

as evident from Figs. 5.2(a) and (b). The mean order parameter 〈S〉 is lower than

its mean-field value but remains finite, as shown in Fig. 5.4(a), while 〈Q〉 quickly

drops to 0, as evident from Fig. 5.4(b). Beyond the activity where the degree of

global order 〈Q〉 drops to zero, the system does not have a memory of the direction

of initial order. Hence, structures obtained at higher activity are expected to be

the same for r > 1 and r < 1. This is also evident from the phase diagram of Fig.

5.2. We discuss these states in the following.

Kink walls (KW): Upon increasing activity, the magnitude of 〈S〉 decreases and

director deformations become larger, acquiring a splay character (see movies S2

and S5 in SI). The system organizes in a structure of parallel kink walls, with

large-scale smectic order, resembling the patterns seen in living liquid crystals of

B. subtilis swimming in a passive nematic [44, 104]. The width and spacing of the

kink walls is set by the length scale `KW ∼ (qSm)−1 ∼
√

Γκ/(|α|γ) ∼ |α|−1/2, as

shown in Fig. 5.5(b) and seen in experiments [44]. The activity range over which

the aligned KW are observed is not, however, sufficient to establish scaling. To

highlight the distinction between bands of bend modulation and kink walls, we

show in Fig. 5.5(a) the director profile for the two structures. Due to the large splay

deformation of the director and the associated suppression of the local value of S,

defect pairs unbind and travel along the kink walls (Fig. 5.2 (c)). The majority of

defect pairs annihilate at long times, as evident from the plot of number of defects

versus time shown in Fig. 5.4(c) (dark and light green curves), resulting in a state

with a small concentration of stable unbound defects (typically fewer than 10 for

L = 100), as shown in Fig. 5.4(c). The few remaining +1/2 defects move along the
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kink walls maintaining essentially parallel relative orientation (see movies S1 and

S4 in SI), i.e. exhibit polar order as reported in [4, 91]. This behavior is observed

in a very narrow range of activity and only for sufficiently large values of κ̃, as

shown in the phase diagram in Fig. 5.3.
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Figure 5.6: Snapshots at (a) t = 92τ , (b) t = 143τ and (c) t = 170τ showing
the transient nematic alignment of defects for r = −1, |α̃| = 14, κ̃ = 10 and
λ = 1.5(see movie S7 in SI). These structures are obtained for values of activity
close to the boundary of linear stability of the uniform mean-field isotropic state,
which is at αcI = 13.2 for the parameters used here. The defects are highlighted

using the same convention as described in the caption of Fig. 5.2.

Defect ordering: As discussed in the Introduction, experiments have reported

nematic order of the orientation of +1/2 defects in microtubule bundle suspen-

sions [4]. Previous numerical work has observed both nematic [92] and polar [4, 91]

order of the defects in dry systems and a lattice of flow vortices with rows of ne-

matically ordered defects at the wet-to-dry crossover [94]. In our model we have

observed two types of defect-ordered structures.

For r < 1, and in a very narrow range of activity near the linear stability boundary,

we observe nematic alignment of the axes of the +1/2 defects similar to the one

seen in numerical models of Refs. [92, 94], as shown in Fig. 5.6(a) and movie

S7(in SI). Unlike previous work, we find, however, that these rows of defects are a

transient state. At long times all the defects annihilate leading to a state of kink

walls, with no unbound defects, as displayed in Fig. 5.6 for r = −1 and |α̃| = 14.
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Note that the work by Doostmohammadi et al. [94] included flow, suggesting that

this may play a role in stabilizing these nematic defect rows. On the other hand,

the work by Oza and Dunkel [92] is, like ours, a dry model. We have verified

that the rows of nematically aligned defect are long lived for the parameter values

used in Ref. [92] where many of the orientation-flow couplings are set to zero

(see Appendix A). Clearly more work is needed to fully explore the very large

parameter space of these rich models.

In addition, we observe stable polar order of the orientation of the +1/2 defects in

the regime of defective kink walls displayed in Fig. 5.2(d) and more clearly evident

in Supplementary movie S4. This type of order, with defects situated at the end of

kink walls, is the same as observed previously in simulations of dry systems [4, 91].

Turbulent state: At even higher activity, when the width of the kink walls become

of the order of `0
Q, we find a turbulent state with proliferation of unbound defect

(see movies S6 and S8 in SI). The evolution of the defect density with time is

shown in Fig. 5.4(c) (red and orange curves).

5.5 Comparison to previous work

The theoretical literature on continuum models of the emergent dynamics of active

nematic liquid crystals has seen a rapid growth in recent years, with several papers

directly related to the work presented here. For this reason we think it useful to

summarize in this section the relation of our work to a few others [94, 91, 92]

that also discuss the elimination of the flow velocity in the overdamped limit by

balancing frictional and active forces.

Perhaps most closely related to our work is the one by Putzig et al., where the

authors eliminate flow in favor of active stresses, but retain the dynamics of the

density. In the density equation flow elimination leads to the curvature induced
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currents that have been studied extensively in the literature [9]. Allowing for

density variations yields the previously discussed phase separation in alternating

bands of ordered and disordered regions in a very narrow region near the mean field

isotropic-nematic transition [ref], but does not seem to affect the splay or bend

instability of the order parameter which yields modulated states as found in our

model. These authors retain general values for the various parameters that couple

orientation and flow (see Appendix A for details) and find robust polar alignment

of the orientation of the +1/2 defects and modulated kink walls structures. For

our choice of such flow-orientation couplings, the same stable polar ordering of

defects is obtained only in the narrow region of parameters identified by filled

green stars in Fig. 5.1 and Fig. 5.2.

Finally, Putzig et al. do not discuss the complete phase diagram across both the

mean field isotropic and nematic states, nor highlight the role of the negative

effective stiffness as a generic pattern formation mechanism.

A Q-only model similar to ours was recently proposed by Oza and Dunkel [92],

who consider a compressible active nematic with constant density, but assume

from the outset a negative value of the elastic stiffness. Additionally, these au-

thors neglect the coupling of orientation to both shear flows (λ = 0) and vorticity

(see also Appendix A). For this special parameter values they find stable nematic

alignment of the +1/2 defects that persist in steady state at low activity. This is

in contrast to our model where nematic defect ordering is always transient. The

ad hoc assumption of negative stiffness (as opposed to a stiffness that is driven

negative by activity) yields a phase diagram where the homogenous states are

found to be unstable even for zero value of activity.

Finally, Doosmohammadi et al. consider an active nematic suspension with both
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substrate friction and viscous flow. An intriguing result of this work is the ob-

servation of stable rows of aligned defects with nematic order of the +1/2 defects

perhaps resembling the structures reported in suspensions of microtubules [4].

The ordering of defects is accompanied by an ordered lattice of flow vortices of

alternating sign. While we observe similar states of rows of defects with nematic

alignment as shown in Fig. 5.6, we find that these states are transient and the

steady state is defect free in this regime of parameters. This suggests that flow

may be needed to stabilize the nematic order of defects. These authors also state

that when frictional damping in the dominant mechanism for dissipation, the sys-

tem no longer exhibits spontaneous defect proliferation. This may follow from the

fact that they examine behavior by increasing friction at fixed activity, which in

the overdamped regime is equivalent to decreasing the effective activity α that

enters in the combination α/Γ.

5.6 Conclusion and Discussion

We have shown that at length scales larger than the hydrodynamic screening

length a compressible active nematic film can be described by a single equation

for the tensor order parameter Q. Activity renormalizes the elastic stiffness of

the nematic and drives it to negative values, destabilizing both the ordered and

disordered homogeneous states and providing a mechanism for pattern formation

analogue to that at play at an equilibrium Lifshitz point. Activity plays different

roles depending on the value of the parameter r that tunes the proximity to the

mean field isotropic-nematic transition of the passive system. For r < 1, corre-

sponding to a uniform passive isotropic state in mean-field, activity builds up local

nematic order, while it disrupts it for r > 1, which corresponds to the ordered state

in mean-field. In both cases a moderate activity yields spatial structures that are

stabilized at small length scales by a surface tension that favors the formation
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of isotropic/nematic interfaces. Our work provides a minimal model that unifies

many previously presented results in a phase diagram that includes: (i) a regime of

spontaneous bend deformations of the director field that corresponds to the spon-

taneous laminar flow state of wet systems; (ii) kink walls with unbound defects;

(iii) defect-free kink walls; (iv) and finally chaotic dynamics with proliferation of

topological defects. The regimes of bend deformations and kink walls both exhibit

large-scale smectic order, similar to the one observed in suspensions of Bacillus

subtilis swimming in chromonic liquid crystals [44, 104], where substrate friction

is indeed the dominant dissipation process.

Defect pairs unbind at the boundaries of kink walls, where nematic order distor-

tion are largest, and zip along the walls, leaving large distortions in their trail (see

SI movie S4). As activity increases, kink walls begin to meander. This eventually

results in the loss of smectic order and the onset of the chaotic spatio-temporal dy-

namics that has been referred to as active turbulence, of the value of r. The finding

that activity builds up nematic order in the regime where the passive system is

isotropic was also reported in Ref. [93] for an active nematic where flow dominates

over viscous dissipation. In this case it arises because flows due to active stresses

effectively suppress the damping of the nematic order parameter, shifting the IN

transition and enhancing the nematic correlation length. In our overdamped sys-

tem the enhancement arises form nonlinear terms coupling the order parameter to

active flows.

The effective equation for the order parameter obtained here is similar to a Swift-

Hohenberg equation which is known to generically give rise to modulated phases.

The additional nonlinearities and anisotropies present in our model as compared

to conventional Swift-Hohenberg models do not affect the symmetry of the specific

nonequilibrium structures, but only the parameter values controlling the crossover

between the various regimes. In particular, the cubic nonlinearity in the term

proportional to B(Q) on the right hand side of Eq. (5.3) is necessary to ensure
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that local nematic order as quantified by 〈S〉 remain bounded. Our work therefore

shows that the spatially modulated structures arising in active systems, especially

the kink walls, are a generic consequence of the structure of the active hydrody-

namic equations and identifies of the softening of the elastic stiffness due to activ-

ity as a generic mechanism for pattern formation in active systems dominated by

frictional damping.

Using this model, we demonstrate that activity destabilizes not only the uniform

ordered state, as well established in the literature, but also the mean-field disor-

dered state. As well established, activity yields defect unbinding, but the pro-

liferation of unbound defects does not grow monotonically with activity. This is

evident from the sequence of steady states shown is the phase diagrams of Figs.5.1

and 5.2 we find a state of kink walls with defects in a range of activity that give

way to defect-free kink walls at higher activity. Defect proliferation is the result

of two competing effects: the unbinding of defects pairs that occurs mainly along

kink walls and increases with activity and the pair annihilation that is largely

controlled by the speed of the +1/2 defects, and of course defect density. Both

mechanisms depend on activity and our findings suggest that one may dominate

over the other in different regions of parameter space. While defect unbinding in

extensile systems has been associated with a transition to regime dominated by

splay deformation of the order parameter, more work is needed for a quantitative

understanding of how the creation and annihilation rate depend on activity and

flow.

Finally, experiments in active microtubule suspension at an oil-water interface

have reported a remarkable nematic alignment of +1/2 defect over large scales [4].

Both nematic and polar defect alignment have been reported in previous numerical

studies of various models [4, 94, 92, 91]. Here we obtain both nematic and polar

alignment of the orientation of the +1/2 defects in different regions of parameters.

Unlike previous work, we find, however, that nematic order is always transient
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when flow is completely screened by friction. Polar order is, however, stable,

albeit in a narrow region of parameters.

A more subtle interplay of viscous and frictional dissipation may stabilize this

defect-ordered state as obtained in [94] using a full hydrodynamic model, but

more work remains to be done to understand the origin of this topological order.
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Appendix C

C.1 Overdamped nematic in 2d : General equa-

tions

Here we present the general equations for the tensor order parameter Q of an active

nematic on a substrate. The presence of the substrate breaks Galilean invariance,

removing the constraints that determine the sign and value of the coefficients of the

co-rotational derivative that couple alignment and flow. In general, the equation

for the Q-tensor takes the form

∂tQ + λC(v · ∇)Q− λR[Q, ω] = S(Q,∇v) +
1

γ
H , (C.1.1)

where

S = λ1

[
D− 1

d
Tr(D)

]
+ λ′2

[
Q ·D + D ·Q− 2

d
1 Tr(Q ·D)

]
+λ2

2

d
Q Tr(D)− λ3Q Tr(Q ·D) , (C.1.2)

with d the dimensionality, D and ω the symmetrized strain rate and vorticity

defined in the main text after Eq. (5.3) and [A,B] = A ·B−B ·A. In system with
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Galilean invariance the coefficients of the advective derivative and the orientation-

vorticity coupling are constrained to have unit value, or

λC = λR = 1 . (C.1.3)

Additionally, in passive liquid crystals the other parameters coupling orientation

and flow have been calculated [86] and are generally taken as

λ′2 = −λ2 = 1 ,

λ1 = λ3 = λ . (C.1.4)

In 2d the fact that Q is a symmetric traceless tensor yields the identity

Q ·D + D ·Q− 1 Tr(Q ·D) = Q Tr(D) . (C.1.5)

Thus for a 2d active nematic on a substrate the matrix S can be written without

loss of generality as

S = λ1

[
D− 1

d
Tr(D)

]
+ λ2Q Tr(D)− λ3Q Tr(Q ·D) . (C.1.6)

In order to reduce the number of parameters in our work we have taken λC = λR =

1, λ2 = 0 and λ1 = λ3 = λ. We now make an explicit comparison between our

model and the equations used in a few other recent works that are most directly

relevant to ours.

Oza and Dunkel [92] : Like us, these authors have considered a compressible,

overdamped active nematic with constant density. These authors have chosen

λC = −λ2 = 1 and λ1 = λ3 = 0. The parameter λR (denoted as κ in their work) is

retained as arbitrary in the equations, but set to zero in the numerical calculations.

As a result, the only term coupling orientation and flow is a convective term of
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the form ∇ · (vQ) = (v ·∇)Q + Q(∇ · v). The only active terms then come

from eliminating the flow using Eq. (5.6). These terms cannot yield the activity-

induced suppression of the nematic stiffness, which is therefore simply assumed to

be negative from the outset. One issue with this formulation is that the model

predicts that the homogeneous states are unstable even at zero activity.

Putzig et al. [91] : These authors consider an overdamped active nematic and

eliminate flow using Eq. (5.6), but allow the density to vary, although it is a little

unclear whether their density should be interpreted as the concentration of active

units or the density of the suspension. They work in 2d and consider arbitrary

values for the parameters coupling concentration and flow. Taking advantage of

the identity (C.1.5), and denoting with a subscript P the parameters of Ref. [91]

when different from ours, their equations correspond to the following choice: λ2 =

λP2 − λC , λ3 = 0, with λ1, λC and λR allowed to have generic values.

Doostmohammadi et al. [94] : These authors consider an active nematic sus-

pension in 3d and include both viscous flows and friction with a substrate. All

the parameters coupling orientation and flow are assumed to have the value they

would have in a passive system with Galilean invariance. They assume the total

density of the suspension to be constant and require the flow to be incompressible,

but allow the concentration of active particles to vary.

C.2 Linear Modes for general flow coupling pa-

rameters

In this Appendix we discuss the linear modes obtained by using the general form

of the equations for an overdamped nematic as given in Eqs. (C.1.1) and (C.1.6)

for both the case of compressible and incompressible flows.
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Compressible overdamped nematic. In this case, after eliminating the flow

using Eq. (5.6), the linearized equations for the Fourier amplitudes of the fluctu-

ations of Q about a uniform nematic state (r > 1) are given by

∂tQxx = −1

γ

[
2A(r − 1) +Kxx(α, ψ)q2 + κq4

]
Qxx

−λ2α

2Γ
S0 sin 2ψ q2Qxy , (C.2.1)

∂tQxy = −1

γ

[
Kxy(α, ψ)q2 + κq2

]
Qxy +

λRα

2Γ
S0 sin 2ψ q2Qxx ,

where

Kxx(α, ψ) = K +
λ1α

2Γ
+
λ2α

2Γ
S0 cos 2ψ − λ3α

4Γ
S2

0 , (C.2.2)

Kxy(α, ψ) = K +
λ1α

2Γ
+
λRα

2Γ
S0 cos 2ψ , (C.2.3)

with ψ the angle between the wave vector and the ordering direction. When

λ2 = 0 and λ1 = λ3 = λ, the above expressions reduce those given in Eqs. 5.16

and 5.17 of the main text. The effective stiffnesses Kxx and Kxy can always be

driven negative at large extensile activities. Additionally, Eqs. (C.2.1) and (C.2.2)

decouple for pure bend and splay deformations corresponding to ψ = 0 (bend)

and ψ = π/2 (splay). Along these directions the instabilities of both director

and order parameter magnitude have the same qualitative behavior as for the

parameters used in the main text, with only quantitative differences. For general

directions, the modes are coupled, but again the various instabilities and regimes

are qualitatively unchanged.

Incompressible overdamped nematic. When the flow is incompressible, it is

not possible to obtain a single closed nonlinear PDE for Q. One can still, however,

explicitly eliminate the velocity in the linearized equations for the fluctuations.

The dynamics of the Fourier amplitude of fluctuations about the ordered state
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(r > 1) is then given by

∂tQxx = −1

γ

[
2A(r − 1) +Kxx(α, ψ)q2 + κq4

]
Qxx

+
α

2Γ
sin 2ψ

[
λ1 cos 2ψ − λ3S

2
0/2
]
q2Qxy , (C.2.4)

∂tQxy = −1

γ

[
Kxy(α, ψ)q2 + κq4

]
Qxy

+
α

2Γ
sin 2ψ [λ1 cos 2ψ + λRS0] q2Qxx , (C.2.5)

where

Kxx(α, ψ) = K +
αγ

2Γ
sin2 2ψ

(
λ1 − λ3S

2
0/2
)
, (C.2.6)

Kxy(α, ψ) = K +
αγ

2Γ
cos 2ψ (λ1 cos 2ψ + λRS0) . (C.2.7)

Once again, the modes decouple for pure bend and splay fluctuations, with

Kxx(α, ψ = 0) = Kxx(α, ψ = π/2) = K , (C.2.8)

Kxy(α, ψ = 0) = K +
αγλ1

2Γ

(
1 +

λRS0

λ1

)
, (C.2.9)

Kxy(α, ψ = π/2) = K +
αγλ1

2Γ

(
1− λRS0

λ1

)
. (C.2.10)

The fastest growing unstable mode is along the direction corresponding to pure

bend for extensile systems and to pure splay for contractile ones, as shown in

Fig. B1 for extensile systems, and describes the growth of director fluctuations.

However, in incompressible systems the mode controlling the dynamics of fluctua-

tions in the order parameter amplitude is stable along these special directions and

becomes unstable only in a narrow range of angles ψ centered around ψ = π/4

and in a narrow range of activity. This difference may lead to the suppression

of defect formation in frictional systems reported in Ref. [94], but verifying this

requires numerical investigations beyond the scope of the present work.
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Figure B1: Polar plot of the growth rate of the most unstable mode (this is
the mode that for ψ = 0, π/2 describes fluctuations in the director ∼ ∆Qxy)
as a function of the angle ψ for fixed q = 0.7, chosen such that all directions
are unstable, and extensile systems. For both, incompressible (blue curve) and
compressible (red curve) flows, the growth rate is largest for ψ = 0, π, corre-
sponding to bend fluctuations. The parameter values used for the figure are
λ1 = 1.5, λ3 = 1.5, λR = 1, λC = 1 and α̃ = −20.0, with units chosen as in the

main text.

115



Bibliography

[1] Gil Henkin, Stephen J. DeCamp, Daniel T. N. Chen, Tim Sanchez, and

Zvonimir Dogic. Tunable dynamics of microtubule-based active isotropic

gels. Philosophical Transactions of the Royal Society of London A: Mathe-

matical, Physical and Engineering Sciences, 372, 0142, 2014.

[2] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost,

Madan Rao, and R. Aditi Simha. Hydrodynamics of soft active matter. Rev.

Mod. Phys., 85, 1143–1189, 2013.

[3] Tim Sanchez, Daniel T. N. Chen, Stephen J. DeCamp, Michael Heymann,

and Zvonimir Dogic. Spontaneous motion in hierarchically assembled active

matter. Nature, 491, 431–434, 2012.

[4] DeCamp Stephen J., Redner Gabriel S., Baskaran Aparna, Hagan Michael

F., and Dogic Zvonimir. Orientational order of motile defects in active

nematics. Nat Mater, 14(11), 1110–1115, nov 2015.

[5] F. Nedelec, T. Surrey, AC. Maggs, and S. Leibler. Self-organization of mi-

crotubules and motors. Nature, 389, 305–308, 1997.

[6] R. Voituriez, J. F. Joanny, and J. Prost. Spontaneous flow transition in

active polar gels. Europhys. Lett., 70, 404–410, 2005.

116

http://dx.doi.org/10.1098/rsta.2014.0142
http://dx.doi.org/10.1098/rsta.2014.0142
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1038/nature11591
http://dx.doi.org/10.1038/nature11591
http://dx.doi.org/10.1038/nmat4387;;;;;;;;;;;;; 10.1038/nmat4387
http://dx.doi.org/10.1038/nmat4387;;;;;;;;;;;;; 10.1038/nmat4387
http://dx.doi.org/10.1038/38532
http://dx.doi.org/10.1038/38532
http://dx.doi.org/10.1209/epl/i2004-10501-2
http://dx.doi.org/10.1209/epl/i2004-10501-2


Chapter 5. Active Nematics on a Substrate

[7] D. Marenduzzo, E. Orlandini, M. E. Cates, and J. M. Yeomans. Steady-state

hydrodynamic instabilities of active liquid crystals: Hybrid lattice Boltz-

mann simulations. Phys. Rev. E, 76, 031921, 2007.

[8] Luca Giomi, M. Cristina Marchetti, and Tanniemola B. Liverpool. Complex

Spontaneous Flows and Concentration Banding in Active Polar Films. Phys.

Rev. Lett., 101, 198101, 2008.

[9] S. Ramaswamy, R. Aditi Simha, and J. Toner. Active nematics on a sub-

strate: Giant number fluctuations and long-time tails. EPL (Europhysics

Letters), 62, 196, 2003.

[10] Shradha Mishra and Sriram Ramaswamy. Active Nematics Are Intrinsically

Phase Separated. Phys. Rev. Lett., 97, 090602, 2006.

[11] Vijay Narayan, Sriram Ramaswamy, and Narayanan Menon. Long-lived

Giant Number Fluctuations in a Swarming Granular Nematic. Science, 317,

105, 2007.

[12] Andrey Sokolov and Igor S. Aranson. Reduction of viscosity in suspension

of swimming bacteria. Phys. Rev. Lett., 103, 148101, Sep 2009.

[13] Luca Giomi, Tanniemola B. Liverpool, and M. Cristina Marchetti. Sheared

active fluids: Thickening, thinning, and vanishing viscosity. Phys. Rev. E,

81, 051908, May 2010.

[14] Suzanne M. Fielding, Davide Marenduzzo, and Michael E. Cates. Nonlin-

ear dynamics and rheology of active fluids: Simulations in two dimensions.

Physical Review E, 83(4), 041910, 2011.

[15] L. Giomi, L. Mahadevan, B. Chakraborty, and M. F. Hagan. Excitable

Patterns in Active Nematics. Phys. Rev. Lett., 106, 218101, 2011.

117

http://dx.doi.org/10.1103/PhysRevE.76.031921
http://dx.doi.org/10.1103/PhysRevE.76.031921
http://dx.doi.org/10.1103/PhysRevE.76.031921
http://dx.doi.org/10.1103/PhysRevLett.101.198101
http://dx.doi.org/10.1103/PhysRevLett.101.198101
http://dx.doi.org/10.1103/PhysRevLett.97.090602
http://dx.doi.org/10.1103/PhysRevLett.97.090602
http://dx.doi.org/10.1126/science.1140414
http://dx.doi.org/10.1126/science.1140414
http://dx.doi.org/10.1103/PhysRevLett.103.148101
http://dx.doi.org/10.1103/PhysRevLett.103.148101
http://dx.doi.org/10.1103/PhysRevE.81.051908
http://dx.doi.org/10.1103/PhysRevE.81.051908
http://dx.doi.org/10.1103/PhysRevE.83.041910
http://dx.doi.org/10.1103/PhysRevE.83.041910
http://dx.doi.org/10.1103/PhysRevLett.106.218101
http://dx.doi.org/10.1103/PhysRevLett.106.218101


Chapter 5. Active Nematics on a Substrate

[16] L Giomi, L Mahadevan, B Chakraborty, and M F Hagan. Banding, ex-

citability and chaos in active nematic suspensions. Nonlinearity, 25, 2245,

2012.

[17] Henricus H. Wensink, Jörn Dunkel, Sebastian Heidenreich, Knut Drescher,
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