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Fig. 3.5: Milky way Galaxy.

Table 3.2: Comparison of iterations and time cost among algorithms on recovery of Galaxy
image (shown in Figure 3.5), where L = m/n denotes the number of CDP masks.

Algorithms RWF IRWF TWF ITWF WF

L = 6 #passes 140 24 410 41 fail
time cost(s) 110 21.2 406 43 fail

L = 12 #passes 70 8 190 12 315
time cost(s) 107 13.7 363.6 25.9 426

of intensity can be expressed as yi =
√
α · Poisson (|aTi x|2/α), for i = 1, 2, ...m where

α denotes the level of the input noise, and Poisson(λ) denotes a random sample generated

by the Poisson distribution with mean λ. It can be observed from Figure 3.6 that RWF

performs better than TWF in terms of the recovery accuracy under two different noise

levels.

3.6 Conclusion

In this chapter, we study RWF and its stochastic version IRWF to recover a signal from

a quadratic systems of equations, based on a nonconvex and nonsmooth quadratic loss

function of magnitude measurements. This loss function sacrifices the smoothness but
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Fig. 3.6: Comparison of relative error under Poisson noise between RWF and TWF.

enjoys advantages in statistical and computational efficiency. It has potential to be extended

in various scenarios. One interesting direction is to extend such an algorithm to exploit

signal structures (e.g., non-negativity, sparsity, etc) to assist the recovery. The lower-order

loss function may offer great simplicity to prove performance guarantee in such cases.

Another interesting direction is to study the convergence of algorithms from random

initialization. In the regime of large sample size (m � n), the empirical loss surface ap-

proaches the asymptotic loss (Figure 3.2(b)) and hence has no spurious local minima. Due

to the result [139], it is conceivable that gradient descent converges from random starting

point. Similar phenomenons have been observed in [43, 80]. However, under moderate

number of measurements (m < 10n), authentic local minima do exist and often locate not

far from the global ones. In this regime, the batch gradient method often fails with random

initialization. As always believed, stochastic algorithms are efficient in escaping bad local

minima or saddle points in nonconvex optimization because of the inherent noise [82,140].

We observe numerically that IRWF and block IRWF from random starting point still con-

verge to global minimum even with very small sample size which is close to the theoretical

limits [141]. It is of interest to analyze theoretically that stochastic methods escape these

local minima (not just saddle points) efficiently.
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3.7 Technical Proofs

We first introduce some notations here. We let A : Rn×n 7→ Rm be a linear map

M ∈ Rn×n 7→ A(M) := {aTi Mai}1≤i≤m.

We let ‖ ·‖1 and ‖ ·‖ denote the l1 norm and l2 norm of a vector, respectively. Moreover, let

‖ · ‖F and ‖ · ‖ denote the Frobenius norm and the spectral norm of a matrix, respectively.

We note that the constants c, C, c0, c1, c2 may be different from line to line, for the sake of

notational simplicity.

3.7.1 Proof of Proposition 3.1: Initialization

The idea of using truncation to bound some non-sub-Gaussian sequences has appeared in

previous works [45, Lemma2.3] and TWF [61]. Compared to the proof for TWF, this proof

has new technical developments to address the magnitude measurements and truncation

from both sides.

We first estimate the norm of x as

λ0 =
mn∑m

i=1 ‖ai‖1

·

(
1

m

m∑
i=1

yi

)
. (3.23)

Since ai ∼ N (0, In×n), by Hoeffding-type inequality, it can be shown that

∣∣∣∣∣
∑m

i=1 ‖ai‖1

mn
−
√

2

π

∣∣∣∣∣ < ε

3
(3.24)

holds with probability at least 1− 2 exp(−c1mnε
2) for some constant c1 > 0.

Moreover, given x, yi’s are independent sub-Gaussian random variables. Thus, by
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Hoeffding-type inequality, it can be shown that

∣∣∣∣∣
√
π

2

(
1

m

m∑
i=1

yi

)
− ‖x‖

∣∣∣∣∣ < ε

3
‖x‖ (3.25)

holds with probability at least 1− 2 exp(−c1mε
2) for some constant c1 > 0.

On the event E1 = {both (3.24) and (3.25) hold}, it can be argued that

|λ0 − ‖x‖| < ε‖x‖. (3.26)

Without loss of generality, we let ‖x‖ = 1. Then on the event E1, the truncation function

satisfies the following bounds

1{αl(1+ε)<|aTi x|<αu(1−ε)} ≤ 1{αlλ0<yi<αuλ0} ≤ 1{αl(1−ε)<|aTi x|<αu(1+ε)}.

Thus, by defining

Y 1 :=
1

m

∑
aia

T
i |aTi x|1{αl(1+ε)<|aTi x|<αu(1−ε)}

Y 2 :=
1

m

∑
aia

T
i |aTi x|1{αl(1−ε)<|aTi x|<αu(1+ε)},

we have Y 1 ≺ Y ≺ Y 2. We further compute the expectations of Y 1 and Y 2 and obtain

E[Y 1] = (β1xx
T + β2I), E[Y 2] = (β3xx

T + β4I), (3.27)

where

β1 := E[|ξ|31{αl(1+ε)<|ξ|<αu(1−ε)}]− E[|ξ|1{αl(1+ε)<|ξ|<αu(1−ε)}],

β3 := E[|ξ|31{αl(1−ε)<|ξ|<αu(1+ε)}]− E[|ξ|1{αl(1−ε)<|ξ|<αu(1+ε)}],

β2 := E[|ξ|1{αl(1+ε)<|ξ|<αu(1−ε)}], β4 := E[|ξ|1{αl(1−ε)<|ξ|<αu(1+ε)}]



74

where ξ ∼ N (0, 1). For given αl and αu, small value of ε yields arbitrarily close β1 and β3,

as well as arbitrarily close β2 and β4. For example, taking αl = 1, αu = 5 and ε = 0.01,

we have β1 = 0.9678, β2 = 0.4791, β3 = 0.9688, β4 = 0.4888.

Now applying standard results on random matrices with non-isotropic sub-Gaussian

rows [142, equation (5.26)] and noticing that aiaTi |aTi x|1{αl(1+ε)<|aTi x|<αu(1−ε)} can be

rewritten as bibTi for sub-Gaussian vector bi := ai
√
|aTi x|1{αl(1+ε)<|aTi x|<αu(1−ε)}, one

can derive

‖Y 1 − E[Y 1]‖ ≤ δ, ‖Y 2 − E[Y 2]‖ ≤ δ (3.28)

with probability 1 − 4 exp(−c1(δ)m) for some positive c1 which is only affected by δ,

provided that m/n exceeds a certain constant. Furthermore, when ε is sufficiently small,

one further has ‖E[Y 1]− E[Y 2]‖ ≤ δ. Combining the above facts together, one can show

that

‖Y − (β1xx
T + β2I)‖ ≤ 3δ. (3.29)

Let z̃(0) be the normalized leading eigenvector of Y . Following the arguments in [1, Sec-

tion 7.8] and taking δ and ε to be sufficiently small, one has

dist(z̃(0),x) ≤ δ̃, (3.30)

for a given δ̃ > 0, as long as m/n exceeds a certain constant.

3.7.2 Proof in Section 3.2.2: Expectation of loss functions

The expectation of the loss function (3.2) of WF is given by [80] as

E[`WF (z)] =
3

4
‖x‖4 +

3

4
‖z‖4 − 1

2
‖x‖2‖z‖2 − |zTx|2. (3.31)
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We next show that the expectation of the loss function (3.3) of RWF has the following

form:

E[`(z)] =
1

2
‖x‖2 +

1

2
‖z‖2 − ‖x‖‖z‖ · E

[
|aTi z|
‖z‖

· |a
T
i x|
‖x‖

]
, (3.32)

where

E

[
|aTi z|
‖z‖

· |a
T
i x|
‖x‖

]
=


(1−ρ2)3/2

π

∫∞
0
t(eρt + e−ρt)K0(t)dt, if |ρ| < 1;

1, if |ρ| = 1;

(3.33)

where ρ = zTx
‖x‖‖z‖ and K0(·) is the modified Bessel function of the second kind.

In order to derive (3.33), we first define

u :=
aTi z

‖z‖
and v :=

aTi x

‖x‖
,

and it suffices to drive E[|uv|]. Note that (u, v) ∼ N (0,Σ), where

Σ =

 1 ρ

ρ 1

 , and ρ =
zTx

‖x‖‖z‖
.

Following [143], the density function of u · v is given by

φuv(x) =
1

π
√

1− ρ2
exp

(
ρx

1− ρ2

)
K0

(
|x|

1− ρ2

)
, x 6= 0.

Thus, the density of |uv| is given by

ψ|uv|(x) =
1

π
√

1− ρ2

[
exp

(
ρx

1− ρ2

)
+ exp

(
− ρx

1− ρ2

)]
K0

(
|x|

1− ρ2

)
, x > 0,
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for |ρ| < 1. Therefore, if |ρ| < 1, then

E[|uv|] =

∫ ∞
0

x · ψρ(x)dx

=

∫ ∞
0

x · 1

π
√

1− ρ2

[
exp

(
ρx

1− ρ2

)
+ exp

(
− ρx

1− ρ2

)]
K0

(
|x|

1− ρ2

)
dx

=
(1− ρ2)3/2

π

∫ ∞
0

t(eρt + e−ρt)K0(t)dt

where the last step follows by changing variables.

If |ρ| = 1, then |uv| becomes a χ2
1 random variable, with the density

ψ|uv|(x) =
1√
2π
x−1/2 exp(−x/2), x > 0,

and hence E[|uv|] = 1.

3.7.3 Proof of Theorem 3.2: Geometric Convergence of RWF

The general structure of the proof follows that for WF in [1] and TWF in [61]. However, the

proof requires development of new bounds due to the nonsmoothness of the loss function

and absolute value based measurements. On the other hand the proof is much simpler due

to the lower-order loss function adopted in RWF.

We first introduce a global phase notation for real case as follows:

Φ(z) :=


0, if ‖z − x‖ ≤ ‖z + x‖,

π, otherwise.

(3.34)

For the sake of simplicity, we let z be e−jΦ(z)z, which indicates that z is always in the

neighborhood of x. Furthermore, we denote h := z − x.

The idea of the proof is to show that within the neighborhood of global optima, RWF
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satisfies the Regularity Condition RC(µ, λ, c) , i.e.,

〈∇`(z),h〉 ≥ µ

2
‖∇`(z)‖2 +

λ

2
‖h‖2 (3.35)

for all z and h = z−x obeying ‖h‖ ≤ c‖x‖, where 0 < c < 1 is some constant. Then, as

shown in [61], once the initialization lands into this neighborhood, linear convergence can

be guaranteed, i.e.,

dist2 (z − µ∇`(z),x) ≤ (1− µλ)dist2(z,x), (3.36)

for any z with ‖z − x‖ ≤ c‖x‖.

To show the regularity condition, we first define a set S := {i : 1 ≤ i ≤ m, (aTi z)(aTi x) <

0}, and then derive the following bound:

〈∇`(z),h〉 =
1

m

m∑
i=1

(
aTi z − |aTi x|sgn(aTi z)

)
(aTi h)

=
1

m

[
m∑
i=1

(aTi h)2 + 2
∑
i∈S

(aTi x)(aTi h)

]

≥ 1

m

[
m∑
i=1

(aTi h)2 − 2

∣∣∣∣∣∑
i∈S

(aTi x)(aTi h)

∣∣∣∣∣
]

≥ 1

m

[
m∑
i=1

(aTi h)2 −
∑
i∈S

2
∣∣(aTi x)(aTi h)

∣∣] . (3.37)

The first term in (3.37) can be bounded using Lemma 3.1 in [45], which we state below.

Lemma 3.6. For any 0 < ε < 1, if m > c0nε
−2, then with probability at least 1 −

2 exp(−c1ε
2m),

(1− ε)‖h‖2 ≤ 1

m

m∑
i=1

(aTi h)2 ≤ (1 + ε)‖h‖2 (3.38)

holds for all non-zero vectors h ∈ Rn. Here, c0, c1 > 0 are some universal constants.
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For the second term in (3.37), we derive

∑
i∈S

2
∣∣aTi x∣∣ ∣∣aTi h∣∣ ≤∑

i∈S

[
(aTi x)2 + (aTi h)2

]
=

m∑
i=1

[(aTi x)2 + (aTi h)2] · 1{(aTi x)(aTi z)<0}

=
m∑
i=1

[(aTi x)2 + (aTi h)2] · 1{(aTi x)2+(aTi x)(aTi h)<0}

≤
m∑
i=1

[(aTi x)2 + (aTi h)2] · 1{|aTi x|<|aTi h|}

≤ 2
m∑
i=1

(aTi h)2 · 1{|aTi x|<|aTi h|}. (3.39)

The above equation can be further upper bounded by the following lemma.

Lemma 3.7. For any ε > 0, if m > c0nε
−2 log ε−1, then with probability at least 1 −

C exp(−c1ε
2m),

1

m

m∑
i=1

(aTi h)2 · 1{|aTi x|<|aTi h|} ≤ (0.13 + ε) ‖h‖2 (3.40)

holds for all non-zero vectors h ∈ Rn satisfying ‖h‖ ≤ 1
10
‖x‖. Here, c0, c1, C > 0 are

some universal constants.

Proof. We first prove bounds for any fixed h ≤ 1
10
‖x‖, and then develop a uniform bound

later on. We introduce a series of auxiliary random Lipschitz functions to approximate the

indicator functions. For i = 1, . . . ,m, define

χi(t) :=



t, if t > (aTi x)2;

1
δ
(t− (aTi x)2) + (aTi x)2, if (1− δ)(aTi x)2 ≤ t ≤ (aTi x)2;

0, else;

(3.41)
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and then χi(t)’s are random Lipschitz functions with Lipschitz constant 1
δ
. We further have

|aTi h|21{|aTi x|<|aTi h|} ≤ χi(|aTi h|2) ≤ |aTi h|21{(1−δ)|aTi x|2<|aTi h|2}. (3.42)

For convenience, we denote γi :=
|aTi h|2
‖h‖2 1{(1−δ)|aTi x|2<|aTi h|2} and θ := ‖h‖/‖x‖. We

next estimate the expectation of γi, by conditional expectation,

E[γi] =

∫
Ω

γidP =

∫∫ ∞
−∞

E

[
γi

∣∣∣∣aTi x = τ1‖x‖,aTi h = τ2‖h‖
]
· f(τ1, τ2)dτ1dτ2, (3.43)

where f(τ1, τ2) is the density of two joint Gaussian random variables with correlation ρ =

hTx
‖h‖‖x‖ 6= ±1. We then continue to derive

E[γi] =

∫∫ ∞
−∞

τ 2
2 · 1{√1−δ|τ1|<|τ2|θ} · f(τ1, τ2)dτ1dτ2

=
1

2π
√

1− ρ2

∫ ∞
−∞

τ 2
2 exp

(
−τ

2
2

2

)
·
∫ |τ2|θ√

1−δ

−|τ2|θ√
1−δ

exp

(
−(τ1 − ρτ2)2

2(1− ρ2)

)
dτ1dτ2 (3.44)

=
1

2π

∫ ∞
−∞

τ 2
2 exp

(
−τ

2
2

2

)
·
∫ |τ2|θ√

1−δ
−ρτ2√

1−ρ2

− |τ2|θ√
1−δ
−ρτ2√

1−ρ2

exp

(
−τ

2

2

)
dτdτ2 by changing variables

=
1

2π

∫ ∞
−∞

τ 2
2 exp

(
−τ

2
2

2

)
·
√
π

2

(
erf

( |τ2|θ√
1−δ − ρτ2√

1− ρ2

)
− erf

(
− |τ2|θ√

1−δ − ρτ2√
1− ρ2

))
dτ2

=
1√
2π

∫ ∞
0

τ 2
2 exp

(
−τ

2
2

2

)
·

(
erf

(
( θ√

1−δ − ρ)τ2√
1− ρ2

)
+ erf

(
( θ√

1−δ + ρ)τ2√
1− ρ2

))
dτ2.

(3.45)

For |ρ| < 1, E[γi] is a continuous function of ρ. For |ρ| = 1, E[γi] = 0. The last integral

(3.45) can be calculated numerically. Figure 3.7 plots E[γi] for θ = 0.1 and δ = 0.01 over

ρ ∈ [−1, 1]. Furthermore, (3.44) indicates that E[γi] is monotonically increasing with both

θ and δ. Thus, we obtain a universal bound

E[γi] ≤ 0.13 for θ < 0.1 and δ = 0.01, (3.46)
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which further implies E[χi(|aTi h|2)] ≤ 0.13‖h‖2 for θ < 0.1 and δ = 0.01.
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Fig. 3.7: E[γi] with respect to ρ

Furthermore, χi(|aTi h|2)’s are sub-exponential with sub-exponential norm O(‖h‖2).

By the sub-exponential tail bound (Bernstein type) [142], we have

P

[
1

m

m∑
i=1

χi(|aTi h|2)

‖h‖2
> (0.13 + ε)

]
< exp(−cmε2), (3.47)

for some universal constant c, as long as ‖h‖ ≤ 1
10
‖x‖.

We have proved so far that the claim holds for a fixed h. We next obtain a uniform

bound over all h satisfying ‖h‖ ≤ 1
10
‖x‖. We first show the claim holds for all h with

‖h‖ = 1
10
‖x‖ and then argue the claim holds when ‖h‖ < 1

10
‖x‖ towards the end of the

proof. Let ε′ = ε‖x‖
10

and we construct an ε′−netNε′ covering the sphere with radius 1
10
‖x‖

in Rn with cardinality |Nε′| ≤ (1+ 2
ε
)n. Then for any ‖h‖ = 1

10
‖x‖, there exists a h0 ∈ Nε′

such that ‖h−h0‖ ≤ ε‖h‖. Taking the union bound for all the points on the net, we claim

that

1

m

m∑
i=1

χi
(
|aTi h0|2

)
≤ (0.13 + ε) ‖h0‖2, ∀h0 ∈ Nε′ (3.48)

holds with probability at least 1− (1 + 2/ε)n exp(−cmε2).
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Since χi(t)’s are Lipschitz functions with constant 1/δ, we have the following bound

∣∣χi(|aTi h|2)− χi(|aTi h0|2)
∣∣ ≤ 1

δ

∣∣∣∣|aTi h|2 − |aTi h0|2
∣∣∣∣. (3.49)

Moreover, by [61, Lemma 1], we have

1

m
‖A(M)‖1 ≤ c2‖M‖F , for all symmetric rank-2 matricesM ∈ Rn×n, (3.50)

holds with probability at least 1 − C exp(−c1m) as long as m > c0n for some constants

C, c0, c1, c2 > 0. Consequently, on the event that (3.50) holds, we have

∣∣∣∣∣ 1

m

m∑
i=1

χi
(
|aTi h|2

)
− 1

m

m∑
i=1

χi
(
|aTi h0|2

)∣∣∣∣∣
≤ 1

m

m∑
i=1

∣∣χi (|aTi h|2)− χi (|aTi h0|2
)∣∣

≤ 1

δ
· 1

m
‖A(hhT − h0h

T
0 )‖1 because of (3.49)

≤ 1

δ
· c2‖hhT − h0h

T
0 ‖F because of (3.50)

≤ 1

δ
· 3c2‖h− h0‖ · ‖h‖ ≤ 3c3ε/δ‖h‖2,

where the last inequality is due to the Lemma 2 in [61].

On the intersection of events that (3.48) and (3.50) hold, we have

1

m

m∑
i=1

χi
(
|aTi h|2

)
≤ (0.13 + ε+ 3c3ε/δ) ‖h‖2, (3.51)

for all h with ‖h‖ = 1
10
‖x‖.

For the case when ‖h′‖ < 1
10
‖x‖, h′ = ωh for some h satisfying ‖h‖ = 1

10
‖x‖ and

0 < ω < 1. By the definition of χi(·), it can be verified that

χi(|aTi h′|2) = χi(|aTi (ωh)|2) ≤ ω2χi(|aTi h|2). (3.52)
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Applying (3.51), on the same event that (3.48) and (3.50) hold, we have

1

m

m∑
i=1

χi
(
|aTi h′|2

)
≤ (0.13 + ε+ 3c3ε/δ) ‖h′‖2, (3.53)

for all ‖h′‖ < 1
10
‖x‖. Since ε can be arbitrarily small, the proof is completed.

Therefore, combining Lemmas 3.6 and 3.7 with (3.37) yields

〈∇`(z),h〉 ≥ (1− 0.26− 2ε)‖h‖2 = (0.74− 2ε)‖h‖2. (3.54)

We further provide an upper bound on ‖∇`(z)‖ in the following lemma.

Lemma 3.8. Fix δ > 0, and assume yi = |aTi x|. Suppose that m ≥ c0n for a certain

constant c0 > 0. There exist some universal constants c, C > 0 such that with probability

at least 1− C exp(−cm),

‖∇`(z)‖ ≤ (1 + δ) · 2‖h‖ (3.55)

holds for all non-zero vectors h, z ∈ Rn satisfying z = x+ h and ‖h‖‖x‖ ≤
1
10

.

Proof. Denote vi := aTi z − |aTi x|sgn(aTi z). Then

∇`(z) =
1

m
ATv, (3.56)

where A is a matrix with each row being aTi and v is a m−dimensional vector with each

entry being vi. Thus,

‖∇`(z)‖ =

∥∥∥∥ 1

m
ATv

∥∥∥∥ ≤ 1

m
‖A‖ · ‖v‖ ≤ (1 + δ)

‖v‖√
m

(3.57)

as long as m ≥ c1n for some sufficiently large c1 > 0, where the spectral norm bound

‖A‖ ≤
√
m(1 + δ) follows from [142, Theorem 5.32].
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We next bound ‖v‖. Let v = v(1)+v(2), where v(1)
i = aTi h and v(2)

i = 2aTi x1{(aTi z)(aTi x)<0}.

By triangle inequality, we have ‖v‖ ≤ ‖v(1)‖ + ‖v(2)‖. Furthermore, given m > c0n,

by [45, Lemma 3.1] with probability 1− exp(−cm), we have

1

m
‖v(1)‖2 =

1

m

m∑
i=1

(aTi h)2 ≤ (1 + δ)‖h‖2. (3.58)

By Lemma 3.7, we have with probability 1− C exp(−c1m)

1

m
‖v(2)‖2 =

1

m

m∑
i=1

4(aTi x)2 · 1{(aTi x)(aTi z)<0} ≤ 4(0.13 + ε)‖h‖2. (3.59)

Hence,

‖v‖√
m
≤ [
√

1 + δ + 2
√

0.13 + ε]‖h‖. (3.60)

This concludes the proof.

Thus, applying Lemma 3.8 to (3.54), we conclude that Regularity Condition (3.35)

holds for µ and λ satisfying

0.74− 2ε ≥ µ

2
· 4(1 + δ)2 +

λ

2
, (3.61)

which concludes the proof.

We note that (3.61) implies an upper bound µ ≤ 0.74
2

= 0.37, by taking ε and δ to

be sufficiently small. This suggests a range to set the step size in Algorithm 1. However,

in practice, µ can be set much larger than such a bound, say 0.8, while still keeping the

algorithm convergent. This is because the coefficients in the proof are set for convenience

of proof rather than being tightly chosen.
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3.7.4 Proof of Theorem 3.3: Stability to Bounded Noise

We consider the model (3.12) with bounded noise, i.e., yi = |〈ai,x〉|+wi for i = 1, · · · ,m.

The initialization analysis is similar to Section 3.7.1. To analyze the gradient loop, we

consider two regimes.

• Regime 1: c4‖z‖ ≥ ‖h‖ ≥ c3
‖w‖√
m

. In this regime, error contraction by each gradient

step is given by

dist (z − µ∇`(z),x) ≤ (1− ρ)dist(z,x). (3.62)

It suffices to justify that∇`(z) satisfies the RC. We have

∇`(z) =
1

m

m∑
i=1

(
aTi z − yi ·

aTi z

|aTi z|

)
ai

=
1

m

m∑
i=1

(
aTi z − |aTi x| ·

aTi z

|aTi z|

)
ai︸ ︷︷ ︸

∇clean`(z)

− 1

m

m∑
i=1

(
wi ·

aTi z

|aTi z|

)
ai︸ ︷︷ ︸

∇noise`(z)

. (3.63)

All the proofs for Lemma 3.6, 3.7 and 3.8 are still valid for ∇clean`(z), and thus we

have

〈∇clean`(z),h〉 ≥ 0.74‖h‖2, (3.64)∥∥∇clean`(z)
∥∥ ≤ 2(1 + δ)‖h‖. (3.65)

Next, we analyze the contribution of the noise. Let w̃i = wi
aTi z

|aTi z|
, and then for sufficient

large m/n, we have

‖∇noise`(z)‖ =

∥∥∥∥ 1

m
AT w̃

∥∥∥∥ ≤ ∥∥∥∥ 1√
m
AT

∥∥∥∥∥∥∥∥ w̃√m
∥∥∥∥ ≤ (1 + δ)

‖w̃‖√
m
≤ (1 + δ)

‖w‖√
m
,

(3.66)
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where the second inequality is because the spectral norm bound ‖A‖ ≤
√
m(1 + δ) fol-

lowing from [142, Theorem 5.32]. Given the regime condition ‖h‖ ≥ c3
‖w‖√
m

, we further

have

‖∇noise`(z)‖ ≤ (1 + δ)

c3

‖h‖, (3.67)∣∣〈∇noise`(z),h
〉∣∣ ≤ ∥∥∇noise`(z)

∥∥ · ‖h‖ ≤ (1 + δ)

c3

‖h‖2. (3.68)

Combining these together, one has

〈∇`(z),h〉 ≥
〈
∇clean`(z),h

〉
−
∣∣〈∇noise`(z),h

〉∣∣ ≥ (0.74− (1 + δ)

c3

)
‖h‖2, (3.69)

and

‖∇`(z)‖ ≤
∥∥∇clean`(z)

∥∥+
∥∥∇noise`(z)

∥∥ ≤ (1 + δ)

(
2 +

1

c3

)
‖h‖. (3.70)

The RC is guaranteed if µ, λ, ε are chosen properly, c3 is sufficiently large, and s is

sufficiently small.

• Regime 2: Once the iterate enters the regime with ‖h‖ ≤ c3‖w‖√
m

, gradient update may

not reduce the estimation error. However, in this regime, each move size µ∇`(z) is at most

O(‖w‖/
√
m). Then the estimation error cannot increase by more than ‖w‖/

√
m with a

constant factor. Thus, one has

dist (z + µ∇`(z),x) ≤ c5
‖w‖√
m

(3.71)

for some constant c5. As long as ‖w‖/
√
m is sufficiently small, it is guaranteed that

c5
‖w‖√
m
≤ c4‖x‖. If the iterate jumps out of Regime 2, it falls into Regime 1.
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3.7.5 Proof of Theorem 3.4: Mini-batch IRWF

Since the initialization is the same as that in Algorithm 1, it suffices to show the conver-

gence of gradient loops given that the initial point lands into the neighborhood of global

minima. To prove Theorem 3.4, the major step is to prove the following Proposition 3.9

which characterizes how the error of an estimate decays upon one iteration of Algorithm

2. Once Proposition 3.9 is established, we take expectation on both sides of (3.73) with

respect to it−1, and apply Proposition 3.9 one more time to obtain

E{it−1,it}
[
dist2(z(t+1),x)

]
≤
(

1− kρ

n

)2

dist2(z(t−1),x). (3.72)

Continuing this process until the initialization point z(0) yields Theorem 3.4. We next focus

on proving Proposition 3.9 stated bellow.

Proposition 3.9. Assume the measurement vectors are independent and eachai ∼ N (0, I).

There exist some universal constants 0 < ρ, ρ0 < 1 and c0, c1, c2 > 0 such that if m ≥ c0n

and µ = ρ0/n for the update rule (3.14), then with probability at least 1− c1 exp(−c2m),

we have

EΓt

[
dist2(z(t+1),x)

]
≤
(

1− kρ

n

)
· dist2(z(t),x) (3.73)

to hold for all z(t) satisfying dist(z(t),x)
‖z‖ ≤ 1

10
.

Proof. Without loss of generality, we assume z(t) is in the neighborhood of x (otherwise it

is in the neighborhood of −x). Let h = z(t) − x.

We follow the notations in Section 3.7.3 and let S = {i : (aTi x)(aTi z
(t)) < 0}. Then
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we have

EΓt

[
dist2

(
z(t+1),x

)]
= EΓt

[∥∥z(t) − µAT
Γt

(
AΓtz

(t) − yΓt � sgn(AΓtz
(t))
)
− x

∥∥2
]

= ‖h‖2 − 2µEΓt

[(
AΓtz

(t) − yΓt � sgn(AΓtz
(t))
)T

(AΓth)
]

+ µ2EΓt

[(
AT

Γt

(
AΓtz

(t) − yΓt � sgn(AΓtz
(t))
))T (

AT
Γt

(
AΓtz

(t) − yΓt � sgn(AΓtz
(t))
))]

(a)
= ‖h‖2 − 2µk

m

m∑
i=1

[
aTi h

(
aTi z

(t) − yi ·
aTi z

(t)

|aTi z(t)|

)]

+
µ2k

m

m∑
i=1

[
‖ai‖2

(
aTi z

(t) − yi ·
aTi z

(t)

|aTi z(t)|

)2
]

= ‖h‖2 − 2µk

m

(
m∑
i=1

(aTi h)2 +
∑
i∈S

2(aTi h)(aTi x)

)

+
µ2k

m

(
m∑
i=1

‖ai‖2(aTi h)2 + 4
∑
i∈S

‖ai‖2(aTi x)(aTi z
(t))

)

≤ ‖h‖2 − 2µk

m

m∑
i=1

(aTi h)2 +
4µk

m

∑
i∈S

∣∣(aTi h)(aTi x)
∣∣+

µ2k

m

m∑
i=1

‖ai‖2(aTi h)2, (3.74)

where (a) is due to the fact that Γt is uniformly chosen from all subsets of {1, 2, . . . ,m}

with cardinality k.

By Lemma 3.6, we have that if m ≥ c0ε
−2n with probability 1− 2 exp(−c1mε

2)

(1− ε)‖h‖2 ≤ 1

m

m∑
i=1

(aTi h)2 ≤ (1 + ε)‖h‖2.

holds for all vectors h. By Lemma 3.7, we have that with probability 1− C exp(−c1mε
2)

1

m

∑
i∈S

∣∣(aTi h)(aTi x)
∣∣ ≤ (0.13 + ε)‖h‖2

holds for all h satisfying ‖h‖/‖x‖ ≤ 1
10

.

Define an event E1 := {max1≤i≤m ‖ai‖2 ≤ 6n}. We claim that E1 holds with proba-
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bility 1−m exp(−1.5n). Then on the event E1, (3.74) is further upper bounded by

EΓt

[
dist2

(
z(t+1),x

)]
≤
(
1− 2µk(1− ε) + 4µk(0.13 + ε) + µ2k · 6n(1 + ε)

)
‖h‖2

≤ (1− 2µk(0.74− 3ε− 3nµ(1 + ε)))‖h‖2. (3.75)

By choosing the step size µ ≤ 0.24
n

, the proposition is proved.

3.7.6 Proof of Theorem 3.5: Kaczmarz-PR Algorithm

Without loss of generality, we assume z(t) is in the neighborhood of x (otherwise it is in

the neighborhood of −x). Let h = z(t) − x.

We follow the notations in Section 3.7.3 and let S = {i : (aTi x)(aTi z
(t)) < 0}. Then

we have

Eit

[
dist2

(
z(t+1),x

)]
= Eit

∥∥∥∥∥
(
z(t) − 1

‖ait‖2

(
aTitz

(t) − yit ·
aTitz

(t)

|aTitz(t)|

)
ait

)
− x

∥∥∥∥∥
2


= ‖h‖2 − 2Eit

[
1

‖ait‖2

(
aTith

)(
aTitz

(t) − yit ·
aTitz

(t)

|aTitz(t)|

)]

+ Eit

 1

‖ait‖2

(
aTitz

(t) − yit ·
aTitz

(t)

|aTitz(t)|

)2


(a)
= ‖h‖2 − 2

m

m∑
i=1

[
1

‖ai‖2

(
aTi h

)(
aTi z

(t) − yi ·
aTi z

(t)

|aTi z(t)|

)]

+
1

m

m∑
i=1

[
1

‖ai‖2

(
aTi z

(t) − yi ·
aTi z

(t)

|aTi z(t)|

)2
]

= ‖h‖2 − 2

m

(
m∑
i=1

(aTi h)2

‖ai‖2
+
∑
i∈S

2(aTi h)(aTi x)

‖ai‖2

)

+
1

m

(
m∑
i=1

(aTi h)2

‖ai‖2
+ 4

∑
i∈S

(aTi x)(aTi z
(t))

‖ai‖2

)

= ‖h‖2 − 1

m

m∑
i=1

(aTi h)2

‖ai‖2
+

4

m

∑
i∈S

(aTi x)2

‖ai‖2
(3.76)
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where (a) is due to the fact that it is sampled uniformly at random from {1, 2, · · · ,m}. By

the spectral case of Lemma 5.20 in [142], {
√
n ai
‖ai‖}

m
i=1 are independent isotropic random

vectors in Rn and hence

E

[
n

(aTi h)2

‖ai‖2

]
= ‖h‖2.

Moreover, {
√
n ai
‖ai‖}

m
i=1 are sub-Gaussian and the sub-Gaussian norm is bounded by an ab-

solute constant. Thus, we have that ifm ≥ c0ε
−2n, then with probability 1−2 exp(−c1mε

2),

1

m

m∑
i=1

(aTi h)2

‖ai‖2
≥ (1− ε)

n
‖h‖2.

holds for all vectors h. By Lemma 3.7, we have that with probability 1− C exp(−c1mε
2)

1

m

∑
i∈S

∣∣aTi x∣∣2 ≤ 1

m

m∑
i=1

∣∣aTi h∣∣2 1{|aTi x|<|aTi h|} ≤ (0.13 + ε)‖h‖2

holds for all h satisfying ‖h‖/‖x‖ ≤ 1
10

.

Define an event E2 := {min1≤i≤m ‖ai‖2 ≥ 2
3
n}. It can be shown that P{E2} ≥

1−m exp(−n/12). Then on the event E2, (3.76) is further upper bounded by

Eit

[
dist2

(
z(t+1),x

)]
≤
(

1− 1− ε
n

+
6(0.13 + ε)

n

)
‖h‖2 ≤

(
1− 0.22− 7ε

n

)
‖h‖2,

which concludes the proof.
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CHAPTER 4

ROBUST PHASE RETRIEVAL: MEDIAN

TRUNCATION APPROACH

In this chapter, we study the case when the observations of phase retrieval are corrupted by

sparse outliers. Section 4.1 provides the problem formulation. Section 4.2 describes two

algorithms, median-TWF and median-RWF. Section 4.3 provides their performance guar-

antees. Section 4.4 presents the numerical experiments. Section 4.6 includes supplemental

proofs.

Throughout this chapter, boldface lowercase letters such as ai,x, z denote vectors,

and boldface capital letters such as A,Y denote matrices. For two matrices, A � B

means that B −A is positive definite. For a complex matrix or vector, A∗ and z∗ denote

conjugate transposes of A and z respectively. For a real matrix or vector, AT and zT

denote transposes ofA and z respectively. The indicator function 1A = 1 if the event A is

true, and 1A = 0 otherwise.
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4.1 Problem Formulation

As we discuss in the Chapter 1, the ability to handle outliers is of great importance for phase

retrieval algorithms, because outliers arise frequently from the phase imaging applications

[71] due to various reasons such as detector failures, recording errors, and missing data.

However, the performance of WF, TWF and RWF can be very sensitive to outliers that take

arbitrary values and can introduce anomalous search directions. Even for TWF, since the

sample mean can be arbitrarily perturbed, the truncation rule based on such sample mean

cannot control the gradient well.

Mathematically, suppose the observations are given by

yi = |〈ai,x〉|2 + ηi, i = 1, · · · ,m, (4.1)

where x ∈ Rn is the unknown signal,1 ai ∈ Rn for i = 1, . . . ,m are measurement vectors

with each ai having i.i.d. Gaussian entries distributed as N (0, 1), and ηi ∈ R for i =

1, . . . ,m are outliers with arbitrary values. We assume that outliers are sparse with sm

nonzero values, i.e., ‖η‖0 ≤ sm, where η = {ηi}mi=1 ∈ Rm. Here, s is a nonzero constant,

representing the faction of measurements that are corrupted by outliers.

We are also interested in the model when the measurements are corrupted by not only

sparse arbitrary outliers but also dense bounded noise. Under such a model, the measure-

ments are given by

yi = |〈ai,x〉|2 + wi + ηi, i = 1, · · · ,m, (4.2)

where the bounded noise w = {wi}mi=1 satisfies ‖w‖∞ ≤ c1‖x‖2 for some universal

constant c1, and as before, the outliers satisfy ‖η‖0 ≤ sm.

The goal is to recover the signal x (up to a global sign difference) from the measure-

1We focus on real signals here, but our analysis can be extended to complex signals.
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ments y = {yi}mi=1 and measurement vectors {ai}mi=1. It can be observed that if z is a

solution, then −z is also the solution of the problem. Thus, the recovery is up to a sign

difference. We define the Euclidean distance between two vectors up to a global sign dif-

ference [1] as,

dist(z,x) := min ‖z ± x‖. (4.3)

In this chapter, we develop non-convex phase retrieval algorithms with both statistical

and computational efficiency, and provable robustness to even a constant proportion of

outliers. We hope that the algorithm has three folds of properties. First, it should recover

the true signal as long as the number of outliers is not too large. Moreover, the algorithm

does not have to require prior knowledge about the outliers. At last, the algorithm should

be efficient in terms of sample complexity and convergence rate.

Our strategy is to use sample median as truncation thresholds to eliminate the contri-

bution of bad samples. The robustness property of median lies in the fact that the median

cannot be arbitrarily perturbed unless the outliers dominate the inliers [73]. This is in sharp

contrast to the mean, which can be made arbitrarily large even by a single outlier. Thus,

using the sample median in the truncation rule can effectively remove the impact of out-

liers. By applying median truncation strategy to modify TWF and RWF, we obtain two new

algorithms: median-TWF and median-RWF. These two algorithms share many similarities

and also involve different aspects. To the best of the authors’ knowledge, our work is the

first application of the median to robustify high-dimensional statistical estimation in the

presence of arbitrary outliers with rigorous non-asymptotic performance guarantees.

4.2 Median-based Algorithms

If some measurements are corrupted by outliers as in (4.1), then WF, RWF and TWF can

fail. This is because the gradient of the loss function typically contains the term |yi−|aTi z|2|
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or
∣∣√yi − |aTi z|∣∣. With yi being corrupted by arbitrarily large ηi, the gradient can deviate

the search direction to the signal arbitrarily. In TWF, the truncation rule is based on the

sample mean of the gradient, which can be affected significantly by outliers. It is not

anticipated that TWF converges globally in the presence of arbitrary outliers.

To handle outliers, our central idea is to prune the samples in both the initialization and

each gradient descent iteration via the sample median related quantities. Compared to the

sample mean used to set truncation thresholds in TWF, the sample median is much less

affected by outliers, and thus the algorithms are more robust in the presence of outliers.

The Poisson loss function adopted in TWF [61] models well the physical behavior of

photons while the reshaped loss function used in RWF [68] is shown to have advantages

on convergence rate. It is worthy to see whether the idea of the median truncation works

for both loss functions. We apply the median truncation to TWF and RWF respectively and

obtain two algorithms median-TWF and median-RWF.

The difference of median-TWF and median-RWF comes from the difference of TWF

and RWF, which mainly lies in the different loss functions and that truncation is needed

or not in gradient loop. Specifically, median-TWF employs the median of
∣∣yi − |aTi z|2∣∣

to set the truncation threshold in gradient loop while median-RWF adopts the median of∣∣√yi − |aTi z|∣∣ to set the corresponding threshold. Empirically, median-TWF performs a

little better than median-RWF in terms of sample complexity for real Gaussian measure-

ments while median-RWF can tolerate more outliers than median-TWF. Another empirical

fact is that median-RWF converges faster while median-TWF achieves better accuracy un-

der the dense noise.

However, the two algorithms share similar properties. Both algorithms resist outliers

in a oblivious fashion, which means we do not have to know the knowledge of outliers

before running the algorithms. Moreover, the performance guarantees of median-TWF and

median-RWF turn out to be almost the same except for different choices of constants, as

presented in Section 4.3.
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Algorithm 3 Median Truncated Wirtinger Flow (Median-TWF)
Input: y = {yi}mi=1, {ai}mi=1;
Parameters: thresholds αy, αh, αl, and αu, stepsize µt;
Initialization: Let z(0) = λ0z̃, where λ0 =

√
med(y)/0.455 and z̃ is the leading eigen-

vector of

Y :=
1

m

m∑
i=1

yiaia
T
i 1{|yi|≤α2

yλ
2
0}. (4.5)

Gradient loop: for t = 0 : T − 1 do

z(t+1) = z(t) − µ

m

m∑
i=1

|aTi z(t)|2 − yi
aTi z

(t)
ai1Ei1∩Ei2 , (4.6)

where

E i1 :=
{
αl‖z(t)‖ ≤ |aTi z(t)| ≤ αu‖z(t)‖

}
,

E i2 :=

{
|yi − |aTi z(t)|2| ≤ αhKt

|aTi z(t)|
‖z(t)‖

}
,

Kt := med
(
{|yi − |aTi z(t)|2|}mi=1

)
.

Output zT .

The technical proofs of two algorithms follow the same structure. The crux is to use

the median statistical properties to show that the median-trimmed gradient satisfy the so-

called Regularity Condition, which guarantees the linear convergence of gradient update.

We provide separate proofs for two algorithms because they involve different bounding

techniques due to different loss functions.

4.2.1 Median-TWF Algorithm

In the following, we describe the median-TWF in details. We adopt the following Poisson

loss function,

`(z) :=
1

2m

m∑
i=1

(
|aTi z|2 − yi log |aTi z|2

)
. (4.4)

Median-TWF algorithm (summarized in Algorithm 3) minimizes (4.4) via an initializa-
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tion step and gradient descent.

1. Initialization: We initialize z(0) by the spectral method with a truncated set of

samples, where the threshold is determined by the median of {yi}mi=1. In comparison, WF

does not truncate samples, and the truncation in TWF is based on the mean of {yi}mi=1,

which is not robust to outliers. As will be shown, as long as the portion of outliers is not

too large, our initialization (4.5) is guaranteed to be within a small neighborhood of the

true signal.

2. Gradient loop: for each iteration 0 ≤ t ≤ T − 1, median-TWF uses an iteration-

varying truncated gradient given as

∇`tr(z(t)) =
1

m

m∑
i=1

|aTi z(t)|2 − yi
aTi z

(t)
ai1Ei1∩Ei2 . (4.7)

It is clear from the definition of the set E i2 (see Algorithm 3), that samples are truncated by

the sample median of gradient components evaluated at the current iteration, as opposed to

the sample mean in TWF.

We set the step size in the median-TWF to be a fixed small constant, i.e., µ = 0.4. The

rest of the parameters {αy, αh, αl, αu} are set to satisfy

ζ1 := max

{
E
[
ξ21{|ξ|<√1.01αl or |ξ|>

√
0.99αu}

]
,E
[
1{|ξ|<√1.01αl or |ξ|>

√
0.99αu}

]}
,

ζ2 := E
[
ξ21{|ξ|>0.248αh}

]
, (4.8)

2(ζ1 + ζ2) +
√

8/πα−1
h < 1.99

αy ≥ 3,

where ξ ∼ N (0, 1). For example, we set αl = 0.3, αu = 5, αy = 3 and αh = 12, and

consequently ζ1 ≈ 0.24 and ζ2 ≈ 0.032.
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4.2.2 Median-RWF Algorithm

In this subsection, we apply the idea of median truncation to reshaped Wirtinger flow loss

[68]

R(z) =
1

2m

m∑
i=1

(√
yi − |aTi z|

)2
, (4.9)

which has been shown to have advantage over Wirtinger flow loss (squared loss of squared

measurements) and truncated-WF loss (Poisson loss of squared measurements). We call

this new algorithm median reshaped Wirtinger flow (median-RWF). It uses median-based

threshold to truncate the measurements in both initialization and gradient loop, as illus-

trated in Algorithm 4.

In the following, we discuss the median-RWF algorithm in detail.

1. Initialization: For simplicity, we here use the same initialization as in median-TWF

(Algorithm 3).

2. Gradient loop: Median-RWF uses the following iteration-varying truncated gradient

∇Rtr(z
(t)) =

1

m

m∑
i=1

(
aTi z

(t) −√yi ·
aTi z

(t)

|aTi z(t)|

)
ai1T i , (4.10)

From the definition of the set T i (see Algorithm 4), it is clear that samples are truncated by

the sample median of gradient components evaluated at the current iteration. We set 0
0

= 0

when calculating (4.11).

We set the step size in the median-RWF to be a fixed small constant, i.e., µ′ = 0.8. We

set α′h = 5.
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Algorithm 4 Median Reshaped Wirtinger Flow (median-RWF)
Input: y = {yi}mi=1, {ai}mi=1;

Parameters: thresholds αy, αh, and step size µ;
Initialization: Same as median-TWF (see Algorithm 3).
Gradient loop: for t = 0 : T − 1 do

z(t+1) = z(t) − µ′

m

m∑
i=1

(
aTi z

(t) −√yi ·
aTi z

(t)

|aTi z(t)|

)
ai1T i , (4.11)

where

T i :=
{∣∣√yi − |aTi z(t)|

∣∣ ≤ α′hMt

}
, and Mt := med

({∣∣√yi − |aTi z(t)|
∣∣}m
i=1

)
.

Output zT .

4.3 Performance Guarantees

In this section, we characterize the performance guarantees of median-TWF and median-

RWF. The theoretical guarantees for both algorithms are almost the same. Thus, in order to

avoid repetition, we present the results in a way that works for both algorithms. However,

the proofs for median-TWF and median-RWF involve different techniques and are shown

separately.

We first show that median-TWF/median-RWF works well for the noise-free model in

the following proposition, which lends support to the model with outliers. This also justifies

that we can run median-TWF/median-RWF without having to know whether the underlying

measurements are corrupted.

Proposition 4.1 (Exact recovery for noise-free model). Suppose that the measurements

are noise-free, i.e., ηi = 0 for i = 1, · · · ,m in the model (4.1). There exist constants

µ0 > 0, 0 < ρ, ν < 1 and c0, c1, c2 > 0 such that if m ≥ c0n log n and µ ≤ µ0, then with

probability at least 1− c1 exp(−c2m), the median-TWF/median-RWF yields

dist(z(t),x) ≤ ν(1− ρ)t‖x‖, ∀t ∈ N (4.12)
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simultaneously for all x ∈ Rn\{0}.

Furthermore, as the median is quite stable as long as the number of outliers is not

so large, the following theorem describes that median-TWF/median-RWF still works well

even in the presence of sparse outliers.

Theorem 4.2 (Exact recovery with sparse arbitrary outliers). Consider the phase re-

trieval problem with sparse outliers given in (4.1). There exist constants µ0, s0 > 0,

0 < ρ, ν < 1 and c0, c1, c2 > 0 such that if m ≥ c0n log n, s < s0, µ ≤ µ0, then with

probability at least 1− c1 exp(−c2m), the median-TWF/median-RWF yields

dist(z(t),x) ≤ ν(1− ρ)t‖x‖, ∀t ∈ N (4.13)

simultaneously for all x ∈ Rn\{0}.

Theorem 4.2 indicates that median-TWF/median-RWF admits exact recovery for all

signals in the presence of sparse outliers with arbitrary magnitudes even when the number

of outliers scales linearly with the number of measurements, as long as the number of

samples satisfies m & n log n. This is near-optimal up to a logarithmic factor.

Moreover, median-TWF/median-RWF converges at a geometric rate using a constant

step size, with per-iteration cost O(mn) (note that the median can be computed in linear

time [144]). To reach ε-accuracy, i.e., dist(z(t),x) ≤ ε, only O(log 1/ε) iterations are

needed, and the total computational cost is O(mn log 1/ε), which is highly efficient. Em-

pirically in the experiments, median-RWF converges faster than median-TWF and median-

RWF tolerates larger fraction of outliers than median-TWF, which may be due to that the

lower-order model is more stable.

We next consider the model when the measurements are corrupted by both sparse arbi-

trary outliers and dense bounded noise. Our following theorem characterizes that median-

TWF/median-RWF is robust to coexistence of the two types of noises.
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Theorem 4.3 (Stability to sparse arbitrary outliers and dense bounded noises). Con-

sider the phase retrieval problem given in (4.2) in which measurements are corrupted

by both sparse arbitrary and dense bounded noises. There exist constants µ0, s0 > 0,

0 < ρ < 1 and c0, c1, c2 > 0 such that if m ≥ c0n log n, s < s0, µ ≤ µ0, then with

probability at least 1− c1 exp(−c2m), median-TWF/median-RWF respectively yields

dist(z(t),x) .
‖w‖∞
‖x‖

+ (1− ρ)t‖x‖, ∀t ∈ N (4.14)

dist(z(t),x) .
√
‖w‖∞ + (1− ρ)t‖x‖, ∀t ∈ N (4.15)

simultaneously for all x ∈ Rn\{0}.

Theorem 4.3 immediately implies the stability of median-TWF/median-RWF for the

model corrupted only by dense bounded noise.

Corollary 4.4. Consider the phase retrieval problem in which measurements are corrupted

only by dense bounded noises, i.e., ηi = 0 for i = 1, · · · ,m in the model (4.2). There exist

constants µ0 > 0, 0 < ρ < 1 and c0, c1, c2 > 0 such that if m ≥ c0n log n, µ ≤ µ0, then

with probability at least 1− c1 exp(−c2m), median-TWF/median-RWF respectively yields

dist(z(t),x) .
‖w‖∞
‖x‖

+ (1− ρ)t‖x‖, ∀t ∈ N (4.16)

dist(z(t),x) .
√
‖w‖∞ + (1− ρ)t‖x‖, ∀t ∈ N (4.17)

simultaneously for all x ∈ Rn\{0}.

Thus, Theorem 4.3 and Corollary 4.4 imply that median-TWF/median-RWF for the

model with both sparse arbitrary outliers and dense bounded noises achieves the same con-

vergence rate and the same level of estimation error as the model with only bounded noise.

In fact, together with Theorem 4.2 and Proposition 4.1, it can be seen that applying median-

TWF/median-RWF does not require the knowledge of the noise corruption models. When
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there do exist outliers, median-TWF/median-RWF achieves almost the same performance

as if the outliers do not exist. Empirically, under dense noise, the median-TWF reaches

better accuracy than median-RWF because of the delicate truncation rule.

4.4 Numerical Experiments

In this section, we provide numerical experiments to demonstrate the effectiveness of

median-TWF and median-RWF, which corroborates with our theoretical findings.We first

show that, in the noise-free case, the median-TWF and median-RWF perform similarly

as TWF [61] for exact recovery. We set the parameters of median-TWF and median-

RWF as specified in Section 4.2.1 and Section 4.2.2 respectively, and those of TWF and

RWF as suggested in [61] and [68] respectively. Let the signal length n take values from

1000 to 10000 by a step size of 1000, and the ratio of the sample complexity to the sig-

nal length, m/n, take values from 2 to 6 by a step size of 0.1. For each pair of (m,n),

we generate a signal x ∼ N (0, In×n), and the measurement vectors ai ∼ N (0, In×n)

i.i.d. for i = 1, . . . ,m. For three algorithms, a fixed number of iterations T = 500

are run, and the trial is declared successful if z(T ), the output of the algorithm, satisfies

dist(z(T ),x)/‖x‖ ≤ 10−8. Figure 4.1 shows the number of successful trials out of 20 trials

for both algorithms, with respect to m/n and n. It can be seen that for all three algorithms,

as soon asm is above 4n, exact recovery is achieved for both algorithms. Around the phase

transition boundary, the performance of median-TWF is slightly worse than that of TWF,

which is possibly due to the inefficiency of median compared to mean in the noise-free

case [73]. The empirical sample complexity of median-RWF is slightly better than RWF

because the truncation improves the stableness of RWF.

We next examine the performance of median-TWF and median-RWF in the presence

of sparse outliers. We compare the performance of median-TWF and median-RWF with

not only TWF but also an alternative which we call the trimean-TWF, based on replacing
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Fig. 4.1: Sample complexity of median-TWF, median-RWF, RWF and TWF for noise-free
data: the gray scale of each cell (m/n, n) indicates the number of successful recovery out
of 20 trials.

the sample mean in TWF by the trimmed mean. More specifically, trimean-TWF requires

knowing the fraction s of outliers so that samples corresponding to sm largest gradient

values are removed, and truncation is then based on the mean of remaining samples.

We fix the signal length n = 1000 and the number of measurements m = 8000. We as-

sume each measurement yi is corrupted with probability s ∈ [0, 0.4] independently, where

the corruption value ηi ∼ U(0, ‖η‖∞) is randomly generated from a uniform distribution.

Figure 4.2 shows the success rate of exact recovery over 100 trials as a function of s at

different levels of outlier magnitudes ‖η‖∞/‖x‖2 = 0.1, 1, 10, 100, for the four algorithms

median-TWF, median-RWF, trimean-TWF and TWF.

From Figure 4.2, it can be seen that median-TWF and median-RWF allow exact recov-

ery as long as s is not too large for all levels of outlier magnitudes, without any knowledge

of the outliers, which validates our theoretical analysis. Unsurprisingly, TWF fails quickly
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Fig. 4.2: Success rate of exact recovery with outliers for median-RWF, median-TWF,
trimean-TWF, and TWF at different levels of outlier magnitudes.

even with very small fraction of outliers. No successful instance is observed for TWF

when s ≥ 0.02 irrespective of the value of ‖η‖∞. Trimean-TWF requires knowing the

number of outliers and does not exhibit as sharp phase transition as median-TWF, and in

general underperforms our median-TWF, except when both ‖η‖∞ and s gets very large,

see Figure 4.2(d). This is because in this range with large outliers, knowing the fraction

s of outliers provides substantial advantage for trimean-TWF to eliminate them, while the

sample median can be deviated significantly from the true median for large s. Moreover, it

is worth mentioning that exact recovery is more challenging for median-TWF and median-

RWF when the magnitudes of most outliers are comparable to the measurements, as in

Figure 4.2(c). In such a case, the outliers are more difficult to exclude as opposed to the

case with very large outlier magnitudes as in Figure 4.2(d); and meanwhile, the outlier
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magnitudes in Figure 4.2(c) are large enough to affect the accuracy heavily in contrast to

the cases in Figure 4.2(a) and 4.2(b) where outliers are less prominent. In general, median-

RWF can tolerate larger fraction of outliers than median-TWF. This could be due to that

the lower-order objective reduces the variance and brings more stable search direction.

We now examine the performance of median-TWF and median-RWF in the presence of

both sparse outliers and dense bounded noise. The entries of the dense bounded noisew is

generated independently from U(0, ‖w‖∞), with ‖w‖∞/‖x‖2 = 0.001, 0.01 respectively.

The outliers are then generated as ηi ∼ ‖w‖ · Bernoulli(0.1) independently. Figure 4.3(a)

and Figure 4.3(b) depict the relative error dist(z(t),x)/‖x‖ with respect to the iteration

count t, for uniform noise at different levels. It can be seen that median-TWF under outlier

corruption clearly outperforms TWF under the same situation, and acts as if the outliers do

not exist by achieving almost the same accuracy as TWF under no outliers. Moreover, the

solution accuracy of median-TWF has 10 times gain from Figure 4.3(a) to Figure 4.3(b)

as ‖w‖∞ shrinks by 1/10 , which corroborates Theorem 4.3 nicely. Furthermore, it can

be seen that median-RWF converges faster than other algorithms, which is due to good

curvature of low-oder objective and corroborates the result in [68]. It can also be seen

that the solution returned by median-RWF is not as accurate as median-TWF. This is be-

cause that median-TWF employs more delicate truncation rule (1Ei1) which may reduce the

contribution of dense noises.

Finally, we consider when the measurements are corrupted both by Poisson noise and

outliers, which models photon detection in optical imaging applications. We generate each

measurement as yi ∼ Poisson(|〈ai,x〉|2), for i = 1, · · · ,m, which is then corrupted with

probability s = 0.1 by outliers. The entries of the outlier are obtained by first generat-

ing ηi ∼ ‖x‖2 · U(0, 1) independently, and then rounding it to the nearest integer. Figure

4.4 depicts the relative error dist(z(t),x)/‖x‖ with respect to the iteration count t, where

median-TWF and median-RWF under both Poisson noise and sparse outlier noise has al-

most the same accuracy as, if not better than, TWF under only Poisson noise.
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Fig. 4.3: The relative error with respect to the iteration count for median-TWF, median-
RWF and TWF with both dense noise and sparse outliers, and TWF with only dense
noise.(a) and (b): Uniform noise with different levels.

4.5 Conclusions

In this chapter, we study provably effective approaches, median-TWF and median-RWF,

for phase retrieval when the measurements are corrupted by sparse outliers that can take

arbitrary values. Our strategy is to apply gradient descent with respect to carefully chosen

loss functions, where both the initialization and the search directions are pruned guided by

the sample median. We show that both algorithms allow exact recovery even with a constant

proportion of arbitrary outliers for robust phase retrieval using a near-optimal number of

measurements up to a logarithmic factor. Our algorithm performs well for phase retrieval

problem under sparse corruptions. We anticipate that the technique developed here will be

useful for designing provably robust algorithms for other inference problems under sparse

corruptions.
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Fig. 4.4: The relative error with respect to the iteration count for median-TWF, median-
RWF and TWF with both Poisson noise and sparse outliers, and TWF with only Poisson
noise.

4.6 Technical Proofs

4.6.1 Proof Roadmap

Broadly speaking, the proofs for median-TWF and median-RWF follow the same roadmap.

The crux is to use the statistical properties of the median to show that the median-truncated

gradients satisfy the so-called Regularity Condition [1], which guarantees the linear conver-

gence of the update rule, provided the initialization provably lands in a small neighborhood

of the true signal.

We first develop a few statistical properties of median. We then analyzes the initializa-

tion that is used in both algorithms. We then state the definition of Regularity Condition and

explain how it leads to the linear convergence rate. We provide separate detailed proofs for

two algorithms in Section 4.6.2 and Section 4.6.3, respectively, because they involve differ-

ent bounding techniques that may be of independent interest due to different loss functions.

We define the quantile of a population distribution and its sample version.

Definition 4.5 (Generalized quantile function). Let 0 < p < 1. For a cumulative distribu-
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tion function (CDF) F , the generalized quantile function is defined as

F−1(p) = inf{x ∈ R : F (x) ≥ p}. (4.18)

For simplicity, denote θp(F ) = F−1(p) as the p-quantile of F . Moreover for a sample

sequence {Xi}mi=1, the sample p-quantile θp({Xi}) means θp(F̂ ), where F̂ is the empirical

distribution of the samples {Xi}mi=1 .

Remark 1. We note that the median med({Xi}) = θ1/2({Xi}), and we use both notations

interchangeably.

Next, we show that as long as the sample size is large enough, the sample quantile

concentrates around the population quantile (motivated from [145]), as in Lemma 4.6.

Lemma 4.6. Suppose F (·) is cumulative distribution function (i.e., non-decreasing and

right-continuous) with continuous density function F ′(·). Assume the samples {Xi}mi=1 are

i.i.d. drawn from F . Let 0 < p < 1. If l < F ′(θ) < L for all θ in {θ : |θ − θp| ≤ ε}, then

|θp({Xi}mi=1)− θp(F )| < ε (4.19)

holds with probability at least 1− 2 exp(−2mε2l2).

Proof. See Section 4.6.4.

Lemma 4.7 bounds the distance between the median of two sequences.

Lemma 4.7. Given a vectorX = (X1, X2, ..., Xn), reorder the entries in a non-decreasing

manner

X(1) ≤ X(2) ≤ ... ≤ X(n−1) ≤ X(n).
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Given another vector Y = (Y1, Y2, ..., Yn), then

|X(k) − Y(k)| ≤ ‖X − Y ‖∞, (4.20)

holds for all k = 1, ..., n.

Proof. See Section 4.6.4.

Lemma 4.8, as a key robustness property of median, suggests that in the presence of

outliers, one can bound the sample median from both sides by neighboring quantiles of the

corresponding clean samples.

Lemma 4.8. Consider clean samples {X̃i}mi=1. If a fraction s (s < 1
2
) of them are corrupted

by outliers, one obtains contaminated samples {Xi}mi=1 which contain sm corrupted sam-

ples and (1 − s)m clean samples. Then for a quantile p such that s < p < 1 − s, we

have

θp−s({X̃i}) ≤ θp({Xi}) ≤ θp+s({X̃i}).

Proof. See Section 4.6.4.

Finally, Lemma 4.9 is related to bound the value of the median, as well as the density at

the median for the product of two possibly correlated standard Gaussian random variables.

Lemma 4.9. Let u, v ∼ N (0, 1) which can be correlated with the correlation coefficient

|ρ| ≤ 1. Let r = |uv|, and ψρ(x) represent the density of r. Denote θ 1
2
(ψρ) as the median

of r, and the value of ψρ(x) at the median as ψρ(θ1/2). Then for all ρ,

0.348 < θ1/2(ψρ) < 0.455,

0.47 < ψρ(θ1/2) < 0.76.

Proof. See Section 4.6.4.
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We next consider the model that the measurements are corrupted by both bounded noise

and sparse outliers given by (4.2), and show that the initialization provided by the median-

truncated spectral method in (4.5) is close enough to the ground truth, i.e., dist(z(0),x) ≤

δ‖x‖.

Proposition 4.10. Fix δ > 0 and x ∈ Rn, and consider the model given by (4.2). Suppose

that ‖w‖∞ ≤ c‖x‖2 for some sufficiently small constant c > 0 and that ‖η‖0 ≤ sm

for some sufficiently small constant s. With probability at least 1 − exp(−Ω(m)), the

initialization given by the median-truncated spectral method obeys2

dist(z(0),x) ≤ δ‖x‖, (4.21)

provided that m > c0n for some constant c0 > 0.

Proof. See Section 4.6.4.

Once the initialization is guaranteed to be within a small neighborhood of the ground

truth, we only need to show that the truncated gradient (4.7) and (4.10) satisfy the Reg-

ularity Condition (RC) [1, 61], which guarantees the geometric convergence of median-

TWF/median-RWF once the initialization lands into this neighborhood.

Definition 4.11. The gradient∇`(z) satisfies the Regularity Condition RC(µ, λ, c) if

〈∇`(z), z − x〉 ≥ µ

2
‖∇`(z)‖2 +

λ

2
‖z − x‖2 (4.22)

for all z obeying ‖z − x‖ ≤ c‖x‖.

The above RC guarantees that the gradient descent update z(t+1) = z(t) − µ∇`(z)

converges to the true signal x geometrically [61] if µλ < 1. We repeat this argument below

2Notation f(n) = Ω(g(n)) or f(n) & g(n) means that there exists a constant c > 0 such that |f(n)| ≥
c|g(n)|.
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for completeness.

dist2(z − µ∇`(z),x) ≤ ‖z − µ∇`(z)− x‖2

= ‖z − x‖2 + ‖µ∇`(z)‖2 − 2µ 〈z − x,∇`(z)〉

≤ ‖z − x‖2 + ‖µ∇`(z)‖2 − µ2‖∇`(z)‖2 − µλ ‖z − x‖2

= (1− µλ)dist2(z,x).

4.6.2 Proofs for Median-TWF

We first show that∇`tr(z) in (4.7) satisfies the RC for the noise-free case, and then extend

it to the model with only sparse outliers, thus together with Proposition 4.10 establishing

the global convergence of median-TWF in both cases. At last we prove Theorem 4.3 in the

presence of both sparse outliers and dense bounded noise.

Proof of Proposition 4.1

We consider the noise-free model. The central step to establish the RC is to show that

the sample median used in the truncation rule of median-TWF concentrates at the level

‖z − x‖‖z‖ as stated in the following proposition.

Proposition 4.12. If m > c0n log n, then with probability at least 1− c1 exp(−c2m),

0.6‖z‖‖z − x‖ ≤ θ0.49, θ0.5, θ0.51(
{∣∣|aTi x|2 − |aTi z|2∣∣}mi=1

) ≤ ‖z‖‖z − x‖, (4.23)

holds for all z,x satisfying ‖z − x‖ < 1/11‖z‖.

Proof. Detailed proof is provided in Section 4.6.4.

We note that a similar property for the sample mean has been shown in [61] as long

as the number m of measurements is on the order of n. In fact, the sample median is

much more challenging to bound due to its non-linearity, which also causes slightly more
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measurements compared to the sample mean.

Then we can establish that 〈∇`tr(z), z − x〉 is lower bounded on the order of ‖z−x‖2,

as in Proposition 4.13, and that ‖∇`tr(z)‖ is upper bounded on the order of ‖z −x‖, as in

Proposition 4.14.

Proposition 4.13 (Adapted version of Proposition 2 of [61]). Consider the noise-free case

yi = |aTi x|2 for i = 1, · · · ,m, and any fixed constant ε > 0. Under the condition (4.8), if

m > c0n log n, then with probability at least 1− c1 exp(−c2ε
−2m),

〈∇`tr(z), z − x〉 ≥
{

1.99− 2(ζ1 + ζ2)−
√

8/πα−1
h − ε

}
‖z − x‖2 (4.24)

holds uniformly over all x, z ∈ Rn satisfying

‖z − x‖
‖z‖

≤ min

{
1

11
,
αl
αh
,
αl
6
,

√
98/3(αl)

2

2αu + αl

}
, (4.25)

where c0, c1, c2 > 0 are some universal constants, and ζ1, ζ2, αl, αu and αh are defined in

(4.8).

The proof of Proposition 4.13 adapts the proof of Proposition 2 of [61], by properly

setting parameters based on the properties of sample median. For completeness, we include

a short outline of the proof in Section 4.6.

Proposition 4.14 (Lemma 7 of [61]). Under the same condition as in Proposition 4.13,

if m > c0n, then there exist some constants c1, c2 > 0 such that with probability at least

1− c1 exp(−c2m),

‖∇`tr(z)‖ ≤ (1 + δ) · 2
√

1.02 + 2/αh‖z − x‖ (4.26)
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holds uniformly over all x, z ∈ Rn satisfying

‖z − x‖
‖z‖

≤ min

{
1

11
,
αl
αh
,
αl
6
,

√
98/3(αl)

2

2αu + αl

}
, (4.27)

where δ can be arbitrarily small as long as m/n sufficiently large, and αl, αu and αh are

given in (4.8).

Proof. See the proof of Lemma 7 in [61].

With these two propositions and (4.8), RC is guaranteed by setting

µ < µ0 :=
(1.99− 2(ζ1 + ζ2)−

√
8/πα−1

h

2(1 + δ)2 · (1.02 + 2/αh)
,

λ+ µ · 4(1 + δ)2 · (1.02 + 2/αh) < 2
{

1.99− 2(ζ1 + ζ2)−
√

8/πα−1
h − ε

}
.

Proof of Theorem 4.2

We next consider the model (4.2) with only sparse outliers. It suffices to show that

∇`tr(z) continues to satisfy the RC. The critical step is to bound the sample median of the

corrupted measurements. Lemma 4.8 yields

θ 1
2
−s({|(aTi x)2 − (aTi z)2|}) ≤ θ 1

2
({|yi − (aTi z)2|}) ≤ θ 1

2
+s({|(aTi x)2 − (aTi z)2|}.

(4.28)

For simplicity of notation, we let h := z − x. Then for the instance of s = 0.01, by

Proposition 4.12, we have with probability at least 1− 2 exp(−Ω(m)),

0.6‖z‖‖h‖ ≤ θ 1
2
({|yi − (aTi z)2|}) ≤ ‖z‖‖h‖. (4.29)

To differentiate from E i2, we define Ẽ i2 :=
{∣∣(aTi x)2 − (aTi z)2

∣∣ ≤ αhmed
{∣∣yi − (aTi z)2

∣∣} |aTi z|
‖z‖

}
.
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We then have

∇`tr(z) =
1

m

m∑
i=1

(aTi z)2 − yi
aTi z

ai1Ei1∩Ei2

=
1

m

m∑
i=1

(aTi z)2 − (aTi x)2

aTi z
ai1Ei1∩Ẽi2︸ ︷︷ ︸

∇clean`tr(z)

+
1

m

∑
i∈S

(
(aTi z)2 − yi

aTi z
1Ei1∩Ei2 −

(aTi z)2 − (aTi x)2

aTi z
1Ei1∩Ẽi2

)
ai︸ ︷︷ ︸

∇extra`tr(z)

.

Choosing ε small enough, it is easy to verify that Propositions 4.13 and 4.14 are still

valid on∇clean`tr(z). Thus, one has

〈∇clean`tr(z),h〉 ≥
{

1.99− 2(ζ1 + ζ2)−
√

8/πα−1
h − ε

}
‖h‖2,∥∥∇clean`tr(z)

∥∥ ≤ (1 + δ) · 2
√

1.02 + 2/αh‖h‖.

We next bound the contribution of∇extra`tr(z). Introduce q = [q1, . . . , qm]T , where

qi :=

(
(aTi z)2 − yi

aTi z
1Ei1∩Ei2 −

(aTi z)2 − (aTi x)2

aTi z
1Ei1∩Ẽi2

)
1{i∈S}.

It can be seen that |qi| ≤ 2αh‖h‖. Thus ‖q‖ ≤
√
sm · 2αh‖h‖, and

∥∥∇extra`tr(z)
∥∥ =

1

m

∥∥ATq
∥∥ ≤ 2(1 + δ)

√
sαh‖h‖,∣∣〈∇extra`tr(z),h

〉∣∣ ≤ ‖h‖ · ∥∥∥∥ 1

m
∇extra`tr(z)

∥∥∥∥ ≤ 2(1 + δ)
√
sαh‖h‖2,

whereA = [a1, . . . ,am]T . Then, we have

−〈∇`tr(z),h〉 ≥
〈
∇clean`tr(z),h

〉
−
∣∣〈∇extra`tr(z),h

〉∣∣
≥
(

1.99− 2(ζ1 + ζ2)−
√

8/πα−1
h − ε− 2(1 + δ)

√
sαh

)
‖h‖2,
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and

‖∇`tr(z)‖ ≤
∥∥∇clean`tr(z)

∥∥+
∥∥∇extra`tr(z)

∥∥
≤ 2(1 + δ)

(√
1.02 + 2/αh +

√
sαh

)
‖h‖. (4.30)

Therefore, the RC is guaranteed if µ, λ, ε are chosen properly and s is sufficiently small.

Proof of Theorem 4.3

We consider the model (4.2), and split our analysis of the gradient loop into two regimes.

•Regime 1: c4‖z‖ ≥ ‖h‖ ≥ c3
‖w‖∞
‖z‖ . In this regime, error contraction by each gradient

step is given by

dist (z − µ∇`tr(z),x) ≤ (1− ρ)dist(z,x).

It suffices to justify that ∇`tr(z) satisfies the RC. Denote ỹi := (aTi x)2 + wi. Then by

Lemma 4.8, we have

θ 1
2
−s
{∣∣ỹi − (aTi z)2

∣∣} ≤ med
{∣∣yi − (aTi z)2

∣∣} ≤ θ 1
2

+s

{∣∣ỹi − (aTi z)2
∣∣} .

Moreover, by Lemma 4.7 we have

∣∣∣θ 1
2

+s

{∣∣ỹi − (aTi z)2
∣∣}− θ 1

2
+s

{∣∣(aTi x)2 − (aTi z)2
∣∣}∣∣∣ ≤ ‖w‖∞,∣∣∣θ 1

2
−s
{∣∣ỹi − (aTi z)2

∣∣}− θ 1
2
−s
{∣∣(aTi x)2 − (aTi z)2

∣∣}∣∣∣ ≤ ‖w‖∞.
Assume that s = 0.01. By Proposition 4.12, if c3 is sufficiently large (i.e., c3 > 100), we

still shave

0.6‖x− z‖‖z‖ ≤ med
{∣∣yi − (aTi z)2

∣∣} ≤ ‖x− z‖‖z‖. (4.31)
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Furthermore, recall Ẽ i2 :=
{∣∣(aTi x)2 − (aTi z)2

∣∣ ≤ αhmed
{∣∣(aTi z)2 − yi

∣∣} |aTi z|
‖z‖

}
. Then,

∇`tr(z) =
1

m

m∑
i=1

(aTi z)2 − yi
aTi z

ai1Ei1∩Ei2

=
1

m

(∑
i/∈S

(aTi z)2 − (aTi x)2

aTi z
ai1Ei1∩Ei2 +

∑
i∈S

(aTi z)2 − (aTi x)2

aTi z
ai1Ei1∩Ẽi2

)
︸ ︷︷ ︸

∇clean`tr(z)

− 1

m

∑
i/∈S

wi

aTi z
ai1Ei1∩Ei2︸ ︷︷ ︸

∇noise`tr(z)

+
1

m

∑
i∈S

(
(aTi z)2 − yi

aTi z
1Ei1∩Ei2 −

(aTi z)2 − (aTi x)2

aTi z
1Ei1∩Ẽi2

)
ai︸ ︷︷ ︸

∇extra`tr(z)

.

For i /∈ S, the inclusion property (i.e. E i3 ⊆ E i2 ⊆ E i4) holds because

∣∣yi − (aTi z)2
∣∣ ∈ ∣∣(aTi x)2 − (aTi z)2

∣∣± |wi|
and |wi| ≤ 1

c3
‖h‖‖z‖ for some sufficient large c3. For i ∈ S, the inclusion E i3 ⊆ Ẽ i2 ⊆ E i4

holds because of (4.31). All the proof arguments for Propositions 4.13 and 4.14 are also

valid for∇clean`tr(z), and thus we have

〈∇clean`tr(z),h〉 ≥
{

1.99− 2(ζ1 + ζ2)−
√

8/πα−1
h − ε

}
‖h‖2,∥∥∇clean`tr(z)

∥∥ ≤ (1 + δ) · 2
√

1.02 + 2/αh‖h‖.

Next, we turn to control the contribution of the noise. Let w̃i = wi
aTi z

1Ei1∩Ei2 , and then we

have

‖∇noise`tr(z)‖ =

∥∥∥∥ 1

m
AT w̃

∥∥∥∥ ≤ ∥∥∥∥ 1√
m
AT

∥∥∥∥∥∥∥∥ w̃√m
∥∥∥∥ ≤ (1 + δ)‖w̃‖∞ ≤ (1 + δ)

‖w‖∞
αl‖z‖

,

when m/n is sufficiently large. Given the regime condition ‖h‖ ≥ c3
‖w‖∞
‖z‖ , we further
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have

‖∇noise`tr(z)‖ ≤ (1 + δ)

c3αl
‖h‖,∣∣〈∇noise`tr(z),h

〉∣∣ ≤ ∥∥∇noise`tr(z)
∥∥ · ‖h‖ ≤ (1 + δ)

c3αl
‖h‖2.

We next bound the contribution of∇extra`tr(z). Introduce q = [q1, . . . , qm]T , where

qi :=

(
(aTi z)2 − yi

aTi z
1Ei1∩Ei2 −

(aTi z)2 − (aTi x)2

aTi z
1Ei1∩Ẽi2

)
1{i∈S}.

Then |qi| ≤ 2αh‖h‖, and ‖q‖ ≤
√
sm · 2αh‖h‖. We thus have

∥∥∇extra`tr(z)
∥∥ =

1

m

∥∥ATq
∥∥ ≤ 2(1 + δ)

√
sαh‖h‖,∣∣〈∇extra`tr(z),h

〉∣∣ ≤ ‖h‖ · ∥∥∇extra`tr(z)
∥∥ ≤ 2(1 + δ)

√
sαh‖h‖2.

Putting these together, one has

〈∇`tr(z),h〉 ≥
〈
∇clean`tr(z),h

〉
−
∣∣〈∇noise`tr(z),h

〉∣∣− ∣∣〈∇extra`tr(z),h
〉∣∣

≥
(

1.99− 2(ζ1 + ζ2)−
√

8/πα−1
h − ε− (1 + δ)(1/(c3α

l
z) + 2

√
sαh)

)
‖h‖2, (4.32)

and

‖∇`tr(z)‖ ≤
∥∥∇clean`tr(z)

∥∥+
∥∥∇noise`tr(z)

∥∥+
∥∥∇extra`tr(z)

∥∥
≤ (1 + δ)

(
2
√

1.02 + 2/αh + 1/(c3α
l
z) + 2

√
sαh

)
‖h‖. (4.33)

The RC is guaranteed if µ, λ, ε are chosen properly, c3 is sufficiently large and s is

sufficiently small.

• Regime 2: Once the iterate enters this regime with ‖h‖ ≤ c3‖w‖∞
‖z‖ , each gradient iter-

ate may not reduce the estimation error. However, in this regime each move size µ∇`tr(z)
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is at most O(‖w‖∞/‖z‖). Then the estimation error cannot increase by more than ‖w‖∞‖z‖

with a constant factor. Thus one has

dist (z − µ∇`tr(z),x) ≤ c5
‖w‖∞
‖x‖

for some constant c5. As long as ‖w‖∞/‖x‖2 is sufficiently small, it is guaranteed that

c5
‖w‖∞
‖x‖ ≤ c4‖x‖. If the iterate jumps out of Regime 2, it falls into Regime 1.

4.6.3 Proofs for Median-RWF

We first show that ∇Rtr(z) in (4.10) satisfies the RC for the noise-free case, and then ex-

tend it to the model with only sparse outliers, thus together with Proposition 4.10 establish-

ing the global convergence of median-RWF in both cases. At last, we prove Theorem 4.3

in the presence of both sparse outliers and dense bounded noise.

Proof of Proposition 4.1

The central step to establish the RC is to show that the sample median used in the trun-

cation rule of median-RWF concentrates on the order of ‖z−x‖ as stated in the following

proposition.

Proposition 4.15. If m > c0n log n, then with probability at least 1− c1 exp(−c2m),

0.5‖z − x‖ ≤ θ0.49, θ1/2, θ0.51

({∣∣|aTi z| − |aTi x|∣∣}mi=1

)
≤ 0.8‖z − x‖, (4.34)

holds for all z,x satisfying ‖z − x‖ < 1/11‖z‖.

Proof. See Section 4.6.4.

Next we give a bound on the left hand side of RC.

Proposition 4.16 (Adapted version of Proposition 2 of [61]). Consider the noise-free mea-

surements yi = |aTi x| and any fixed constant ε > 0. Ifm > c0n log n, then with probability
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at least 1− c1 exp(−c2m),

〈∇Rtr(z), z − x〉 ≥ {0.88− ζ ′1 − ζ ′2 − ε} ‖z − x‖2 (4.35)

holds uniformly over all x, z ∈ Rn satisfying ‖z−x‖‖z‖ ≤
1
20

, where c0, c1, c2 > 0 are some

universal constants, and ζ ′1, ζ
′
2 are given by

ζ ′1 := 1−min

{
E

[
ξ21{ξ≥0.5

√
1.01α′h

‖z−x‖
‖x‖ }

]
,E

[
1{ξ≥0.5

√
1.01α′h

‖z−x‖
‖x‖ }

]}
ζ ′2 := E

[
ξ21{|ξ|>0.5

√
0.99α′h}

]

for some ξ ∼ N (0, 1) and α′h = 5.

Proof. See Section 4.6.4.

Proposition 4.16 indicates that 〈∇Rtr(z), z − x〉 is lower bounded by ‖z − x‖2 with

some positive constant coefficient. In order to prove the RC, it suffices to show that

‖∇Rtr(z)‖ is upper bounded by the order of ‖z − x‖ when z is within the neighborhood

of true signal x.

Proposition 4.17 (Lemma 7 of [61]). Ifm > c0n, then there exist some constants c1, c2 > 0

such that with probability at least 1− c1 exp(−c2m),

‖∇Rtr(z)‖ ≤ (1.8 + δ)‖z − x‖ (4.36)

holds uniformly over all x, z ∈ Rn satisfying ‖x−z‖ ≤ 1
11
‖x‖ where δ can be arbitrarily

small as long as c0 sufficiently large.

Proof. See Section 4.6.4.

With the above two propositions, RC is guaranteed by setting µ < µ0 :=
2(0.88−ζ′1−ζ′2−ε)

(1.8+δ)2

and λ+ µ · (1.8 + δ)2 < 2(0.88− ζ ′1 − ζ ′2 − ε).
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Proof of Theorem 4.2

We consider the model (4.2) with only outliers, i.e., yi = |〈ai,x〉|2 + ηi for i =

1, · · · ,m. It suffices to show that ∇Rtr(z) satisfies the RC. The critical step is to lower

and upper bound the sample median of the corrupted measurements. Lemma 4.8 yields

θ 1
2
−s({||aTi x| − |aTi z||}) ≤ θ 1

2
({|√yi − |aTi z||}) ≤ θ 1

2
+s({||aTi x| − |aTi z||}. (4.37)

For the simplicity of notation, we let h := z − x. Then for the instance of s = 0.01,

Proposition 4.15 yields that if m > c0n log n, then

0.5‖h‖ ≤ θ 1
2
({|√yi − |aTi z||}) ≤ 0.8‖h‖ (4.38)

holds with probability at least 1− 2 exp(−Ω(m)).

To differentiate from T i, we define T̃ i :=
{∣∣|aTi x| − |aTi z|∣∣ ≤ α′hmed

{∣∣√yi − |aTi z|∣∣}}.

We then have

∇Rtr(z) =
1

m

m∑
i=1

(
|aTi z| −

√
yi
)
ai1T i

=
1

m

m∑
i=1

(
|aTi z| −

√
yi
)
ai1T̃ i︸ ︷︷ ︸

∇cleanRtr(z)

+
1

m

∑
i∈S

((
|aTi z| −

√
yi
)
1T i −

(
|aTi z| − |aTi x|

)
1T̃ i
)
ai︸ ︷︷ ︸

∇extraRtr(z)

.

Under the condition (4.38), the inclusion property (i.e., T i1 ⊆ T̃ i ⊆ T i2 ) holds, and all

the proof arguments for Propositions 4.16 and 4.17 are also valid to ∇cleanRtr(z). Thus,

one has

〈
∇cleanRtr(z),h

〉
≥ (0.88− ζ ′1 − ζ ′2 − ε) ‖h‖2∥∥∇cleanRtr(z)

∥∥ ≤ (1.8 + δ)‖h‖.
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We next bound the contribution of∇extraRtr(z). Introduce q = [q1, . . . , qm]T , where

qi :=
((
|aTi z| −

√
yi
)
1T i −

(
|aTi z| − |aTi x|

)
1T̃ i
)
1{i∈S},

and then |qi| ≤ 1.6α′h‖h‖. Thus, ‖q‖ ≤
√
sm · 1.6α′h‖h‖, and

∥∥∇extraRtr(z)
∥∥ =

1

m

∥∥ATq
∥∥ ≤ 1.6(1 + δ)

√
sα′h‖h‖,∣∣〈∇extraRtr(z),h

〉∣∣ ≤ ‖h‖ · ∥∥∇extraRtr(z)
∥∥ ≤ 1.6(1 + δ)

√
sα′h‖h‖2,

whereA = [a1, . . . ,am]T . Then, we have

〈∇Rtr(z),h〉 ≥
〈
∇cleanRtr(z),h

〉
−
∣∣〈∇extraRtr(z),h

〉∣∣
≥
(
0.88− ζ ′1 − ζ ′2 − ε− 1.6(1 + δ)

√
sα′h
)
‖h‖2,

and

‖∇Rtr(z)‖ ≤
∥∥∇cleanRtr(z)

∥∥+
∥∥∇extraRtr(z)

∥∥
≤
(
1.8 + δ + 1.6(1 + δ)

√
sα′h
)
‖h‖.

Therefore the RC is guaranteed if µ, λ are chosen properly, δ is chosen sufficiently small

and s is sufficiently small.

Proof of Theorem 4.3

We consider the model (4.2) with outliers and bounded noise. We split our analysis of

the gradient loop into two regimes.

• Regime 1: c4‖z‖ ≥ ‖h‖ ≥ c3

√
‖w‖∞. In this regime, error contraction by each
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gradient step is given by

dist (z − µ∇Rtr(z),x) ≤ (1− ρ)dist(z,x). (4.39)

It suffices to justify that ∇Rtr(z) satisfies the RC. Denote ỹi := (aTi x)2 + wi. Then by

Lemma 4.8, we have

θ 1
2
−s

{∣∣∣√ỹi − |aTi z|
∣∣∣} ≤ med

{∣∣√yi − |aTi z|∣∣} ≤ θ 1
2

+s

{∣∣∣√ỹi − |aTi z|
∣∣∣} .

Moreover, by Lemma 4.7 we have

∣∣∣θ 1
2

+s

{∣∣∣√ỹi − |aTi z|
∣∣∣}− θ 1

2
+s

{∣∣|aTi x| − |aTi z|∣∣}∣∣∣ ≤√‖w‖∞,∣∣∣θ 1
2
−s

{∣∣∣√ỹi − |aTi z|
∣∣∣}− θ 1

2
−s
{∣∣|aTi x| − |aTi z|∣∣}∣∣∣ ≤√‖w‖∞.

Assume that s = 0.01. By Proposition 4.15, if c3 is sufficiently large (i.e., c3 > 100), we

still have

0.5‖h‖ ≤ med
{∣∣√yi − |aTi z|∣∣} ≤ 0.8‖h‖. (4.40)

Furthermore, recall T̃ i :=
{∣∣|aTi x| − |aTi z|∣∣ ≤ α′hmed

{∣∣|aTi z| − √yi∣∣}}. Then,

∇Rtr(z) =
1

m

m∑
i=1

(
|aTi z| −

√
yi
)
ai1T i

=
1

m

(∑
i/∈S

(
|aTi z| − |aTi x|

)
ai1T i +

∑
i∈S

(
|aTi z| − |aTi x|

)
ai1T̃ i

)
︸ ︷︷ ︸

∇cleanRtr(z)

− 1

m

∑
i/∈S

(
√
yi − |aTi x|)ai1T i︸ ︷︷ ︸
∇noiseRtr(z)

+
1

m

∑
i∈S

((
|aTi z| −

√
yi
)
1T i −

(
|aTi z| − |aTi x|

)
1T̃ i
)
ai︸ ︷︷ ︸

∇extraRtr(z)

.
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For i /∈ S, the inclusion property (i.e. T i1 ⊆ T i ⊆ T i2 ) holds because

∣∣√yi − |aTi z|∣∣ ∈ ∣∣|aTi x| − |aTi z|∣∣±√|wi|
and

√
|wi| ≤ 1

c3
‖h‖ for some sufficient large c3. For i ∈ S, the inclusion T i1 ⊆ T̃ i ⊆ T i2

holds because of (4.40). All the proof arguments for Propositions 4.16 and 4.17 are also

valid for∇cleanRtr(z), and thus we have

〈
∇cleanRtr(z),h

〉
≥ (0.88− ζ ′1 − ζ ′2 − ε) ‖h‖2,∥∥∇cleanRtr(z)

∥∥ ≤ (1.8 + δ)‖h‖.

Next, we turn to control the contribution of the noise. Let w̃i = (
√
yi − |aTi x|)1T i .

Then |w̃i| <
√
|wi| and we have

‖∇noiseRtr(z)‖ =

∥∥∥∥ 1

m
AT w̃

∥∥∥∥ ≤ ∥∥∥∥ 1√
m
AT

∥∥∥∥∥∥∥∥ w̃√m
∥∥∥∥ ≤ (1 + δ)‖w̃‖∞ ≤ (1 + δ)

√
‖w‖∞,

when m/n is sufficiently large. Given the regime condition ‖h‖ ≥ c3

√
‖w‖∞, we further

have

‖∇noiseRtr(z)‖ ≤ (1 + δ)

c3

‖h‖,∣∣〈∇noiseRtr(z),h
〉∣∣ ≤ ∥∥∇noiseRtr(z)

∥∥ · ‖h‖ ≤ (1 + δ)

c3

‖h‖2.

We next bound the contribution of∇extraRtr(z). Introduce q = [q1, . . . , qm]T , where

qi :=
(
(|aTi z| −

√
yi)1T i − (|aTi z| − |aTi x|)1T̃ i

)
1{i∈S}.
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Then |qi| ≤ 1.6α′h‖h‖, and ‖q‖ ≤
√
sm · 1.6α′h‖h‖. We thus have

∥∥∇extraRtr(z)
∥∥ =

1

m

∥∥ATq
∥∥ ≤ 1.6(1 + δ)

√
sα′h‖h‖,∣∣〈∇extraRtr(z),h

〉∣∣ ≤ ‖h‖ · ∥∥∇extraRtr(z)
∥∥ ≤ 1.6(1 + δ)

√
sα′h‖h‖2.

Putting these together, one has

〈∇Rtr(z),h〉 ≥
〈
∇cleanRtr(z),h

〉
−
∣∣〈∇noiseRtr(z),h

〉∣∣− ∣∣〈∇extraRtr(z),h
〉∣∣

≥
(
0.88− ζ ′1 − ζ ′2 − ε− (1 + δ)(1/c3 − 1.6

√
sα′h)

)
‖h‖2,

and

‖∇Rtr(z)‖ ≤
∥∥∇cleanRtr(z)

∥∥+
∥∥∇noiseRtr(z)

∥∥+
∥∥∇extraRtr(z)

∥∥
≤
(
1.8 + δ + (1 + δ) · (1/c3 + 1.6

√
sα′h)

)
‖h‖. (4.41)

Thus, the RC is guaranteed if µ, λ, ε are chosen properly, c0, c3 are sufficiently large and

s is sufficiently small.

• Regime 2: Once the iterate enters this regime with ‖h‖ ≤ c3

√
‖w‖∞, each gradi-

ent iterate may not reduce the estimation error. However, in this regime each move size

µ∇Rtr(z) is at mostO(
√
‖w‖∞). Then the estimation error cannot increase by more than√

‖w‖∞ with a constant factor. Thus one has

dist (z − µ∇Rtr(z),x) ≤ c5

√
‖w‖∞ (4.42)

for some constant c5. As long as
√
‖w‖∞ is sufficiently small, it is guaranteed that

c5

√
‖w‖∞ ≤ c4‖x‖. If the iterate jumps out of Regime 2, it falls into Regime 1.
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4.6.4 Proofs of Supporting Lemmas

Proof of Lemma 4.6

For simplicity, denote θp := θp(F ) and θ̂p := θp({Xi}mi=1). Since F ′ is continuous and

positive, for an ε, there exists a constant δ1 such that P(X ≤ θp − ε) = p − δ1, where

δ1 ∈ (εl, εL). Then one has

P
(
θ̂p < θp − ε

)
(a)
= P

(
m∑
i=1

1{Xi≤θp−ε} ≥ pm

)
= P

(
1

m

m∑
i=1

1{Xi≤θp−ε} ≥ (p− δ1) + δ1

)
(b)

≤ exp(−2mδ2
1) ≤ exp(−2mε2l2),

where (a) is due to the definition of the quantile function in (4.18) and (b) is due to the fact

that 1{Xi≤θp−ε} ∼ Bernoulli(p− δ1) i.i.d., followed by the Hoeffding inequality. Similarly,

one can show for some δ2 ∈ (εl, εL),

P
(
θ̂p > θp + ε

)
≤ exp(−2mδ2

2) ≤ exp(−2mε2l2).

Combining these two inequalities, one has the conclusion.

Proof of Lemma 4.7

It suffices to show that

|X(k) − Y(k)| ≤ max
l
|Xl − Yl|, ∀k = 1, · · · , n. (4.43)

Case 1: k = n, suppose X(n) = Xi and Y(n) = Yj , i.e., Xi is the largest among {Xl}nl=1

and Yj is the largest among {Yl}nl=1. Then we have either Xj ≤ Xi ≤ Yj or Yi ≤ Yj ≤ Xi.

Hence,

|X(n) − Y(n)| = |Xi − Yj| ≤ max{|Xi − Yi|, |Xj − Yj|}.
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Case 2: k = 1, suppose that X(1) = Xi and Y(1) = Yj . Similarly

|X(1) − Y(1)| = |Xi − Yj| ≤ max{|Xi − Yi|, |Xj − Yj|}.

Case 3: 1 < k < n, suppose that X(k) = Xi, Y(k) = Yj , and without loss of generality

assume that Xi < Yj (if Xi = Yj , 0 = |X(k) − Y(k)| ≤ maxl |Xl − Yl| holds trivially). We

show the conclusion by contradiction.

Assume |X(k)−Y(k)| > maxl |Xl−Yl|. Then one must have Yi < Yj and Xj > Xi and

i 6= j. Moreover for any p < k and q > k, the index of X(p) cannot be equal to the index

of Y(q); otherwise the assumption is violated.

Thus, all Y(q) for q > k must share the same index set with X(p) for p > k. However,

Xj , which is larger than Xi (thus if Xj = X(k′), then k′ > k), shares the same index with

Yj , where Yj = Y(k). This yields contradiction.

Proof of Lemma 4.8

Assume that sm is an integer. Since there are sm corrupted samples in total, one can

select at least d(p− s)me clean samples from the left p portion of ordered contaminated

samples {θ1/m({Xi}), θ2/m({Xi}), · · · , θp({Xi})}. Thus one has the left inequality. Fur-

thermore, one can also select out at least d(1− p− s)me clean samples from the right

1 − p portion of ordered contaminated samples {θp({Xi}), · · · , θ1({Xi})}. One has the

right inequality.

Proof of Lemma 4.9

First we introduce some general facts for the distribution of the product of two corre-

lated standard Gaussian random variables [143]. Let u ∼ N (0, 1), v ∼ N (0, 1), and their

correlation coefficient be ρ ∈ [−1, 1]. Then the density of uv is given by

φρ(x) =
1

π
√

1− ρ2
exp

(
ρx

1− ρ2

)
K0

(
|x|

1− ρ2

)
, x 6= 0,
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where K0(·) is the modified Bessel function of the second kind. Thus the density of r =

|uv| is

ψρ(x) =
1

π
√

1− ρ2

[
exp

(
ρx

1− ρ2

)
+ exp

(
− ρx

1− ρ2

)]
K0

(
|x|

1− ρ2

)
, x > 0, (4.44)

for |ρ| < 1. If |ρ| = 1, r becomes a χ2
1 random variable, with the density

ψ|ρ|=1(x) =
1√
2π
x−1/2 exp(−x/2), x > 0.

It can be seen from (4.44) that the density of r only relates to the correlation coefficient

ρ ∈ [−1, 1].

Let θ1/2(ψρ) be the 1/2 quantile (median) of the distribution ψρ(x), and ψρ(θ1/2) be the

value of the function ψρ at the point θ1/2(ψρ). Although it is difficult to derive the analytical

expressions of θ1/2(ψρ) and ψρ(θ1/2) due to the complicated form of ψρ in (4.44), due to

the continuity of ψρ(x) and θ1/2(ψρ), we can calculate them numerically, as illustrated in

Figure 4.5. From the numerical calculation, one can see that both ψρ(θ1/2) and θ1/2(ψρ)
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Fig. 4.5: Quantiles and density at quantiles of ψρ(x) across ρ.

are bounded from below and above for all ρ ∈ [0, 1] (ψρ(·) is symmetric over ρ, hence it is

sufficient to consider ρ ∈ [0, 1]), satisfying

0.348 < θ1/2(ψρ) < 0.455, 0.47 < ψρ(θ1/2) < 0.76. (4.45)
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Proof of Proposition 4.10

Denote ỹi := |aTi x|2 + wi for convenience. We first bound the concentration of

med({yi}), also denoted by θ 1
2
({yi}). Lemma 4.8 yields

θ 1
2
−s({ỹi}) < θ 1

2
({yi}) < θ 1

2
+s({ỹi}). (4.46)

Moreover, Lemma 4.7 indicates that

θ 1
2
−s({ỹi}) ≥ θ 1

2
−s({|aTi x|2})− ‖w‖∞, (4.47)

θ 1
2

+s({ỹi}) ≤ θ 1
2

+s({|aTi x|2}) + ‖w‖∞. (4.48)

Observe that aTi x = ã2
i1‖x‖2, where ãi1 = aTi x/‖x‖ is a standard Gaussian random

variable. Thus |ãi1|2 is a χ2
1 random variable, whose cumulative distribution function is de-

noted asK(x). Moreover by Lemma 4.6, for a small ε, one has
∣∣∣θ 1

2
−s({|ãi1|2})− θ 1

2
−s(K)

∣∣∣ <
ε and

∣∣∣θ 1
2

+s({|ãi1|2})− θ 1
2

+s(K)
∣∣∣ < ε with probability 1 − 2 exp(−cmε2) and c is a con-

stant around 2 × 0.472 (see Figure 4.5). We note that θ 1
2
(K) = 0.455 and both θ 1

2
−s(K)

and θ 1
2

+s(K) can be arbitrarily close to θ 1
2
(K) simultaneously as long as s is small enough

(independent of n). Thus, one has

(
θ 1

2
−s(K)− ε− c

)
‖x‖2 < θ 1

2
({yi}) <

(
θ 1

2
+s(K) + ε+ c

)
‖x‖2, (4.49)

with probability at least 1− exp(−cmε2). For the sake of simplicity, we introduce two new

notations ζs := θ 1
2
−s(K) and ζs := θ 1

2
+s(K). Specifically for the instance of s = 0.01, one

has ζs = 0.434 and ζs = 0.477. It is easy to see that ζs − ζs can be arbitrarily small if s is

small enough.

We next estimate the direction of x, assuming ‖x‖ = 1. On the event that (4.49) holds,
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the truncation function has the following bounds,

1{yi≤α2
yθ1/2({yi})/0.455} ≤ 1{yi≤α2

y(ζs+ε)/0.455} ≤ 1{(aTi x)2≤α2
y(ζs+ε+c)/0.455}

1{yi≤α2
yθ1/2({yi})/0.455} ≥ 1{yi≤α2

y(ζs−ε)/0.455} ≥ 1{(aTi x)2≤α2
y(ζs−ε−c)/0.455}.

On the other hand, denote the support of the outliers as S, and we have

Y =
1

m

∑
i/∈S

aia
T
i ỹi1{(aTi x)2≤α2

yθ1/2({yi})/0.455} +
1

m

∑
i∈S

aia
T
i yi1{yi≤α2

yθ1/2({yi})/0.455}.

Consequently, one can bound Y as

Y 1 :=
1

m

∑
i/∈S

aia
T
i (aTi x)21{(aTi x)2≤α2

y(ζs−ε−c)/0.455} − c ·
1

m

∑
i/∈S

aia
T
i � Y

� 1

m

∑
i/∈S

aia
T
i (aTi x)21{(aTi x)2≤α2

y(ζs+ε+c)/0.455} + c · 1

m

∑
i/∈S

aia
T
i

+
1

m

∑
i∈S

aia
T
i α

2
y(ζ

s + ε+ c)/0.455 =: Y 2,

where we have

E[Y 1] = (1− s)(β1xx
T + β2I − cI),

E[Y 2] = (1− s)(β3xx
T + β4I + cI) + sα2

y

(ζs + ε)

0.455
I,

with

β1 := E

[
ξ41{

|ξ|≤αy
√

(ζs−ε−c)/0.455
}]− E

[
ξ21{

|ξ|≤αy
√

(ζs−ε−c)/0.455
}]

β2 := E

[
ξ21{

|ξ|≤αy
√

(ζs−ε−c)/0.455
}]

β3 := E

[
ξ41{

|ξ|≤αy
√

(ζs+ε+c)/0.455
}]− E

[
ξ21{

|ξ|≤αy
√

(ζs+ε+c)/0.455
}]

β4 := E

[
ξ21{

|ξ|≤αy
√

(ζs+ε+c)/0.455
}]
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where ξ ∼ N (0, 1).

Applying standard results on random matrices with non-isotropic sub-Gaussian rows

[142, equation (5.26)] and noticing that aiaTi (aTi x)21{|aTi x|≤c} can be rewritten as bibTi

where bi := ai(a
T
i x)1{|aTi x|≤c} is sub-Gaussian, one can obtain

‖Y 1 − E[Y 1]‖ ≤ δ, ‖Y 2 − E[Y 2]‖ ≤ δ (4.50)

with probability 1 − exp(−Ω(m)), provided that m/n exceeds some large constant. Fur-

thermore, when ε, c and s are sufficiently small, one further has ‖E[Y 1] − E[Y 2]‖ ≤ δ.

Putting these together, one has

‖Y − (1− s)(β1xx
T + β2I − cI)‖ ≤ 3δ. (4.51)

Let z̃(0) be the normalized leading eigenvector of Y . Repeating the same argument as

in [1, Section 7.8] and taking δ, ε to be sufficiently small, one has

dist(z̃(0),x) ≤ δ̃, (4.52)

for a given δ̃ > 0, as long as m/n exceeds some large constant.

Furthermore let z(0) =
√

med{yi}/0.455z̃(0) to handle cases ‖x‖ 6= 1. By the bound

(4.49), one has

∣∣∣∣med({yi})
0.455

− ‖x‖2

∣∣∣∣ ≤ max

{∣∣∣∣ζs − ε− c0.455
− 1

∣∣∣∣ , ∣∣∣∣ζs + ε+ c

0.455
− 1

∣∣∣∣} ‖x‖2

≤ ζs − ζs + 2ε+ 2c

0.455
‖x‖2. (4.53)

Thus

dist(z(0),x) ≤ ζs − ζs + 2ε+ 2c

0.455
‖x‖+ δ̃‖x‖ ≤ 1

11
‖x‖
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as long as s and c are small enough constants.

Proof of Proposition 4.12

We show that the sample median used in the truncation rule concentrates at the level

‖z−x‖‖z‖. Along the way, we also establish that the sample quantiles around the median

are also concentrated at the level ‖z − x‖‖z‖.

We first show that for a fixed pair z and x, (4.23) holds with high probability. For

simplicity of notation, we let h := z − x. Let ri = |(aTi x)2 − (aTi z)2|. Then ri’s are

i.i.d. copies of a random variable r, where r = |(aTx)2 − (aTz)2| with the entries of a

composed of i.i.d. standard Gaussian random variables. Note that the distribution of r is

fixed once given h and z. Let x(1) denote the first element of a generic vector x, and

x−1 denote the remaining vector of x after eliminating the first element. Let Uh be an

orthonormal matrix with first row being hT/‖h‖, ã = Uha, and z̃ = Uhz. Similarly,

define U z̃−1 and let b̃ = U z̃−1ã−1. Then ã(1) and b̃(1) are independent standard normal

random variables. We further express r as follows.

r = |(aTz)2 − (aTx)2|

= |(2aTz − aTh)(aTh)|

= |(2ãT z̃ − ã(1)‖h‖)(ã(1)‖h‖)|

= |(2hTz − ‖h‖2)ã(1)2 + 2(ãT−1z̃−1)(ã(1)‖h‖)|

= |(2hTz − ‖h‖2)ã(1)2 + 2b̃(1)‖z̃−1‖ã(1)‖h‖|

= |(2hTz − ‖h‖2)ã(1)2 + 2
√
‖z‖2 − z̃(1)2ã(1)b̃(1)‖h‖|

=

∣∣∣∣∣∣
(

2
hTz

‖h‖‖z‖
− ‖h‖
‖z‖

)
ã(1)2 + 2

√
1−

(
hTz

‖h‖‖z‖

)2

ã(1)b̃(1)

∣∣∣∣∣∣ · ‖h‖‖z‖
=:
∣∣∣(2 cos(ω)− t)ã(1)2 + 2

√
1− cos2(ω)ã(1)b̃(1)

∣∣∣ · ‖h‖‖z‖
=: |uṽ| · ‖h‖‖z‖
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where ω is the angle between h and z, and t = ‖h‖/‖z‖ < 1/11. Consequently, u =

ã(1) ∼ N (0, 1) and ṽ = (2 cos(ω) − t)ã(1) + 2| sin(ω)|b̃(1) is also a Gaussian random

variable with variance 3.6 < Var(ṽ) < 4 under the assumption t < 1/11.

Let v = ṽ/
√

Var(ṽ), and then v ∼ N (0, 1). Furthermore, let r′ = |uv|. Denote the

density function of r′ as ψρ(·) and the 1/2-quantile point of r′ as θ1/2(ψρ). By Lemma 4.9,

we have

0.47 < ψρ(θ1/2) < 0.76, 0.348 < θ1/2(ψρ) < 0.455. (4.54)

By Lemma 4.6, we have with probability at least 1 − 2 exp(−cmε2) (here c is around

2× 0.472),

0.348− ε < med({r′i}mi=1) < 0.455 + ε. (4.55)

The same arguments carry over to other quantiles θ0.49({r′i}) and θ0.51({r′i}). From Figure.

4.5, we observe that for ρ ∈ [0, 1]

0.45 < ψρ(θ0.49), ψρ(θ0.51) < 0.78, 0.336 < θ0.49(ψρ), θ0.51(ψρ) < 0.477 (4.56)

and then we have with probability at least 1− 2 exp(−cmε2) (here c is around 2× 0.452),

0.336− ε < θ0.49({r′m}), θ0.51({r′m}) < 0.477 + ε. (4.57)
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Hence, by multiplying by
√
Var(ṽ), we have with probability 1− 2 exp(−cmε2),

(0.65− ε)‖z − x‖‖z‖ ≤ med
({
|(aTi z)2 − (aTi x)2|

})
≤ (0.91 + ε)‖z − x‖‖z‖,

(4.58)

(0.63− ε)‖z − x‖‖z‖ ≤ θ0.49, θ0.51

({
|(aTi z)2 − (aTi x)2|

})
≤ (0.95 + ε)‖z − x‖‖z‖.

(4.59)

We note that, to keep notation simple, c and ε may vary line by line within constant factors.

Up to now, we prove that for any fixed z and x, the median or neighboring quantiles of{
|(aTi z)2 − (aTi x)2|

}
are upper and lower bounded by ‖z−x‖‖z‖ times constant factors.

To prove (4.23) for all z and x with ‖z − x‖ ≤ 1
11
‖z‖, we use the net covering argument.

Still we argue for median first and the same arguments carry over to other quantiles.

To proceed, we restate (4.58) as

(0.65− ε) ≤ med
({∣∣∣∣(2(aTi z)

‖z‖
− a

T
i h

‖h‖
‖h‖
‖z‖

)
aTi h

‖h‖

∣∣∣∣}) ≤ (0.91 + ε) (4.60)

holds with probability at least 1−2 exp(−cmε2) for a given pairh, z satisfying ‖h‖/‖z‖ ≤

1/11.

Let τ = ε/(6n+ 6m), let Sτ be a τ -net covering the unit sphere, Lτ be a τ -net covering

a line with length 1/11, and set

Nτ = {(z0,h0, t0) : (z0,h0, t0) ∈ Sτ × Sτ × Lτ}. (4.61)

One has cardinality bound (i.e., the upper bound on the covering number) |Nτ | ≤ (1 +

2/τ)2n/(11τ) < (1 + 2/τ)2n+1. Taking the union bound, we have

(0.65− ε) ≤ med
({
|2(aTi z0)− (aTi h0)t0||aTi h0|

})
≤ (0.91 + ε), ∀(z0,h0, t0) ∈ Nε

(4.62)
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with probability at least 1− (1 + 2/τ)2n+1 exp(−cmε2).

We next argue that (4.62) holds with probability 1−c1 exp(−c2mε
2) for some constants

c1, c2 as long as m ≥ c0(ε−2 log ε−1)n log n for sufficiently large constant c0. To prove this

claim, we first observe

(1 + 2/τ)2n+1 � exp(2n(log(n+m) + log 12 + log(1/ε))) � exp(2n(logm)).

We note that once ε is chosen, it is fixed in the whole proof and does not scale with m

or n. For simplicity, assume that ε < 1/e. Fix some positive constant c′ < c − c2. It then

suffices to show that there exists a large constant c0 such that if m ≥ c0(ε−2 log ε−1)n log n,

then

2n logm < c′mε2. (4.63)

For any fixed n, if (4.63) holds for some m and m > (2/c′)ε−2n, then (4.63) always holds

for larger m, because

2n log(m+ 1) = 2n logm+ 2n(log(m+ 1)− logm) = 2n logm+
2n

m
log(1 +

1

m
)m

≤ 2n logm+
2n

m
≤ c′mε2 + c′ε2 = c′(m+ 1)ε2.

Next, we can always find a constant c0 such that (4.63) holds form = c0(ε−2 log ε−1)n log n

for any n. Such c0 can be easily found for large n. For example, c0 = 4/c′ is a valid option

if

(4/c′)(ε−2 log ε−1)n log n < n2. (4.64)

Moreover, since the number of n that violates (4.64) is finite, the maximum over all such

c0 serves the purpose. Next, one needs to bound

∣∣med
({
|2(aTi z0)− (aTi h0)t0||aTi h0|

})
−med

({
|2(aTi z)− (aTi h)t||aTi h|

})∣∣



133

for any ‖z − z0‖ < τ, ‖z − z0‖ < τ and ‖t− t0‖ < τ .

By Lemma 4.7 and the inequality
∣∣∣∣|x| − |y|∣∣∣∣ ≤ |x− y|, we have

∣∣med
({
|2(aTi z0)− (aTi h0)t0||aTi h0|

})
−med

({
|2(aTi z)− (aTi h)t||aTi h|

})∣∣
≤ max

i∈[m]

∣∣(2(aTi z0)− (aTi h0)t0
)

(aTi h0)−
(
2(aTi z)− (aTi h)t

)
(aTi h)

∣∣
≤ max

i∈[m]

∣∣(2(aTi z0)− (aTi h0)t0
)

(aTi h0)−
(
2(aTi z)− (aTi h)t

)
(aTi h0)

∣∣
+ max

i∈[m]

∣∣(2(aTi z)− (aTi h)t
)

(aTi h0)−
(
2(aTi z)− (aTi h)t

)
(aTi h)

∣∣
≤ max

i∈[m]

(∣∣2aTi (z0 − z)
∣∣+
∣∣(aTi h0)t0 − (aTi h)t

∣∣) ∣∣aTi h0

∣∣
+ max

i∈[m]

∣∣2(aTi z)− (aTi h)t
∣∣ |aTi (h0 − h)|

≤ max
i∈[m]
‖ai‖2(3 + t)τ + max

i∈[m]
‖ai‖2(2 + t)τ ≤ max

i∈[m]
‖ai‖2(5 + 2t)τ

On the event E1 :=
{

maxi∈[m] ‖ai‖2 ≤ m+ n
}

, one can show that

∣∣med
({
|2(aTi z0)− (aTi h0)t0||aTi h0|

})
−med

({
|2(aTi z)− (aTi h)t||aTi h|

})∣∣
< 6(m+ n)τ < ε.

We claim that E1 holds with probability at least 1 − m exp(−m/8) if m > n. This can

be argued as follows. Note that ‖ai‖2 =
∑n

j=1 ai(j)
2, where ai(j) is the j-th element

of ai. Hence, ‖ai‖2 is a sum of n i.i.d. χ2
1 random variables. Applying the Bernstein-

type inequality [142, Corollary 5.17] and observing that the sub-exponential norm of χ2
1 is

smaller than 2, we have

P
{
‖ai‖2 ≥ m+ n

}
≤ exp(−m/8). (4.65)

Then a union bound concludes the claim.

Further note that (4.62) holds on an eventE2, which has probability 1−c1 exp(−c2mε
2)
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as long as m ≥ c0(ε−2 log 1
ε
)n log n. On the intersection of E1 and E2, inequality for θ 1

2

(i.e., median) in (4.23) holds. Such net covering arguments can also carry over to show that

inequalities of θ0.49 and θ0.51 in (4.23) also hold for all x and z obeying ‖x− z‖ ≤ 1
11
‖z‖.

Proof of Proposition 4.13

The proof adapts that of [61, Proposition 2]. We outline the main steps for complete-

ness. Observe that for the noise-free case, yi = (aTi x)2. We obtain

∇`tr(z) =
1

m

m∑
i=1

(aTi z)2 − (aTi x)2

aTi z
ai1Ei1∩Ei2

=
1

m

m∑
i=1

2(aTi h)ai1Ei1∩Ei2 −
1

m

m∑
i=1

(aTi h)2

aTi z
ai1Ei1∩Ei2 . (4.66)

One expects the contribution of the second term in (4.66) to be small as ‖h‖/‖z‖ decreases.

For each i, we introduce two new events

E i3 := {
∣∣(aTi x)2 − (aTi z)2

∣∣ ≤ 0.6αh‖h‖ · |aTi z|},

E i4 := {
∣∣(aTi x)2 − (aTi z)2

∣∣ ≤ 1.0αh‖h‖ · |aTi z|}.

One the event that Proposition 4.12 holds, the following inclusion property

E i3 ⊆ E i2 ⊆ E i4 (4.67)

is true for all i, where E i2 is defined in Algorithm 3. It is easier to work with these new

events because E i3’s (resp. E i4’s) are statistically independent across i for any fixed x and

z. To further decouple the quadratic inequalities in E i3 and E i4 into linear inequalities, we

introduce two more events and state their properties in the following lemma.
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Lemma 4.18 (Lemma 3 in [61]). For any γ > 0, define

Diγ := {
∣∣(aTi x)2 − (aTi z)2

∣∣ ≤ γ‖h‖|aTi z|}, (4.68)

Di,1γ :=

{
|aTi h|
‖h‖

≤ γ

}
, (4.69)

Di,2γ :=

{∣∣∣∣aTi h‖h‖ − 2aTi z

‖h‖

∣∣∣∣ ≤ γ

}
. (4.70)

On the event E i1 defined in Algorithm 3, the quadratic inequality specifying Diγ implicates

that aTi h belongs to two intervals centered around 0 and 2aTi z, respectively, i.e., Di,1γ and

Di,2γ . The following inclusion property holds

(
Di,1γ

1+
√
2

∩ E i1
)
∪
(
Di,2γ

1+
√
2

∩ E i1
)
⊆ Diγ ∩ E i1 ⊆

(
Di,1γ ∩ E i1

)
∪
(
Di,2γ ∩ E i1

)
. (4.71)

Specifically, following the two inclusion properties (4.67) and (4.71), we have

Di,1γ3 ∩ E
i
1,γ3
⊆ E i3 ∩ E i1 ⊆ E i2 ∩ E i1 ⊆ E i4 ∩ E i1 ⊆ (Di,1γ4 ∪ D

i,2
γ4

) ∩ E i1 (4.72)

where the parameters γ3, γ4 are given by

γ3 := 0.248αh, and γ4 := αh.

Further using the identity (4.66), we have the following lower bound

〈∇`tr(z),h〉 ≥ 2

m

m∑
i=1

(aTi h)21Ei1∩D
i,1
γ3
− 1

m

m∑
i=1

|aTi h|3

|aTi z|
1Di,1γ4 ∩Ei1

− 1

m

m∑
i=1

|aTi h|3

|aTi z|
1Di,2γ4 ∩Ei1

.

(4.73)

The three terms in (4.73) can be bounded following Lemmas 4, 5, and 6 in [61], which

concludes the proof.

Proof of Proposition 4.15
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Observe that

||aTi x| − |aTi z|| =


|aTi h|, if (aTi x)(aTi z) ≥ 0;

|2aTi x+ aTi h|, if (aTi x)(aTi z) < 0.

The following lemma states that {(aTi x)(aTi z) < 0} are rare events when ‖x − z‖ is

small. Hence, med
({∣∣|aTi x| − |aTi z|∣∣}mi=1

)
can be viewed as med({|aTi h|}mi=1) with a

small perturbation.

Lemma 4.19. If m > c0n, then with probability at least 1− c1 exp(−c2m),

1

m

m∑
i=1

1{(aTi x)(aTi z)<0} < 0.05 (4.74)

holds for all z,x satisfying ‖z − x‖ < 1
11
‖x‖.

Proof. See Section 4.6.4.

By Lemma 4.8 and Lemma 4.19, we have

θp−0.05

(
{|aTi h|}

)
≤ θp

({∣∣|aTi x| − |aTi z|∣∣}) ≤ θp+0.05

(
{|aTi h|}

)
(4.75)

for all x and z satisfying ‖x− z‖ ≤ 1
11
‖z‖ with high probability.

For the model (4.1) with a fraction s of outliers, due to Lemma 4.8, we have that

θ 1
2
−s({

∣∣|aTi x| − |aTi z|∣∣}) ≤ θ 1
2
({|√yi − |aTi z||}) ≤ θ 1

2
+s({

∣∣|aTi x| − |aTi z|∣∣}). (4.76)

Combining with (4.75), we obtain that

θ0.45−s({|aTi h|}) ≤ θ 1
2
({|√yi − |aTi z||}) ≤ θ0.55+s({|aTi h|}). (4.77)

Next it suffices to show that θ0.45−s, θ0.55+s({|aTi h|}) are on the order of ‖h‖ for small s.
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Let ãi = |aTi h|/‖h‖. Then ãi’s are i.i.d. copies of a folded standard Gaussian random

variable (i.e., |ξ| where ξ ∼ N (0, 1)). We use φ(·) to denote the density of folded standard

Gaussian distribution.

For s = 0.01, we calculate that

φ(θ0.44) = 0.67, φ(θ0.45) = 0.67, φ(θ0.55) = 0.60, φ(θ0.56) = 0.59 (4.78)

θ0.44(φ) = 0.58, θ0.45(φ) = 0.6, θ0.55(φ) = 0.76, θ0.56(φ) = 0.78. (4.79)

By Lemma 4.6, the sample quantiles concentrate on population quantiles. Thus, for any

fixed pair (x, z),

(0.6− ε)‖h‖ ≤ θ1/2({
∣∣|aTi x| − |aTi z|∣∣}mi=1) ≤ (0.76 + ε)‖h‖, (4.80)

holds with probability at least 1− 2 exp(−cmε−2).

Following the argument of net covering similarly to that in Section 4.6.4, the proposi-

tion is proved.

Proof of Proposition 4.16

The proof adapts the proof of Proposition 2 in [61]. We outline the main steps for

completeness. Observe that for the noise-free case, yi = |aTi x|. We obtain

∇Rtr(z) =
1

m

m∑
i=1

(
(aTi z)− |aTi x| ·

aTi z

|aTi z|

)
ai1T i

=
1

m

∑
i/∈B

(aTi h)ai1T i +
1

m

∑
i∈B

(aTi z + aTi x)ai1T i , (4.81)

where B := {i : (aTi x)(aTi z) < 0}. If ‖h‖/‖x‖ is small enough, the cardinality of B is

small and thus one expects the contribution of the second term in (4.81) to be negligible.

We note that events T i are not statistically independent. To remove such dependency,
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we introduce two new series of events

T i1 := {
∣∣|aTi x| − |aTi z|∣∣ ≤ 0.5α′h‖h‖}, (4.82)

T i2 := {
∣∣|aTi x| − |aTi z|∣∣ ≤ 0.8α′h‖h‖}. (4.83)

Due to Proposition 4.15, the following inclusion property

T i1 ⊆ T i ⊆ T i2 (4.84)

holds for all i, where T i is defined in Algorithm 4. It is easier to work with these new events

because T i1 ’s (resp. T i2 ’s) are statistically independent for any fixed x and z. Because of

the inclusion property (4.84), we have

〈∇Rtr(z),h〉 ≥ 1

m

∑
i/∈B

(aTi h)21T i1 −
1

m

∑
i∈B

|aTi z + aTi x| · |aTi h|1T i2 . (4.85)

Under the condition i /∈ B, we have T i1 = {
∣∣aTi h∣∣ ≤ 0.5α′h‖h‖}. Under the condition

i ∈ B, we have T i2 = {
∣∣aTi x+ aTi z

∣∣ ≤ 0.8α′h‖h‖}. For convenience, we introduce two

parameters γ1 = 0.5α′h and γ2 = 0.8α′h.

We next bound the two terms in (4.85) respectively. For the first term, because of the

inclusion B ⊆ {i : |aTi x| < |aTi h|}, we have

1

m

∑
i/∈B

(aTi h)21T i1 =
1

m

∑
i/∈B

(aTi h)21{|aTi h|≤γ1‖h‖}

≥ 1

m

m∑
i=1

(aTi h)21{|aTi h|≤γ1‖h‖}1{|aTi x|≥|aTi h|}

≥ 1

m

m∑
i=1

(aTi h)21{|aTi h|≤γ1‖h‖}1{|aTi x|≥γ1‖h‖}.

A simpler version of Lemma 4 in [61] gives that if m > c0n, with probability at least
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1− c1 exp(−c2mε
2)

1

m

m∑
i=1

(aTi h)21{|aTi h|≤γ1‖h‖}1{|aTi x|≥γ1‖h‖} ≥ (1− ζ ′1 − ζ ′2 − ε)‖h‖2 (4.86)

holds for all h ∈ Rn, where ζ ′1 := 1−min

{
E

[
ξ21{ξ≥

√
1.01γ1

‖h‖
‖x‖ }

]
,E

[
1{ξ≥

√
1.01γ1

‖h‖
‖x‖ }

]}
and ζ ′2 := E

[
ξ21{|ξ|>

√
0.99γ1}

]
for ξ ∼ N (0, 1).

For the second term, we have

1

m

∑
i∈B

|aTi z + aTi x||aTi h|1T i2 ≤ γ2‖h‖
1

m

∑
i∈B

|aTi h| ≤ γ2‖h‖
1

m

m∑
i=1

|aTi h|1{|aTi x|<|aTi h|},

(4.87)

where the second inequality is due to the inclusion property B ⊆ {i : |aTi x| < |aTi h|}.

Lemma 4.20. For any ε > 0, if m > c0nε
−2 log ε−1, then with probability at least 1 −

C exp(−c1ε
2m),

1

m

m∑
i=1

|aTi h| · 1{|aTi x|<|aTi h|} ≤ (0.12 + ε) ‖h‖ (4.88)

holds for all non-zero vectors x,h ∈ Rn satisfying ‖h‖ ≤ 1
20
‖x‖. Here, c0, c1, C > 0 are

some universal constants.

Proof. See Section 4.6.4.

Thus, putting together (4.86), (4.87) and Lemma 4.20 concludes the proof.

Proof of Proposition 4.17

This proof adapts the proof of Lemma 7 in [61]. Denote vi :=
(
aTi z − |aTi x|sgn(aTi z)

)
1T i .

Then

∇Rtr(z) =
1

m
ATv,



140

where A is a matrix with each row being aTi and v is a m−dimensional vector with each

entry being vi. Thus, for sufficiently large m/n, we have

‖∇Rtr(z)‖ =

∥∥∥∥ 1

m
ATv

∥∥∥∥ ≤ 1

m
‖A‖ · ‖v‖ ≤ (1 + δ)

‖v‖√
m

where the last inequality is due to the spectral norm bound ‖A‖ ≤
√
m(1 + δ) following

from [142, Theorem 5.32].

We next bound ‖v‖. Let v = v(1) + v(2), where v(1)
i = aTi h1T i\Bi and v(2)

i = (aTi x+

aTi z)1T i∩Bi , where Bi := {(aTi x)(aTi z) < 0}. By triangle inequality, we have ‖v‖ ≤

‖v(1)‖ + ‖v(2)‖. Furthermore, given m > c0n, by [45, Lemma 3.1] with probability 1 −

exp(−cm), we have

1

m
‖v(1)‖2 =

1

m

m∑
i=1

(aTi h)2 ≤ (1 + δ)‖h‖2.

By Lemma 4.19, we have with probability 1− C exp(−c1m)

1

m
‖v(2)‖2 ≤ (0.8α′h‖h‖)2 ·

(
1

m

m∑
i=1

1{(aTi x)(aTi z)<0}

)
≤ 0.8‖h‖2

holds, where the last inequality is due to Lemma 4.19. Hence,

‖v‖√
m
≤
(√

1 + δ +
√

0.8
)
‖h‖.

This concludes the proof.

Proof of Lemma 4.19

Denote correlation ρ := zTx
‖z‖‖x‖ . Under the condition ‖z − x‖ ≤ 1

11
‖x‖, simple calcu-

lation yields 0.995 < ρ ≤ 1. It suffices to show that the result holds with high probability

for all x and z satisfying ρ > 0.995. Since now the claim is invariant with the norms of x

and z, we assume that both x and z have unit length without loss of generality.
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We first establish the result for any fixed x and z and then develop a uniform bound

by covering net argument in the end. We introduce a Lipschitz function to approximate the

indicator function. Define

χ(t) :=



1, if t < 0;

−1
δ
· t+ 1, if 0 ≤ t ≤ δ;

0, else;

and then χ(t) is a Lipschitz function with Lipschitz constant 1
δ
. In the following proof, we

set δ = 0.001. We further have

1{(aTi x)(aTi z)<0} ≤ χ
(
(aTi x)(aTi z)

)
≤ 1{(aTi x)(aTi z)<δ}. (4.89)

For convenience, we denote bi := aTi x and b̃i := aTi z. Then (bi, b̃i) takes the jointly

Gaussian distribution with mean µ = (0, 0)T and correlation ρ (bi and b̃i have unit variance).

We next estimate the expectation of 1{(aTi x)(aTi z)<δ} as follows.

E[1{(aTi x)(aTi z)<δ}] = P
{

(aTi x)(aTi z) < δ
}

=

∫∫
τ1·τ2<δ

f(τ1, τ2)dτ1dτ2, (4.90)

where f(τ1, τ2) is the density of the jointly Gaussian random variables (bi, b̃i). Note that

E[1{(aTi x)(aTi z)<δ}] is decreasing on ρ and for the case ρ = 0.995 we get E[1{(aTi x)(aTi z)<δ}] =

0.045 numerically. This implies that

E[χ
(
(aTi x)(aTi z)

)
] ≤ 0.045

for δ = 0.001. Furthermore, χ
(
(aTi x)(aTi z)

)
for all i are bounded and hence sub-
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Gaussian. By Hoeffding type inequality for sub-Gaussian tail [142], we have

P

[
1

m

m∑
i=1

χ
(
(aTi x)(aTi z)

)
> (0.045 + ε)

]
< exp(−cmε2), (4.91)

for some universal constant c, as long as ρ ≥ 0.995.

We have proved so far that the claim holds for fixed x and z. We next obtain a uniform

bound over all x and z with unit length. Let N ′ε be an ε-net covering the unit sphere in Rn

and set

Nε = {(x0, z0) : (x0, z0) ∈ N ′ε ×N ′ε}. (4.92)

One has cardinality bound (i.e., the upper bound on the covering number) |Nε| ≤ (1 +

2/ε)2n. Then for any pair (x, z) with ‖x‖ = ‖z‖ = 1, there exists a pair (x0, z0) ∈ Nε

such that ‖x−x0‖ ≤ ε and ‖z−z0‖ ≤ ε. Taking the union bound for all the points on the

net, we claim that

1

m

m∑
i=1

χ
(
(aTi x0)(aTi z0)

)
≤ 0.045 + ε, ∀(x0, z0) ∈ Nε (4.93)

holds with probability at least 1− (1 + 2/ε)2n exp(−cmε2).

Since χ(t) is Lipschitz with constant 1/δ, we have

∣∣χ ((aTi x)(aTi z)
)
− χ

(
(aTi x0)(aTi z0)

)∣∣ ≤ 1

δ

∣∣(aTi x)(aTi z)− (aTi x0)(aTi z0)
∣∣ . (4.94)

Moreover, by [61, Lemma 1],

1

m
‖A(M)‖1 ≤ c2‖M‖F , for all symmetric rank-2 matricesM ∈ Rn×n, (4.95)

holds with probability at least 1 − C exp(−c1m) as long as m > c0n for some constants
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C, c0, c1, c2 > 0. Consequently, on the event that (4.95) holds, we have

∣∣∣∣∣ 1

m

m∑
i=1

χ
(
(aTi x)(aTi z)

)
− 1

m

m∑
i=1

χ
(
(aTi x0)(aTi z0)

)∣∣∣∣∣
≤ 1

m

m∑
i=1

∣∣χ ((aTi x)(aTi z)
)
− χ

(
(aTi x0)(aTi z0)

)∣∣
≤ 1

δ
· 1

m
‖A(xzT − x0z

T
0 )‖1 due to (4.94)

≤ 1

δ
· c2‖xzT − x0z

T
0 ‖F due to (4.95)

≤ 1

δ
· c2(‖x− x0‖ · ‖z‖+ ‖z − z0‖ · ‖x0‖) ≤ 2c3ε/δ.

On the intersection of events that (4.93) and (4.95) hold, we have

1

m

m∑
i=1

χ
(
(aTi x)(aTi z)

)
≤ (0.045 + ε+ 2c3ε/δ) , (4.96)

for all x and z with unit length and ρ ≥ 0.995. Since ε can be arbitrarily small, the proof

is completed.

Proof of Lemma 4.20

We first observe that for any γ,

1{|aTi x|<|aTi h|} ≤ 1{|aTi x|<γ‖x‖} + 1{|aTi h|≥γ‖x‖} ≤ 1{|aTi x|<γ‖x‖} + 1{|aTi h|≥20γ‖h‖} (4.97)

where the last inequality is due to the assumption ‖h‖‖x‖ ≤
1
20

.

To establish the lemma, we set γ = 0.15 and denote γ′ := 20γ = 3. We next respec-

tively show that

1

m

m∑
i=1

|aTi h|1{|aTi x|<γ‖x‖} ≤ (0.11 + ε)‖h‖ (4.98)
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for all x,h ∈ Rn, and

1

m

m∑
i=1

|aTi h|1{|aTi h|>γ′‖h‖} ≤ (0.01 + ε)‖h‖ (4.99)

for all h ∈ Rn.

We first prove (4.98). Without loss of generality, we assume that h and x have unit

length. We introduce a Lipschitz function to approximate the indicator functions, which is

defined as

χx(t) :=



1, if |t| < γ;

1
δ
(γ − |t|) + 1, if γ ≤ |t| ≤ γ + δ;

0, else.

Then χx(t) is a Lipschitz function with constant 1
δ
. We further have

1{|aTi x|<γ} ≤ χx(a
T
i x) ≤ 1{|aTi x|<γ+δ}. (4.100)

We first prove bounds for any fixed pair h,x, and then develop a uniform bound later on.

We next estimate the expectation of |aTi h|1{|aTi x|<γ+δ},

E[|aTi h|1{|aTi x|<γ+δ}] =

∫∫ ∞
−∞
|τ1|1{|τ2|<γ+δ} · f(τ1, τ2)dτ1dτ2, (4.101)

where f(τ1, τ2) is the density of two jointly Gaussian random variables with correlation



145

ρ = hTx
‖h‖‖x‖ 6= ±1. We then continue to derive

E[|aTi h|1{|aTi x|<γ+δ}]

=
1

2π
√

1− ρ2

∫ ∞
−∞
|τ1| exp

(
−τ

2
1

2

)
·
∫ γ+δ

−(γ+δ)

exp

(
−(τ2 − ρτ1)2

2(1− ρ2)

)
dτ2dτ1 (4.102)

=
1√
2π

∫ ∞
−∞
|τ1| exp

(
−τ

2
1

2

)
·
∫ γ+δ−ρτ1√

2(1−ρ2)

−γ−δ−ρτ1√
2(1−ρ2)

exp
(
−τ 2

)
dτdτ1 by changing variables

=
1√
8π

∫ ∞
−∞
|τ1| exp

(
−τ

2
1

2

)
·

(
erf

(
γ + δ − ρτ1√

2(1− ρ2)

)
− erf

(
−γ − δ − ρτ1√

2(1− ρ2)

))
dτ1

(4.103)

For |ρ| < 1, E[|aTi h|1{|aTi x|<γ+δ}] is a continuous function of ρ. The last integral

(4.103) can be calculated numerically. Figure 4.6 plots E[|aTi h|1{|aTi x|<γ+δ}] for γ = 0.15

and δ = 0.01 over ρ ∈ (−1, 1). Furthermore, (4.102) indicates that E[|aTi h|1{|aTi x|<γ+δ}]

is monotonically increasing with both θ and δ. Thus, we obtain a universal bound

E[|aTi h|1{|aTi x|<γ+δ}] ≤ 0.11‖h‖ for γ < 0.15 and δ = 0.01, (4.104)

which further implies E[|aTi h|χx(aTi x)] ≤ 0.11‖h‖ for γ < 0.15 and δ = 0.01.
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Fig. 4.6: E[|aTi h|1{|aTi x|<γ+δ}] with respect to ρ



146

Furthermore, |aTi h|χx(aTi x)’s are sub-Gaussian with sub-Gaussian norm O(‖h‖). By

the Hoeffding type of sub-Gaussian tail bound [142], we have

P

[
1

m

m∑
i=1

|aTi h|χx(aTi x) > (0.11 + ε) ‖h‖

]
< exp(−cmε2), (4.105)

for some universal constant c.

We have proved so far that the claim holds for a fixed pair h,x. We next obtain a

uniform bound over all x and h with unit length. LetN ′ε be a ε-net covering the unit sphere

in Rn and set

Nε = {(x0,h0) : (x0,h0) ∈ N ′ε ×N ′ε}.

One has cardinality bound (i.e., the upper bound on the covering number) |Nε| ≤ (1 +

2/ε)2n. Then for any pair (x,h) with ‖x‖ = ‖h‖ = 1, there exists a pair (x0,h0) ∈ Nε

such that ‖x − x0‖ ≤ ε and ‖h − h0‖ ≤ ε. Taking the union bound for all the points on

the net, one can show

1

m

m∑
i=1

|aTi h0|χx
(
aTi x0

)
≤ 0.11 + ε, ∀(x0,h0) ∈ Nε (4.106)

holds with probability at least 1− (1 + 2/ε)2n exp(−cmε2).

Since χx(t) is Lipschitz with constant 1/δ, we have the following bound

∣∣χx (aTi x)− χx (aTi x0

)∣∣ ≤ 1

δ

∣∣aTi (x− x0)
∣∣ . (4.107)
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Consequently, on the event that (4.95) holds, we have

∣∣∣∣∣ 1

m

m∑
i=1

|aTi h|χx
(
aTi x

)
− 1

m

m∑
i=1

|aTi h0|χx
(
aTi x0

)∣∣∣∣∣
≤ 1

m

m∑
i=1

∣∣|aTi h|χx (aTi x)− |aTi h0|χx
(
aTi x0

)∣∣
≤ 1

m

m∑
i=1

∣∣aTi (h− h0)
∣∣+

1

m

m∑
i=1

1

δ

∣∣aTi h0

∣∣ · ∣∣aTi x− aTi x0

∣∣ due to (4.107)

≤ c′2‖h− h0‖+
1

δ
· c2‖h0(x− x0)T‖F due to (4.95)

≤ c3ε/δ.

On the intersection of events that (4.106) and (4.95) hold, we have

1

m

m∑
i=1

|aTi h|χx
(
aTi x0

)
≤ (0.11 + ε+ 2c3ε/δ) , (4.108)

for all x and h with unit length.

We next prove (4.99). Without loss of generality, we assume that h has unit length. We

introduce a Lipschitz function to approximate the indicator functions, which is defined as

χh(t) :=



|t|, if |t| > γ′;

1
δ
(|t| − γ′) + γ′, if γ′(1− δ) ≤ |t| ≤ γ′;

0, else.

Then, χh(t) is a Lipschitz function with constant 1
δ
. We further have

|aTi h|1{|aTi h|>γ′‖h‖} ≤ χh(a
T
i h) ≤ |aTi h|1{|aTi h|>γ′(1−δ)‖h‖}. (4.109)

We first prove bounds for any fixed h, and then develop a uniform bound later on.
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We next estimate the expectation of |aTi h|1{|aTi h|>γ′(1−δ)‖h‖} as follows:

E[|aTi h|1{|aTi h|>γ′(1−δ)‖h‖}] =

∫ ∞
−∞
|τ |1{|τ |>γ′(1−δ)} · f(τ)dτ,

= 2 · 1√
2π

∫ ∞
γ′(1−δ)

τ exp

(
−τ

2

2

)
dτ

=

√
2

π
exp(−γ′2(1− δ)2/2) < 0.01 for γ′ = 3, δ = 0.01, (4.110)

where f(τ) is the density of the standard Gaussian. We note that E[|aTi h|1{|aTi h|>γ′(1−δ)‖h‖}]

is monotonically increasing with δ and decreasing with γ′. Furthermore, E[χh(a
T
i h)] ≤

0.01‖h‖ for γ′ ≥ 3 and δ ≤ 0.01.

Moreover, χh(aTi h) for all i are sub-Gaussian with sub-Gaussian norm O(‖h‖). By

the Hoeffding type sub-Gaussian tail bound [142], we have

P

[
1

m

m∑
i=1

χh(a
T
i h) > (0.01 + ε) ‖h‖

]
< exp(−cmε2), (4.111)

for some universal constant c.

We have proved so far that the claim holds for a fixed h. We next obtain a uniform

bound over all h with unit length. Let Nε be an ε-net covering the unit sphere in Rn. One

has cardinality bound (i.e., the upper bound on the covering number) |Nε| ≤ (1 + 2/ε)n.

Then for any h with unit length, there exists a h0 ∈ Nε such that ‖h − h0‖ ≤ ε. Taking

the union bound for all the points on the net, one can show

1

m

m∑
i=1

χh(a
T
i h0) ≤ 0.01 + ε, ∀h0 ∈ Nε (4.112)

holds with probability at least 1− (1 + 2/ε)n exp(−cmε2).
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Consequently, we have

∣∣∣∣∣ 1

m

m∑
i=1

χh(a
T
i h)− 1

m

m∑
i=1

χh(a
T
i h0)

∣∣∣∣∣
≤ 1

m

m∑
i=1

∣∣χh(aTi h)− χh(aTi h0)
∣∣

≤ 1

δ
· 1

m

m∑
i=1

∣∣aTi (h− h0)
∣∣

≤ 1

δ
c′2‖h− h0‖ ≤ c3ε/δ,

where the second inequality is because χh(t) is Lipschitz continuous with constant 1/δ.

On the intersection of events that (4.112) and (4.95) hold, we have

1

m

m∑
i=1

χh(a
T
i h) ≤ (0.01 + ε+ c3ε/δ) , (4.113)

for all h with unit length.

Putting together (4.108) and (4.113), and since ε can be arbitrarily small, the proof is

completed.
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CHAPTER 5

FUTURE WORK

We study the robust PCA problem and the phase retrieval problem in this dissertation. For

the robust PCA problem we provide a more refined analysis of PCP via local coherence.

For the phase retrieval problem, we first propose a fast algorithm RWF that solves phase

retrieval by minimizing a nonconvex and nonsmooth quadratic loss function. This loss

function sacrifices the smoothness but enjoys advantages in statistical and computational

efficiency. We further propose a median truncation approach to modify existing TWF and

RWF algorithms to resist the outliers that are often encountered in the phase retrieval mea-

surements. Our median truncation modified algorithms do not require prior knowledge of

outliers and perform well in an oblivious manner.

These works motivate us to further explore several directions in the future. We describe

two interesting problems that are under consideration.

5.1 Structural Phase Retrieval

In practice, signals often have specific structures e.g., non-negativity, sparsity, etc. Mo-

tivated by the idea of compressive sensing, it is anticipated that with the prior structural

knowledge, the number of measurements that is required to guarantee exact recovery can
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be substantially reduced.

Specifically, [79] proposed the thresholded Wirtinger flow algorithm to recover a sparse

underlying signal, which showed that the true signal x can be recovered with high probabil-

ity and a linear convergence rate, as long as the number of samples isO(k2 log n), where k

is cardinality of the support set of x. One interesting future direction is to modify the RWF

algorithm to exploit such structures to assist the recovery. The lower-order loss function

may offer simplicity and improvement to the proof of the performance guarantee in such

cases.

The heuristic algorithm can be designed as in Algorithm 5. We introduce an amending

function H(·) which can admit the prior knowledge of the signal, e.g., sparsity level and

non-negativity.

Algorithm 5 Reshaped Wirtinger Flow with Prior
Input: y = {yi}mi=1, {ai}mi=1, amending function H , gradient stepsize µ;

Initialization: Same as in RWF (see Algorithm 1).
Gradient loop: for t = 0 : T − 1 do

Compute the amending parameter τ (t),

Update z(t+1) = Hτ (t)

(
z(t) − µ · ∇`(z(t))

)
. (5.1)

Output z(T ).

We anticipate such a modified algorithm can improve the sample complexity achieved

in [79] and expedite the convergence due to the lower-order loss function.

5.2 Fast and Robust Low-rank Matrix Recovery

Motivated by the success of nonconvex heuristics in phase retrieval problem, researchers

have extensively studied the nonconvex approaches to recover the low-rank matrix.
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Problem 5.1 (Low-rank Matrix Recovery). FindX ∈ Rn×p with minimal rank such that

A(X) = y (5.2)

where A : Rn×p → Rm is a affine transformation (known) and y ∈ Rm is the observation

vector (known).

Suppose that the underlying solution X is a rank-r positive semidefinite matrix, and

can be decomposed as X = UUT , where U ∈ Rn×r. Recently, [85, 86] proposed to

minimize the following loss function

`(Z) :=
1

4m
‖A(ZZT )− y‖2, (5.3)

where Z ∈ Rn×r. The recovery of the true matrix is guaranteed by minimizing the non-

convex objective (5.3), when A is composed of independent Gaussian matrix measure-

ments (i.e., elements are independent Gaussian random variables). Specifically, [86] pro-

posed an algorithm that achieves the linear convergence rate and the sample complexity

O(nr3 log n).

However, it consumes huge space to store the Gaussian matrices especially when the

dimension becomes large. Thus rank-1 measurement matrices are preferred in this scenario

[27]. For the positive semidefinite (PSD) matrixX = UUT , the measurements become

yi = 〈aiaTi ,X〉 = aTi Xai = ‖UTai‖2, i = 1, . . . ,m, (5.4)

where ai ∈ Rn are the measurement vectors and m is the number of measurements.

It is interesting to extend the idea of RWF to improve the low-rank matrix recovery.

Instead of minimizing (5.2), we propose to minimize a lower-order loss function

R(Z) :=
1

2m

m∑
i=1

(‖ZTai‖ −
√
yi)

2. (5.5)
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We anticipate that the above loss function will bring us benefit on the convergence rate and

the sample complexity.

It is also interesting to consider the robust low-rank matrix recovery [146]. We expect

that the median-truncation approach will provide new improvement along this line.
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