
Syracuse University Syracuse University

SURFACE SURFACE

Dissertations - ALL SURFACE

August 2017

Stable Sparse Orthogonal Factorization of Ill-Conditioned Banded Stable Sparse Orthogonal Factorization of Ill-Conditioned Banded

Matrices for Parallel Computing Matrices for Parallel Computing

Qian Huang
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Huang, Qian, "Stable Sparse Orthogonal Factorization of Ill-Conditioned Banded Matrices for Parallel
Computing" (2017). Dissertations - ALL. 772.
https://surface.syr.edu/etd/772

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F772&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=surface.syr.edu%2Fetd%2F772&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/772?utm_source=surface.syr.edu%2Fetd%2F772&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ABSTRACT

Sequential and parallel algorithms based on the LU factorization or the QR factor-

ization have been intensely studied and widely used in the problems of computation

with large-scale ill-conditioned banded matrices. Great concerns on existing methods

include ill-conditioning, sparsity of factor matrices, computational complexity, and

scalability. In this dissertation, we study a sparse orthogonal factorization of a banded

matrix motivated by parallel computing. Specifically, we develop a process to factor-

ize a banded matrix as a product of a sparse orthogonal matrix and a sparse matrix

which can be transformed to an upper triangular matrix by column permutations. We

prove that the proposed process requires low complexity, and it is numerically stable,

maintaining similar stability results as the modified Gram-Schmidt process. On this

basis, we develop a parallel algorithm for the factorization in a distributed computing

environment. Through an analysis of its performance, we show that the communi-

cation costs reach the theoretical least upper bounds, while its parallel complexity

or speedup approaches the optimal bound. For an ill-conditioned banded system, we

construct a sequential solver that breaks it down into small-scale underdetermined

systems, which are solved by the proposed factorization with high accuracy. We also

implement a parallel solver with strategies to treat the memory issue appearing in ex-

tra large-scale linear systems of size over one billion. Numerical experiments confirm

the theoretical results derived in this thesis, and demonstrate the superior accuracy

and scalability of the proposed solvers for ill-conditioned linear systems, comparing to

the most commonly used direct solvers.

STABLE SPARSE ORTHOGONAL FACTORIZATION OF ILL-CONDITIONED

BANDED MATRICES FOR PARALLEL COMPUTING

by

Qian Huang

B.S., Sun Yat-sen University, 2006

M.S., Sun Yat-sen University, 2008

Dissertation

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mathematics.

Syracuse University

August 2017

Copyright c© Qian Huang 2017

All Rights Reserved

Acknowledgements

I would like to express my special gratitude for advice from Professor Yuesheng Xu

who gave direction to this dissertation. I would like to thank Professor Uday Banerjee

and Professor Lixin Shen for their comments and suggestions. I am also indebted to

my many student colleagues for providing help through years of graduate study. I am

especially grateful to Liang Zhao, Feishe Chen, Xiaoxia Liu, and Xuefei Ma. Last but

not least, I am sincerely thankful for the help and support from my parents and my

wife who encouraged me so much while I was writing this dissertation. All remaining

errors are my own.

iv

Contents

Acknowledgements iv

1 Introduction 1

1.1 Motivation . 2

1.2 Issues with the Existing Methods . 6

1.3 A New Approach . 10

1.4 Contribution of this Dissertation . 12

1.5 Organization of this Dissertation . 12

2 A Stable Process for Sparse Orthogonal Factorization 14

2.1 The Block QS Factorization . 16

2.2 The Orthonormal Factorization . 27

2.3 Sparsity of the Factor Matrices . 38

2.4 Complexity of the Proposed Process . 43

2.5 Stability of the Proposed Process . 45

2.6 A Recursive Algorithm . 56

3 A Parallel Algorithm for the Block QS Factorization 62

v

3.1 Introduction . 64

3.2 Implementation in the BSP model . 66

3.3 The Parallel Algorithm . 71

3.4 Analysis of Parallel Performance . 76

4 Application on Solving Linear Systems 89

4.1 A Sequential Solver and the Ill-conditioning 91

4.2 Error Analysis of the Sequential Solver 95

4.3 A Parallel Solver and Extra Large-scale Linear Systems 103

5 Applications and Numerical Experiments 107

5.1 Experiments for the Factorization Process 109

5.2 Applications of the Sequential Solver 112

5.3 Parallel Experiments . 119

5.4 A Brief Summary . 124

vi

Chapter 1

Introduction

Large-scale ill-conditioned banded matrices are commonly seen in classical problems

of numerical differentiation and integration in applied mathematics, as well as modern

applications in data mining and data analysis. Main issues for computing with such

matrices include stability, ill-conditioning, sparsity, complexity, and scalability. Espe-

cially in big data processing, the efficiency of data retrieval and exchange is at least

as important as the efficiency of computation.

Existing direct methods either have poor treatment of ill-conditioning (such as the

LU factorization) or generate dense factor matrices and resulting in high computational

complexity (such as the rank revealing QR factorization). Existing iterative methods

such as Krylov subspace methods have the issue of scalability, due to the dependency

of their communication costs on the number of iterations. Moreover, neither existing

direct nor iterative methods are capable of computing with extra large-scale matrices

whose sizes are over one billion since they would suffer from the issue of insufficient

memory storage.

1

CHAPTER 1. INTRODUCTION 2

In this dissertation, we propose both sequential and parallel methods for a stable

sparse orthogonal factorization of banded matrices. The proposed methods resolve the

issues mentioned above, especially, the parallel method is able to treat extra large-scale

matrices, and thus can be applied in big data processing.

We organize this chapter into five sections. In section 1.1, we present the motivation

of this dissertation with various applications and techniques. In section 1.2, we discuss

the issues of existing direct or iterative methods. We introduce our new approach for

resolving the issues in section 1.3, and summarize our contribution in section 1.4. We

finally describe the organization of the remaining chapters of this dissertation.

1.1 Motivation

Large-scale banded matrices arise from a variety of application areas in science and

engineering. They include numerical differentiation and integration in applied math-

ematics, such as the spline interpolation and smoothing [48], eigenvalue problems

with inverse iterations [43], multigrid methods [18], the solutions of ordinary differen-

tial equations by finite difference or finite element methods [65], and the solutions of

partial differential equations by alternating direction implicit methods [5]. In many

cases, the derived banded matrices are ill-conditioned. For example, the nonparamet-

ric smoothing of curves and surfaces defined by scattered data, image reconstruction

with compactly supported radial basis functions [22], the solutions of backward heat

equations and the Cauchy problem for parabolic equations, as well as the modeling

of non-smooth solutions by generalized finite element methods [40] would lead to ill-

CHAPTER 1. INTRODUCTION 3

conditioned banded matrices.

In recent years, large-scale banded matrices appear frequently in the applications

of data mining and data analysis. For instance, in the study of image segmentation

[99], paper citations [17], social and biological networks [8, 42, 98], raw data are often

represented by a huge connected graph, yet the essential data of interest are a subgraph

including groups of nodes in the graph that are strongly-connected among themselves

but are weakly-connected to the rest of the graph. Retrieved by clustering methods

such as k-means and the Markov clustering, the essential subgraph has a sparse struc-

ture with nodes clustered by groups. Indeed, the subgraph can be further represented

by a large-scale banded matrix which is usually ill-conditioned. Problems of this kind

include, in social network analysis, extracting latent space to capture user latent fea-

tures [59, 60], collaborative filtering recommender systems [50, 91, 95, 96], identifying

closely-interacting communities and circles [71, 90], as well as in bioinformatics, de-

tecting frequently occurring patterns in protein structures [67] and predicting protein

structures from their molecular sequences [94], and so on. In many cases, the rep-

resenting matrix of a network may have (column/row) size over one billion (see, for

example, [110, 118]). We shall call such a matrix an extra large-scale matrix.

Among the applications in social network analysis, recommender system is one of

the hottest topics. It attempts to suggest items (such as movies, books, news, Web

pages, etc.) that are likely to interest users. Due to the great potential commercial

value, recommender systems have attracted a lot of attention in the past decade. For

instance, the Netflix Prize was an open competition for the best method to predict

user ratings for films, based on previous ratings without the users or the films being

CHAPTER 1. INTRODUCTION 4

identified except by numbers assigned for the contest [45, 109]. The database (including

training set and qualifying set) released for the contest contains over 100 million movie

ratings made by over 0.48 million users [11]. Recommender systems have also been

successfully deployed in industry, such as product recommendation at Amazon [73],

music recommendation at iTunes, movie recommendation at Netflix, etc. Indeed, they

have brought large profits to commerce. For example, a report in [78] said that in 2013,

35 percent of Amazon’s, and 75 percent of Netflix’s sales resulted from personalized

recommendations.

Related recommendation techniques have been widely studied in research commu-

nities of information retrieval [60, 117], machine learning [9, 93, 102], and data mining

[10, 77]. Collaborative filtering (CF) is one of the most important techniques among

them [50, 95, 96, 104]. CF is a method of making automatic predictions (filtering)

about the interests of a particular user by collecting preferences or taste information

from similar users (collaborating). The underlying assumption of CF is that users

with similar behaviors would have similar preferences. Traditional CF-based models

suffer from the sparsity of the user-item rating matrix and imbalance of rating data.

One typical problem is the cold start problem that it is unreliable to make recom-

mendations for new or infrequent users due to insufficient rating data to capture their

preferences [70, 97]. Another weakness of traditional CF-based models is that they

ignore social interactions or connections among users. But in our real life, social rec-

ommendation is an everyday occurrence, as we always turn to colleagues or friends

for recommendations. A research work conducted in [101] revealed that people who

chat with each other using MSN instant messenger are more likely to share interests

CHAPTER 1. INTRODUCTION 5

(since their Web search records on the Live Search Engine are the same or topically

similar). To overcome these weaknesses, many recent models have been proposed to

explore additional information, such as item’s content information [9, 115] and user’s

social network [46, 64, 119].

The key of the recent CF-based models is to compute with large-scale ill-conditioned

banded matrices efficiently. For example, to incorporate social network information

among users, an important step is to extract user latent features from the social net-

work matrix, known as social matrix factorization [1, 63, 68, 77, 81]. It resorts to the

low-rank matrix approximation via the truncated singular value decomposition (SVD).

To make use of the sparsity of the social network matrix, iterative methods such as

Arnoldi or Lanczos iteration may be applied for computing a few eigenpairs (of a re-

lated symmetric matrix), in order to obtain the truncated SVD [60, 85, 107]. Other

methods include building more sophisticated models such as probability matrix fac-

torization and collaborative topic regression. Then iterative methods such as gradient

descent are employed for accomplishment [76, 89]. In either way, since computations

within each iteration mainly are matrix-vector multiplications and additions, where

matrices are sparse, these iterative methods are quite efficient in terms of low compu-

tational complexity. However, in modern computing systems, efficiency not only rely

on short computing time, but also count on fast data access and retrieval. In this

particular application, the main challenge is that social network matrix is of huge size

and may be stored by parts in different locations.

We are living in a big data era. Experiments, observations, and numerical sim-

ulations in many areas of science nowadays generate terabytes of data and, in some

CHAPTER 1. INTRODUCTION 6

cases, are on the verge of generating many petabytes. This rapid growth has a great

impact on scientific computing, shifting it from “compute-centric science” to “data-

centric science”. While traditional methods have largely focused on developing speedy

algorithms within the confines of a local computing environment, the growth of big

data requires new paradigms addressing how data are distributed, accessed, retrieved,

exchanged, and computed [28, 66, 83, 88]. Social media such as Facebook, YouTube,

LinkedIn, and Twitter have exploded beyond everyone’s wildest imagination. Today

some of these companies have over millions of users and the number keeps increasing

every year. These users comprise giant social networks, through which they generate

massive amounts of data such as texts, images, and videos. Undoubtedly, for data

of such scale, there is no way to store and simultanenously process by a single or a

small group of processors. Indeed, the most commonly used computing architecture

nowadays is the parallel and distributed computing system, in which, large-scale data

are distributed across locations, hundreds of thousands of processors are clustered as

a supercomputer, interconnected by express networks, and processors access partial

data and process concurrently, exchanging data among themselves when necessary

[4, 31, 106].

1.2 Issues with the Existing Methods

In numerical linear algebra, direct methods such as the LU factorization, the QR fac-

torization, and SVD play important roles for computing with ill-conditioned banded

matrices. In the aspect of sparsity, the factors are banded in the LU factorization of

CHAPTER 1. INTRODUCTION 7

banded matrices. However, in general, the LU factorization has poor performance for

ill-conditioned matrices due to the numerical rank deficiency. Well-known methods

for treating ill-conditioning include the rank revealing QR factorization [26], the rank

revealing SVD and recently, the rank revealing decomposition for computing accurate

SVD [25, 35, 54]. Nevertheless, these methods are computationally expensive to im-

plement. Moreover, even for banded matrices, they would generate dense matrices,

resulting in high computational complexity. In software development, Linear Alge-

bra Package (LAPACK) [3] is a state-of-the-art software library for numerical linear

algebra. It includes the routines such as the LU and the QR factorizations.

Computing with large-scale matrices that arise from modern applications brings

us new challenges on data accessing and processing. As mentioned at the end of the

last section, it is impossible to process a large-scale matrix by a single processor, and

thus any sequential method cannot satisfy the need for such computing. We count on

parallel methods designed for the parallel and distributed computing systems. Parallel

performance depends not only on concurrent computation, but also on communica-

tion (interactions among processors such as messages and data transmission between

processors) [69, 75]. Especially for (extra) large-scale distributed data, a critical topic

is to reduce communication costs (total number of communication messages and total

number of communication words of data transmitted) [84]. For a parallel algorithm,

scalability is the key measurement of its parallel performance. It is indicated by

speedup, the ratio of the running time of its corresponding sequential algorithm and

the running time of the parallel algorithm, optimum of which could be obtained by

maximizing the concurrency of computations, as well as minimizing the communication

CHAPTER 1. INTRODUCTION 8

costs.

Parallel direct methods for computing with ill-conditioned banded matrices include

elimination-based methods and parallel versions of the LU and the QR factorizations.

The early parallel algorithms based on elimination include the cyclic reduction algo-

rithm [55], the recursive doubling algorithm [103], and the block partitioned elimina-

tion algorithms [80, 114]. Dongarra and others proposed a divide-and-conquer algo-

rithm and implemented in Scalable LAPACK (ScaLAPACK), a state-of-the-art library

of high-performance linear algebra routines for parallel distributed memory machines

[16, 29, 38]. Essentially this algorithm is a parallel version of the LU factorization.

Improvement on it includes the single-width separator approach [37], double-width

separator approach [116], and load-balanced scheme [44]. On this basis, Polizzi and

Sameh proposed the SPIKE algorithm [87], a hybrid method combining the parallel

LU factorization and iterative methods. For general sparse matrices, SuperLU [72] is

a popular software package including parallel algorithms based on the LU factoriza-

tion. Parallel versions of the QR factorization include variants of block Gram-Schmidt

process [62], block-based Householder triangularization by the WY representation [12].

One main issue with these commonly used algorithms is that their performance is dom-

inated by communication. To reduce the communication costs, Demmel and others

proposed a family of algorithms using communication-avoiding techniques, including

the Tall Skinny QR factorization (TSQR) and communication-avoiding QR (CAQR)

as in [34]. A rank revealing version of TSQR was proposed in [56] and implemented

in the Trilinos software package [52]. More studies on TSQR or CAQR can be seen

in [2, 30]. Other parallel rank revealing methods include the multifrontal Householder

CHAPTER 1. INTRODUCTION 9

QR factorization [32], which is implemented in the package SuiteSparseQR of the

MATLAB library.

We briefly review parallel iterative methods for computing a few eigenpairs of

large-scale sparse matrices since they are widely used in applications in data analysis.

They include variants of parallel Krylov subspace methods such as Arnoldi (for unsym-

metric problems) and Lanczos (for symmetric problems) methods. In either method,

restarted strategies are required since the storage and computational complexity grows

as the iteration proceeds [51]. Implicitly restarted strategy via implicitly shifted QR

iterations is more often adopted comparing to the simple explicit restarted strategy

since the former is more effective in terms of convergence [21, 82]. Blocked versions of

Arnoldi/Lanczos algorithms are studied in [49, 92] for better parallelism. Methods for

reducing communication costs include communication-avoiding techniques and others,

see [23, 24, 57, 100], for example.

Parallel direct methods such as the rank revealing QR factorization have advan-

tages in scalability, since in their implementation, processors may access a given matrix

only once with communication time of the order of the logarithm of the number of

processors [7]. However, computations in these methods may impair the sparsity of

derived matrices, resulting in high parallel complexity. In contrast, parallel Krylov

subspace methods have low complexity for heavily using sparse matrix-vector opera-

tions. Nevertheless, it is pointed out in [100] that they are not as scalable as expected

for communication, since processors have to access the given matrix, and communicate

with each other for each iteration or for every certain number of iterations [7].

Notice that in all the literature mentioned above, we have not seen an effective

CHAPTER 1. INTRODUCTION 10

method to treat extra large-scale matrices. Due to the limited memory of processors,

it is impossible to store matrices to be processed constantly in memory. An effective

treatment for this memory issue is to design external memory algorithms so that

each processor can load the given matrix by parts into memory, process, and release

the intermediate results [33, 113]. However, existing direct or iterative methods are

not likely to incorporate such treatment since they have to store intermediate results

constantly in memory. For example, to solve a linear system, methods using the

QR factorization have to store the factor matrices until the factorization process is

complete, before applied to compute the solution of the system. Likewise, Krylov

subspace methods must store the Krylov subspace basis vectors constantly in memory

[23].

1.3 A New Approach

In this dissertation, we develop a stable sparse orthogonal factorization which we shall

call the block QS factorization for banded matrices. It factorizes a banded matrix as a

product of a sparse orthogonal matrix Q and another sparse matrix S, with SE being

upper triangular for a permutation matrix E. We design a modified block Gram-

Schmidt process for the factorization motivated by parallel computing. It orthogo-

nalizes the banded matrix by column blocks, using an intrinsic property of block-wise

quasi-orthogonality. Theoretically, we prove that the proposed process fulfils the block

QS factorization. We also perform a complexity analysis, and prove the stability of the

process. These theoretical results are competitive with traditional methods for matrix

CHAPTER 1. INTRODUCTION 11

orthogonal factorization such as the Householder triangularization and the modified

Gram-Schmidt process.

We then develop a parallel algorithm for the factorization in the Bulk Synchronous

Parallel model for distributed memory computing. In the parallel implementation, we

make use of the concurrent computation in the modified block Gram-Schmidt process,

and apply a binary reduction tree structure for communication. We analyze the parallel

performance of the proposed algorithm, in which we have shown that its numbers of

communication messages and words both reach their theoretical optimal upper bounds.

We have also proved that the parallel complexity approaches its optimal upper bound,

up to a factor of a logarithmic quantity, while the speedup is close to its optimal lower

bound, except for a divisor of the logarithmic number of processors.

For an ill-conditioned banded system, we construct a solver that breaks it down

into small-scale underdetermined systems, to which minimum 2-norm solutions can be

obtained by the block QS factorization with high accuracy. The solver has a memory-

less feature that it can compute the final solution without storing the matrices gen-

erated over the entire process. For the memory-less feature, the proposed sequential

solver requires low memory storage, and is scalable to large-scale linear systems. With

this feature, we apply a partial load strategy in the implementation of the parallel

solver, so as to deal with the memory issue in solving extra large-scale systems. We

finally present numerical experiments to illuminate the theoretical results, to show the

outstanding accuracy of the proposed solvers among the most commonly used direct

solvers, and to demonstrate the excellent scalability of the parallel solver, together

with its capability of solving extra large-scale systems.

CHAPTER 1. INTRODUCTION 12

1.4 Contribution of this Dissertation

We summarize our contribution as follows.

1. We propose a modified block Gram-Schmidt process for the block QS factoriza-

tion, which is a new fundamental direct method for banded matrices. The process

is stable, generating sparse factor matrices, scalable for parallel computing, and

able to treat ill-conditioned matrices.

2. We develop a parallel algorithm for the block QS factorization in a distributed

memory system. The algorithm has nice parallel performance, with commu-

nication costs, parallel complexity, and speedup reaching or approaching their

optimal bounds.

3. The proposed parallel algorithm is capable of computing with extra large-scale

matrices, whose sizes are over one billion, and thus can be applied as a building

block for computations in big data processing. Unique to traditional methods, it

does not form factor matrices explicitly, and may release memory for intermediate

matrices once applied to related computations.

1.5 Organization of this Dissertation

We organize the remaining of this dissertation into four chapters. In the second chap-

ter, we present a stable process for the block QS factorization, then we study the

sparsity of the factor matrices, the complexity, and the stability of the proposed pro-

cess. A recursive algorithm will also be presented to simplify the implementation of the

CHAPTER 1. INTRODUCTION 13

process. In the third chapter, we propose the parallel algorithm for the factorization,

and conduct an analysis on its parallel performance. The fourth chapter is devoted

to the design of both sequential and parallel solvers for ill-conditioned systems. We

also study the round-off error analysis of the sequential solver, and the strategies in

the parallel solver for extra large-scale linear systems. In the fifth chapter, we present

the numerical experiments with comparisons among the factorization processes, and

among the direct solvers.

Chapter 2

A Stable Process for Sparse

Orthogonal Factorization

In this chapter, we develop a stable orthogonalization process to factorize a banded

matrix as a product of a sparse orthogonal matrix and another sparse matrix which

can be transformed to an upper triangular matrix by column permutations. This will

provide, for example, a convenient way to find the (pseudo-)inverse of a banded matrix.

Notice that an orthogonalization process may be performed on the column vectors or

the row vectors of a matrix. In this thesis, we consider the orthogonalization of the

column vectors of a matrix, and call it the matrix orthogonalization. As our goal is

to orthogonalize the column vectors of the matrix, we require that the second sparse

matrix can be transformed to an upper triangular matrix by column permutations

only.

Motivated by parallel computing, the proposed process is based on operations of

column blocks of a banded matrix associated with a partition. We have found that a

14

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 15

banded matrix partitioned by its column blocks has a block-wise quasi-orthogonality

between its non-adjacent column blocks. Through the study on the block Gram-

Schmidt process (BGS) [62], we present a modified version of BGS, with the modifica-

tion that we employ column block permutations during the orthogonalization process

so as to utilize the block-wise quasi-orthogonality. As a result, the proposed process

has low complexity and produces sparse factor matrices.

To prove the sparsity of the factor matrices, we introduce a new method to de-

scribe the sparse structure (the number and the distribution of nonzero entries) of the

matrices to be orthogonalized during the proposed process. This method could be

applied in the analysis of the sparse structure of a matrix whose nonzero entries are

clustered in its blocks, such as banded matrices and block diagonal matrices. It can

be also used in a round-off error analysis according to the IEEE standard for floating

point arithmetic.

We verify that the proposed process is stable. The main idea is to prove that

the process achieves numerical stability similar to the modified Gram-Schmidt process

(MGS) [43]. We show that for a banded matrix with a certain partition, the proposed

process produces the same orthogonal matrix as MGS applied to the matrix multi-

plying from the right by a permutation matrix. Moreover, for the error between the

banded matrix and the product of the computed factor matrices, the proposed process

obtains a smaller upper bound comparing to the one derived in [13].

We organize this chapter in six sections. In section 2.1, we describe the block

QS factorization and propose the orthogonalization process. We verify in section 2.2

that the proposed process fulfils the block QS factorization. In sections 2.3 and 2.4

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 16

we present, respectively, the sparsity of the factor matrices and the complexity of the

proposed process. We prove the stability of the process in section 2.5 and present a

recursive algorithm that implements the process in section 2.6.

2.1 The Block QS Factorization

In this section, we derive a modified BGS for sparse orthogonal factorization of banded

matrices. Specifically, we call the sparse orthogonal factorization the block QS factor-

ization, as described below.

Let N denote the set of all natural numbers. For s ∈ N we let Ns := {1, 2, . . . , s}.

Let A := [aij : i ∈ Nn, j ∈ Nm] be a banded matrix of full rank with bandwidth k/2,

where n ≥ m, k is even, and k � m, that is, aij = 0, for i ∈ Nn, j ∈ Nm with

|i− j| > k/2. We wish to obtain a factorization

A = QS, (2.1)

where Q ∈ Rn×m is a sparse orthogonal matrix, and S ∈ Rm×m is a sparse matrix

with SE being upper triangular for a permutation matrix E. To develop an efficient

method to accomplish this, we shall be mindful about the following features:

1. For the sparsity requirement, the number of the nonzero entries of Q or S must

be O(m logm) or less.

2. The factorization process should be stable. Especially, it can handle an ill-

conditioned matrix A.

3. The factorization process should have a low complexity. Specifically, the number

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 17

of floating point operations must be O(m logm) or less.

4. The factorization process is favorable to parallel computing, and is scalable to

large-scale matrices. Especially, it can treat the cases when m ≥ 109.

It is well-known that block-based algorithms in linear algebra are desirable for mod-

ern high performance computers, especially in a parallel environment where data are

naturally distributed and computed by blocks for less communication costs. For exam-

ple, BGS [62] partitions a matrix by blocks of consecutive columns (column blocks),

to orthogonalize each column block within it by MGS, and the column blocks with

respect to each other. In this section, we shall construct the factorization (2.1) by a

process of BGS with column block permutations (BGSP). The introduction of permu-

tations is motivated by an orthogonality property between the non-adjacent column

blocks of a banded matrix partitioned by its column blocks. To be more precise, we

define the notation of a matrix partitioned by column blocks.

Definition 2.1.1. Let A ∈ Rn×m be a matrix, γ ∈ N with γ ≤ m. Let Π := [mi :

i ∈ Nγ] be a vector with mi ∈ N and
∑

i∈Nγ mi = m. Matrix A is said to be partitioned

by Π if for each i ∈ Nγ, Ai is the n×mi submatrix of A such that

A := [Ai : i ∈ Nγ]. (2.2)

We call Π the partition vector of A and use A(Π) to indicate the matrix A partitioned

by the specific partition vector Π.

Through out this thesis, we shall assume that all matrices are associated with a

specific partition and use the notation A(Π) to indicate the matrix A associated with

the partition Π. However, when the association is clear from the context, we shall

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 18

write the matrix as A for simplicity. Also, the terminology column blocks used in

this thesis refers to column blocks of a matrix associated with a specific column block

partition. Henceforth, we say matrix Q is column orthonormal if QTQ = I.

We review below the orthogonalization process of BGS [62]. Given a matrix A with

partition (2.2), BGS proceeds the orthogonalization of A in γ steps. For j ∈ Nγ\{1},

suppose that the column orthonormal matrix [Qi : i ∈ Nj−1] was obtained from the

first (j − 1) column blocks of A. We then project Aj onto the orthogonal complement

of the range space of Qi for i = 1, 2, . . . , j − 1 by

Āj :=
∏

i∈Nj−1

(I −Qj−iQ
T
j−i)Aj, (2.3)

and generate the column orthonormal matrix Qj by MGS from Āj. This step results

in the updated column orthonormal matrix [Qi : i ∈ Nj]. We continue this process

until j = γ.

A number of variants of BGS were proposed to improve its numerical performance.

For example, [62] proposed a variant B2GS of BGS which replaces MGS by MGS with

reorthogonalization so that it has stability results similar to MGS. We notice that BGS

or its variants fails to produce a sparse column orthonormal matrix, even when it is

applied to a banded matrix. This can be seen from the calculation of Qj. In fact,

the entries of Q := [Qj : j ∈ Nγ] above its diagonal are nonzero in general, and the

computation in (2.3) is the main source of these nonzero entries.

The goal of this section is to propose a modified BGS so that when it is applied to

a banded matrix A it generates a factorization of A with a sparse column orthonormal

matrix Q and a sparse matrix S, with SE being upper triangular for a permutation

matrix E. The development is motivated by the block-wise quasi-orthogonal property

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 19

of banded matrices, which we define below [86].

Definition 2.1.2. Let Π be a partition vector. Matrix A(Π) is said to be block-wise

quasi-orthogonal if each of the column blocks of A(Π) is orthogonal to its non-adjacent

column blocks. Matrix A(Π) is said to be block-wise orthogonal if the column blocks of

A(Π) are orthogonal to each other.

The block-wise quasi-orthogonality is commonly seen in banded matrices. Indeed,

if A ∈ Rn×m is a banded matrix with bandwidth k/2, and Π := [mi : i ∈ Nγ] with

mi ≥ k, then A(Π) is block-wise quasi-orthogonal.

Our main idea in developing the modified BGS is as follows: For a banded matrix,

we partition it by column blocks so that it is block-wise quasi-orthogonal. With this

partition, we may construct a submatrix A1 of A with its all column blocks that inherit

from Π orthogonal to each other. Using a sequence of permutations, we can construct

a new matrix Ã (consisting of two submatrices) which has the submatrix A1 as its

first submatrix and the remaining column blocks of A as its second submatrix A2. We

orthogonalize the columns of A1 and project A2 onto the orthogonal complement of

the range space of A1 in the range space of A, which results in a matrix denoted by

Ā2. We then apply the same procedure described above to the matrix Ā2 and repeat

the process until the factorization is completed. Since this procedure involves column

block permutations of A and other matrices, we shall call it the modified BGS with

column block permutations, with abbreviation BGSP. We remark that, if we employ

MGS for the orthogonalization of A1 and the computation of Ā2, then under a special

partition of A, BGSP produces the same column orthonormal matrix as MGS applied

to AE, for a permutation matrix E. We shall study this in section 2.5.

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 20

We now describe precisely the BGSP procedure for sparse orthogonal factorization

of a block-wise quasi-orthogonal matrix A associated with a given partition. We shall

specify the three keystones: construction of two submatrices A1, A2 of A, orthogonal-

ization of A1 whose column blocks are orthogonal to each other, and the projection

of A2 onto the orthogonal complement of the range space of A1 in the range space of

A. For simplicity, we denote by orthn(X) a orthonormalization process that generates

a column orthonormal matrix Y from an input matrix X of full rank such that they

have the same range space. We also denote by proj(X, Y) a process of projection that

generates a matrix Z ∈ Rn×s from input matrices X ∈ Rn×s and Y ∈ Rn×t such that

ZTY = 0 and matrices [Z, Y] and [X, Y] have the same range space.

We construct a submatrix of a block-wise quasi-orthogonal matrix A(Π) := [Ai :

i ∈ Nγ]. For a subvector Ω := [si : i ∈ Nω] of Γ := [i : i ∈ Nγ] with 1 ≤ ω < γ, we

define a subvector ΠΩ of the partition vector Π := [mi : i ∈ Nγ] by

ΠΩ := [msi : i ∈ Nω]. (2.4)

Here, the component of the vector Ω indicates the location of the component of ΠΩ

in the vector Π. Specifically, the i-th component of ΠΩ is the si-th component of Π.

Next, for the partitioned matrix A(Π), we define the submatrix AΩ of A(Π) by

AΩ := [Asi : i ∈ Nω]. (2.5)

We now construct two submatrices A1 and A2 of a block-wise quasi-orthogonal

matrix A(Π) := [Ai : i ∈ Nγ] with γ/3 ∈ N. Let Ω := [3i − 1 : i ∈ Nγ/3] and

Θ := [3i − 2, 3i : i ∈ Nγ/3]. We present below properties of the two submatrices

A1 := AΩ, A2 := AΘ. An example of the construction is illustrated in Figure 2.1.

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 21

Remark 1. For each i ∈ N, let si := 3i−1, t2i−1 := 3i−2, t2i := 3i. If A is block-wise

quasi-orthogonal, then AΩ is block-wise orthogonal, and for i ∈ Nγ/3, j ∈ N2γ/3 with

i 6= dj/2e, ATsiAtj = 0.

Construction of AΩ, AΘ from A

AΩ AΘA

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11A12 A2 A5 A8 A11 A1 A3 A4 A6 A7 A9 A10A12

Figure 2.1: Construction of AΩ and AΘ from a pentadiagonal matrix A.

We next discuss a realization of orthn(A) for a block-wise orthogonal matrix A.

This may be done by orthonormalizing each column block of A using stable methods

such as the QR factorization via MGS, Householder, or Givens. As an example, we

describe orthonormalization using MGS only. For matrices X ∈ Rn×m, Y ∈ Rs×t, we

use the notation X ⊕ Y to denote a block diagonal matrix in R(n+s)×(m+t) with the

first and second diagonal blocks being X and Y , respectively. Suppose that A with

partition (2.2) is of full rank. For each i ∈ Nγ, we employ MGS to construct the

column orthonormal Qi and the upper triangular Ri from Ai. We define

Q := [Qi : i ∈ Nγ], R :=
⊕
i∈Nγ

Ri. (2.6)

Then, Q and R form an orthogonal factorization of A.

Below, we describe a realization of proj(A,Q) for partitioned matrices A and Q.

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 22

We begin with a realization of proj(A0, Q0) where A0, Q0 are column blocks of A and

Q, respectively, with Q0 being column orthonormal. We fulfil this by using MGS.

Indeed, for matrices A0 ∈ Rn×s, Q0 := [qi : i ∈ Nt] ∈ Rn×t, we construct matrices

Ā0 ∈ Rn×s by

Ā0 :=

[∏
i∈Nt

(
I − qt+1−i q

T
t+1−i

)]
A0 (2.7)

and

C0 := [cTi : i ∈ Nt]
T ,

where

ci := qTi

[∏
r∈Ni−1

(
I − qi−r qTi−r

)]
A0, for i ∈ Nt. (2.8)

Now we generalize to a realization of proj(A,Q) for A := [Aj : j ∈ N2γ], Q := [Qi :

i ∈ Nγ], with Q being column orthonormal and QT
i Aj = 0 for i ∈ Nγ, j ∈ N2γ with

i 6= dj/2e. In this case, for each j ∈ N2γ, realizing proj(Aj, Q) is reduced to computing

proj(Aj, Qr), for r := dj/2e. We construct the matrices Āj, Cj by proj(Aj, Qr). We

then define the matrices Ā and C by

Ā := [Āj : j ∈ N2γ], C :=
⊕
j∈Nγ

[C2j−1, C2j]. (2.9)

Then the matrix Ā satisfies that ĀTQ = 0 and matrices [Ā, Q] and [A,Q] have the

same range space. Notice that the matrix C is for constructing the factor matrix S in

(2.1).

We next assemble all the components described above for the main orthogonaliza-

tion process. Given an input matrix A partitioned by Λ of length γ, we shall proceed

its orthogonalization in finitely many steps. Let A1(Λ1) := A(Λ). Suppose in the

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 23

`th step, it remains to orthogonalize A`(Λ`). We construct two submatrices A`Ω and

A`Θ of A`, generate a column orthonormal matrix Q` by orthn(A`Ω), and then apply

proj(A`Θ, Q
`), producing a matrix A`+1 to be processed in the next step. Note that

if we defined Π` := Λ` and used the above approach to obtain A`Ω and A`Θ, then by

observation, the number of column blocks of A`+1 would be two thirds of that of A`,

resulting in totally log3/2 (γ) steps. Notice that the number of steps is crucial in a

parallel environment, since it determines the number of times required for communi-

cation. To achieve log2 (γ) steps that is optimal, we shall define below Π` so that its

length is three fourths of the length of Λ`, and associate A` with it.

Let γ := 2L for some L ∈ N. For each ` ∈ NL, let

γ` := 2L−`+1. (2.10)

For ` ∈ NL−1, given matrix A` partitioned by Λ` := [n`,i : i ∈ Nγ`], we construct

submatrices A`Ω, A`Θ of A`, and a column block permutation matrix E` such that

A` = [A`Ω, A
`
Θ]E`. (2.11)

According to the above discussion, we first associate A` with a new partition vector

Π`. We let

Π` := [n`,4i−3, n`,4i−2 + n`,4i−1, n`,4i : i ∈ Nγ`/4].

Next we define Ω`, Θ`, A`Ω, and A`Θ from A`(Π`) using the above approach. That is,

for each i ∈ N, we let si := 3i− 1, t2i−1 := 3i− 2, t2i := 3i. Let Ω` := [si : i ∈ Nγ`/4],

Θ` := [ti : i ∈ Nγ`/2], and let Π`
Ω, Π`

Θ be defined by (2.4), with the understanding that

the subscripts Ω, Θ depend on `. Then we define by (2.5) the submatrices A`Ω and

A`Θ of A`(Π`). An example of the construction is illustrated in Figure 2.2. Lastly, let

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 24

m` :=
∑

i∈Nγ`
n`,i, we construct the matrix E` ∈ Rm`×m` by

E`
1 :=

⊕
i∈Nγ`/4

([
0n`,4i−2×n`,4i−3

, In`,4i−2

]
⊕
[
In`,4i−1

, 0n`,4i−1×n`,4i
])
,

E`
2 :=

⊕
i∈Nγ`/4

([
In`,4i−3

, 0n`,4i−3×n`,4i−2

]
⊕
[
0n`,4i×n`,4i−1

, In`,4i
])
,

E` :=
[
(E`

1)T , (E`
2)T
]T
.

It can be verified that E` is a permutation matrix, which fulfils the equation (2.11).

A1
1A

1
3A

1
4A

1
6A

1
7A

1
9A

1
10A

1
12A1

2 A1
5 A1

8 A1
11

A1 := A

A1
1 A1

2 A1
3A

1
4 A1

5 A1
6A

1
7 A1

8 A1
9A

1
10 A1

11 A1
12

orthn(A1
Ω
)

proj(A1
Θ
, Q1)

permute
construct

A1
Ω A1

Θ
Q1 A2 := Ā1

Θ

Figure 2.2: The first step of BGSP applied to a pentadiagonal matrix A.

Finally, we propose the process BGSP to construct the block QS factorization for

a matrix. Throughout the rest of thesis, unless specified otherwise, the matrices A`,

A`Ω, Q`, and A`Θ in BGSP below are partitioned by Λ`, Π`
Ω, Π`

Ω, and Π`
Θ, respectively.

Suppose that A ∈ Rn×m is a matrix of full rank, partitioned by Λ = [ni : i ∈ Nγ] with

γ = 2L for some L ∈ N.

Let A1 := A, Λ1 := Λ. For each ` ∈ NL−1,

construct matrices Q`, R` by orthn(A`Ω),

construct matrices A`+1, C` by proj(A`Θ, Q
`),

let Λ`+1 := Π`
Θ.

Construct matrices QL, RL by MGS from AL.

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 25

To construct the factor matrices Q and S, we define

Q := [Q` : ` ∈ NL]. (2.12)

If L = 1, let S := R1. If L > 1, we define F ` ∈ Rm×m by

F ` :=


E1, ` = 1,[∏

j∈N`−1
(I ⊕ E`−j+1)

]
E1, ` ∈ NL−1\{1},

(2.13)

and let

S` :=


[R1, C1]F 1, ` = 1,[
0, R`, C`

]
F `, ` ∈ NL−1\{1},[

0, RL
]
FL−1, ` = L.

(2.14)

Then we define

S :=
[
(S`)T : ` ∈ NL

]T
. (2.15)

We construct the permutation matrix E by

E :=


Im×m, L = 1,

(FL−1)T , L > 1.

(2.16)

Notice that E is a permutation matrix. We shall verify in the next section that the

matrices Q, S, E constructed by the above process from A satisfy that QS is the block

QS factorization of A, and specifically, SE is upper triangular. As an example, we

demonstrate BGSP applied to a pentadiagonal matrix A in Figures 2.2 and 2.3.

To close this section, we comment that the proposed process is favorable to par-

allel computing. In parallel implementation, orthn(·) and proj(·, ·) can be executed

completely in parallelism. To see this, given ` ∈ NL−1, for i ∈ N3γ`/4, we let A`i be the

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 26

A2
Ω

A2
Θ

permute
construct

orthn(A2
Ω
)

proj(A2
Θ
, Q2)

A2 Q2 A3

A3 A3
Ω

A3
Θ

permute
construct

Q3 A4

orthn(A3
Ω
)

proj(A3
Θ
, Q3) orthn(A4)

Q4

Figure 2.3: BGSP applied to a pentadiagonal matrix A, from the second step.

submatrix of A` such that

A`(Π`) = [A`i : i ∈ N3γ`/4]. (2.17)

Then as long as a processor holds the submatrix M := [A`3i−2, A
`
3i−1, A

`
3i] of A`, it can

independently construct the column orthonormal matrix Q`
i by MGS from A`3i−1, and

apply proj([A`3i−2, A
`
3i], Q

`
i). Furthermore, by tracing the calculations, we can figure

out the column blocks of the input matrix A(Λ) of BGSP that generates M . Hence,

we can avoid communication once we put these column blocks together and assign as

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 27

a unit to a processor. In this way, we expect that the parallel implementation will

have low communication costs, yielding good scalability. We shall study the parallel

implementation in chapter 3.

2.2 The Orthonormal Factorization

In this section, we show that the matrices Q and S constructed by BGSP from a

block-wise quasi-orthogonal matrix A(Λ) of full rank form the block QS factorization

of A. Specifically, we verify that Q is column orthonormal, SE is upper triangular,

and A = QS. Note that although the matrices Q, S and E may depend on the

partition vector Λ of A, we shall use the notation without indicating the dependence

for notational simplicity.

We first show the column orthonormality of Q. This will be done in two steps.

First, we verify the orthogonalization process for each `: Given a block-wise quasi-

orthogonal matrix A`, the matrix Q` constructed by orthn(A`Ω) is column orthogonal,

and the matrix A`+1 constructed by proj(A`Θ, Q
`) has the range space that is the

orthogonal complement of the range space of Q` in the range space of A`. Second, we

show that each A` inherits the block-wise quasi-orthogonality from A, and then prove

the result by induction.

We present the results for orthn(A`Ω). To this end, we establish a technical lemma

below. Henceforth, for a matrix A ∈ Rn×m, we define the range space of A by R(A) :=

{Av : v ∈ Rm}.

Lemma 2.2.1. Let A = [Ai : i ∈ Nγ] be a matrix of full rank, and let Q, R be

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 28

the matrices constructed by orthn(A). If A is block-wise orthogonal, then A = QR,

QTQ = I, R(Q) = R(A), and R is upper triangular.

Proof. This result follows directly from the definition of the block-wise orthogonality

and MGS. For each i ∈ Nγ, since A is of full rank, so is Ai. Since Qi, Ri are constructed

by MGS from Ai, we have that Ai = QiRi, QT
i Qi = I, and Ri is invertible upper

triangular. Formula (2.6) leads to

A = [Ai : i ∈ Nγ] = [QiRi : i ∈ Nγ] = QR.

By the definition of R and the fact that Ri is invertible upper triangular, we observe

that R is invertible upper triangular. It follows from the equation A = QR and the

definition of R(·) that R(Q) = R(A).

It remains to prove that QTQ = I. Since QT
i Qi = I, it suffices to show for i, j ∈ Nγ

with i 6= j that QT
i Qj = 0. By the block-wise orthogonality of A and the fact that Ri,

Rj are invertible, we obtain that

QT
i Qj = R−Ti (ATi Aj)R

−1
j = 0.

Hence, we have that QTQ = I.

To apply Lemma 2.2.1, we need the following remark to ensure the block-wise

quasi-orthogonality of A`(Π`).

Remark 2. For Λ = [ni : i ∈ Nγ], let Λi := [n1, . . . , ni−1, ni + ni+1, ni+2, . . . , nγ], for

i ∈ Nγ−1. If A(Λ) is block-wise quasi-orthogonal, then for each i ∈ Nγ−1, A(Λi) is

block-wise quasi-orthogonal.

The proposition below confirms the fulfilment of orthn(A`Ω).

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 29

Proposition 2.2.2. Let ` ∈ NL−1 be given. If A` is a block-wise quasi-orthogonal

matrix of full rank, and matrices Q`, R` are constructed by orthn(A`Ω), then A`Ω =

Q`R`, (Q`)TQ` = I, R(Q`) = R(A`Ω), and R` is upper triangular.

Proof. Since A` is of full rank and A`Ω is a submatrix of A`, we conclude that A`Ω is

of full rank. Since A`(Λ`) is block-wise quasi-orthogonal, so is A`(Π`) by Remark 2.

It follows from the definition of Ω` and Remark 1 that A`Ω is block-wise orthogonal.

Hence by Lemma 2.2.1, we obtain the desired results.

We next show the results for proj(A`Θ, Q
`). To this end, we establish two tech-

nical lemmas for the process proj(·, ·). The first lemma presents a result regarding

proj(A0, Q0).

Lemma 2.2.3. Let matrices A0, Q0 := [qi : i ∈ Nt] be given, and let Ā0 be the matrix

constructed by proj(A0, Q0). If QT
0Q0 = I, then

Ā0 = (I −Q0Q
T
0)A0. (2.18)

Proof. Using the hypothesis that QT
0Q0 = I, it can be verified that

∏
i∈Nt

(
I − qt+1−i q

T
t+1−i

)
= I −Q0Q

T
0 .

By the construction (2.7) of Ā0, we obtain the desired formula (2.18).

We present the lemma below regarding the matrix Ā constructed by proj(A,Q).

Lemma 2.2.4. Let matrices A = [Aj : j ∈ N2γ] ∈ Rn×s, Q = [Qi : i ∈ Nγ] be given,

and let Ā be the matrix constructed by proj(A,Q). If QTQ = I, and for i ∈ Nγ, j ∈ N2γ

with i 6= dj/2e, QT
i Aj = 0, then Ā ∈ Rn×s, QT Ā = 0, and R([Ā, Q]) = R([A,Q]).

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 30

Proof. We apply Lemma 2.2.3 to each column block of Ā. By the construction (2.9)

of Ā, we obtain that Ā ∈ Rn×s. To prove the remaining two results, we first establish

the equation

Ā = (I −QQT)A (2.19)

using Lemma 2.2.3. Given j ∈ N2γ, let r := dj/2e. Since QTQ = I, we have that

QT
r Qr = I. Since Āj is constructed by proj(Aj, Qr), by Lemma 2.2.3, we obtain that

Āj = (I −QrQ
T
r)Aj. Since for i ∈ Nγ with i 6= r, QT

i Aj = 0, we have that

Āj = (I −QrQ
T
r)Aj +

∑
i∈Nγ ,i 6=r

Qi(Q
T
i Aj) = (I −QQT)Aj.

Equation (2.19) follows from the formula above and (2.9).

Since QTQ = I, by direct computation using (2.19), we have that QT Ā = 0.

Formula (2.19) yields that

Ā = A−Q(QTA) and A = Ā+Q(QTA).

Hence, we obtain from the definition of R(·) that R(Ā) ⊂ R([A,Q]) and R(A) ⊂

R([Ā, Q]). Therefore, R([Ā, Q]) = R([A,Q]).

We then verify in the following proposition the fulfilment of proj(A`Θ, Q
`) for ` ∈

NL−1. Notice that by formula (2.17), we have that A`Ω = [A`si : i ∈ Nγ`/4] and A`Θ =

[A`tj : j ∈ Nγ`/2]. For i ∈ Nγ`/4, let Q
`
i denote the submatrix of Q` such that

Q`(Π`
Ω) = [Q`

i : i ∈ Nγ`/4]. (2.20)

Proposition 2.2.5. Let ` ∈ NL−1 be given. If A` is a block-wise quasi-orthogonal

matrix of full rank, then (Q`)TA`+1 = 0 and R(A`) = R(Q`)⊕R(A`+1).

Proof. We shall prove this result by employing Lemma 2.2.4, whose assumptions will

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 31

be verified by using Proposition 2.2.2 and Remark 1.

Since A` is a block-wise quasi-orthogonal matrix of full rank, by Proposition 2.2.2,

we have that (Q`)TQ` = I. To apply Lemma 2.2.4, by the construction of A`+1, we

shall show for r ∈ Nγ`/4, j ∈ Nγ`/2 with r 6= dj/2e that

(Q`
r)
TA`tj = 0. (2.21)

Notice that A`(Π`) is block-wise quasi-orthogonal. By Remark 1, we have that

(A`sr)
TA`tj = 0. It follows from the construction of Q` and formula (2.20) that for

each i ∈ Nγ`/4,

Q`
i = A`si(R

`
i)
−1, (2.22)

for an invertible upper triangular matrix R`
i . Formula (2.22) and (A`sr)

TA`tj = 0 lead

to (2.21). Since (Q`)TQ` = I, by Lemma 2.2.4, we have that (Q`)TA`+1 = 0, and

R([A`+1, Q`]) = R([A`Θ, Q
`]). Thus,

R(A`) = R([A`Θ, A
`
Ω]) = R([A`Θ, Q

`]) = R([A`+1, Q`]) = R(Q`)⊕R(A`+1), (2.23)

proving the desired result.

The next proposition confirms the inheritance of the block-wise quasi-orthogonality

of A` from A. To this end, given ` ∈ NL, for i ∈ Nγ` , let G`
i denote the submatrix of

A` such that

A`(Λ`) = [G`
i : i ∈ Nγ`]. (2.24)

Proposition 2.2.6. If A is a block-wise quasi-orthogonal matrix of full rank, then

for each ` ∈ NL, A` is a block-wise quasi-orthogonal matrix of full rank.

Proof. The proof is done by induction on ` ∈ NL using previous propositions. Indeed,

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 32

when ` = 1, A1 = A is a block-wise quasi-orthogonal matrix of full rank. Assuming for

` ∈ NL−1 that A` is a block-wise quasi-orthogonal matrix of full rank, we shall show

that A`+1 is a block-wise quasi-orthogonal matrix of full rank.

We first prove that A`+1 is of full rank. Since A`+1 is constructed by proj(A`Θ, Q
`),

by Lemma 2.2.4, the column size of A`+1 is the same as that of A`Θ. It follows from

formula (2.23) that the rank of A`+1 is the difference between the ranks of A` and Q`.

Since A` is of full rank, the rank of A`+1 equals the difference between the column

sizes of A` and A`Ω, which equals the column size of A`Θ. Hence, A`+1 is of full rank.

It remains to show that A`+1(Λ`+1) is block-wise quasi-orthogonal. By (2.24), it

suffices to show that (G`+1
µ)TG`+1

ν = 0, for µ, ν ∈ Nγ`/2 with ν − µ > 1. To this end,

we express G`+1
µ and G`+1

ν in column blocks of A`(Π`), and then use the block-wise

quasi-orthogonality of A`(Π`) to conclude the result.

We express G`+1
j in terms of A`tj . For j ∈ Nγ`/2, let r := dj/2e. By the construction

of A`+1, we have that G`+1
j is constructed by proj(A`tj , Q

`
r). Since (Q`)TQ` = I by

Proposition 2.2.2, we have that (Q`
r)
TQ`

r = I. By Lemma 2.2.3, we obtain that

G`+1
j = A`tj −Q

`
r(Q

`
r)
TA`tj . (2.25)

By formula (2.22), we have that Q`
r = A`sr(R

`
r)
−1. Let M `

j := (R`
r)
−1(Q`

r)
TA`tj . Substi-

tuting the equations above into (2.25) gives that

G`+1
j = A`tj − A

`
srM

`
j . (2.26)

Since r = dj/2e, by the definition of tj, we have that if j = 2r − 1, then tj = 3r − 2,

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 33

and if j = 2r, then tj = 3r. With sr = 3r− 1, employing formula (2.26), we have that

G`+1
j =


A`3r−2 − A`3r−1M

`
j , j = 1, 3, . . . , γ`/2− 1,

A`3r − A`3r−1M
`
j , j = 2, 4, . . . , γ`/2.

(2.27)

Now we show that (G`+1
µ)TG`+1

ν = 0. For j ∈ {µ, ν}, we let r := dj/2e, and let

Kj be the set {3r − 2, 3r − 1} if j is odd, and the set {3r − 1, 3r} if j is even. For

each r1 ∈ Kµ, r2 ∈ Kν , since ν − µ > 1, it can be verified that r2 − r1 > 1. By the

block-wise quasi-orthogonality of A`(Π`), we have that (A`r1)
TA`r2 = 0. It follows from

formula (2.27) and direct computation that (G`+1
µ)TG`+1

ν = 0. This ensures that A`+1

is block-wise quasi-orthogonal.

By the induction principle, we obtain the desired result.

In the following theorem, we verify that Q is column orthonormal and has the same

range space as A.

Theorem 2.2.7. If A(Λ) is a block-wise quasi-orthogonal matrix of full rank, where

Λ is of length γ := 2L for some L ∈ N, then the matrix Q constructed by BGSP from

A satisfies that QTQ = I and R(Q) = R(A).

Proof. To show that QTQ = I, by (2.12), we shall prove that each Q` is column

orthonormal and Q`’s are orthogonal to each other. This will be done by applying

Propositions 2.2.2 and 2.2.5 for each `. The result that R(Q) = R(A) will follow from

an induction using Proposition 2.2.5. Indeed, since A is of full rank, if L = 1, then

according to BGSP, we have that Q1 is constructed by MGS from A, and Q = Q1.

Thus, we obtain the desired results in this case. It remains to consider L > 1.

We first show that Q is column orthonormal. With formula (2.12), it suffices to

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 34

show that for ` ∈ NL,

(Q`)TQ` = I, (2.28)

and for j, ` ∈ NL with j < `,

(Qj)TQ` = 0. (2.29)

Since A is a block-wise quasi-orthogonal matrix of full rank, by Proposition 2.2.6, we

have for ` ∈ NL that A` is a block-wise quasi-orthogonal matrix of full rank. Notice

that QL is constructed by MGS from AL, and hence (QL)TQL = I. This together with

Proposition 2.2.2, we obtain formula (2.28).

We next prove (2.29). Since Q` is constructed from A`Ω, which is a submatrix of

A`, it suffices to show for j ∈ NL−1, ` ∈ NL with j < ` that

(Qj)TA` = 0. (2.30)

This will be done by induction on `. Indeed, when ` = j + 1, by Proposition 2.2.5,

we have that (Qj)TAj+1 = 0. Assume that (2.30) is true for ` with j < ` ≤ L − 1.

Again by Proposition 2.2.5, we have that R(A`+1) ⊂ R(A`), and thus by the induction

hypothesis, we have that (Qj)TA`+1 = 0. By the induction principle, we obtain formula

(2.30). Proposition 2.2.5 and the fact that R(QL) = R(AL) yield for each ` ∈ NL

that R(Q`) ⊂ R(A`). Together with formula (2.30), we obtain (2.29). Therefore,

QTQ = I.

We now prove that R(Q) = R(A). It suffices to show that

R(A) =
⊕
`∈NL

R(Q`). (2.31)

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 35

This will be done by proving the following formula by induction on ` ∈ NL−1,

R(A) =

(⊕
j∈N`

R(Qj)

)
⊕R(A`+1). (2.32)

Indeed, when ` = 1, since A = A1, by Proposition 2.2.5, we obtain the result. Assume

that (2.32) is true for ` ∈ NL−2. Since (` + 1) ∈ NL−1, it follows from Proposition

2.2.5 that R(A`+1) = R(Q`+1) ⊕ R(A`+2). Together with the induction hypothesis,

we have that (2.32) is true for (` + 1). Hence, by the induction principle, we obtain

formula (2.32). Substituting R(QL) = R(AL) into formula (2.32) for ` = L− 1 yields

(2.31). This ensures that R(Q) = R(A).

Next, we verify in the following theorem that SE is upper triangular.

Theorem 2.2.8. Let A(Λ) ∈ Rn×m be a block-wise quasi-orthogonal matrix of full

rank, where n ≥ m and Λ is of length γ := 2L for some L ∈ N. If S, E are the

matrices constructed by BGSP from A. then SE is upper triangular.

Proof. The proof follows from the construction of S, E, and the upper triangularity of

each R`. If L = 1, then E = I. By BGSP, we have that S = R1 and R1 is the upper

triangular matrix constructed by MGS. Thus SE is upper triangular.

We next prove the upper triangularity of SE for L > 1. Using the construction of

S, E by BGSP, we directly compute below the product S`(FL−1)T . By the fact that

E1(E1)T = I, we have that

S1(FL−1)T = [R1, C1]
∏

j∈NL−2

(
I ⊕ (Ej+1)T

)
= [R1, C1H1],

for a square matrix H1. For ` ∈ NL−1, likewise, since E`(E`)T = I, we obtain that

S`(FL−1)T =
[
0m`×(m−m`), R

`, C`H`
]
,

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 36

for a square matrix H`. Notice that SL−1(FL−1)T = [0, RL], and for each ` ∈ NL, R`

is upper triangular. It follows from observation with the above three equations, and

formulas (2.15), (2.16) that SE is upper triangular.

Finally, we verify the equation A = QS. We will first prove the equation

A`Θ = A`+1 +Q`C`. (2.33)

Together with A`Ω = Q`R` by Proposition 2.2.2, we obtain an expression of A` in terms

of Q`, R`, C`, and A`+1. Then we will conclude that A = QS by induction and the

construction of Q and S. To show (2.33), we present the following technical lemma.

Lemma 2.2.9. Let matrices A := [Aj : j ∈ N2γ] and Q := [Qi : i ∈ Nγ] be given, and

let Ā, C be the matrices constructed by proj(A,Q). If QTQ = I, then A = Ā+QC.

Proof. The proof follows from Lemma 2.2.3. By equation (2.9), it suffices to show for

j ∈ N2γ, r := dj/2e that

Aj = Āj +QrCj. (2.34)

Since QTQ = I, QT
r Qr = I. It follows from direct computation with (2.8) and the

construction of Cj that Cj = QT
r Aj. Again, since QT

r Qr = I, by Lemma 2.2.3, we

obtain formula (2.34). Therefore, A = Ā+QC.

The following lemma expresses A` in terms of Q`, R`, C`, and A`+1.

Lemma 2.2.10. If A is a block-wise quasi-orthogonal matrix of full rank, then for

each ` ∈ NL−1,

A` = Q`[R`, C`]E` + [0, A`+1]E`.

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 37

Proof. Since A is a block-wise quasi-orthogonal matrix of full rank, by Proposition

2.2.6, we have for each ` ∈ NL−1 that A` is a block-wise quasi-orthogonal matrix of

full rank. By Proposition 2.2.2, we have that A`Ω = Q`R` and (Q`)TQ` = I. Since

A`+1, C` are constructed by proj(A`Θ, Q
`), by Lemma 2.2.9, we obtain formula (2.33).

Together with formula (2.11), we obtain the desired result.

We next prove that A = QS.

Theorem 2.2.11. If A(Λ) ∈ Rn×m is a block-wise quasi-orthogonal matrix of full

rank, where n ≥ m and Λ is of length γ := 2L for some L ∈ N, then the matrices Q,

S constructed by BGSP from A satisfy that Q ∈ Rn×m, S ∈ Rm×m, and A = QS.

Proof. We first verify the matrix sizes of Q and S. By Theorem 2.2.7, we have that

QTQ = I and R(Q) = R(A). Thus, Q is of full rank. Since A ∈ Rn×m is of full rank,

and n ≥ m, so Q ∈ Rn×m. Hence it suffices to show that A = QS, since by verifying

the matrix sizes, we have that S ∈ Rm×m. For the proof of A = QS, if L = 1, then

according to BGSP, we obtain that A = Q1R1 = QS.

Now we prove that A = QS for L > 1. By the definitions (2.12) and (2.15), it

suffices to show that

A =
∑
`∈NL

Q`S`. (2.35)

This will be done by proving the following formula by induction on ` ∈ NL−1,

A =
∑
j∈N`

QjSj + [0, A`+1]F `. (2.36)

Indeed, when ` = 1, since A is a block-wise quasi-orthogonal matrix of full rank, by

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 38

Lemma 2.2.10, formulas (2.13) and (2.14), we have that

A1 = Q1[R1, C1]E1 + [0, A2]E1 = Q1S1 + [0, A2]F 1.

Assuming that (2.36) is true for ` ∈ NL−2, we shall show that

A =
∑
j∈N`+1

QjSj + [0, A`+2]F `+1. (2.37)

Since (`+ 1) ∈ NL−1, again by Lemma 2.2.10, we have that

A`+1 = Q`+1[R`+1, C`+1]E`+1 + [0, A`+2]E`+1. (2.38)

Equation (2.37) follows from the induction hypothesis, formulas (2.38), (2.13) and

(2.14). Hence, by the induction principle, we obtain formula (2.36). Since QL, RL are

constructed by MGS from AL, we have that AL = QLRL. This together with (2.36) for

` = L− 1, and equation (2.14) yields formula (2.35). Thus, we have that A = QS.

2.3 Sparsity of the Factor Matrices

We establish in this section the sparsity of the matrices Q and S constructed by BGSP

from a banded matrix A of full rank. Specifically, we prove that if A(Λ) ∈ Rn×m has

bandwidth k/2, n ≥ m, k � m, and Λ = [k, k, . . . , k], then the numbers of nonzero

entries of Q and S are O(m logm) and O(m), respectively. Note that the numbers

of nonzero entries of Q and S depend on the sparse structure of A, and its partition

vector Λ. For simplicity, we consider only the case mentioned above. We denote by

#(A) the number of nonzero entries of A.

The goal of this section is to count the numbers of nonzero entries of the factor

matrices constructed by BGSP from a matrix A that satisfies the following hypothesis.

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 39

Hypothesis (A). Matrix A ∈ Rn×m is of full rank and is banded with bandwidth

k/2, n ≥ m, m = 2Lk for L ∈ N, γ := 2L, and A is partitioned by the vector

Λ := [k, k, . . . , k] of length γ.

We first count #(Q). By the construction of Q, we may trace the sparse structure

of A`. By formulas (2.12) and (2.20), #(Q) is the sum of #(Q`
i) over i, `. Since Q`

i

is the column orthonormal matrix constructed by MGS from A`si , #(Q`
i) depends on

the sparse structure of A`si . By examining the calculations, it can be seen that the

nonzero entries of A`si are clustered in a submatrix of it. For this reason, we introduce

two functions
¯
η(·) and η̄(·) in the following to describe properties of the submatrix.

Given a matrix A := [aij : i ∈ Nn, j ∈ Nm], A 6= 0, we let K := {(i, j) : i ∈ Nn, j ∈

Nm, and aij 6= 0}, and define

¯
η(A) := min {i : (i, j) ∈ K}, η̄(A) := max {i : (i, j) ∈ K}.

If A = 0, then K is empty. In this case, we let
¯
η(A) := n + 1 and η̄(A) := 0. For

a vector v ∈ Rn, we also define
¯
η(v) and η̄(v) by viewing v as a n × 1 matrix. With

these definitions, we have that

#(A) ≤ max {η̄(A)−
¯
η(A) + 1, 0} ·m. (2.39)

As a preparation, we investigate below properties of
¯
η(·) and η̄(·).

Lemma 2.3.1. Let matrices A := [aij : i ∈ Nn, j ∈ Nm], B := [bij : i ∈ Nn, j ∈ Nm],

C := [cij : i ∈ Nn, j ∈ Ns], D := [dij : i ∈ Nn, j ∈ Nt], and M := [mij : i ∈ Ns+t, j ∈

Nm] be given. Let η1 := min {
¯
η(B),

¯
η(C),

¯
η(D)}, and η2 := max {η̄(B), η̄(C), η̄(D)}.

If A = B + [C,D]M , then
¯
η(A) ≥ η1 and η̄(A) ≤ η2.

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 40

Proof. Given i ∈ Nn, j ∈ Nm, by direct computation, we have that

aij = bij +
∑
p∈Ns

cip ·mpj +
∑
r∈Nt

dir ·ms+r,j. (2.40)

If i < η1, by the definition of
¯
η(·), we have that bij = 0, cip = 0 for each p ∈ Ns,

and dir = 0 for each r ∈ Nt. Hence aij = 0. Therefore, we obtain that
¯
η(A) ≥ η1.

Likewise, if i > η2, formula (2.40) and the definition of η̄(·) yield that aij = 0. Thus,

η̄(A) ≤ η2.

The sparse structure of A` can be described by the following lemma. Notice that

given ` ∈ NL−1, we have for each i ∈ Nγ`/4 that

A`si = [G`
4i−2, G

`
4i−1], A`t2i−1

= G`
4i−3, A`t2i = G`

4i. (2.41)

Lemma 2.3.2. Suppose that matrix A satisfies Hypothesis (A). If BGSP is applied

to A, then for each ` ∈ NL−1,

¯
η
(
G`
i

)
≥


2`−1(i− 1)k − k/2 + 1, i = 1, 3, . . . , γ` − 1,

2`−1(i− 2)k + k/2 + 1, i = 2, 4, . . . , γ`,

η̄
(
G`
i

)
≤


2`−1(i+ 1)k − k/2, i = 1, 3, . . . , γ` − 1,

2`−1ik + k/2, i = 2, 4, . . . , γ`.

(2.42)

Proof. We shall prove the results by induction on ` ∈ NL−1. Indeed, when ` = 1,

we can verify (2.42) by the banded structure of A. Assume that (2.42) is true for

` ∈ NL−2.

We consider the case (` + 1). To this end, we first express G`+1
i in column blocks

of A`(Λ`), then apply Lemma 2.3.1 and the induction hypothesis to yield the desired

results. Let i ∈ Nγ`+1
be given, and r := di/2e. Notice that A is a block-wise quasi-

orthogonal matrix of full rank, so is A` by Proposition 2.2.6. Substituting (2.41) and

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 41

r = di/2e into formula (2.27) yields that

G`+1
i =


G`

2i−1 − [G`
2i, G

`
2i+1] M `

i , i = 1, 3, . . . , γ`+1 − 1,

G`
2i − [G`

2i−2, G
`
2i−1] M `

i , i = 2, 4, . . . , γ`+1.

(2.43)

Now we discuss case by case. If i is odd, then by Lemma 2.3.1 and the induction

hypothesis, we obtain that

¯
η(G`+1

i) ≥ min
µ=2i−1,2i,2i+1¯

η(G`
µ) ≥ 2`(i− 1)k − k/2 + 1,

η̄(G`+1
i) ≤ max

µ=2i−1,2i,2i+1
η̄(G`

µ) ≤ 2`(i+ 1)k − k/2.

Hence, (2.42) is true for (`+ 1) and for odd i. If i is even, likewise, we have that

¯
η(G`+1

i) ≥ min
µ=2i−2,2i−1,2i¯

η(G`
µ) ≥ 2`(i− 2)k + k/2 + 1,

η̄(G`+1
i) ≤ max

µ=2i−2,2i−1,2i
η̄(G`

µ) ≤ 2`ik + k/2.

Thus, (2.42) is true for (` + 1) and for even i. By the induction principle, we obtain

formula (2.42).

Now we present a theorem below for #(Q).

Theorem 2.3.3. Suppose that matrix A satisfies Hypothesis (A). If Q is the matrix

constructed by BGSP from A, then the number of nonzero entries of Q is at most

2km log2 (m/k).

Proof. We prove the result by counting #(Q) using previous lemmas. Indeed by

formula (2.12), #(Q) is the sum of #(Q`) for ` ∈ NL. By formula (2.20), #(Q`) is

the sum of #(Q`
i) for i ∈ Nγ`/4. Let ` ∈ NL−1 be given. Notice that A` is a block-

wise quasi-orthogonal matrix of full rank by Hypothesis (A) and Proposition 2.2.6.

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 42

Employing (2.22) and (2.41), we obtain that

Q`
i = A`si(R

`
i)
−1 = [G`

4i−2, G
`
4i−1] (R`

i)
−1. (2.44)

It follows from Lemmas 2.3.1 and 2.3.2 that

¯
η(Q`

i) ≥ min
µ=4i−2,4i−1¯

η(G`
µ) ≥ 2`+1(i− 1)k + k/2 + 1,

η̄(Q`
i) ≤ max

µ=4i−2,4i−1
η̄(G`

µ) ≤ 2`+1ik − k/2.
(2.45)

By the definition of Λ, we can verify that Q`
i ∈ Rn×2k and QL ∈ Rn×2k. Hence by

(2.39), we have that

#(Q) =
∑

`∈NL−1

∑
i∈Nγ`/4

#(Q`
i) + #(QL) ≤ 2kmL = 2km log2 (m/k),

proving the desired result.

We present below an upper bound for #(S).

Theorem 2.3.4. Suppose that matrix A satisfies Hypothesis (A). If S is the matrix

constructed by BGSP from A, then the number of nonzero entries of S is at most

13
4
km.

Proof. The proof is done by counting #(S) by the construction of S. Notice that F `

is a permutation matrix. Thus, #(S) is the sum of #(R`) for ` ∈ NL and #(C`) for

` ∈ NL−1.

We count #(R`) as follows. Given ` ∈ NL−1, for i ∈ Nγ`/4, we let R`
i be the upper

triangular matrix constructed by MGS from A`si . It follows from the construction of

R` that #(R`) is the sum of #(R`
i). Since A`si ∈ Rn×2k, we have that R`

i ∈ R2k×2k.

Notice that RL ∈ R2k×2k is the upper triangular matrix constructed by MGS from

AL ∈ Rn×2k.

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 43

Now we count #(C`). Given ` ∈ NL−1, for each j ∈ Nγ`/2, let r := dj/2e, and let

C`
j be the matrix constructed by proj(A`tj , Q

`
r). It follows from the construction of C`

that #(C`) is the sum of #(C`
j). Notice that Q`

r ∈ Rn×2k. Together with A`tj ∈ Rn×k,

we have that C`
j ∈ R2k×k.

From the above results, we obtain that #(S) is bounded above by(
1 +

∑
`∈NL−1

(γ`/4)

)
· 1

2

[
(2k)2 + 2k

]
+
∑

`∈NL−1

(γ`/2) · (2k2) ≤ 13
4
km,

proving the desired result.

2.4 Complexity of the Proposed Process

In this section, we study the complexity of BGSP. The complexity of a process is

measured by the number of floating point operations (flops) in the process. We shall

prove in this section that for an input matrix satisfying Hypothesis (A), if k � m,

then the complexity of BGSP is O(m logm) flops.

To present the main result, we first clarify the flops in BGSP. Note that the op-

eration of partitioning a matrix by column blocks may be accomplished by accessing

the matrix with the corresponding column indices, while the operation of permuting

the columns of a matrix may be accomplished by reordering the column indices of the

matrix, and hence both operations are not flops. With this note, we conclude that the

complexity in BGSP is the sum of the number of flops in orthn(·) and proj(·, ·) for all

the steps.

We consider the number of flops in proj(·, ·). For simplicity, given a matrix or a

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 44

vector X , we define

η(X) := max {η̄(X)−
¯
η(X) + 1, 0}.

Lemma 2.4.1. Let A0 := [aj : j ∈ Ns] ∈ Rn×s and Q0 := [qi : i ∈ Nt] ∈ Rn×t be

matrices. If η(Q0) ≤ p, then the complexity of proj(A0, Q0) is at most (4pst) flops.

Proof. By formulas (2.7) and (2.8), proj(A0, Q0) is to compute for j ∈ Ns, i ∈ Nt that

a
(i+1)
j := a

(i)
j − qi(qTi a

(i)
j), (2.46)

where a(1)
j := aj and Ā0 := [a

(t+1)
j : j ∈ Ns]. By the definitions of

¯
η(·) and η̄(·), we

have that
¯
η(qi) ≥

¯
η(Q0) and η̄(qi) ≤ η̄(Q0), respectively. Hence η(qi) ≤ η(Q0) ≤ p. It

follows from direct computation that the number of flops in (2.46) is bounded above

by 4p. Thus, the complexity of proj(A0, Q0) is at most (4pst) flops.

We derive in the following theorem an upper bound for the number of flops in

BGSP. It is known from [108] that if we apply MGS to a (dense) matrix X ∈ Rp×r,

then the complexity is 2pr2 flops.

Theorem 2.4.2. Suppose that matrix A satisfies Hypothesis (A). If BGSP is applied

to A, then the complexity is at most 24k2m log2 (m/k) flops.

Proof. The proof follows from counting the number of flops in orthn(·) by the com-

plexity statement for MGS as above, and that in proj(·, ·) by the previous lemma.

We first count the number of flops in orthn(·). Let ` ∈ NL−1, i ∈ Nγ`/4 be given.

According to BGSP, MGS is applied to A`si . Formulas (2.41) and (2.42) yield that

¯
η(A`si) ≥ 2`+1(i− 1)k + k/2 + 1 and η̄(A`si) ≤ 2`+1ik − k/2.

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 45

Since A`si ∈ Rn×2k, it follows from the complexity statement for MGS that the number

of flops is bounded above by

2 · η(A`si) · (2k)2 ≤ 2 · (2`+1k) · (2k)2 = 2`+4k3.

Notice that AL ∈ Rn×2k, and η(AL) ≤ m by (2.42). Thus, we obtain that the total

number of flops of orthn(·) for all steps is at most

2m · (2k)2 +
∑

`∈NL−1

(γ`/4) · (2`+4k3) = 8k2mL. (2.47)

We then count the number of flops in proj(·, ·). Given ` ∈ NL−1, j ∈ Nγ`/2, let

r := dj/2e. By formula (2.45), we have that η(Q`
r) ≤ 2`+1k. Since A`tj ∈ Rn×k,

Q`
r ∈ Rn×2k, it follows from Lemma 2.4.1 that the number of flops in proj(A`tj , Q

`
r) is

bounded above by

4(2`+1k)(k)(2k) = 2`+4k3.

Hence, an upper bound for the total number of flops in proj(·, ·) for all steps is

∑
`∈NL−1

(γ`/2) · (2`+4k3) = 16k2m(L− 1).

This together with (2.47) and L = log2 (m/k) yields the desired result.

2.5 Stability of the Proposed Process

We study in this section the stability of BGSP by a round-off error analysis. The goal

of this section is to prove that BGSP achieves numerical stability similar to MGS. To

this end, we show that if matrices Q, S, E are constructed by BGSP from A, and if

matrices Q̄, R̄ are constructed by MGS from AE, then

Q = Q̄, SE = R̄. (2.48)

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 46

Moreover, if matrices Q̂, Ŝ, Q̃, and R̃ are respectively the computed matrices of Q, S,

Q̄ and R̄, then

Q̂ = Q̃, ŜE = R̃. (2.49)

Thus we can derive the stability results of BGSP using those of MGS from [13, 14].

To prove the above two formulas, we write processes of BGSP applied to A and

MGS applied to AE in operations on column blocks, from which we can see that the

two processes are the same except that MGS has three more inner-loops for each step.

We first write BGSP applied to the partitioned matrix A as follows.

Let A1 := A. For each ` ∈ NL−1, do the following.

For i ∈ Nγ`/4, construct matrices Q`
i , R`

i by MGS from A`si .

For j ∈ Nγ`/2, let r := dj/2e, and construct matricesG`+1
j , C`

j by proj(A`tj , Q
`
r).

Let A`+1 := [G`+1
j : j ∈ Nγ`/2].

Construct matrices QL, RL by MGS from AL.

Next we write the process MGS originally presented in [43] applied to AE, with E

being constructed by BGSP from A. Let Ā1
:= A. For each ` ∈ NL−1, we associate

Ā
` with the partition vector Π` defined above. For i ∈ N3γ`/4, we let Ā`i denote the

column block of Ā` such that Ā` = [Ā
`
i : i ∈ N3γ`/4]. According to the construction of

E and the fact that Ā`(E`)T = [Ā
`
Ω, Ā

`
Θ], we can write the process as follows.

Let Ā1
:= A. For each ` ∈ NL−1, do the following.

For each p ∈ N3γ`/4, let Ā
`,1
p := Ā

`
p.

For i ∈ Nγ`/4,

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 47

for α ∈ Ni−1, construct matrices Ā`,α+1
si

, X`
αi by proj(Ā

`,α
si
, Q̄

`
α);

construct matrices Q̄`
i , R̄

`
i by MGS from Ā

`,i
si
.

For j ∈ Nγ`/2, let r := dj/2e;

for µ ∈ Nr−1, construct matrices Ā`,µ+1
tj

, Y `
µj by proj(Ā

`,µ
tj
, Q̄

`
µ);

construct matrices Ā`,r+1
tj

, C̄`
j by proj(Ā

`,r
tj
, Q̄

`
r);

for ν = r+1, r+2, . . . , γ`/4, construct matrices Ā`,ν+1
tj

, Y `
νj by proj(Ā

`,ν
tj
, Q̄

`
ν).

Let Ḡ`+1
j := Ā

`,γ`/4+1
tj

for j ∈ Nγ`/2, and let Ā`+1
:= [Ḡ

`+1
j : j ∈ Nγ`/2].

Construct matrices Q̄L, R̄L by MGS from Ā
L.

It can be verified that the block-based process written as above is the same as the

traditional MGS process [43] applied to the column vectors of AE. To form the QR

factorization, the column orthonormal matrix Q̄ is constructed by

Q̄ :=
[
[Q̄

`
i : i ∈ Nγ` , ` ∈ NL−1], Q̄

L
]
,

while the upper triangular matrix R̄ is formed by the blocks R̄`
i , C̄

`
j, X`

αi, Y `
µj, Y `

νj, and

R̄
L such that AE = Q̄R̄. Though we shall obtain (2.48) and (2.49) from the proofs

below, we emphasize here that the extra three inner-loops in MGS applied to AE

heavily increase the complexity, and communication costs in a parallel environment.

We now prove (2.48) in the following proposition.

Proposition 2.5.1. Let A(Λ) ∈ Rn×m be a block-wise quasi-orthogonal matrix of

full rank, where n ≥ m and Λ is of length γ := 2L for some L ∈ N. If matrices Q,

S, E are constructed by BGSP from A, and if matrices Q̄, R̄ are constructed by MGS

from AE, then Q = Q̄, SE = R̄.

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 48

Proof. The proof is done by showing that A` = Ā
` by induction on ` ∈ NL. It follows

from the induction hypothesis, the block-wise orthogonality of A`Ω, and formula (2.21)

that for α < i, µ < r, ν > r,

Ā
`,α+1
si

= Ā
`,α
si
, Ā

`,µ+1
tj

= Ā
`,µ
tj
, and Ā

`,ν+1
tj

= Ā
`,ν
tj
,

which implies the result for (`+ 1). Then the desired results follow from the construc-

tion of Q, Q̄, S, and R̄. As we will see analog statements in the proof of (2.49), except

the use of the block-wise orthogonality of A`Ω and (2.21), we skip details of the proof

here.

We next prove (2.49). Throughout this section, unless specified otherwise, we use

the hat notation to indicate the computed quantities with round-off errors, and we

assume the following hypothesis, which is true according to the IEEE standard for

floating point arithmetic (IEEE 754 [61]).

Hypothesis (F). If fl(·) denotes a floating point arithmetic, then

0̂ = 0, f l(0̂± X̂) = X̂ , and fl(0̂ · X̂) = fl(X̂ · 0̂) = 0,

where 0 or X could be a number, a vector, or a matrix such that the operation on 0

and X is compatible.

The idea for the proof of (2.49) is to show that the three extra inner-loops in MGS

described above are unnecessary when MGS is applied to AE. Since they all compute

the form of proj(U, P), by Hypothesis (F), it suffices to show that the floating point

inner product of the computed matrices Û and P̂ results in 0. This can be done by

proving that
¯
η(Û) > η̄(P̂) or η̄(Û) <

¯
η(P̂), as described in the lemma below.

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 49

Lemma 2.5.2. Let matrices U := [uj : j ∈ Ns] ∈ Rn×s and P := [pi : i ∈ Nt] ∈ Rn×t

be given, and let V := [vj : j ∈ Ns], D := [dij : i ∈ Nt, j ∈ Ns] be the matrices

constructed by proj(U, P). Assuming Hypothesis (F), if
¯
η(Û) > η̄(P̂) or η̄(Û) <

¯
η(P̂),

then V̂ = Û and D̂ = 0.

Proof. We shall prove the results for the case that
¯
η(Û) > η̄(P̂), and the proof for

η̄(Û) <
¯
η(P̂) is similar. Suppose that

¯
η(Û) > η̄(P̂) and j ∈ Ns is given. By the

definitions of
¯
η(·) and η̄(·), we have for each i ∈ Nt that

¯
η(ûj) > η̄(p̂i). Expanding

(2.7) and (2.8) by column vectors in computed form yields the following process for

computing v̂j.

Let û1
j := ûj.

For i = 1, 2, . . . , t,

d̂ij := fl(p̂Ti û
i
j),

ûi+1
j := fl[ûij − fl(d̂ij p̂i)].

Let v̂j := ût+1
j .

It follows from
¯
η(ûj) > η̄(p̂1) and Hypothesis (F) that d̂1j = 0. Again by Hypothesis

(F), we have that û2
j = û1

j , and so
¯
η(û2

j) > η̄(p̂r) for each r ∈ Nt. Repeating the

process, we have for i ∈ Nt that ûij = û1
j and d̂ij = 0. Therefore, we obtain the desired

results.

To prove (2.49), we need the following two lemmas to obtain the sparse structure

of the computed matrices in BGSP. The first lemma concerns the properties of the

functions
¯
η(·) and η̄(·).

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 50

Lemma 2.5.3. Let matrices B ∈ Rn×m, C ∈ Rn×s, D ∈ Rn×t, M ∈ R(s+t)×m be

given. Assuming Hypothesis (F), if matrix A is computed by A := B + [C,D]M , then

¯
η(Â) ≥ min {

¯
η(B̂),

¯
η(Ĉ),

¯
η(D̂)} and η̄(Â) ≤ max {η̄(B̂), η̄(Ĉ), η̄(D̂)}.

Proof. The result follows from the proof of Lemma 2.3.1, replacing any quantity ap-

pearing in the proof by its computed quantity, and using Hypothesis (F).

The lemma below ensures that the computed matrix Â
`
has the same sparse struc-

ture as A`.

Lemma 2.5.4. Assuming Hypothesis (F) and that matrix A satisfies Hypothesis (A),

if BGSP is applied to A, then for each ` ∈ NL−1,

¯
η
(
Ĝ
`

i

)
≥


2`−1(i− 1)k − k/2 + 1, i = 1, 3, . . . , γ` − 1,

2`−1(i− 2)k + k/2 + 1, i = 2, 4, . . . , γ`,

η̄
(
Ĝ
`

i

)
≤


2`−1(i+ 1)k − k/2, i = 1, 3, . . . , γ` − 1,

2`−1ik + k/2, i = 2, 4, . . . , γ`.

Proof. The result follows from the proof of Lemma 2.3.2, replacing any matrix appear-

ing in the proof by its computed matrix, together with Hypothesis (F) and Lemma

2.5.3.

Now we prove (2.49).

Proposition 2.5.5. Suppose that matrix A satisfies Hypothesis (A). Let Q, S, E

be the matrices constructed by BGSP from A, and Q̄, R̄ be the matrices constructed by

MGS from AE. Assuming Hypothesis (F), if matrices Q̂, Ŝ, Q̃, and R̃ are respectively

the computed matrices of Q, S, Q̄ and R̄, then Q̂ = Q̃, ŜE = R̃.

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 51

Proof. In this proof, we shall use the hat notation and tilde notation respectively to

indicate the computed matrices in BGSP and MGS. We shall prove the results by

showing the following equation by induction on ` ∈ NL,

Ã
`

= Â
`
. (2.50)

Indeed, when ` = 1, we have Ã
1

= A = Â
1
. Assuming that (2.50) is true for ` ∈ NL−1,

we have for each p that

Ã
`,1

p = Â
`

p. (2.51)

We shall prove (2.50) for (`+ 1). By comparing the two processes above, with Lemma

2.5.2, it suffices to show that

¯
η(Ã

`,α

si
) > η̄(Q̃

`

α), for α < i, (2.52)

η̄(Ã
`,µ

tj
) <

¯
η(Q̃

`

µ), for µ < r, (2.53)

¯
η(Ã

`,ν

tj
) > η̄(Q̃

`

ν), for ν > r. (2.54)

We first prove (2.52). To this end, we show the following equation by induction on

i ∈ Nγ`/4,

Q̃
`

i = Q̂
`

i . (2.55)

Indeed, when i = 1, since Ã
`,1

s1
= Â

`

s1
, we have that Q̃

`

1 = Q̂
`

1. Assuming that (2.55) is

true for all i < γ`/4, we shall show the result for (i + 1). By formulas (2.44), (2.41),

Lemmas 2.5.3 and 2.5.4, we have for α′ < i′ that

¯
η(Â

`

si′
) > η̄(Q̂

`

α′). (2.56)

Equation (2.51) and the induction hypothesis lead to
¯
η(Ã

`,1

si+1
) > η̄(Q̃

`

1). By Lemma

2.5.2, we have that Ã
`,2

si+1
= Â

`

si+1
. Repeating using (2.56) and Lemma 2.5.2 for α′ =

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 52

2, 3, . . . , i yields that Ã
`,i+1

si+1
= Â

`

si+1
. Thus, we obtain the desired result for (i + 1).

By the induction principle, we have formula (2.55). Now for a fixed i, we have that

Ã
`,1

si
= Â

`

si
by (2.51). Repeating using (2.56), (2.55), and Lemma 2.5.2, we obtain

formula (2.52).

We next prove (2.53). By formulas (2.44), (2.41), Lemmas 2.5.3 and 2.5.4, we have

for µ′ < dj′/2e that

η̄(Â
`

tj′
) <

¯
η(Q̂

`

µ′). (2.57)

Now for a fixed j with r = dj/2e, we have that Ã
`,1

tj
= Â

`

tj
by (2.51). Repeating using

(2.57), (2.55), and Lemma 2.5.2, we obtain formula (2.53). Therefore, Ã
`,r

tj
= Â

`

tj
, and

hence Ã
`,r+1

tj
= Ĝ

`+1

j .

The proof of (2.54) follows similarly.

Formula (2.54) and Lemma 2.5.2 yield that Ã
`,γ`+1

tj
= Ã

`,r+1

tj
. Hence, we obtain

(2.50) for (`+ 1). By the induction principle, we obtain formula (2.50).

Equation (2.50) implies that formulas (2.52), (2.53), and (2.54) are true for ` ∈

NL−1. It follows from Lemma 2.5.2 that X̃
`

αi = 0, Ỹ
`

µj = 0, and Ỹ
`

νj = 0. Therefore,

Q̂ = Q̃, ŜE = R̃.

By the previous proposition, we can obtain the stability results of BGSP using

those of MGS applied to AE. The detailed round-off error analysis of MGS for general

dense matrices is given in [13, 14]. We shall show the stability of BGSP using the

main results in [13], with the fact that A is banded. In the following, we assume that

the floating point arithmetic in double precision is used, and denote by u the machine

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 53

unit error. For each j ∈ Nm, we define

¯̀
j := max

1≤`≤L

{
` : 2` divides dj/ke or (dj/ke − 1)

}
. (2.58)

With the notation, at the ¯̀
j-th step of BGSP, the jth column of A is orthonormalized

by orthn(·). Also, we denote by ‖ · ‖F the Frobenius norm, that is, for a matrix

X := [xij : i ∈ Nn, j ∈ Nm], ‖X‖F := (
∑

i∈Nn
∑

j∈Nm x
2
ij)

1/2.

To derive an error bound for the factorization, we include the following lemma

proved in [13].

Lemma 2.5.6. Let A ∈ Rn×m be of full rank, n ≥ m. Let Q̃ and R̃ be respectively the

computed matrices of Q and R constructed by MGS from A. For i ∈ Nm, let ai and

∆ai be the ith column vectors of matrices A and (A− Q̃R̃), respectively. If

2.12(n+ 1)u < 0.01, (2.59)

then

‖∆ai‖2 ≤ 3
2
(i− 1)u‖ai‖2, (2.60)

‖A− Q̃R̃‖F ≤ 3
2
(m− 1)u‖A‖F . (2.61)

We present below the error in the block QS factorization via BGSP.

Theorem 2.5.7. Suppose that matrix A satisfies Hypothesis (A). Assuming Hypoth-

esis (F) and (2.59), if Q̂ and Ŝ are respectively the computed matrices of Q and S

constructed by BGSP from A, then

‖A− Q̂Ŝ‖F ≤ 3k log2 (m/k)u‖A‖F . (2.62)

Proof. The proof follows from Proposition 2.5.5 and Lemma 2.5.6. For j ∈ Nm, let aj

and ∆aj be the jth column vectors of matrices A and (A− Q̂Ŝ), respectively. Let Q̃

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 54

and R̃ be the computed factor matrices constructed by MGS from AE. By Proposition

2.5.5, we have that Q̂ = Q̃, ŜE = R̃, and hence

(A− Q̂Ŝ)E = AE − Q̃R̃.

Let pj be the number of column vectors of AE prior to aj. Employing (2.60) in Lemma

2.5.6 with i = pj + 1, we obtain that,

‖∆aj‖2 ≤ 3
2
pju‖aj‖2.

With the fact that the unnecessary inner-loops of MGS applied to AE are not executed

in BGSP, it follows from direct counting that pj ≤ 2¯̀
jk. Hence,

‖∆aj‖2 ≤ 3¯̀
jku‖aj‖2. (2.63)

Since ¯̀
j ≤ log2 (m/k), we obtain formula (2.62).

We remark that if k � m, then the error bound in (2.62) is much smaller that

in (2.61). Moreover, if the column vectors of A have the same 2-norm, then we can

achieve an improvement over (2.62), as in the theorem below. Given a matrix A :=

[aj : j ∈ Nm], we can construct a diagonal matrix D whose diagonal entries are ‖aj‖−1
2

for j ∈ Nm, so that each column vector of AD has norm 1. This column normalization

method is commonly used for precondition.

Theorem 2.5.8. Suppose that matrix A satisfies Hypothesis (A), and that the column

vectors of A have the same 2-norm. Assuming Hypothesis (F) and (2.59), if Q̂ and Ŝ

are respectively the computed matrices of Q and S constructed by BGSP from A, then

‖A− Q̂Ŝ‖F ≤ 3
√

6ku‖A‖F .

Proof. Let α := ‖aj‖2, for some column vector aj of A. Employing (2.63), we obtain

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 55

that

‖∆aj‖2 ≤ 3¯̀
jkuα.

By direct counting according to the definition (2.58) of ¯̀
j, we have for each ` ∈ NL−1

that there are (m/2`) many column vectors aj of A with ¯̀
j = `. Together with the

equation m = 2Lk, we have that

‖A− Q̂Ŝ‖F ≤
(

2L2k +
∑

`∈NL−1

`2m/2`
)1/2

· 3kuα ≤ 3
√

6ku‖A‖F ,

in which the coefficient of u‖A‖F is independent of m.

We present below an upper bound for ‖Q̂T Q̂− I‖2, the loss of orthogonality of Q̂.

We denote by κ(A) := ‖A‖2 ‖A+‖2 the condition number of A. It is proved in [13] that

with (2.59), if Q̃ is the computed matrix of Q constructed by MGS from A ∈ Rn×m

of full rank, and 3.42m(m+ 1)uκ(A) < 1, then there exists a constant c := c(m) such

that

‖Q̃T Q̃− I‖2 ≤ cuκ(A). (2.64)

Theorem 2.5.9. Suppose that matrix A satisfies Hypothesis (A). Let Q̂ be the com-

puted matrix of the column orthonormal matrix Q constructed by BGSP from A. As-

suming Hypothesis (F) and (2.59), if 3.42m(m + 1)uκ(A) < 1, then there exists a

constant c := c(m) such that

‖Q̂T Q̂− I‖2 ≤ cuκ(A).

Proof. The proof follows from Proposition 2.5.5 and formula (2.64).

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 56

2.6 A Recursive Algorithm

We develop in this section a recursive algorithm called RBGSP for the block QS fac-

torization that implements BGSP. The purpose of introducing recursion is to describe

the orthogonalization process in a more simple way than BGSP, as RBGSP generates

the block QS factorization of matrices directly by an intuitive idea.

To begin, we review the concept of recursive algorithms. Recall that an algorithm

for solving a given problem is recursive if it obeys the following three laws of recursion

[39]: First, the algorithm has a base case of the problem, in which a simple, non-

recursive solution is generated. Second, for a case that is not a base case, the algorithm

reduces it to one or more cases of the problem that are closer to the base case, using

calls of the algorithm itself. Third, the algorithm eventually reduces the problem to

the base case only. As an alternative to iteration, recursion enables us to specify a

natural, simple solution to a problem that would otherwise be difficult to solve. Indeed,

BGSP is an iterative process, that may be not easy to understand.

We summarize our intuitive idea for constructing the block QS factorization de-

scribed in section 2.1 as follows: The problem to be solved is to obtain the block QS

factorization of A with a partition vector Λ of length γ. The case when γ ≤ 2 is a base

case, in which we directly generate the solution by MGS. For γ > 2, we construct two

submatrices of A, compute partial results by orthn(·) and proj(·, ·), and then reduce

the problem to find the block QS factorization of a matrix partitioned by a subvector of

Λ (having smaller length than Λ). We repeat the process until the case of the problem

becomes a base one.

We now propose the recursive algorithm RBGSP. For a matrix A(Λ) with Λ = [ni :

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 57

i ∈ Nγ], and γ = 2L for some L ∈ N\{1}, we define

Π := [n4i−3, n4i−2 + n4i−1, n4i : i ∈ Nγ/4], (2.65)

Ω := [si : i ∈ Nγ/4], and Θ := [tj : j ∈ Nγ/2]. (2.66)

Then we let ΠΩ, ΠΘ be defined by (2.4) and let AΩ, AΘ be defined by (2.5). Also, we

define a permutation matrix E by

E :=


⊕

i∈Nγ/4

([
0n4i−2×n4i−3

, In4i−2

]
⊕
[
In4i−1

, 0n4i−1×n4i

])
⊕

i∈Nγ/4

([
In4i−3

, 0n4i−3×n4i−2

]
⊕
[
0n4i×n4i−1

, In4i

])
 ,

so that A = [AΩ, AΘ]E. The algorithm is presented below.

Algorithm 2.1 The recursive algorithm for the block QS factorization (RBGSP)

Input: A matrix A(Λ) of full rank with Λ = [ni : i ∈ Nγ] and γ = 2L for some L ∈ N.
Output: Three matrices Qrec, Srec, Erec.
1: if γ ≤ 2 then
2: generate matrices Q, R by MGS from A,
3: return Qrec := Q, Srec := R, Erec := I.
4: else
5: generate matrices Q, R by orthn(AΩ),
6: generate matrices ĀΘ, C by proj(AΘ, Q),
7: generate matrices Q̄, S̄, Ē by RBGSP from ĀΘ(ΠΘ),
8: return the following

Qrec := [Q, Q̄], (2.67)

Srec :=

[
R C
0 S̄

]
E, (2.68)

Erec := ET (I ⊕ Ē). (2.69)

As RBGSP is recursive for the calls of itself on line 7, we verify that RBGSP must

stop in finitely many steps. Suppose that in the first call of RBGSP, γ = 2L for some

L ∈ N. If γ = 2, then RBGSP returns on line 3. If γ > 2, then on line 7, the input

matrix is partitioned by ΠΘ, which has length γ/2 by the definitions (2.65), (2.66),

and (2.4). Thus, we conclude by induction that for each ` ∈ NL, γ` defined by (2.10) is

the length of the partition vector of the input matrix in the `th call of RBGSP. Hence,

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 58

if and only if ` = L, γ` ≤ 2 and RBGSP returns. In conclusion, RBGSP will stop in

L calls.

We shall prove that RBGSP implements BGSP, that is, the matricesQrec, Srec, Erec

generated from RBGSP are respectively the same as Q, S, E constructed by BGSP.

To this end, we present the following remark, which can be verified by induction.

Remark 3. For X = A, Q, R, C, or E, let X`, X̂
`
be respectively the matrix and its

computed matrix generated by the `th call of RBGSP. Then X` is the same as the one

constructed by BGSP, and X̂
`
is the same as the computed matrix of X` constructed

by BGSP.

We next clarify the execution order of RBGSP. Notice that RBGSP differs from

BGSP in the formations of the factor matrices. Unlike a sequential order of execution,

the output matrices Qrec, Srec, Erec are formed by the returned matrices of the calls

from back to front, that is, in the descending order of ` running from L to 1. This is

due to the executive mechanism of recursive algorithms. A diagram of the process of

execution for RBGSP is illustrated in Figure 2.4 below, in which we denote by Q`
rec,

S`rec, E`
rec the returned matrices of the `th call of RBGSP.

We now present in the theorem below that RBGSP implements BGSP.

Theorem 2.6.1. Let A be a matrix of full rank with the partition vector Λ of length

γ := 2L for some L ∈ N. If matrices Qrec, Srec, Erec are generated by RBGSP from

A, matrices Q, S, E are constructed by BGSP from A, and matrices Q̂rec, Ŝrec, Q̂, Ŝ

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 59

The 2nd call of RBGSP(A2): Generate Q2, R2, C2, E2, A3, and
calls RBGSP(A3) · · · Output: Q2

rec, S
2
rec, E

2
rec.

The 3rd call of RBGSP(A3): Generate Q3, R3, C3, E3, A4, and
calls RBGSP(A4) · · · Output: Q3

rec, S
3
rec, E

3
rec.

The last call of RBGSP(A4): Generate and output Q4
rec := Q4, S4

rec := R4, E4
rec := I.

The 1st call of RBGSP(A1): Generate Q1, R1, C1, E1, A2, and
calls RBGSP(A2) · · · Output: Q1

rec, S
1
rec, E

1
rec.

Figure 2.4: Diagram of the process of execution for RBGSP with L = 4. Time
moves along the arrows.

are the computed matrices of Qrec, Srec, Q, S, respectively, then

Qrec = Q, Srec = S, Erec = E, (2.70)

Q̂rec = Q̂, Ŝrec = Ŝ. (2.71)

Proof. We first prove (2.70). If L = 1, then according to RBGSP and BGSP, we have

that Qrec = Q1 = Q, Srec = R1 = S, and Erec = I = E. We consider L > 1 below.

We show that Qrec = Q. By formula (2.12) and Remark 3, we shall prove that

Qrec = [Q` : ` ∈ NL]. (2.72)

This can be done by showing that

Qrec = [Q1, Q2, . . . , Q`, Q`+1
rec]. (2.73)

by induction on ` ∈ NL−1. Indeed, noticing that Q̄j
= Qj+1

rec , by (2.67) from RBGSP,

we obtain for each j ∈ NL−1 that

Qj
rec = [Qj, Qj+1

rec]. (2.74)

With Qrec = Q1
rec, we obtain (2.73) for ` = 1. Assume that (2.73) is true for ` ∈ NL−2.

Since (` + 1) ∈ NL−1, employing the induction hypothesis and formula (2.74) with

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 60

j = ` + 1, we obtain (2.73) for (` + 1). Hence by the induction principle, we obtain

formula (2.73). Notice that QL
rec = QL according to RBGSP. This together with

formula (2.73) for ` = L− 1 yields formula (2.72). Therefore, Qrec = Q.

We next prove that Srec = S. By formula (2.15), we shall prove that

Srec =
[
(S`)T : ` ∈ NL

]T
. (2.75)

This can be done by showing that

Srec =
[
(S1)T , (S2)T , . . . , (S`)T , ([0, S`+1]F `)T

]T
. (2.76)

by induction on ` ∈ NL−1. Indeed, noticing that S̄j = Sj+1
rec , by (2.68) from RBGSP,

we obtain for each j ∈ NL−1 that

Sjrec =

Rj Cj

0 Sj+1
rec

Ej. (2.77)

By the definitions (2.13), (2.14) of F 1, S1, we obtain that

Srec = S1
rec =

R1 C1

0 S2
rec

E1 =

 S1

[0, S2
rec]F

1

 .
Assume that (2.76) is true for ` ∈ NL−2. Since (`+1) ∈ NL−1, employing the induction

hypothesis and formula (2.77) with j = `+1, and the definitions (2.13), (2.14) of F `+1,

S`+1, we obtain that

Srec =

[(St)T : t ∈ N`]
T

[0, S`+1
rec]F `

 =


[(St)T : t ∈ N`]

T0 R`+1 C`+1

0 0 S`+2
rec

 (I ⊕ E`+1)F `

 =


[(St)T : t ∈ N`]

T

S`+1

[0, S`+2
rec]F `+1

 ,

proving that (2.76) is true for (` + 1). Hence by the induction principle, we obtain

formula (2.76). Notice that SLrec = RL according to RBGSP, and SL = [0, RL]FL−1.

CHAPTER 2. A STABLE PROCESS FOR SPARSE ORTHOGONALIZATION 61

Together with formula (2.76) for ` = L − 1, we obtain formula (2.75). Therefore,

Srec = S.

Since Ēj
= Ej+1

rec , by (2.69), we obtain for each j ∈ NL−1 that

Ej
rec = (Ej)T (I ⊕ Ej+1

rec).

The proof of Erec = E is done by expanding the above formula for j, and expanding

(2.13) for ` ∈ NL−1, together with equations Erec = E1
rec, EL

rec = I, and (2.16).

It remains to show (2.71). Equation Q̂rec = Q̂ directly follows from formulas (2.72),

(2.12), and Remark 3. Recall that the operations of permuting the columns of a matrix

are not floating point operations, and thus do not produce any round-off errors. With

the fact that E`’s are permutation matrices, equation Ŝrec = Ŝ can be derived from

formulas (2.75), (2.15), (2.14), and Remark 3.

We finally remark that comparing to BGSP, it is more convenient for RBGSP to

obtain the block QS factorization of A`. Indeed, it is can be verified by induction on

` = L,L − 1, . . . , 1 that Q`
recS

`
rec is the block QS factorization of A`, and specifically,

S`recE
`
rec is upper triangular. Thus, we obtain the block QS factorization of A` by the

returned matrices in the `th call of RBGSP.

Chapter 3

A Parallel Algorithm for the Block

QS Factorization

In this chapter, we develop a parallel algorithm for the block QS factorization in the

Bulk Synchronous Parallel model for distributed memory computing.

We study keystones in the model for implementing the proposed parallel algo-

rithm. Especially, we make use of the concurrent computation in BGSP by dividing

the computations in BGSP into parts, each of which can be executed by an individ-

ual processor. A concern for the model is the time-consuming barrier synchronization

between the communication phrase and the concurrent computation phrase. For this

concern, we directly view the process for the block QS factorization as a special case

of one collective communication operation, the all-reduction operation. Then we ap-

ply a butterfly all-reduction tree structure in order to communicate pairwise between

processors, avoiding any barrier synchronization.

We conduct a detailed analysis for the parallel performance of the proposed al-

62

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 63

gorithm. We have observed that when applied to large-scale ill-conditioned banded

matrices, the proposed algorithm generates even more sparse intermediate matrices

than the sequential algorithm. Benefiting from this observation, we show that the

numbers of communication messages and words both reach their theoretical least up-

per bounds. Also, the parallel complexity is asymptotically bounded above by its

theoretical least upper bound multiplying by a logarithmic quantity that depends on

the matrix size, the bandwidth, and the number of processors. Moreover, the speedup

is asymptotically bounded below by its theoretical greatest lower bound dividing by

the logarithm of the number of processors, indicating that the proposed algorithm has

approximately ideal scalability.

We organize this chapter in four sections. In section 3.1, we introduce the Bulk

Synchronous Parallel model in which we develop the parallel algorithm. We also

discuss related issues and our ideas on these issues. In section 3.2, we describe the

implementation of the parallel algorithm for the keystones in the model. We propose

the parallel algorithm in section 3.3, and verify that it fulfils the block QS factorization,

as well as inherits the nice features from BGSP. Section 3.4 is devoted to the analysis

of the proposed parallel algorithm.

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 64

3.1 Introduction

The goal in this chapter is to develop a parallel algorithm for the block QS factor-

ization by parallelizing the sequential process BGSP. In this section, we discuss the

issues in parallel implementation, and present our ideas to address these issues. Recall

that in massive data processing described in chapter 1, data are typically distributed

in different locations. Thus, we shall design the parallel algorithm using the Bulk

Synchronous Parallel (BSP) model, which is the most common model for distributed

memory computing. To start with, we review the model as follows.

We briefly review the BSP model [111]. A parallel algorithm in the BSP model

proceeds in a series of global supersteps. Each superstep consists of three phrases:

concurrent computation, communication, and barrier synchronization. During the

concurrent computation, every participating processor may perform local computa-

tions, that is, each processor can only access the data stored in its local memory, and

compute independently from the other processors. In the communication phase, the

processors exchange data between themselves. During barrier synchronization, each

processor reaches the barrier and waits until all the others have reached the same

barrier. To optimize parallel performance, one wishes to maximize the concurrency of

the computation, as well as minimize the cost for communication and barrier synchro-

nization.

The first issue is the concurrency of the computation in each superstep. To maxi-

mize the concurrency, the ideal way is to evenly divided all the computations in BGSP

and assign to participating processors. Since each processor can only access the data

stored in its local memory, we shall partition the input matrix by column blocks and

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 65

evenly distribute to the processors. We will study further in the next section for the

concurrent computation.

The second issue is that the number of times for communication may depend on

the number L of steps of BGSP. This can be seen from each call of proj(·, ·) in BGSP

for ` ∈ NL−1. In proj(·, ·), given i ∈ Nγ, if matrices A2i and Qi are stored in two

different processors, then the two processors have to exchange their matrices to each

other in order to execute proj(A2i, Qi). To avoid the data exchange, we trace back

to the column blocks of the input matrix from which A2i and Qi are derived. We

then distribute these column blocks as a unit to the processors. In this way, we could

assign the computations in the first few steps of BGSP to the first superstep of the

parallel algorithm, in which communication is free. As a result, the number of times

for communication does not depend on L, and it is the logarithm of the number of

processors, which is optimal [7].

The third issue is that barrier synchronization between supersteps is very time-

consuming since it is a global coordination involving all the processors. To overcome

this issue, binary tree structure is studied to adopt pairwise communication between

processors instead of global synchronization among all the processors (see, for example,

[35, 57]). In order to apply the structure, we view the entire process for the block QS

factorization as a reduction operation, with the specialty that the intermediate results

must be stored in the processors that produce them. Notice that a reduction is one

type of collective operations that combine multiple results into one overall result, with

some associative function. Also, a reduction is usually fulfilled by the binary tree

structure [47].

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 66

3.2 Implementation in the BSP model

In this section, we describe the implementation of our parallel algorithm for the key-

stones in the BSP model: concurrent computation, data distribution, supersteps, and

communication.

We first discuss the concurrent computation in the parallel implementation. We

consider the computations in BGSP that could be divided into parts to be executed

concurrently by processors. We observe that the computations in procedures orthn(·)

and proj(·, ·) introduced in chapter 2 are naturally concurrent. For orthn(·), given i ∈

Nγ, if a processor holds the matrix Ai, it can apply MGS independently, without any

interactions with the other processors. Ideally, if there are γ participating processors,

then orthn(·) can be executed completely concurrently. Likewise, for proj(·, ·), given

i ∈ Nγ, j ∈ N2γ, with i = dj/2e, if a processor holds both Aj and Qi, then it can

execute proj(Aj, Qi) independently.

Furthermore, we can divide some computations in BGSP into parts. Using the

same notation as BGSP, we provide the following sub-algorithm (BGSP1) that reveals

the feature of the concurrent computation. In fact, BGSP1 is the same as BGSP,

except the former does not proceed the Lth step. In this chapter, we assume that the

input matrix A satisfies the following hypothesis.

Hypothesis (A1). Matrix A(Λ) ∈ Rn×m is of full rank, where n ≥ m and Λ is of

length γ := 2L for some L ∈ N\{1}.

The computations in the sub-algorithm BGSP1 can be divided into parts to be

executed concurrently. To see this, we let P ∈ N satisfy the hypothesis below.

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 67

Algorithm 3.1 A sub-algorithm for BGSP (BGSP1)
Input: A matrix A that satisfies Hypothesis (A1).
Output: Four matrices Q̄, S̄, Ā, F .
1: for ` ∈ NL−1 do
2: generate matrices Q`, R` by orthn(A`Ω),
3: generate matrices A`+1, C` by proj(A`Θ, Q

`),
4: let Λ`+1 := Π`

Θ.
5: Let r be the column size of AL, and F be the submatrix of FL−1 consisting of the

last r rows of FL−1.
6: return Q̄ := [Q` : ` ∈ NL−1], S̄ :=

[
(S`)T : ` ∈ NL−1

]T
, Ā := AL, F.

Hypothesis (P). Number P ∈ N with γ ≥ 4P and P = 2J−1 for some J ∈ N.

Then we partition A into P submatrices of A, each of which consists consecutive γ/P

column blocks that inherit from Λ. We then apply BGSP1 to each of the submatrices,

execute concurrently, and construct the resulting matrices afterwards. That is, for

each p ∈ NP , we let

Γp := [(p− 1)γ/P + i : i ∈ Nγ/P], (3.1)

and let AΓp be defined by (2.5). We also let Q̄p, S̄p, Āp be the output matrices

generated by BGSP1 from AΓp , and define

Q̄ := [Q̄p : p ∈ NP], S̄ :=
⊕
p∈NP

S̄p, Ā := [Āp : p ∈ NP]. (3.2)

Moreover, let

K := L− J,

and for ` ∈ NK , let Q`, S`, A`+1 be the matrices generated by BGSP1 from A. Then

we define

Q̃ := [Q` : ` ∈ NK], S̃ := [(S`)T : ` ∈ NK]T , Ã := AK+1. (3.3)

We present the lemma below for the concurrent computation.

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 68

Lemma 3.2.1. Suppose that A, P satisfy Hypotheses (A1), (P), respectively. If ma-

trices Q̄, S̄, Ā are defined by (3.2), and matrices Q̃, S̃, Ã are defined by (3.3), then

there exists a permutation matrix H such that Q̄ = Q̃H, S̄ = HT S̃, and Ā = Ã.

Proof. The proof follows from the definitions (3.2), (3.3), and an induction on ` ∈ NK .

For each p ∈ NP , we let Q`
p, S`p, A`p the matrices generated by BGSP1 from AΓp . Notice

that AΓp has γ/P column blocks, where γ/P = 2K+1. Thus, according to BGSP1, we

have that

Q̄p = [Q`
p : ` ∈ NK], S̄p = [(S`p)

T : ` ∈ NK]T , Āp = AK+1
p .

Substituting this into formula (3.2) yields that

Q̄ = [Q`
p : ` ∈ NK , p ∈ NP], S̄ =

⊕
p∈NP

[(S`p)
T : ` ∈ NK]T , Ā = [AK+1

p : p ∈ NP].

By the definition (3.3), it remains to show for ` ∈ NK that

Q` = [Q`
p : p ∈ NP], (3.4)

S` =
⊕
p∈NP

S`p, (3.5)

A`+1 = [A`+1
p : p ∈ NP]. (3.6)

This can be done by induction on ` ∈ NK . Indeed, for ` = 1, since

A1 = A = [AΓp : p ∈ NP] = [A1
p : p ∈ NP],

by the construction of Q1 and Q1
p in orthn(·), we obtain formula (3.4). Likewise, the

construction of S1 and S1
p leads to formula (3.5). It follows from the construction of

A2 and A2
p in proj(·, ·) and formula (3.4) that equation (3.6) is true for ` = 1. Assume

that (3.4)-(3.6) are true for ` ∈ NK−1. By the induction hypothesis, we have that

A`+1 = [A`+1
p : p ∈ NP]. Notice that (`+ 1) ∈ NK . Again, by the construction of Q`+1,

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 69

Q`+1
p , S`+1, S`+1

p , A`+2, A`+2
p , we obtain (3.4)-(3.6) for (` + 1). Hence, the induction

principle leads to formulas (3.4)-(3.6). Therefore, we obtain the desired results.

Notice that we cannot divide the computations in BGSP1 into P parts for ` ≥ K+1.

This is because A` has γ` column blocks, but γ` ≤ 2J , and so γ`/P ≤ 2, violating the

requirement of the input matrix of BGSP1. However, we may divide into P/2`−K

parts, in order to compute concurrently.

Now we design the data distribution with the purpose of avoiding possible com-

munications. As discussed above, there are no interactions among the processors for

orthn(·) as long as the input matrix A is distributed by column blocks. For proj(·, ·),

communication is required when the matrices A2i−1, A2i, and Qi are stored in different

processors for some i ∈ Nγ. Tracing back the calculations, we observe that the three

matrices are computed from the submatrix AΓ′i
of A, where Γ′i := [4i−3, 4i−2, 4i−1, 4i].

Thus, to avoid communication, we shall assign AΓ′i
as a unit to a processor. For

` ∈ NL−1, we shall call such a submatrix A`Γ′i
having the four consecutive column

blocks of A` a processing unit. We conclude the data distribution as follows. Hence-

forth, we denote by P the number of processors or the number of cores in Message

Passing Interface (MPI) environment, and NP the set of the processors. If P satisfies

Hypothesis (P), then for each p ∈ NP , we let Γp be defined by (3.1), and distribute

the submatrix AΓp of A to the processor p.

We next determine the supersteps according to the data distribution. Since each

processor p holds γ/P consecutive column blocks of A, by the discussion above, it

could independently run BGSP1 with input AΓp , and hold the output matrix Āp to

be processed. Notice that Āp has only two column blocks. To form a processing unit,

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 70

the processor p has to receive the other two column blocks from a specific processor

in order to continue. This is exactly the first time where communication is inevitable,

and we mark the first superstep until here. In the following supersteps except the last,

each one proceeds the communication phrase and computation phrase. During the

communication phrase, each processor sends its local matrix to, and simultaneously

receives a matrix from another specific processor. After then, each processor holds a

processing unit, and processors run BGSP1 concurrently in the computation phrase.

In the last superstep, we shall compute the remaining results and output the factor

matrices. These will be done without any communication among processors.

For the communication method, we will adopt a butterfly all-reduction tree struc-

ture. Reductions and all-reductions are collective communication operations that com-

bine multiple results using some associative function into one overall result [27]. In

the parallel case, a reduction leaves the overall result on exactly one processor, while

an all-reduction leaves a copy of the overall result on all processors (see, for example,

[47]). The process for the block QS factorization can be viewed as an (all-)reduction,

with the specialty that the intermediate results (the local results of Q and S) must be

stored in the processors that produce them. For communication, tree-based structure

is an effective one for (all-)reductions since it adopts pairwise communication to avoid

the barrier synchronization. We will use the butterfly all-reduction tree structure for

its low communication costs and fault-tolerance. An example of butterfly all-reduction

tree is demonstrated in Figure 3.1.

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 71

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 3 5 6 7 8

1 2 3 4 5 6 7 8

2 4

Time

Figure 3.1: Diagram of a butterfly all-reduction on a binary tree of eight
processors. Each arrow represents data transmission from one processor to another.

Time moves upwards.

3.3 The Parallel Algorithm

In this section, we propose a parallel algorithm designed in the BSP model, then we

verify that the algorithm indeed yields a block QS factorization for a block-wise quasi-

orthogonal matrix of full rank. Moreover, we show that the parallel algorithm inherits

the important features that BGSP owns such as the sparsity of factor matrices and

stability, if the input matrix is banded.

With the discussion of the keystones of the BSP model in section 3.2, we present

below the parallel algorithm called ParBGSP. Notice that this algorithm is executed

in each processor p ∈ NP . There are (J + 1) many supersteps. Line 5 is the only one

for communication, while the others are for concurrent computation. Equation (3.7)

is to ensure the pairwise communication along the butterfly all-reduction tree.

We could construct the factor matrices Q and S as in (2.1) by the output of

ParBGSP in all the processors. We present the algorithm called FormQS below. Notice

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 72

Algorithm 3.2 The parallel algorithm for the block QS factorization (ParBGSP)

Require: The set NP of the P processors with P = 2J−1 for some J ∈ N, a butterfly
all-reduction tree with height log2 P , my processor p ∈ NP .

Input: A matrix A of full rank partitioned by Λ of length γ := 2L for some L ∈ N,
and L > J .

Output: Submatrices of the factor matrices Q, S, stored locally in my processor.
1: Load the submatrix AΓp of A into memory. Let A1

p := AΓp .
2: Generate matrices Q1

p, S1
p , B1

p , F 1
p by BGSP1 from A1

p.
3: for j ∈ NJ\{1} do
4: compute the processor q by

q :=

{
p+ 2j−2, if p ≤ dp/2j−1e · 2j−1 − 2j−2,
p− 2j−2, if p > dp/2j−1e · 2j−1 − 2j−2,

(3.7)

5: send Bj−1
p to q, and receive a matrix Bj−1

q from q,
6: let r := min

{
p, q
}
, s := max

{
p, q
}
, and let Ajp :=

[
Bj−1
r , Bj−1

s

]
,

7: generate matrices Qj
p, Sjp, Bj

p, F j
p by BGSP1 from Ajp.

8: Generate matrices QJ+1
p , SJ+1

p by MGS from BJ
p .

9: return Qj
p, Sjp for j ∈ NJ+1, and F j

p for j ∈ NJ .

that this algorithm will be run only if Q and S are required explicitly.

Algorithm 3.3 The construction of Q, S (FormQS)

Input: The matrices Qj
p, Sjp for j ∈ NJ+1, and F j

p for j ∈ NJ generated by ParBGSP
from A, for each p ∈ NP .

Output: Two matrices Q′, S ′.
1: Let Pj ⊂ NP be a subset of the processors defined by

Pj :=
{

2j−1(i− 1) + 1 : i ∈ N2J−j
}
, for j ∈ NJ , and PJ+1 := {1} . (3.8)

2: For each t ∈ NJ , let

F̄
t

:=
⊕
p∈Pt

F t
p. (3.9)

3: For each j ∈ NJ+1, let
Q̄
j

:= [Qj
p : p ∈ Pj]. (3.10)

S̄
j

:=
⊕
p∈Pj

Sjp, (3.11)

V̄
j

:= S̄
j ·

∏
t∈Nj−1

F̄
j−t
. (3.12)

4: return Q′ := [Q̄
j

: j ∈ NJ+1], S ′ := [(V̄
j
)T : j ∈ NJ+1]T .

We shall verify that ParBGSP fulfils the block QS factorization. This is done by

the following theorem.

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 73

Theorem 3.3.1. Suppose that A, P satisfy Hypotheses (A1), (P), respectively. If

matrices Q′, S ′ are generated by ParBGSP and FormQS from A, and matrices Q, S

are generated by BGSP from A, then there exists a permutation matrix H ′ such that

Q′ = QH ′, S ′ = H ′TS. (3.13)

Proof. We shall show (3.13) by Lemma 3.2.1 and an induction. With the notation in

ParBGSP, we define

Ā
j

:= [Ajp : p ∈ Pj], for j ∈ NJ , and Ā
J+1

:= BJ
1 . (3.14)

According to lines 4-6 in ParBGSP and the definition (3.8), it can be verified for each

t ∈ NJ+1\{1} that

Ā
t

= [Bt−1
p : p ∈ Pt−1]. (3.15)

On the other hand, using the notation in BGSP, for j ∈ NJ+1\{1}, we let

Q̃
1

:= [Q` : ` ∈ NK], Q̃
j

:= QK−1+j, (3.16)

S̃
1

:= [(S`)T : ` ∈ NK]T , S̃
j

:= SK−1+j. (3.17)

Then according to BGSP, we have that Q = [Q̃
j

: j ∈ NJ+1] and S = [(S̃
j
)T : j ∈

NJ+1]T . By the definitions of Q′ and S ′ in FormQS, it suffices to show for j ∈ NJ that

there exists a permutation matrix Hj such that

Q̄
j

= Q̃
j
Hj, V̄

j
= (Hj)T S̃

j
. (3.18)

We shall prove (3.18) and the following equation by induction on j ∈ NJ .

Ā
j+1

= AK+j. (3.19)

Indeed, since Ā1
= A, by the definitions (3.10)-(3.12), (3.16), (3.17), and formula (3.15)

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 74

with t = 2, using Lemma 3.2.1, we obtain (3.18) and (3.19) for j = 1. Assuming that

formula (3.19) holds for j ∈ NJ−1, we shall show the case for (j+1) using Lemma 3.2.1

again. Notice that AK+j is of full rank having γK+j column blocks, and γK+j = 2J−j+1

by its definition (2.10). Let |Pj+1| denote the cardinality of Pj+1. By the definition

(3.8), we have that |Pj+1| = 2J−j−1, and hence γK+j = 4|Pj+1|. By the induction

hypothesis, we have that Āj+1
= AK+j. Thus, applying Lemma 3.2.1 to AK+j and

|Pj+1|, together with equations (3.9)-(3.12), (3.14)-(3.17), we obtain the desired results

for (j + 1). By the induction principle, we have (3.18) and (3.19). Employing formula

(3.19) for j = J yields that ĀJ+1
= AL. According to ParBGSP, BGSP and the

definitions (3.10)-(3.12), (3.16), (3.17), we obtain that

Q̄
J+1

= Q̃
J+1

, V̄
J+1

= S̃
J+1

. (3.20)

Let HJ+1 := I, and let H ′ :=
⊕

j∈NJ+1
Hj. Since each Hj is a permutation matrix,

so is H ′. Formulas (3.18), (3.20) and the definitions of Q′, S ′ in FormQS yield the

desired formula (3.13).

We next confirm that ParBGSP generates sparse factor matrices for the block QS

factorization of a banded matrix A that satisfies the following hypothesis.

Hypothesis (A2). Matrix A ∈ Rn×m is of full rank and is banded with bandwidth

k/2, n ≥ m, m = 2Lµk for µ ∈ N, L ∈ N\{1}, γ := 2L, and A is partitioned by the

vector Λ := [µk, µk, . . . , µk] of length γ.

Comparing to Hypothesis (A), here we introduce a parameter µ in the partition

vector Λ of A. The introduction is to optimize local computational performance of

each processor, as follows. It can be seen that almost all the computations in ParBGSP

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 75

operate on column blocks of size n×µk. When µ is too small, those computations may

be inefficient since the time spending in memory access is comparable to that in the

actual computing. When µ is larger, the computational complexity will become higher.

Hence we shall choose an appropriate µ to optimize the computational efficiency. The

effectiveness of this treatment will be verified in our numerical experiments to be

presented later.

We present the theorem below for the sparsity of the factor matrices.

Theorem 3.3.2. Suppose that A, P satisfy Hypotheses (A2), (P), respectively. If

Q′, S ′ are the matrices generated by ParBGSP and FormQS from A, then the numbers

of nonzero entries of Q′ and S ′ are bounded above by 2µkm log2 (m
µk

) and 13
4
µkm,

respectively.

Proof. By Theorem 3.3.1, there exists a permutation matrix H ′ such that formula

(3.13) holds. Notice that a banded matrix with bandwidth k/2 also has bandwidth

µk/2. The desired results follow from Theorems 2.3.3 and 2.3.4, replacing each k by

µk.

We next verify that ParBGSP is stable.

Theorem 3.3.3. Suppose that A, P satisfy Hypotheses (A2), (P), respectively, and

that the column vectors of A have the same 2-norm. Assuming Hypothesis (F) and

(2.59), if Q̂′ and Ŝ ′ are respectively the computed matrices of Q′ and S ′ generated by

ParBGSP and FormQS from A, then

‖A− Q̂′Ŝ ′‖F ≤ 3
√

6µku‖A‖F .

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 76

Proof. By Theorem 3.3.1, there exists a permutation matrix H ′ such that formula

(3.13) holds. Thus by the construction of factor matrices in FormQS and in BGSP,

we conclude that

Q̂′ = Q̂H ′, H ′Ŝ ′ = Ŝ, (3.21)

where Q̂, Ŝ are the computed matrices of Q and S, respectively. The desired result

follows from formula (3.21) and Theorem 2.5.8, replacing k by µk.

Likewise, we can obtain an upper bound for the loss of orthogonality of Q̂′ by

formula (3.21) and Theorem 2.5.9, as follows.

Theorem 3.3.4. Suppose that A, P satisfy Hypotheses (A2), (P), respectively. Let

Q̂′ be the computed matrix of the column orthonormal matrix Q generated by ParBGSP

and FormQS from A. Assuming Hypothesis (F) and (2.59), if 3.42m(m+1)uκ(A) < 1,

then there exists a constant c := c(m) such that

‖(Q̂′)T Q̂− I‖2 ≤ cuκ(A).

3.4 Analysis of Parallel Performance

In this section, we study the parallel performance of ParBGSP, including complexity,

communication costs, and scalability. We shall define these terminologies under the

context of the BSP model, then give a detailed analysis about the performance of

ParBGSP.

We review the definitions of the parallel complexity, the number of communication

messages, the number of communication words, and the speedup in the BSP model. In

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 77

a communication phase, messages are created with which data are transmitted among

processors. The transmit data is measured by words. Recall that (J+1) is the number

of supersteps and P is the number of processors. For each j ∈ NJ+1, p ∈ NP , we denote

by cjp,mjp, wjp, the number of flops in local computations, the number of messages

and the number of words sent or received (occur simultaneously) of a processor in a

superstep, respectively. Then the parallel complexity C, the number of communication

messagesM, and the number of communication words W are defined by

C :=
∑

j∈NJ+1

max
p∈NP
{cjp}, M :=

∑
j∈NJ+1

max
p∈NP
{mjp}, W :=

∑
j∈NJ+1

max
p∈NP
{wjp}. (3.22)

Also, if τc, τm, τw and τs are respectively the unit time for computing a flop, creating

a message, sending or receiving a word, and barrier synchronization, then the parallel

running time Tpar of an algorithm is defined by

Tpar := Cτc +Mτm +Wτw + (J + 1)τs.

If Tseq is the running time of a sequential algorithm versus the given parallel algorithm

(for example, BGSP versus ParBGSP), then the speedup is defined by

Speedup := Tseq/Tpar. (3.23)

Notice that the speedup is a function of P and it is the indicator of the scalability of

a parallel algorithm. An algorithm has the ideal scalability if the speedup is linear in

P (with coefficient 1), in which case Cτc = Tseq/P and the time for communication is

zero.

We next analyze the parallel complexity of ParBGSP. To this end, we establish the

following lemma for cjp. Recall that for each j ∈ NJ\{1}, Ajp has 4 column blocks. In

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 78

the following, for each i ∈ N4, we let Gj
ip denote the submatrix of Ajp such that

Ajp := [Gj
ip : i ∈ N4]. (3.24)

We also define

c := 24µ2k2m.

Lemma 3.4.1. Suppose that A, P satisfy Hypotheses (A2), (P), respectively. If Par-

BGSP is applied to A with P processors, then

cjp ≤


cK/P, j = 1,

2j−1c/P, j ∈ NJ\{1},

c/3, j = J + 1.

(3.25)

Proof. The result for j = 1 can be derived from Theorem 2.4.2. Let p ∈ NP be given.

According to line 2 in ParBGSP, BGSP1 is applied to AΓp . By Hypothesis (A2) and

the definition (3.1) of Γp, the matrix AΓp has banded structure that each entry ars of

AΓp satisfies that ars = 0, for |(r − t)− s| > k/2, where

t := (p− 1)γµk/P

is the number of column vectors prior to AΓp as a submatrix of A. With the fact

that AΓp ∈ Rn×(m/P) has 2K+1 column blocks, each of which has µk column vectors,

it follows from Theorem 2.4.2 that

c1p ≤ 24(µk)2(m/P)K = cK/P.

We next prove (3.25) for j ∈ NJ\{1}. By formula (3.19) and Lemma 2.3.2, we have

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 79

that

η
(
Gj
ip

)
≤ 2K+j−1µk, for i ∈ N4,

η
(
[Gj

2p, G
j
3p]
)
≤ 2K+jµk.

According to line 7 in ParBGSP, with the above two formulas, it follows from the

complexity statement for MGS and Lemma 2.4.1 that

cjp ≤ 2(2K+jµk)(2µk)2 + 2[4(2K+jµk)(2µk)(µk)] = 2j−1c/P.

For j = J + 1, it can be verified by ParBGSP that BJ
p ∈ Rn×2µk and η

(
BJ
p

)
≤ m.

According to MGS, c
J+1,p ≤ 2m(2µk)2 = c/3. Therefore, formula (3.25) holds.

We present the parallel complexity of ParBGSP in the next theorem.

Theorem 3.4.2. Suppose that A, P satisfy Hypotheses (A2), (P), respectively. If

ParBGSP is applied to A with P processors, then the parallel complexity is at most

c
(
7/3 + (K − 2)/P

)
flops.

Proof. The proof follows directly from Lemma 3.4.1. By the definition (3.22) of C, the

parallel complexity is bounded above by

c
(
K/P +

J∑
j=2

2j−1/P + 1/3
)

= c
(
7/3 + (K − 2)/P

)
flops,

proving the desired result.

We shall improve the result of the parallel complexity when the input matrix A is

large-scale and ill-conditioned. To start with, we discuss the computations in BGSP

applied to A. In particular, we consider the matrix AL. Recall that AL(ΛL) = [GL
1 , G

L
2]

by (2.24). Let M := [G1
i : i ∈ Nγ−1\{1}]. Then A = [G1

1,M,G1
γ]. Let Z1 := G1

1 −GL
1 .

We can see from formulas (2.25) and (2.32) that R(Z1) ⊂ R(M). Since Z1 is derived

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 80

from an ill-conditioned matrix A, the column vectors of Z1 and the basis vectors of a

subspace of R(M) are nearly linear dependent. Hence for sufficiently large size of M ,

we may assume that R(Z1) ⊂ R(M1) for a submatrixM1 ofM , withM1 6= M . Notice

that MTGL
1 = 0 by (2.30). Hence Z1 is indeed the projection of G1

1 onto R(M), and

it is also the projection of G1
1 onto R(M1). Likewise, Z2 := G1

γ −GL
2 is the projection

of G1
γ onto R(M), and that onto R(M2) for a submatrix M2 of M , with M2 6= M .

Recall that for matrices X, Y having the same row size, if Y is of full rank, then the

projection of X onto R(Y) is unique and is equal to (Y (Y TY)−1Y T)X [108]. With

the discussion, we present the sparse structure of AL in the following lemma.

Lemma 3.4.3. Suppose that A satisfy Hypothesis (A2) with γ ≥ 8. Let M1 := [G1
i :

i ∈ Nγ/2−1\{1}], M2 := [G1
i+γ/2 : i ∈ Nγ/2−1\{1}], and M := [M1, G

1
γ/2, G

1
γ/2+1,M2]. If

M(MTM)−1MTG1
1 = M1(MT

1 M1)−1MT
1 G

1
1, (3.26)

M(MTM)−1MTG1
γ = M2(MT

2 M2)−1MT
2 G

1
γ, (3.27)

and AL = [GL
1 , G

L
2] is the matrix generated by BGSP from A, then η̄

(
GL

1

)
<

¯
η
(
GL

2

)
.

Proof. By formulas (2.25) and (2.41), we have for each ` ∈ NL\{1} that

G`
1 =

(∏
t∈N`−1

(I −Q`−t
1 (Q`−t

1)T)

)
G1

1, (3.28)

G`
γ`

=

(∏
t∈N`−1

(I −Q`−t
γ
`−t+2

(Q`−t
γ
`−t+2

)T)

)
G1
γ. (3.29)

We first consider GL
1 . By formulas (2.21) and (2.41), we have that (Q`

r)
TG`

1 = 0 for

r ∈ Nγ`/4\{1}. If follows from formulas (3.28), (2.20) and the column orthonormality

of Q` that

GL
1 =

(∏
t∈NL−1

(I −QL−t(QL−t)T)

)
G1

1.

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 81

Let W := [Q` : ` ∈ NL−1]. Since W is column orthonormal, it can be verified by direct

computation that

GL
1 = (I −WW T)G1

1.

Employing formula (2.32) with ` = L − 1, we have that R(W) = R(M). Since both

W and M are of full rank, there exists an invertible matrix X such that M = WX.

It follows from direct computation that M(MTM)−1MT = WW T . Hence,

GL
1 = (I −M(MTM)−1MT)G1

1. (3.30)

Likewise, let W1 := [Q`
i : i ∈ Nγ`/8, ` ∈ NL−2], we can derive that

GL−1
1 = (I −W1W

T
1)G1

1 = (I − (MT
1 M1)−1MT

1)G1
1. (3.31)

Formulas (3.26), (3.30), and (3.31) yields that GL
1 = GL−1

1 . By a similar proof as above

with formulas (3.27) and (3.29), we can obtain that GL
2 = GL−1

4 . Replacing k by µk

in Lemma 2.3.2, we have that

η̄
(
GL

1

)
= η̄

(
GL−1

1

)
≤ 2L−1k − k/2,

¯
η
(
GL

2

)
=

¯
η
(
GL−1

4

)
≥ 2L−1k + k/2 + 1.

Therefore, η̄
(
GL

1

)
<

¯
η
(
GL

2

)
.

Now we analyze the parallel complexity of ParBGSP under the following hypoth-

esis. Recall that A = [AΓp : p ∈ NP], where Γp is defined by (3.1).

Hypothesis (AP). Matrix A satisfies Hypothesis (A2) with γ ≥ 8. Number P ∈ N

with γ > 4P and P = 2J−1 for some J ∈ N. For each p ∈ NP , let G1p, G2p, G
′, G′′ ∈

Rn×µk and M1p,M2p ∈ Rn×(γ
2P
−2)µk be the submatrices of AΓp such that

AΓp = [G1p,M1p, G
′, G′′,M2p, G2p].

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 82

Let Mp := [M1p, G
′, G′′,M2p]. Then

Mp(M
T
p Mp)

−1MT
p G1p = M1p(M

T
1pM1p)

−1MT
1pG1p, (3.32)

Mp(M
T
p Mp)

−1MT
p G2p = M2p(M

T
2pM2p)

−1MT
2pG2p. (3.33)

We comment on Hypothesis (AP). Equation (3.32) means that the projection of

each column vector of the first block onto R(Mp) is in a subspace of R(Mp), and

the subspace is spanned by approximately the first half of the column vectors of Mp.

Notice that AΓp has banded structure; The column vectors of the first block and any

other column vector of AΓp whose index greater than µk+ k are linear independent; If

the projection of a vector onto R(Mp) is equal to the projection of the vector onto a

subspace of R(M1p), then it must be equal to the projection of the vector onto R(M1p)

(which can be proved by statements on the bases of these linear spaces). Hence, if the

matrix A is ill-conditioned and banded, having sufficiently large size, then equation

(3.32) will be satisfied. Equation (3.33) can be understood in a similar way. In chapter

5, we shall verify Hypothesis (AP) through parallel experiments (see, Table 5.7).

For the improvement of parallel complexity, we present the following two technical

lemmas using Hypothesis (AP). The lemma below concerns the sparse structure of the

matrix B1
p generated by BGSP1 from AΓp , as on line 2 of ParBGSP. As an example,

Figure 3.2 below illustrates the sparse structure of B1
p .

Lemma 3.4.4. Suppose that A, P satisfy Hypothesis (AP). Let p ∈ NP be given. If

matrix B1
p is generated by BGSP1 from AΓp, and matrices G′1p, G′2p are the two column

blocks of B1
p such that B1

p = [G′1p, G
′
2p], then η̄

(
G′1p
)
<

¯
η
(
G′2p
)
.

Proof. The proof directly follows from Hypothesis (AP) and Lemma 3.4.3.

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 83

Figure 3.2: The sparse structure of the matrix [B1
1 , B

1
2]T in Example 6(T1) for

matrix size n = 226, µ = 8, and P = 512. A dot in the graph is a nonzero entry
located in the specific row and column. The blank spaces are zero entries.

We next establish a technique lemma regarding BGSP.

Lemma 3.4.5. Suppose that A, P satisfy Hypothesis (AP). If BGSP is applied to A,

then for ` = K + 1, K + 2, . . . , L− 1,

¯
η
(
G`
i

)
≥


2`−1(i− 1)µk − µk/2 + 1, i = 1, 3, . . . , γ` − 1,

2`−1iµk + µk/2 + 1− 2K+1µk, i = 2, 4, . . . , γ`,

η̄
(
G`
i

)
≤


2`−1(i− 1)µk − µk/2 + 2K+1µk, i = 1, 3, . . . , γ` − 1,

2`−1iµk + µk/2, i = 2, 4, . . . , γ`.

(3.34)

Proof. We shall prove the results by induction on ` = K+ 1, K+ 2, . . . , L−1. Indeed,

replacing k by µk in Lemma 2.3.2, we obtain formula (3.34) for ` = K + 1. By

Hypothesis (AP), we have that AΓp has 2K+1 column blocks. Hence by Lemma 3.4.4,

we have for each j ∈ Nγ
K+2

that

η̄(GK+1
2j−1) <

¯
η(GK+1

2j).

Let G := [GK+1
4i−2 , G

K+1
4i−1]. By the above inequality and the fact that η̄(GK+1

2j−1) <

¯
η(GK+1

2j+1), η̄(GK+1
2j−2) <

¯
η(GK+1

2j), we have for each i ∈ Nγ
K+3

that

η̄(GK+1
4i−3) <

¯
η(G),

¯
η(GK+1

4i) > η̄(G).

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 84

Thus, GTGK+1
4i−3 = 0 and GTGK+1

4i = 0. It follows from (2.43) that

GK+2
i =


GK+1

2i−1 , i = 1, 3, . . . , γ
K+2
− 1,

GK+1
2i , i = 2, 4, . . . , γ

K+2
.

Employing this equation and (3.34) with ` = K + 1, we obtain that formula (3.34)

holds for ` = K + 2.

Assume that (3.34) is true for K + 2 ≤ ` ≤ L − 2. We consider the case (` + 1).

Let G′ := [G`
4i−2, G

`
4i−1]. By the induction hypothesis, we can verify that

η̄(G`
4i−3) <

¯
η(G′),

¯
η(G`

4i) > η̄(G′).

Again by (2.43) and the induction hypothesis, we obtain formula (3.34) for (`+ 1).

By the induction principle, we obtain formula (3.34).

We present the theorem below for the parallel complexity of ParBGSP applied to

a large-scale ill-conditioned banded matrix A.

Theorem 3.4.6. Suppose that A, P satisfy Hypothesis (AP). If ParBGSP is applied

to A with P processors, then the parallel complexity is at most cP−1 log2 (m

µk 3√P
) flops.

Proof. Given p ∈ NP , we derive a new upper bound for cjp for j ∈ NJ\{1}. Let

G := [Gj
2p, G

j
3p]. Employing formulas (3.19) and (3.34) in Lemma 3.4.5, we have that

η̄
(
Gj

1p

)
<

¯
η (G) ,

¯
η
(
Gj

4p

)
> η̄ (G) , (3.35)

η (G) ≤ 2K+2µk, (3.36)

η
(
Gj
ip

)
≤ 2K+1µk, i = 1, 2, 3, 4. (3.37)

Formula (3.35) yields that the processes proj(Gj
1p, G) and proj(Gj

4p, G) are unnecessary

by Lemma 2.5.2. According to line 7 in ParBGSP, with (3.36), it follows from the

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 85

complexity statement for MGS that

cjp ≤ 2(2K+2µk)(2µk)2 ≤ 2c/(3P). (3.38)

Notice that formula (3.38) is also true for j = J + 1 by (3.37) and by ParBGSP.

Employing formula (3.25) for j = 1 and formula (3.38), we obtain that the parallel

complexity is bounded above by cP−1(K + 2
3
J) ≤ cP−1 log2 (m

µk 3√P
) flops.

Theorem 3.4.6 is an important improvement over Theorem 3.4.2. We see from

Theorem 3.4.6 that the parallel complexity is inversely proportional to the number

of processors. Formula (3.37) derived in the proof is also benefit for reducing the

communication costs, to be discussed below.

We next concern about the communication costs of ParBGSP. We first prove in

the theorem below that the number of communication messages of ParBGSP reaches

the least upper bound for collective communication operations [27].

Theorem 3.4.7. Suppose that A, P satisfy Hypotheses (A2), (P), respectively. If

ParBGSP is applied to A with P processors, then the number of communication mes-

sages is log2 P .

Proof. Let j ∈ NJ\{1} and p ∈ Pj be given. From line 5 of ParBGSP, the proces-

sor p sends (receives) exactly 1 message to (from) the processor q. Since both send

and receive operations occur simultaneously, by the definition (3.22), the number of

communication messages is J − 1 = log2 P .

We present the theorem below for the number of communication words. In the

following, we assume that one entry of a matrix equals one piece of data, having the

size of one computer word.

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 86

Theorem 3.4.8. Suppose that A, P satisfy Hypothesis (AP). If ParBGSP is ap-

plied to A with P processors, then the number of communication words is at most

2µkmP−1 log2 P .

Proof. The proof follows from counting the number of communication words for each

superstep and for each processor. Let j ∈ NJ\{1} and p ∈ Pj be given. From line 5 of

ParBGSP, the processor p sends the matrixBj−1
p to the processor q, and simultaneously

receives the matrix Bj−1
q from q. Let r := min{p, q}, s := max{p, q}. By line 6 and

formula (3.24), we obtain that Bj−1
r = [Gj

1p, G
j
2p] and Bj−1

s = [Gj
3p, G

j
4p]. By (3.37), we

have for t = r, s that #(Bj−1
t) ≤ 2K+2µ2k2. It follows from the definition (3.22) that

the number of communication words is at most

∑
j∈NJ\{1}

#(Bj−1
t) ≤ 2K+2µ2k2(J − 1) = 2µkmP−1 log2 P,

proving the desired result.

We now analyze the scalability of ParBGSP. To this end, we estimate below the

sequential complexity of BGSP applied to a large-scale ill-conditioned matrix.

Lemma 3.4.9. Suppose that A, P satisfy Hypothesis (AP). If BGSP is applied to A,

then the sequential complexity is at most c log2 (m
µkP

) flops.

Proof. For ` ∈ NK , it follows from the proof of Theorem 2.4.2 that the number of flops

in the `th step is at most c. For ` = K+1, K+2, . . . , L, it can be proved from Lemma

3.4.5 and the complexity statement for MGS that the number of flops in the `th step

is bounded above by

2(2K+2µk)(2µk)2 · γ`/4 = (2c/3)(2K−`).

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 87

Therefore, the sequential complexity is at most c(K + 2/3) ≤ c log2
m
µkP

flops.

We present in the theorem below the speedup of ParBGSP. In the following theo-

rem, we let c1 := τm/τc, c2 := τw/τc be the constant ratios. Notice that the speedup

depends on the actual (not the upper bounds of) sequential and parallel complexity.

With Lemma 3.4.9, it is reasonable to assume for some constant c0 ∈ [1, 24] that the

number of flops in BGSP is equal to c0µ
2k2m log2 (m

µkP
).

Theorem 3.4.10. Suppose that A, P satisfy Hypothesis (AP). If ParBGSP is applied

to A with P processors, then the speedup is at least c0P
[
24 + (8 + c1P

8m
+ c2

2
) log2 P

]−1
.

Proof. With the assumption right above, we compute the speedup by definition. Recall

that no barrier synchronization is required for ParBGSP. Thus by the definition (3.23),

Theorems 3.4.6-3.4.8, we have that the speedup is at least

Speedup ≥ c0(K + 1)/
[

24
P

(
K + 1 + 2

3
log2 P

)
+ c1

4m
log2 P + c2

P
log2 P

]
≥ c0P

[
24 + (8 + c1P

8m
+ c2

2
) log2 P

]−1
,

proving the desired result.

We comment on the result in Theorem 3.4.10. In practical applications, c1, c2 are

mediocre numbers, and P � m. Thus, the term c1P
8m

is negligible. Hence, we conclude

that the speedup is at least P/(c̄ log2 P) for a mediocre number c̄.

We finally summarize the parallel performance of ParBGSP. Noticing that µ =

1, 2, 4, or 8 in practical, we conclude the results in Table 3.1 below, using the optimal

bounds derived from [7]. In the table, except for the last row, the optimal bound is

the theoretical least upper bound, while the bound for the last row is the theoretical

greatest lower bound. Note that l is said to be the theoretical least upper bound of

CHAPTER 3. A PARALLEL ALGORITHM FOR THE FACTORIZATION 88

a quantity q if any upper bound of q derived theoretically is at least l, while g is the

theoretical greatest lower bound of q if any lower bound of q derived theoretically is at

most g. For functions f, g, h : Nd → R, d ∈ N, we say f is O(g) if |f | is asymptotically

bounded above by g, while f is Ω(h) if f is asymptotically bounded below by h. That

is,

lim sup
x=[x1,x2,...,xd]∈Nd,

xi→∞,∀i

|f(x)|
g(x)

<∞, lim inf
x=[x1,x2,...,xd]∈Nd,

xi→∞,∀i

f(x)

h(x)
> 0.

Also, we say f is Θ(g) if f is O(g) and f is Ω(g).

Table 3.1
Summary of the parallel performance of ParBGSP.

ParBGSP optimal bound

parallel complexity in flops O
(
k2m
P

log2 (m

k 3√P
)
)

Θ(k
2m
P

)

number of communication messages log2 P log2 P

number of communication words O(km
P

log2 P) km
2P

log2 P

speedup Ω(P/ log2 P) P

Chapter 4

Application on Solving Linear

Systems

In this chapter, we apply the block QS factorization to solve linear systems and present

both sequential and parallel solvers for ill-conditioned banded systems.

The critical concern for developing the sequential solver is the issue of ill-conditioning.

In general, we may assume that for a structured matrix, its condition number increases

as its size increases. With this assumption, we propose a block row projection solver

for ill-conditioned banded systems. This solver breaks down a given linear system into

small-scale underdetermined systems, compute their minimum 2-norm solutions, and

form the solution of the original linear system. Since the underdetermined systems

are of small sizes, we expect that their minimum 2-norm solutions can be computed

with high accuracy. Indeed, we have derived the condition numbers for solving these

underdetermined systems, using the stability results derived from chapter 2, as well

as the perturbation theories for linear sytems, underdetermined systems, and the QR

89

CHAPTER 4. APPLICATION ON SOLVING LINEAR SYSTEMS 90

factorization. Through this study, we expect that these condition numbers should be

far less than the condition number of the matrix of the given linear system. This point

is confirmed by numerical experiments in chapter 5. Moreover, computations for the

minimum 2-norm solutions can be done during BGSP, neither storing the generated

matrices in memory over the entire process, or forming explicitly the factor matrices.

We say this feature is memory-less.

For the parallel solver, the main problem is to treat the memory issue in solving

extra large-scale linear systems. In addition to utilizing the memory-less feature, we

employ a partial load strategy in the implementation of the solver. Notice that the

partial load strategy is widely used in designing external memory algorithms when

memory shortage is an issue [112, 113]. The concept is to sequentially load partial

data that fit in memory, compute partial results, and then combine as one. We study

it in detail and propose the parallel solver at the end of this chapter.

We organize this chapter in three sections. In section 4.1, we propose the sequential

solver that is able to deal with the issue of ill-conditioning. We then derive an upper

bound for the relative error of the solution obtained by the sequential solver in section

4.2. In section 4.3, we discuss the memory issue in solving extra large-scale linear

systems, and propose a parallel solver to overcome the issue.

CHAPTER 4. APPLICATION ON SOLVING LINEAR SYSTEMS 91

4.1 A Sequential Solver and the Ill-conditioning

We consider in this section solving an ill-conditioned banded system by applying the

block QS factorization. For such a linear system with coefficient matrix A, we propose a

block row projection solver via the block QS factorization of AT . This idea originates

from the direct row projection method via the LU factorization with permutations

described in [20], but the proposed solver partitions the linear system by row blocks and

uses the block QS factorization. Indeed, we break down the linear system into small-

scale underdetermined systems, to which minimum 2-norm solutions can be computed

by the matrices generated by BGSP applied to AT . This BGSP solver is suitable for

handling ill-conditioned matrices, because for a structured ill-conditioned matrix, its

condition number usually increases superlinearly on its size.

Linear systems to be solved have ill-conditioned banded matrices. Let A ∈ Rn×n

be an ill-conditioned banded matrix of full rank with bandwidth k/2, n = 2Lk for

L ∈ N, and let b ∈ Rn be a vector. We wish to solve the linear system

Ax = b. (4.1)

We say matrix A is ill-conditioned if uκ(A) ≥ 1, in which case, the condition of solving

(4.1) stably is violated in perturbation theories (see, for example, [43]).

To solve (4.1), we express its solution by a sum of minimum 2-norm solutions to

underdetermined systems of small scale that are derived from (4.1). Observing that

x ∈ R(AT), we partition AT as AT = [A1, A2] with A1 ∈ Rn×s, and partition b as

b = [bT1 , b
T
2]T with b1 ∈ Rs. We express x as a sum of x1 and x2, where x1 ∈ R(A1),

CHAPTER 4. APPLICATION ON SOLVING LINEAR SYSTEMS 92

and x2 is in the orthogonal complement of R(A1). Then, we write (4.1) as

Ax =

AT1
AT2

 (x1 + x2) =

b1

b2

 = b.

Notice that AT1 x2 = 0, and hence AT1 x1 = b1. Since x1 ∈ R(A1), we have that x1 is

the minimum 2-norm solution to the underdetermined system

x1 = argmin
y
{‖y‖2 : AT1 y = b1}. (4.2)

For small s, κ(A1) is small in general, and hence we can compute an accurate x1.

Moreover, if matrix Ā2 has the same size as A2, and its range space is the orthogonal

complement of the range space of A1, then x2 satisfies that

x2 = argmin
y
{‖y‖2 : ĀT2 y = b̄2}, (4.3)

where b̄2 is computed according to the construction of Ā2. Noticing that κ(Ā2) might

be large, to obtain x2, we again partition (4.3) and break it down into two underdeter-

mined systems. Using the same strategy, we repeat the breakdown process until the

matrix of the last underdetermined system is not ill-conditioned.

We discuss the two keystones for the breakdown process: the solution of (4.2) and

the construction of Ā2. If matrices Q1, R1 are constructed by MGS from A1, then

the solution of (4.2) is given by x1 = Q1(R1)−T b1. However, direct computing the

formula is unstable due to the loss of orthogonality of Q1. Björck et al proposed in

[15] a backward stable process for solving underdetermined systems by MGS, and we

shall include it right below. For the construction of Ā2, we shall apply proj(A2, Q1).

Thus, by applying BGSP to AT , we can solve the underdetermined systems using the

matrices generated by the factorization process.

We review the stable process for solving underdetermined systems by MGS pro-

CHAPTER 4. APPLICATION ON SOLVING LINEAR SYSTEMS 93

posed in [15]. Let A1 ∈ Rn×s be of full rank, n ≥ s, b1 ∈ Rs. Let Q1 := [qi : i ∈ Ns], R1

be the matrices constructed by MGS from A1. The following process, called BjMGS, is

to solve the underdetermined system (4.2). We first solve RT
1 v = b1 for v = [vi : i ∈ Ns]

by forward substitution. Let ys := 0. For i = s, s− 1, . . . , 1, we compute

yi−1 := yi − (qTi y
i − vi)qi.

Then the solution of (4.2) is given by x1 := y0.

We present the BGSP solver (BGSPSol) for (4.1) below. Assuming that matrix AT

satisfies Hypothesis (A), with the same notation as BGSP applied to AT , we proceed

the following.

For each i ∈ Nγ, let b1
i ∈ Rk be the subvector of b such that b = [(b1

i)
T : i ∈ Nγ]

T .

For each ` ∈ NL−1, do the following.

For i ∈ Nγ`/4,

let f `i := [(b`4i−2)T , (b`4i−1)T]T , h`2i−1 := b`4i−3, and h`2i := b`4i,

construct matrices Q`
i , R`

i by MGS from A`si ,

compute x`i by BjMGS from Q`
i , R`

i , and f `i .

For j ∈ Nγ`/2, let r := dj/2e, and

construct matrices G`+1
j , C`

j by proj(A`tj , Q
`
r),

solve for b`+1
j the following lower triangular system by forward substitution,R`

r C`
j

0 I

T  v

b`+1
j

 =

f `r
h`j

 . (4.4)

Let A`+1 := [G`+1
j : j ∈ Nγ`/2].

CHAPTER 4. APPLICATION ON SOLVING LINEAR SYSTEMS 94

Construct matrices QL, RL by MGS from AL.

Compute xL by BjMGS from QL, RL, and bL := [(bL1)T , (bL2)T]T .

For each ` ∈ NL−1, let x` :=
∑

i∈Nγ`/4
x`i . Output x :=

∑
`∈NL x

`.

We verify in the theorem below that the output x satisfies (4.1).

Theorem 4.1.1. Let A ∈ Rn×n and b ∈ Rn×1. If AT satisfies Hypothesis (A), then

the vector x constructed by BGSPSol from A, b satisfies (4.1).

Proof. If L = 1, according to BGSPSol and BjMGS, we have that x = Q1(R1)−T b.

Notice that A1 = AT , and Q1, R1 are constructed by MGS from A1. Hence,

Ax = (R1)T (Q1)TQ1(R1)−T b = b.

We now consider L > 1. By BjMGS, it can be verified for ` ∈ NL−1, i ∈ Nγ`/4 that

x`i = Q`
i(R

`
i)
−1f `i . Let f ` := [(f `i)

T : i ∈ Nγ`/4]T . With the notation of Q` and R` in

BGSP, we have that x` = Q`(R`)−1f `. Let z` := (R`)−1f `, and zL := (RL)−1bL. It

follows from (2.12) and the orthogonality of Q that QTx = [(z`)T : ` ∈ NL]T . Thus,

with formula (2.15) and AT = QS, to show that Ax = b, it suffices to prove that

∑
`∈NL

(S`)T z` = b. (4.5)

This can be done by proving the following equation by induction on ` ∈ NL−1.∑
j∈N`

(Sj)T zj = b− (F `)T

 0

b`+1

 , (4.6)

where F ` is defined by (2.13). Let h` := [(h`i)
T : i ∈ Nγ`/2]T . Then by formula (4.4),

the construction of R`, C`, and the definition of E`, we obtain that

[R`, C`]T z` =

f `
h`

−
 0

b`+1

 = E`b` −

 0

b`+1

 . (4.7)

CHAPTER 4. APPLICATION ON SOLVING LINEAR SYSTEMS 95

Employing this equation and the definitions (2.13), (2.14) yields (4.6) for ` = 1.

Assume that (4.6) is true for ` ∈ NL−2. Again, employing equation (4.7) for (` + 1)

and the definitions (2.13), (2.14) yields that

(S`+1)T z`+1 = (F `)T

 0

b`+1

− (F `+1)T

 0

b`+2

 .
This together with the induction hypothesis yields formula (4.6) for (`+ 1). Hence by

the induction principle, we have (4.6). Employing (4.6) for ` = L−1 and the fact that

(SL)T zL = (FL−1)T

 0

(RL)T

 (RL)−T bL = (FL−1)T

 0

bL

 ,
we obtain formula (4.5). Therefore, formula (4.1) holds.

4.2 Error Analysis of the Sequential Solver

In this section, we conduct an error analysis of BGSPSol. Especially, we derive an

upper bound for the relative error ‖x̂` − x`‖2/‖x`‖2 of the computed solution x̂`.

According to the definition of x`, it suffices to bound the error of each x̂`i .

We derive the error bound for ‖x̂`i − x`i‖2/‖x`i‖2. This can be done by applying the

stability result of BjMGS and the perturbation theory of underdetetermined systems.

To this end, we review the two lemmas below.

The following lemma shows that the computed solution of an underdetetermined

system obtained by BjMGS is an exact solution to a relevant nearby system [15].

Lemma 4.2.1. Let A1 ∈ Rn×s (n ≥ s) be of full rank. If x̂1 is the computed solution to

(4.2) by BjMGS, then for sufficiently small uκ(A1), there exists a constant c := c(n, s)

CHAPTER 4. APPLICATION ON SOLVING LINEAR SYSTEMS 96

such that

x̂1 = argmin
y
{‖y‖2 : (A1 + ∆A1)Ty = b1}, ‖∆A1‖2 ≤ cu‖A1‖2.

The next lemma concerns the perturbation theory of underdetetermined systems

[53].

Lemma 4.2.2. Let A1 ∈ Rn×s (n ≥ s) be of full rank and 0 6= b1 ∈ Rs. Suppose that

‖∆A1‖2 ≤ ε‖A1‖2, ‖∆b1‖2 ≤ ε‖b1‖2, and εκ(A1) < 1. If x1 satisfies (4.2) and

xε = argmin
y
{‖y‖2 : (A1 + ∆A1)Ty = b1 + ∆b1},

then there exists a constant c := c(n, s) such that

‖xε − x1‖2

‖x1‖2

≤ cεκ(A1).

With the previous lemmas, we can estimate the error of the computed solution x̂`i

obtained by BjMGS from the solution x̃`i to the system

x̃`i = argmin
y
{‖y‖2 : (Â

`

si
)Ty = f̂

`

i}.

Notice that, due to the round-off errors, x̃`i is not the exact solution to

x`i = argmin
y
{‖y‖2 : (A`si)

Ty = f `i }.

To estimate ‖x̃`i−x`i‖2, we need to bound ‖Â
`

si
−A`si‖2 and ‖f̂

`

i−f `i ‖2. For the former,

we include the following lemma [13].

Lemma 4.2.3. Assume (2.59). Let Q ∈ Rn×s be the column orthonormal matrix con-

structed by MGS, v ∈ Rn. If v̂′ is the computed vector of v′ constructed by proj(v,Q),

then

‖v̂′ − v′‖2 ≤
13

4
(s− 1)u‖v‖2.

CHAPTER 4. APPLICATION ON SOLVING LINEAR SYSTEMS 97

We now present an error analysis for x̂`i .

Proposition 4.2.4. Let BGSPSol be applied to (4.1), where A := [aij : i, j ∈ Nn]

and AT satisfies Hypothesis (A). Let α := maxi,j {|aij|}, ` ∈ NL−1, and i ∈ Nγ`/4.

Assume Hypothesis (F), (2.59), and that there exists a number ξ` ≥ 1 such that

‖b̂
`

j − b`j‖2 ≤ uξ`‖b`j‖2, for j ∈ Nγ` . (4.8)

If f `i 6= 0, and

ζ`i := max
{
α/‖A`si‖2, ξ

`
}
κ(A`si),

then for sufficiently small uζ`i , there exists a constant c := c(n, `, k) such that

‖x̂`i − x`i‖2

‖x`i‖2

≤ cuζ`i . (4.9)

Proof. Since uζ`i is sufficiently small and ζ`i ≥ κ(A`si), by Lemma 4.2.1, there exists a

constant c1 := c1(n, k) such that

x̂`i = argmin
y
{‖y‖2 : (Â

`

si
+ ∆Â

`

si
)Ty = f̂

`

i}, ‖∆Â
`

si
‖2 ≤ c1u‖Â

`

si
‖2. (4.10)

Since A has bandwidth k/2, by the definition of α, we have for each column vector a

of AT that ‖a‖2 ≤
√
k + 1α. By Proposition 2.5.5 and Lemma 4.2.3, we have for a

column vector a` of A` that

‖â` − a`‖2 ≤
13

4
(2`k − 2k − 1)

√
k + 1uα. (4.11)

Hence, we obtain a constant c2 := c2(`, k) that

‖Â
`

si
− A`si‖2 ≤ ‖Â

`

si
− A`si‖F ≤ c2uα. (4.12)

According to proj(·, ·), it can be verified that

‖a`‖2 ≤ max{‖a‖2 : a is a column vector of AT} ≤
√
k + 1α. (4.13)

CHAPTER 4. APPLICATION ON SOLVING LINEAR SYSTEMS 98

Thus, we have that

‖A`si‖2 ≤ ‖A`si‖F ≤
√

(2k)(k + 1)α. (4.14)

Let ∆A`si := Â
`

si
−A`si + ∆Â

`

si
. By formulas (4.10), (4.12), and (4.14), we obtain for a

constant c3 := c3(n, `, k) that

‖∆A`si‖2 ≤ c2uα + c1u
(
‖Â

`

si
− A`si‖2 + ‖A`si‖2

)
≤ c3uα.

Notice that ‖f̂
`

i − f `i ‖2 ≤ uξ`‖f `i ‖2 by formula (4.8). Thus, we have that,

x̂`i = argmin
y
{‖y‖2 : (A`si + ∆A`si)

Ty = f̂
`

i}, ‖∆A`si‖2 ≤ c3uα, ‖f̂
`

i−f `i ‖2 ≤ uξ`‖f `i ‖2.

Since uζ`i is sufficiently small, we have that c3uζ
`
i < 1. By Lemma 4.2.2, we obtain

formula (4.9).

We next derive recurrence relations for ξ` and ‖b̂
`

j − b`j‖2 in terms of `. This can

be done by an error analysis for the lower triangular system (4.4). To this end, we

include two relevant results in the following.

The lemma below confirms that solving lower triangular systems by forward sub-

sititution is backward stable [43].

Lemma 4.2.5. Let R′ ∈ Rs×s be a upper triangular matrix of full rank. If v̂′ is the

computed solution to R′Tv′ = b′ by forward subsititution, then there exists a constant

c := c(s) such that

(R′ + ∆R′)T v̂′ = b′, ‖∆R′‖2 ≤ cu‖R′‖2.

The next lemma concerns the perturbation theory of linear systems [43].

Lemma 4.2.6. Let A′ ∈ Rs×s and 0 6= b′ ∈ Rs. Suppose that ‖∆A′‖2 ≤ ε‖A′‖2,

‖∆b′‖2 ≤ ε‖b′‖2, and εκ(A′) < 1. If x′ and x′ε respectively satisfy that A′x′ = b′ and

CHAPTER 4. APPLICATION ON SOLVING LINEAR SYSTEMS 99

(A′ + ∆A′)x′ε = b′ + ∆b′, then there exists a constant c such that

‖x′ε − x′‖2

‖x′‖2

≤ cεκ(A′).

With the two lemmas, if we let

R′ :=

R`
r C`

j

0 I

 , v′ :=

 v

b`+1
j

 , b′ :=

f `r
h`j

 , (4.15)

then we can estimate the error of the computed solution v̂′ from the solution ṽ′ to the

system R̂′T ṽ′ = b̂′. Again, we need the error bound ‖R̂′ −R′‖2 to estimate ‖ṽ′ − v′‖2.

Noticing that R`
r and C`

j are submatrices of the upper triangular matrix constructed

by MGS from the matrix [A`sr , A
`
tj

], we may derive the bound for ‖R̂′−R′‖2 from the

error analysis of MGS. To this end, we need the two lemmas below.

The following lemma estimates the error of the computed upper triangular matrix

constructed by MGS [13].

Lemma 4.2.7. Let A0 ∈ Rn×s (n ≥ s) be of full rank. If R̂0 is the computed matrix

of the upper triangular matrix R0 constructed by MGS, then there exist a matrix ∆A0,

a column orthonormal Q̄0 and a constant c := c(n, s) such that

A0 + ∆A0 = Q̄0R̂0, ‖∆A0‖2 ≤ cu‖A0‖2.

We include below the perturbation theory of the QR Factorization [105].

Lemma 4.2.8. Let matrices A0 ∈ Rn×s (n ≥ s) be of full rank. Suppose that

‖∆A0‖2 ≤ ε‖A0‖2, and εκ(A0) < 1. If A0 = Q0R0 and A0 + ∆A0 = Q̄0(R0 + ∆R0)

are respectively the QR factorization of A0 and A0 + ∆A0, then there exists a constant

c := c(n, s) such that

‖∆R0‖2

‖R0‖2

≤ cεκ(A0).

CHAPTER 4. APPLICATION ON SOLVING LINEAR SYSTEMS 100

We now present the proposition below for the expression of ξ` and the upper bound

for ‖b̂
`

j − b`j‖2.

Proposition 4.2.9. Let BGSPSol be applied to (4.1), where A := [aij : i, j ∈ Nn]

and AT satisfies Hypothesis (A). Let α := maxi,j {|aij|}, and ` ∈ NL−1. Assume

Hypothesis (F), (2.59), and that there exists a number ξ` ≥ 1 such that (4.8) holds.

For each j ∈ Nγ`/2, let r := dj/2e, Bj := [A`sr , A
`
tj

], and let

ξ`j := max
{

1 + α‖B+
j ‖2, ξ

`
}
κ(Bj).

Then for sufficiently small uξ`j , there exists a constant c̃j := c̃j(n, `, k) such that

‖b̂
`+1

j − b`+1
j ‖2 ≤ c̃juξ

`
j(‖x`r‖2 + ‖b`+1

j ‖2). (4.16)

If

ξ`+1 := max
j

{
c̃jξ

`
j(‖x`r‖2/‖b`+1

j ‖2 + 1), ξ`j
}
, (4.17)

then

‖b̂
`+1

j − b`+1
j ‖2 ≤ uξ`+1‖b`+1

j ‖2. (4.18)

Proof. Formula (4.18) directly follows from (4.16) and the definition (4.17). To show

(4.16), we consider the lower triangular system (4.4) for a fixed j. With the definition

(4.15), by Lemma 4.2.5, there exists a constant c1 := c1(k) such that

(R̂′ + ∆R̂′)T v̂′ = b̂′, ‖∆R̂′‖2 ≤ c1u‖R̂′‖2. (4.19)

Let Rj denote the upper triangular matrix constructed by MGS from Bj. Then ‖R̂′−

R′‖F ≤ ‖R̂j−Rj‖F . By Lemma 4.2.7, there exist a matrix ∆B̂j, a column orthonormal

Q̄, and a constant c2 := c2(n, k) such that

B̂j + ∆B̂j = Q̄R̂j, ‖∆B̂j‖2 ≤ c2u‖B̂j‖2.

CHAPTER 4. APPLICATION ON SOLVING LINEAR SYSTEMS 101

By formula (4.11), we obtain a constant c3 := c3(`, k) that

‖B̂j −Bj‖2 ≤ c3uα.

It follows from the two formulas above and (4.13) that there exists a constant c4 :=

c4(n, `, k) such that

‖B̂j −Bj + ∆B̂j‖2 ≤ c3uα + c2u(‖B̂j −Bj‖2 + ‖Bj‖2) ≤ c4uα.

Since uξ`j is sufficiently small and ξ`j ≥ α‖B+
j ‖2, we have that c4uα‖B+

j ‖2 < 1. By

Lemma 4.2.8, we have for a constant c5 := c5(n, `, k) that

‖R̂j −Rj‖2 ≤ c5uα‖B+
j ‖2.

Thus,

‖R̂′ −R′‖2 ≤ ‖R̂j −Rj‖F ≤
√

3k‖R̂j −Rj‖2 ≤ c5

√
3kuα‖B+

j ‖2.

Let ∆R′ := R̂′ − R′ + ∆R̂′. Notice that ‖R′‖2 ≥ (1/
√

3k)‖R′‖F ≥ 1/
√

3. By the two

inequalities above and (4.19), we obtain for a constant c6 := c6(n, `, k) that

‖∆R′‖2 ≤ u‖R′‖2

(
2c1 + 3c5α

√
k‖B+

j ‖2

)
≤ c6u(1 + α‖B+

j ‖2)‖R′‖2.

Together with formula (4.8), we have that

(R′ + ∆R′)T v̂′ = b′ + ∆b′, ‖∆R′‖2 ≤ c6u(1 + α‖B+
j ‖2)‖R′‖2, ‖∆b′‖2 ≤ uξ`‖b′‖2.

Since c6uξ
`
j < 1 for sufficiently small uξ`j , by Lemma 4.2.6, there exists a constant

c̃j := c̃j(n, `, k) such that

‖v̂′ − v′‖2

‖v′‖2

≤ c̃juξ
`
j . (4.20)

Notice that x`r = Q`
r(R

`
r)
−Tf `r by BjMGS, and hence ‖v′‖2 ≤ ‖x`r‖2 + ‖b`+1

j ‖2. This

together with (4.20) yields the desired formula (4.16).

CHAPTER 4. APPLICATION ON SOLVING LINEAR SYSTEMS 102

We finally present the theorem below for the error bound for the solution to (4.1)

by BGSPSol. Let ξ1 := 1, and for each ` ∈ NL−1, let ξ`+1 be defined by the recurrence

relation (4.17). We also define

ζ` := max
i∈Nγ`/4

ζ`i , and ζL := max
{
α/‖AL‖2, ξ

L
}
κ(AL).

The next theorem indicates that ζ` is a condition number for obtaining x` for ` ∈ NL.

Theorem 4.2.10. Let BGSPSol be applied to (4.1), where AT satisfies Hypothesis

(A). Assume Hypothesis (F), (2.59), and for each ` ∈ NL−1, i ∈ Nγ`/4 that f `i 6= 0.

For each ` ∈ NL, if uζ` is sufficiently small, then there exists a constant c := c(n, k)

such that

‖x̂` − x`‖2

‖x`‖2

≤ cuζ`. (4.21)

Proof. The proof follows from the previous two propositions. Notice that for each

j ∈ Nγ1/2, ‖b̂
1

j − b1
j‖2 ≤ ξ1u‖b1

j‖2 by the floating point number representation. For

` = 1, 2, . . . , L − 1, since uζ`+1 is sufficiently small and ζ`+1 ≥ ξ`+1 ≥ ξ`j for each

j ∈ Nγ`/2, repeatedly applying Proposition 4.2.9, we obtain formula (4.8), and that

‖b̂
L
− bL‖2 ≤ ξLu‖bL‖2. (4.22)

Since uζ` is sufficiently small and ζ` ≥ ζ`i for each i ∈ Nγ`/4, by Proposition 4.2.4,

there exists a constant c`i := c`i(n, `, k) such that

‖x̂`i − x`i‖2 ≤ c`iuζ
`
i ‖x`i‖2. (4.23)

Recall that x`i ∈ R(Q`
i), (Q`

i)
TQ`

j = 0 for j 6= i, and thus (x`i)
Tx`j = 0. Let c :=

max`,i {c`i}. With the definition of ζ`, summing up (4.23) for i yields formula (4.21).

CHAPTER 4. APPLICATION ON SOLVING LINEAR SYSTEMS 103

With (4.22), we can also obtain for a constant cL := cL(n, L, k) that

‖x̂L − xL‖2 ≤ cLuζL‖xL‖2,

by a similar proof of Proposition 4.2.4, replacing ξ`, f `i , ζ`i , A`si , x
`
i with ξL, bL, ζL, AL,

and xL respectively. Therefore, we have formula (4.21) for each ` ∈ NL.

We comment on the results for the solver. By formula (4.21), given ` ∈ NL, ζ`

can be regarded as the condition number for obtaining x`. Notice that ζ` is computed

from the condition numbers of some matrices of column size O(k). As a comparison,

κ(A) is a condition number for solving (4.1). In general, for small `, ζ` is rather small

and as a result, x̂` is closed to the exact value. This could help us overcome the issue

of ill-conditioning, and we shall verify it through experiments in the next chapter.

In implementation of BGSPSol, the storage for the matrices Q`
i , R`

i , C`
j , and even

the corresponding subvectors can be instantly released after applied to compute x`i .

We call a solver that can compute the final solution without storing the matrices it

generates over the entire process the memory-less solver. The memory-less feature is

extremely important to deal with large-scale systems. We shall study further in the

next section.

4.3 A Parallel Solver and Extra Large-scale Linear

Systems

In this section, we apply ParBGSP to solve extra large-scale ill-conditioned banded

systems. Inspired by BGSPSol, we break down a linear system into small-scale un-

CHAPTER 4. APPLICATION ON SOLVING LINEAR SYSTEMS 104

derdetermined systems, to which minimum 2-norm solutions can be computed by the

matrices generated in a superstep of ParBGSP. We also consider the memory issue in

solving extra large-scale linear systems. Using the memory-less feature of BGSPSol,

we treat the issue by a partial load strategy to be presented later.

We consider solving the linear system (4.1) where the matrix A is large-scale,

ill-conditioned, and banded. Using a similar design as ParBGSP, we divide the com-

putations in BGSPSol into parts to be executed concurrently. With the definition

(3.1) of Γp, we partition (4.1) as

Ax =


(AΓ1)

T

(AΓ2)
T

...

(AΓP)T

x =


b1

b2

...

bP

 = b,

where bp ∈ Rn/P for each p ∈ NP . Then in the first superstep of the parallel algorithm,

for each p, we shall apply the following algorithm called BGSPSol1 to AΓp and bp.

We next consider the memory issue when A is extra large-scale. Notice that

#(AΓp) ≈ (n/P)(k + 1). When n/P is very large, it is not possible for a processor to

storage #(AΓp) pieces of data in memory. To overcome the memory issue, we apply

a partial load strategy using the memory-less property of the solving process: Instead

of loading entirely the matrix AΓp into memory, we partition AΓp into its submatrices,

each of which consists of some consecutive column blocks of it. We then sequentially

load each of these submatrices, solve the corresponding system by BGSPSol1, sum up

the solutions, and release the matrices generated. To this end, we denote by ν := ν(p)

the partial load parameter, depending on the memory volume of the processor p. We

assume that ν is a power of 2, and γ ≥ 4νP . For each i ∈ Nν , we define the subvector

CHAPTER 4. APPLICATION ON SOLVING LINEAR SYSTEMS 105

Algorithm 4.1 A sub-algorithm for BGSPSol (BGSPSol1)

Input: A matrix A ∈ Rn×m that satisfies Hypothesis (A2), a vector b ∈ Rm.
Output: A vector x̄, a matrix Ā, a vector b̄.
1: For each i ∈ Nγ, let b1

i ∈ Rµk be the subvector of b such that b = [(b1
i)
T : i ∈ Nγ]

T .
2: for ` ∈ NL−1 do
3: for i ∈ Nγ`/4 do
4: let f `i := [(b`4i−2)T , (b`4i−1)T]T , h`2i−1 := b`4i−3, and h`2i := b`4i,
5: generate matrices Q`

i , R`
i by MGS from A`si ,

6: solve (R`
i)
T z`i = f `i for z`i by forward substitution,

7: compute x`i by BjMGS from Q`
i , I, and z`i ,

8: for j = 2i− 1, 2i do
9: generate matrices G`+1

j , C`
j by proj(A`tj , Q

`
i),

10: solve the following lower triangular system by forward substitution,[
I C`

j
0 I

]T [v
b`+1
j

]
=

[
z`i
h`j

]
,

11: release the memory storage for A`tj , C
`
j , h`j,

endfor
12: release the memory storage for A`si , Q

`
i , R`

i , z`i , f `i ,
endfor

13: let A`+1 := [G`+1
j : j ∈ Nγ`/2].

endfor
14: return x̄ :=

∑
`∈NL−1

∑
i∈Nγ`/4

x`i , Ā := AL, b̄ := [(bL1)T , (bL2)T]T .

Γip of Γp by

Γip := [(pν − ν + i− 1)γ/(νP) + t : t ∈ Nγ/(νP)]. (4.24)

Then AΓip consists of γ/(νP) consecutive column blocks of AΓp . Correspondingly,

given the vector b = [bt : t ∈ Nn]T as in (4.1), we define the subvectors bip of b by

bip := [bt : t = (pν − ν + i− 1)n/(νP) + t′, for t′ ∈ Nn/(νP)]
T . (4.25)

With the above discussion and a similar design as ParBGSP, we present the parallel

solver called ParBGSPSol for linear systems below.

To close this chapter, we comment on ParBGSPSol. It can be verified by the

equations in FormQS and a similar proof of Theorem 4.1.1 that ParBGSPSol generates

a vector x that satisfy (4.1). For an extra large-scale linear system, the summation of

CHAPTER 4. APPLICATION ON SOLVING LINEAR SYSTEMS 106

Algorithm 4.2 The parallel BGSP solver for linear systems (ParBGSPSol)

Require: The set NP of the P processors with P = 2J−1 for some J ∈ N, a butterfly
all-reduction tree with height log2 P , my processor p ∈ NP , a partial load parameter
ν with ν = 2ı for some ı ∈ N.

Input: A matrix A ∈ Rn×n whose transpose satisfies Hypothesis (A2) with L > J+ ı,
a vector b ∈ Rn.

Output: A vector x.
1: Let A′ = AT . Let Γip, bip be defined by (4.24), (4.25), respectively.
2: Load A′Γ1p

and b1p into memory.
3: Generate x̄1p, Ā1p, b̄1p by BGSPSol1 from A′Γ1p

and b1p.
4: for i ∈ Nν\{1} do
5: load A′Γip and bip into memory,
6: generate xip, A′ip, b′ip by BGSPSol1 from A′Γip and bip,
7: generate x̄ip, Āip, b̄ip by BGSPSol1 from [Āi−1,p, A

′
ip] and [b̄Ti−1,p, b

′T
ip]T ,

8: release the memory storage for Āi−1,p, A′ip, b̄i−1,p, b′ip.

9: Let x1p := 0, x1
p :=

∑
i∈Nν (xip + x̄ip), A1

p := Āνp, b1
p := b̄νp.

10: for j ∈ NJ\{1} do
11: compute the processor q by (3.7),
12: send xj−1

p , Aj−1
p , bj−1

p to q, and receive xj−1
q , Aj−1

q , bj−1
q from q,

13: let r := min
{
p, q
}
, s := max

{
p, q
}
,

14: generate x̄jp, Ajp, bjp by BGSPSol1 from [Aj−1
r , Aj−1

s] and [(bj−1
r)T , (bj−1

s)T]T ,
15: release the memory storage for Aj−1

p , Aj−1
q , bj−1

p , bj−1
q ,

16: let xjp := xj−1
p + xj−1

q + x̄jp.

17: Generate matrices QJ+1, RJ+1 by MGS from AJp .
18: Generate xJ+1

p by BjMGS from QJ+1, RJ+1, and bJp .
19: return x :=

∑
j∈NJ+1

xjp.

x can be done by the computer accumulators (accumulating xip, x̄ip, xjp), and we may

assign some processors to save the components of x that are not being accumulated

in external storage, so that the required memory storage in each processor will be less

than O(n/P) words. We also mention that the algorithms BGSPSol1 and ParBGSPSol

could be easily modified in order to solve linear systems with multiple right-hand sides

as AX = B.

Chapter 5

Applications and Numerical

Experiments

In this chapter, we present numerical experiments in order to illuminate the theoretical

results derived in the previous chapters, and to show that the proposed solvers maintain

better accuracy and scalability in solving ill-conditioned linear systems among the most

commonly used direct solvers.

We compare BGSPSol with three direct solvers on the accuracy and running speed

for solving ill-conditioned linear systems derived from practical applications. We see

from the comparison that BGSPSol generates more accurate solutions than the others,

and it runs much faster than the solver with the second best accuracy.

In the parallel experiments, we compare ParBGSPSol with the routine for solving

banded systems in ScaLAPACK on the accuracy and the scalability. We see that

ParBGSPSol maintains much smaller relative errors while runs faster than the routine.

Also, ParBGSPSol achieves approximately linear speedups. Moreover, we see from

107

CHAPTER 5. APPLICATIONS AND NUMERICAL EXPERIMENTS 108

another experiment that ParBGSPSol is capable of solving extra large-scale linear

systems.

We organize this chapter in four sections. In section 5.1, we present an experiment

to illuminate the theoretical results for BGSP. Comparisons with two other meth-

ods for matrix orthogonalization will also be presented. In section 5.2, we compare

BGSPSol with three direct solvers on the results for solving linear systems derived

from various applications. Parallel experiments with comparisons between ParBGSP-

Sol and a routine in ScaLAPACK will be presented in section 5.3. Finally we briefly

summarize the results in section 5.4.

CHAPTER 5. APPLICATIONS AND NUMERICAL EXPERIMENTS 109

5.1 Experiments for the Factorization Process

In this section, we present a numerical example to illustrate the theoretical results

established in chapter 2. We compare BGSP with the QR factorization via Householder

and the QR factorization via MGS. From the comparisons, we conclude that when

applied to a banded matrix, BGSP generates sparse factor matrices, while MGS or

Householder generates a dense orthogonal matrix, though Householder may obtain

a sparse orthogonal matrix in its implicit vector form [43]. Also, BGSP has similar

stability properties as MGS.

The experiments presented in this section are programmed and run in MATLAB

[79]. In most of figures presented below, the axes of the graphs are plotted in log

scale. If x, y are the variables on the horizontal and vertical axes in such a graph,

respectively, then a straight line with slope c would imply that y is O(xc).

We show the following results: For a banded matrix A, if QS is the block QS

factorization of A generated by BGSP, then both Q and S are sparse, Q is column

orthonormal, SE is upper triangular for E defined by (2.16), and the factorization

process is stable. This is done in Example 1.

Example 1. We consider the tridiagonal matrix A := [aij : i, j ∈ Nn] with aii := 2,

for i ∈ Nn, and ai+1,i := −1, ai,i+1 := −1, for i ∈ Nn−1. The numerical results are

illustrated in Figures 5.1−5.4.

Figure 5.1 shows that for BGSP, #(Q) < 2kn log2 (n/k) and #(S) < 13
4
kn, consis-

tent with the results in Theorems 2.3.3 and 2.3.4, respectively. For MGS, #(Q) ≈ n2/2,

which means that Q is dense. For Householder, #(Q) = O(n) in its implicit vector

CHAPTER 5. APPLICATIONS AND NUMERICAL EXPERIMENTS 110

Matrix size n plotted in log scale
100 200 400 800 1600 3000

#
(Q

)
p
lo
tt
ed

in
lo
g
sc
al
e

10
2

10
3

10
4

10
5

10
6

10
7

2kn log2(n/k)

BGSP

Householder

MGS

Matrix size n plotted in log scale
100 200 400 800 1600 3000

#
(S

)
or

#
(R

)
p
lo
tt
ed

in
lo
g
sc
al
e

10
2

10
3

10
4

10
5

13
4
kn

BGSP

Householder

MGS

Figure 5.1: Comparison of the numbers of nonzero entries of factor matrices.

Column
1 200 400 600 800 1024

R
o
w

1

200

400

600

800

1024

matrix size

n = 1024

The nonzero entries of SE (#(S) = 5237)

Figure 5.2: The sparse structure of the matrix SE generated by BGSP. A dot in
the graph is a nonzero entry of SE located in the specific row and column. The blank

spaces are zero entries.

form, however, #(Q) ≈ n2/2 in its explicit form.

Figure 5.2 displays the sparse structure and the upper triangularity of SE generated

by BGSP from A when n = 1024.

Figure 5.3 shows that for BGSP, ‖A− Q̂Ŝ‖2 = O(u), where the machine unit error

CHAPTER 5. APPLICATIONS AND NUMERICAL EXPERIMENTS 111

Matrix size n plotted in log scale
100 200 400 800 1600 3000

‖A
−

Q̂
Ŝ
‖ 2

or
‖A

−
Q̂
R̂
‖ 2

p
lo
tt
ed

in
lo
g
sc
al
e

10
-16

10
-15

10
-14

10
-13

27
10
u

√
n

BGSP
Householder
MGS

Matrix size n plotted in log scale
100 200 400 800 1600 3000

‖Q̂
T
Q̂

−
I
‖ 2

p
lo
tt
ed

in
lo
g
sc
al
e

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

3
5
uκ(A)

BGSP
Householder
MGS

Figure 5.3: Comparison of the accuracy of the three methods for matrix
factorization.

Matrix size n

0 1000 2000 3000

F
r
o
b
e
n
iu
s
n
o
r
m

-1

-0.5

0

0.5

1

‖Q̂ − Q̃‖F
‖ŜE − R̃‖F

Figure 5.4: BGSP applied to A versus MGS applied to AE.

u is 2.22× 10−16 in MATLAB, confirming that the block QS factorization via BGSP

is stable. It also shows that ‖Q̂T Q̂− I‖2 = O(uκ(A)), as described in Theorem 2.5.9.

MGS achieves similar results as BGSP. For Householder, ‖A− Q̂R̂‖2 = O(u
√
n), and

‖Q̂T Q̂− I‖2 = O(u).

Figure 5.4 illuminates the results in Proposition 2.5.5. It shows that ‖Q̂− Q̃‖F = 0

and ‖ŜE − R̃‖F = 0 for all n, where matrices Q̂, Ŝ are generated by BGSP from A,

and matrices Q̃, R̃ are generated by MGS from AE.

CHAPTER 5. APPLICATIONS AND NUMERICAL EXPERIMENTS 112

5.2 Applications of the Sequential Solver

In this section, we compare BGSPSol for solving linear systems with three commonly

used direct solvers: the solver of LU factorization with Partial Pivoting (PLUSol) [41],

the Householder solver (HouseholderSol) [108], and the MGS solver (MGSSol) [15].

We conclude from the comparison that BGSPSol outperforms all other methods for

solving ill-conditioned banded systems. We also use the MATLAB package to program

and run the experiments in this section.

In Example 2, we compare BGSPSol with PLUSol, HouseholderSol, and MGSSol

on the accuracy of solving ill-conditioned banded systems. Notices that matrices of

similar structure as those in this example are used as benchmark matrices for testing

LAPACK routines [3]. The accuracy is measured by the relative error ‖x∗−x‖2/‖x∗‖2,

where x∗ is the exact solution, and x is the solution from a solver.

Example 2. For the linear system (4.1), we consider two types of ill-conditioned

banded matrices. Matrix A′ := [aij : i, j ∈ Nn] is a banded matrix with bandwidth 3

(heptadiagonal), where aii := 8, for i ∈ Nn, ai+1,i := −2, ai,i+1 := −4, for i ∈ Nn−1,

and any other entry within the band is −1. Matrix A′′ := [aij : i, j ∈ Nn] is a banded

matrix with bandwidth 10, where aii := 2, for i ∈ Nn, ai+1,i := 10 ln i, for i ∈ Nn−1,

and any other entry within the band is −1. The exact solution to (4.1) is set as

x∗ := [xi : i ∈ Nn]T , with xi := eωi+6ωi(1− ωi), where ωi := i/(n+ 1), for i ∈ Nn. The

condition numbers of the matrices for some n are listed in Table 5.1. The condition

numbers ζ` for obtaining x` by BGSPSol as in (4.21) are given in Table 5.2. Notice

that if x′ is the computed solution to (4.1) obtained by HouseholderSol or MGSSol,

CHAPTER 5. APPLICATIONS AND NUMERICAL EXPERIMENTS 113

then there exists a constant c := c(n) such that (see, [15, 108])

‖x∗ − x′‖2

‖x∗‖2

≤ cuκ(A).

Lastly, the numerical results are presented in Figure 5.5.

Table 5.1
The condition numbers of the matrices in Example 2 for some n.

n 200 400 800 1600 3000
κ(A′) 1.0431e+09 6.3773e+13 5.4973e+25 1.0030e+50 9.9438e+92
κ(A′′) 1.4142e+18 2.1094e+38 1.5061e+81 1.9722e+171 ∞

Table 5.2
The condition numbers ζ` by BGSPSol when n = 3000.

κ(A′) = 9.9438e+ 92
` ζ`

1 8.2529
2 5.4027e+05
3 8.2037e+06
4 3.6396e+11
5 3.2707e+18
6 1.4579e+25
7 2.1834e+26
8 1.4546e+29
9 1.3001e+32

κ(A′′) =∞
` ζ`

1 2.1958
2 1.2816e+10
3 2.3683e+24
4 3.4963e+40
5 1.0198e+58
6 5.2926e+75
7 4.8769e+93
8 1.7461e+128

Figure 5.5 illustrates the superior accuracy of BGSPSol comparing to the others,

and the robustness against the issue of ill-conditioning. For A′, all solvers behave

well when n < 600. The relative error of PLUSol or HouseholderSol grows roughly

exponentially as n increases, and becomes unacceptable when n ≥ 600. For n ≥ 600,

the relative error of MGSSol stays around 10−2. Benefit from the breakdown process,

BGSPSol maintains stably relative errors around 10−4 when n ≥ 600. For A′′, we

observe a similar behavior for the relative errors of PLUSol, MGSSol, and BGSPSol,

except that the threshold n value is 200 rather than 600. HouseholderSol obtains

CHAPTER 5. APPLICATIONS AND NUMERICAL EXPERIMENTS 114

Matrix size n plotted in log scale
200 400 800 1600 3000

R
el
a
ti
v
e
er
ro
r
p
lo
tt
ed

in
lo
g
sc
a
le

10
-10

10
-5

10
0

10
5

10
10

BGSPSol
PLUSol
HouseholderSol
MGSSol

Matrix size n plotted in log scale
200 400 800 1600 3000

R
el
a
ti
v
e
er
ro
r
p
lo
tt
ed

in
lo
g
sc
a
le

10
-5

10
0

10
5

10
10

BGSPSol
PLUSol
HouseholderSol
MGSSol

Left: Relative error of solving A′x = b versus matrix size n Right: Relative error of solving A′′x = b versus matrix size n

Figure 5.5: Comparison of the relative errors of the four solvers for Example 2.

relative errors about 1 ∼ 103. This example shows that BGSPSol is robust for solving

ill-conditioned systems.

In Examples 3-5 below, we present numerical results of the four solvers for the

linear systems derived from three applications. Example 3 concerns a boundary value

problem (BVP).

Example 3. We consider the linear system (4.1), where the matrix A is tridiagonal

and is derived from the discretization of the following BVP
u′′(t) + αu′(t) + βu(t) = f(t), t ∈ (0, 1),

u(0) = u(1) = 0,

(5.1)

with α, β being constants. Using central difference method of second-order accuracy,

we discretize (5.1) with n equally space points in (0, 1), as follows. For i ∈ Nn+1∪{0},

d ∈ N ∪ {0}, we let h := 1/(n+ 1), ti := ih, and u(d)
i = u(d)(ti). Then for each i ∈ Nn,

u′i =
1

2h
(ui+1 − ui−1) +O(h2),

u′′i =
1

h2
(ui+1 − 2ui + ui−1) +O(h2).

CHAPTER 5. APPLICATIONS AND NUMERICAL EXPERIMENTS 115

Hence we derive a tridiagonal system as (4.1), where A := [aij : i, j ∈ Nn] with

aii := − 2

h2
+ β, ai+1,i :=

1

h2
− α

2h
, ai,i+1 :=

1

h2
+

α

2h
, for i ∈ Nn−1,

ann := − 2
h2

+β, and x := [ui : i ∈ Nn]T . When α = 100, β = 100000, the matrix A is ill-

conditioned with condition numbers for some n given in Table 5.3. In this example, we

let u∗(t) := t(1− t), for t ∈ [0, 1] be the exact solution of (5.1), x∗ := [u∗(ti) : i ∈ Nn]T ,

and b := Ax∗. The numerical results are illustrated in Figure 5.6.

Table 5.3
The condition numbers of the derived matrices in Example 3 for some n.

n 200 400 800 1600 3000
κ(A) 8.0930e+22 1.2316e+23 1.0907e+24 1.7633e+24 6.0776e+24

Matrix size n plotted in log scale
200 400 800 1600 3000

R
el
at
iv
e
er
ro
r
p
lo
tt
ed

in
lo
g
sc
al
e

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

BGSPSol
PLUSol
HouseholderSol
MGSSol

Matrix size n plotted in log scale
200 400 800 1600 3000

R
u
n
n
in
g
ti
m
e
in

se
co
n
d
s
p
lo
tt
ed

in
lo
g
sc
al
e

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

(1.3e-5)k2n log2(n/k)

(8e-9)n3

BGSPSol

PLUSol

HouseholderSol

MGSSol

Figure 5.6: Comparison of the relative errors and the running time for Example 3.

For Example 3, Figure 5.6 shows that BGSPSol achieves the best accuracy in

most cases, and runs the second fastest among the four solvers. The relative error of

BGSPSol is roughly decreasing from 10−3 to 10−5 in magnitude as n increases. The

relative errors of PLU and HouseholderSol are too large to be acceptable. MGS has

CHAPTER 5. APPLICATIONS AND NUMERICAL EXPERIMENTS 116

competitive results as BGSPSol in terms of accuracy. However, the running time of

MGS is approximately proportional to n3, while that of BGSPSol is bounded above

by O(k2n log2(n/k)).

We present Example 4 below for solving the linear system derived from the dis-

cretization of a singularly perturbed BVP. Problems of this kind occur frequently in

many applications, such as the modeling of steady and unsteady viscous flow problems

with large Reynolds number, and convective heat transport problems with large Peclet

number. The challenge to solve such a problem numerically is due to the occurrence

of a sharp boundary-layer where the solution varies rapidly, while away from the layer

the solution behaves regularly and varies slowly (see, for example, [19, 74]).

Example 4. We consider the linear system (4.1), where A is a heptadiagonal matrix

derived from the discretization of the following the singularly perturbed BVP with

standard center difference scheme.
ε2u(4)(t) + t3u′′(t) + 8u′(t)− 10e6−tu(t) = f(t), t ∈ (0, 1),

u(0) = u′(0) = u(1) = u′(1) = 0.

(5.2)

For higher accuracy, we use central difference method of order O(h4) to discretize (5.2)

with n equally space points in (0, 1), as follows. Let h, ti and u
(d)
i be defined as in

Example 3. Then for each i ∈ Nn−2\{1, 2},

u′i =
1

12h
(−ui+2 + 8ui+1 − 8ui−1 + ui−2) +O(h4),

u′′i =
1

12h2
(−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2) +O(h4),

u
(4)
i =

1

6h4
(−ui+3 + 12ui+2 − 39ui+1 + 56ui − 39ui−1 + 12ui−2 − ui−3) +O(h4).

Thus the linear system (4.1) is derived, where A is a heptadiagonal matrix. When

CHAPTER 5. APPLICATIONS AND NUMERICAL EXPERIMENTS 117

ε = 10−4, the condition numbers of A for some n are listed in Table 5.4. Let u∗(t) :=

t2(1 − t)2, for t ∈ [0, 1] be the exact solution of (5.2), x, x∗ and b be defined as in

Example 3. We present the numerical results in Figure 5.7.

Table 5.4
The condition numbers of the derived matrices in Example 4 for some n.

n 400 600 800 1600 3000
κ(A) 1.6314e+21 3.3378e+35 9.6810e+38 5.6673e+43 4.5929e+45

Matrix size n plotted in log scale
400 800 1600 3000

R
el
at
iv
e
er
ro
r
p
lo
tt
ed

in
lo
g
sc
al
e

10
-10

10
-5

10
0

10
5

10
10

10
15

10
20

10
25

BGSPSol
PLUSol
HouseholderSol
MGSSol

Matrix size n plotted in log scale
400 800 1600 3000

R
u
n
n
in
g
ti
m
e
in

se
co
n
d
s
p
lo
tt
ed

in
lo
g
sc
al
e

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

BGSPSol
PLUSol
HouseholderSol
MGSSol

Figure 5.7: Comparison of the relative errors and the running time for Example 4.

For Example 4, Figure 5.7 illustrates that BGSPSol outperforms all the other

solvers in accuracy, with gently decreasing relative errors from 10−5 to 10−7 in magni-

tude as n increases. The running time for each solver behaves similarly as the previous

example.

In the following example, we consider the linear system derived from generalized

finite element methods (GFEM). In recent years, GFEM is effectively applied to the

problems of modeling non-smooth solutions such as crack-propagation and solid-fluid

CHAPTER 5. APPLICATIONS AND NUMERICAL EXPERIMENTS 118

interactions. A common concern is the about the stability and conditioning. Espe-

cially, for the approximation space used in GFEM, if the “angle” between the finite

element space and the enrichment space is close to 0, then the derived matrix is ill-

conditioned (see, for example, [6, 40]). Here, we compare the results obtained by

applying the four solvers to the corresponding linear system with such a matrix.

Example 5. We consider the linear system (4.1) derived from GFEM applied to the

following problem, 
−u′′(t) = f(t), t ∈ (0, 1),

u(0) = α, u′(1) = β.

(5.3)

Given n, h, ti as above, we let u∗(t) := e11t, for t ∈ [0, 1] be the exact solution of

(5.3), and Ni(t) be the standard hat-function associated with the node ti, for each

i ∈ Nn ∪ {0}. Applying GFEM based on the shape functions {ψi(x) : i ∈ N2n+1} as

ψi(x) =


N(i−1)/2(t) · u∗(t), i = 1, 3, . . . , 2n+ 1,

Ni/2(t), i = 2, 4, . . . , 2n,

we obtain a heptadiagonal matrix A := [aij : i, j ∈ N2n+1] with aij :=
∫ 1

0
ψ′j(t)ψ

′
i(t) dt.

Notice that the exact solution for (4.1) is x∗ := [1, 0, 1, 0, . . . , 1, 0, 1]T . The condition

numbers of A for some n are listed in Table 5.5, and the numerical results are illustrated

in Figure 5.8.

Table 5.5
The condition numbers of the derived matrices in Example 5 for some n.

n 200 400 800 1600 3000
κ(A) 2.7042e+21 1.8153e+23 1.1896e+25 5.8345e+26 2.3661e+27

Figure 5.8 shows that BGSPSol achieves the best accuracy, with relative errors

between 10−2 and 10−3 in magnitude. The other solvers fail to obtain meaningful

CHAPTER 5. APPLICATIONS AND NUMERICAL EXPERIMENTS 119

Matrix size n plotted in log scale
200 400 800 1600 3000

R
el
at
iv
e
er
ro
r
p
lo
tt
ed

in
lo
g
sc
al
e

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

BGSPSol
PLUSol
HouseholderSol
MGSSol

Matrix size n plotted in log scale
200 400 800 1600 3000

R
u
n
n
in
g
ti
m
e
in

se
co
n
d
s
p
lo
tt
ed

in
lo
g
sc
al
e

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

BGSPSol
PLUSol
HouseholderSol
MGSSol

Figure 5.8: Comparison of the relative errors and the running time for Example 5.

solutions.

5.3 Parallel Experiments

In this section, we compare ParBGSPSol with the ScaLAPACK routine PxGBSV for

solving linear systems in parallel computing, and present an experiment of applying

ParBGSPSol to extra large-scale linear systems. The goal of this section is to demon-

strate the advantages of ParBGSPSol in accuracy, scalability, and the capability of

solving extra large-scale linear systems.

In the parallel environment, all the programs run on the Tianhe-2 (MilkyWay-2,

or TH-2) supercomputer [36] at the National Supercomputer Center in Guangzhou,

China. TH-2 is a 33.86-petaflop supercomputer based on Intel multicore (Ivy Bridge)

and coprocessors (Xeon Phi), with TH-Express 2 interconnection network. There are

16,000 compute nodes in TH-2. Each compute node is composed of 2 sockets with

CHAPTER 5. APPLICATIONS AND NUMERICAL EXPERIMENTS 120

Intel Xeon IvyBridge E5-2692 (12 cores, 2.2 GHz) processors, and 3 Intel Xeon Phi

accelerators based on the many-integrated-core (MIC) architecture. Each node has

64GB memory and runs on a custom Linux system, Kylin. Our code is compiled using

Intel ICC 14.0.1 compiler and uses a custom version of MPICH on TH-2 for the MPI

implementation.

In Example 6, we compare ParBGSPSol with the ScaLAPACK routine PxGBSV

([29], abbreviated by ScaLAPACKSol) on the relative error, speedup, and running time

for solving ill-conditioned banded systems. Notices that matrices of similar structure

as those in this example are used as benchmark matrices for testing ScaLAPACK

routines [16].

Example 6. We test five types of ill-conditioned systems whose matrices are banded,

as described in Table 5.6. The exact solution x∗ is defined as in Example 2. Hypothesis

(AP) is verified by Table 5.7. The numerical results are plotted in Figures 5.9-5.11.

Table 5.6
The description of the five types of matrices.

test matrix description
T1 A := [aij : i, j ∈ Nn] is a tridiagonal matrix with aii := 2, for i ∈ Nn,

and ai+1,i := −1.05, ai,i+1 := −1, for i ∈ Nn−1.
T2 A := [aij : i, j ∈ Nn] is a tridiagonal matrix with aii := 2, for i ∈ Nn,

and ai+1,i := i, ai,i+1 := −1, for i ∈ Nn−1.
T3 A := [aij : i, j ∈ Nn] is a pentadiagonal matrix with aii := 4, for i ∈

Nn, ai+1,i := −2, ai,i+1 := −6, for i ∈ Nn−1, and ai+2,i = ai,i+2 = −1
for i ∈ Nn−2.

T4 A := [aij : i, j ∈ Nn] is a banded matrix with bandwidth 10. aii := 2,
for i ∈ Nn, ai+1,i := 10 ln i, for i ∈ Nn−1, and any other entry within
the band is −1.

T5 A := [aij : i, j ∈ Nn] is a banded matrix with bandwidth 20. aii := 2,
for i ∈ Nn, ai+1,i := i, for i ∈ Nn−1, and any other entry within the
band is −1.

CHAPTER 5. APPLICATIONS AND NUMERICAL EXPERIMENTS 121

Table 5.7
The errors εip := ‖Mp(M

T
p Mp)

−1MT
p Gip −Mip(M

T
ipMip)

−1MT
ipGip‖F , i = 1, 2, for

verifying Hypothesis (AP), where matrix size n = 226, P = 512.

test ε1p, for each p ∈ NP ε2p, for each p ∈ NP

T1 0 0
T2 0 0
T3 0 0
T4 0 0
T5 0 0

Parameter µ plotted in log scale
1 2 4 8 16 32 64

R
u
n
n
in
g
ti
m
e
in

m
il
li
se
co
n
d
s
p
lo
tt
ed

in
lo
g
sc
al
e

10
3

10
4

10
5

ParBGSPSol T2 (n = 226, P = 96)

Figure 5.9: The optimum of µ of ParBGSPSol for T2 (here the optimum is 4).

Table 5.7 lists the errors εip := ‖Mp(M
T
p Mp)

−1MT
p Gip −Mip(M

T
ipMip)

−1MT
ipGip‖F ,

for i = 1, 2, where Mp, Gip,Mip are defined in Hypothesis (AP) from the five types

of matrices of size n = 226, and P = 512. It verifies from the table that εip = 0 for

i = 1, 2, and for each p ∈ NP . That is, Hypothesis (AP) holds.

Figure 5.9 displays the running time of ParBGSPSol for different values of the

parameter µ, which appears in the partition vector of the input matrix. In this case,

the optimum of µ that minimizes the running time is 4. This verifies the effectiveness

of selecting the optimal µ for computational efficiency, as described in section 3.3.

CHAPTER 5. APPLICATIONS AND NUMERICAL EXPERIMENTS 122

Matrix size n plotted in log scale
16 18 20 22 24 26

R
el
at
iv
e
er
ro
r
p
lo
tt
ed

in
lo
g
sc
al
e

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

ParBGSPSol T1

ParBGSPSol T2

ParBGSPSol T3

ParBGSPSol T4

ParBGSPSol T5

ScaLAPACKSol T1

ScaLAPACKSol T2

ScaLAPACKSol T3

ScaLAPACKSol T4

ScaLAPACKSol T5

2^

Figure 5.10: Comparison of the relative errors of ParBGSPSol and
ScaLAPACKSol.

Number P of processors plotted in log scale
24 48 96 192 384 768 1536 3072 6144 12288

S
p
ee
d
u
p
p
lo
tt
ed

in
lo
g
sc
al
e

12

24

48

96

192

384

768

1536

3072

6144

12288

Linear speedup

ParBGSPSol T1

ParBGSPSol T2

ParBGSPSol T3

ParBGSPSol T4

ParBGSPSol T5

ScaLAPACKSol T1

ScaLAPACKSol T2

ScaLAPACKSol T3

ScaLAPACKSol T4

ScaLAPACKSol T5

Number P of processors plotted in log scale
768 1536 3072 6144 12288R

u
n
n
in
g
ti
m
e
in

m
il
li
se
co
n
d
s
p
lo
tt
ed

in
lo
g
sc
al
e

10
1

10
2

10
3

10
4

10
5 ParBGSPSol T1

ParBGSPSol T2

ParBGSPSol T3

ParBGSPSol T4

ParBGSPSol T5

ScaLAPACKSol T1

ScaLAPACKSol T2

ScaLAPACKSol T3

ScaLAPACKSol T4

ScaLAPACKSol T5

Figure 5.11: Comparisons of the speedups and the running time when matrix size
n = 226.

Figure 5.10 shows that ParBGSPSol is superior to ScaLAPACKSol in accuracy.

ParBGSPSol maintains about 10−5 to 10−11 relative errors in magnitude, while ScaLA-

PACKSol fails to obtain meaningful solutions due to the large relative errors.

Figure 5.11 shows that ParBGSPSol is much better than ScaLAPACKSol in scal-

CHAPTER 5. APPLICATIONS AND NUMERICAL EXPERIMENTS 123

ability. It shows that ParBGSPSol maintains approximately linear speedups for all

tests when P < 12288, while ScaLAPACKSol does not even when P > 192. We also

see that when P ≥ 6144, ParBGSPSol runs faster than ScaLAPACKSol for all tests.

In the last example below, we demonstrate an experiment of solving extra large-

scale systems by ParBGSPSol.

Example 7. We consider the linear system (4.1), with matrix A of the same type as

that in Example 6(T1) . The matrix size n is ranging from 8 billion to 64 billion. The

exact solution x∗ is defined as in Example 2. The result is presented in Figure 5.12.

Number P of processors plotted in log scale
24 48 96 192 384 768 1536 3072 6144 12288

S
p
ee
d
u
p
p
lo
tt
ed

in
lo
g
sc
al
e

24

48

96

192

384

768

1536

3072

6144

12288

Linear speedup

ParBGSPSol T1(n = 236)

ParBGSPSol T1(n = 235)

ParBGSPSol T1(n = 234)

ParBGSPSol T1(n = 233)

Number P of processors plotted in log scale
24 48 96 192 384 768 1536 3072 6144 12288

R
el
at
iv
e
er
ro
r
p
lo
tt
ed

in
lo
g
sc
al
e

10
-15

10
-14

10
-13

10
-12

ParBGSPSol T1(n = 236)

ParBGSPSol T1(n = 235)

ParBGSPSol T1(n = 234)

ParBGSPSol T1(n = 233)

Figure 5.12: The relative errors and the speedups of ParBGSPSol for Example 7.

As seen from Figure 5.12, ParBGSPSol is capable of and efficient in solving extra

large-scale systems. It maintains about 10−13 to 10−15 relative errors in magnitude,

while having approximately linear speedups for P < 12288. Notice that ScaLAPACK-

Sol fails to obtain solutions when n/P ≥ 228 due to an error of insufficient memory.

CHAPTER 5. APPLICATIONS AND NUMERICAL EXPERIMENTS 124

5.4 A Brief Summary

We briefly summarize the comparison results from previous sections in Tables 5.8-5.10.

Table 5.8
Comparison of the three methods for matrix orthogonal factorization.

method #(Q)
#(S) or ‖A− Q̂Ŝ‖F or

‖Q̂T Q̂− I‖2
#(R) ‖A− Q̂R̂‖F

BGSP 2km log2 (m/k) 13
4
km 3

√
6ku‖A‖F cmuκ(A)

Householder
O(km) in implicit form,

O(km) cn,mu‖A‖F cn,mu
O(m2) in explicit form

MGS O(m2) O(km) 3
2
(m− 1)u‖A‖F cmuκ(A)

Table 5.9
Comparison of the four sequential solvers for linear systems.

method condition number relative error running speed

BGSPSol
ζ`, with ζ` � κ(A) ≈ 10−4, decreasing The second fastest

for each `
PLUSol κ(A) > 101, unacceptable Fastest

HouseholderSol κ(A) > 100, unacceptable Close to BGSPSol
MGSSol κ(A) ≈ 10−2 Slowest

Table 5.10
Comparison of the two parallel solvers for linear systems.

method relative error
speedup:

running speed
ability to treat

linear in P extra large-scale
ParBGSPSol 10−5 ∼ 10−15 Yes Fast Yes

ScaLAPACKSol 104 ∼ 1014 No Slow No

Bibliography

[1] D. Agarwal and B. C. Chen, fLDA: matrix factorization through latent dirich-

let allocation, in Proceedings of the 3rd ACM International Conference on Web

Search and Data Mining, ACM, 2010, pp. 91-100.

[2] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer, Communication-

avoiding QR decomposition for GPUs, in Parallel & Distributed Processing Sym-

posium (IPDPS), 2011 IEEE International, pp. 48-58.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. J. Don-

garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and

D. Sorensen, LAPACK Users’ Guide, 3rd ed., SIAM, Philadelphia, PA, 1999;

also available online from http://www.netlib.org.

[4] G. R. Andrews, Foundations of Multithreaded, Parallel, and Distributed Pro-

gramming, Addison-Wesley, Boston, MA, 2000.

[5] W. F. Ames, Numerical Methods for Partial Differential Equations, 3rd ed.,

Academic Press, Boston, MA, 2014.

125

BIBLIOGRAPHY 126

[6] I. Babuška and U. Banerjee, Stable generalized finite element method

(SGFEM), Comput. Methods Appl. Mech. Engrg., 201 (2012), pp. 91-111.

[7] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O.

Schwartz, Communication lower bounds and optimal algorithms for numerical

linear algebra, Acta Numer., 23 (2014), pp. 1-155.

[8] A. L. Barabási and Z. N. Oltvai, Network biology: understanding the cell’s

functional organization, Nature Reviews Genetics, 5.2 (2004), pp. 101-113.

[9] J. Basilico and T. Hofmann, Unifying collaborative and content-based filter-

ing, in Proceedings of the 21st International Conference on Machine Learning,

ACM, 2004, p. 9.

[10] R. Bell, Y. Koren, and C. Volinsky, Modeling relationships at multiple

scales to improve accuracy of large recommender systems, in Proceedings of the

13th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, ACM, 2007, pp. 95-104.

[11] J. Bennett, and S. Lanning, The Netflix prize, in Proceedings of KDD Cup

and Workshop, 2007, p. 35.

[12] C. Bischof and C. Van Loan, The WY representation for products of House-

holder matrices, SIAM Journal on Scientific and Statistical Computing, 8.1 (1987),

s2-s13.

[13] Å. Björck, Solving linear least squares problems by Gram-Schmidt orthogonal-

ization, BIT, 7.1 (1967), pp. 1-21.

BIBLIOGRAPHY 127

[14] Å. Björck and C. C. Paige, Loss and recapture of orthogonality in the modified

Gram-Schmidt algorithm, SIAM J. Matrix Anal. Appl., 13.1 (1992), pp. 176-190.

[15] Å. Björck and C. C. Paige, Solution of augmented linear systems using or-

thogonal factorizations, BIT, 34.1 (1994), pp. 1-24.

[16] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I.

Dhillon, J. J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K.

Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide, SIAM,

Philadelphia, PA, 1997; also available online from http://www.netlib.org.

[17] L. Bolelli, S. Ertekin, and C. L. Giles, Clustering scientific literature using

sparse citation graph analysis, in European Conference on Principles of Data

Mining and Knowledge Discovery, Springer Berlin Heidelberg, 2006, pp. 30-41.

[18] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial,

2nd ed., SIAM, Philadelphia, PA, 2000.

[19] L. Barbu and G. Morosanu, Singularly Perturbed Boundary-Value Problems,

Springer Science & Business Media, 2007.

[20] M. Benzi and C. D. Meyer, A direct projection method for sparse linear sys-

tems, SIAM J. Sci. Comput., 16.5 (1995), pp. 1159-1176.

[21] D. Calvetti, L. Reichel, and D. C. Sorensen, An implicitly restarted Lanc-

zos method for large symmetric eigenvalue problems, Electron. Trans. Numer.

Anal., 2.1 (1994), pp. 1-21.

BIBLIOGRAPHY 128

[22] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,

B. C. McCallum, and T. R. Evans, Reconstruction and representation of 3D

objects with radial basis functions, in Proceedings of the 28th Annual Conference

on Computer Graphics and Interactive Techniques, ACM, New York, 2001, pp.

67-76.

[23] E. Carson, Communication-avoiding Krylov Subspace Methods in Theory and

Practice, University of California, Berkeley, ProQuest Dissertations Publishing,

2015.

[24] E. Carson, N. Knight, and J. Demmel, Avoiding communication in non-

symmetric Lanczos-based Krylov subspace methods, SIAM J. Sci. Comput., 35.5

(2013), pp. S42-S61.

[25] N. Castro-González, J. Ceballos, F. M. Dopico, and J. M. Molera,

Accurate solution of structured least squares problems via rank-revealing decom-

positions, SIAM J. Matrix Anal. Appl., 34.3 (2013), pp. 1112-1128.

[26] T. F. Chan, Rank revealing QR factorizations, Linear Algebra Appl., 88 (1987),

pp. 67-82.

[27] E. Chan, M. Heimlich, A. Purkayastha, and R. Van De Geijn, Collective

communication: theory, practice, and experience, in Concurrency and Computa-

tion: Practice and Experience, 19, G. C. Fox and D. W. Walker, eds., John Wiley,

New York, 2007, pp. 1749-1783.

BIBLIOGRAPHY 129

[28] C. P. Chen and C. Y. Zhang, Data-intensive applications, challenges, tech-

niques and technologies: A survey on big data, Inform. Sci., 275 (2014), pp. 314-

347.

[29] A. Cleary and J. J. Dongarra, Implementation in ScaLAPACK of divide-

and-conquer algorithms for banded and tridiagonal linear systems, Computer Sci-

ence Dept. Technical Report CS-97-358, University of Tennessee, Knoxville, TN,

1997.

[30] P. G. Constantine and D. F. Gleich, Tall and skinny QR factorizations in

MapReduce architectures, in Proceedings of the 2nd International Workshop on

MapReduce and its Applications, ACM, 2011, pp. 43-50.

[31] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems:

Concepts and Design, 5th ed., Pearson Education, 2011.

[32] T. A. Davis, Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-

revealing sparse QR factorization, ACM Trans. Math. Software, 38.1 (2011), ar-

ticle 8.

[33] J. Dean and S. Ghemawat, MapReduce: Simplified data processing on large

clusters, Communications of the ACM, 51.1 (2008), pp. 107-113.

[34] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-

optimal parallel and sequential QR and LU factorizations, SIAM J. Sci. Comput.,

34.1 (2012), pp. A206-A239.

BIBLIOGRAPHY 130

[35] J. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić, and Z. Dr-

mač, Computing the singular value decomposition with high relative accuracy,

Linear Algebra Appl., 299.1-3 (1999), pp. 21-80.

[36] J. J. Dongarra, Trip report to Changsha and the Tianhe-2 super-

computer, http://www.netlib.org/utk/people/JackDongarra/PAPERS/tianhe-2-

dongarra-report.pdf, 2013.

[37] J. J. Dongarra and L. Johnsson, Solving banded systems on a parallel pro-

cessor, Parallel Comput., 5.1-2 (1987), pp. 219-246.

[38] J. J. Dongarra and A. H. Sameh, On some parallel banded system solvers,

Parallel Comput., 1.3-4 (1984), pp. 223-235.

[39] S. S. Epp, Discrete Mathematics with Applications, 4th ed., Cengage Learning,

Boston, MA, 2011.

[40] T. P. Fries and T. Belytschko, The extended/generalized finite element

method: an overview of the method and its applications, International Journal

for Numerical Methods in Engineering, 84.3 (2010), pp. 253-304.

[41] J. R. Gilbert, C. Moler, and R. Schreiber, Sparse matrices in MATLAB:

design and implementation, SIAM J. Matrix Anal. Appl., 13.1 (1992), pp. 333-356.

[42] M. Girvan and M. E. Newman, Community structure in social and biological

networks, in Proceedings of the National Academy of Sciences, 99.12 (2002), pp.

7821-7826.

BIBLIOGRAPHY 131

[43] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., The Johns

Hopkins University Press, Baltimore, MD, 2012.

[44] G. H. Golub, A. H. Sameh, and V. Sarin, A parallel balance scheme for

banded linear systems, Numer. Linear Algebra Appl., 8.5 (2001), pp. 297-316.

[45] C. A. Gomez-Uribe and N. Hunt, The Netflix recommender system: Algo-

rithms, business value, and innovation, ACM Transactions on Management In-

formation Systems, 6.4 (2016), article 13.

[46] G. Groh and C. Ehmig, Recommendations in taste related domains: Collabo-

rative filtering vs. social filtering, in Proceedings of the 2007 International ACM

Conference on Supporting Group Work, ACM, 2007, pp. 127-136.

[47] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Pro-

gramming with the Message-Passing Interface, 2nd ed., MIT Press, Cambridge,

MA, 1999.

[48] C. Gu, Smoothing Spline ANOVA Models, 2nd ed., Springer, New York, 2013.

[49] M. R. Guarracino, F. Perla, and P. Zanetti, A parallel block Lanczos

algorithm and its implementation for the evaluation of some eigenvalues of large

sparse symmetric matrices on multicomputers, Int. J. Appl. Math. Comput. Sci.,

16.2 (2006), pp. 241-249.

[50] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, Eval-

uating collaborative filtering recommender systems, ACM Transactions on Infor-

mation Systems, 22.1 (2004), pp. 5-53.

BIBLIOGRAPHY 132

[51] V. Hernández, J. E. Román, and A. Tomás, Parallel Arnoldi eigensolvers

with enhanced scalability via global communications rearrangement, Parallel Com-

put., 33.7 (2007), pp. 521-540.

[52] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J.

Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E.

T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M.

Willenbring, A. Williams, and K. S. Stanley, An overview of the Trilinos

project, ACM Trans. Math. Software, 31.3 (2005), pp. 397-423.

[53] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM,

Philadelphia, PA, 2002.

[54] N. J. Higham, QR factorization with complete pivoting and accurate computation

of the SVD, Linear Algebra Appl., 309.1-3 (2000), pp. 153-174.

[55] R. W. Hockney, A fast direct solution of Poisson’s equation using Fourier anal-

ysis, J. ACM, 12.1 (1965), pp. 95-113.

[56] M. Hoemmen, A communication-avoiding, hybrid-parallel, rank-revealing orthog-

onalization method, in Parallel & Distributed Processing Symposium (IPDPS),

2011 IEEE International, pp. 966-977.

[57] M. Hoemmen, Communication-avoiding Krylov Subspace Methods, University of

California, Berkeley, ProQuest Dissertations Publishing, 2010.

BIBLIOGRAPHY 133

[58] P. D. Hoff, Multiplicative latent factor models for description and prediction

of social networks, Computational and Mathematical Organization Theory, 15.4

(2009), p. 261.

[59] P. D. Hoff, A. E. Raftery, and M. S. Handcock, Latent space approaches

to social network analysis, J. Amer. Statist. Assoc., 97.460 (2002), pp. 1090-1098.

[60] T. Hofmann, Probabilistic latent semantic indexing, in Proceedings of the 22nd

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, ACM, 1999, pp. 50-57.

[61] IEEE Standards Committee, 754-2008 IEEE standard for floating-point

arithmetic, IEEE Computer Society Std, 2008.

[62] W. Jalby and B. Philippe, Stability analysis and improvement of the block

Gram-Schmidt algorithm, SIAM Journal on Scientific and Statistical Computing,

12.5 (1991), pp. 1058-1073.

[63] M. Jamali and M. Ester, A matrix factorization technique with trust prop-

agation for recommendation in social networks, in Proceedings of the 4th ACM

Conference on Recommender Systems, ACM, 2010, pp. 135-142.

[64] M. Jamali and M. Ester, Trustwalker: a random walk model for combin-

ing trust-based and item-based recommendation, in Proceedings of the 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

ACM, 2009, pp. 397-406.

BIBLIOGRAPHY 134

[65] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite

Element Method, Courier Corporation, North Chelmsford, MA, 2012.

[66] K. Kambatla, G. Kollias, V. Kumar, and A. Grama, Trends in big data

analytics, Journal of Parallel and Distributed Computing 74.7 (2014), pp. 2561-

2573.

[67] I. Koch, T. Lengauer, and E. Wanke, An algorithm for finding maximal

common subtopologies in a set of protein structures, J. Comput. Biol., 3.2 (1996),

pp. 289-306.

[68] Y. Koren, R. Bell, and C. Volinsky, Matrix factorization techniques for

recommender systems, in Computer, 42.8 (2009), pp. 30-37.

[69] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel

Computing: Design and Analysis of Algorithms, Benjamin-Cummings, Redwood

City, CA, 1994.

[70] X. N. Lam, T. Vu, T. D. Le, and A. D. Duong, Addressing cold-start problem

in recommendation systems, in Proceedings of the 2nd International Conference

on Ubiquitous Information Management and Communication, ACM, 2008, pp.

208-211.

[71] J. Leskovec and J. J. Mcauley, Learning to discover social circles in ego

networks, in Advances in Neural Information Processing Systems 2012, pp. 539-

547.

BIBLIOGRAPHY 135

[72] X. S. Li and J. W. Demmel, SuperLU_DIST: A scalable distributed-memory

sparse direct solver for unsymmetric linear systems, ACM Trans. Math. Software,

29.2 (2002), pp. 110-140.

[73] G. Linden, B. Smith, and J. York, Amazon.com recommendations: Item-to-

item collaborative filtering, IEEE Internet computing, 7.1 (2003), pp. 76-80.

[74] S. T. Liu and Y. Xu, Galerkin methods based on Hermite splines for singular

perturbation problems, SIAM J. Numer. Anal., 43.6 (2006), pp. 2607-2623.

[75] N. A. Lynch, Distributed Algorithms, Morgan Kaufmann, Burlington, MA, 1996.

[76] H. Ma, H. Yang, M. R. Lyu, and I. King, SoRec: social recommendation using

probabilistic matrix factorization, in Proceedings of the 17th ACM Conference on

Information and Knowledge Management, ACM, 2008, pp. 931-940.

[77] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King, Recommender systems with

social regularization, in Proceedings of the 4th ACM International Conference on

Web Search and Data Mining, ACM, 2011, pp. 287-296.

[78] I. MacKenzie, C. Meyer, and S. Noble, How retailers can keep up with

consumers, McKinsey & Company, 2013.

[79] MATLAB and Statistics Toolbox Release 2016a, The MathWorks, Inc., Natick,

MA, 2016.

[80] U. Meijer, A parallel partition method for solving banded systems of linear equa-

tions, Parallel Comput., 2.1 (1985), pp. 33-43.

BIBLIOGRAPHY 136

[81] A. Mnih and R. R. Salakhutdinov, Probabilistic matrix factorization, in

Advances in Neural Information Processing Systems, 2008, pp. 1257-1264.

[82] R. Morgan, On restarting the Arnoldi method for large nonsymmetric eigenvalue

problems, Math. Comp., 65.215 (1996), pp. 1213-1230.

[83] National Research Council, Frontiers in Massive Data Analysis, National

Academies Press, 2013.

[84] National Research Council, Getting up to Speed: The Future of Supercom-

puting, National Academies Press, 2005.

[85] M. E. J. Newman, Finding community structure in networks using the eigen-

vectors of matrices, Phys. Rev. E 74.3 (2006), p. 036104.

[86] W. Peng and B. N. Datta, A sparse QS-decomposition for large sparse linear

system of equations, in Domain Decomposition Methods in Science and Engineer-

ing XIX, Y. Huang, R. Kornhuber, O. Widlund, and J. Xu, eds., Springer, New

York, 2011, pp. 431-438.

[87] E. Polizzi and A. H. Sameh, A parallel hybrid banded system solver: the Spike

algorithm, Parallel Comput., 32.2 (2006), pp. 177-194.

[88] F. Provost and T. Fawcett, Data science and its relationship to big data and

data-driven decision making, Big Data, 1.1 (2013), pp. 51-59.

[89] S. Purushotham, Y. Liu, and C. C. J. Kuo, Collaborative topic regres-

sion with social matrix factorization for recommendation systems, arXiv preprint

arXiv:1206.4684 (2012).

BIBLIOGRAPHY 137

[90] U. N. Raghavan, R. Albert, and S. Kumara, Near linear time algorithm to

detect community structures in large-scale networks, Phys. Rev. E, 76.3 (2007),

p.036106.

[91] P. Resnick and H. R. Varian, Recommender systems, Communications of the

ACM, 40.3 (1997), pp. 56-58.

[92] M. Sadkane, Block-Arnoldi and Davidson methods for unsymmetric large eigen-

value problems, Numer. Math., 64.1 (1993), pp. 195-211.

[93] R. Salakhutdinov and A. Mnih, Bayesian probabilistic matrix factorization

using Markov chain Monte Carlo, in Proceedings of the 25th International Con-

ference on Machine Learning, 2008, pp. 880-887.

[94] R. Samudrala and J. Moult, A graph-theoretic algorithm for comparative

modeling of protein structure, Journal of Molecular Biology, 279.1 (1998), pp.

287-302.

[95] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Item-based collabora-

tive filtering recommendation algorithms, in Proceedings of the 10th International

Conference on World Wide Web, ACM, 2001, pp. 285-295.

[96] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, Collaborative

filtering recommender systems, in The Adaptive Web, Springer Berlin Heidelberg,

2007, pp. 291-324.

[97] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock, Methods

and metrics for cold-start recommendations, in Proceedings of the 25th Annual

BIBLIOGRAPHY 138

International ACM SIGIR Conference on Research and Development in Informa-

tion Retrieval, ACM, 2002, pp. 253-260.

[98] J. Scott, Social Network Analysis, Sage, Thousand Oaks, CA, 2017.

[99] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 22.8 (2000), pp. 888-905.

[100] R. B. Sidje, Alternatives for parallel Krylov subspace basis computation, Numer.

Linear Algebra Appl., 4.4 (1997), pp. 305-331.

[101] P. Singla and M. Richardson, Yes, there is a correlation:- from social net-

works to personal behavior on the web, in Proceedings of the 17th International

Conference on World Wide Web, ACM, 2008, pp. 655-664.

[102] N. Srebro and T. Jaakkola, Weighted low-rank approximations, in Pro-

ceedings of the 20th International Conference on Machine Learning, 2003, pp.

720-727.

[103] H. S. Stone, An efficient parallel algorithm for the solution of a tridiagonal

linear system of equations, J. ACM, 20.1 (1973), pp. 27-38.

[104] X. Su and T. M. Khoshgoftaar, A survey of collaborative filtering tech-

niques, Advances in Artificial Intelligence, 2009 (2009), article 4.

[105] J. G. Sun, Perturbation bounds for the Cholesky and QR factorizations, BIT,

31.2 (1991), pp. 341-352.

[106] A. S. Tanenbaum and M. Van Steen, Distributed Systems: Principles and

Paradigms, Prentice-Hall, Upper Saddle River, NJ, 2007.

BIBLIOGRAPHY 139

[107] L. Tang and H. Liu, Relational learning via latent social dimensions, in Pro-

ceedings of the 15th ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining. ACM, 2009, pp. 817-826.

[108] L. N. Trefethen and D. Bau III, Numerical Linear Algebra, SIAM, Philadel-

phia, PA, 1997.

[109] A. Tuzhilin, Y. Koren, J. Bennett, C. Elkan, and D. Lemire, Large-

scale recommender systems and the Netflix prize competition, in KDD Proceed-

ings. 2008.

[110] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, The anatomy

of the facebook social graph, arXiv preprint arXiv:1111.4503 (2011).

[111] L. G. Valiant, A bridging model for parallel computation, Communications of

the ACM, 33.8 (1990), pp. 103-111.

[112] J. S. Vitter, Algorithms and data structures for external memory, Foundations

and Trends R© in Theoretical Computer Science, 2.4 (2008), pp. 305-474.

[113] J. S. Vitter, External memory algorithms and data structures: Dealing with

massive data, ACM Computing Surveys, 33.2 (2001), pp. 209-271.

[114] H. H. Wang, A parallel method for tridiagonal equations, ACM Trans. Math.

Software, 7.2 (1981), pp. 170-183.

[115] C. Wang and D. M. Blei, Collaborative topic modeling for recommending

scientific articles, in Proceedings of the 17th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, ACM, 2011, pp. 448-456.

BIBLIOGRAPHY 140

[116] S. J. Wright, Parallel algorithms for banded linear systems, SIAM Journal on

Scientific and Statistical Computing, 12.4 (1991), pp. 824-842.

[117] G. R. Xue, C. Lin, Q. Yang, W. Xi, H. J. Zeng, Y. Yu, and Z. Chen,

Scalable collaborative filtering using cluster-based smoothing, in Proceedings of the

28th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, ACM, 2005, pp. 114-121.

[118] J. Yang and J. Leskovec, Defining and evaluating network communities based

on ground-truth, Knowledge and Information Systems, 42.1 (2015), pp. 181-213.

[119] S. H. Yang, B. Long, A. Smola, N. Sadagopan, Z. Zheng, and H. Zha,

Like like alike: Joint friendship and interest propagation in social networks, in

Proceedings of the 20th International Conference on World Wide Web, ACM,

2011, pp. 537-546.

BIOGRAPHICAL DATA

NAME OF AUTHOR: Qian Huang

PLACE OF BIRTH: China

DATE OF BIRTH: October 26, 1986

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

Sun Yat-sen University

DEGREES AWARDED:

B.S., Sun Yat-sen University, China, 2006

M.S., Sun Yat-sen University, China, 2008

PUBLICATION:

• Q. Huang and Y. Xu, A Parallel Algorithm for Stable Sparse Orthogonal

Factorization of Ill-Conditioned Banded Matrices, preprint, 2017.

• Q. Huang and Y. Xu, A Recursive Algorithm for Stable Sparse Orthogonal

Factorization of Ill-Conditioned Banded Matrices, preprint, 2017.

• Q. Huang and Y. Xu, Stable Sparse Orthogonal Factorization of Ill-Conditioned

Banded Matrices for Parallel Computing, preprint, 2017.

141

	Stable Sparse Orthogonal Factorization of Ill-Conditioned Banded Matrices for Parallel Computing
	Recommended Citation

	tmp.1525867929.pdf.zlz5c

