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Abstract

This dissertation investigates the physical mechanics of collective cell migration in mono-

layers of epithelial cells. Coordinated cell motion underlies a number of biological pro-

cesses, including wound healing, morphogenesis and cancer metastasis, and is controlled

by the interplay of single cell motility, cell-cell adhesions, cell-substrate interaction, and

cell contractility modulated by the acto-myosin cytoskeleton. Here we examine the com-

peting roles of these mechanisms via a continuum model of a tissue as an active elastic

medium, where mechanical deformations are coupled to and feed back onto chemical

signaling.

We begin in Chapter 1 with a brief review of cell migration at both the single-cell and

many-cell levels, and of the experimental tools used to probe the mechanical properties

of cells and tissues. In Chapter 2 we formulate our minimal continuum model of a

tissue as an overdamped active elastic medium on a frictional substrate. The model

couples mechanical deformations in the tissue to myosin-based contractile activity and

to cell polarization. Two new ingredients of our model are: (i) a feedback between the

on-off dynamics of myosin motors and the active contractile stresses they induce in the

tissue, and (ii) the coupling of cell directed motion or polarization to tissue strain. In

the following two chapters we employ this model to describe collective cell dynamics in

expanding (Chapter 3) and confined (Chapter 4) tissues and compare with experiments.

In expanding monolayers, as realized for instance in wound healing assays where an

initially confined tissue is allowed to expand freely on a substrate, our model reproduces

the propagating waves of mechanical stress observed in experiments and believed to play

a key role in controlling the transmission of information across the tissue and mediating

coordinated cell motion. Combining analytical and numerical work we construct a phase

diagram that identifies various dynamical regimes in terms of single-cell properties, such

as contractility and stiffness. In Chapter 4, we use our model to describe collective

dynamics of cells confined to a circular geometry. In this case the propagating waves

are replaced by standing sloshing waves guided by both contractility and polarization.

The work on confined tissues was carried out in collaboration with the experimental

group of Jeff Fredberg at the Harvard School of Public Health. By combining theory

and experiment we can provide a quantitative understanding of how contractility and

polarization regulate the mechanics of the tissue by renormalizing the tissue elastic

moduli and controlling the frequency of oscillatory modes.
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Chapter 1

Introduction

1.1 Scope

Many developmental processes, such as morphogenesis [8], embryogenesis [9], wound

healing [10] and cancer metastasis [11], involve collective cell migration [12] and long-

range force generation, which in turn arise from the interplay of cell-cell interaction,

cell adhesion to the extracellular matrix, and myosin based contractility [13, 14]. A

complete understanding of the mechanisms through which cells coordinate their motion

is still lacking. Consequently, many theoretical and experimental studies have been

conducted to understand the subject [7, 15–18]. Both biochemical signaling and the

transmission of mechanical forces among cells and of cells with their surroundings are

key in governing collective migration, but their relative role is not well understood.

The physical properties of individual cells have been studied for some time. Key in

controlling both a cell’s mechanical behavior and its motility is the cell cytoskeleton, a

network of long filamentary proteins crosslinked by molecular motor proteins that use

energy derived from adenosine triphosphate (ATP) hydrolysis to perform mechanical

work on cytoskeletal filaments [19, 20]. Motor activity regulates the spontaneous con-

tractility of individual cells and their adaptive response to mechanical forces. It also

controls the ability of cells to move on substrates or through extracellular matrix.

When individual cells assemble into tissues their mechanical properties change signif-

icantly. Measurements of cultured epithelial cell monolayers (one-cell-thick layers of

tissue) have shown for example that the monolayer stiffness (20 ± 2kPa) can be two

orders of magnitude larger than the stiffness of its individual cells [21]. The stiffness,

or rigidity, of a material is defined as its resistance to deformations in response to an

applied force. In dense tissues cells often coordinate their motion as seen in the coherent
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expansion of epithelial tissues to fill a wound. But what are the mechanisms through

which cells communicate to coordinate their motion? The larger stiffness of tissues as

compared to isolated cells may be due to intercellular adhesions by mediated-cadherins,

a family of calcium-dependent adhesion proteins responsible for cell-cell interaction in

tissues. Although experiments have given insight in what happens inside a tissue as it

expands, it remains unclear if a tissue should be regarded as an active fluid or an active

contractile elastic medium. For instance, recent experiments have shown that during

tissue expansion cellular stress and cellular strain tend to be in phase [7], which sug-

gests that a tissue behaves as an elastic medium. In other instances, experiments have

shown that cells continuously exchange neighbors, which gives fluid-like properties to tis-

sues [22], and some authors have modeled tissues as fluids [15]. In my work, tissues are

modeled as elastic materials. Another observation reported in wound healing assays [7]

is that that during unconstrained monolayer expansion the tissue supports waves prop-

agations that build-up intercellular stresses. Mechanical waves such as sound waves

arise from the interplay of inertia and elasticity, but a tissue constitutes an overdamped

medium (the inertia of cells is negligible). It is surprising to observe propagating stress

waves in an overdamped medium, which poses a fundamental physical question: how

do mechanical waves arise in overdamped active media? In this dissertation, I propose

a minimal physical model of tissues as active elastic media that explains the emergence

of mechanical waves and other experimentally observed properties of living tissues.

1.2 Mechanical Properties of Cells and Tissues

All living organisms are made up of cells as basic building blocks. Cells are divided into

two main groups; those with a nucleus (eukaryotic cells, e.g., animal and plant cells) and

those without it (prokaryotic cells, e.g., bacteria). Typical animal cells, which are the

focus of this dissertation, are made up of a nucleus and a cytoplasm (See Fig. 1.1). The

nucleus contains chromosomes which carry the cell’s genes. The cytoplasm is surrounded

by a plasma membrane which separates the cell from its surroundings. The plasma

membrane is a fluid lipid bilayer crossed by many large proteins that control transport in

and out of the cell. Underneath this is the cortical actin network, a dynamical network of

crosslinked actin filaments that forms a polymer gel and is the main player in controlling

cell mechanics and in providing stability to cells. The cytoplasm also contains other

filamentary proteins namely microtubules and intermediate filaments, briefly discussed

in Section 1.2.1. The cytoplasm includes also the endoplasmic reticulum (ER) where

ribosome molecules produce proteins, and mitochondria where ATP, source of energy, is

produced [20, 23].
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1.2.1 Cytoskeleton

The cytoskeleton is a network of filamentary proteins that forms a scaffold within the

cell and serves a number of important functions, such as mediating the transport of

intracellular cargo, controlling the cell’s shape and its resistance to deformations [24]. It

is a cross-linked polymer gel made of semi-flexible filaments. In general any semi-flexible

polymer can be characterized by a basic mechanical property quantifying its stiffness,

called persistence length. The persistence length of a polymer is the distance along

which the polymer’s direction persists before changing its orientation [25]. Filaments

with persistence length large compared to their overall length are considered rigid, while

those with smaller persistence length are flexible. Three cytoskeletal filaments, namely

actin filaments (also called F-actin), microtubules and intermediate filaments (Fig 1.1),

are the main constituents of the cytoskeleton and responsible for the cell’s mechanical

properties. Microtubules are the most rigid of the cytoskeletal filaments, with a persis-

Figure 1.1: Schematic of a eukariotic cell’s cytoskeletal filaments with actin labeled
blue, microtubule in green and intermediate filaments in red [1].

tence length of the order of 1mm. Their role in controlling the mechanical properties

of the cell is not as important as that of the highly crosslinked actin gel, but play a key

role in regulating cell division [1]. The intermediate filaments are the most flexible with

persistence length of the order of 1µm. They play an important role in regulating cell

shape, especially in epithelial cells which have to resist high elastic stresses [1]. Actin

proteins are one of the most abundant proteins in eukaryotic cells and form actin fila-

ments [2]. Actin filaments are the thinnest among the cytoskeletal filaments and have

a persistence length of the order of the cell size ∼ 17µm [26]. Actin filaments can be

crosslinked by various passive proteins (e.g., α−actinins and filamins) which can en-

hance the elasticity of the network even at low concentraction [1, 27, 28]. Cytoskeletal

filaments are additionally cross-linked by motor proteins. There are three main classes

of active cytoskeletal motor proteins: myosin motors, kinesins and dyneins. They form
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temporary cross-links between cytoskeletal filaments and control most of the mechan-

ical processes in the cytoskeleton. Kinesin and dynein motors bind to microtubule.

Ksinesins walk along microtubules to move cargos inside the cell away from nucleus,

while dyneins walk along microtubules to move cargos towards the cell nucleus. The

association of microtubule filaments with these protein motors play an important role

during cell division [24]. Myosin motors bind to actin filaments to form the actomyosin

network which generates active intracellular stresses and leads to cell motility and resis-

tance to cellular deformations. The actomyosin network is located at the periphery of

the cytoskeleton (Fig. 1.1) and is called the cortex. Cortical tension, which is a tension

in the cortex that tends to minimize the cell surface area by pulling it into a spherical

shape, depends largely on actomyosin contraction [29–32], on the density of the cortex

and on its structure [29, 33, 34]. The contraction of actomyosin filaments in the cor-

tex also creates intracellular pressure [35]. Recent experiments show that actomyosin

complexes increase cortical tension and intracellular pressure and stiffen the cortex,

while crosslinked actin networks decrease cortical tension and intracellular pressure and

soften the cortex [36]. For simplicity, our model focuses on the actomyosin network

as responsible for the cellular mechanical properties. Cross-linked actomyosin networks

have been studied extensively in vitro as models for the cell cytoskeleton [37]. Their

elasticity, i.e, shear stiffening, can arise either when thermally fluctuating filaments do

not have enough available configurations, for example when they are stretched (entropic

elasticity), or when the space between molecules that make up the filaments changes, for

example when they are bent (enthalpic elasticity) [24]. Applying shear stresses to the

actin filament networks or to networks of intermediate filaments increases the networks

stiffness and generates resistance to additional deformations [38]. Applying compressive

forces to actin filament networks results in nonlinear stress stiffening of the network

followed by stress softening at high stresses [39].

1.2.2 Measuring Mechanical Properties of Living Cells

The mechanical properties of a cell are extremely rich. A living cell is a soft highly

heterogeneous object, with stiffness controlled by the cytoskeletal structure [40], myosin

activity [41] and other subcellular processes. It has been found that changes in cell

mechanical properties can lead to various disease conditions, such as tumor formation

and metastasis [42–44]. Understanding and measuring mechanical cell properties such

as stiffness can then provide a novel way to detect and diagnose diseases [42] and to

optimize the effectiveness of drug treatment [45, 46].
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Cell mechanics is determined by both the elasticity of the passive actin network and the

active forces induced by myosins. Cells adhering to a substrate carry a finite tensile stress

even without the application of an external load. This is known as prestress and it arises

from the active contractile forces exerted by myosin motors. It controls the ability of

cells to retain their shape and their (often nonlinear) response to external deformations

(e.g., strain stiffening). Due to the presence of prestress and the heterogeneity of the

cell interior, quantifying the mechanical properties of cells as a material has proven to

be difficult and requires a combination of a variety of techniques. Multiple techniques

have been developed over the past decades to measure the cell mechanical properties.

These techniques can be divided into two groups: techniques that measure local elastic

properties and those that measure the elasticity of the cell as a whole. The latter

techniques are problematic because cells are neither homogeneous nor isotropic and

they are active.

The techniques that probe the local mechanical properties of cells include:

Atomic Force Microscopy (AFM). AFM uses a microscale tip connected to a can-

tilever beam to deform and interact with a sample (Fig. 1.2a) [2]. It can probe the

viscoelastic response of a cell by applying indentations of about 50 nm and forces in

the range of 0.1-1 nN [47–51]. The most used AFM technique is the AFM Force Spec-

Figure 1.2: Different techniques to measure cell mechanical properties. (a) Atomic
Force Microscopy. Indentation model is used to estimate cell elasticity. (b) Optical
Tweezers. A bead is deformed optically and manipulated with a light source. (c)Particle
Tracking Microrheology. Mechanical measurement inside cytoplasm is achieved by
tracking embedded tracer particles. (d) Traction Force Microscopy. Cellular traction

forces are calculated from the bead displacement [2].

troscope which measures the cell elasticity by pressing the tip of the AFM cantilever

against the cell. Elasticity is calculated by comparing the measured forces to indentation
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data [52].

Other techniques rely on deformation or displacement of beads placed in cells. They

include:

Optical Tweezers. The technique of optical tweezers (Fig. 1.2b) is another technique

used often in biology to measure forces of order of piconewtons generated by myosin

motors or to measure the local mechanical properties of cell organelles [53–55]. Using

optical tweezers, a cell is deformed by attaching a pair of beads at the two endpoints

of the cell and pulling on the beads by means of laser traps. The cell stiffness can be

determined by following the Brownian motion of the beads in the trap.

Particle Tracking Microrheology (PTM). PTM is another passive technique used to

extract local viscoelastic parameters by tracking the random Brownian motion of or-

ganelles or of microparticles injected in the cell [56–58]. At least two beads are tracked

simultaneously (Fig. 1.2c) in order to measure intracellular stress fluctuations [1, 59].

Elastic and viscous properties of the cell are calculated from the beads displacement

by means of the fluctuation-dissipation theorem [60, 61]. One of the problems of this

technique is that like any other Brownian motion based technique it can be biased by

active intracellular processes that maintain the cell out-of-equilibrium, and is more reli-

able when used for cells that have been depleted of ATP i.e, dead cells [61].

All these techniques, and many others not mentioned here, provide results that con-

sistently show that the cell is a viscoelastic material. At very short timescales (from

fractions of a second to several tens of seconds), the cell is predominantly an elastic

material [60, 62]. At longer timescales (> 30 seconds), remodeling [63] leads to addi-

tional relaxation [47, 64]. Some active response, such as change in cell stiffness and

contractility, is generated over timescales of seconds to tens of seconds as a result of ex-

ternal forces applied to cells [65, 66]. To understand these active viscoelastic responses

comprehensive theoretical models which account for all components contributing to cell

mechanics are needed.

Recent experiments have shown that cells stiffen when they are stretched [67], in agree-

ment with earlier experiments which related cell elasticity to internally generated pre-

stress [68]. These observations suggest that cell elastic behavior might be determined

by cytoskeletal prestress. Techniques used to probe the whole cell mechanical properties

and the prestress include:
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Traction Force Microscopy (TFM). TFM measures traction forces exerted by the cell

on the substrate by probing the deformations induced on micropillar arrays [69] or soft

gels (Fig. 1.2d). It is used to determine the prestress in the cytoskeleton. It provides a

powerful tool to extract intracellular forces. It relies on force balance and it has shown

that the properties of the substrate affect the prestress [70]. On an inverted optical mi-

croscope, cell-generated displacements of fluorescent markers previously embedded near

the surface of the substrate, are recorded. Then using Fourier Transform of the equilib-

rium equation for displacement field traction force are obtained from the displacements.

The solution of traction forces are the inverse of the classical Boussinesq forward solu-

tion which gives displacement field in function of traction forces. In this technique, the

displacements induced by the cell on the substrate are measured by comparing images of

fluorescent microbeads embedded in the substrate in the undeformed and deformed con-

figurations. Assuming that the substrate is a linear elastic medium one then calculates

the traction forces that the cell must exert to generate such displacements. Upon finding

the traction forces, the cell-substrate equilibrium equations are used to determine the

stresses in cell.

Optical Stretcher. Optical stretcher is another technique used to measure the whole

cell mechanical properties. It uses a double beam trap in which two identical and

opposite laser beams trap a cell in the middle without any physical contact with the

device [71]. It uses the principle of conservation of momentum where momentum from

the beam is transferred at the cell interface and, by Newton’s second law, a force is

exerted on the interface. Image analysis is used to determine the cell deformation and

extract mechanical properties by dividing the applied force by the deformation.

1.3 Cell Migration

Cell motility is a phenomenon that is essential to many biological processes such as

morphogenesis, wound healing or immune response. In this section we describe two

different kinds of cell migration. The first part is devoted to single cell migrating in

isolation. The second part is devoted to collective cell migration. Cells can move in

isolation for example when fibroblasts (cells that synthesize collagen, the structural

framework of animal tissues) pass through connective tissues or when leukocytes (white

blood cells) move during immune response [72]. Cells move collectively for example in

wound healing or cancer metastasis.
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1.3.1 Single Cell Motility

The migration of individul cells has been a subject of extensive studies over many

decades[73–75]. In brief, a typical cell motion on a substrate follows the steps shown

in Fig. 1.3: the cell expands by making protrusions at the leading edge. These pro-

trusions are generally driven by actin polymerization, a process by which actin filament

monomers assemble to form an elongated actin filament. Next, the cell adheres its lead-

ing edge to the surface on which it is moving and then exerts a pulling force which

translocates the cell body forward and de-adheres at its rear [3, 16]. Cell adhesion to

the substrate is facilitated by large macromolecular assemblies called focal adhesions

through which chemical signals and mechanical forces are transmitted between the cell

and the substrate. The focal adhesions are collection of protein receptors called integrins

which are linked to the actomyosin network in the cytoskeletal cortex. These integrins

form a mechanical linkage between the cytoskeleton and the substrate.

Figure 1.3: A schematic of the stages of cell motility. Protrusion at the leading edge
due to actin polymerization, followed by adhesion of the protruded edge on the surface

of motion, followed by movement of the cell body [3].

A cell starts moving in response to an external signal (physical, chemical, diffusible or

not diffusible) in its environment. Integrins, located on the cell membrane, detect the

signal and transmit it to the cell interior [20]. Integrins also plays a role in regulating cell

polarization during directional motion by controlling the protrusions that are formed at

the leading edge. The cell polarization is realized through the formation of front and

back ends as the cell moves [76]. As the cell continues to move, the actin cytoskeleton

transitions in a cyclic fashion between a solid-like material (gel) and a viscous material

(sol) [3]. These gel-sol transitions are crucial for cell motility [77]. They are likely
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due to a net constant actin polymerization (depolymerization) and network assembly

(disassembly) at the leading edge (at the rear edge). These transitions may be also

driven by myosin motors[78].

1.3.2 Collective Cell Migration

Figure 1.4: Top: A sequence of representative images from a wound healing assay of
endothelial cells from initial time (A) where the gap is large, several hours later (B),
the gap narrows and ultimately closes (C) [4]. Middle: Lymphatic endothelial cells in
spheroid sprouting assay, where the initial spheroid (0hr) and the spheroid at the end
of the assay (24hrs) are shown [5]. Note that in this figure, the direction of spheroid
invasion is from right to left. Bottom: Streaming assay of carcinoma cells. The white
arrow shows carcinoma cells (red image) in a stream. The initial stream (0hr) and

stream at the end of the assay (24hrs) are shown [6].

In many biological processes such as wound healing, cancer invasion and morphogenesis,

cells move in a coordinated manner[8, 9, 17, 79, 80]. There are many categories of col-

lective cell migration. In epithelial sheet migration (Fig. 1.4, top frame), cells maintain
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close contact and continuity and move as a single sheet. This sheet movement occurs

in physiological processes such as wound healing, dorsal closure in Drosophila and early

morphogenesis [4, 81–83]. Other types of collective cell migration include sprouting and

Figure 1.5: (a) A PDMS membrane is deposited on a collagen-coated PA substrate,
Cells are cultured allowed to attach and move upon confluence. (b) Transversal View

of MDCK cells during tissue expansion [7].

branching (Fig. 1.4, middle frame), characterized by a tip cell or leading sprout which

maintains connection to other cells [5, 16], and streams (Fig. 1.4, bottom frame) where

cells move together but in loose arrangement[6, 16, 84]. In this dissertation, unless oth-

erwise specified, collective cell migration will refer to sheet migration. Traditional assays

for studying collective cell migration rely on tissue culture where cells are plated on a

substrate and their motility is observed and analyzed (Fig. 1.5). In [7] for example, the

authors studied the dynamics of epithelial cell expansion by developing an experimen-

tal approach combining soft lithography, traction force microscopy and Particle Image

Velocimetry (PIV). This approach relies on preparing the substrate on which the cells

will be cultured, then tracks the cellular layer expansion and measures the intercellular

stresses. A now popular wound healing assay for studying the dynamics of an expanding

epithelial sheet was developed in the lab of Pascal Silberzan [83]. It consists of fabricat-

ing a polydimethylsiloxane (PDMS) membrane with a rectangular opening in it. The

membrane is then deposited on a collagen coated-polyacrylamide (PA) gel substrate

(Fig. 1.5a, far left frame). Cells (in this case Madin-Darby Canine Kidney (MDCK)

epithelial ) are then cultured in the hole on the PA substrate (Fig. 1.5a, second left

frame). After the opening is fully covered by cells (confluence), the PDMS mask is

removed to allow cells to expand (Fig. 1.5a, second right, and far right frame). Cells

move collectively as one epithelial sheet (Fig. 1.5b). Using Traction Force Microscopy

described in Section 1.2.2, monolayer stresses can be measured. The midline stresses

oscillates in phase with fluctuations in cell area, which determines the cellular strain,

showing that the epithelial monolayer behaves as an elastic medium. From the cellular

strain, the authors in [7] computed the strain rate which exhibited mechanical waves
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propagating away from and back to the leading edge in X-shape. The cellular velocity

can be determined by means of Particle Image Velocimetry (PIV), a technique where

cell displacements are determined by means of image analysis and the time intervals

between images are recorded. The time interval and the displacement field give the

cellular velocity. In these particular experiments, one of the most interesting discoveries

was the observation of mechanical waves that propagate within the monolayer as the

latter expands [7]. Many experimental findings show that in cohesive cell layers, stress

and strain tend to be in phase, as in elastic materials [7, 13] and the active tension of

a cell monolayer scales linearly with the size of the constituent cells. One can extract

the active tensile modulus from the slope of this relationship [85]. Besides experimen-

tal models, there are theoretical models that study collective cell migration. They are

reviewed in Chapter 2.

1.4 Outline

In this dissertation we develop continuum models of migrating cell monolayers and use

them to describe quantitatively experimental observations. We show that the deforma-

tion of the cell layer, described as an elastic medium coupled to the myosin based cell

contractility, can account for mechanical waves observed in monolayer during collective

migration. The dissertation comprises three main parts. The first part (Chapter 2), for-

mulates a minimal continuum model of collective cell migration. In Chapter 3 we apply

the model to expanding cell monolayers and demonstrate that the model accounts for

the propagating mechanical waves observed in these systems. In Chapter 4 we apply the

same model to the case of confined cell monolayers, where confinement yields standing

waves of cellular stress.
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Mechanochemical Model of

Collective Cell Migration

2.1 Introduction

Recent experiments have revealed that (a) during collective cell migration oscillating

waves of mechanical stress arise spontaneously and propagate through the layer in spite

of strong frictional damping [7], and (b) as cells move the direction of their veloc-

ity deviates systematically from the direction of the traction force cells exert on the

substrate [86]. Motivated by these observations we have developed a simple yet rich

dynamical model of epithelial tissues as active gels. This model can describe both ex-

panding and confined cell monolayers. In this chapter we will introduce the model. The

implementation of the model to describe the dynamics of expanding cell monolayers as

relevant to wound healing assays is discussed in Chapter 3. Chapter 4 is reserved to the

application of the model to a confined cell monolayer.

In our model we propose a theory that connects forces and motions using two internal

state variables, one of which describes an effective cellular polarization, and the other

an effective cellular inertia that arises from the on/off dynamics of motor proteins that

drive cell contractility. This simple mechanochemical interaction allows us to capture the

experimentally observed propagating stress waves during collective cell motion. There

are other models that have been developed in order to study this very phenomenon of

collective cell migration. The comparison with previous work is discussed in Section 2.4
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2.2 Cell Layer as an Active Elastic Medium

We consider a cell monolayer extending on a substrate in the x-y plane. We model the

cell layer as an continuum elastic sheet of extents L and d in the x and y directions,

respectively, and thickness h� L, d, as shown in Fig. 2.1. The assumption of elasticity

of the cell monolayer is supported by experimental evidence that in cohesive cell layers

stress and strain tend to be in phase (See Fig. 2.2, top frame), as they are in elastic

materials [7, 13, 85]. In the absence of external forces, force balance gives,

Figure 2.1: A schematic of a cell monolayer, with height h(t), length L(t) and width
d(t).

∂jΣij + ∂zΣiz = 0 , (2.1)

where Σij is the stress tensor of the tissue and Latin indices denote in-plane coordinates

x and y. For h � L, d, we average the force balance equation across the thickness of

the layer, assuming that the top surface of the monolayer at z = h is stress free, i.e.

Σiz|z=h = 0. This gives,

h∂jσij = Σiz|z=0, (2.2)

where

σij(x, y) =
1

h

∫ h

0
dz Σij(x, y, z), (2.3)

is the thickness-averaged stress tensor of the monolayer. The shear stress at the cell-

substrate interface, Σiz|z=h, is the traction force Ti exerted by the cell on the substrate,

which is measured in TFM experiments. This gives us the following relation between

monolayer stress and traction,

Ti = h∂jσij . (2.4)
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Figure 2.2: Top: Average values of strain rate (Top), cell area (Middle) and cellular
stress (Bottom) at the midline of the cell monolayer [7]. The cellular oscillations of the
monolayer stress at the midline are in phase with fluctuations of cell area (proportional
to strain) and out of phase with strain rate, suggesting that on the timescale of cell layer
migration, elastic cellular stresses are dominant. Bottom: Constitutive elements of the
mechanochemical model. The elastic and active elements exert stresses in parallel, and
a local gradient in stress is balanced by the traction exerted by the cell on the substrate.

The monolayer stress tensor is given by the sum of passive elastic and active stresses,

corresponding to a situation where elastic and active contractile elements are connected

in parallel, as shown in Fig. 2.2, bottom frame,

σij = σel
ij + σa

ij . (2.5)

Here σel
ij is the stress tensor of a passive linear elastic material [87]. We neglect, for

simplicity, nonlinear elasticity of the monolayer [18] and assume that the passive stress

is isotropic and homogeneous. The active stress σa
ij arises mainly from forces that myosin
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Chapter 2. Mechanochemical Model of Collective Cell Migration

motors exert on actin filaments. We describe both the active and passive contributions

of the total cellular stresses in the section below.

2.3 Continuum Mechanochemical Model

We model the tissue as an elastic active gel described in terms of a displacement field,

u(r, t), characterizing local deformations. The elastic (passive) component of the stress

is then given by,

σel
ij = Bεkkδij + 2G

(
εij −

1

2
δijεkk

)
. (2.6)

where B and G are, respectively, the in-plane bulk and shear elastic moduli of the

monolayer, εij the symmetrized strain tensor,

εij =
1

2
(∂iuj + ∂jui) . (2.7)

and δij the Kronecker delta.

Figure 2.3: Top: Schematic of a spreading cell monolayer. Traction stresses (T) are
indicated by arrows and the color map denotes local magnitude of monolayer stress.
Active stresses are generated by contractile units. Bottom: Schematic of the forces
acting on the cell monolayer. Tractions exerted by the monolayer on the substrate
point inward (red arrows) at the monolayer edge and balance the forces due to viscous
friction, ζv (black arrows), and propulson fp (green arrows). The monolayer is in
mechanical equilibrium, such that the tractions are locally balanced by the divergence

of the monolayer stress, Ti = h∂jσij .

Cells exert forces on substrates through the action of focal adhesion complexes (Fig. 2.3)

that have their own on/off dynamics. The simplest description of the resulting strong

frictional effect is then obtained by writing T = ζv, where v = ∂tu is the local velocity

of the monolayer. This would yield ζvi = h∂jσij . However, experiments show that local
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Chapter 2. Mechanochemical Model of Collective Cell Migration

cell traction is often not aligned with local cell velocity [88], indicating that there must

be an additional internal driving force in the equation of motion for the monolayer.

This motivates the introduction of a cell polarization field p(r, t). The magnitude of p

describes the local degree of polarization in the cell monolayer, whereas its orientation

defines the local direction of the propulsive thrust internally generated by each cell

through its adhesion to the substrate (Fig. 2.3, bottom frame) [18, 89, 90]. The local

traction T(r, t) exerted by the cell layer on the substrate is then written as the difference

between the viscous friction and the thrust,

T = ζ∂tu− fp , (2.8)

where ζ describes viscous friction with the substrate and f is the strength of the cou-

pling between cell polarization and thrust (Fig. 2.3, bottom frame). Both ζ and f are

controlled by integrin-mediated cell-environment interactions. Combining Eqs.(2.4) and

(2.8), we get the thickness-averaged dynamics of the cellular deformation field u(r, t)

given by,

ζ∂tui = fpi + h∂jσij . (2.9)

In order to close Eq. (2.9) we still need a constitutive equation for the active stress, σaij .

Active stresses arise because the actin cytoskeleton is driven out of equilibrium by the

action of myosin motors, such as myosin-II, which convert the chemical energy produced

during ATP hydrolysis into mechanical work via a cycle of attachment/detachment pro-

cesses to F-actin filaments. Hence ATP hydrolysis drives both actomyosin contractility

and treadmilling of actin filaments. Retaining terms to lowest order in the gradients,

the active stress is given by [91]

σaij =β∆µδij + β1∆µ pipj + β2∇∇∇ · p δij +
β3

2
(∂ipj + ∂jpi) , (2.10)

where ∆µ is the chemical potential difference between ATP and its products and β, β1,

β2 and β3 are microscopic parameters. The parameters β2 and β3 also depend on the

chemical potential difference ∆µ. The term proportional to β > 0 describes the isotropic

part of the contractile stress exerted by actomyosin units. This corresponds to a sort of

‘negative pressure’ that yields spontaneous contraction of cellular material. The terms

proportional to β2 and β3 describe tensions induced by local gradients in the polarization

field. The term proportional to β1 is the material anisotropic part of the active stress.

We will neglect it in the following where we assume that the monolayer is an isotropic

material. The assumption of isotropic stress is consistent with the stress field measured

in experiments using monolayer stress microscopy [88]. The principal stress analysis of

experimental data in [88] reveals that the stress ellipses in the monolayer (See Fig. 2.4c)
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typically have low aspect ratio with a quotient of maximum shear to tension less than

0.2 (Fig. 2.4d).
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Figure 2.4: The stress tensor within the circular monolayers is isotropic. The first and
second principal stresses, σ1 and σ2, are computed. (a, b) Representative plots of (a)
the mean principal stress, (σ1+σ2)/2 and (b) the maximum shear stress, (σ1−σ2)/2 for
a circular monolayer at one point in time. (c) Visualization of the stress tensor in the
monolayer where the major and minor axes of each ellipse correspond to the magnitude
of σ1 and σ2, and the orientation of the major axis corresponds to the orientation of
the first principal stress σ1. (d) As a measure of stress isotropy, the difference in the
principal stresses is divided by the sum of the principal stresses with a value of zero
indicating a fully isotropic state. Histograms of (σ1 − σ2)/(σ1 + σ2) are generated for
each point in time (gray lines) and for all time points (blue line). The mean and median

are <0.2, indicating the stress tensor is nearly isotropic.

The chemical potential difference ∆µ is controlled by the concentration of the active

units (e.g., phosphorylated myosins), which has been assumed to be constant in much

of previous work. Here instead we explicitly consider the dependence of ∆µ on the con-

centration c(r, t) of active units and treat c(r, t) as a dynamical variable.

Although we are not aware of any direct measurement of active stress in live cells and

their relationships with myosin concentration and chemical potential of ATP, we model

the dependence of active stress on concentration on the basis of two simple assumptions.

First, we assume that for weak to moderate activity the active stress depends linearly

on the chemical potential difference ∆µ between ATP and its products. Second, we

assume the chemical potential difference is related logarithmically to the concentration
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of reactants and products. The logarithmic dependence can be justified as follows. ATP

hydrolysis involves conversion of high-energy ATP molecules to ADP and inorganic phos-

phate P, ATP→ ADP+P. The change in chemical potential ∆µ during ATP hydrolysis

is given by the difference in chemical potentials of the reactant and the products as,

∆µ = µATP − µADP − µP . (2.11)

Treating the collection of molecules of each species as an ideal gas, the chemical po-

tential of species i is related to the concentration of molecules as µi = µ0
i + RT log (ci)

where the subscript i represents the molecule type (ATP, ADP or P), R is the universal

gas constant, T is the temperature and µ0
i is the chemical potential at the standard

thermodynamic state [92]. We thus have,

∆µ = RT log

(
cATPcs
cADPcP

e∆µ0/RT

)
≡ RT log (cATP/c

0
ATP) , (2.12)

where c0
ATP is the ATP concentration in chemical equilibrium given by c0

ATP = cADPcP
cs

e−∆µ0/RT ,

with cs being the standard thermodynamic concentration and ∆µ0 the standard change

in chemical potential. With this identification, active stresses are generated by molec-

ular motors for cATP > c0
ATP. A positive value of ∆µ can trigger phosphorylation of

myosin light-chain kinase causing myosin-II to assume an extended state, thereby pro-

moting its assembly into bipolar filaments leading to cell contraction [20]. This leads to

the assumption that the concentration cATP of hydrolysed ATP is proportional to the

concentration c of phosphorylated myosins. We thus have ∆µ ∝ log (c/c0), where c is

the concentration of the active units (e.g. phosphorylated myosins) and c0 is the equi-

librium concentration. Although we could have used a linear dependence of c and still

observe propagating waves as the monolayer expands, the linear dependence gives non-

physical quantitative values of the active stress. One can argue that linear dependence

of the concentration of active units to the active stress does not capture the generation

of active stresses by the complex actomyosin network.

The dynamics of the concentration field c(r, t) is then described by a reaction-advection

equation,

∂tc+∇∇∇ · (c∂tu) = −1

τ
(c− c0) +D∇2c+ αεkk + α′∇∇∇ · p , (2.13)

where∇∇∇·(c∂tu) is the convective flux, describing that cell layer motion can change the lo-

cal concentration of active units, τ is the timescale of turnovers of active units, α > 0 and

α′ > 0 are the rates of production of c due to compressive mechanical and polarization

strains, respectively, and D is an effective diffusion constant, describing the tendency of
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neighboring cells to equalize activity levels. The assumption that α, α′ > 0 means that

a local increase in cell area generates a local increase in c, hence in the contractile stress

σa. This is in agreement with experimental data on confined cell monolayers [88] and

previous results for single cells [93] and multicellular monolayers [85] showing a growth

of the active stress with the size of constituent cells.

Finally, the dynamics of the polarization field p(r, t) is given by,

∂tpi =
(
a− b|p|2

)
pi + κ∇2pi − w1∂jεij − w2∂iεkk + w′∂i(c/c0) , (2.14)

where the first two terms (with b > 0) allow for the onset of a homogeneously polar state,

|p| =
√
b/a, when a > 0. The local cost of fluctuations in polarization is characterized

by an isotropic stiffness κ; w1, w2 and w′ describe the tendency of cell polarization to

align with gradients of elastic strain and concentration, respectively.

We summarize the coupled equations of our model here,

ζ∂tui = fpi + h∂jσij , (2.15a)

∂tc+∇∇∇ · (c∂tu) = −1

τ
(c− c0) +D∇2c+ αεkk + α′∇∇∇ · p , (2.15b)

∂tpi =
(
a− b|p|2

)
pi + κ∇2pi − w1∂jεij − w2∂iεkk + w′∂i(c/c0) . (2.15c)

with

σij = σel
ij + σa

ij (2.16)

where

σel
ij = Bεkkδij + 2G

(
εij −

1

2
δijεkk

)
, (2.17a)

σaij = β log(c/c0)δij + β2∇∇∇ · p δij +
β3

2
(∂ipj + ∂jpi) . (2.17b)

Eqs. (2.15)-(2.17) describe the dynamics of the cell monolayer. This model is applied

to the collective cell migration in expanding tissues in Chapter 3 and the collective cell

migration in confined tissues in Chapter 4.

2.4 Previous Models of Collective Cell Migration

Various models have been developed to describe collective cell migration. Most can be

divided into two groups: models that study collective cell migration by treating cells

19



Chapter 2. Mechanochemical Model of Collective Cell Migration

as particles [94–97] and models like ours that treat the cell monolayer as a contin-

uum [15, 18, 98–100]. Additionally, early models of epidermal (rather than epithelial)

wound healing use reaction-diffusion equation to describe collective migration and pro-

liferation as the response to a diffusive chemical signal generated by the wound [98].

These models cannot capture the measured mechanical forces that expanding mono-

layers exert on their environments. Mark et al. proposed a one dimensional model to

describe the finger-like shapes that are observed in some experiments during monolayer

expansion [100]. The cell monolayer interface is treated as continuous one-dimensional

contour characterized by its curvature and surface tension. This work demonstrates

that the feedback between restoring forces and the curvature-induced motility drives

a dynamic instability that gives rise to finger-like protrusions qualitatively similar to

those seen in some experimental wound healing assays. This model does not, however,

describe what happens throughout the cell monolayer since it focuses on the dynamics

of the advancing tissue edge. Arciero et al. developed a two-dimensional continuum

mechanical model of cell migration that takes into account compressional elasticity of

the fluid, cell proliferation and cell apoptosis [15]. The cell layer is modeled as a com-

pressible fluid whose bulk modulus depends logarithmically on the cell density. The

model reproduces the experimental finding that cell density and cell stress are larger

at the center of the tissue. These authors did not, however, investigate the origin of

mechanical waves during tissue expansion.

It is especially useful to compare our model to the work by Köpf and Pismen [18] and to

that of Lee and Wolgemuth [89]. The model of Ref. [18] is very similar to the one used

here. Both models describe a tissue as an active elastic medium in terms of coupled

equations for displacement field, polarization, and an internal scalar degree of freedom

describing a deformation-induced chemical signal. Our model is a minimal version of

that of Ref. [18] where many of the non-essential nonlinearities and anisotropies are

ignored. In Ref. [89], in contrast, the authors describe the tissue as a fluid and retain

the anisotropic part of the active stress proportional to polarization. Internal dynamics

is introduced by assuming that the stress is viscoelastic with dynamics described by a

Maxwell model. This has a similar effect to our assumption of relaxational dynamics

for the chemical signal that controls the isotropic active stress. Both introduce an addi-

tional time scale that provides an effective inertia for the overdamped monolayer, be it

a liquid or an elastic medium.

In comparison, our minimal model contains a much smaller number of parameters and

yet is capable of validating two main experimental observations that were not to my
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knowledge studied in previous theoretical models: (i) During monolayer expansion, me-

chanical stress waves propagate to span the cell layer. Our model demonstrates that the

feedback between deformations of the cell layer and the myosin-based contractility at

the cellular level creates an effective inertia that allows these propagating waves. Our

model also predicts that the cell layer responds to these propagating waves by under-

going periods of stiffening and softening which have been observed in experiments. (ii)

Our model explains that a systematic misalignment between local velocity and local

traction, which is evident in confined layer, is due to cell polarization. Our model also

predicts the observed standing waves of cellular motion in confined monolayers.
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Chapter 3

Wave Propagation in Expanding

Cell Monolayers

This chapter is based on a paper published in Physical Review Letters 114, 228101

(2015) with S. Banerjee and M. C. Marchetti as co-authors. My contribution was to

perform numerical simulations and provide numerical results, make necessary analyt-

ical calculations and contribute to the discussion of the results and the writing of the

manuscript.

3.1 Introduction

In the previous chapter we proposed and discussed a mechanochemical model of col-

lective cell migration. In this model the cell monolayer is described as as an elastic

continuum coupled to an internal degree of freedom, the concentration of active con-

tractile units. In this chapter we apply the model to an expanding cell monolayer which

is relevant to wound healing assay experiments. Recent wound healing assay experiments

reveal that unconstrained tissue expansion is accompanied by propagating mechanical

waves and build-up of intercellular stresses [7]. These waves are controlled by expres-

sions of myosin activity, cell-cell adhesion and cytoskeletal remodeling. Previous work

has also shown that the dynamics of active materials which include cell tissues, predict

a broad class of non-equilibrium states including spontaneous flow, wave propagation

and pattern formation [101–104]. It remains unclear, however, how cell contractility,

polarization or tissue cohesion influence stress generation and wave propagation.
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In this chapter we approximate the dynamics of the cell monolayer in one dimension,

since in wound healing assays, cells move unidirectionally. We then show how the

mechano-chemical feedback between local strain and contractility successfully captures

the experimentally observed stress waves [7]. We show this in series of results that in-

clude kymographs of monolayer stresses and monolayer velocity. We analyze these waves

by means of linear stability analysis which gives us a phase diagram exhibiting a region

of parameters where these propagating waves can occur. The linear stability analysis

gives a wave equation that shows how the coupling between cell contractility and cellular

deformations yields an effective inertia necessary to generate propagating stress waves.

We then use a scaling model for the expanding cell layer to study how the cell monolayer

responds to propagating waves. The scaling model captures the mechanical oscillations

and predicts self-sustained periods of stiffening and fluidization in the tissue.

3.2 Minimal Continuum Model for Spreading Cell Mono-

layer

3.2.1 Simplifying the Model to One Dimension

We begin by specializing the model introduced in Chapter 2 to one dimension. This

is appropriate for wound healing assays where cells move in one direction to close the

rectangular gap as shown in Fig. 4, top frame in Chapter 2. We thus consider one dimen-

sional model of an expanding cell monolayer by assuming translational invariance along

the y direction. The cell monolayer is described as a self-propelled medium coupling

the dynamics of the deformation of the medium, the concentration of force-generating

agents and the local polarization and is expanding in x-direction with velocity v(x, t) as

shown in Fig. 3.1.

3.2.2 Dynamical Equations Governing the Model

The monolayer is treated as an elastic continuum whose displacement field u(x, t) is

actively forced by polarization field p(x, t) and contractile stress. The equations of

motion governing the displacement field, polarization field and the concentration field

are respectively given by,

ζ∂tu = fp(x, t) + h(t)∂xσ , (3.1a)

∂tp = (a− bp2)p+ κ∂2
xp− w∂xε+ w′∂x(c/c0) , (3.1b)

∂tc+ ∂x(cv) = −1

τ
(c− c0) + αε+D∂2

xc . (3.1c)

23



Chapter 3. Wave Propagation in Expanding Cell Monolayers

Figure 3.1: A schematic of a cell monolayer, with height h(t) and length L(t) expand-
ing in x direction with velocity v(x, t) = ∂tu, where u is the cell layer displacement.

The cell monolayer exerts a traction T on the substrate.

with σ(x, t) the internal stress in the monolayer, given by

σ = Bε+ β log (c/c0) , (3.2)

The left hand side of Eq. (3.1a) describes viscous friction with the substrate with ζ the

friction constant. The first term of the right hand side (R.H.S) of Eq. (3.1a) describes

the propulsion force due to cell polarization, the second term describes the traction

forces. The first term of R.H.S of Eq. (3.1b) with b > 0 allow for the onset of a

homogeneous polarized state p =
√
a/b when a > 0. The stiffness constant κ in the

second term characterizes the cost of local deformations in the polarization. The last

two terms in Eq. (3.1b) define active couplings of p to the strain and the concentration

field, with w,w′ > 0, such that p aligns with the gradient of monolayer density and

the concentration field c(x, t). The convective flux on the left hand side of Eq (3.1c)

describes that the monolayer expansion can change the local concentration of active

units. The first term of the R.H.S describes the relaxation of active units to equilibrium

concentration c0 in a timescale τ . The parameter α > 0 in the second term describes the

rate of production of c due to cellular stretching. The parameter D in the last term of

Eq. (3.1c) is an effective diffusion constant, describing the tendency of neighboring cells

to equalize activity levels. The internal stress σ(x, t) in Eq. (3.2) is given by the sum

of an elastic stress, with B the compressional elastic modulus and ε = ∂xu the strain

field, and an active stress that depends logarithmically on the concentration c of active

contractile units, such as phosphorylated myosins interacting with actin filaments and

whose magnitude depends on β > 0.
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3.2.3 Initial and Boundary Conditions

We consider the stress free boundary conditions i.e., σ(±L/2, t) = 0 at all times. We

assume that the monolayer is initially undeformed, u(x, 0) = 0, with an equilibrium

concentration of contractile elements, c(x, 0) = c0, and choose a no-flux boundary con-

dition for c, ∂xc(±L/2, t) = 0. Together Eqs. (3.1a) and (3.1c) define the dynamics of

the spreading monolayer, given the form of p(x, t) in Eq (3.4), the boundary and initial

conditions. The length of the spreading layer at time t is given by,

L(t) = L0 + u(L0/2, t)− u(−L0/2, t) , (3.3)

and the height is determined by the condition of volume conservation, h(t)L(t) = h0L0,

with L0 and h0 the initial length and height of the monolayer prior to expansion, re-

spectively.

3.2.4 Approximation of the Polarization Field

We assume that the polarization field relaxes more quickly than the monolayer density

or the concentration field, i.e, we consider that t � a−1 and let w = w′ = 0. The

polarization profile is then time-independent, and for L �
√
κ/a can be approximated

as,

p∞(x) '
√

(a/b) tanh(x/λ) , (3.4)

where λ =
√
κ/a is a length scale controlling the width of the transition zone from left

moving to right moving cells (Fig. 3.2) at the center of the monolayer. For simplicity

we let a = b which means p −→ ±1 at the cell edges. We first use this approximation in

studying the tissue spreading. We later study the effects of time-dependent polarization

field in Section 3.6.

3.3 Steady State Solutions

The homogeneous steady-state of Eqs. (3.1a) and (3.1c) is given by u = 0 and c = c0.

This is a quiescent steady-state when the cell layer does not spread (f = 0). To determine

the inhomogeneous steady-state describing an expanded cell monolayer (f 6= 0), we seek

solutions of Eqs. (3.1a) and (3.1c) by setting ∂tu = 0 and ∂tc = 0. The analytical steady

state solution for Eq. (3.1a) gives,

σ∞ = − λf
h∞

ln

(
coshx/λ

coshL∞/2λ

)
, (3.5)
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Figure 3.2: Profile of time independent cell polarization. The parameter λ describes
the length scale controlling the width of transition zone between left and right moving

cells at the center of the monolayer.

To make analytical progress, we first consider a cell monolayer of length much larger than

the length scale of variations in the polarization, i.e L >> λ. In this limit the spreading

force can be described by a signum function, tanh(x/λ) ∼ sign(x/L) for λ << L. Next

we linearize the active stress by considering small deviation of c from its rest-state c0,

log(c/c0) ∼ (c− c0)/c0. The steady-state solution for the local stress is then given by,

σ∞(x) = − f

h∞

(
|x| − L∞

2

)
, (3.6)

where L∞ and h∞ are respectively the length and the height of the cell monolayer at
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Figure 3.3: Left: Profile of the steady state stress. In red we consider the nonlinear
solution in Eq. (3.5), in blue we use the linear limit of stress in Eq. (3.6). Right: Profile
of δc∞ = c∞ − c0, change in steady state concentration field for different values of the
time scale of turnover of the contractile elements. Parameters: β/f =49; B/f =30;

h0/L0 =0.0083, λ/L0 =0.05 and Dτ/L2
0 =0.025.

t → ∞, given by L∞ = L0(1 + 〈ε∞〉) and h∞ = h0/(1 + 〈ε∞〉). The spatial average of
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the steady-state strain 〈ε∞〉 is given by,

〈ε∞〉 =
1

L∞

∫ L∞/2

−L∞/2

dxε∞(x) . (3.7)

Combining Eqs.(3.1a), (3.1c) and (3.6) we obtain a second order ordinary differential

equation in c∞ whose analytical solution is,

c∞(x) =
ατ

Beff

[
− f

2h∞

(
|x| − L∞

2
+ ξ

(
e−L∞/2ξ − 1

)
cosh(x/ξ)

sinh(L∞/2ξ)
+ ξe−|x|/ξ

)
+ β +

Bc0

ατ

]
,

(3.8)

where Beff = B + αβτ/c0 is the effective elastic modulus renormalized by active con-

tractility and ξ =
√

BDτ
Beff

is a characteristic length scale associated with the spatial

variation of the active agents. The analytical solution of the steady state shows that

longer turnover timescale gives more concentration of contractile units (Fig. 3.3) as one

would assume. The steady-state solution for the average strain is,

ε∞(x) =
1

B

(
σ∞ −

β

c0
c∞ + β

)
. (3.9)

The condition for the cell monolayer to expand is given by 〈ε∞〉 > 0 which leads to a

critical value for the force density, f c0 = 8βh∞Beff/BL∞ above which the cell monolayer

spreads.

3.4 Propagating Waves

3.4.1 Linear Stability Analysis of the Quiescent Homogeneous State

To understand the origin of wave propagation and estimate the wave frequency, it is

useful to examine the linear fluctuations in the strain field, δε and the concentration

field δc, about the quiescent homogeneous state, u = 0, c = c0 and no spreading force.

Using Eqs. (3.1a) and (3.1c), one can then eliminate δc from such linearized equations

to obtain the linearized dynamics of strain fluctuations,

τζ∂2
t δε+ ζ∂tδε = h0

(
Beff + ηeff∂t − τBD∂2

x

)
∂2
xδε , (3.10)

The above equation shows that the coupling of strain to concentration field yields an

effective mass density (inertia), τζ, and viscoelasticity characterized by an effective

elastic modulus, Beff = B + αβτ/c0, and an effective viscosity ηeff = (B − β +Dζ/h0)τ .

The dynamics of strain fluctuations resembles a damped Kelvin-Voigt oscillator with a
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characteristic frequency of oscillations,

ω0 = q
√
h0 (Beff + τq2BD) /(τζ) , (3.11)

with q the wavevector. The estimate for the time period 2π/ω0 agrees well with the

time period determined from numerics for q ' 4π/L0 (see Fig. 3.4) and with the value

measured in recent experiments [7]. Finally, we note that if the concentration c is

Figure 3.4: Period of oscillation determined from the numerical solution to
Eqs. (3.1a,3.1c) (red squares), obtained from the analytical expression in Eq. (3.11)
(black solid circles), and as predicted by the mean-field model (green open circles) for
various values of β and B. The numerical value for the time period is obtained by
performing a fast fourier transform on the strain rate at the midline of the monolayer.
Parameters: B = 120 Pa, β = 200 Pa, τ = 350 min, α/c0 = 1/560 min−1, L0 = 600
µm, h0 = 5 µm, f = 4 Pa, λ = 30 µm, ζ = 0.009 nN min/µm3, D = 26 µm2/min and

λ0 = L0/2.

conserved (τ → ∞; α = 0), stable propagating waves are spontaneously generated for

0 < B − β + Dζ/h0 < 2
√
DBζ/h0. If diffusion is slow compared to elastic relaxation,

Dζ/Bh0 � 1, stable propagating waves are not observed. In the opposite limit of

infinitely fast turnovers in contractility (τ → 0), strain fluctuations decay diffusively at

a rate ' Bh0/ζL
2. A linear stability analysis of the homogeneous stationary solution

(ε∞(x), c∞(x)) yields the range of parameter values where propagating waves can occur.

The resultant phase diagram is shown in Fig. 3.5, as functions of the contractile activity β

and the compressional modulus B. For α > 0 and a fixed value of elastic modulus B, the

phase diagram in Fig. 3.5 shows that the propagating waves occur at finite values of the

wavenumber and are not observed in the long wavelength limit (q → 0). The oscillations

are unstable when the effective damping coefficient in Eq. (3.10), ζeff ' ζ + ηeff/L
2,

changes sign for β > ζL2/τ + B + Dζ/h0. If α < 0, the waves disappear and there

exists a long wavelength contractile instability for β > Bc0/ατ , describing material
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failure [105]. In the absence of contractility (β = 0) the long-wavelength instabilities do

not arise for α < 0, as discussed in Ref. [106].

3.4.2 Numerical Solution

In the absence of propulsion force (f = 0), the cell layer is in a quiescent homoge-

neous state, with u = 0 and c = c0. When f 6= 0, the cell layer spreads and reaches

a steady-state at long times. We have integrated numerically Eqs. (3.1a,3.1c) with the

given initial and boundary conditions, using the Runge-Kutta-Fehlberg method. The

model parameters are chosen to quantitatively describe the available experimental data

for MDCK colonies [7]. The phase diagram shown in Fig. 3.5 displays three dynami-

cal regimes in terms of contractile activity β and compressional modulus B (controlled

by cell-cell adhesion): a region where fluctuations are stable and diffusive at low con-

tractility, an intermediate region where the system supports propagating waves, and a

region where the propagating waves become unstable at high contractility. There is good
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Figure 3.5: Phase diagram of the spreading gel. The vertical axis represents the
contractile activity β and the horizontal axis is the compressional modulus B. Three
behaviors are observed: stable diffusive, stable propagating waves, and oscillatory insta-
bility. The red squares are obtained from the numerical solutions of the full nonlinear
model, the black solid lines are the results of the linear stability analysis (LSA) of the
equilibrium state (at q = 13.5/L0) , and the dashed green lines refer to the LSA of the
mean-field model given in Eqs. (3.12). Parameters: B = 120 Pa, β = 200 Pa, τ = 350
min, α/c0 = 1/560 min−1, L0 = 600 µm, h0 = 5 µm, f = 4 Pa, λ = 30 µm, ζ = 0.009

nN min/µm3, D = 26 µm2/min.

agreement between the boundaries obtained via numerical solution of the full nonlinear

equations (red diamonds) and those determined by the linear instability of fluctuations
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about the equilibrium, undeformed state 1 and about the long-time solution of the mean-

field model in Eqs.(3.12). In the region of propagating waves, the stress initially shows

a few local maxima (Fig. 3.6, top right frame), which evolve towards a single maximum

at the center of the monolayer, as observed in experiments [7, 107]. The concentra-

tion of contractile elements also oscillates and builds up at the center of the monolayer

(Fig. 3.6, top left frame). The stress waves propagate nearly in phase with the strain

Figure 3.6: Top: (Left) Time-evolution of the concentration of contractile units ,
c(x, t), normalized by its equilibrium value. (Right) Time-evolution of the internal
stress σ(x, t) in the monolayer. Bottom: Midline stress σ(0, t)/σ∞(0, t) (blue solid),
midline strain ε(0, t)/ε∞(0, t) (blue dashed) and midline strain rate ε̇(0, t) (red solid,
units 10−4 s−1) as functions of time. The parameter values are taken to be the same

as in Fig. 3.5

field, whereas the strain rate fluctuates nearly out of phase with the stress (Fig. 3.6,

bottom frame). Thus the response of the material is dominated by elastic relaxation

with dissipation induced by turnovers in contractility on a timescale τ . The waves span

the entire length of the monolayer and consist of a strain rate wavefront that propagates

inwards from the edge, and then travels back to the edge, resembling an X-pattern, as

observed experimentally [7]. With the given parameter values our numerical simulations

capture the mechanical waves as evident in the kymographs of velocity, stress, strain

rate and concentration of contractile units (Fig. 3.7A-D).

1More details in Section 3.4.1 for Linear Stability Analysis
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Figure 3.7: Kymographs of (A) the monolayer velocity field (B) monolayer stress
field, (C) monolayer strain rate ∂tε(x, t), and (D) the concentration field c(x, t)/c0.

The parameter values are taken to be the same as in Fig. 3.5.

3.5 Mean Field Model

Figure 3.8: A phase diagram of the mean-field model in the B − β plane: I - stable
diffusive, II - propagating waves, III - oscillatory instability. Inset: Dynamics of length
(red), height (green) and concentration (blue) normalized by their initial values for β =
100 Pa (region II) and β = 30 Pa (region I). Oscillatory solutions appear for β > βc(B),
defining the phase boundary between regions I and II. Parameters: Parameters: B = 60

Pa, τ = 350 min, c0/α = 780 min, F0 = 8 nN, γ = 9 nN min/µm, dh0/L
2
0 = 0.1.

The mean field limit of the continuum model is obtained by neglecting spatial variations
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in c and ε and it is formulated in terms of the length (L), height (h), and the average

concentration of contractile elements, c(t) = 1
L

∫ L
0 dx c(x, t), with

γ
dL

dt
= F0 −A(t)σ(t) , (3.12a)

dc

dt
+
c

L

dL

dt
= −1

τ
(c− c0) + αε , (3.12b)

with F0 the propulsion force, γ the friction, A(t) = dh(t) the cross-sectional area, ε(t) =

L(t)/L0−1 the strain and σ(t) the internal stress given by σ(t) = Bε(t)+β(c(t)/c0−1).

The height is determined using the incompressibility condition, with the size in the y

direction, d, fixed. The steady state solution is L∞ = L0/(1− Λ), h∞ = h0(1− Λ) and

c∞ = c0 + ατΛ/(1 − Λ), with Λ = c0F0/dh0(Bc0 + αβτ) the net compressive strain in

the z-direction. For a given value of elastic modulus B, the mean-field model predicts

oscillatory solutions for β > βc (See Fig. 3.8), where βc(B) defines the phase boundary in

(B, β) plane separating the regions of propagating waves and diffusive spreading (dashed

line in Fig. 3.5). The stress waves manifest as shape oscillations in the growing length

and the shrinking height of the cell monolayer (Fig. 3.8). For β < βc the monolayer

diffusively approaches the steady state (c∞, L∞) (See Fig. 3.8). This simple mean-field

approach allows us to study the material response of the monolayer characterized by

an effective elastic modulus, BMF = dσ/dε. The oscillatory regime (β > βc) exhibits

sustained oscillations in the material rigidity, BMF, with a slow period of stiffening

followed by a sharp turnover (see Fig. 3.9). For β < βc, the material gradually stiffens

with BMF asymptotically approaching the value Beff. These oscillations reflect self-

sustained turnovers in the cytoskeleton with periodic reinforcement and fluidization

on different timescales, which was invoked to be the underlying mechanism of wave

propagation in Ref. [7].

3.6 Time-dependent Propulsion Forces

Finally, we consider time variations of the propulsion force, as arising from the dynamics

of cell polarization p(x, t) given by

∂tp = (a− bp2)p+ κ∂2
xp− w∂xε+ w′∂x(c/c0) , (3.13)

where the first two terms with b > 0 allow for the onset of a homogeneous polarized

state when a > 0. The stiffness constant κ characterizes the cost of local deformations

in the polarization. The last two terms in Eq. (3.13) define active couplings of p to the

strain and the concentration field, with w,w′ > 0, such that p aligns with the gradient

of monolayer density and the concentration field. In other words, cell polarization is
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Figure 3.9: Mean-field elastic modulus BMF of the cell monolayer as a function of
time, showing oscillatory stiffening or fluidization for β = 100 Pa (solid) and steady

stiffening for β = 30 Pa (dashed).

Figure 3.10: Spatio-temporal evolution of internal stress (A-C) and polarization (D-
F) as the polarization induced tension β′ is increased (left to right). (A,D) X-waves,
β′ = 12 nN/µm; (B,E) traveling stress pulse, β′ = 17 nN/µm; (C,F) complex oscillatory
patterns, β′ = 24 nN/µm. Parameters: w = 4.3 µm/min, w′ = 0.21 µm/min, κ = 193
µm2/min, a = 0.07 min−1, b = 0.03 min−1. Other parameter values are the same as in
Fig. 3.5. See Section.. for kymographs of strain rate, velocity and the traction stress.

enhanced in the direction opposite to that of elastic restoring forces. Additionally,

polarization gradients can induce mechanical stresses, and the stress tensor is modified

to read, σ = Bε + σa(c) + β′∂xp, where β′ > 0 is a contractile tension induced by
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polarization gradients. We assume a no-flux boundary condition, ∂xp(±L/2) = 0.

When the coupling of polarization to strain and contractility is turned on, various spa-

tiotemporal patterns emerge as the active tension β′ is varied. For small β′, the stress

patterns are qualitatively similar to Fig. 3.7B (with time-independent propulsion), and p

asymptotically approaches p∞ with initial oscillations near the midline (Fig. 3.10 A,D).

For intermediate β′, a traveling stress pulse emerges in the layer and the location of

stress maxima oscillate around the midline (Fig. 3.10B). This is accompanied by large

amplitude oscillations of net polarity that attenuate in time to generate a symmetric

steady state polarization profile (Fig. 3.10E). These traveling pulses persist even in the

case β = 0. For even higher values of β′ complex oscillatory patterns emerge in the

monolayer stress and polarization (Fig. 3.10C,F).

3.7 Discussion

We have developed a simple yet rich dynamic model for an active spreading gel, based

on a linear feedback between local strain and contractility. A local increase in length due

to spreading promotes the assembly of active elements that in turn induce contraction.

We propose that a finite turnover rate in the active contractile elements can yield an

effective inertia and viscoelasticity in the gel that vanishes for infinitely fast turnover

rates. This simple mechano-chemical model allows us to capture the experimentally

observed propagating stress waves during tissue expansion without invoking nonlinear

elasticity [7]. These stress waves are characterized by strain rate wavefronts that ini-

tiate from the leading edge and periodically travel into and away from the midline of

the monolayer. Our findings also elucidate that the effective material rigidity of the

tissue undergoes sustained periods of stiffening and softening as the waves propagate.

Using a minimal phenomenological model we are able to draw important general con-

clusions regarding the mechanics of cellular materials. First, a finite turnover rate in

the constituent contractile elements can yield an effective inertia and viscoelasticity in

an otherwise non-inertial elastic medium. Secondly, the existence of mechanical waves

depends upon a local feedback between material strain and contractility. We emphasize

that spreading is not crucial for wave propagation and that oscillations can also occur

under confinement but the dynamics of the concentration field is crucial in order to get

propagating waves. However in contrast to our model, Ref. [108] recently proposed that

oscillatory modes in confined layers can also be generated by stochastic motion of cells.

Experimental tests that inhibit myosin based contractility or cell directionality can help

discriminate between these different models.
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Appendix A

A.1 Volume conservation and kinetic constraints

In the mean field model, we begin by considering an ideal wound-healing geometry where

the dimensions of the cell layer are by the instantaneous height h(t) (in the z-direction),

x-length L(t), and a y-length d. We further consider a thin film, letting h(t)� L(t)� d,

such that the changes in d are negligible compared to L and h and assume that there is

translational invariance along the y-direction. If the initial height of the cell layer is h0

and the length is L0, we define vertical and horizontal strains as,

εh(t) = h(t)/h0 − 1 , (A.1a)

εL(t) = L(t)/L0 − 1 . (A.1b)

Volume conservation implies, h(t)L(t) =constant. This leads to the following (related)

kinetic constraints,

ḣ

h
= − L̇

L
, (A.2a)

εh = − εL
1 + εL

. (A.2b)

A.2 Details of Linear Stability Analysis

In this section we examine the linear stability of the homogeneous steady-state. We

render our system of equations dimensionless by letting x → x/L0 and t → ft/ζL0.

Then new dimensionless parameters are B̃ = B/f , β̃ = β/f , α̃ = αζL0/fc0, τ̃ = fτ/ζL0,

h̃0 = h0/L0 and D̃ = Dζ/fL0. In these units, stress is measured in the units of f and

the concentration of contractile agents are expressed in units of c0. In the following

we drop the tilde notation over the dimensionless parameters for simplicity. Letting

ε(x, t) = δε(x, t) and c(x, t) = 1 + δc(x, t), the linearized equations for the strain and
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the concentration fields are given by,

∂tδε = h0

(
B∂2

xδε+ β∂2
xδc
)
, (A.3a)

∂tδc+ ∂tδε = −1

τ
δc+ αδε+D∂2

xδc . (A.3b)

Taking two spatial derivatives in Eq. (A.3b) and substituting the expression for ∂2
xδc =

[h−1
0 ∂tε−B∂2

xε]/β (obtained from Eq. A.3a), we obtain the effective dynamics of strain

fluctuations,

τΓ∂2
t δε+ Γ∂tδε = h0

(
Beff + ηeff∂t − τBD∂2

x

)
∂2
xδε , (A.4)

where Beff = B + αβτ/c0 and ηeff = (B − β + DΓ/h0)τ . The dynamics of strain

fluctuations are isomorphic to the dynamics of an driven damped Kelvin-Voigt material,

with a characteristic frequency of oscillation ω0 given as a function of the wavelength

λ0,

ω0(λ0) =
2π

λ0

√√√√ h0

τΓ

[
Beff + τ

(
2π

λ0

)2

BD

]
. (A.5)

We compare the analytical prediction for the time period, 2π/ω0, with the time period

determined numerically by performing a Fast Fourier Transform on the solution for the

strain rate at the center of the cell monolayer. The two values are in good agreement as

shown in Fig. 3.4 for λ0 = L0/2.

Next we look for solutions in the form δε, δc ∼ eiωt+iqx. The two eigenvalues controlling

the dynamics of fluctuations are given by the following dispersion relations,

iω±(q) = −b(q)
2
± 1

2

√
[b(q)]2 − 4h0

τ
[(1 +Dτq2)B + αβ] q2 (A.6)

where b(q) =
1

τ
+ [h0 (B − β) +D] q2. If the coupling to the concentration of contractile

elements is neglected (β = 0), iω+ = −h0Bq
2 and iω− = − 1

τ (we neglect the diffusion

constant D for simplicity assuming that its contribution is small). In this case the

elastic deformations are stable and diffuse through the cell layer and no oscillations are

observed. When the coupling to the concentration field is considered, we find a region in

the parameter space, Im[ω±] > 0, where the linear fluctuations are unstable. The system

is purely diffusive when Re[ω±] = 0 and Im[ω±] < 0. The region in the parameter space

defined by the complex values of the fourier modes, i.e Re[ω±] 6= 0, describe oscillatory

solutions. Furthermore, these propagating waves are stable when Im[ω±] < 0.
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A.3 Oscillatory Condition in Mean Field Model

The mean-field model admits an expanded steady-state solution for the gel with strain

ε∞, and an average concentration of contractile agents c̄∞. The strain fluctuations decay

with similar dynamics as in Eq. (A.4). With δε = (L−L∞)/L0, we get for the dynamics

of δε,

τγ
d2δε

dt2
+ (γ + h∞η

MF
eff )

dδε

dt
+ h∞B

MF
eff δε = 0 , (A.7)

where, BMF
eff = B − Bε∞ − β(c∞/c0 − 1) + αβτ/c0 and ηMF

eff = τ(B − Bε∞ − βc∞/c0).

The time-period for oscillations is given by,

ωMF
0 =

√
h∞BMF

eff /τγ , (A.8)

Since the mean-field model neglects diffusion, the effective viscosity ηMF
eff characterizing

the dissipation of strain-rate is less than ηeff. We thus add an additive correction ηD to

ηMF
eff in order to accurately estimate the numerical value for the effective viscosity in our

numerical analyses. Thus the condition for oscillatory solutions in Fig. A.1 is given by,

4τγh∞B
MF
eff > [γ + h∞(ηMF

eff + ηD)]2. (A.9)

β<βc
L(t)/L0

c(t)/c0

h(t)/h0

β>βc
L(t)/L0

c(t)/c0

h(t)/h0
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Figure A.1: Mean-field length (red), height (green) and concentration normalized by
their initial values for β = 100 Pa (solid) and β = 30 Pa (dashed) as a function of time,
showing oscillatory stiffening or fluidization for β = 100 Pa (solid) and steady stiffening

for β = 30 Pa (dashed).
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A.4 Turnovers in Contractility are Essential for Stress Wave

Propagation

Figure A.2: Kymographs of (A,B) monolayer velocity v(x, t), (C,D) monolayer stress
σ(x, t), (E,F) concentration of contractile elements, (G,H) traction stress T (x, t) and
(I,J) strain rate ε̇(x, t) in the non conserved case (left column) and conserved case (right
column) of active units. Parameters: B = 120 Pa, τ = 350 min, (c0/α) = 560 min,
L0 = 600 µm, h0 = 6 µm, f = 40 Pa, ζ = 0.09 nN min/µm3, D = 26 µm2/min. For
the magnitude of the contractile stress, we used β = 200 Pa for the non conserved case

and β = 30 Pa for the conserved case.

If the concentraction field is concerved (τ →∞; α = 0), and diffusion is slow compared

to elastic relaxation, Dζ/Bh0 � 1, stable propagating waves are not observed as can be

see in Fig. A.2B,D,F,H,J. Therefore turnovers in contractility are essential in order to

have propagating stress waves.

A.5 Complex Oscillatory Flows due to Polarization Fluc-

tuations

As discussed in Section 3.6 and observed in Fig. 3.10, for small value of the contractile

tension β′, the patterns in Fig. A.3A,D,G for velocity, concentration and strain rate
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Figure A.3: Kymographs of local velocity (A-C), concentration of contractile elements
(D-F) and strain rate (G-I) as the polarization induced tension β′ is increased (left to
right). (A,D,G) X-waves, β′ = 12 nN/µm; (B,E,H) traveling stress pulse, β′ = 17
nN/µm; (C,F,I) complex oscillatory patterns, β′ = 24 nN/µm. Parameters: w = 4.3
µm/min, w′ = 0.21 µm/min, κ = 193 µm2/min, 1/a = 14 min, 1/b = 28 min. Other

parameter values are the same as in Fig. 3.5.

respectively are qualitatively similar to Fig. 3.7 (where the propulsion force is time-

independent). For intermediate value of β′ (Fig. A.3B,E,H), the patterns of v, c and

ε̇ exhibits travelling pulses which lead to complex oscillatory patterns for higher β′

(Fig. A.3C,F,I). These patterns persist in the case of zero contractile stress (β = 0)

which means that the complex oscillatory flow depend on the fluctuations in polarization

field.

A.6 Choice of Model Parameters

While the model parameters are cell-type dependent, their values are chosen to quan-

titatively capture available experimental data in MDCK colonies [7]. The model pa-

rameters are tuned to capture the experimental data on velocity, strain rates, traction

stress and intercellular stresses, while the remaining values are chosen within the or-

der of magnitudes reported in prior literature. Specifically, we choose an initial length

of the monolayer L0 = 600 µm, cross-sectional area A = 1000 µm2, spreading force

F0 = fA = 4 nN and friction γ = ζA = 9 nN min/µm. The timescale to reach a

spread steady-state is thus τs = L0ζ/f ' 1400 min. The timescale controlling activity

turnover, τ , and the timescale controlling the strain-concentration feedback, c0/α, are

chosen smaller than τs but of the same order. We assume that diffusion is negligible

and represents the tendency of neighboring cells to equalize the concentration of active
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agents. In our simulation we set the diffusion length to be ∼ 5 µm (one grid size) per

minute.
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Chapter 4

Collective Cell Migration in

Confined Cell Monolayers

This chapter is based on a paper published in Biophysical Journal 110, 2729 (2016)

with J. Notbohm, B. Gweon, H. Jang, Y. Park, J. Shin, J.P. Butler and J.J. Fredberg

contributing on the experimental part and S. Banerjee and M.C. Marchetti contributing

on the theoretical part as co-authors. My contribution was to perform numerical sim-

ulations and provide numerical results, write the theoretical part of the supplementary

materials and contribute to the discussion of the results.

4.1 Introduction

Far from any boundary each cell exerts local tractions upon its substrate that tend to

align with the direction of local motion [86, 109]. Near a boundary, in contrast, trac-

tions tend to align systematically towards the cell-free region regardless of the direction

of local cellular motion [86].

Working with the experimental group of Prof. J. J. Fredberg at Harvard, we have exam-

ined this phenomenon by studying the dynamics of confined tissues. The experiments

have provided further evidence showing that each cell polarizes so as to apply local trac-

tion in a direction that can deviate systematically from its local velocity, and that this

systematic deviation is a general property of collective cellular motion. If local traction

and local velocity are not aligned, it follows logically that tractions cannot result solely
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from viscous friction between the moving cell and its motionless substrate; rather, trac-

tions must be regulated by variables in addition to velocity [18, 89, 110].

We use our mechanochemical model described in chapter 2 and apply it to a confined cell

monolayer to study the misalignment between traction and velocity. We use the confined

system because experiments [86, 88] have shown that in confined cell monolayers, the

misalignment becomes evident. To account for this local angular deviation between cell

traction and velocity, we use the time-dependent cell polarization in our model. To my

knowledge we are the first to show how the polarization field in confined environment

makes the systematic misalignment between the local velocity and local traction become

more conspicuous. Some previous theoretical models [18, 89, 90, 110], but not all [111]

have recognized that local tractions can align in a direction that deviates transiently, but

not systematically, from that of the local velocity. This transient misalignment has been

modeled by introducing noisy fluctuations around a tendency toward realignment [90,

112]. We conclude that the collective modes of cellular motion result from an interplay

between cell contraction and polarization. This chapter comprises results from both

experiments and our theoretical model. We start by showing experimentally that the

cell monolayer behaves elastically. We then describe the minimal model in circular

geometry and discuss the results from the model and compare them to experimental

results. The appendix includes the methods and materials used in experiments. Both

the model and the experiments show that the dynamics of the polarization field is crucial

to generate the standing waves observed in experiments and to capture the misalignment

between local traction and local velocity.

4.2 Elastic Behavior of the Cell Monolayer

To study the dynamics of tissues in confinement, masks were prepared with circular

holes (diameter = 700 µm) using standard techniques in soft lithography, similar to

those described previously in Ref. [7]. These masks were placed onto the polyacrylamide

gels before functionalizing with collagen, thus leaving a circular island of collagen to

which the cells adhered. Imaging of the Madin-Darby Canine Kidney (MDCK) cell

monolayers began approximately one hour after seeding and continued for ∼ 30 h (See

Fig. 4.1, bottom frame).

We tracked the position of each cell’s nucleus to compute the average distance between

each nucleus and its neighbors. From these distances, we then computed the local

area covered by each cell. Within the confined islands, cellular areas increased as cells

collectively moved outward and then decreased as they moved inward (Fig. 4.2a). We
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Figure 4.1: Top: Schematic of the tissue confined in circular geometry. cells are
cultured on a circular opening of the collagen-coated PA substrate with radius R, the
tissue has a thickness h. The surrounding of the tissue is a PDMS membrane, so that
cells are not allowed to invade new spaces outside the opening. Cells extert a traction

T on the substrate. Bottom: MDCK cells in a confined island .

compared the cellular areas to the stresses within the monolayer, which we measured

using monolayer stress microscopy [109, 113]. Monolayer stress microscopy applies the

principle of force equilibrium to the cell monolayer to compute the in-plane monolayer

stresses from the cell-to-substrate tractions.

We found that the tension σ (defined as the mean of the two principal stresses within

the cell monolayer) periodically increased and decreased with the same frequency as the

radial waves in cellular velocity and with the same phase as the cellular area (Fig. 4.2b),

thus implying an elastic relationship. To investigate further the elastic behavior of the

monolayer, we examined the relationship between stress and strain rate, and found no

correlation (Fig. 4.3).

The lack of correlation implied that viscous contributions to the monolayer stress are

negligible.

We then compared the time derivative of stress to the strain rate. Specifically, we plotted

the time derivative of the tension

(
dσ

dt

)
and the trace of the strain rate tensor

(
dε

dt

)
,

which were well correlated over time along a single radial position (Fig. 4.2c). The

correlation is further evident by a scatter plot (Fig. 4.2d). The elastic modulus K of
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Figure 4.2: Elastic behavior of the cell monolayer. (a) The oscillatory motion causes
expansion and contraction of each cell, shown by the oscillations in the kymograph of
cell area. (b) Contractile tension within the monolayer oscillates in phase with the cell
areas. (c) The area strain rate (dε

dt , defined as the trace of the rate-of-strain tensor)

and the time derivative of tension (dσ
dt ) are computed by averaging around a circle 100

µm from the center of the island and plotting over time. dε
dt and dσ

dt are well correlated

(Pearson’s correlation coefficient R = 0.77). (d) A scatter plot of dσ
dt vs. dε

dt for all
cell positions at all times shows a positive correlation (R = 0.59). The slope of a
linear fit (red line) is equal to the effective elastic modulus of the monolayer, given by
K=152 Pa for this cell island. Experiments for n=8 islands give an average value of
K = 113± 28Pa (mean ± standard deviation). The kymograph of velocity for this cell

monolayer is shown in Fig. 4.8d.

the cell monolayer is given by the slope of a line fit to the scatter plot, K=113 ± 28 Pa

(mean standard deviation of n=8 islands).

4.3 Mimimal Model to Model the Experiments

We have numerically solved the equations described in Chapter 2 in a circular geometry

by assuming in-plane rotational symmetry (See Fig. 4.1) such that all quantities depend

solely on the radial coordinate, r. Rotational symmetry in polar coordinates implies

that shear stresses σrθ vanish and the dynamics of the radial displacement field are

solely governed by normal stresses, in agreement with the experiments. The equation of
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Figure 4.3: Negligible viscous stress in the monolayer. To investigate the role of
viscosity in the monolayer, the tension (defined as the mean of the principal stresses)
is compared to the sum of the principal strain rates, and the maximal shearing stress
(defined as half the difference of the principal stresses) is compared to the difference of
the principal strain rates. The data shown is for the cell island of Fig. 1 at time points
160, 400, and 640 min. Each dot represents a different location in the island; the blue
lines show linear fits. Correlation coefficient magnitudes are typically smaller than 0.1,

indicating viscosity has a negligible contribution to the stress tensor.

motion for radial displacements ur is given by,

ζ∂tur = fpr + h

(
∂rσrr +

1

r
(σrr − σθθ)

)
, (4.1)

where σrr and σθθ define the radial and orthoradial components of the normal stress in

the monolayer, given by,

σrr = B
(
∂rur +

ur
r

)
+G

(
∂rur −

ur
r

)
+ β log(c/c0) , (4.2)
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σθθ = B
(
∂rur +

ur
r

)
−G

(
∂rur −

ur
r

)
+ β log(c/c0) . (4.3)

The equation governing the dynamics of c is given by,

∂tc+
1

r
∂r (rc∂tur) = −1

τ
(c− c0) + αc0

(
∂rur +

ur
r

)
. (4.4)

Finally, the equation governing the dynamics of radial polarization, pr, is given by

∂tpr = a
(
1− p2

r

)
pr +

κ

r
∂r(r∂rpr) + w∂r(c/c0) . (4.5)

The homogeneous solutions to the above equation, pr = ±1, describe uniformly polarized

states of the cell monolayer with the cell motion pointing radially outwards for pr = 1

and inward for pr = −1. The solution pr = 1 describes the tendency of cell motion

to polarize towards the free space at the exterior of the cell island, consistent with

kenotaxis [114]. To solve the above equations, we assume that no external forces act at

the outer boundary such that σijnj = 0 where nj is the outward unit normal vector to the

boundary. This translates to the boundary condition σrr(R) = 0 in circular geometry.

We model adhesion with the micropattern by anchoring a hookean spring of stiffness

0.03 Pa/µm at the boundary of the cell monolayer. We choose a no-flux boundary

condition for c and pr, such that ∂rc(R) = 0, and the gradients of the polarization

variable at the outer boundary is zero, ∂rpr(R) = 0. We also assume that the monolayer

is initially undeformed, u(r, 0) = 0, and unpolarized, pr(r, 0) = 0, with an equilibrium

concentration of contractile elements, c(r, 0) = c0. We then integrate numerically Eqs.

(4.1), (4.4) and (4.5) with the given initial and boundary conditions by means of the

Runge–Kutta–Fehlberg method. We solve three different implementations of the model:

• u-p model. Radial displacement ur is coupled only to pr and the concentration

field is assumed to be constant, c = c0. In this case no wave-like behavior is

obtained (4.6d–f), indicating that the mechanochemical coupling between c and

ur is crucial to reproduce the waves of oscillatory motion.

• u-c model. Displacement ur is coupled to c only. The polarization field and hence

the propulsion force fpr are set to zero. In this case we obtain standing waves

qualitatively similar to those seen in experiments ( Fig. 4.6a-c). However, the

traction is proportional to velocity, in contrast to the misalignment observed in

experiments.

• u-c-p model. Here we use the full equations of motion, coupling ur to both c and

pr and are able to quanitatively reproduce the experimental trends (Fig. 4.4).
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Figure 4.4: Left: Kymograph of radial velocity in the cell monolayer captures the
experimentally observed collective inward and outward cellular motions. Middle: Ky-
mograph of cellular tension in the monolayer, which increases and decreases periodically
with the same frequency as the velocity. Right: Kymograph of radial traction. See Sup-

plementary Table 1 for a complete list of the model parameter values.

Figure 4.5: Midline local velocity v(x, t) (blue), midline local traction T (x, t) (red)
and midline local polarization p(x, t) (black) as function of time.

By solving the coupled system given by Eqs. (4.1), (4.4) and (4.5) assuming in-plane

circular symmetry, we applied this model to the confined monolayers in our experiments.

The results are displayed in a series of kymographs showing the spatiotemporal evolution

of the radial velocity, the monolayer tension, and the traction (Fig. 4.4). The model

quantitatively captured multiple aspects of our experimental data, namely that the

monolayers velocity field alternated between inward and outward motion (Fig.4.4 left

frame, Fig. 4.5) with a time period equal to that of the oscillations in the monolayer

tension (Fig.4.4 middle frame). This wave-like motion is predicted by the model to arise

through the chemo-mechanical feedback between the mechanical strain and the internal

state variable [110, 115]. The model captures that the direction of local velocity is not
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Figure 4.6: Limiting cases of the minimal physical model. (a–c) u-c model: Deforma-
tion u is coupled to c only. The polarization field p is set to zero and τ = 0.12 hrs. Rest
of the parameters are the same as in Table 1. In this case we obtain standing waves seen
in the kymograph of velocity (a) qualitatively similar to our experiments. However, the
traction (b) is proportional to velocity and is very different from the traction observed
in our experiments. The monolayer tension (c) oscillated out of phase with velocity
with both positive and negative values in disagreement to our experimental data. (d–f)
u-p model: Deformation u is coupled to p only with the concentration field c set to its
equilibrium value c0. Simulation parameters are the same as in Table 1. In this case no
wave-like behavior is obtained, indicating that the feedback between mechanical strain
and the regulatory biochemistry of c is essential to explain the presence of wave-like

dynamics.

aligned with the direction of local traction 4.5. In the limiting case c = c0 , when

the deformation is only coupled to , no oscillatory behavior is observed (Fig. 4.6d-f).

However, if the deformation is only coupled to the concentration field, the traction is

proportional to velocity, which contradicts our experimental observations (Fig. 4.6a-c).

This indicates that the polarization field is crucial to capture the misalignment between

traction and velocity. Thus coupling of the deformation to both the concentration field

and the polarization field is required to capture the experimentally observed distribution
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of tractions, which pointed inwards at the exterior of the cell island and oscillated

between outwards and inwards within the bulk of the island (Fig. 4.4 right frame).

To test the model’s prediction that a feedback between mechanical strain and cellular

Figure 4.7: The waves of collective motion and elasticity in the monolayer depend on
the contractile activity of the cells. (a) Kymograph of radial velocity after treatment
with blebbistatin shows reduction in speed and elimination of oscillatory waves of radial
motion. (b) Simulated kymograph of radial velocity using the model with no feedback
between strain and contractility (α = 0) also shows elimination of waves. (c, d) Treat-
ment with blebbistatin reduces root-mean-square speed of cells by a factor of ∼4 (c)
and reduces the modulus K to a nearly negligible value (d). (e) Kymograph of radial
velocity for an island treated with EGF (20 ng/mL) and (f) simulated kymograph with
reduced values of the parameters and . (g) Compared with control, EGF increased
the period of oscillation. (h) Relative to control, treatment with EGF decreased the
effective elastic modulus K. For the plots in (c), (d), (g), and (h) each dot corresponds

to a different cell island. P values are computed using a rank sum statistical test.

contraction generates collective oscillations, we inhibited contraction with the myosin-II

inhibitor blebbistatin (20 µM). For an expanding island, blebbistatin has no effect on

the speed of migration [7], but in confined islands blebbistatin reduced each cells speed

(Fig. 4.7a,c). Further, blebbistatin eliminated the multicellular oscillations (Fig. 4.7a),

and reduced the modulus K to ∼20 Pa (Fig. 4.7d). This observation is consistent with

our model which predicts that the coupling between strain and contractility yields an

effective modulus [110]

K ≈ B + α(βτ + fw/2ah) (4.6)

larger than the modulus B of the monolayer in the absence of contractility. Removing

the coupling between strain and contractility by setting α = 0 eliminated the oscillatory
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waves in our model (Fig. 4.7b). These findings suggest that the elasticity is primarily

active: the oscillations in motion cause oscillations in cellular strain, which through

active contraction cause oscillations in tension. To further test this, we sought to con-

nect changes in elasticity with the motion. We found that EGF (20 ng/mL) increased

the period of oscillation (Fig. 4.7e,g). In an oscillatory system, modulus and period

are inversely related, and in accord with increasing the period, treatment with EGF

decreased the modulus K (Fig. 4.7h). When we reduced the magnitude of the constants

that couple tension and strain, we saw, similarly, an increase in the period of oscillations

(Fig. 4.7f). From these findings- that the waves require contraction and that the period

depends inversely on modulus- we conclude that the elasticity is not passive in nature;

rather, it is the result of myosin-driven contractility within the cell.

4.4 Misalignment Between Cellular Tractions and Cellular

Velocities

To investigate the relationship between cellular tractions and velocities, we confined

monolayers of Madin-Darby Canine Kidney (MDCK) cells to circular islands (diam-

eter = 700 µm) of adhesive collagen type I. We measured cell velocities with parti-

cle image velocimetry and simultaneously measured tractions with traction force mi-

croscopy [107, 116, 117]. Similar to reports in a previous study [108], we observed

sustained oscillations of inward and outward cellular motion comprising waves with a

period of 6 hours (Fig. 4.8b). To visualize the data at all points in space and time, we

averaged the velocity data over the azimuthal angle to collapse all spatial data onto a

single axis specifying the radial position. We then plotted the data over time to generate

a kymograph. As shown in the kymograph of velocity (Fig. 4.8d), the cellular motion

was highly coordinated with standing waves of outward and inward collective motion,

similar to seiches observed in lakes or other confined bodies of water. Surprisingly,

even though the monolayer velocity varied little with the radial position at a given time,

tractions were organized in a standing wave with finite wavelength (Fig. 4.8e). While the

tractions at the perimeter of the island pointed radially inward, tractions at any point

within the bulk of the island oscillated radially inward and outward over time akin to

the velocity field. At the perimeter of the island all cells applied inward-pointing trac-

tions (Fig. 4.8c), indicating that these cells pulled themselves toward the exterior free

space, a behavior called kenotaxis [86]. But across the island the correlation between

traction and velocity was negligible (typical correlation coefficient magnitude |R| < 0.1,

Fig. 4.81b-c). Furthermore, the angles between the directions of velocity and traction

showed a nearly uniform distribution across the monolayer (Fig. 4.8f), indicating that

the orientation of each cells traction is not linked solely to its velocity. To investigate
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Figure 4.8: Tractions do not align with local cellular motions. (a) Phase contrast
images of a confined cell monolayer. Time zero corresponds to the first image collected.
(b, c) The radial components of velocity (b) and traction (c) are uncorrelated with one
another. At some time points (e.g. 160 min), the Pearsons correlation coefficient R is
positive, and at other time points (e.g. 400 min) it is negative. (d) The kymograph
shows the radial velocity as a function of position and time. Red and blue bands indicate
oscillating outward and inward motion. (e) Kymograph of radial traction showing that
cells at the perimeter apply tractions that point inward, while cells within the bulk
apply tractions that oscillate between inward and outward. (f) Histogram of the angle
between the velocity and traction vectors. Each gray line shows a single point in time

for the cell island; the blue line shows all points in time.

further the relationship between traction and velocity, we considered cellular motion

within an expanding cellular island wherein the cells were not restricted by a boundary.

We seeded cells onto a mask with 700 m holes placed atop a compliant polyacrylamide

gel coated with collagen type I. As shown previously in Ref. [83], removing this mask

induces cell migration into the newly created free space. Upon sensing the free space

created by mask removal, cells located at the perimeter of the island migrated first, and

their outward motion caused cells just inside the perimeter to follow (Fig. 4.9). Over

time, more and more cells began to move, creating a wave of radial motion that propa-

gated from the perimeter to the center of the island (Fig. 4.8b,d), similar to the waves

of motion observed for cells in a rectangular monolayer [7]. Much like the cells in the

confined islands, the cells near the perimeter of the expanding islands applied inward
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Figure 4.9: In expanding cellular monolayers, cellular tractions align in a different
direction than cellular velocities. (a) MDCK cells are micropatterned into 700 µm
islands using a PDMS mask on a polyacrylamide gel. When the mask is removed,
the cells migrate outward. Times are in minutes after removing the mask. (b) Cell
velocities are measured using particle image velocimetry, and the radial component of
the velocity vector is plotted. The positive direction (red) represents outward motion.
At early times (220 min), cells at the periphery move outward; later (300 min), all cells
move outward. Once the island is fully spread (720 min), cells move either inward or
outward. (c) Radial component of traction applied by the cells to the substrate. Areas
in blue indicate regions where the cells pull inward on the substrate; this inward force, if
unbalanced, would accelerate the cells outward. The relationship between velocity and
traction is evaluated with Pearson’s correlation coefficient, R. (d, e) Kymographs of
radial velocity (d) and radial traction (e). At all points in time, neither the spatial map
of tractions (c) nor the averaged tractions (e) correlate with the velocity. (f) Histogram
of the angle between the velocity and traction vectors. Each gray line shows a single

point in time for the cell island; the blue line shows all points in time.

tractions so as to pull themselves toward free space (Fig. 4.9c,e). For cells in the bulk of

the expanding island, however, we observed no alignment between directions of traction

and velocity (Fig. 4.9f). These findings point to the notion that cells tend to apply

local propulsive forces in a direction that can deviate systematically from the direction

of local cellular motion. In the specific case of cells near the edge of the freely expand-

ing monolayer, local tractions and velocities were aligned, but elsewhere they were not.

Why this independence of orientations? In contrast to previous models [15, 118] which

predict that cells apply traction along a gradient of cellular density, our data showed

no correlations between the orientations of cellular tractions, velocities, or gradients in
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Figure 4.10: Gradients in local number density do not drive collective motion in
expanding or confined monolayers. (a) Phase contrast image of MDCK cells in an
expanding island 720 min after removing the mask. (b–d) The radial components of
velocity (b) and traction (c) are uncorrelated with the radial component of the density
gradient (d) (Pearson’s correlation coefficient R = -0.06 and 0.07, respectively). (e–h)
For a confined monolayer (e), radial velocity (f) and radial traction (g) are similarly
uncorrelated with the radial component of density gradient (h) (Pearson’s correlation
coefficient R = 0.03 and -0.12, respectively). (i–l) Histograms of the angle between the
directions of density gradient and velocity (i, k) or density gradient and traction (j, l)
for the expanding (i, j) or confined (k, l) islands. Each gray line shows the histogram
for a single point in time for a cell island; the blue lines show histograms for all points
in time. Computation of all density gradients reports data points located at least 50
µm from the boundary of the cell island so as to avoid errors in computing the density

gradient near the outside of the island where density is zero.

number density (Fig. 4.10).

4.5 Discussion

Here we have studied motions and forces in a confined monolayer of epithelial cells.

Spontaneous oscillations arise wherein cells alternated between outward and inward cor-

related motions that resemble the sloshing seiches that are observed in confined bodies

of water. The direction of local cellular velocity is generally independent of the direction

of local traction, thus indicating that the relationship between force and motion requires

additional state variables. Two cellular state variables, the concentration of contractile

elements and the polarization of cell motion, were introduced to reproduce the exper-

imental results. The coupling between the cellular strain and chemical concentration
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generates effective inertia which, together with cellular elasticity, supports the oscilla-

tory waves of motion observed in the experiments. Decreasing the elastic modulus with

EGF increased the period of oscillation (Fig. 4.7g,h), in agreement with the theory.

Elasticity of the monolayer has been previously attributed to a passive spring-like be-

havior of the cytoskeleton, its contractile apparatus, and cell-cell adhesions [7, 108]. In

contrast, our model now incorporates a feedback between cellular strain and contractil-

ity such that a local increase in cell area induces larger contractility. This mechanism is

consistent with recent experiments on single cells [93] and multicellular clusters [85, 119],

which show that cells with larger area are more contractile than cells with smaller area.

When we suppressed cell contractility with the myosin-II inhibitor blebbistatin, the

elastic modulus decreased by an order of magnitude (Fig. 4.7d), and the waves were

suppressed (Fig. 4.7a). From this observation we conclude that the elasticity required to

generate the waves is not simply a passive spring-like behavior; rather it results from the

active contractile elements inside the cell [93]. Adding blebbistatin reduced the average

cell speed in these confined islands, but such a reduction in speed is unlikely to be the

mechanism that inhibits the oscillations in cellular motion. A previous study showed

that blebbistatin in an expanding cellular island has no effect on cell speed, but it does

eliminate propagating waves of contractile tension [7]. This observation agrees with our

finding that active cell contraction is required to generate the oscillatory waves. The
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Figure 4.11: The ERK inhibitor U0126 (10 µM) decreases the velocity and eliminates
the waves. (a) Kymograph of velocity shows no waves of cellular motion are present.
(b) Compared to control, cell islands treated with U0126 move at a slower speed. (c)
Compared to control, treatment with U0126 reduces the elastic modulus K. For the
plots in (b) and (c), each dot corresponds to a different cell island. P values are

computed using a rank sum statistical test.

molecular mechanisms that link changes in cellular stretching to changes in contractile

tension are unknown, but theoretical studies [18] and experimental evidence point to

ERK MAP kinase (ERK1/2) as being associated with extension of muscle tissue [120]

and stretching of stress fibers [121]. Moreover, when a monolayer begins to expand

into free space, a wave of ERK1/2 phosphorylation propagates from the monolayers free

edge into the bulk [122, 123] at a speed approximately the same as that of the waves of
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cellular motion that occur in our experiments of expanding cellular islands (Fig. 4.9d)

and have been reported elsewhere [7]. This slow-moving wave results not from damage

to the monolayer, but rather from the free space offered to the monolayer’s edge[123].

When we inhibited ERK1/2 with U0126 (10 M), the effective modulus decreased by a

factor of two, and collective oscillations were suppressed (Fig. 4.11).

Collective cellular oscillations similar to the ones described here have been reported by

Deforet et al. [108], who performed stochastic particle-based simulations that balanced

the forces of inertia, friction, intercellular adhesions and active propulsion. In their simu-

lation each cell was given a tendency to adapt its velocity to that of its nearest neighbors.

Although the model by Deforet et al. and the one presented here are both based on local

force-balance, they differ in spirit. Instead of simulating the dynamics of individual cells,

we propose a continuum model formulated in terms of a few coarse-grained fields such

as traction and velocity, which are measured directly in the experiments. Our model

contains only a small number of parameters that represent effective material properties

of the monolayer and describe the combined effect of a number of signaling pathways.

The model makes testable predictions that provide a way of correlating the macroscopic

parameters of the theory with specific pathways.

Oscillatory or wavelike motion requires second order differential equations in time, corre-

sponding to the tradeoff between two independent time scales. The dynamics of cellular

monolayers is overdamped, hence governed by a first order differential equation, with

a single time scale determined by the interplay of viscous friction and elasticity. Until

now the origin of the second time scale required for oscillatory behavior has remained

mysterious. Deforet et al. accounted for the second time scale by introducing cellular

inertia [108]. Serra-Picamal et al. accounted for the second time scale by assuming

stretched cells became fluidized (i.e., they flowed under tensile forces) for a specified

period of time [7]. There is evidence that cells fluidize when stretched and unstretched

quickly [124–126], but whether stretches due to slow cellular motion induce fluidization

remains an open question. Our model and experiments point to a second time scale that

comes from the mechanochemical feedback [18] between the local strain and the rate of

change in contractile tension. This feedback mechanism results in self-sustained periods

of stiffening and fluidization in the cell monolayer [110].

Dynamics of the chemical concentration does not explain the apparent independence

between the local orientations of traction and velocity (Fig. 4.8f, Fig. 4.9f, Fig. 4.12).

Whereas Kim et al. showed velocity and tractions do not align near to a bound-

ary []Kim2013, we show here that an angle of misalignment between traction and velocity

occurs even in the absence of a boundary. The histogram of the angle between traction

and velocity at all points in time (Fig. 4.8f, blue line) shows a very small peak near
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Figure 4.12: Dynamics of the internal state variables in the cell monolayer. (a)
Kymograph of the polarization field in the full u-c-p model shows that cells at the
boundary and at the center of the monolayer are polarized outwards separated by a
band of inward polarized cells. (b) Kymograph of the concentration field in the full
u-c-p model showing oscillations similar to the monolayer tension. (c) In the absence
of coupling to c, the polarization field is uniform and points radially outward. (d)
Kymograph of the concentration field in the absence of coupling to polarization field.

zero, indicating a slight tendency for cells to pull on the substrate in the same direction

that they move. This occasional alignment between motion and traction is consistent

with the presence of a viscous drag exerted by the moving cells onto the substrate, as

described by our model and others [18, 89, 90, 110]. In these models the viscous drag

term connects tractions to motion, and thus our observation of occasional alignment

between traction and velocity serves as a confirmation of this connection. To account

for the deviation between the local directions of traction and velocity, we propose a vec-

tor polarization field that locally directs the cellular motion. Other theoretical models

have also incorporated a cell polarization field defining the orientation of an anisotropic

dipole-like contractile stress [89], with dynamics governed by general nonlinear hydro-

dynamic equations of polar liquid crystals [18, 127]. In contrast, our work considers a

minimal model where cell polarization does not generate shear stresses, in agreement

with our experimental data that show an isotropic distribution of the monolayer stress
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Figure 4.13: Cells polarize along gradients of contractility. The difference in the
orientations of the gradient of tension, θ〈∇σ〉, and the opposite of the time derivative
of traction, θ〈∂(−T)/∂t〉, is plotted as a histogram for various points in time (gray lines)
and for all time points (blue line). Here, the angle brackets represent a time average
over one period of oscillation. The peak near zero indicates that directions of 〈∇σ〉
and 〈∂(−T)/∂t〉 tend to align, in agreement with the model. The alignment between
directions of 〈∇σ〉 and 〈∂(−T)/∂t〉 means that the cell tractions evolve in time so as

to propel the cells towards regions of high tension.

field. Importantly, we identify two physical mechanisms that control the dynamics of

cell polarization. First, cells tend to polarize their traction toward free space, consistent

with kenotaxis [86]. Our model accounts for kenotaxis in the first term on the right hand

side of Eq. (4.5), which tends to polarize the monolayer toward free space. Secondly, the

polarization field evolves in time so as to locally align towards regions of high contractile

tension in the monolayer (Fig. 4.13). These two tendencies are required to reproduce

the spatial patterning of the traction field (Fig. 1e, Fig. 3e), and they provoke the ques-

tion of what molecular mechanism generates the polarization. The cytoskeletal protein

merlin may be involved, as the feedback between merlin and Rac1 has been shown to

direct formation of lamellipodia in collective cellular migration [128]. If merlin indeed

polarizes the cells, it is likely only one of several molecular mechanisms controlling the

forces that drive collective cellular motion.

Here we have found that the various biological mechanisms controlling the waves of

collective motion combine together to relate force and motion through two physical
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variables, one controlling intracellular contractility and the other polarizing cell motion.

These two state variables are present within each cell, but perhaps even more striking

is the fact that each cell coordinates these state variables with its neighbors to gener-

ate emergent waves of correlated motion that span multiple cell diameters. Emergent

phenomena like these multicellular waves control the motion and final positioning of the

cellular collective, and thus they are likely to play a key role in development and dis-

ease. The two internal variables that we describe here cell contraction and polarization

provide a framework for further investigation.
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Appendix B

B.1 Materials and Methods

B.1.1 Cell Culture

Madin-Darby Canine Kidney (MDCK) type II cells, expressing GFP with a nuclear

localization signal (pAcGFP1-Nuc vector, Clontech), were supplied by A. Pegoraro and

D. Weitz (Harvard University). The cells were maintained in low glucose Dulbecco’s

Modified Eagle’s medium (12320-032; Life Technologies, Carlsbad, CA) with 10% fetal

bovine serum (Corning) and 1% penicillin-streptomycin (Sigma-Aldrich. St. Luois, MO)

in an incubator at 37◦ C and 5% CO2.

B.1.2 Preparation of polyacrylamide substrates

Polyacrylamide gels with Young’s modulus of 6 kPa and thickness of 100 µm were poly-

merized by preparing a solution of 5.5% weight/volume (w/v) acrylamide (Biorad Lab-

oratories, Hercules, CA), 0.20% w/v bisacrylamide (Biorad Laboratories), 0.014% w/v

fluorescent particles (diameter=0.5 µm, carboxylate-modified; Life Technologies),0.05%

w/v ammonium persulfate (Biorad Laboratories), and 1/2000 volume/volume TEMED

(Biorad Laboratories). The gel solution was pipetted onto no. 1.5 glass bottom dishes

(In Vitro Scientific, Mountain View, CA), a glass coverslip (no. 1 thickness, 18-mm

diameter circle) was placed on top, and the dishes were centrifuged upside down so that

the fluorescent particles collected at the top surface of the gel. The gels were function-

alized with type 1 rat tail collagen (BD Biosciences, Franklin Lakes, NJ; 0.01 mg/mL,

1 mL per 18-mm diameter gel) using the covalent crosslinker sulfo-SANPAH (Pierce

Biotechnology, Waltham, MA) as described in Ref. [107].
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B.1.3 Micropatterning expanding and confined cellular islands

Masks were prepared with circular holes (diameter = 700 µm) using standard techniques

in soft lithography, similar to those described previously in Ref. [7]. Silicon-photoresist

masters were custom fabricated (MicroFit, Seongnam-si, Gyeonggi-do, Korea), and Poly-

dimethylsiloxane (PDMS) (Sylgard 184, Dow Corning, Midland, MI) was poured onto

the masters to cure overnight on a hot plate at 80◦C. The PDMS masks were sterilized

with 70% ethanol and incubated at 37◦C in 2% Pluronic F-127 (Sigma-Aldrich) for 4

hours to prevent cell adhesion to the masks. For expanding islands, masks were placed

on the collagen-coated polyacrylamide gels, and a 200 µL droplet of cell suspension

(4x105 cells total) was placed on each mask. The gels were transferred to a 37◦C/5%

CO2 incubator for 45 min for the cells to adhere to the collagen. Afterward, the 200 L

droplets were aspirated off of the PDMS masks, the masks were removed with tweezers,

and the gels were rinsed with PBS before adding 3 mL fresh medium. For confined

islands, masks were placed onto the polyacrylamide gels before functionalizing with col-

lagen, thus leaving a circular island of collagen to which the cells adhered. Imaging of

the cell monolayers began approximately one hour after seeding and continued for ∼ 30

h.

B.1.4 Microscopy

Images of the cells, nuclei, and beads were captured every 20 minutes using phase con-

trast (for cells) or fluorescent (for nuclei and beads) microscopy using a DMI6000B micro-

scope with a 5x NA 0.12 objective and a DFC345FX CCD camera (Leica Microsystems,

Wetzlar, Germany). Fluorescent particles and cell nuclei were imaged with fluorescence;

cells were imaged with phase contrast. The imaging environment was maintained at

37◦C/5%CO2 in a heated enclosure (PeCon, Erbach, Germany). For experiments with

expanding cellular islands a 2x2 grid of images was captured and stitched together using

the freely available Fiji distribution of ImageJ (http://fiji.sc/Fiji) [129]. After each

time lapse experiment, cells were removed from the polyacrylamide substrates by incu-

bating in 0.05% trypsin for 20 min, and images were collected of the fluorescent particles;

these images captured a stress-free reference state of the polyacrylamide substrates for

subsequent computation of tractions.

B.1.5 Measuring cell velocity and rate-of-strain

The velocity fields were measured using custom particle image velocimetry (also called

digital image correlation) software of phase contrast images written in Matlab (The

60

http://fiji.sc/Fiji


Chapter 4. Collective Cell Migration in Confined Cell Monolayers

Mathworks, Natick, MA). Interrogation windows of 64x64 pixels were used; this window

size allowed for a spatial resolution of ∼ 16 pixels (14 µm). Boundaries of the cell

islands were detected automatically using a previously described protocol [130]. The

rate-of-strain tensor was computed by numerically differentiating the velocity fields in

space.

B.1.6 Traction force microscopy and monolayer stress microscopy

Displacements of the particles were measured using digital image correlation, and trac-

tions exerted between the cell layer and its substrate were computed using unconstrained

Fourier Transform Traction Microscopy [116] taking into account the effects of finite

substrate thickness [107, 117]. From these measured tractions we computed the dis-

tribution of internal stresses within the cell layer using Monolayer Stress Microscopy

(MSM) [109, 113].

MSM rests upon the main assumptions that the cell layer is flat, continuous and thin.

Regardless of material properties of the cell layer, including any effects of nonlinearity

and viscoelasticity, Newtons laws in one dimension demand that these internal stresses

and boundary traction stresses must always remain in precise balance, and the MSM

solution in that case is therefore exact [109, 113]. In two dimensions matters are slightly

more complicated because the Poisson effect makes the solution inexact. Nevertheless,

the sensitivity to the Poisson effect has been shown to be quite small, and the solution has

been shown to be insensitive to a remarkably wide range of assumptions about material

properties of the cell layer itself, its nonlinearity, and its viscoelasticity [109, 113]; this

finding was further validated independently by Zimmermann et al. [112], who used a

particle-based simulation to show that the stresses in the simulation are recovered by

MSM with a high degree of accuracy. In two dimensions, three independent components

of the stress tensor within the monolayer are obtained by solving three coupled equations.

Two of those equations describe force balance, which make no assumptions about the

properties of the monolayer [109, 113]. The third equation is the compatibility of the

deformation field. Displacements, tractions, and stresses are measured at the same

spatial resolution as the velocity field, 14 µm.

B.1.7 Measuring cell area and density

The position of each cell’s nucleus was computed from the fluorescent images of nuclei

using the watershed transform in Matlab. For each cell, the distance between its nucleus

and the nuclei of the nearest 6 neighbors was computed and averaged; this distance was

taken to be the diameter of that cell. From each cells diameter, its area was computed.
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Density is computed by taking the inverse of cell area. To compute the gradient in

density, each 3x3 window of data points is fit to a linear equation in the x direction and

to a second linear equation in the y direction. The slopes give the derivatives in the x

and y directions, respectively.

B.1.8 Chemical treatments

Chemical treatments were blebbistatin (20 µM), U0126 (10 µM), and EGF (20 ng/mL).

Blebbistatin and U0126 were dissolved in dimethyl sulfoxide (DMSO); EGF was dis-

solved in phosphate buffered saline (PBS). Blebbistatin and U0126 stock solutions were

20 mM and 10 mM, respectively. They were diluted by a factor of 1000 when added

to the medium, leading to a DMSO concentration of 0.1% in the cell culture medium.

All comparisons were made to matching concentrations of a vehicle control (DMSO or

PBS).

B.2 Model parameters.

While the model parameters are cell-type dependent, they are chosen so as to quantita-

tively reproduce our experimental data on MDCK cell monolayers for traction, velocity

and intercellular stress. Specifically, the radius of the cell monolayer is taken to be

R = 350 µm and the values of the elastic moduli, B and G, and the contractile stress

β are taken to be of the same order of magnitude with the experimentally measured ef-

fective elastic modulus K of the monolayer. The values of the timescales regulating the

chemical dynamics, τ and α−1, are tuned so as reproduce the experimentally measured

time period of oscillations ∼6 hrs. The remaining values are chosen within the order of

magnitudes reported in prior literature. A complete list of the parameter values is given

in Table below.

B.3 Experimental validation of the model predictions.

• Contractile activity generates effective elasticity and mechanical waves. Our model

predicts that the coupling between contractility and the monolayer strain yields an

effective bulk modulus, K = B+ατ(β+ fw/2ah) that is greater than the passive

bulk elastic modulus of the material [18]. Furthermore, in our model waves arise

due to a local feedback between rate of production of c and mechanical strain in the

monolayer. This is consistent with our experimental data which shows that the

treatment with blebbistatin (an inhibitor of myosin-based contractility) reduces
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the effective elastic modulus K of the cell monolayer by an order of magnitude and

eliminates the waves (Fig. 4 a–d).

• Cell polarization aligns with the gradients of contractile tension. Our minimal

model incorporates feedback between p and c such that ∂tp ∝ ∇(c/c0). Because

the active stress σa goes as log (c/c0), we expect that ∂tp ∝ ∇σ. Furthermore,

since T = ζv − fp, and v averages to 0 over one period of oscillation, we expect

that 〈∂(−T)/∂t〉 ∼ 〈∇σ〉, where the angular brackets denote time average over

one period of oscillations. When we compare directions of 〈∂(−T)/∂t〉 and 〈∇σ〉,
we find alignment (Fig. 4.13).

• Cell polarization exists even in the absence of contractility. Our experimental data

show that after treatment with blebbistatin, the traction and the velocity field

of the monolayer are misaligned on average, with the traction vectors pointing

radially inward at the perimeter of the island and cell motion polarized radially

outwards (Fig. B.1).

This behavior of cells to polarize their motion radially outward is consistent with

the results of the u–p model that reproduces the anti-alignment between traction

and velocity in the absence of contractility (Fig. 4.6d,e).

• Scaling of the time period with monolayer size. A linear stability analysis of our

continuum model predicts a characteristic frequency of oscillatory waves in the

monolayer given by [110],

ω0(q) ' q
√
hK/τζ , (B.1)
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Figure B.1: Blebbistatin treatment. Kymographs of (a) radial velocity and (b) radial
traction for a cell island treated with blebbistatin (20 µM). The tractions are generally
aligned in the opposite direction as the radial velocity. The observed anti-alignment
agrees with the model when contractility is inhibited (Fig.4.6d-f). In this figure, panel

(a) is the same as Fig. 4.11a.

where q is the radial wave vector. At length scales comparable to the monolayer

size, q ' 1/R, we get the following analytical expression for the time period,

T ' 2πR
√
τζ/hK . (B.2)

Our model thus predicts a linear scaling relation between the time period of oscilla-

tions and the monolayer radius, in agreement with experimental measurements [7].
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Serra-Picamal, and Xavier Trepat. Active tensile modulus of an epithelial mono-

layer. Physical Review Letters, 115, 248103, Dec 2015.

[86] Jae Hun Kim, Xavier Serra-Picamal, Dhananjay T. Tambe, Enhua H. Zhou,

Chan Young Park, Monirosadat Sadati, Jin-Ah Park, Ramaswamy Krishnan, Bomi

Gweon, Emil Millet, James P. Butler, Xavier Trepat, and Jeffrey J. Fredberg.

Propulsion and navigation within the advancing monolayer sheet. Nature Materi-

als, 12, 856–863, Jun 2013.

[87] L.D. Landau and E.M. Lifshitz. Theory of Elasticity (Third Edition), volume 7.

Butterworth-Heinemann, 1986.

[88] Jacob Notbohm, Shiladitya Banerjee, KazageJ.C. Utuje, Bomi Gweon, Hwanseok

Jang, Yongdoo Park, Jennifer Shin, JamesP. Butler, JeffreyJ. Fredberg, and

M.Cristina Marchetti. Cellular contraction and polarization drive collective cellu-

lar motion. Biophysical Journal, 110(12), 2729 – 2738, 2016.

[89] Pilhwa Lee and Charles W. Wolgemuth. Crawling cells can close wounds without

purse strings or signaling. PLOS Computational Biology, 7(3), 1–8, 03 2011.

72

http://dx.doi.org/https://doi.org/10.1016/j.cell.2011.11.016
http://dx.doi.org/https://doi.org/10.1016/j.cell.2011.11.016
http://dx.doi.org/https://doi.org/10.1016/j.devcel.2011.10.013
http://dx.doi.org/https://doi.org/10.1016/j.devcel.2011.10.013
http://dx.doi.org/https://doi.org/10.1016/j.devcel.2011.10.013
http://dx.doi.org/10.1242/dev.01253
http://dx.doi.org/10.1242/dev.01253
http://dx.doi.org/https://doi.org/10.1016/j.cub.2005.03.016
http://dx.doi.org/https://doi.org/10.1016/j.cub.2005.03.016
http://dx.doi.org/10.1073/pnas.0705062104
http://dx.doi.org/10.1073/pnas.0705062104
http://dx.doi.org/10.1103/PhysRevLett.115.248103
http://dx.doi.org/10.1103/PhysRevLett.115.248103
http://dx.doi.org/10.1038/nmat36895
http://dx.doi.org/https://doi.org/10.1016/j.bpj.2016.05.019
http://dx.doi.org/https://doi.org/10.1016/j.bpj.2016.05.019
http://dx.doi.org/10.1371/journal.pcbi.1002007
http://dx.doi.org/10.1371/journal.pcbi.1002007


Bibliography

[90] Markus Basan, Jens Elgeti, Edouard Hannezo, Wouter-Jan Rappel, and Herbert

Levine. Alignment of cellular motility forces with tissue flow as a mechanism for

efficient wound healing. Proceedings of the National Academy of Sciences, 110(7),

2452–2459, 2013.

[91] S. Banerjee and M. C. Marchetti. Substrate rigidity deforms and polarizes active

gels. EPL (Europhysics Letters), 96(2), 28003, 2011.

[92] Peter Atkins. The Laws of Thermodynamics: A Very Short Introduction. Oxford

University Press, New York, USA, 2010.

[93] PatrickW. Oakes, Shiladitya Banerjee, M.Cristina Marchetti, and MargaretL.

Gardel. Geometry regulates traction stresses in adherent cells. Biophysical Jour-

nal, 107(4), 825 – 833, 2014.

[94] Marco Salm and L M Pismen. Chemical and mechanical signaling in epithelial

spreading. Physical Biology, 9(2), 026009, 2012.

[95] David P. Stonko, Lathiena Manning, Michelle Starz-Gaiano, and Bradford E.

Peercy. A mathematical model of collective cell migration in a three-dimensional,

heterogeneous environment. PLOS ONE, 10(4), 1–19, 04 2015.
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[123] Djordje L. Nikolić, Alistair N. Boettiger, Dafna Bar-Sagi, Jeffrey D. Carbeck, and

Stanislav Y. Shvartsman. Role of boundary conditions in an experimental model

of epithelial wound healing. American Journal of Physiology - Cell Physiology,

291(1), C68–C75, 2006.

[124] Xavier Trepat, Linhong Deng, Steven S. An, Daniel Navajas, Daniel J. Tschumper-

lin, William T. Gerthoffer, James P. Butler, and Jeffrey J. Fredberg. Universal

physical responses to stretch in the living cell. Nature, 447, 592–595, May 2007.

75

http://dx.doi.org/https://doi.org/10.1016/j.bpj.2015.11.001
http://dx.doi.org/https://doi.org/10.1016/j.bpj.2015.11.001
http://dx.doi.org/10.1103/PhysRevLett.113.148102
http://dx.doi.org/10.1103/PhysRevLett.113.148102
http://dx.doi.org/10.1152/ajpcell.00270.2001
http://dx.doi.org/10.1073/pnas.0705815104
http://dx.doi.org/10.1073/pnas.0705815104
http://dx.doi.org/https://doi.org/10.1016/j.bpj.2014.08.006
http://dx.doi.org/10.1103/PhysRevLett.108.198101
http://dx.doi.org/10.1103/PhysRevLett.108.198101
http://dx.doi.org/10.1371/journal.pone.0012903
http://dx.doi.org/https://doi.org/10.1016/j.cub.2004.03.060
http://dx.doi.org/https://doi.org/10.1016/j.cub.2004.03.060
http://dx.doi.org/https://doi.org/10.1016/j.cub.2004.03.060
http://dx.doi.org/10.1152/ajpcell.00411.2005
http://dx.doi.org/10.1152/ajpcell.00411.2005
http://dx.doi.org/10.1038/nature05824
http://dx.doi.org/10.1038/nature05824


Bibliography

[125] Ramaswamy Krishnan, Chan Young Park, Yu-Chun Lin, Jere Mead, Richard T.

Jaspers, Xavier Trepat, Guillaume Lenormand, Dhananjay Tambe, Alexander V.

Smolensky, Andrew H. Knoll, James P. Butler, and Jeffrey J. Fredberg. Reinforce-

ment versus fluidization in cytoskeletal mechanoresponsiveness. PLOS ONE, 4(5),

1–8, 05 2009.

[126] Ramaswamy Krishnan, Elizabeth Peruski Canović, Andreea L. Iordan, Kavitha
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