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Chapter 2. Mechanochemical Model of Collective Cell Migration

typically have low aspect ratio with a quotient of maximum shear to tension less than

0.2 (Fig. 2.4d).

Figure 2.4: The stress tensor within the circular monolayers is isotropic. The first and
second principal stresses, σ1 and σ2, are computed. (a, b) Representative plots of (a)
the mean principal stress, (σ1+σ2)/2 and (b) the maximum shear stress, (σ1−σ2)/2 for
a circular monolayer at one point in time. (c) Visualization of the stress tensor in the
monolayer where the major and minor axes of each ellipse correspond to the magnitude
of σ1 and σ2, and the orientation of the major axis corresponds to the orientation of
the first principal stress σ1. (d) As a measure of stress isotropy, the difference in the
principal stresses is divided by the sum of the principal stresses with a value of zero
indicating a fully isotropic state. Histograms of (σ1 − σ2)/(σ1 + σ2) are generated for
each point in time (gray lines) and for all time points (blue line). The mean and median

are <0.2, indicating the stress tensor is nearly isotropic.

The chemical potential difference ∆µ is controlled by the concentration of the active

units (e.g., phosphorylated myosins), which has been assumed to be constant in much

of previous work. Here instead we explicitly consider the dependence of ∆µ on the con-

centration c(r, t) of active units and treat c(r, t) as a dynamical variable.

Although we are not aware of any direct measurement of active stress in live cells and

their relationships with myosin concentration and chemical potential of ATP, we model

the dependence of active stress on concentration on the basis of two simple assumptions.

First, we assume that for weak to moderate activity the active stress depends linearly

on the chemical potential difference ∆µ between ATP and its products. Second, we

assume the chemical potential difference is related logarithmically to the concentration
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Chapter 2. Mechanochemical Model of Collective Cell Migration

of reactants and products. The logarithmic dependence can be justified as follows. ATP

hydrolysis involves conversion of high-energy ATP molecules to ADP and inorganic phos-

phate P, ATP→ ADP+P. The change in chemical potential ∆µ during ATP hydrolysis

is given by the difference in chemical potentials of the reactant and the products as,

∆µ = µATP − µADP − µP . (2.11)

Treating the collection of molecules of each species as an ideal gas, the chemical po-

tential of species i is related to the concentration of molecules as µi = µ0
i + RT log (ci)

where the subscript i represents the molecule type (ATP, ADP or P), R is the universal

gas constant, T is the temperature and µ0
i is the chemical potential at the standard

thermodynamic state [92]. We thus have,

∆µ = RT log

(
cATPcs
cADPcP

e∆µ0/RT

)
≡ RT log (cATP/c

0
ATP) , (2.12)

where c0
ATP is the ATP concentration in chemical equilibrium given by c0

ATP = cADPcP
cs

e−∆µ0/RT ,

with cs being the standard thermodynamic concentration and ∆µ0 the standard change

in chemical potential. With this identification, active stresses are generated by molec-

ular motors for cATP > c0
ATP. A positive value of ∆µ can trigger phosphorylation of

myosin light-chain kinase causing myosin-II to assume an extended state, thereby pro-

moting its assembly into bipolar filaments leading to cell contraction [20]. This leads to

the assumption that the concentration cATP of hydrolysed ATP is proportional to the

concentration c of phosphorylated myosins. We thus have ∆µ ∝ log (c/c0), where c is

the concentration of the active units (e.g. phosphorylated myosins) and c0 is the equi-

librium concentration. Although we could have used a linear dependence of c and still

observe propagating waves as the monolayer expands, the linear dependence gives non-

physical quantitative values of the active stress. One can argue that linear dependence

of the concentration of active units to the active stress does not capture the generation

of active stresses by the complex actomyosin network.

The dynamics of the concentration field c(r, t) is then described by a reaction-advection

equation,

∂tc+∇∇∇ · (c∂tu) = −1

τ
(c− c0) +D∇2c+ αεkk + α′∇∇∇ · p , (2.13)

where∇∇∇·(c∂tu) is the convective flux, describing that cell layer motion can change the lo-

cal concentration of active units, τ is the timescale of turnovers of active units, α > 0 and

α′ > 0 are the rates of production of c due to compressive mechanical and polarization

strains, respectively, and D is an effective diffusion constant, describing the tendency of
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Chapter 2. Mechanochemical Model of Collective Cell Migration

neighboring cells to equalize activity levels. The assumption that α, α′ > 0 means that

a local increase in cell area generates a local increase in c, hence in the contractile stress

σa. This is in agreement with experimental data on confined cell monolayers [88] and

previous results for single cells [93] and multicellular monolayers [85] showing a growth

of the active stress with the size of constituent cells.

Finally, the dynamics of the polarization field p(r, t) is given by,

∂tpi =
(
a− b|p|2

)
pi + κ∇2pi − w1∂jεij − w2∂iεkk + w′∂i(c/c0) , (2.14)

where the first two terms (with b > 0) allow for the onset of a homogeneously polar state,

|p| =
√
b/a, when a > 0. The local cost of fluctuations in polarization is characterized

by an isotropic stiffness κ; w1, w2 and w′ describe the tendency of cell polarization to

align with gradients of elastic strain and concentration, respectively.

We summarize the coupled equations of our model here,

ζ∂tui = fpi + h∂jσij , (2.15a)

∂tc+∇∇∇ · (c∂tu) = −1

τ
(c− c0) +D∇2c+ αεkk + α′∇∇∇ · p , (2.15b)

∂tpi =
(
a− b|p|2

)
pi + κ∇2pi − w1∂jεij − w2∂iεkk + w′∂i(c/c0) . (2.15c)

with

σij = σel
ij + σa

ij (2.16)

where

σel
ij = Bεkkδij + 2G

(
εij −

1

2
δijεkk

)
, (2.17a)

σaij = β log(c/c0)δij + β2∇∇∇ · p δij +
β3

2
(∂ipj + ∂jpi) . (2.17b)

Eqs. (2.15)-(2.17) describe the dynamics of the cell monolayer. This model is applied

to the collective cell migration in expanding tissues in Chapter 3 and the collective cell

migration in confined tissues in Chapter 4.

2.4 Previous Models of Collective Cell Migration

Various models have been developed to describe collective cell migration. Most can be

divided into two groups: models that study collective cell migration by treating cells
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Chapter 2. Mechanochemical Model of Collective Cell Migration

as particles [94–97] and models like ours that treat the cell monolayer as a contin-

uum [15, 18, 98–100]. Additionally, early models of epidermal (rather than epithelial)

wound healing use reaction-diffusion equation to describe collective migration and pro-

liferation as the response to a diffusive chemical signal generated by the wound [98].

These models cannot capture the measured mechanical forces that expanding mono-

layers exert on their environments. Mark et al. proposed a one dimensional model to

describe the finger-like shapes that are observed in some experiments during monolayer

expansion [100]. The cell monolayer interface is treated as continuous one-dimensional

contour characterized by its curvature and surface tension. This work demonstrates

that the feedback between restoring forces and the curvature-induced motility drives

a dynamic instability that gives rise to finger-like protrusions qualitatively similar to

those seen in some experimental wound healing assays. This model does not, however,

describe what happens throughout the cell monolayer since it focuses on the dynamics

of the advancing tissue edge. Arciero et al. developed a two-dimensional continuum

mechanical model of cell migration that takes into account compressional elasticity of

the fluid, cell proliferation and cell apoptosis [15]. The cell layer is modeled as a com-

pressible fluid whose bulk modulus depends logarithmically on the cell density. The

model reproduces the experimental finding that cell density and cell stress are larger

at the center of the tissue. These authors did not, however, investigate the origin of

mechanical waves during tissue expansion.

It is especially useful to compare our model to the work by Köpf and Pismen [18] and to

that of Lee and Wolgemuth [89]. The model of Ref. [18] is very similar to the one used

here. Both models describe a tissue as an active elastic medium in terms of coupled

equations for displacement field, polarization, and an internal scalar degree of freedom

describing a deformation-induced chemical signal. Our model is a minimal version of

that of Ref. [18] where many of the non-essential nonlinearities and anisotropies are

ignored. In Ref. [89], in contrast, the authors describe the tissue as a fluid and retain

the anisotropic part of the active stress proportional to polarization. Internal dynamics

is introduced by assuming that the stress is viscoelastic with dynamics described by a

Maxwell model. This has a similar effect to our assumption of relaxational dynamics

for the chemical signal that controls the isotropic active stress. Both introduce an addi-

tional time scale that provides an effective inertia for the overdamped monolayer, be it

a liquid or an elastic medium.

In comparison, our minimal model contains a much smaller number of parameters and

yet is capable of validating two main experimental observations that were not to my
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Chapter 2. Mechanochemical Model of Collective Cell Migration

knowledge studied in previous theoretical models: (i) During monolayer expansion, me-

chanical stress waves propagate to span the cell layer. Our model demonstrates that the

feedback between deformations of the cell layer and the myosin-based contractility at

the cellular level creates an effective inertia that allows these propagating waves. Our

model also predicts that the cell layer responds to these propagating waves by under-

going periods of stiffening and softening which have been observed in experiments. (ii)

Our model explains that a systematic misalignment between local velocity and local

traction, which is evident in confined layer, is due to cell polarization. Our model also

predicts the observed standing waves of cellular motion in confined monolayers.
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Chapter 3

Wave Propagation in Expanding

Cell Monolayers

This chapter is based on a paper published in Physical Review Letters 114, 228101

(2015) with S. Banerjee and M. C. Marchetti as co-authors. My contribution was to

perform numerical simulations and provide numerical results, make necessary analyt-

ical calculations and contribute to the discussion of the results and the writing of the

manuscript.

3.1 Introduction

In the previous chapter we proposed and discussed a mechanochemical model of col-

lective cell migration. In this model the cell monolayer is described as as an elastic

continuum coupled to an internal degree of freedom, the concentration of active con-

tractile units. In this chapter we apply the model to an expanding cell monolayer which

is relevant to wound healing assay experiments. Recent wound healing assay experiments

reveal that unconstrained tissue expansion is accompanied by propagating mechanical

waves and build-up of intercellular stresses [7]. These waves are controlled by expres-

sions of myosin activity, cell-cell adhesion and cytoskeletal remodeling. Previous work

has also shown that the dynamics of active materials which include cell tissues, predict

a broad class of non-equilibrium states including spontaneous flow, wave propagation

and pattern formation [101–104]. It remains unclear, however, how cell contractility,

polarization or tissue cohesion influence stress generation and wave propagation.
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Chapter 3. Wave Propagation in Expanding Cell Monolayers

In this chapter we approximate the dynamics of the cell monolayer in one dimension,

since in wound healing assays, cells move unidirectionally. We then show how the

mechano-chemical feedback between local strain and contractility successfully captures

the experimentally observed stress waves [7]. We show this in series of results that in-

clude kymographs of monolayer stresses and monolayer velocity. We analyze these waves

by means of linear stability analysis which gives us a phase diagram exhibiting a region

of parameters where these propagating waves can occur. The linear stability analysis

gives a wave equation that shows how the coupling between cell contractility and cellular

deformations yields an effective inertia necessary to generate propagating stress waves.

We then use a scaling model for the expanding cell layer to study how the cell monolayer

responds to propagating waves. The scaling model captures the mechanical oscillations

and predicts self-sustained periods of stiffening and fluidization in the tissue.

3.2 Minimal Continuum Model for Spreading Cell Mono-

layer

3.2.1 Simplifying the Model to One Dimension

We begin by specializing the model introduced in Chapter 2 to one dimension. This

is appropriate for wound healing assays where cells move in one direction to close the

rectangular gap as shown in Fig. 4, top frame in Chapter 2. We thus consider one dimen-

sional model of an expanding cell monolayer by assuming translational invariance along

the y direction. The cell monolayer is described as a self-propelled medium coupling

the dynamics of the deformation of the medium, the concentration of force-generating

agents and the local polarization and is expanding in x-direction with velocity v(x, t) as

shown in Fig. 3.1.

3.2.2 Dynamical Equations Governing the Model

The monolayer is treated as an elastic continuum whose displacement field u(x, t) is

actively forced by polarization field p(x, t) and contractile stress. The equations of

motion governing the displacement field, polarization field and the concentration field

are respectively given by,

ζ∂tu = fp(x, t) + h(t)∂xσ , (3.1a)

∂tp = (a− bp2)p+ κ∂2
xp− w∂xε+ w′∂x(c/c0) , (3.1b)

∂tc+ ∂x(cv) = −1

τ
(c− c0) + αε+D∂2

xc . (3.1c)
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Chapter 3. Wave Propagation in Expanding Cell Monolayers

Figure 3.1: A schematic of a cell monolayer, with height h(t) and length L(t) expand-
ing in x direction with velocity v(x, t) = ∂tu, where u is the cell layer displacement.

The cell monolayer exerts a traction T on the substrate.

with σ(x, t) the internal stress in the monolayer, given by

σ = Bε+ β log (c/c0) , (3.2)

The left hand side of Eq. (3.1a) describes viscous friction with the substrate with ζ the

friction constant. The first term of the right hand side (R.H.S) of Eq. (3.1a) describes

the propulsion force due to cell polarization, the second term describes the traction

forces. The first term of R.H.S of Eq. (3.1b) with b > 0 allow for the onset of a

homogeneous polarized state p =
√
a/b when a > 0. The stiffness constant κ in the

second term characterizes the cost of local deformations in the polarization. The last

two terms in Eq. (3.1b) define active couplings of p to the strain and the concentration

field, with w,w′ > 0, such that p aligns with the gradient of monolayer density and

the concentration field c(x, t). The convective flux on the left hand side of Eq (3.1c)

describes that the monolayer expansion can change the local concentration of active

units. The first term of the R.H.S describes the relaxation of active units to equilibrium

concentration c0 in a timescale τ . The parameter α > 0 in the second term describes the

rate of production of c due to cellular stretching. The parameter D in the last term of

Eq. (3.1c) is an effective diffusion constant, describing the tendency of neighboring cells

to equalize activity levels. The internal stress σ(x, t) in Eq. (3.2) is given by the sum

of an elastic stress, with B the compressional elastic modulus and ε = ∂xu the strain

field, and an active stress that depends logarithmically on the concentration c of active

contractile units, such as phosphorylated myosins interacting with actin filaments and

whose magnitude depends on β > 0.
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Chapter 3. Wave Propagation in Expanding Cell Monolayers

3.2.3 Initial and Boundary Conditions

We consider the stress free boundary conditions i.e., σ(±L/2, t) = 0 at all times. We

assume that the monolayer is initially undeformed, u(x, 0) = 0, with an equilibrium

concentration of contractile elements, c(x, 0) = c0, and choose a no-flux boundary con-

dition for c, ∂xc(±L/2, t) = 0. Together Eqs. (3.1a) and (3.1c) define the dynamics of

the spreading monolayer, given the form of p(x, t) in Eq (3.4), the boundary and initial

conditions. The length of the spreading layer at time t is given by,

L(t) = L0 + u(L0/2, t)− u(−L0/2, t) , (3.3)

and the height is determined by the condition of volume conservation, h(t)L(t) = h0L0,

with L0 and h0 the initial length and height of the monolayer prior to expansion, re-

spectively.

3.2.4 Approximation of the Polarization Field

We assume that the polarization field relaxes more quickly than the monolayer density

or the concentration field, i.e, we consider that t � a−1 and let w = w′ = 0. The

polarization profile is then time-independent, and for L �
√
κ/a can be approximated

as,

p∞(x) '
√

(a/b) tanh(x/λ) , (3.4)

where λ =
√
κ/a is a length scale controlling the width of the transition zone from left

moving to right moving cells (Fig. 3.2) at the center of the monolayer. For simplicity

we let a = b which means p −→ ±1 at the cell edges. We first use this approximation in

studying the tissue spreading. We later study the effects of time-dependent polarization

field in Section 3.6.

3.3 Steady State Solutions

The homogeneous steady-state of Eqs. (3.1a) and (3.1c) is given by u = 0 and c = c0.

This is a quiescent steady-state when the cell layer does not spread (f = 0). To determine

the inhomogeneous steady-state describing an expanded cell monolayer (f 6= 0), we seek

solutions of Eqs. (3.1a) and (3.1c) by setting ∂tu = 0 and ∂tc = 0. The analytical steady

state solution for Eq. (3.1a) gives,

σ∞ = − λf
h∞

ln

(
coshx/λ

coshL∞/2λ

)
, (3.5)
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Chapter 3. Wave Propagation in Expanding Cell Monolayers

Figure 3.2: Profile of time independent cell polarization. The parameter λ describes
the length scale controlling the width of transition zone between left and right moving

cells at the center of the monolayer.

To make analytical progress, we first consider a cell monolayer of length much larger than

the length scale of variations in the polarization, i.e L >> λ. In this limit the spreading

force can be described by a signum function, tanh(x/λ) ∼ sign(x/L) for λ << L. Next

we linearize the active stress by considering small deviation of c from its rest-state c0,

log(c/c0) ∼ (c− c0)/c0. The steady-state solution for the local stress is then given by,

σ∞(x) = − f

h∞

(
|x| − L∞

2

)
, (3.6)

where L∞ and h∞ are respectively the length and the height of the cell monolayer at
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Figure 3.3: Left: Profile of the steady state stress. In red we consider the nonlinear
solution in Eq. (3.5), in blue we use the linear limit of stress in Eq. (3.6). Right: Profile
of δc∞ = c∞ − c0, change in steady state concentration field for different values of the
time scale of turnover of the contractile elements. Parameters: β/f =49; B/f =30;

h0/L0 =0.0083, λ/L0 =0.05 and Dτ/L2
0 =0.025.

t → ∞, given by L∞ = L0(1 + 〈ε∞〉) and h∞ = h0/(1 + 〈ε∞〉). The spatial average of
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Chapter 3. Wave Propagation in Expanding Cell Monolayers

the steady-state strain 〈ε∞〉 is given by,

〈ε∞〉 =
1

L∞

∫ L∞/2

−L∞/2

dxε∞(x) . (3.7)

Combining Eqs.(3.1a), (3.1c) and (3.6) we obtain a second order ordinary differential

equation in c∞ whose analytical solution is,

c∞(x) =
ατ

Beff

[
− f

2h∞

(
|x| − L∞

2
+ ξ

(
e−L∞/2ξ − 1

)
cosh(x/ξ)

sinh(L∞/2ξ)
+ ξe−|x|/ξ

)
+ β +

Bc0

ατ

]
,

(3.8)

where Beff = B + αβτ/c0 is the effective elastic modulus renormalized by active con-

tractility and ξ =
√

BDτ
Beff

is a characteristic length scale associated with the spatial

variation of the active agents. The analytical solution of the steady state shows that

longer turnover timescale gives more concentration of contractile units (Fig. 3.3) as one

would assume. The steady-state solution for the average strain is,

ε∞(x) =
1

B

(
σ∞ −

β

c0
c∞ + β

)
. (3.9)

The condition for the cell monolayer to expand is given by 〈ε∞〉 > 0 which leads to a

critical value for the force density, f c0 = 8βh∞Beff/BL∞ above which the cell monolayer

spreads.

3.4 Propagating Waves

3.4.1 Linear Stability Analysis of the Quiescent Homogeneous State

To understand the origin of wave propagation and estimate the wave frequency, it is

useful to examine the linear fluctuations in the strain field, δε and the concentration

field δc, about the quiescent homogeneous state, u = 0, c = c0 and no spreading force.

Using Eqs. (3.1a) and (3.1c), one can then eliminate δc from such linearized equations

to obtain the linearized dynamics of strain fluctuations,

τζ∂2
t δε+ ζ∂tδε = h0

(
Beff + ηeff∂t − τBD∂2

x

)
∂2
xδε , (3.10)

The above equation shows that the coupling of strain to concentration field yields an

effective mass density (inertia), τζ, and viscoelasticity characterized by an effective

elastic modulus, Beff = B + αβτ/c0, and an effective viscosity ηeff = (B − β +Dζ/h0)τ .

The dynamics of strain fluctuations resembles a damped Kelvin-Voigt oscillator with a
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Chapter 3. Wave Propagation in Expanding Cell Monolayers

characteristic frequency of oscillations,

ω0 = q
√
h0 (Beff + τq2BD) /(τζ) , (3.11)

with q the wavevector. The estimate for the time period 2π/ω0 agrees well with the

time period determined from numerics for q ' 4π/L0 (see Fig. 3.4) and with the value

measured in recent experiments [7]. Finally, we note that if the concentration c is

Figure 3.4: Period of oscillation determined from the numerical solution to
Eqs. (3.1a,3.1c) (red squares), obtained from the analytical expression in Eq. (3.11)
(black solid circles), and as predicted by the mean-field model (green open circles) for
various values of β and B. The numerical value for the time period is obtained by
performing a fast fourier transform on the strain rate at the midline of the monolayer.
Parameters: B = 120 Pa, β = 200 Pa, τ = 350 min, α/c0 = 1/560 min−1, L0 = 600
µm, h0 = 5 µm, f = 4 Pa, λ = 30 µm, ζ = 0.009 nN min/µm3, D = 26 µm2/min and

λ0 = L0/2.

conserved (τ → ∞; α = 0), stable propagating waves are spontaneously generated for

0 < B − β + Dζ/h0 < 2
√
DBζ/h0. If diffusion is slow compared to elastic relaxation,

Dζ/Bh0 � 1, stable propagating waves are not observed. In the opposite limit of

infinitely fast turnovers in contractility (τ → 0), strain fluctuations decay diffusively at

a rate ' Bh0/ζL
2. A linear stability analysis of the homogeneous stationary solution

(ε∞(x), c∞(x)) yields the range of parameter values where propagating waves can occur.

The resultant phase diagram is shown in Fig. 3.5, as functions of the contractile activity β

and the compressional modulus B. For α > 0 and a fixed value of elastic modulus B, the

phase diagram in Fig. 3.5 shows that the propagating waves occur at finite values of the

wavenumber and are not observed in the long wavelength limit (q → 0). The oscillations

are unstable when the effective damping coefficient in Eq. (3.10), ζeff ' ζ + ηeff/L
2,

changes sign for β > ζL2/τ + B + Dζ/h0. If α < 0, the waves disappear and there

exists a long wavelength contractile instability for β > Bc0/ατ , describing material
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Chapter 3. Wave Propagation in Expanding Cell Monolayers

failure [105]. In the absence of contractility (β = 0) the long-wavelength instabilities do

not arise for α < 0, as discussed in Ref. [106].

3.4.2 Numerical Solution

In the absence of propulsion force (f = 0), the cell layer is in a quiescent homoge-

neous state, with u = 0 and c = c0. When f 6= 0, the cell layer spreads and reaches

a steady-state at long times. We have integrated numerically Eqs. (3.1a,3.1c) with the

given initial and boundary conditions, using the Runge-Kutta-Fehlberg method. The

model parameters are chosen to quantitatively describe the available experimental data

for MDCK colonies [7]. The phase diagram shown in Fig. 3.5 displays three dynami-

cal regimes in terms of contractile activity β and compressional modulus B (controlled

by cell-cell adhesion): a region where fluctuations are stable and diffusive at low con-

tractility, an intermediate region where the system supports propagating waves, and a

region where the propagating waves become unstable at high contractility. There is good
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Figure 3.5: Phase diagram of the spreading gel. The vertical axis represents the
contractile activity β and the horizontal axis is the compressional modulus B. Three
behaviors are observed: stable diffusive, stable propagating waves, and oscillatory insta-
bility. The red squares are obtained from the numerical solutions of the full nonlinear
model, the black solid lines are the results of the linear stability analysis (LSA) of the
equilibrium state (at q = 13.5/L0) , and the dashed green lines refer to the LSA of the
mean-field model given in Eqs. (3.12). Parameters: B = 120 Pa, β = 200 Pa, τ = 350
min, α/c0 = 1/560 min−1, L0 = 600 µm, h0 = 5 µm, f = 4 Pa, λ = 30 µm, ζ = 0.009

nN min/µm3, D = 26 µm2/min.

agreement between the boundaries obtained via numerical solution of the full nonlinear

equations (red diamonds) and those determined by the linear instability of fluctuations
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