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ABSTRACT

In this dissertation, we investigate two problems, both of which require the recovery

of unknowns from measurements that are potentially corrupted by outliers. The first part

focuses on the problem of robust principal component analysis (PCA), which aims to re-

cover an unknown low-rank matrix from a corrupted and partially-observed matrix. The

robust PCA problem, originally nonconvex itself, has been solved via a convex relaxation

based approach principal component pursuit (PCP) in the literature. However, previous

works assume that the sparse errors uniformly spread over the entire matrix and character-

ize the condition under which PCP guarantees exact recovery. We generalize these results

by allowing non-uniform error corruptions over the low-rank matrix and characterize the

conditions on the error corruption probability of each individual entry based on the lo-

cal coherence of the low-rank matrix, under which correct recovery can be guaranteed by

PCP. Our results yield new insights on the graph clustering problem beyond the relevant

literature.

The second part of the thesis studies the phase retrieval problem, which requires recov-

ering an unknown vector from only its magnitude measurements. Differently from the first

part, we solve this problem directly via optimizing nonconvex objectives. As the noncon-

vex objective is often constructed in such a way that the true vector is its global optimizer,

the difficulty here is to design algorithms to find the global optimizer efficiently and prov-

ably. In order to solve this problem, we propose a gradient-like algorithm named reshaped

Wirtinger flow (RWF). For random Gaussian measurements, we show that RWF enjoys

linear convergence to a global optimizer as long as the number of measurements is on the

order of the dimension of the unknown vector. This achieves the best possible sample

complexity as well as the state-of-the-art computational efficiency.

Moreover, we study the phase retrieval problem when the measurements are corrupted



by adversarial outliers, which models situations with missing data or sensor failures. In

order to resist possible observation outliers in an oblivious manner, we propose a novel me-

dian truncation approach to modify the nonconvex approach in both the initialization and

the gradient descent steps. We apply the median truncation approach to the Poisson loss

and the reshaped quadratic loss respectively, and obtain two algorithms median-TWF and

median-RWF. We show that both algorithms recover the signal from a near-optimal number

of independent Gaussian measurements, even when a constant fraction of measurements is

corrupted. We further show that both algorithms are stable when measurements are cor-

rupted by both sparse arbitrary outliers and dense bounded noises. We establish our results

on the performance guarantee via the development of non-trivial concentration measures

of the median-related quantities, which can be of independent interest.
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1

CHAPTER 1

INTRODUCTION

This dissertation contains two topics: robust PCA and nonconvex phase retrieval, both of

which require recovering unknowns from measurements that are potentially corrupted by

outliers. The robust PCA problem is to recover a low-rank matrix from an observed matrix

which contains random and sparse error corruptions. We provide a more refined analysis

for robust PCA via local coherence, which is further shown to have rich implication on

the graph clustering problem. The phase retrieval problem is to recover a vector from only

its magnitude measurements. We develop new nonconvex methods that are faster and (or)

more robust than existing ones and establish the theoretical performance guarantee for the

proposed methods. At last, for the sake of completeness, my earlier Ph.D works investigate

the problems on information theoretical security, which are summarized in Section 1.3.

1.1 Robust Principal Component Analysis (PCA)

Classical PCA is a widely-used technique in modern data analysis and dimension reduction.

Mathematically, it is to find the first k principal components (eigenvectors corresponding

to the k largest eigenvalues) of an observed matrix M , and can be formulated as solving
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the following optimization problem

minimizeL ‖M −L‖

subject to rank(L) ≤ k,

where ‖ · ‖ denotes the spectral norm, i.e., the largest singular value. This optimization

problem can be solved efficiently via singular value decomposition (SVD).

However, the classical PCA is sensitive to grossly corrupted observations: a single

corrupted entry in M could make the resulting L arbitrarily far from the ground truth.

In order to perform PCA effectively when the data matrix is subject to gross corruptions,

the robust PCA problem has been widely studied [5–12]. Mathematically, the robust PCA

problem is to decompose an observed matrix M into the sum of a low-rank matrix L and

a sparse error matrix S. A direct optimization formulation for the robust PCA problem can

be written as
minimize

L,S
rank(L) + λ‖S‖0

subject to M = L+ S,

(1.1)

where ‖ · ‖0 denotes the number of non-zero entries and λ is the hyper-parameter that

controls the balance between minimizing the rank ofL and the sparsity of S. However, the

optimization (1.1) is non-convex and intractable in polynomial time.

One way to deal with the above difficulty is to consider the convex relaxation of (1.1).

Specifically, the rank(·) can be relaxed as the nuclear norm ‖ · ‖∗, i.e., the sum of singular

values, and ‖·‖0 can be relaxed as the l1 norm, i.e., the sum of absolute values of all entries.

In [13,14], the following principal component pursuit (PCP) is proposed to solve the robust

PCA problem,

PCP:
minimize

L,S
‖L‖∗ + λ‖S‖1

subject to M = L+ S.

(1.2)

Surprisingly, it has been shown in [13,14] that if the ground truth L0 and S0 satisfy certain
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assumptions, then PCP returns the exact L0 and S0 with high probability.

Intuitively, in order to demix M correctly, the two matrices L0 and S0 should be dis-

tinguishable from each other in properties. This requires that L0 is not sparse and S0 is not

low-rank. One important quantity that determines how similar L0 is to a sparse matrix is

the coherence ofL0, which measures how the column and the row spaces ofL0 are aligned

with the canonical basis and between themselves. Such a coherence parameter is defined

to be the maximum over all of the column and the row spaces of L in [13] , which can be

viewed as the global parameter for the entire matrixL. It has been shown in [13] that exact

decomposition can be guaranteed with high probability if the percentage of the corrupted

entries is small enough as well as the corrupted entries are uniformly distributed over the

entire matrix, and the low-rank matrix is incoherent. Consequently, such a characterization

of the result is based on the global (and in fact the worst case) coherence parameter.

However, such results do not capture the fact that different parts of the low-rank matrix

have different sensitivities to the error corruption. Our contribution is that we associate

each entry (i, j) of the low-rank matrix L with a local coherence parameter. Such local

coherence parameters allow us to study how robust each individual entry of L is to resist

the error corruption. Our results also yield rich implications on the graph clustering prob-

lem. My Ph.D work with regard to the robust PCA problem so far has lead to one journal

preparation and one conference publication [15].

1.1.1 Our Contribution: Robust PCA via Local Coherence

In our study of the robust PCA problem, we assume that the error corruptions are distributed

non-uniformly over the entire matrix, and if the data matrix M is partially observed, the

probability of observing each entry ofM is non-uniform as well. We characterize the con-

ditions that guarantee correct matrix decomposition by PCP in terms of the entry-wise error

probability and the entry-wise observation probability with the local coherence parameter.

More specifically, for the full observation model (i.e., all entries are observed), we pro-
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vide a more refined analysis of robust PCA than those in [13, 14] that captures how robust

each entry of the low-rank matrix combats error corruption. Moreover, we demonstrate

that our results have several immediate implications on the graph clustering problem. For

the partial observation model, we establish the performance guarantee of matrix recov-

ery from both error corruption and partial observation based on the local coherence by an

adaptive PCP. In order to deal with non-uniform error corruption and non-uniform missing

observation, our technical proof introduces a new weighted norm and develops/exploits the

concentration properties for such a norm.

1.1.2 Related Works

Matrix completion. A closely related but different problem from robust PCA is matrix

completion, in which a low-rank matrix is partially observed and is to be completed. Such

a problem has been previously studied in [16–20], and it was shown that a rank-r n-by-

n matrix can be provably recoverable with as few as Θ(max{µ0, µ1}nr log2 n) observed

entries1, where µ0 and µ1 are the coherence parameters determined by the underlying low-

rank matrix and the definitions are introduced in Chapter 2. Later on, it was shown in [21]

that µ1 does not affect sample complexity for matrix completion and hence Θ(µ0nr log2 n)

observed entries are sufficient for guaranteeing correct matrix completion. It was further

shown in [22] that a coherent low-rank matrix (i.e., with large µ0) can be recovered with

Θ(nr log2 n) observations as long as the sampling probability is proportional to the lever-

age score (i.e., localized µ0). Our problem can be viewed as its counterpart in robust PCA,

where the difference lies in the fact that the local coherence in our problem depends on

both localized µ0 and µ1.

Moreover, matrix completion with bounded or random noise (i.e., sub-Gaussian noise)

has been studied in [23–25], where the error bounds between the recovered matrix and the

underlying low-rank matrix were established in terms of the noise magnitude or variance.

1f(n) = Θ(g(n)) represents k1 · g(n) ≤ f(n) ≤ k2 · g(n) for some positive k1, k2.



5

The matrix recovery problem with random measurements has also been studied in litera-

ture. In [26], matrix recovery is guaranteed from Gaussian measurements (i.e. each entry

of a measurement matrix is independent standard Gaussian random variable) via a convex

heuristic algorithm, which is in spirit similar to PCP. Furthermore, rank-one measurements

were considered in [27], which greatly reduces the complexity. The performance guarantee

was established under the ROP condition.

Robust PCA. Besides the works [13, 14, 28–30] mentioned in previous sections, [31]

further showed that if signs of nonzero entries in the sparse matrix are randomly chosen,

then an adjusted convex optimization can produce exact decomposition even when the per-

centage of corrupted entries goes to one (i.e., error is dense). Moreover, [26] discussed how

to decompose two matrices if the observations are linear measurements and [32] considered

the low-rank and sparse decomposition under data compression. Compared to previous

studies, our work aims at understanding how local coherence affects susceptibility of each

matrix entry to error corruption and missing observation, and provides a more refined (i.e.

entry-wise) view of robust PCA with random error matrix.

Signal demixing. The problems of decoupling multiple signals which are sparse in

corresponding bases have also been studied in convex demixing literature [33–36]. When

specialized to the low-rank and sparse demixing problem (i.e., robust PCA), such a formu-

lation assumes that the singular vectors of the low-rank matrix are drawn from orthonormal

basis randomly. Sharp phase transition has been established between the low-rank matrix

and the sparse matrix that are generally incoherent. Our work differentiates from these stud-

ies because we assume that the low-rank matrix is unknown but deterministic and moreover

we focus on how the coherence pattern (locally) of the low-rank matrix affects the success

of PCP.

Nonconvex approach. More recently, provable nonconvex approaches have been de-

veloped to solving the matrix decomposition problem, e.g., [37,38] and the matrix comple-

tion problem, e.g., [17, 39–43]. The general idea is to minimize a nonconvex loss function
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by first estimating a good initial seed and then refining the estimation via iterative method.

The proof of the performance guarantee typically exploits the geometry of the loss func-

tion around the neighborhood of the global minimizer. While our focus is along the line of

convex relaxation to solve the robust PCA problem, we anticipate that our perspective of

analyzing non-uniform error corruption and missing observation is also an important issue

to address when applying nonconvex approaches.

1.2 Phase Retrieval via Nonconvex Optimization

The formulation of phase retrieval is motivated by the problem in X-ray crystallography

and coherent diffraction imaging [49–51], which requires the recovery of the structure of

an object from the recorded far field diffracted intensity when a source beam is incident

on the object. Mathematically, the phase retrieval problem is formulated as recovering a

vector x ∈ Rn/Cn from measurements yi given by

yi = |〈ai,x〉|2 , for i = 1, · · · ,m, (1.3)

where ai ∈ Rn/Cn are random design vectors (known).

Various algorithms have been proposed to solve this problem since 1970s. The error-

reduction methods proposed in [52, 53] work well empirically but lack theoretical guar-

antees. More recently, by using the lifting trick, the phase retrieval problem is solved

via convex relaxations [45, 54–59] which estimate a rank-one positive semidefinite matrix

X = xxT from linear measurements. In particular, when the measurement vectors ai’s are

composed of independent and identically distributed (i.i.d.) Gaussian entries, Phaselift [45]

perfectly recovers all x ∈ Rn with high probability as long as the number m of measure-

ments is on the order of signal dimension n. The reader can refer to the review paper [60]

to learn more about applications and algorithms of the phase retrieval problem.

While with good theoretical guarantee, these convex methods often suffer from com-
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putational complexity especially when the signal dimension is large. Another natural idea

is to recover the signal as a solution to some loss minimization problem:

min
z

1

2m

m∑
i=1

`(z; yi) (1.4)

where `(z, yi) is postulated using the negative likelihood of Gaussian or Poisson noise

model. Since the measurements are quadratic in x, the objective function is nonconvex.

Recently, Candès et al. introduced Wirtinger flow (WF) algorithm [1], which minimizes

the following nonconvex loss function

`WF (z) :=
1

4m

m∑
i=1

(|aTi z|2 − yi)2. (1.5)

The WF algorithm first obtains a good initialization by the spectral method and then it-

eratively refines the estimation via the gradient descent scheme. It is proved that the WF

algorithm guarantees signal recovery with O(n log n) Gaussian measurements and attains

ε−accuracy within O(mn2 log 1/ε) flops.

The WF algorithm is further improved by truncated Wirtinger flow (TWF) algorithm

[61]. TWF adopts a Poisson loss function of |aTi z|2, which is given by

`Poi(z) :=
1

2m

m∑
i=1

(
|aTi z|2 − yi log |aTi z|2

)
. (1.6)

When calculating the initial seed and every step of gradient, TWF keeps only well-behaved

measurements based on carefully designed truncation thresholds. Such truncation assists to

yield linear convergence with a fixed step size and reduces the sample complexity to O(n)

and the convergence time to O(mn log 1/ε).

Furthermore, incremental/stochastic methods have been proposed to solve the phase re-

trieval problem. Specifically, [62,63] demonstrated the excellent empirical performance of

the randomized Kaczmarz method but did not establish the non-asymptotic global conver-



8

gence guarantee. [64] proposed another stochastic algorithm named incremental truncated

Wirtinger flow (ITWF) which is developed upon TWF.

Our results improve over previous methods from two directions. We propose an algo-

rithm “reshaped Wirtinger flow (RWF)”, which is much faster than other existing noncon-

vex solvers by employing a new loss function. We further propose a median truncation

approach to robustify the process of phase retrieval when observations are corrupted by

arbitrarily-valued outliers. In a summary, my Ph.D work on the phase retrieval problem so

far has lead to two journal submissions [65, 66] and two conference publications [67, 68].

1.2.1 Our Contribution: Reshaped Wirtinger Flow

We adopt the following loss function for solving the phase retrieval problem:

`(z) :=
1

2m

m∑
i=1

(
|aTi z| −

√
yi
)2
. (1.7)

Compared to the loss function (1.5) of WF that adopts the quadratic loss of |aTi z|2, the

above loss function adopts the quadratic loss of |aTi z| and hence has lower-order variables.

While both loss functions are nonconvex in z, our loss function in (1.7) is also nonsmooth.

To minimize such a nonconvex and nonsmooth loss function (1.7), we develop a gra-

dient descent algorithm, which sets the “gradient” to zero corresponding to nonsmooth

samples. We refer to such an algorithm together with an initialization using a new spectral

method (different from that employed in TWF or WF) as reshaped Wirtinger flow (RWF).

We show that this loss function has great advantage in both statistical and computational ef-

ficiency, in spite of nonsmoothness. We further develop incremental/stochastic versions of

RWF, called incremental RWF (IRWF), and show that IRWF also enjoys the advantageous

local curvature of RWF, and achieves excellent statistical and computational performance.

Along the way, we establish the convergence analysis of the randomized Kaczmarz method

by interpreting it as a variant of IRWF.
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Statistically, we show that RWF recovers the true signal with O(n) Gaussian mea-

surements, which is order-wise optimal. Thus, RWF improves the sample complexity

O(n log n) of WF, and achieves the same sample complexity as TWF but without trun-

cation in the gradient descent loops. Computationally, RWF converges linearly to the

true signal with a constant step size, requiring O(mn log(1/ε)) flops to reach ε-accuracy.

Again, without truncation in the gradient descent step, RWF improves the computational

cost O(mn2 log(1/ε) of WF and achieves the same computational cost as TWF. Numeri-

cally, RWF and its incremental versions require fewer parameters, e.g., truncation thresh-

olds, than TWF in practice. RWF is generally two times faster than TWF and four to six

times faster than WF in terms of both the number of iterations and time cost. IRWF also

outperforms existing incremental as well as batch algorithms.

1.2.2 Our Contribution: Median Truncation Approach

The WF-type algorithms are evaluated based on their statistical and computational per-

formances: statistically, we hope the sample complexity m to be as small as possible;

computationally, we hope the run time to be as small as possible. As can be seen, existing

WF-type algorithms are already near-optimal both statistically and computationally. We

now introduces a third consideration, which is the robustness to outliers, where we hope

that the algorithm continues to perform well even in the presence of outliers that may take

arbitrary values. This bears great importance in practice, because outliers arise frequently

from the phase imaging applications [71] due to various reasons such as detector failures,

recording errors, and missing data.

Specifically, suppose the set of m measurements are given as

yi = |〈ai,x〉|2 + ηi, i = 1, · · · ,m, (1.8)

where ηi ∈ R/C for i = 1, . . . ,m are outliers that can take arbitrary values. We assume
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that outliers are sparse with no more than sm nonzero entries, i.e., ‖η‖0 ≤ sm, where η =

{ηi}mi=1 ∈ Rm/Cm. Here, s is a nonzero constant, representing the faction of measurements

that is corrupted.

We aim to develop phase retrieval algorithms with both statistical and computational

efficiency, and provable robustness to arbitrary-valued outliers. None of the existing algo-

rithms meet all of the three considerations simultaneously. The performance of WF-type

algorithms (WF, TWF and RWF) is very sensitive to outliers which introduce anomalous

search directions when their values are excessively deviated. While a form of Phaselift [72]

is robust to a constant fraction of outliers, it is computationally too expensive.

In the presence of outliers, the signal of interest may no longer be the global optima

of (1.4). Therefore, we want to only include the clean samples in the optimization, which

is, however, impossible as we do not assume any a priori knowledge of the outliers. Our

key strategy is to prune the bad samples adaptively and iteratively, using a gradient descent

procedure that proceeds as follows:

z(t+1) = z(t) − µ

m

∑
i∈Tt+1

∇`(z(t); yi). (1.9)

where z(t) denotes the tth iterate of the algorithm, ∇`(z(t); yi) is the gradient of `(z(t); yi)

for t = 0, 1, . . ., and µ is the step size. In each iteration, only a subset Tt+1 of data-

dependent and iteration-varying samples contributes to the search direction. But how to

select the set Tt+1? Note that the gradient of the loss function typically contains the term∣∣yi − |aTi z(t)|2
∣∣ (for WF and TWF) or

∣∣√yi − |aTi z(t)|
∣∣ (for RWF), which measures the

residual using the current iterate. With yi being corrupted by arbitrarily large outliers, the

gradient can deviate the search direction from the signal arbitrarily.

Inspired by the utility of median to combat outliers in robust statistics [73], we prune

samples whose gradient components ∇`(z(t); yi) are much larger than the sample median

to control the search direction. Hiding some technical details, this gives the main ingredient
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of our median-truncated gradient descent update rule2, i.e., for each iterate t ≥ 0:

Tt+1 := {i : |yi − |aTi z(t)|2| . med({|yi − |aTi z(t)|2}mi=1)}, for TWF, (1.10)

Tt+1 := {i : |√yi − |aTi z(t)|| . med({|√yi − |aTi z(t)|}mi=1)}, for RWF, (1.11)

where med(·) denotes the sample median. The robust property of median lies in the fact

that the median cannot be arbitrarily perturbed unless the outliers dominate the inliers [73].

This is in sharp contrast to the sample mean, which can be made arbitrarily large even by a

single outlier. Thus, using the sample median in the truncation rule can effectively remove

the impact of outliers.

By applying the median truncation strategy to the loss functions used in TWF and

RWF, we obtain two new median-truncated gradient descent algorithms, median-TWF and

median-RWF, respectively. The median-TWF and median-RWF algorithms do not assume

a priori knowledge of the outliers, such as their existence or the number of outliers, and

therefore can be used in an oblivious fashion. Importantly, we establish the following

performance guarantees.

For the Gaussian measurement model, we show that with high probability, median-

TWF and median-RWF recover all signal x up to the global sign at a linear rate of con-

vergence, even with a constant fraction of outliers, as long as the number of measurements

m is on the order of n log n. Furthermore, the reconstruction is stable in the presence of

additional bounded dense noise. Statistically, the sample complexity of both algorithms

is near-optimal up to a logarithmic factor, and to reassure, they continue to work even

when outliers are absent. Computationally, both algorithms converge linearly, requiring

a mere computational cost of O(mn log 1/ε) to reach ε-accuracy. More importantly, our

algorithms now tolerate a constant fraction of arbitrary outliers, without sacrificing perfor-

mance otherwise. To the best of our knowledge, this is the first application of the median to

2Please see the exact form of the algorithms in Chapter 4.
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robustify high-dimensional statistical estimation in the presence of arbitrary outliers with

rigorous non-asymptotic performance guarantees.

1.2.3 Related Works

Along the line of developing nonconvex algorithms with global performance guarantee for

the phase retrieval problem, [78] developed alternating minimization algorithm, [1, 61, 67,

79] developed/studied first-order gradient-like algorithms, and a recent study [80] charac-

terized geometric structure of the nonconvex objective and designed a second-order trust-

region algorithm.

The work “reshaped Wirtinger flow” is most closely related to [1, 61, 67, 69], but de-

velops a new gradient-like algorithm based on new loss function that yields advantageous

statistical/computational efficiency. The quadratic loss function of magnitudes was also

used in the early literature of phase retrieval [53] with Fourier magnitude measurements.

However, no global convergence guarantee was available in [53]. Stochastic algorithms

were also developed for the phase retrieval problem. [64] studied the incremental truncated

Wirtinger flow (ITWF) and showed that ITWF needs much fewer passes of data than TWF

to reach the same accuracy. [62] adapted the Kaczmarz method to solve the phase retrieval

problem and demonstrated its fast empirical convergence. We show that IRWF is closely

related to Kaczmarz-PR, and empirically runs faster than ITWF thanks to the advantageous

curvature of the loss function.

After our work was posted on arXiv, an independent work [70] was subsequently

posted, which also adopts the same loss function but develops a slightly different algo-

rithm called TAF (i.e., truncated amplitude flow). One major difference is that RWF does

not require truncation in the gradient loops while TAF still employs truncation. Hence,

RWF has fewer parameters to tune, and is easier to implement than TAF in practice. Fur-

thermore, RWF demonstrates the performance advantage of adopting a lower-order loss

function even without truncation, which cannot be observed from TAF. The two algorithms
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also employ different initialization strategies. Moreover, we analyze stochastic algorithms

based on the new loss function while [70] does not.

The work of median truncated approach for robust phase retrieval is closely related to

the TWF algorithm [61] which is a truncated gradient descent algorithm for phase retrieval.

However, the truncation rule in TWF is based on the sample mean, which is very sensitive

to outliers. In [71, 72, 98], the problem of phase retrieval under outliers is investigated,

but the proposed algorithms either lack performance guarantees or are computationally too

expensive.

The adoption of median in machine learning is not unfamiliar, for example, K-median

clustering [74] and resilient data aggregation for sensor networks [75]. Our work here fur-

ther extends the applications of median to robustifying high-dimensional estimation prob-

lems with theoretical guarantees. Another popular approach in robust estimation is to use

the trimmed mean [73], which has found success in robustifying sparse regression [76],

subspace clustering [77], etc. However, using the trimmed mean requires knowledge of the

number of outliers, whereas median does not require such information.

More generally, various problems have been studied by minimizing nonconvex loss

functions. For example, a partial list of these studies include matrix completion [17,39–43,

81, 82], low-rank matrix recovery [83–88], robust PCA [37], robust tensor decomposition

[89], dictionary learning [90, 91], community detection [92], phase synchronization [93],

blind deconvolution [94, 95], etc.

1.3 Secret Key Generation over a Source Network

At he earlier stage of my Ph.D, I studied the secret key generation problems using the

information theoretic approaches. I briefly introduce my work on this topic here for the

completeness of the thesis.

The problem of secret key generation via public discussion under the source model was



14

initiated by [99, 100]. In the basic source-type model, two legitimate terminals observe

correlated source sequences and wish to establish a common secret key by communicating

with each other over a public channel which can be accessed by eavesdroppers. The secret

key is required to be kept secure from eavesdroppers. The main observation is that, due to

the correlation between two source sequences, terminal Y can recover terminal X ’s source

sequence by letting terminalX send limited amount of information using distributed source

coding technique [101]. Then both terminal X and terminal Y can generate a shared secret

key based on terminal X ’s source sequence. The key capacity is given by

C(K) = H(X)−H(X|Y ) = I(X;Y ), (1.12)

which can be interpreted as the information rate in terminal X ’s source sequence subtract-

ing the rate of information released over the public channel. The close connection between

the distributed source coding and secret key generation also holds for more general source-

type models [102]. In particular, [102] studied a general source network with multiple

terminals, in which a subset of terminals need to agree on a common secret group key and

the remaining terminals act as dedicated helpers. It was shown in [102] that the secret key

capacity is equal to the joint entropy of all source observations subtracting the minimum

amount of communications needed to enable the subset of terminals to recover all source

observations. Consider an example case, in which all terminals in the setM wish to agree

on a secret key. Then in [102], the secret key capacity is given by

C(K) = H(XM)−RCO, (1.13)

where XM = (Xi : i ∈ M) and RCO is the minimum rate of “communication for om-

niscience”. Here, omniscience means that all legitimate terminals recover source obser-

vations of all terminals. We note that the secret key capacity in (1.13) can be intuitively

interpreted as the entire source information rate H(XM) minus the minimum transmission
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rate RCO revealed to the public in order to achieve omniscience at all terminals.

Such problems of single-key generation were also studied for other scenarios in [103–

107]. However, for some practical scenarios, multiple keys need to be simultaneously gen-

erated. For instance, suppose that a number of terminals have different security clearance

levels, and each terminal is allowed to access the confidential documents up to its own

clearance level. In such a case, terminals with the same clearance level should share the

same key, and should be kept ignorant of higher level keys.

Capacity Region for Secret-key Private-key Model. One fundamental multi-key

generation model that captures the above hierarchical scenario is initialized by Ye and

Narayan [108], which has been referred to as the secret-key private-key model in literature.

In the model of [108], three terminals with correlated source observations wish to agree

on a common secret key required to be secure from an eavesdropper, while two designated

terminals aim to generate another private key required to be secure from both the eaves-

dropper and the third terminal. [108] provided outer and inner bounds on the key capacity

region and showed that the inner and outer bounds match for one special case, but left the

problem whether the bounds match for the other two cases open. In our work, we devel-

oped a novel random binning and joint decoding scheme which achieves the outer-bound

for the other cases and fully characterized the key capacity region. These results have been

published in [109, 110].

Multiple Key Generation over a Cellular Network. Another type of multi-key mod-

els are referred to as cellular models, e.g., [111, 112], in which a central terminal (base

station) wishes to agree on independent keys respectively with a number of (mobile) ter-

minals. These models are well-motivated in cellular networks, in which mobile terminals

need to share independent secret keys with the base station in order to achieve secure com-

munication. In our work, we studied the models of generating two keys simultaneously

over four terminals with a helper and characterized the key capacity region under various

secrecy constraints. Moreover, we also characterized the key capacity region for generat-
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ing arbitrary number of secret keys simultaneously, which significantly extends the result

reported in the previous work [112]. These results have been published in [113–115].

Secret Key Capacity with Vocal Constraint. As we introduce at the beginning of

this section, the secret key capacity of generating one key over m terminals is established

in [102] by applying the “omniscience” scheme. Namely, each terminal reveals information

to the public until the omniscience attains, i.e., every terminal knows all terminals’ observa-

tions. However, such an omniscience scheme is not always necessary to achieve the secret

key capacity. In our work, we characterized a sufficient condition when a specific terminal

does not have to talk to achieve the secret key capacity and further gave a sufficient con-

dition when a specific terminal must talk, which disproves the conjecture made in [116]

when m > 3. Our results published in [118] on various situations, jointly with one more

situation studied in [117] fully solved this problem.

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we describe the algorithm

and theory for robust PCA via local coherence. In Chapter 3, we present the reshaped

Wirtinger flow algorithm for solving the phase retrieval problem. In Chapter 4 we present

our results for robust phase retrieval. In Chapter 5, we describe directions for future work.
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CHAPTER 2

ANALYSIS OF ROBUST PCA VIA

LOCAL COHERENCE

In this chapter, we study the robust PCA problem via local coherence. We first formulate

the problem mathematically in Section 2.1. We then present our main results on the full

observation model and the partial observation model in Section 2.2 and Section 2.3. We de-

scribe the numerical experiments in Section 2.4 and summarize this chapter in Section 2.5.

At last, we provide technical proofs in Section 2.6.

We provide some notations that are used throughout this chapter. A matrix X is

associated with five norms: ‖X‖F denotes the Frobenius norm, ‖X‖∗ denotes the nu-

clear norm (i.e., the sum of singular values), ‖X‖ denotes the spectral norm (i.e., the

largest singular value), and ‖X‖1 and ‖X‖∞ respectively represent the l1 and l∞ norms

of the long vector stacked by X . The inner product between two matrices is defined as

〈X, Y 〉 := trace(X∗Y ), where X∗ represents the conjugate transpose of X . For a linear

operator A that acts on the space of matrices, ‖A‖ denotes the operator norm given by

‖A‖ = sup{‖X‖F=1} ‖AX‖F .
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2.1 Problem Statement

As we introduce in Chapter 1.1, the robust PCA problem aims to decompose an observation

matrix, say M , into the sum of a low-rank matrix, say L, and a sparse matrix (i.e., the error

matrix), say S. A popular algorithm to solve this problem is PCP, which is formulated as

the following optimization problem:

PCP:
minimize

L,S
‖L‖∗ + λ‖S‖1

subject to M = L+ S,

(2.1)

where ‖ · ‖∗ denotes the nuclear norm, i.e., the sum of singular values, and ‖ · ‖1 denotes

the l1 norm i.e., the sum of absolute values of all entries.

The success of PCP is highly related with the coherence of the low-rank matrix L and

the sparsity of the matrix S. We next introduce the definition of coherence mathematically.

Namely, suppose that L is a rank-r matrix with SVD L = UΣV ∗, where Σ is a r × r

diagonal matrix with singular values as its diagonal entries, U is a n×rmatrix with columns

as the left singular vectors of L, V is a n × r matrix with columns as the right singular

vectors of L, and V ∗ denotes the transpose of V . The coherence of L is measured by

µ = max{µ0, µ1}, where µ0 and µ1 are defined as

‖U∗ei‖ ≤
√
µ0r

n
, ‖V ∗ej‖ ≤

√
µ0r

n
, for all i, j = 1, · · · , n (2.2)

‖UV ∗‖∞ ≤
√
µ1r

n2
. (2.3)

Previous studies of robust PCA, e.g., [13, 29–31], often assume that every entry of the

low-rank matrix is corrupted with the same probability and show that correct decomposi-

tion via PCP requires the error density to be below a certain threshold determined by the

coherence parameter µ of the low rank matrix L.

In this chapter, on the contrary, we investigate the robust PCA problem under the as-
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sumption that the errors (non-zero entries) are non-uniformly distributed over the entire

sparse matrix and entries are observed non-uniformly. Such model generalization naturally

requires to connect the robustness of each entry to the local coherence. We thus define the

following local coherence parameters µij ,

µ0ij :=
n

2r

(
‖U∗ei‖2 + ‖V ∗ej‖2

)
, µ1ij :=

n2([UV ∗]ij)
2

r
(2.4)

µij := max{µ0ij, µ1ij}. (2.5)

It is clear that µ0ij ≤ µ0 and µ1ij ≤ µ1 for all i, j = 1, · · · , n. We note that although

maxi,j µij > 1, some µij might take values as small as zero.

We note that the notion of local coherence was first introduced in [21] for studying

the matrix completion problem, in which local coherence determines the local sampling

density in order to guarantee correct matrix completion. Here, local coherence plays a

similar role, and determines the maximal allowable error density at each entry to guarantee

correct matrix decomposition. The difference lies in that local coherence here depends

on both localized µ0 and µ1 rather than only on localized µ0 in matrix completion. This

difference is unavoidable due to the further challenge arising in robust PCA, in which

locations of error corrupted entries are unknown [13, 30].

Mathematically, the model can be described as follows.

• Assume that L is an n× n rank r matrix, where r < n. Assue that L is unknown , to

be recovered1.

• Suppose that L is partially observed on a setO ⊂ [n]× [n], whereO is random defined

by Bernoulli sampling such that

P((i, j) ∈ O) = αij. (2.6)

• Each observed entry Lij, (i, j) ∈ O is corrupted by an arbitrary noise Sij with prob-

1Here, we focus on square matrices for simplicity. Our results can be extended to rectangular matrices.
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ability ρij independently. We denote the support set of S by Ω, and hence Ω ⊆ O.

Conditioning on (i, j) ∈ O, assume that (i, j) ∈ Ω for i, j ∈ [n] are independent

events with

P((i, j) ∈ Ω|(i, j) ∈ O) = ρij, (2.7)

which implies that

P((i, j) ∈ Ω) = αijρij. (2.8)

• Define a set Γ := O\Ω, then

P((i, j) ∈ Γ) = αij(1− ρij). (2.9)

• We observe M = PO(L) + S, where PO(·) denotes the projection on set O. The aim

is to recover the low-rank matrix L based on the observation matrix M .

We study both the random sign and fixed sign models for S. For the fixed sign model,

we assume that the signs of nonzero entries in S are arbitrary and fixed, whereas for the

random sign model, we assume that the signs of nonzero entries in S are independently

distributed Bernoulli variables, randomly taking values +1 and −1 with probability 1/2 as

follows:

[sgn(S)]ij =



1 with prob. αijρij/2

0 with prob. 1− αijρij

−1 with prob. αijρij/2.

(2.10)

Under the assumption of full observation (αij = 1, for all i, j = 1, . . . , n), the problem

reduces to the robust PCA problem, i.e., decomposing matrix M = L + S into a low-rank
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matrix L and a sparse (error) matrix S.

In this chapter, our goal is to characterize conditions on αij and ρij that guarantee

correct recovery of L and S with observation of M via a convex programming algorithm.

2.2 Full Observation Model

In this section, we consider the full observation model, i.e., the robust PCA problem, where

M is fully observed, and provide the performance guarantee under which L and S can be

recovered correctly via convex programming. Then we discuss several implications of our

results on the graph clustering problem.

We first consider the full observation problem under the random sign model as intro-

duced in Section 2.1. The following theorem characterizes the condition that guarantees

correct recovery by PCP.

Theorem 2.1. Consider the full observation problem under the random sign model. If

1− ρij ≥ max

{
C0

√
µijr

n
log n,

1

n3

}

for some sufficiently large constant C0 and for all i, j ∈ [n], then PCP yields correct

matrix decomposition of L and S with λ = 1
32
√
n logn

, with probability at least 1 − cn−10

for some constant c.

We note that the term 1/n3 is introduced to justify dual certificate conditions in the

proof (see Section 2.6). We further note that satisfying the condition in Theorem 2.1 implies

C0

√
µr/n log n ≤ 1, which is an essential bound required in our proof and coincides with

the conditions in previous studies [13, 29]. Although we set λ = 1
32
√
n logn

for the sake of

proof, in practice λ is often determined via cross validation.

The above theorem suggests that the local coherence parameter µij is closely related

to the robustness of individual entry of L to error corruption in matrix decomposition.
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An entry corresponding to smaller µij (i.e., lower coherent) tolerates larger error density

ρij . This is consistent with the result in [21] for matrix completion, in which lower local

coherence requires lower local sampling rate. The difference lies in that here both µ0ij and

µ1ij play roles in µij whereas only µ0ij matters in matrix completion. This is the critical

difference between the proofs of robust PCA and matrix completion. The necessity of µ1ij

for robust PCA is further demonstrated in Section 2.2.1 via an example.

Theorem 2.1 also provides a more refined view for robust PCA in the dense error

regime, in which the error corruption probability approaches one. Such an interesting

regime was previously studied in [30, 31]. In [31], it is argued that PCP with adaptive

λ yields exact recovery even when the error corruption probability approaches one if errors

take random signs and the dimension n is sufficiently large. In [30], it is further shown

that PCP with a fixed λ also yields exact recovery and the scaling behavior of the error

corruption probability is characterized. The above Theorem 2.1 further provides the scal-

ing behavior of the local entry-wise error corruption probability ρij as it approaches one,

and captures how such scaling behavior depends on local coherence parameters µij . Such

a result implies that robustness of PCP depends not only on the error density but also on

how errors are distributed over the matrix with regard to µij .

We next consider the full observation problem under the fixed sign model as introduced

in Section 2.1. In this case, non-zero entries of the error matrix S can take arbitrary and

fixed values, and only locations of non-zero entries are random.

Theorem 2.2. Consider the full observation problem under the fixed sign model. If

(1− 2ρij) ≥ max

{
C0

√
µijr

n
log n,

1

n3

}

for some sufficiently large constant C0 and for all i, j ∈ [n], then PCP yields correct

recovery with λ = 1
32
√
n logn

, with probability at least 1− cn−10 for some constant c.

Theorem 2.2 follows from Theorem 2.1 by adapting the elimination and derandomiza-
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tion arguments [13, Section 2.2] as follows. Let ρ be the matrix with each (i, j)-entry being

ρij . If PCP yields exact recovery with a certain probability for the random sign model with

the parameter 2ρ, then it also yields exact recovery with at least the same probability for

the fixed sign model with locations of non-zero entries sampled using Bernoulli model with

the parameter ρ. The detailed argument is provided in Section 2.6.2.

We now compare Theorem 2.2 for robust PCA with non-uniform error corruption to

Theorem 1.1 in [13] for robust PCA with uniform error corruption. It is clear that if we set

ρi,j = ρ for all i, j ∈ [n], then the two models are the same. It can then be easily checked

that conditions
√
µr/n log n ≤ ρr and ρ ≤ ρs in Theorem 1.1 of [13] implies the conditions

in Theorem 2.2. Thus, Theorem 2.2 provides a more relaxed condition than Theorem 1.1

in [13]. Such benefit of condition relaxation should be attributed to the new golfing scheme

introduced in [29,30], and we provides a more refined view of robust PCA by further taking

advantage of such a new golfing scheme to analyze local coherence conditions.

More importantly, Theorem 2.2 characterizes relationship between local coherence pa-

rameters and local error corruption probabilities, which implies that different areas of the

low-rank matrix have different levels of ability to resist errors: a less coherent area (i.e.,

with smaller µij) can tolerate more errors. Thus, Theorem 2.2 illustrates the following in-

teresting fact. Whether PCP yields correct recovery depends not only on the total number

of errors but also on how errors are distributed. If more errors are distributed to less co-

herent areas (i.e, with smaller µij), then more errors in total can be tolerated. However,

if errors are distributed in an opposite manner, then only small number of errors can be

tolerated.

2.2.1 Implication on Graph Clustering

In this subsection, we further illustrate our result when the low-rank matrix is a cluster

matrix. Although robust PCA and even more sophisticated approaches have been applied

to solve clustering problems, e.g., [119–121], our perspective here is to demonstrate how
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local coherence affects entry-wise robustness to error corruption, which has not been well

addressed in previous studies.

Suppose there are n elements to be clustered. We use a cluster matrix L to represent

the clustering relationship of these n elements with Lij = 1 if elements i and j are in the

same cluster and Lij = 0 otherwise. Thus, with appropriate ordering of the elements, L is

a block diagonal matrix with all diagonal blocks containing all ‘1’s and off-diagonal blocks

containing all ‘0’s. Hence, the rank r of L equals the number of clusters, which is typically

much smaller than n. Suppose these entries are corrupted by errors that flip entries from

one to zero or from zero to one. This can be thought of as adding a (possibly sparse) error

matrix S to L so that the observed matrix is L+S. Then PCP can be applied to recover the

cluster matrix L.

More specifically, for a cluster matrix L, we use Kl to denote the size of the lth cluster,

and further use K(i) to denote the size of the cluster containing element i. We use ρij to

denote the probability of flipping Lij , i.e., the probability of error corruption of the entry

(i, j). Then following Theorem 2.2, we obtain the following conditions that guarantee PCP

to recover the true cluster matrix L.

Corollary 2.3. Consider the problem of recovering the cluster matrix L via PCP. If

1− 2ρij ≥


C0

√
1

2K(i)
+ 1

2K(j)
log n for i, j in different clusters

C0

√
n

K(i)
log n for i, j in the same cluster

(2.11)

for some sufficiently large constant C0 and for all i, j ∈ [n], then PCP yields correct

recovery with λ = 1
32
√
n logn

, with probability at least 1− cn−10 for some constant c.

Proof. The proof of this corollary is immediate by applying Theorem 2 with specific µij
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given by the clustering problem, where µij = max{µ0ij, µ1ij} and

µ0ij = 1 for all (i, j), and µ1ij =


r, (i, j) is in diagonal blocks,

0, (i, j) is in off-diagonal blocks.

In comparison, the result (Theorem 4) in [122] requires (1 − 2ρij) ≥ C0

√
n

Kmin
log n

with Kmin being the smallest cluster size, which gives a worst-case bound on every ρij .

However, our result captures the fact that different locations have different sensitivities

to error corruption: off-diagonal entries are more robust to error corruptions than block-

diagnal entries and large clusters are more robust than small clusters. To further illustrate

these facts, we first consider an example with clusters having equal size n/r. We set n =

600 and r = 4 (i.e., four equal-size clusters). We apply errors to diagonal-block entries and

off-diagonal-block entries respectively with the probabilities ρd and ρod. In Figure 2.1(a),

we plot recovery accuracy of PCP for each pairs of (ρod, ρd). It is clear from the figure that

failure occurs for larger ρod than ρd, which implies that off-diagonal blocks are more robust

to errors than diagonal blocks. This can be explained by Corollary 2.3 as follows. For a

cluster matrix with equal cluster size n/r, Corollary 2.3 requires

1− 2ρij ≥


C0

r√
n

log n, (i, j) is in diagonal blocks

C0

√
r
n

log n, (i, j) is in off-diagonal blocks

to guarantee correct recovery. Clearly, off-diagonal entries allow larger ρij compared to

diagonal entries.

Moreover, this example also demonstrates the necessity of µ1 in the robust PCA prob-

lem. [21] showed that µ1 is not necessary for matrix completion and argued informally that

µ1 is necessary for robust PCA by connecting the robust PCA problem to hardness of find-
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Fig. 2.1: Error vulnerability on different parts for cluster matrix. In both cases, for each probability
pair, we generate 10 trials of independent random error matrices and count the number of successes
of PCP. We declare a trial to be successful if the recovered L̂ satisfies ‖L̂ − L‖F /‖L‖F ≤ 10−3.
Color from white to black represents the number of successful trials changes from 10 to 0.

ing a small clique in a large random graph. Here, the above example provides an evidence

for such a fact. In the example, µ0ij are the same over the entire matrix, and hence it is µ1ij

that differentiates coherence between diagonal blocks and off-diagonal blocks, and thus

differentiates their robustness to errors.

We then consider the case with two clusters that have different sizes, i.e., Cluster 1 has

size 500 and Cluster 2 has size 100. Hence, r = 2. We apply errors to block diagonal

entries corresponding to clusters 1 and 2 respectively with the probabilities ρ1 and ρ2. In

Figure 2.1(b), we plot the recovery accuracy of PCP for each pair of (ρ1, ρ2). It is clear

that failure occurs for larger ρ1 than ρ2, which thus implies that entries corresponding to

the larger cluster are more robust to errors than entries corresponding to smaller clusters.

This can be explained by Corollary 2.3 because the error corruption probabilities for block-

diagnonal entries satisfy 1 − 2ρij > C0

√
n

K(i)
log n for correct recovery, and hence a larger

cluster can resist denser errors. This also coincides with the results on graph clustering

in [119].

Furthermore, Corollary 2.3 also implies a natural bound on the minimum cluster size

Kmin ≥
√
n log n as n goes to infinity, which is consistent with the bound on the smallest
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clique size in the classical planted clique problem [123] up to a logarithm factor. The

planted clique problem is described as follows. For a Erdos-Renyi random graph G(n, 1
2
),

randomly pick a subset of Kmin nodes and make them fully connected (i.e., these Kmin

nodes form a clique), where the modified graph is represented by G′. The goal is to find

the clique in the graph G′. This problem is believed to be intractable in polynomial time

for the regime of Kmin = o(
√
n) [124,125]. Corollary 2.3 is consistent with such a general

belief by suggesting that if the size of the planted clique is greater than
√
n log n, then it is

possible to find such a clique via PCP, which performs efficiently in polynomial time.

2.3 Partial Observation Model

In this section, we generalize our main results to the case when the matrix is partially

observed, as described in Section 2.1. Such a study can also be viewed as a refined analysis

of studies [13, 29, 30], which are based on a global coherence parameter.

In order to establish the performance guarantee of the low-rank matrix recovery from

both error corruptions and missing observations, we modify the original PCP as follows:

Adaptive PCP:
minimize

L,S
‖L‖∗ + ‖Λ ◦ S‖1

subject to Y = PO(L) + S.

(2.12)

We set parameter Λij according to the local observation probabilty αij . Hence, the param-

eter Λ = [Λij] is an n× n matrix instead of a scalar in previous results. We note that such

setting is for obtaining a tighter bound in the proof rather than for the effectivity of the

algorithm. The following theorem characterizes the conditions under which the adaptive

PCP returns correct recovery.

Theorem 2.4. Consider the partial observation model under the random sign assumption.

Suppose that the partial observation probabilities αij are known and αij > log2 n/n. Then
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if
√
αij(1− ρij) ≥ C0

√
µijr

n
log n and C0

√
µr

n
log n ≤ 1

for some sufficiently large constant C0, the adaptive PCP with Λ =
[

1
32
√
αijnlogn

]
recovers

the true low-rank matrix L with probability at least 1− cn−10 for some constant c.

We note that here the mimimal observation probability is log2 n
n

, which is essentially

from the proof of Lemma 4 and consistent with the result of [122]. We note that λmin ≤

‖Λ‖∞ ≤ λmax, where λmin = 1
32
√
nlogn

and λmax = 1
32 log2 n

. This result generalizes Theo-

rem 2.1 to the partial observation model. It coincides with the results in [29, 30] when all

ρij are the same and all αij are the same. In the case when the sampling probability αij is

unknown, standard PCP still recovers L by treating unobserved entries as being corrupted

by error S. Hence, the following performance guarantee hods.

Proposition 2.5. The standard PCP with λ = 1
32
√
n logn

recovers the true low-rank matrix

L with high probability given

αij(1− ρij) ≥ C0

√
µijr

n
log n and C0

√
µr

n
log n ≤ 1,

for some sufficiently large constant C0.

Proof. If we view the missing observation as error corruption, then the entry (i, j) is cor-

rupted with probability ρ′ij := (1 − αij) + αijρij . Thus 1 − ρ′ij satisfies the condition in

Theorem 2.1, which concludes the proof.

2.4 Numerical Experiments

In this section, we provide numerical experiments to demonstrate our theoretical results. In

these experiments, we adopt an augmented Lagrange multiplier algorithm in [127] to solve

the PCP. We set λ = 1/
√
n log n. A trial of PCP (for a given realization of error locations)

is declared to be successful if L̂ recovered by PCP satisfies ‖L̂− L‖F/‖L‖F ≤ 10−3.
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We apply the following three models to construct the low-rank matrix L.

• Bernoulli model: L = XX∗ whereX is n×r matrix with entries independently taking

values +1/
√
n and −1/

√
n equally likely.

• Gaussian model: L = XX∗, where X is n × r matrix with entries independently

sampled from Gaussian distribution N (0, 1/n).

• Cluster model: L is a block diagonal matrix with r equal-size blocks containing all

‘1’s.

In order to demonstrate that the local coherence parameter affects local robustness to

error corruptions, we study the following two types of error corruption models.

• Uniform error corruption: sgn(Sij) is generated as (2.10) with ρij = ρ for all i, j ∈ [n],

and S = sgn(S).

• Adaptive error corruption: sgn(Sij) is generated as (2.10) with ρij = ρ
n2
√

1/µij∑
ij

√
1/µij

for

all i, j ∈ [n], and S = sgn(S).

It is clear in both cases, the error matrix has the same average error corruption percentage

ρ, but in adaptive error corruption, the local error corruption probability is adaptive to the

local coherence.
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Fig. 2.2: Recovery failure frequency of PCP versus error corruption percentage.

Our first experiment demonstrates that robustness of PCP to error corruption not only

depends on the number of errors but also depends on how errors are distributed over the

matrix. For all three low-rank matrix models, we set n = 1200 and rank r = 10. For each
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Fig. 2.3: Recovery failure frequency of PCP versus observation percentage: adaptive error.
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Fig. 2.4: Recovery failure frequency of PCP versus observation percentage: adaptive
observation.

low-rank matrix model, we apply the uniform and adaptive error matrices, and plot the fail-

ure frequency of PCP versus the error corruption percentage ρ in Figure 2.2. For each value

of ρ, we perform 50 trials of independent error corruption and count the number of failures

of PCP. Each plot of Figure 2.2 compares robustness of PCP to uniform error corruption

(the red square line) and adaptive error corruption (the blue circle line). We observe that

PCP can tolerate more errors in the adaptive case. This is because the adaptive error matrix

is distributed based on the local coherence parameter, where error density is higher in areas

where matrices can tolerate more errors. Furthermore, comparison among the three plots in

Figure 2.2 illustrates that the gap between uniform and adaptive error matrices is the small-

est for Bernoulli model and the largest for cluster model. Our theoretic results suggest that

the gap is due to the variation of the local coherence parameter across the matrix, which

can be measured by the variance of µij . Larger variance of µij should yield larger gap. Our
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numerical calculation of the variances for three models yield Var(µBernoulli) = 1.2109,

Var(µGaussian) = 2.1678, and Var(µcluster) = 7.29, which confirms our explanation.

We next consider the partial observation setting. For this series of experiments, we as-

sume the uniform observation, i.e., each entry is observed with the same probability. The

observation probability changes from 1 to 0.2 with a step size 0.1. For each observed ma-

trix, we apply the uniform and adaptive error matrices, with the same error percentage 0.2.

We perform 50 trials for each of the Bernoulli Model, Gaussian Model and Cluster Model,

and Figure 2.3 shows the simulation results. It is clear from the figure that PCP becomes

more successful with an adaptive error under the partial observation setting. Note that the

gaps between uniform error and adaptive error are not as large as those under the fully

observation setting. This is because missing observations play the same role as uniform

errors, so that the total errors do not adapt to local coherence as well as in the full obser-

vation model. We then further consider the setting where the noise is uniformly distributed

with the error percentage 0.1, and the observation can be either adapted to the local coher-

ence µij or not with the probability of observation ranging from 1 to 0.2. The results are

shown in Figure 2.4. Each plot of Figure 2.4 compares robustness of PCP to a uniform

error corruption under either uniform missing observations (the red square line) or adaptive

missing observations (the blue circle line). We observe that PCP can tolerate more missing

observations in the adaptive case. This is because the adaptive missing observations are

distributed based on the local coherence parameter.
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Fig. 2.5: Allowable error corruption percentage versus rank of L given PCP yields correct
recovery.
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Lastly, we study the phase transition between the rank of the low-rank matrix and error

corruption probability. For the three low-rank matrix models, we set n = 1200. In Fig-

ure 2.5, we plot the error corruption percentage versus the rank L for both uniform and

adaptive error corruption models. Each point on the curve records the maximum allowable

error corruption percentage under the corresponding rank such that PCP yields correction

recovery. We count a (r, ρ) pair to be successful if nine trials out of ten are successful. We

first observe that in each plot of Figure 2.5, PCP is more robust in adaptive error corruption

due to the same reason explained above. We further observe that the gap between the uni-

form and adaptive error corruption changes as the rank changes. In the low-rank regime,

the gap is largely determined by the variance of coherence parameter µij as we argued be-

fore. As the rank increases, the gap is more dominated by the rank and less affected by the

local coherence. Eventually for large enough rank, no error can be tolerated no matter how

errors are distributed. This is because the correctness of PCP is influenced by the coherence

parameter and the rank in a same manner, as indicated in Theorem 2.1.

2.5 Conclusion

We characterize refined conditions under which PCP recovers correctly the low-rank matrix

under both error corruptions and missing observations. Our result shows that the correct

recovery via PCP depends not only on the total number of corrupted and missing entries

but also on locations of these entries, more essentially on the local coherence of the low-

rank matrix. Such result is well supported by our numerical experiments. Moreover, our

result has rich implication when the low-rank matrix is a cluster matrix, and our result

not only coincides with recent studies on clustering problems via low-rank cluster matrix

recovery but also provides complementary insights for these problems. Our introduction of

the new weighted norm for analysis of performance guarantee can be useful for studying

other problems under non-uniform error corruptions or non-uniform random sampling.



33

2.6 Technical Proofs

2.6.1 Proof of Theorem 2.4 (and Theorem 2.1)

In this subsection, we provide the proof for Theorem 2.4, which yields Theorem 2.1 by

specializing αij = 1 and Λij = 1
32
√
n logn

for all i, j = 1, . . . , n.

The proof of Theorem 2.4 follows the general idea established in [13] and further devel-

oped in [29,30]. The main novel technical development lies in analysis of non-uniform er-

ror corruption based on local coherence parameters, for which we introduce a new weighted

norm lw(∞), and establish concentration properties and bounds associated with this norm.

As a generalization of matrix infinity norm, lw(∞) incorporates both µ0ij and µ1ij , and is

hence different from the weighted norms lµ(∞) and lµ(∞,2) in [22]. We next provide the

main steps of the proof, with the proofs of technical lemmas regulated to Section 2.6.3.

We first introduce some notations. We define the subspace T := {UX∗ + Y V ∗ :

X, Y ∈ Rn×r}, where U, V are left and right singular matrix of L. Then T induces a

projection operator PT given by PT (M) = UU∗M + MV V ∗ − UU∗MV V ∗. More-

over, the complement subspace T⊥ to T induces an orthogonal projection operator PT⊥

with PT⊥(M) = (I − UU∗)M(I − V V ∗). We further define two operators associated

with Bernoulli sampling. Let Ω0 denote a generic subset of [n] × [n]. We define a cor-

responding projection operator PΩ0 as PΩ0(M) =
∑

ij I{(i,j)∈Ω0}〈M, eie
∗
j〉eie∗j , where I{·}

is the indicator function. If Ω0 is a random set generated by Bernoulli sampling with

P((i, j) ∈ Ω0) = tij with 0 < tij ≤ 1 for all i, j ∈ [n], we further define a linear

operator RΩ0 as RΩ0(M) =
∑

ij
1
tij
I{(i,j)∈Ω0}〈M, eie

∗
j〉eie∗j . For two variables a and b,

a ∨ b = max{a, b}.

We introduce a new weighted norm. Suppose that µij’s are local coherence parameters

of L as defined in (2.5). Let ŵij =
√

µijr

n2 and wij = max{ŵij, ε}, where ε is the smallest
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nonzero ŵij . Here ε is introduced to avoid singularity. Then for any matrix Z, define

‖Z‖w(∞) = max
i,j

|Zij|
wij

. (2.13)

It is easy to verify that ‖ · ‖w(∞) is a well defined norm. We establish several concentration

inequalities for this weighted infinity norm, which facilitate the proof of dual certificate

construction.

We further note that “with high probability” means “with probability at least 1−cn−10”,

where the constant c may be different in different contexts.

Our proof includes two main steps: establishing that existence of a certain dual certifi-

cate is sufficient to guarantee correct recovery and constructing such a dual certificate. We

first establish a number of supporting lemmas, and then proceed the two main steps.

We next provide a number of concentration properties for non-uniform sampling op-

erators. These properties are in parallel to those under uniform sampling operators used

in [13, 29, 30]. More specifically, Lemma 2.6 is proven in [22], which readily implies

Lemma 2.8. We develop other lemmas based on the local coherence, the proofs of which

are provided in Section 2.6.3.

Lemma 2.6. [22, Lemma 9] Suppose P((i, j) ∈ Ω0) = qij for all i, j ∈ [n]. If qij ≥

min {C0(µ0ijr log n)/n, 1} for some sufficiently large constant C0 and for all i, j ∈ [n],

then with high probability

‖PT − PTRΩ0PT‖ ≤
1

2
. (2.14)

Lemma 2.7. Suppose P((i, j) ∈ Ω0) = qij for all i, j ∈ [n]. If ‖PT −PTRΩ0PT‖ ≤ 1
2

and

qij ≥ p0 for all i, j ∈ [n], then

(a) ‖PTRΩ0‖ ≤
√

3
2p0

;

(b) PΩ0PT is injective on T .
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Lemma 2.8. Suppose P((i, j) ∈ Ω0) = qij for all i, j ∈ [n]. For a fixed matrix Z ∈ T , if

qij ≥ min {C0(µijr log n)/n, 1} for some sufficiently large constant C0 and for all i, j ∈

[n], then with high probability

‖Z − PTRΩ0(Z)‖F ≤
1

2
‖Z‖F . (2.15)

Lemma 2.9. Suppose P((i, j) ∈ Ω0) = qij for all i, j ∈ [n]. For a fixed matrix Z ∈ T ,

if qij ≥ min
{
C0(
√
µijr ∨ µijr) logn

n
, 1
}

for some sufficiently large constant C0 and for all

i, j ∈ [n], then with high probability

‖(RΩ0 − I)Z‖ ≤ C

C0

‖Z‖w(∞) (2.16)

for some constant C.

Lemma 2.10. Suppose P((i, j) ∈ Ω0) = qij for all i, j ∈ [n]. Suppose β > 0 is a scaling

factor. For a fixed matrix Z ∈ T , if qij ≥ min
{
C0β

−2(µijr)
logn
n
, 1
}

for some sufficiently

large C0 and for all i, j ∈ [n], then with high probability

‖(PTRΩ0 − PT )Z‖w(∞) ≤
1

2
β‖Z‖w(∞). (2.17)

Dual Certificate Condition

We adopt the idea of [29] and introduce an equivalent model that is easy to deal with.

1. Define two independent random subsets of [n]× [n]: Γ with P((i, j) ∈ Γ) = αij(1−

ρij) and Ω′ with P((i, j) ∈ Ω′) =
αijρij

1−αij+αijρij . Let O = Γ ∪ Ω′, then P((i, j) ∈ O) = αij .

2. Define Ω := Ω′\Γ = {(i, j) : (i, j) ∈ Ω′ and (i, j) /∈ Γ}. Then P{(i, j) ∈ Ω} =

αijρij .

3. Define a matrix W with each entry Wij being +1 or −1 with equal probability

and independently across (i, j). That is P{Wij = +1} = P{Wij = −1} = 1/2 for all
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(i, j) ∈ [n]× [n].

4. Let S be a matrix supported on Ω. The signs of S coincide withW on Ω. This means

[sgn(S)]ij are independent random variables with the following distribution

[sgn(S)]ij =



1 with prob. αijρij
2
,

0 with prob. 1− αijρij,

−1 with prob. αijρij
2
.

(2.18)

We establish the following proposition to capture the central role of dual certificate in the

performance guarantee of adaptive PCP.

Proposition 2.11. Suppose ‖PTRΓ‖ ≤
√

3
2p0

and PΓPT is injective on T . The adaptive

PCP program produces a unique solution if there exists a dual certificate Y obeying

PΓcY = 0, (2.19)

‖PΓY ◦
1

Λ
‖∞ ≤

1

4
, (2.20)

‖PT⊥(Λ ◦ sgn(S) + Y )‖ ≤ 1

4
, (2.21)

‖PT (Y + Λ ◦ sgn(S)− UV ∗)‖F ≤
λmin

n2
(2.22)

where Λ is a matrix with each entry Λij = 1√
αijnlogn

, λmin = 1√
nlogn

, and “◦" represents

entrywise product.

Proof. See Section 2.6.3.

Dual Certificate Construction

Proposition 2.11 suggests that it suffices to prove Theorem 2.1 if we find a dual certifi-

cate Y that satisfies the dual certificate conditions (2.19)-(2.22). Thus, the second step is

to construct Y via the golfing scheme. Although we adapt the steps in [29] to construct the
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dual certificate Y , our analysis requires new technical development based on local incoher-

ence parameters.

Note that P((i, j) ∈ Γ) = αij(1− ρij) := pij . Let Γ = Γ1 ∪ Γ2 ∪ · · · ∪ Γl, and {Γk}’s

are independent random sets given by

P((i, j) ∈ Γ1) =
pij
6
,

P((i, j) ∈ Γ2) =
pij
6
,

P((i, j) ∈ Γk) = qij, for k = 3, · · · , l.

Thus if 1− pij = (1− pij
6

)2(1− qij)l−2, the sampling strategies are equivalent. Because of

the overlap between {Γk}, it is clear that qij ≥ 2pij
3(l−2)

. We set l = b5 log n+ 1c.

We construct a dual certificate Y in the following iterative way:

Z0 = PT (UV ∗ − Λ ◦ sgn(S)) (2.23)

Zk = (PT − PTRΓkPT )Zk−1, for k = 1, · · · , l (2.24)

Y =
l∑

k=1

RΓkZk−1. (2.25)

We next show that such constructed Y satisfies the dual certificate conditions by bounding

various norms of Z0 and showing each iteration (2.24) reduces these norms at least by half.

Our proof applies the technical lemmas in Section 2.6.1.

Note that we require in the theorem √αij(1 − ρij) ≥ C0

√
µijr

n
log n and αij ≥ log2 n

n
,

which imply

pij = αij(1− ρij) ≥ C0

√
αijµijr

n
log n ≥ C0

(
µijr

n
∨
√
µijr

n

)
log2 n. (2.26)
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Thus by ignoring the constant factor, we have

P((i, j) ∈ Γ1) = P((i, j) ∈ Γ2) ≥ C0

√
αijµijr

n
log n, (2.27)

P((i, j) ∈ Γk) ≥ C0

√
αijµijr

n
, for k = 3, 4, . . . , l, (2.28)

P((i, j) ∈ Γk) ≥ C0

(
µijr

n
∨
√
µijr

n

)
log n, for k = 1, 2, . . . , l. (2.29)

Then following Lemma 2.8 and (2.29), we have

‖Zk‖F ≤
1

2
‖Zk−1‖F , for k = 1, 2, . . . , l. (2.30)

Recalling the definition of ‖ · ‖w(∞) in equation (2.13), following Lemma 2.9 and (2.29),

we have with high probability

‖(I −RΓk)Zk−1‖ ≤
C

C0

‖Zk−1‖w(∞), for k = 1, 2, . . . , l. (2.31)

Due to the fact that√αij ≥ C0

√
µijr/n log n and (2.27), we further have

P((i, j) ∈ Γ1) = P((i, j) ∈ Γ2) ≥ C0(
√

log n)2
(µijr
n

log n
)
. (2.32)

Thus, following Lemma 2.10, with high probability, we have

‖Z1‖w(∞) ≤
1

2
√

log n
‖Z0‖w(∞), (2.33)

‖Z2‖w(∞) ≤
1

2
√

log n
‖Z1‖w(∞) ≤

1

22 log n
‖Z0‖w(∞). (2.34)

Moreover, following Lemma 2.10 and (2.29), we have

‖Zk‖w(∞) ≤
1

2
‖Zk−1‖w(∞) ≤

1

2k log n
‖Z0‖w(∞) for k = 3, · · · , l. (2.35)
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We next bound ‖Z0‖F and ‖Z0‖w(∞). Observe that |(Z0)ab| ≤ |(UV ∗)ab|+|[PT (Λ ◦ sgn(S))]ab|

and |(UV ∗)ab| =
√

µabr
n2 . We need only to bound |(PT sgn(S))ab|.

Proposition 2.12. With the same assumptions on S and Λ as in the problem setup, for any

given index (a, b), we have

|[PT (Λ ◦ sgn(S))]ab| ≤
C√
log n

·
√
µabr

n
(2.36)

with high probability for some constant C.

Proof. See Section 2.6.3.

By applying triangle inequality, we have

‖Z0‖F ≤ ‖UV ∗‖F + ‖PT (Λ ◦ sgn(S))‖F ≤ C
√
µr,

‖Z0‖w(∞) ≤ ‖UV ∗‖w(∞) + ‖PT (Λ ◦ sgn(S))‖w(∞) ≤ C,

for some constant C.

Next we verify that the constructed dual certificate Y satisfies the conditions in Propo-

sition 2.11. Obviously, PΩY = 0. Now we prove Y satisfies the following inequalities

with high probability

‖PT (Y + Λ ◦ sgn(S)− UV ∗)‖F ≤
λmin

n2
, (2.37)

‖PT⊥Y ‖ ≤
1

8
, (2.38)

‖PT⊥(Λ ◦ sgn(S))‖ ≤ 1

8
, (2.39)

‖Y ◦ 1

Λ
‖∞ ≤

1

4
. (2.40)



40

We first show (2.37) as follows.

‖PTY + PT (Λ ◦ sgn(S)− UV ∗)‖F =

∥∥∥∥∥Z0 − (
l∑

k=1

PTRΓkZk−1)

∥∥∥∥∥
F

=

∥∥∥∥∥(PT − PTRΓ1)Z0 − (
l∑

k=2

PTRΓkZk−1)

∥∥∥∥∥
F

=

∥∥∥∥∥PTZ1 − (
l∑

k=1

PTRΓkZk−1)

∥∥∥∥∥
F

= · · ·

= ‖Zl‖F ≤
(

1

2

)l
· ‖Z0‖F ≤ C

(
1

2

)l√
µr ≤ λmin

n2
.

We then show (2.38) as follows.

‖PT⊥Y ‖ =

∥∥∥∥∥PT⊥
l∑

k=1

RΓkZk−1

∥∥∥∥∥ ≤
l∑

k=1

‖PT⊥RΓkZk−1‖ =
l∑

k=1

‖PT⊥(RΓkZk−1 − Zk−1)‖

≤
l∑

k=1

‖RΓkZk−1 − Zk−1‖ ≤
l∑

k=1

C

C0

‖Zk−1‖w(∞)

≤ C

C0

(
1 +

l∑
k=2

1√
log n

(
1

2
)k−1

)
‖Z0‖w(∞) ≤

2C

C0

‖Z0‖w(∞) ≤
1

8
,

provided that C0 is sufficiently large.

We next derive the bound (2.39). It suffices to bound ‖Λ ◦ PΩW‖, where W is defined

in Section 2.6.1. Following the way of proving Lemma 2.9, we first show that if P((i, j) ∈

Ω) = αijρij , then

‖Λ ◦ PΩW − Λ ◦∆ ◦W‖ ≤ C
‖W‖∞√

log n
, (2.41)

where Λ = [ 1√
αijnlogn

] and ∆ = [αijρij]. Our proof applies the following Latala’s Theorem

[126].

Theorem 2.13 (Latala’s Theorem). Let A be a random matrix whose entries aij are inde-
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pendent centered random variables with finite fourth moment. Then

Esmax(A) ≤ C

max
i

(∑
j

Ea2
ij

)1/2

+ max
j

(∑
i

Ea2
ij

)1/2

+

(∑
i,j

Ea4
ij

)1/4
 .

By applying the Latala’s Theorem, we obtain the bound

‖∆ ◦ Λ ◦W‖ ≤ C ′
‖W‖∞
log n

. (2.42)

Since ‖W‖∞ = 1,

‖Λ ◦ PΩW‖ ≤
C√
log n

+
C ′

log n
≤ 1

8
, (2.43)

provided n sufficiently large.

To show (2.41), for any matrix Z, we have

Λ ◦ PΩZ − Λ ◦∆ ◦ Z =
∑
i,j

(δij −∆ij)ΛijZijeie
∗
j :=

∑
i,j

Xij, (2.44)

where Xij are independent zero-mean random matrices. Moreover,

‖Xij‖ = ‖(δij −∆ij)ΛijZijeie
∗
j‖

≤ ‖Z‖∞√
nlog n

max
i,j

(
δij√
αij
−√αijρij

)
≤ ‖Z‖∞√

nlog n
max
i,j

1
√
αij
≤ 1

log2 n
‖Z‖∞,
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where the last inequality is due to the assumption αij ≥ log2 n
n

. Furthermore,

∥∥∥∥∥∑
i,j

EXijX
∗
ij

∥∥∥∥∥ =

∥∥∥∥∥∑
i,j

E(δij −∆ij)
2Λ2

ijZ
2
ijeie

∗
i

∥∥∥∥∥
=

∥∥∥∥∥∑
i,j

(1−∆ij)∆ijΛ
2
ijZ

2
ijeie

∗
i

∥∥∥∥∥
≤ max

i

∑
j

(1−∆ij)∆ijΛ
2
ijZ

2
ij

≤ ‖Z‖
2
∞

n log2 n
max
i

∑
j

(1− αijρij)ρij ≤
‖Z‖2

∞

log2 n
.

By noncommutative Bernstein Inequality, we have

‖Λ ◦ PZ − Λ ◦∆ ◦ Z‖ ≤ C

(√
‖Z‖2

∞

log2 n
· log n+

‖Z‖∞
log2 n

· log n

)
≤ C

‖Z‖∞√
log n

.

This finishes the proof of (2.41) by letting Z = W .

Finally, we show that Y satisfies (2.40) as follows.

∥∥∥∥Y ◦ 1

Λ

∥∥∥∥
∞

=

∥∥∥∥∥ 1

Λ
◦

l∑
k=1

RΓkZk−1

∥∥∥∥∥
∞

≤
∥∥∥∥ 1

Λ
◦ RΓ1Z0

∥∥∥∥
∞

+

∥∥∥∥ 1

Λ
◦ RΓ2Z1

∥∥∥∥
∞

+
l∑

k=3

∥∥∥∥ 1

Λ
◦ RΓkZk−1

∥∥∥∥
∞

≤ 1

C0

‖Z0‖w(∞) +
1

C0

‖Z1‖w(∞) +
l∑

k=3

log n

C0

‖Zk−1‖w(∞)

≤ 1

C0

‖Z0‖w(∞) +
1

2C0

√
log n

‖Z0‖w(∞) +
l∑

k=3

log n

C0

·
(

1

2

)k−1
1

log n
‖Z0‖w(∞)

≤ 2

C0

‖Z0‖w(∞) ≤
2C

C0

≤ 1

4
,

provided that C0 is sufficiently large, where the second inequality is due to the fact (2.27)-

(2.29) and the third inequality is due to the fact (2.33)-(2.35).
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2.6.2 Proof of Theorem 2.2

The arguments here adapt elimination and derandomization arguments in [13], and are

included here for the completeness. In contrast to the uniform sampling probability ρ, we

need to deal with a nonuniform probability matrix ρ.

Elimination Procedure

Definition 2.14. S ′ is said to be a trimmed version of S if supp(S ′) ⊂ supp(S) and S ′ij =

Sij whenever S ′ij 6= 0.

The following theorem states that if PCP correctly recovers the low-rank and sparse

components of M0 = L0 + S0, it also correctly recovers the components of a matrix M ′
0 =

L0 + S ′0 where S ′0 is a trimmed version of S0.

Theorem 2.15 (Theorem 2.2 in [13]). Suppose the solution to (2.12) with input dataM0 =

L0 + S0 is unique and exact, and consider M ′
0 = L0 + S ′0, where S ′0 is a trimmed version

of S0. Then the solution to (2.12) with input M ′
0 is exact as well.

Derandomization Procedure

Let ρ be the matrix with each (i, j)-entry being ρij . If PCP yields exact recovery with

a certain probability for the random sign model with the parameter 2ρ, then it also yields

exact recovery with at least the same probability for the fixed sign model with locations of

non-zero entries sampled using Bernoulli model with the parameter ρ.

Theorem 2.16. Suppose that L0 is a low-rank matrix with local coherence parameter [µij]

and S0 follow the Bernoulli model with parameter 2ρ, and the signs of S0 are independently

distributed ±1 as stated in (2.10) (and independent from the locations). Then, if the PCP

solution is exact with high probability, then it is also exact with at least the same probability

for the model in which the signs are fixed and the locations are sampled from the Bernoulli

model with parameter ρ.
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Proof. Consider the model with fixed-sign assumption. We view S0 as PΩS for some fixed

matrix S, where Ω is sampled from the Bernoulli model with parameter ρ. Therefore, S0

has following distribution

(S0)ij =


Sij, w. p. ρij

0, w. p. 1− ρij.

Now consider a random sign matrix with each entry distributed independently as follows

Eij =



1, w. p. ρij,

0, w. p. 1− 2ρij,

−1, w. p. ρij,

and an “elimination” matrix η with entries defined by

ηij =


0, if Eij[sgn(S)]ij = −1,

1, otherwise.

The entries of η are independent since they are functions of independent random variables.

Consider now S ′0 = η ◦ (|S| ◦ E), where ◦ denotes the componentwise product so that

[S ′0]ij = ηij ◦ (|Sij| ◦ Eij). Then, we claim that S ′0 and S0 have the same distribution. By

independence of each entry, it suffices to check that their marginals match each other. For

Sij 6= 0, we have

P([S ′0]ij = Sij) = P(ηij = 1 and Eij = [sgn(S)]ij)

= P(Eij[sgn(S)]ij 6= −1 and Eij = [sgn(S)]ij)

= P(Eij = [sgn(S)]ij) = ρij,
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which establishes the claim.

Now, |S| ◦ E obeys the random sign model, and by assumption, PCP recovers |S| ◦ E

with high probability. By the elimination procedure, PCP also recovers S ′0 = η ◦ (|S| ◦E).

Since S ′0 and S0 have the same distribution, the theorem follows.

2.6.3 Proofs of Technical Lemmas

In this section, we prove the key lemmas provided in Section 2.6.1. The central technique

used here is non-communicative Bernstein inequality [128].

Proof of Lemma 2.6

The proof of Lemma 2.6 follows the proof of [22, Lemma 9].

Proof of Lemma 2.7

We note that the condition ‖PT − PTRΩ0PT‖ ≤ 1
2

implies that for any matrix Z

1

2
‖PTZ‖F ≤ ‖PTRΩ0PT (Z)‖F ≤

3

2
‖PTZ‖F .

Thus, for any matrix Z, we have

∥∥∥R1/2
Ω0
PT (Z)

∥∥∥2

F
= 〈R1/2

Ω0
PT (Z),R1/2

Ω0
PT (Z)〉

= 〈Z, (R1/2
Ω0
PT )∗R1/2

Ω0
PT (Z)〉

= 〈PT (Z),PTRΩ0PT (Z)〉

≤ ‖PTZ‖F‖PTRΩ0PT (Z)‖F

≤ 3

2
‖PTZ‖2

F .

Thus,
∥∥∥R1/2

Ω0
PT
∥∥∥ ≤ √3/2 and hence

∥∥∥PTR1/2
Ω0

∥∥∥ ≤ √3/2 because R1/2
Ω0
PT and PTR1/2

Ω0
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are adjoint operators. On the other hand, we show
∥∥∥R1/2

Ω0

∥∥∥ ≤ 1/
√
p0. For any matrix Z,

∥∥∥R1/2
Ω0

(Z)
∥∥∥2

F
=

∥∥∥∥∥∑
i,j

1
√
qij

I{(i,j)∈Ω0}Zijeie
∗
j

∥∥∥∥∥
2

F

≤
∑
i,j

Z2
ij

qij
≤ 1

p0

‖Z‖2
F .

Thus, ‖RΩ0PT‖ ≤
∥∥∥R1/2

Ω0

∥∥∥ · ∥∥∥R1/2
Ω0
PT
∥∥∥ ≤√ 3

2p0
. Thus, ‖PTRΩ0‖ ≤

√
3

2p0
.

Since we have 1
2
‖PTZ‖F ≤ ‖PTRΩ0PT (Z)‖F ≤ 3

2
‖PTZ‖F for any matrix Z ∈ T , the

operator PTRΩ0PT mapping T onto itself is well conditioned. Thus, PΩ0PT is injective on

T , i.e., for Z ∈ T , PΩ0PT (Z) = 0 if and only if Z = 0.

Proof of Lemma 2.8

This is a direct result of Lemma 2.6.

Proof of Lemma 2.9

Let δij denote the Bernoulli random variable I((i, j) ∈ Ω0). We can derive

(RΩ0 − I)Z =
∑
i,j

(
1

qij
δij − 1

)
〈eie∗j , Z〉eie∗j =:

∑
i,j

Xij.

We note that Xij for all i, j ∈ [n] are zero-mean independent random matrices. Further-

more,

‖Xij‖ ≤
1

qij
|Zij| ≤

1

C0 log n
‖Z‖w(∞),

and

∥∥∥∥∥∑
i,j

EXijX
∗
ij

∥∥∥∥∥ =

∥∥∥∥∥∑
i,j

E

(
1

qij
δij − 1

)2

Z2
ijeie

∗
i

∥∥∥∥∥ =

∥∥∥∥∥∑
i,j

(
1

qij
− 1

)
Z2
ijeie

∗
i

∥∥∥∥∥
≤ max

i

∑
j

Z2
ij

qij
≤ n‖Z‖2

w(∞) ·max
i,j

w2
ij

qij
≤ 1

C0 log n
‖Z‖2

w(∞).

Similarly, it can be shown that ‖
∑

i,j EX∗ijXij‖ ≤ 1
C0 logn

‖Z‖2
w(∞). Thus, applying the
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non-commutative Bernstein inequality, we obtain with high probability,

‖(RΩ0 − I)Z‖ =

∥∥∥∥∥∑
i,j

Xij

∥∥∥∥∥ ≤ C

(√
1

C0 log n
‖Z‖2

w(∞) · log n+
1

C0 log n
‖Z‖w(∞) · log n

)
≤ C√

C0

‖Z‖w(∞).

Proof of Lemma 2.10

For any entry index pair (a, b), we have

[(PTRΩ0 − PT )Z]ab ·
1

wab
=
∑
i,j

(
1

qij
δij − 1

)
Zij〈PT (eie

∗
j), eae

∗
b〉 ·

1

wab

=
∑
i,j

(
1

qij
δij − 1

)
Zij〈eie∗j ,PT (eae

∗
b)〉 ·

1

wab
=:
∑
i,j

xij.

We note that xij for i, j ∈ [n] are independent random variables and Exij = 0. Further-

more,

|xij| ≤
1

qij
|Zij| · |〈eie∗j ,PT (eae

∗
b)〉| ·

1

wab

≤ |Zij| ·
1

C0β−2(
µijr

n
) log n

·
√

2µijr

n
·
√

2µabr

n
· 1√

µabr
n2

≤ 2β2

C0 log n

|Zij|
wij
≤ 2β2

C0 log n
‖Z‖w(∞)

,



48

and

∣∣∣∣∣∑
i,j

Ex2
ij

∣∣∣∣∣ ≤∑
i,j

E

(
1

qij
δij − 1

)2

Z2
ij · |〈eie∗j ,PT (eae

∗
b)〉|2 ·

1

w2
ab

≤
∑
i,j

(
1

qij
− 1

)
Z2
ij

w2
ij

·
w2
ij

w2
ab

· |〈eie∗j ,PT (eae
∗
b)〉|2

≤ 1

C0β−2( logn
n

)
· ‖Z‖2

w(∞)
· 1

µabr
‖PT (eae

∗
b)‖2

F

≤ 2β2

C0 log n
· ‖Z‖2

w(∞)
,

where we use the assumption qij ≥ C0β
−2(

µijr

n
) log n and the fact ‖PT (eae

∗
b)‖2

F ≤
2µabr
n

.

Thus, applying the non-commutative Bernstein inequality, we have

∣∣∣∣∣∑
i,j

xij

∣∣∣∣∣ ≤ C

(√
2β2

C0 log n
‖Z‖2

w(∞)
· log n+

2β2

C0 log n
‖Z‖w(∞)

· log n

)

= C

(√
2

C0

β +
2

C0

β2

)
‖Z‖w(∞)

≤ 1

2
β‖Z‖w(∞)

,

with high probability, provided that C0 is sufficiently large.

Proof of Proposition 2.11

Suppose the adaptive PCP yields a solution (L̂, Ŝ). Assume L̂ = L+H . Then we have

PO(H) = S − Ŝ because of the relationship PO(L) + S = PO(L̂) + Ŝ. It is clear that Ŝ is

supported on O because S is supported on Ω ⊂ O. By the definition of (L̂, Ŝ), we have

‖L̂‖∗ + ‖Λ ◦ Ŝ‖1 ≤ ‖L‖∗ + ‖Λ ◦ S‖1. (2.45)

By the definition of subgradient, we have

‖L+H‖∗ ≥ ‖L‖∗ + 〈PTH,UV ∗〉+ ‖PT⊥H‖∗
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because we can always find a W ∈ T⊥ and ‖W‖ ≤ 1 such that ‖PT⊥H‖∗ = 〈PT⊥H,W 〉.

Thus we obtain

‖Λ ◦ S‖1 − ‖Λ ◦ Ŝ‖1 ≥ 〈PTH,UV ∗〉+ ‖PT⊥H‖∗,

which implies

‖Λ ◦ S‖1 − ‖Λ ◦ PΩ(Ŝ)‖1 ≥ 〈H,UV ∗〉+ ‖PT⊥H‖∗ + ‖Λ ◦ PΓ(Ŝ)‖1,

because Ŝ = PΩ(Ŝ) + PΓ(Ŝ). Furthermore,

‖Λ ◦ PΩ(Ŝ)‖1 = ‖Λ ◦ (S + PΩ(−H))‖1

≥ ‖Λ ◦ S‖1 + 〈sgn(Λ ◦ S),Λ ◦ PΩ(−H)〉

= ‖Λ ◦ S‖1 + 〈Λ ◦ sgn(S),−H〉 .

Combining the last two inequalities and using the fact PΓŜ = PΓ(Ŝ − S) = −PΓH , we

have

‖PT⊥H‖∗ + ‖Λ ◦ PΓH‖1 ≤ 〈H,Λ ◦ sgn(S)− UV ∗〉 .

By introducing a matrix Y which obeys the conditions in the theorem, we show that

〈H,Λ ◦ sgn(S)− UV ∗〉 = 〈H, Y + Λ ◦ sgn(S)− UV ∗〉 − 〈H, Y 〉

= 〈PTH,PT (Y + Λ ◦ sgn(S)− UV ∗)〉+ 〈PT⊥H,PT⊥(Y + Λ ◦ sgn(S))〉

− 〈PΓH,PΓY 〉 − 〈PΓcH,PΓcY 〉

≤ λmin

n2
‖PTH‖F +

1

4
‖PT⊥H‖∗ +

1

4
‖Λ ◦ PΓH‖1.
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This implies

3

4
‖PT⊥H‖∗ +

3

4
‖Λ ◦ PΓH‖1 ≤

λmin

n2
‖PTH‖F .

Thus

3

4
‖PT⊥H‖∗ +

3λmin

4
‖PΓH‖1 ≤

λmin

n2
‖PTH‖F .

Next we bound ‖PTH‖F as follows:

‖PTH‖F ≤ 2‖PTRΓPT (H)‖F (Lemma 1)

≤ 2‖PTRΓPT⊥(H)‖F + 2‖PTRΓ(H)‖F (triangle inequality)

≤
√

6

p0

‖PT⊥(H)‖F +

√
6

p0

‖PΓ(H)‖F . (Lemma 2)

Since ‖ · ‖F ≤ ‖ · ‖∗ and ‖ · ‖F ≤ ‖ · ‖1, we have

(
3

4
− λmin

n2

√
6

p0

)
‖PT⊥(H)‖F +

(
3

4
λmin −

λmin

n2

√
6

p0

)
‖PΓ(H)‖F ≤ 0.

Given p0 ≥ log2 n
n4 , the above inequality implies PT⊥H = PΓH = 0, which further yields

PΓPT (H) = 0. Since PΓPT is injective on T , we have PTH = 0. Consequently, H = 0,

and thus the solution is unique.

Proof of Proposition 2.12

We first observe that

〈eae∗b ,PT (Λ ◦ sgn(S))〉 =
∑
i,j

δij√
αijnlog n

〈
eie
∗
j ,PT (eae

∗
b)
〉

=:
∑
i,j

xij
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where

δij =



1 with prob. αijρij/2

0 with prob. 1− αijρij

−1 with prob. αijρij/2.

Thus {xij} are independent random variables and Exij = 0. Furthermore,

|xij| ≤
∣∣∣∣ δij√
αijnlog n

〈
eie
∗
j ,PT (eae

∗
b)
〉∣∣∣∣ ≤ 1

√
αijnlog n

√
2µijr

n
·
√

2µabr

n
≤

2
√
µabr

C0n log2 n
,

where the last inequality is due to the assumption√αij ≥ C0

√
µijr/n log n, and

∣∣∣∣∣∑
i,j

Ex2
ij

∣∣∣∣∣ =

∣∣∣∣∣∑
i,j

Eδ2
ij

αijn log2 n

〈
eie
∗
j ,PT (eae

∗
b)
〉2

∣∣∣∣∣ =

∣∣∣∣∣∑
i,j

ρij

n log2 n

〈
eie
∗
j ,PT (eae

∗
b)
〉2

∣∣∣∣∣
≤ 1

n log2 n

∣∣∣∣∣∑
i,j

〈
eie
∗
j ,PT (eae

∗
b)
〉2

∣∣∣∣∣ =
1

n log2 n
‖PT (eae

∗
b)‖2

F ≤
2µabr

n2 log2 n
.

Thus applying the non-commutative Bernstein inequality, we obtain

∣∣∣∣∣∑
i,j

xij

∣∣∣∣∣ ≤ C

(√
2µabr

n2 log2 n
· log n+

2
√
µabr

C0n log2 n
· log n

)
≤ 2C√

log n

√
µabr

n
,

where the last inequality follows that C0 is sufficiently large.
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CHAPTER 3

FAST PHASE RETRIEVAL: RESHAPED

WIRTINGER FLOW

In this chapter, we present a novel algorithm reshaped Wirtinger flow (RWF) to solve the

phase retrieval problem. We first formulate the phase retrieval problem in Section 3.1. We

then present the RWF algorithm in Section 3.2. We establish the performance guarantee of

RWF in Section 3.3. We introduce a stochastic algorithm IRWF and establish its perfor-

mance guarantee in Section 3.4. We describe the numerical experiments in Section 3.5 and

summarize this chapter in Section 3.6. At last, we provide technical proofs in Section 3.7.

Throughout this chapter, boldface lowercase letters such as ai,x, z denote vectors,

and boldface capital letters such as A,Y denote matrices. For two matrices, A � B

means that B −A is positive definite. For a complex matrix or vector, A∗ and z∗ denote

conjugate transposes of A and z respectively. For a real matrix or vector, AT and zT

denote transposes ofA and z respectively. The indicator function 1A = 1 if the event A is

true, and 1A = 0 otherwise.
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3.1 Problem Formulation

As discussed in the Chapter 1, mathematically, phase retrieval amounts to recovering the

signal from only measurements of magnitudes. Since our loss function is based on |aTi z|

rather than |aTi z|2 in WF. For simplicity of notation, we adopt the following problem for-

mulation of recovering a signal x ∈ Rn based on m measurements yi given by

yi = |〈ai,x〉| , for i = 1, · · · ,m, (3.1)

where ai ∈ Rn for i = 1, · · · ,m are known measurement vectors, independently generated

by Gaussian distribution N (0, In×n).

We note that the Wirtinger flow (WF) algorithm [1] guarantees signal recovery with

O(n log n) Gaussian measurements and attains ε−accuracy within O(mn2 log 1/ε) flops,

via minimizing the following nonconvex loss function

`WF (z) :=
1

4m

m∑
i=1

(|aTi z|2 − y2
i )

2. (3.2)

The WF algorithm uses the quadratic loss of |aTi z|2 so that the optimization objective

is a smooth function of aTi z and the gradient step becomes simple. However, this comes

with a cost of increasing the order of aTi z to be four in the loss function. We adopt the

quadratic loss of |aTi z| as follows1,

`(z) :=
1

2m

m∑
i=1

(
|aTi z| − yi

)2
. (3.3)

Although the above loss function (3.3) is not smooth everywhere, it reduces the order of

aTi z to be two, and the general curvature can be more amenable to the convergence of the

1The loss function (3.3) was also used in [53] to derive a gradient-like update for the phase retrieval
problem with Fourier magnitude measurements. However, the focus of this chapter is to characterize global
convergence guarantee for such an algorithm with appropriate initialization, which was not studied in [53].
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gradient method. For such a nonconvex and nonsmooth loss function, we develop a gradient

descent-like algorithm, which sets zero for the “gradient” component corresponding to

nonsmooth samples.

We show that the lower-order loss function has great advantage in both statistical and

computational efficiency, although scarifying smoothness. In fact, the curvature of such a

loss function behaves similarly to that of a least-squares loss function in the neighborhood

of global optimums (see Section 3.3), and hence RWF converges fast. The nonsmoothness

does not significantly affect the convergence of the algorithm because only with negligible

probability the algorithm encounters nonsmooth points for some samples, which further-

more are set not to contribute to the gradient direction by the algorithm.

3.2 Reshaped Wirtinger Flow

It can be observed that if z is a solution, i.e., satisfying (3.1), then ze−jφ is also the solution

of the problem. Thus, the recovery is up to a phase difference. We define the Euclidean

distance between two vectors up to a global phase difference [1] as, for complex signals,

dist(z,x) := min
φ∈[0,2π)

‖ze−jφ − x‖, (3.4)

where it is simply min ‖z ± x‖ for real case. We focus on the real-valued case in analysis,

but the algorithm designed below is applicable to the complex-valued case and the case of

coded diffraction pattern (CDP) as we demonstrate numerically in Section 3.5.

We design RWF (see Algorithm 1) for solving the above problem, which contains two

stages: spectral initialization and gradient loop. Suggested values for parameters are αl =

1, αu = 5 and µ = 0.82. The scaling parameter in λ0 and the conjugate transpose a∗i allow

the algorithm readily applicable to complex and CDP cases. We next describe the two

stages of the algorithm in detail in Sections 3.2.1 and 3.2.2, respectively.
2For complex Gaussian case, we suggest µ = 1.2.
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Algorithm 1 Reshaped Wirtinger Flow
Input: y = {yi}mi=1, {ai}mi=1;
Parameters: Lower and upper thresholds αl, αu for truncation in initialization, stepsize µ;
Initialization: Let z(0) = λ0z̃, where λ0 = mn∑m

i=1 ‖ai‖1
·
(

1
m

∑m
i=1 yi

)
and z̃ is the leading

eigenvector of

Y :=
1

m

m∑
i=1

yiaia
∗
i1{αlλ0<yi<αuλ0}. (3.5)

Gradient loop: for t = 0 : T − 1 do

z(t+1) = z(t) − µ

m

m∑
i=1

(
a∗iz

(t) − yi ·
a∗iz

(t)

|a∗iz(t)|

)
ai. (3.6)

Output z(T ).

3.2.1 Initialization via Spectral Method

Differently from the spectral initialization methods for WF in [1] and for TWF in [61], both

of which are based on |a∗ix|2, we propose an alternative initialization in Algorithm 1 that

uses magnitude |a∗ix| instead, and truncates samples with both lower and upper thresholds

as in (3.5). We show that such initialization achieves smaller sample complexity than WF

and the same order-level sample complexity as TWF, and furthermore, performs better than

both WF and TWF numerically.

Our initialization consists of estimation of both the norm and direction of x. The

norm estimation of x is given by λ0 in Algorithm 1. Intuitively, with real Gaussian mea-

surements, the scaling coefficient mn∑m
i=1 ‖ai‖1

≈
√

π
2
. Moreover, yi = |aTi x| are inde-

pendent sub-Gaussian random variables for i = 1, . . . ,m with mean
√

2
π
‖x‖, and thus

1
m

∑m
i=1 yi ≈

√
2
π
‖x‖. Combining these two facts yields the desired argument.

The direction of x is approximated by the leading eigenvector of Y , because Y ap-

proaches E[Y ] by concentration of measure and the leading eigenvector of E[Y ] takes the

form cx for some scalar c ∈ R. We note that (3.5) involves truncation of samples from both

sides, in contrast to truncation only by an upper threshold in [61]. This difference is due

to the following reason. We note that in high dimension setting, two random vectors are
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Fig. 3.1: Comparison of different initialization methods with m = 6n and 50 iterations.

almost perpendicular to each other [129], which indicates there are considerable amount

of |a∗ix| with small values, i.e., less than 1. These samples with small values deviate the

direction of leading eigenvector of Y from x, whose effect cannot be offset and neglected

if there are only moderate number of samples. Specifically, [61] uses y′ = |a∗ix|2 to weight

the contribution of aia∗i in Y and the square power helps to reduce the contribution of

bad directions (that samples with small |a∗ix| values). In contrast, we use yi = |a∗ix| to

weight the contribution of aia∗i and apply truncation from bellow to filter out bad directions

directly.

We next provide the formal statement of the performance guarantee for the initialization

step that we propose.

Proposition 3.1. Fix δ > 0. The initialization step in Algorithm 1 yields z(0) satisfying

dist(z(0),x) ≤ δ‖x‖ with probability at least 1 − exp(−cmε2), if m > C(δ, ε)n, where c

is some positive constant and C is a positive number only affected by δ and ε.

Finally, Figure 3.1 demonstrates that RWF achieves better initialization accuracy in

terms of the relative error dist(z(0),x)
‖x‖ than WF and TWF. Furthermore, we also include the

orthonormal promoting initialization method proposed for truncated amplitude flow (TAF)

in the independent work [70], in the comparison. It can be seen that our initialization is

slightly better.
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3.2.2 Gradient Loop

The gradient loop of Algorithm 1 is based on the loss function (3.3). The update direction

will be as follows:

∇`(z) :=
1

m

m∑
i=1

(
aTi z − yi · sgn(aTi z)

)
ai =

1

m

m∑
i=1

(
aTi z − yi ·

aTi z

|aTi z|

)
ai, (3.7)

where sgn(·) is the sign function for nonzero arguments. We further set sgn(0) = 0 and

0
|0| = 0. In fact, ∇`(z) equals the gradient of the loss function (3.3) if aTi z 6= 0 for

all i = 1, ...,m. For samples with nonsmooth point, i.e., aTi z = 0, we adopt Fréchet

superdifferential [130] for nonconvex function to set the corresponding gradient component

to be zero (as zero is an element in Fréchet superdifferential). With abuse of terminology,

we still refer to ∇`(z) in (3.7) as “gradient” for simplicity, which rather represents the

update direction in the gradient loop of Algorithm 1.

3.3 Geometric Convergence of RWF

Before we present the theoretical analysis, let us first understand why RWF is fast intu-

itively. We argue that the curvature of loss function (3.3) behaves similarly to that of a

least-squares problem with phase information in the neighborhood of global optimizers,

and hence yields faster convergence. To provide further insights, consider the standard

problem of solving x from linear measurements 〈ai,x〉, i = 1, · · · ,m, where ai’s are

composed of i.i.d. standard Gaussian entries. In this case, it is natural to use the least-

squares loss function

`LS(z) :=
1

m

m∑
i=1

(
aTi z − aTi x

)2
. (3.8)
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Examining the expected (with respect to ai’s) loss surface of min{`LS(z), `LS(−z)} (to

mimic sign ambiguity), `(z), and `WF (z) in Figure 3.2, whose expressions can be found in

Section 3.7.2, it can be seen that the loss of RWF, rather than the loss of WF, has a similar

curvature to the quadratic least-squares loss around the global optimizers, which justifies

its better performance than WF.

0

1

2

3

4

5

6

7

8

9

10

2 21 10 0-1 -1-2-2

(a) Expected loss of LS

0

0.5

1

1.5

2

2.5

3

3.5

2

4

4.5

5

21 10 0-1 -1-2-2

(b) Expected loss of RWF

z
2

z
1

-2
0
-2

50

100

150

-1 00 1 22

WF loss surface

(c) Expected loss of WF

Fig. 3.2: Surface of the expected loss function of (a) least-squares (mirrored symmetri-
cally), (b) RWF, and (c) WF when x = [1,−1]T .

The nonsmoothness of the loss function (3.3) does not negatively impact the perfor-

mance of RWF because only with negligible probability the algorithm encounters nons-

mooth points for some samples, which furthermore are set not to contribute to the gradient

direction by RWF. The gradient of the RWF loss (3.3) is given as

∇`(z) :=
1

m

m∑
i=1

(
aTi z − |aTi x| · sgn(aTi z)

)
ai, (3.9)

where sgn(0) = 0 by convention. Comparing this with the gradient of the least-squares

loss

∇`LS(z) =
1

m

m∑
i=1

(
aTi z − aTi x

)
ai, (3.10)

one can see that RWF uses estimated phase information sgn(aTi z) to generate the gradient

updates, and the convergence behavior of RWF is much similar to that of least-squares

with phase information if initialized properly. Indeed, Figure 3.3 illustrates that RWF takes
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almost the same number of iterations for recovering a signal (with only the magnitude

information) as the least-squares gradient descent method for recovering a signal (with

both the magnitude and the sign information).
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Fig. 3.3: Comparison of convergence behavior between RWF and the least-squares gradi-
ent descent with the same initialization, the same parameters n = 1000, m = 6n, and the
same step size µ = 0.8.

We next characterize the convergence of RWF in the following theorem.

Theorem 3.2. Consider the problem of solving any given x ∈ Rn from a system of equa-

tions (3.1) with Gaussian measurement vectors. There exist some universal constants

µ0 > 0 (µ0 can be set as 0.8 in practice), 0 < ρ, ν < 1 and c0, c1, c2 > 0 such that if

m ≥ c0n and µ < µ0, then with probability at least 1− c1 exp(−c2m), Algorithm 1 yields

dist(z(t),x) ≤ ν(1− ρ)t‖x‖, ∀t ∈ N. (3.11)

Theorem 3.2 indicates that RWF recovers the true signal with O(n) samples, which

is order-level optimal. Such an algorithm improves the sample complexity O(n log n) of

WF. Furthermore, RWF does not require truncation of weak samples in the gradient step to

achieve the same sample complexity as TWF. This is mainly because RWF benefits from

the lower-order loss function given in (3.3), the curvature of which behaves similarly to the

least-squares loss function locally as we explain in Section 3.2.2.
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Theorem 3.2 also suggests that RWF converges geometrically at a constant step size.

To reach ε−accuracy, it requires computational cost ofO(mn log 1/ε) flops, which is better

than WF (O(mn2 log(1/ε)). Furthermore, it does not require truncation in gradient steps

to reach the same computational cost as TWF. Numerically, as we demonstrate in Section

3.5, RWF is two times faster than TWF and four to six times faster than WF in terms of

both iteration count and time cost in various examples.

We have established that RWF guarantees exact recovery with geometric convergence

for noise-free case. We now study RWF in the presence of noise. Suppose the measure-

ments are corrupted by bounded noise, and are given by

yi = |aTi x|+ wi, 1 ≤ i ≤ m, (3.12)

where {wi}mi=1 denote the additive noise. Then the following theorem shows that RWF is

robust under such noise corruption.

Theorem 3.3. Consider the model (3.12). Suppose that the measurement vectors are in-

dependently Gaussian, i.e., ai ∼ N (0, I) for 1 ≤ i ≤ m, and the noise is bounded, i.e.,

‖w‖/
√
m ≤ c‖x‖. Then there exist some universal constants µ0 > 0 (µ0 can be set as 0.8

in practice), 0 < ρ < 1 and c0, c1, c2 > 0 such that if m ≥ c0n and µ < µ0, then with

probability at least 1− c1 exp(−c2m), Algorithm 1 yields

dist(z(t),x) .
‖w‖√
m

+ (1− ρ)t‖x‖, ∀t ∈ N, (3.13)

for some ρ ∈ (0, 1).

The numerical result under the Poisson noise model in Section 3.5 further corroborates

the stability of RWF.
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3.4 Incremental Reshaped Wirtinger Flow

In large-sample and online scenarios, stochastic algorithms are preferred due to their poten-

tial advantage of faster convergence and lower memory requirement. Thus, in this section,

we develop stochastic versions of RWF, referred to as incremental reshaped Wirtinger flow

(IRWF). We show that IRWF guarantees exact recovery at a linear convergence rate un-

der the same sample complexity. We further draw the connection between IRWF and the

randomized Kaczmarz method recently developed for phase retrieval [62, 63, 131], and es-

tablish its global convergence as a side product.

In oder to fully exploit the processing throughput of CPU/GPU, we develop a mini-

batch IRWF, described in Algorithm 2. The mini-batch IRWF applies the same initializa-

tion step as in RWF, and uses a mini-batch of measurements for each gradient update.

Algorithm 2 Mini-batch Incremental Reshaped Wirtinger Flow (mini-batch IRWF)
Input: y = {yi}mi=1, {ai}mi=1, mini-batch size k;
Initialization: Same as in RWF (Algorithm 1);
Gradient loop: for t = 0 : T − 1 do
Choose Γt uniformly at random from the subsets of {1, 2, . . . ,m} with the cardinality k,
and let

z(t+1) = z(t) − µ ·A∗Γt
(
AΓtz

(t) − yΓt � Ph(AΓtz
(t))
)
, (3.14)

where AΓt is a matrix stacking a∗i for i ∈ Γt as its rows, yΓt is a vector stacking yi for
i ∈ Γt as its elements, and Ph(z) denotes the phase vector of z.
Output z(T ).

If the gradient update uses only a single sample, i.e., k = 1, we refer to Algorithm 2 as

IRWF, where the step (3.14) becomes

z(t+1) = z(t) − µ

(
a∗itz

(t) − yit ·
a∗itz

(t)

|a∗itz(t)|

)
ait . (3.15)

We characterize the convergence of mini-batch IRWF in the following theorem.

Theorem 3.4. Consider the problem of solving any given x ∈ Rn from a system of equa-
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tions (3.1) with Gaussian measurement vectors. There exist some universal constants

0 < ρ, ρ0, ν < 1 and c0, c1, c2 > 0 such that if m ≥ c0n and µ = ρ0/n, then with

probability at least 1− c1 exp(−c2m), Algorithm 2 yields

EΓt+1

[
dist2(z(t+1),x)

]
≤ ν

(
1− kρ

n

)
· dist2(z(t),x), (3.16)

for all z(t) satisfying dist(z(t),x)
‖z‖ ≤ 1

10
, where EΓt [·] denotes the expectation with respect to

the randomly selected index set Γt conditioned on the high probability event of the random

measurements {ai}mi=1.

Proof. See Section 3.7.5.

We suggest that ρ0 = 1 and hence the step size µ = 1
n

in practice. Theorem 3.4 es-

tablishes that mini-batch IRWF achieves linear convergence to the global optimizer under

the sample complexityO(n). For a generic optimization objective, it is not anticipated that

incremental/stochastic first-order methods achieve linear convergence due to the variance

of stochastic gradients. However, for our specific problem, the variance of stochastic gra-

dients reduces as the estimate approaches the true signal, and hence a fixed step size can

be employed and linear convergence can be established. A result similar in spirit was also

established for the stochastic algorithm based on TWF (referred to as ITWF) [64]. We pro-

vide further comparisons between IRWF and ITWF in Section 3.4.2. On the other hand,

it was shown in [132, 133] that stochastic gradient methods yield linear convergence to the

minimizer x? if the objective F (x) =
∑

i fi(x) is a smooth and strongly convex function

and x? minimizes all components fi(x). The summands of our objective (3.3) also share

the same minimizer (although it is neither convex nor smooth), which also helps to explain

the linear convergence rate of IRWF.
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3.4.1 Connection to the Kaczmarz Method for Phase Retrieval

The Kaczmarz method was originally developed for solving systems of linear equations

[134]. In [62, 63], it was adapted to solve the phase retrieval problem, which we refer to as

Kaczmarz-PR. It has been demonstrated in [62] that Kaczmarz-PR exhibits better empirical

performance than error reduction (ER) [52, 53] and WF [1]. However, global convergence

of Kaczmarz-PR has not been well established yet, although the randomized Kaczmarz

method for the least-squares problem is established to converge at a linear rate [135, 136].

For instance, [62] obtained a bound on the estimation error which can be as large as the

signal energy no matter how many iterations are taken. [63] established the asymptotic

convergence in the regime when both m and n go to infinity but their ratio is fixed.

In this section, we draw a curious connection between IRWF and Kaczmarz-PR, which

enables us to establish the theoretical guarantee of Kaczmarz-PR by adapting that of IRWF.

This is analogous to the connection made in [133] between the Kaczmarz method and the

stochastic gradient method for solving the least-squares problem. Here, the connection

is made possible due to the lower-order loss function of RWF, which was not evident in

previous studies of WF and TWF.

To be more specific, the Kaczmarz-PR [62, Algorithm 3] employs the following update

rule

z(t+1) = z(t) − 1

‖ait‖2

(
a∗itz

(t) − yit ·
a∗itz

(t)

|a∗itz(t)|

)
ait , (3.17)

where it is selected either in a deterministic manner or randomly. We focus on the random-

ized case where it is selected uniformly at random from {1, . . . ,m}.

Comparing (3.17) and (3.15), the update rule of Kaczmarz-PR becomes equivalent to

IRWF, if we replace the step size µ by 1
‖ait‖2

. Moreover, these two update rules are close if

µ is set as suggested, i.e., µ = 1
n

, because for Gaussian measurements, ‖ait‖2 concentrates

around n by the law of large numbers. As we demonstrate in the numerical experiments
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(see Table 3.1), Kaczmarz-PR and IRWF have similar performance as anticipated. Thus,

following the convergence guarantee for IRWF in Theorem 3.4, we establish the conver-

gence guarantee for the randomized Kaczmarz-PR as follows.

Theorem 3.5. Assume the measurement vectors are independent and each ai ∼ N (0, I).

There exist some universal constants 0 < ρ < 1 and c0, c1, c2 > 0 such that if m ≥ c0n,

then with probability at least 1 − c1m exp(−c2n), the randomized Kaczmarz-PR update

rule (3.17) yields

Eit

[
dist2(z(t+1),x)

]
≤
(

1− ρ

n

)
· dist2(z(t),x) (3.18)

for all z(t) satisfying dist(z(t),x)
‖z‖ ≤ 1

10
.

Proof. See Section 3.7.6.

The above theorem implies that once the estimate z(t) enters the neighborhood of the

true signal, the error diminishes at a linear rate in expectation.

Furthermore, [62] also provided a block Kaczmarz-PR (similar to the mini-batch ver-

sion), whose update rule is given by

z(t+1) = z(t) −A†Γt
(
AΓtz

(t) − yΓt � Ph(AΓtz
(t))
)
, (3.19)

where Γt is a selected block at iterate t containing row indices, and † represents Moore-

Penrose pseudoinverse, which is computed as follows:

A† =


(A∗A)−1A∗, ifA has linearly independent columns;

A∗(AA∗)−1, ifA has linearly independent rows.

(3.20)

Comparing (3.19) and the mini-batch IRWF update in (3.14), these two update rules are

similar to each other if AΓtA
∗
Γt approaches n

ρ0
I |Γt|. For the case with Gaussian measure-
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ments, AΓt has linearly independent rows with high probability if |Γt| ≤ n and hence

AΓtA
∗
Γt is not far from nI |Γt|. Our numerical experiments (see Table 3.1) further suggest

similar convergence rates for these two algorithms with the same block/mini-batch size.

Next, we argue that for the CDP setting, block Kaczmarz-PR is the same as the mini-

batch IRWF with µ = 1. The CDP measurements are collected in the following form

y(l) = |FD(l)x|, 1 ≤ l ≤ L, (3.21)

where F represents the discrete Fourier transform (DFT) matrix, D(l) denotes a diagonal

matrix (mask), and L denotes the number of masks. We choose the block size |Γt| to be the

dimension n of the signal for the convenience of Fourier transform. ThenAΓt becomes the

Fourier transform composed withD(l) (mask effect) andA∗Γt becomesD(l)∗ multiplied by

the inverse Fourier transform. Therefore, (AΓtA
∗
Γt) = I if the diagonal elements of D(l)

have unit magnitude. Taking the step size µ = 1, the two algorithms are identical.

On the other hand, since the block Kaczmarz-PR needs to calculate the matrix inverse

or to solve an inverse problem, the block size cannot be too large. However, mini-batch

IRWF works well for a wide range of the mini-batch sizes, which can even grow with the

signal dimension n as long as a batch of data is loadable into the memory.

3.4.2 Comparison with Incremental Truncated Wirtinger Flow (ITWF)

Recently, [64] designed and analyzed an incremental algorithm based on TWF, which is

referred to as ITWF. More specifically, ITWF employs the same initialization procedure

as TWF and randomly chooses one sample with the index it selected uniformly at random

from {1, 2, . . . ,m} for the gradient update as follows:

z(t+1) = z(t) − µ ·
|aTitz|

2 − y2
it

aTitz
ait1Eit1,t∩E

it
3
, (3.22)
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where 1Eit1,t∩E
it
3

represents the truncation rule determined by the events E it1,t and E it3 . As a

comparison, the update rule of IRWF is much simpler due to the use of the lower-order loss

function and does not require any truncation in the gradient loop. [64] proved that ITWF

converges linearly to the true signal as long as m/n is large enough. Compared to ITWF,

IRWF also achieves the same linear convergence, but runs faster than ITWF numerically as

demonstrated in Section 3.5.

3.5 Numerical Results

In this section, we demonstrate the numerical efficiency of RWF and (mini-batch) IRWF

by comparing their performance with other competitive algorithms. Our experiments are

conducted not only for the real Gaussian case but also for the complex Gaussian and the

CDP cases. All the experiments are implemented in Matlab 2015b and conducted on a

computer equipped with Intel Core i7 3.4GHz CPU and 12GB RAM.

We first compare the sample complexity of RWF and IRWF with those of TWF, WF,

Kaczmarz-PR and AltMinPhase via the empirical successful recovery rate versus the num-

ber of measurements. For RWF, we follow Algorithm 1 with the suggested parameters.

For IRWF, we adopt a block size 64 for efficiency and set the step size µ = 1/n. For

WF, TWF, we use the code provided in the original papers with the suggested param-

eters. For ITWF, we also adopt a block size 64 and set the step size µ = 0.6/n (op-

timal step size). We conduct the experiments for the real Gaussian, complex Gaussian

and CDP cases respectively. For the real and complex cases, we set the signal dimen-

sion n to be 1000, and set the ratio m/n to take values from 2 to 6 with a step 0.1. For

each m, we run 100 trials and count the number of successful trials. For each trial, we

run a maximal number of iterations/passes T = 10000 for all algorithms, and a trial is

declared to be successful whenever the iterate satisfies dist(z(T ),x)/‖x‖ ≤ 10−5. For

the real Gaussian case, we generate the signal x ∼ N (0, In×n), and generate the mea-
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surement vectors ai ∼ N (0, In×n) i.i.d. for i = 1, . . . ,m. For the complex Gaussian

case, we generate the signal x ∼ N (0, In×n) + jN (0, In×n) and the measurement vectors

ai ∼ 1
2
N (0, In×n) + j 1

2
N (0, In×n) i.i.d. for i = 1, . . . ,m. For the CDP case (3.21), we

set n = 1024 for the convenience of FFT and m/n = L = 1, 2, . . . , 8. All other settings

are the same as those for the real case.

We note that for the CDP case, the Kaczmarz-PR algorithm is identical to the IRWF

with step size µ = 1/n due to the argument in Section 3.4.1. Moreover under the CDP

case, the AltMinPhase algorithm is identical to the RWF with step size µ = 1 because the

inverse of the Fourier measurement matrix is nothing but its conjugate transpose. In the

following experiments for the CDP case, we choose the step size µ = 1/n for the IRWF

and µ = 1 for the RWF, under which the Kaczmarz-PR algorithm coincides with the IRWF

and the AltMinPhase algorithm coincides with the RWF.

Figure 3.4 plots the fraction of successful trials out of 100 trials for all algorithms,

with respect to m/n. It can be seen that IRWF and Kaczmarz-PR exhibit a similar sample

complexity, which is the best for all three cases, and is close to the theoretical limit [137].

It can also be seen that the two incremental methods (IRWF and ITWF) outperform the

batch methods (RWF, TWF, AltMinPhase and WF). This can be due to the inherent noise

in incremental methods, which helps to escape bad local minima. This can be extremely

helpful in the regime with a small number of samples, where local minima do exist near the

global minima. Comparing among the batch methods (RWF, TWF AltMinPhase and WF),

it can be seen that although RWF outperforms only WF and AltMinPhase (not TWF) for the

real Gaussian case, it has a comparable performance for the complex case and outperforms

TWF and WF in the CDP case. An intuitive explanation for the real case is that a substantial

number of samples with small |aTi z| can deviate the gradient direction so that truncation

indeed helps to stabilize the algorithm if the number of measurements is not large.

We next compare the convergence rate of RWF, IRWF with those of TWF, ITWF, WF,

Kaczmarcz and AltMinPhase. We run all of the algorithms with the suggested parameters
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(a) Real Gaussian case
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(b) Complex Gaussian case
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Fig. 3.4: Comparison of sample complexity among RWF, IRWF, TWF, ITWF, WF,
Karzmarz-PR and AltMinPhase.

in the original code. We generate the signal and measurements in the same way as those in

the first experiment with n = 5000,m = 8n. All algorithms are seeded with the RWF ini-

tialization. In Table 3.1, we list the number of passes and the time cost for all the algorithms

to achieve a relative error of 10−14 averaged over 10 trials. For the incremental methods,

one update passes k samples and one pass amounts to m/k updates. Clearly, IRWF with

mini-batch size 64 runs the fastest for both the real and complex cases. Moreover, among

the batch (deterministic) algorithms, RWF takes much fewer passes as well as runs much

faster than TWF and WF. Although RWF takes more iterations than AltMinPhase, it runs

much faster than AltMinPhase due to the fact that each iteration of AltMinPhase needs to

solve a least-squares problem that takes much longer than a simple gradient update in RWF.

We also compare the performance of the above algorithms on the recovery of a real
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Table 3.1: Comparison of iteration count and time cost among algorithms (n = 5000,m =
8n).

Real Gaussian Complex Gaussian
#passes time(s) # passes time(s)

RWF 72 12.66 176 122.4
Batch TWF 186 32.36 487 395.1
methods WF 319 54.83 932 887.8

AltMinPhase 6 79.58 159 9637

IRWF 9 44.77 21 233.2
mini-batch IRWF (64) 9 8.076 21 48.58

Incremental mini-batch ITWF (64) 16 37.38 29 149.5
methods Kaczmarz-PR 9 50.68 21 248.4

block Kaczmarz-PR (64) 8 28.50 22 89.31

image from the Fourier intensity measurements (the two dimensional CDP case). The

image (see Figure 3.5) is the Milky Way Galaxy with resolution 1920 × 1080. Table 3.2

lists the number of passes and the time cost for the above six algorithms to achieve the

relative error of 10−15 for one R/G/B channel. All algorithms are seeded with the RWF

initialization. To explore the advantage of FFT, we run the incremental/stochastic methods

with the mini-batch size equal to the number of pixels for one R/G/B channel. We note that

with such a mini-batch size, IRWF is equivalent to block Kaczmarz-PR from the discussion

in Section 3.4.1. It can be seen that in general, the incremental/stochastic methods (IRWF

and ITWF) run faster than the batch methods (RWF, TWF, WF). Moreover, among the

batch methods, RWF outperforms the other three algorithms in both the number of passes

and the computational time. In particular, RWF runs two times faster than TWF and six

times faster than WF in terms of both the number of iterations and the computational time.

We next demonstrate the robustness of RWF to noise and compare it with TWF. We

consider the phase retrieval problem in imaging applications, where Poisson noise is often

used to model the sensor and electronic noise [138]. Specifically, the noisy measurements
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Fig. 3.5: Milky way Galaxy.

Table 3.2: Comparison of iterations and time cost among algorithms on recovery of Galaxy
image (shown in Figure 3.5), where L = m/n denotes the number of CDP masks.

Algorithms RWF IRWF TWF ITWF WF

L = 6 #passes 140 24 410 41 fail
time cost(s) 110 21.2 406 43 fail

L = 12 #passes 70 8 190 12 315
time cost(s) 107 13.7 363.6 25.9 426

of intensity can be expressed as yi =
√
α · Poisson (|aTi x|2/α), for i = 1, 2, ...m where

α denotes the level of the input noise, and Poisson(λ) denotes a random sample generated

by the Poisson distribution with mean λ. It can be observed from Figure 3.6 that RWF

performs better than TWF in terms of the recovery accuracy under two different noise

levels.

3.6 Conclusion

In this chapter, we study RWF and its stochastic version IRWF to recover a signal from

a quadratic systems of equations, based on a nonconvex and nonsmooth quadratic loss

function of magnitude measurements. This loss function sacrifices the smoothness but
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Fig. 3.6: Comparison of relative error under Poisson noise between RWF and TWF.

enjoys advantages in statistical and computational efficiency. It has potential to be extended

in various scenarios. One interesting direction is to extend such an algorithm to exploit

signal structures (e.g., non-negativity, sparsity, etc) to assist the recovery. The lower-order

loss function may offer great simplicity to prove performance guarantee in such cases.

Another interesting direction is to study the convergence of algorithms from random

initialization. In the regime of large sample size (m � n), the empirical loss surface ap-

proaches the asymptotic loss (Figure 3.2(b)) and hence has no spurious local minima. Due

to the result [139], it is conceivable that gradient descent converges from random starting

point. Similar phenomenons have been observed in [43, 80]. However, under moderate

number of measurements (m < 10n), authentic local minima do exist and often locate not

far from the global ones. In this regime, the batch gradient method often fails with random

initialization. As always believed, stochastic algorithms are efficient in escaping bad local

minima or saddle points in nonconvex optimization because of the inherent noise [82,140].

We observe numerically that IRWF and block IRWF from random starting point still con-

verge to global minimum even with very small sample size which is close to the theoretical

limits [141]. It is of interest to analyze theoretically that stochastic methods escape these

local minima (not just saddle points) efficiently.
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3.7 Technical Proofs

We first introduce some notations here. We let A : Rn×n 7→ Rm be a linear map

M ∈ Rn×n 7→ A(M) := {aTi Mai}1≤i≤m.

We let ‖ ·‖1 and ‖ ·‖ denote the l1 norm and l2 norm of a vector, respectively. Moreover, let

‖ · ‖F and ‖ · ‖ denote the Frobenius norm and the spectral norm of a matrix, respectively.

We note that the constants c, C, c0, c1, c2 may be different from line to line, for the sake of

notational simplicity.

3.7.1 Proof of Proposition 3.1: Initialization

The idea of using truncation to bound some non-sub-Gaussian sequences has appeared in

previous works [45, Lemma2.3] and TWF [61]. Compared to the proof for TWF, this proof

has new technical developments to address the magnitude measurements and truncation

from both sides.

We first estimate the norm of x as

λ0 =
mn∑m

i=1 ‖ai‖1

·

(
1

m

m∑
i=1

yi

)
. (3.23)

Since ai ∼ N (0, In×n), by Hoeffding-type inequality, it can be shown that

∣∣∣∣∣
∑m

i=1 ‖ai‖1

mn
−
√

2

π

∣∣∣∣∣ < ε

3
(3.24)

holds with probability at least 1− 2 exp(−c1mnε
2) for some constant c1 > 0.

Moreover, given x, yi’s are independent sub-Gaussian random variables. Thus, by
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Hoeffding-type inequality, it can be shown that

∣∣∣∣∣
√
π

2

(
1

m

m∑
i=1

yi

)
− ‖x‖

∣∣∣∣∣ < ε

3
‖x‖ (3.25)

holds with probability at least 1− 2 exp(−c1mε
2) for some constant c1 > 0.

On the event E1 = {both (3.24) and (3.25) hold}, it can be argued that

|λ0 − ‖x‖| < ε‖x‖. (3.26)

Without loss of generality, we let ‖x‖ = 1. Then on the event E1, the truncation function

satisfies the following bounds

1{αl(1+ε)<|aTi x|<αu(1−ε)} ≤ 1{αlλ0<yi<αuλ0} ≤ 1{αl(1−ε)<|aTi x|<αu(1+ε)}.

Thus, by defining

Y 1 :=
1

m

∑
aia

T
i |aTi x|1{αl(1+ε)<|aTi x|<αu(1−ε)}

Y 2 :=
1

m

∑
aia

T
i |aTi x|1{αl(1−ε)<|aTi x|<αu(1+ε)},

we have Y 1 ≺ Y ≺ Y 2. We further compute the expectations of Y 1 and Y 2 and obtain

E[Y 1] = (β1xx
T + β2I), E[Y 2] = (β3xx

T + β4I), (3.27)

where

β1 := E[|ξ|31{αl(1+ε)<|ξ|<αu(1−ε)}]− E[|ξ|1{αl(1+ε)<|ξ|<αu(1−ε)}],

β3 := E[|ξ|31{αl(1−ε)<|ξ|<αu(1+ε)}]− E[|ξ|1{αl(1−ε)<|ξ|<αu(1+ε)}],

β2 := E[|ξ|1{αl(1+ε)<|ξ|<αu(1−ε)}], β4 := E[|ξ|1{αl(1−ε)<|ξ|<αu(1+ε)}]
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where ξ ∼ N (0, 1). For given αl and αu, small value of ε yields arbitrarily close β1 and β3,

as well as arbitrarily close β2 and β4. For example, taking αl = 1, αu = 5 and ε = 0.01,

we have β1 = 0.9678, β2 = 0.4791, β3 = 0.9688, β4 = 0.4888.

Now applying standard results on random matrices with non-isotropic sub-Gaussian

rows [142, equation (5.26)] and noticing that aiaTi |aTi x|1{αl(1+ε)<|aTi x|<αu(1−ε)} can be

rewritten as bibTi for sub-Gaussian vector bi := ai
√
|aTi x|1{αl(1+ε)<|aTi x|<αu(1−ε)}, one

can derive

‖Y 1 − E[Y 1]‖ ≤ δ, ‖Y 2 − E[Y 2]‖ ≤ δ (3.28)

with probability 1 − 4 exp(−c1(δ)m) for some positive c1 which is only affected by δ,

provided that m/n exceeds a certain constant. Furthermore, when ε is sufficiently small,

one further has ‖E[Y 1]− E[Y 2]‖ ≤ δ. Combining the above facts together, one can show

that

‖Y − (β1xx
T + β2I)‖ ≤ 3δ. (3.29)

Let z̃(0) be the normalized leading eigenvector of Y . Following the arguments in [1, Sec-

tion 7.8] and taking δ and ε to be sufficiently small, one has

dist(z̃(0),x) ≤ δ̃, (3.30)

for a given δ̃ > 0, as long as m/n exceeds a certain constant.

3.7.2 Proof in Section 3.2.2: Expectation of loss functions

The expectation of the loss function (3.2) of WF is given by [80] as

E[`WF (z)] =
3

4
‖x‖4 +

3

4
‖z‖4 − 1

2
‖x‖2‖z‖2 − |zTx|2. (3.31)
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We next show that the expectation of the loss function (3.3) of RWF has the following

form:

E[`(z)] =
1

2
‖x‖2 +

1

2
‖z‖2 − ‖x‖‖z‖ · E

[
|aTi z|
‖z‖

· |a
T
i x|
‖x‖

]
, (3.32)

where

E

[
|aTi z|
‖z‖

· |a
T
i x|
‖x‖

]
=


(1−ρ2)3/2

π

∫∞
0
t(eρt + e−ρt)K0(t)dt, if |ρ| < 1;

1, if |ρ| = 1;

(3.33)

where ρ = zTx
‖x‖‖z‖ and K0(·) is the modified Bessel function of the second kind.

In order to derive (3.33), we first define

u :=
aTi z

‖z‖
and v :=

aTi x

‖x‖
,

and it suffices to drive E[|uv|]. Note that (u, v) ∼ N (0,Σ), where

Σ =

 1 ρ

ρ 1

 , and ρ =
zTx

‖x‖‖z‖
.

Following [143], the density function of u · v is given by

φuv(x) =
1

π
√

1− ρ2
exp

(
ρx

1− ρ2

)
K0

(
|x|

1− ρ2

)
, x 6= 0.

Thus, the density of |uv| is given by

ψ|uv|(x) =
1

π
√

1− ρ2

[
exp

(
ρx

1− ρ2

)
+ exp

(
− ρx

1− ρ2

)]
K0

(
|x|

1− ρ2

)
, x > 0,
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for |ρ| < 1. Therefore, if |ρ| < 1, then

E[|uv|] =

∫ ∞
0

x · ψρ(x)dx

=

∫ ∞
0

x · 1

π
√

1− ρ2

[
exp

(
ρx

1− ρ2

)
+ exp

(
− ρx

1− ρ2

)]
K0

(
|x|

1− ρ2

)
dx

=
(1− ρ2)3/2

π

∫ ∞
0

t(eρt + e−ρt)K0(t)dt

where the last step follows by changing variables.

If |ρ| = 1, then |uv| becomes a χ2
1 random variable, with the density

ψ|uv|(x) =
1√
2π
x−1/2 exp(−x/2), x > 0,

and hence E[|uv|] = 1.

3.7.3 Proof of Theorem 3.2: Geometric Convergence of RWF

The general structure of the proof follows that for WF in [1] and TWF in [61]. However, the

proof requires development of new bounds due to the nonsmoothness of the loss function

and absolute value based measurements. On the other hand the proof is much simpler due

to the lower-order loss function adopted in RWF.

We first introduce a global phase notation for real case as follows:

Φ(z) :=


0, if ‖z − x‖ ≤ ‖z + x‖,

π, otherwise.

(3.34)

For the sake of simplicity, we let z be e−jΦ(z)z, which indicates that z is always in the

neighborhood of x. Furthermore, we denote h := z − x.

The idea of the proof is to show that within the neighborhood of global optima, RWF
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satisfies the Regularity Condition RC(µ, λ, c) , i.e.,

〈∇`(z),h〉 ≥ µ

2
‖∇`(z)‖2 +

λ

2
‖h‖2 (3.35)

for all z and h = z−x obeying ‖h‖ ≤ c‖x‖, where 0 < c < 1 is some constant. Then, as

shown in [61], once the initialization lands into this neighborhood, linear convergence can

be guaranteed, i.e.,

dist2 (z − µ∇`(z),x) ≤ (1− µλ)dist2(z,x), (3.36)

for any z with ‖z − x‖ ≤ c‖x‖.

To show the regularity condition, we first define a set S := {i : 1 ≤ i ≤ m, (aTi z)(aTi x) <

0}, and then derive the following bound:

〈∇`(z),h〉 =
1

m

m∑
i=1

(
aTi z − |aTi x|sgn(aTi z)

)
(aTi h)

=
1

m

[
m∑
i=1

(aTi h)2 + 2
∑
i∈S

(aTi x)(aTi h)

]

≥ 1

m

[
m∑
i=1

(aTi h)2 − 2

∣∣∣∣∣∑
i∈S

(aTi x)(aTi h)

∣∣∣∣∣
]

≥ 1

m

[
m∑
i=1

(aTi h)2 −
∑
i∈S

2
∣∣(aTi x)(aTi h)

∣∣] . (3.37)

The first term in (3.37) can be bounded using Lemma 3.1 in [45], which we state below.

Lemma 3.6. For any 0 < ε < 1, if m > c0nε
−2, then with probability at least 1 −

2 exp(−c1ε
2m),

(1− ε)‖h‖2 ≤ 1

m

m∑
i=1

(aTi h)2 ≤ (1 + ε)‖h‖2 (3.38)

holds for all non-zero vectors h ∈ Rn. Here, c0, c1 > 0 are some universal constants.
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For the second term in (3.37), we derive

∑
i∈S

2
∣∣aTi x∣∣ ∣∣aTi h∣∣ ≤∑

i∈S

[
(aTi x)2 + (aTi h)2

]
=

m∑
i=1

[(aTi x)2 + (aTi h)2] · 1{(aTi x)(aTi z)<0}

=
m∑
i=1

[(aTi x)2 + (aTi h)2] · 1{(aTi x)2+(aTi x)(aTi h)<0}

≤
m∑
i=1

[(aTi x)2 + (aTi h)2] · 1{|aTi x|<|aTi h|}

≤ 2
m∑
i=1

(aTi h)2 · 1{|aTi x|<|aTi h|}. (3.39)

The above equation can be further upper bounded by the following lemma.

Lemma 3.7. For any ε > 0, if m > c0nε
−2 log ε−1, then with probability at least 1 −

C exp(−c1ε
2m),

1

m

m∑
i=1

(aTi h)2 · 1{|aTi x|<|aTi h|} ≤ (0.13 + ε) ‖h‖2 (3.40)

holds for all non-zero vectors h ∈ Rn satisfying ‖h‖ ≤ 1
10
‖x‖. Here, c0, c1, C > 0 are

some universal constants.

Proof. We first prove bounds for any fixed h ≤ 1
10
‖x‖, and then develop a uniform bound

later on. We introduce a series of auxiliary random Lipschitz functions to approximate the

indicator functions. For i = 1, . . . ,m, define

χi(t) :=



t, if t > (aTi x)2;

1
δ
(t− (aTi x)2) + (aTi x)2, if (1− δ)(aTi x)2 ≤ t ≤ (aTi x)2;

0, else;

(3.41)
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and then χi(t)’s are random Lipschitz functions with Lipschitz constant 1
δ
. We further have

|aTi h|21{|aTi x|<|aTi h|} ≤ χi(|aTi h|2) ≤ |aTi h|21{(1−δ)|aTi x|2<|aTi h|2}. (3.42)

For convenience, we denote γi :=
|aTi h|2
‖h‖2 1{(1−δ)|aTi x|2<|aTi h|2} and θ := ‖h‖/‖x‖. We

next estimate the expectation of γi, by conditional expectation,

E[γi] =

∫
Ω

γidP =

∫∫ ∞
−∞

E

[
γi

∣∣∣∣aTi x = τ1‖x‖,aTi h = τ2‖h‖
]
· f(τ1, τ2)dτ1dτ2, (3.43)

where f(τ1, τ2) is the density of two joint Gaussian random variables with correlation ρ =

hTx
‖h‖‖x‖ 6= ±1. We then continue to derive

E[γi] =

∫∫ ∞
−∞

τ 2
2 · 1{√1−δ|τ1|<|τ2|θ} · f(τ1, τ2)dτ1dτ2

=
1

2π
√

1− ρ2

∫ ∞
−∞

τ 2
2 exp

(
−τ

2
2

2

)
·
∫ |τ2|θ√

1−δ

−|τ2|θ√
1−δ

exp

(
−(τ1 − ρτ2)2

2(1− ρ2)

)
dτ1dτ2 (3.44)

=
1

2π

∫ ∞
−∞

τ 2
2 exp

(
−τ

2
2

2

)
·
∫ |τ2|θ√

1−δ
−ρτ2√

1−ρ2

− |τ2|θ√
1−δ
−ρτ2√

1−ρ2

exp

(
−τ

2

2

)
dτdτ2 by changing variables

=
1

2π

∫ ∞
−∞

τ 2
2 exp

(
−τ

2
2

2

)
·
√
π

2

(
erf

( |τ2|θ√
1−δ − ρτ2√

1− ρ2

)
− erf

(
− |τ2|θ√

1−δ − ρτ2√
1− ρ2

))
dτ2

=
1√
2π

∫ ∞
0

τ 2
2 exp

(
−τ

2
2

2

)
·

(
erf

(
( θ√

1−δ − ρ)τ2√
1− ρ2

)
+ erf

(
( θ√

1−δ + ρ)τ2√
1− ρ2

))
dτ2.

(3.45)

For |ρ| < 1, E[γi] is a continuous function of ρ. For |ρ| = 1, E[γi] = 0. The last integral

(3.45) can be calculated numerically. Figure 3.7 plots E[γi] for θ = 0.1 and δ = 0.01 over

ρ ∈ [−1, 1]. Furthermore, (3.44) indicates that E[γi] is monotonically increasing with both

θ and δ. Thus, we obtain a universal bound

E[γi] ≤ 0.13 for θ < 0.1 and δ = 0.01, (3.46)
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which further implies E[χi(|aTi h|2)] ≤ 0.13‖h‖2 for θ < 0.1 and δ = 0.01.
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Fig. 3.7: E[γi] with respect to ρ

Furthermore, χi(|aTi h|2)’s are sub-exponential with sub-exponential norm O(‖h‖2).

By the sub-exponential tail bound (Bernstein type) [142], we have

P

[
1

m

m∑
i=1

χi(|aTi h|2)

‖h‖2
> (0.13 + ε)

]
< exp(−cmε2), (3.47)

for some universal constant c, as long as ‖h‖ ≤ 1
10
‖x‖.

We have proved so far that the claim holds for a fixed h. We next obtain a uniform

bound over all h satisfying ‖h‖ ≤ 1
10
‖x‖. We first show the claim holds for all h with

‖h‖ = 1
10
‖x‖ and then argue the claim holds when ‖h‖ < 1

10
‖x‖ towards the end of the

proof. Let ε′ = ε‖x‖
10

and we construct an ε′−netNε′ covering the sphere with radius 1
10
‖x‖

in Rn with cardinality |Nε′| ≤ (1+ 2
ε
)n. Then for any ‖h‖ = 1

10
‖x‖, there exists a h0 ∈ Nε′

such that ‖h−h0‖ ≤ ε‖h‖. Taking the union bound for all the points on the net, we claim

that

1

m

m∑
i=1

χi
(
|aTi h0|2

)
≤ (0.13 + ε) ‖h0‖2, ∀h0 ∈ Nε′ (3.48)

holds with probability at least 1− (1 + 2/ε)n exp(−cmε2).
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Since χi(t)’s are Lipschitz functions with constant 1/δ, we have the following bound

∣∣χi(|aTi h|2)− χi(|aTi h0|2)
∣∣ ≤ 1

δ

∣∣∣∣|aTi h|2 − |aTi h0|2
∣∣∣∣. (3.49)

Moreover, by [61, Lemma 1], we have

1

m
‖A(M)‖1 ≤ c2‖M‖F , for all symmetric rank-2 matricesM ∈ Rn×n, (3.50)

holds with probability at least 1 − C exp(−c1m) as long as m > c0n for some constants

C, c0, c1, c2 > 0. Consequently, on the event that (3.50) holds, we have

∣∣∣∣∣ 1

m

m∑
i=1

χi
(
|aTi h|2

)
− 1

m

m∑
i=1

χi
(
|aTi h0|2

)∣∣∣∣∣
≤ 1

m

m∑
i=1

∣∣χi (|aTi h|2)− χi (|aTi h0|2
)∣∣

≤ 1

δ
· 1

m
‖A(hhT − h0h

T
0 )‖1 because of (3.49)

≤ 1

δ
· c2‖hhT − h0h

T
0 ‖F because of (3.50)

≤ 1

δ
· 3c2‖h− h0‖ · ‖h‖ ≤ 3c3ε/δ‖h‖2,

where the last inequality is due to the Lemma 2 in [61].

On the intersection of events that (3.48) and (3.50) hold, we have

1

m

m∑
i=1

χi
(
|aTi h|2

)
≤ (0.13 + ε+ 3c3ε/δ) ‖h‖2, (3.51)

for all h with ‖h‖ = 1
10
‖x‖.

For the case when ‖h′‖ < 1
10
‖x‖, h′ = ωh for some h satisfying ‖h‖ = 1

10
‖x‖ and

0 < ω < 1. By the definition of χi(·), it can be verified that

χi(|aTi h′|2) = χi(|aTi (ωh)|2) ≤ ω2χi(|aTi h|2). (3.52)
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Applying (3.51), on the same event that (3.48) and (3.50) hold, we have

1

m

m∑
i=1

χi
(
|aTi h′|2

)
≤ (0.13 + ε+ 3c3ε/δ) ‖h′‖2, (3.53)

for all ‖h′‖ < 1
10
‖x‖. Since ε can be arbitrarily small, the proof is completed.

Therefore, combining Lemmas 3.6 and 3.7 with (3.37) yields

〈∇`(z),h〉 ≥ (1− 0.26− 2ε)‖h‖2 = (0.74− 2ε)‖h‖2. (3.54)

We further provide an upper bound on ‖∇`(z)‖ in the following lemma.

Lemma 3.8. Fix δ > 0, and assume yi = |aTi x|. Suppose that m ≥ c0n for a certain

constant c0 > 0. There exist some universal constants c, C > 0 such that with probability

at least 1− C exp(−cm),

‖∇`(z)‖ ≤ (1 + δ) · 2‖h‖ (3.55)

holds for all non-zero vectors h, z ∈ Rn satisfying z = x+ h and ‖h‖‖x‖ ≤
1
10

.

Proof. Denote vi := aTi z − |aTi x|sgn(aTi z). Then

∇`(z) =
1

m
ATv, (3.56)

where A is a matrix with each row being aTi and v is a m−dimensional vector with each

entry being vi. Thus,

‖∇`(z)‖ =

∥∥∥∥ 1

m
ATv

∥∥∥∥ ≤ 1

m
‖A‖ · ‖v‖ ≤ (1 + δ)

‖v‖√
m

(3.57)

as long as m ≥ c1n for some sufficiently large c1 > 0, where the spectral norm bound

‖A‖ ≤
√
m(1 + δ) follows from [142, Theorem 5.32].
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We next bound ‖v‖. Let v = v(1)+v(2), where v(1)
i = aTi h and v(2)

i = 2aTi x1{(aTi z)(aTi x)<0}.

By triangle inequality, we have ‖v‖ ≤ ‖v(1)‖ + ‖v(2)‖. Furthermore, given m > c0n,

by [45, Lemma 3.1] with probability 1− exp(−cm), we have

1

m
‖v(1)‖2 =

1

m

m∑
i=1

(aTi h)2 ≤ (1 + δ)‖h‖2. (3.58)

By Lemma 3.7, we have with probability 1− C exp(−c1m)

1

m
‖v(2)‖2 =

1

m

m∑
i=1

4(aTi x)2 · 1{(aTi x)(aTi z)<0} ≤ 4(0.13 + ε)‖h‖2. (3.59)

Hence,

‖v‖√
m
≤ [
√

1 + δ + 2
√

0.13 + ε]‖h‖. (3.60)

This concludes the proof.

Thus, applying Lemma 3.8 to (3.54), we conclude that Regularity Condition (3.35)

holds for µ and λ satisfying

0.74− 2ε ≥ µ

2
· 4(1 + δ)2 +

λ

2
, (3.61)

which concludes the proof.

We note that (3.61) implies an upper bound µ ≤ 0.74
2

= 0.37, by taking ε and δ to

be sufficiently small. This suggests a range to set the step size in Algorithm 1. However,

in practice, µ can be set much larger than such a bound, say 0.8, while still keeping the

algorithm convergent. This is because the coefficients in the proof are set for convenience

of proof rather than being tightly chosen.
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3.7.4 Proof of Theorem 3.3: Stability to Bounded Noise

We consider the model (3.12) with bounded noise, i.e., yi = |〈ai,x〉|+wi for i = 1, · · · ,m.

The initialization analysis is similar to Section 3.7.1. To analyze the gradient loop, we

consider two regimes.

• Regime 1: c4‖z‖ ≥ ‖h‖ ≥ c3
‖w‖√
m

. In this regime, error contraction by each gradient

step is given by

dist (z − µ∇`(z),x) ≤ (1− ρ)dist(z,x). (3.62)

It suffices to justify that∇`(z) satisfies the RC. We have

∇`(z) =
1

m

m∑
i=1

(
aTi z − yi ·

aTi z

|aTi z|

)
ai

=
1

m

m∑
i=1

(
aTi z − |aTi x| ·

aTi z

|aTi z|

)
ai︸ ︷︷ ︸

∇clean`(z)

− 1

m

m∑
i=1

(
wi ·

aTi z

|aTi z|

)
ai︸ ︷︷ ︸

∇noise`(z)

. (3.63)

All the proofs for Lemma 3.6, 3.7 and 3.8 are still valid for ∇clean`(z), and thus we

have

〈∇clean`(z),h〉 ≥ 0.74‖h‖2, (3.64)∥∥∇clean`(z)
∥∥ ≤ 2(1 + δ)‖h‖. (3.65)

Next, we analyze the contribution of the noise. Let w̃i = wi
aTi z

|aTi z|
, and then for sufficient

large m/n, we have

‖∇noise`(z)‖ =

∥∥∥∥ 1

m
AT w̃

∥∥∥∥ ≤ ∥∥∥∥ 1√
m
AT

∥∥∥∥∥∥∥∥ w̃√m
∥∥∥∥ ≤ (1 + δ)

‖w̃‖√
m
≤ (1 + δ)

‖w‖√
m
,

(3.66)
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where the second inequality is because the spectral norm bound ‖A‖ ≤
√
m(1 + δ) fol-

lowing from [142, Theorem 5.32]. Given the regime condition ‖h‖ ≥ c3
‖w‖√
m

, we further

have

‖∇noise`(z)‖ ≤ (1 + δ)

c3

‖h‖, (3.67)∣∣〈∇noise`(z),h
〉∣∣ ≤ ∥∥∇noise`(z)

∥∥ · ‖h‖ ≤ (1 + δ)

c3

‖h‖2. (3.68)

Combining these together, one has

〈∇`(z),h〉 ≥
〈
∇clean`(z),h

〉
−
∣∣〈∇noise`(z),h

〉∣∣ ≥ (0.74− (1 + δ)

c3

)
‖h‖2, (3.69)

and

‖∇`(z)‖ ≤
∥∥∇clean`(z)

∥∥+
∥∥∇noise`(z)

∥∥ ≤ (1 + δ)

(
2 +

1

c3

)
‖h‖. (3.70)

The RC is guaranteed if µ, λ, ε are chosen properly, c3 is sufficiently large, and s is

sufficiently small.

• Regime 2: Once the iterate enters the regime with ‖h‖ ≤ c3‖w‖√
m

, gradient update may

not reduce the estimation error. However, in this regime, each move size µ∇`(z) is at most

O(‖w‖/
√
m). Then the estimation error cannot increase by more than ‖w‖/

√
m with a

constant factor. Thus, one has

dist (z + µ∇`(z),x) ≤ c5
‖w‖√
m

(3.71)

for some constant c5. As long as ‖w‖/
√
m is sufficiently small, it is guaranteed that

c5
‖w‖√
m
≤ c4‖x‖. If the iterate jumps out of Regime 2, it falls into Regime 1.
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3.7.5 Proof of Theorem 3.4: Mini-batch IRWF

Since the initialization is the same as that in Algorithm 1, it suffices to show the conver-

gence of gradient loops given that the initial point lands into the neighborhood of global

minima. To prove Theorem 3.4, the major step is to prove the following Proposition 3.9

which characterizes how the error of an estimate decays upon one iteration of Algorithm

2. Once Proposition 3.9 is established, we take expectation on both sides of (3.73) with

respect to it−1, and apply Proposition 3.9 one more time to obtain

E{it−1,it}
[
dist2(z(t+1),x)

]
≤
(

1− kρ

n

)2

dist2(z(t−1),x). (3.72)

Continuing this process until the initialization point z(0) yields Theorem 3.4. We next focus

on proving Proposition 3.9 stated bellow.

Proposition 3.9. Assume the measurement vectors are independent and eachai ∼ N (0, I).

There exist some universal constants 0 < ρ, ρ0 < 1 and c0, c1, c2 > 0 such that if m ≥ c0n

and µ = ρ0/n for the update rule (3.14), then with probability at least 1− c1 exp(−c2m),

we have

EΓt

[
dist2(z(t+1),x)

]
≤
(

1− kρ

n

)
· dist2(z(t),x) (3.73)

to hold for all z(t) satisfying dist(z(t),x)
‖z‖ ≤ 1

10
.

Proof. Without loss of generality, we assume z(t) is in the neighborhood of x (otherwise it

is in the neighborhood of −x). Let h = z(t) − x.

We follow the notations in Section 3.7.3 and let S = {i : (aTi x)(aTi z
(t)) < 0}. Then
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we have

EΓt

[
dist2

(
z(t+1),x

)]
= EΓt

[∥∥z(t) − µAT
Γt

(
AΓtz

(t) − yΓt � sgn(AΓtz
(t))
)
− x

∥∥2
]

= ‖h‖2 − 2µEΓt

[(
AΓtz

(t) − yΓt � sgn(AΓtz
(t))
)T

(AΓth)
]

+ µ2EΓt

[(
AT

Γt

(
AΓtz

(t) − yΓt � sgn(AΓtz
(t))
))T (

AT
Γt

(
AΓtz

(t) − yΓt � sgn(AΓtz
(t))
))]

(a)
= ‖h‖2 − 2µk

m

m∑
i=1

[
aTi h

(
aTi z

(t) − yi ·
aTi z

(t)

|aTi z(t)|

)]

+
µ2k

m

m∑
i=1

[
‖ai‖2

(
aTi z

(t) − yi ·
aTi z

(t)

|aTi z(t)|

)2
]

= ‖h‖2 − 2µk

m

(
m∑
i=1

(aTi h)2 +
∑
i∈S

2(aTi h)(aTi x)

)

+
µ2k

m

(
m∑
i=1

‖ai‖2(aTi h)2 + 4
∑
i∈S

‖ai‖2(aTi x)(aTi z
(t))

)

≤ ‖h‖2 − 2µk

m

m∑
i=1

(aTi h)2 +
4µk

m

∑
i∈S

∣∣(aTi h)(aTi x)
∣∣+

µ2k

m

m∑
i=1

‖ai‖2(aTi h)2, (3.74)

where (a) is due to the fact that Γt is uniformly chosen from all subsets of {1, 2, . . . ,m}

with cardinality k.

By Lemma 3.6, we have that if m ≥ c0ε
−2n with probability 1− 2 exp(−c1mε

2)

(1− ε)‖h‖2 ≤ 1

m

m∑
i=1

(aTi h)2 ≤ (1 + ε)‖h‖2.

holds for all vectors h. By Lemma 3.7, we have that with probability 1− C exp(−c1mε
2)

1

m

∑
i∈S

∣∣(aTi h)(aTi x)
∣∣ ≤ (0.13 + ε)‖h‖2

holds for all h satisfying ‖h‖/‖x‖ ≤ 1
10

.

Define an event E1 := {max1≤i≤m ‖ai‖2 ≤ 6n}. We claim that E1 holds with proba-
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bility 1−m exp(−1.5n). Then on the event E1, (3.74) is further upper bounded by

EΓt

[
dist2

(
z(t+1),x

)]
≤
(
1− 2µk(1− ε) + 4µk(0.13 + ε) + µ2k · 6n(1 + ε)

)
‖h‖2

≤ (1− 2µk(0.74− 3ε− 3nµ(1 + ε)))‖h‖2. (3.75)

By choosing the step size µ ≤ 0.24
n

, the proposition is proved.

3.7.6 Proof of Theorem 3.5: Kaczmarz-PR Algorithm

Without loss of generality, we assume z(t) is in the neighborhood of x (otherwise it is in

the neighborhood of −x). Let h = z(t) − x.

We follow the notations in Section 3.7.3 and let S = {i : (aTi x)(aTi z
(t)) < 0}. Then

we have

Eit

[
dist2

(
z(t+1),x

)]
= Eit

∥∥∥∥∥
(
z(t) − 1

‖ait‖2

(
aTitz

(t) − yit ·
aTitz

(t)

|aTitz(t)|

)
ait

)
− x

∥∥∥∥∥
2


= ‖h‖2 − 2Eit

[
1

‖ait‖2

(
aTith

)(
aTitz

(t) − yit ·
aTitz

(t)

|aTitz(t)|

)]

+ Eit

 1

‖ait‖2

(
aTitz

(t) − yit ·
aTitz

(t)

|aTitz(t)|

)2


(a)
= ‖h‖2 − 2

m

m∑
i=1

[
1

‖ai‖2

(
aTi h

)(
aTi z

(t) − yi ·
aTi z

(t)

|aTi z(t)|

)]

+
1

m

m∑
i=1

[
1

‖ai‖2

(
aTi z

(t) − yi ·
aTi z

(t)

|aTi z(t)|

)2
]

= ‖h‖2 − 2

m

(
m∑
i=1

(aTi h)2

‖ai‖2
+
∑
i∈S

2(aTi h)(aTi x)

‖ai‖2

)

+
1

m

(
m∑
i=1

(aTi h)2

‖ai‖2
+ 4

∑
i∈S

(aTi x)(aTi z
(t))

‖ai‖2

)

= ‖h‖2 − 1

m

m∑
i=1

(aTi h)2

‖ai‖2
+

4

m

∑
i∈S

(aTi x)2

‖ai‖2
(3.76)
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where (a) is due to the fact that it is sampled uniformly at random from {1, 2, · · · ,m}. By

the spectral case of Lemma 5.20 in [142], {
√
n ai
‖ai‖}

m
i=1 are independent isotropic random

vectors in Rn and hence

E

[
n

(aTi h)2

‖ai‖2

]
= ‖h‖2.

Moreover, {
√
n ai
‖ai‖}

m
i=1 are sub-Gaussian and the sub-Gaussian norm is bounded by an ab-

solute constant. Thus, we have that ifm ≥ c0ε
−2n, then with probability 1−2 exp(−c1mε

2),

1

m

m∑
i=1

(aTi h)2

‖ai‖2
≥ (1− ε)

n
‖h‖2.

holds for all vectors h. By Lemma 3.7, we have that with probability 1− C exp(−c1mε
2)

1

m

∑
i∈S

∣∣aTi x∣∣2 ≤ 1

m

m∑
i=1

∣∣aTi h∣∣2 1{|aTi x|<|aTi h|} ≤ (0.13 + ε)‖h‖2

holds for all h satisfying ‖h‖/‖x‖ ≤ 1
10

.

Define an event E2 := {min1≤i≤m ‖ai‖2 ≥ 2
3
n}. It can be shown that P{E2} ≥

1−m exp(−n/12). Then on the event E2, (3.76) is further upper bounded by

Eit

[
dist2

(
z(t+1),x

)]
≤
(

1− 1− ε
n

+
6(0.13 + ε)

n

)
‖h‖2 ≤

(
1− 0.22− 7ε

n

)
‖h‖2,

which concludes the proof.
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CHAPTER 4

ROBUST PHASE RETRIEVAL: MEDIAN

TRUNCATION APPROACH

In this chapter, we study the case when the observations of phase retrieval are corrupted by

sparse outliers. Section 4.1 provides the problem formulation. Section 4.2 describes two

algorithms, median-TWF and median-RWF. Section 4.3 provides their performance guar-

antees. Section 4.4 presents the numerical experiments. Section 4.6 includes supplemental

proofs.

Throughout this chapter, boldface lowercase letters such as ai,x, z denote vectors,

and boldface capital letters such as A,Y denote matrices. For two matrices, A � B

means that B −A is positive definite. For a complex matrix or vector, A∗ and z∗ denote

conjugate transposes of A and z respectively. For a real matrix or vector, AT and zT

denote transposes ofA and z respectively. The indicator function 1A = 1 if the event A is

true, and 1A = 0 otherwise.
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4.1 Problem Formulation

As we discuss in the Chapter 1, the ability to handle outliers is of great importance for phase

retrieval algorithms, because outliers arise frequently from the phase imaging applications

[71] due to various reasons such as detector failures, recording errors, and missing data.

However, the performance of WF, TWF and RWF can be very sensitive to outliers that take

arbitrary values and can introduce anomalous search directions. Even for TWF, since the

sample mean can be arbitrarily perturbed, the truncation rule based on such sample mean

cannot control the gradient well.

Mathematically, suppose the observations are given by

yi = |〈ai,x〉|2 + ηi, i = 1, · · · ,m, (4.1)

where x ∈ Rn is the unknown signal,1 ai ∈ Rn for i = 1, . . . ,m are measurement vectors

with each ai having i.i.d. Gaussian entries distributed as N (0, 1), and ηi ∈ R for i =

1, . . . ,m are outliers with arbitrary values. We assume that outliers are sparse with sm

nonzero values, i.e., ‖η‖0 ≤ sm, where η = {ηi}mi=1 ∈ Rm. Here, s is a nonzero constant,

representing the faction of measurements that are corrupted by outliers.

We are also interested in the model when the measurements are corrupted by not only

sparse arbitrary outliers but also dense bounded noise. Under such a model, the measure-

ments are given by

yi = |〈ai,x〉|2 + wi + ηi, i = 1, · · · ,m, (4.2)

where the bounded noise w = {wi}mi=1 satisfies ‖w‖∞ ≤ c1‖x‖2 for some universal

constant c1, and as before, the outliers satisfy ‖η‖0 ≤ sm.

The goal is to recover the signal x (up to a global sign difference) from the measure-

1We focus on real signals here, but our analysis can be extended to complex signals.
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ments y = {yi}mi=1 and measurement vectors {ai}mi=1. It can be observed that if z is a

solution, then −z is also the solution of the problem. Thus, the recovery is up to a sign

difference. We define the Euclidean distance between two vectors up to a global sign dif-

ference [1] as,

dist(z,x) := min ‖z ± x‖. (4.3)

In this chapter, we develop non-convex phase retrieval algorithms with both statistical

and computational efficiency, and provable robustness to even a constant proportion of

outliers. We hope that the algorithm has three folds of properties. First, it should recover

the true signal as long as the number of outliers is not too large. Moreover, the algorithm

does not have to require prior knowledge about the outliers. At last, the algorithm should

be efficient in terms of sample complexity and convergence rate.

Our strategy is to use sample median as truncation thresholds to eliminate the contri-

bution of bad samples. The robustness property of median lies in the fact that the median

cannot be arbitrarily perturbed unless the outliers dominate the inliers [73]. This is in sharp

contrast to the mean, which can be made arbitrarily large even by a single outlier. Thus,

using the sample median in the truncation rule can effectively remove the impact of out-

liers. By applying median truncation strategy to modify TWF and RWF, we obtain two new

algorithms: median-TWF and median-RWF. These two algorithms share many similarities

and also involve different aspects. To the best of the authors’ knowledge, our work is the

first application of the median to robustify high-dimensional statistical estimation in the

presence of arbitrary outliers with rigorous non-asymptotic performance guarantees.

4.2 Median-based Algorithms

If some measurements are corrupted by outliers as in (4.1), then WF, RWF and TWF can

fail. This is because the gradient of the loss function typically contains the term |yi−|aTi z|2|
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or
∣∣√yi − |aTi z|∣∣. With yi being corrupted by arbitrarily large ηi, the gradient can deviate

the search direction to the signal arbitrarily. In TWF, the truncation rule is based on the

sample mean of the gradient, which can be affected significantly by outliers. It is not

anticipated that TWF converges globally in the presence of arbitrary outliers.

To handle outliers, our central idea is to prune the samples in both the initialization and

each gradient descent iteration via the sample median related quantities. Compared to the

sample mean used to set truncation thresholds in TWF, the sample median is much less

affected by outliers, and thus the algorithms are more robust in the presence of outliers.

The Poisson loss function adopted in TWF [61] models well the physical behavior of

photons while the reshaped loss function used in RWF [68] is shown to have advantages

on convergence rate. It is worthy to see whether the idea of the median truncation works

for both loss functions. We apply the median truncation to TWF and RWF respectively and

obtain two algorithms median-TWF and median-RWF.

The difference of median-TWF and median-RWF comes from the difference of TWF

and RWF, which mainly lies in the different loss functions and that truncation is needed

or not in gradient loop. Specifically, median-TWF employs the median of
∣∣yi − |aTi z|2∣∣

to set the truncation threshold in gradient loop while median-RWF adopts the median of∣∣√yi − |aTi z|∣∣ to set the corresponding threshold. Empirically, median-TWF performs a

little better than median-RWF in terms of sample complexity for real Gaussian measure-

ments while median-RWF can tolerate more outliers than median-TWF. Another empirical

fact is that median-RWF converges faster while median-TWF achieves better accuracy un-

der the dense noise.

However, the two algorithms share similar properties. Both algorithms resist outliers

in a oblivious fashion, which means we do not have to know the knowledge of outliers

before running the algorithms. Moreover, the performance guarantees of median-TWF and

median-RWF turn out to be almost the same except for different choices of constants, as

presented in Section 4.3.
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Algorithm 3 Median Truncated Wirtinger Flow (Median-TWF)
Input: y = {yi}mi=1, {ai}mi=1;
Parameters: thresholds αy, αh, αl, and αu, stepsize µt;
Initialization: Let z(0) = λ0z̃, where λ0 =

√
med(y)/0.455 and z̃ is the leading eigen-

vector of

Y :=
1

m

m∑
i=1

yiaia
T
i 1{|yi|≤α2

yλ
2
0}. (4.5)

Gradient loop: for t = 0 : T − 1 do

z(t+1) = z(t) − µ

m

m∑
i=1

|aTi z(t)|2 − yi
aTi z

(t)
ai1Ei1∩Ei2 , (4.6)

where

E i1 :=
{
αl‖z(t)‖ ≤ |aTi z(t)| ≤ αu‖z(t)‖

}
,

E i2 :=

{
|yi − |aTi z(t)|2| ≤ αhKt

|aTi z(t)|
‖z(t)‖

}
,

Kt := med
(
{|yi − |aTi z(t)|2|}mi=1

)
.

Output zT .

The technical proofs of two algorithms follow the same structure. The crux is to use

the median statistical properties to show that the median-trimmed gradient satisfy the so-

called Regularity Condition, which guarantees the linear convergence of gradient update.

We provide separate proofs for two algorithms because they involve different bounding

techniques due to different loss functions.

4.2.1 Median-TWF Algorithm

In the following, we describe the median-TWF in details. We adopt the following Poisson

loss function,

`(z) :=
1

2m

m∑
i=1

(
|aTi z|2 − yi log |aTi z|2

)
. (4.4)

Median-TWF algorithm (summarized in Algorithm 3) minimizes (4.4) via an initializa-
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tion step and gradient descent.

1. Initialization: We initialize z(0) by the spectral method with a truncated set of

samples, where the threshold is determined by the median of {yi}mi=1. In comparison, WF

does not truncate samples, and the truncation in TWF is based on the mean of {yi}mi=1,

which is not robust to outliers. As will be shown, as long as the portion of outliers is not

too large, our initialization (4.5) is guaranteed to be within a small neighborhood of the

true signal.

2. Gradient loop: for each iteration 0 ≤ t ≤ T − 1, median-TWF uses an iteration-

varying truncated gradient given as

∇`tr(z(t)) =
1

m

m∑
i=1

|aTi z(t)|2 − yi
aTi z

(t)
ai1Ei1∩Ei2 . (4.7)

It is clear from the definition of the set E i2 (see Algorithm 3), that samples are truncated by

the sample median of gradient components evaluated at the current iteration, as opposed to

the sample mean in TWF.

We set the step size in the median-TWF to be a fixed small constant, i.e., µ = 0.4. The

rest of the parameters {αy, αh, αl, αu} are set to satisfy

ζ1 := max

{
E
[
ξ21{|ξ|<√1.01αl or |ξ|>

√
0.99αu}

]
,E
[
1{|ξ|<√1.01αl or |ξ|>

√
0.99αu}

]}
,

ζ2 := E
[
ξ21{|ξ|>0.248αh}

]
, (4.8)

2(ζ1 + ζ2) +
√

8/πα−1
h < 1.99

αy ≥ 3,

where ξ ∼ N (0, 1). For example, we set αl = 0.3, αu = 5, αy = 3 and αh = 12, and

consequently ζ1 ≈ 0.24 and ζ2 ≈ 0.032.
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4.2.2 Median-RWF Algorithm

In this subsection, we apply the idea of median truncation to reshaped Wirtinger flow loss

[68]

R(z) =
1

2m

m∑
i=1

(√
yi − |aTi z|

)2
, (4.9)

which has been shown to have advantage over Wirtinger flow loss (squared loss of squared

measurements) and truncated-WF loss (Poisson loss of squared measurements). We call

this new algorithm median reshaped Wirtinger flow (median-RWF). It uses median-based

threshold to truncate the measurements in both initialization and gradient loop, as illus-

trated in Algorithm 4.

In the following, we discuss the median-RWF algorithm in detail.

1. Initialization: For simplicity, we here use the same initialization as in median-TWF

(Algorithm 3).

2. Gradient loop: Median-RWF uses the following iteration-varying truncated gradient

∇Rtr(z
(t)) =

1

m

m∑
i=1

(
aTi z

(t) −√yi ·
aTi z

(t)

|aTi z(t)|

)
ai1T i , (4.10)

From the definition of the set T i (see Algorithm 4), it is clear that samples are truncated by

the sample median of gradient components evaluated at the current iteration. We set 0
0

= 0

when calculating (4.11).

We set the step size in the median-RWF to be a fixed small constant, i.e., µ′ = 0.8. We

set α′h = 5.
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Algorithm 4 Median Reshaped Wirtinger Flow (median-RWF)
Input: y = {yi}mi=1, {ai}mi=1;

Parameters: thresholds αy, αh, and step size µ;
Initialization: Same as median-TWF (see Algorithm 3).
Gradient loop: for t = 0 : T − 1 do

z(t+1) = z(t) − µ′

m

m∑
i=1

(
aTi z

(t) −√yi ·
aTi z

(t)

|aTi z(t)|

)
ai1T i , (4.11)

where

T i :=
{∣∣√yi − |aTi z(t)|

∣∣ ≤ α′hMt

}
, and Mt := med

({∣∣√yi − |aTi z(t)|
∣∣}m
i=1

)
.

Output zT .

4.3 Performance Guarantees

In this section, we characterize the performance guarantees of median-TWF and median-

RWF. The theoretical guarantees for both algorithms are almost the same. Thus, in order to

avoid repetition, we present the results in a way that works for both algorithms. However,

the proofs for median-TWF and median-RWF involve different techniques and are shown

separately.

We first show that median-TWF/median-RWF works well for the noise-free model in

the following proposition, which lends support to the model with outliers. This also justifies

that we can run median-TWF/median-RWF without having to know whether the underlying

measurements are corrupted.

Proposition 4.1 (Exact recovery for noise-free model). Suppose that the measurements

are noise-free, i.e., ηi = 0 for i = 1, · · · ,m in the model (4.1). There exist constants

µ0 > 0, 0 < ρ, ν < 1 and c0, c1, c2 > 0 such that if m ≥ c0n log n and µ ≤ µ0, then with

probability at least 1− c1 exp(−c2m), the median-TWF/median-RWF yields

dist(z(t),x) ≤ ν(1− ρ)t‖x‖, ∀t ∈ N (4.12)
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simultaneously for all x ∈ Rn\{0}.

Furthermore, as the median is quite stable as long as the number of outliers is not

so large, the following theorem describes that median-TWF/median-RWF still works well

even in the presence of sparse outliers.

Theorem 4.2 (Exact recovery with sparse arbitrary outliers). Consider the phase re-

trieval problem with sparse outliers given in (4.1). There exist constants µ0, s0 > 0,

0 < ρ, ν < 1 and c0, c1, c2 > 0 such that if m ≥ c0n log n, s < s0, µ ≤ µ0, then with

probability at least 1− c1 exp(−c2m), the median-TWF/median-RWF yields

dist(z(t),x) ≤ ν(1− ρ)t‖x‖, ∀t ∈ N (4.13)

simultaneously for all x ∈ Rn\{0}.

Theorem 4.2 indicates that median-TWF/median-RWF admits exact recovery for all

signals in the presence of sparse outliers with arbitrary magnitudes even when the number

of outliers scales linearly with the number of measurements, as long as the number of

samples satisfies m & n log n. This is near-optimal up to a logarithmic factor.

Moreover, median-TWF/median-RWF converges at a geometric rate using a constant

step size, with per-iteration cost O(mn) (note that the median can be computed in linear

time [144]). To reach ε-accuracy, i.e., dist(z(t),x) ≤ ε, only O(log 1/ε) iterations are

needed, and the total computational cost is O(mn log 1/ε), which is highly efficient. Em-

pirically in the experiments, median-RWF converges faster than median-TWF and median-

RWF tolerates larger fraction of outliers than median-TWF, which may be due to that the

lower-order model is more stable.

We next consider the model when the measurements are corrupted by both sparse arbi-

trary outliers and dense bounded noise. Our following theorem characterizes that median-

TWF/median-RWF is robust to coexistence of the two types of noises.
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Theorem 4.3 (Stability to sparse arbitrary outliers and dense bounded noises). Con-

sider the phase retrieval problem given in (4.2) in which measurements are corrupted

by both sparse arbitrary and dense bounded noises. There exist constants µ0, s0 > 0,

0 < ρ < 1 and c0, c1, c2 > 0 such that if m ≥ c0n log n, s < s0, µ ≤ µ0, then with

probability at least 1− c1 exp(−c2m), median-TWF/median-RWF respectively yields

dist(z(t),x) .
‖w‖∞
‖x‖

+ (1− ρ)t‖x‖, ∀t ∈ N (4.14)

dist(z(t),x) .
√
‖w‖∞ + (1− ρ)t‖x‖, ∀t ∈ N (4.15)

simultaneously for all x ∈ Rn\{0}.

Theorem 4.3 immediately implies the stability of median-TWF/median-RWF for the

model corrupted only by dense bounded noise.

Corollary 4.4. Consider the phase retrieval problem in which measurements are corrupted

only by dense bounded noises, i.e., ηi = 0 for i = 1, · · · ,m in the model (4.2). There exist

constants µ0 > 0, 0 < ρ < 1 and c0, c1, c2 > 0 such that if m ≥ c0n log n, µ ≤ µ0, then

with probability at least 1− c1 exp(−c2m), median-TWF/median-RWF respectively yields

dist(z(t),x) .
‖w‖∞
‖x‖

+ (1− ρ)t‖x‖, ∀t ∈ N (4.16)

dist(z(t),x) .
√
‖w‖∞ + (1− ρ)t‖x‖, ∀t ∈ N (4.17)

simultaneously for all x ∈ Rn\{0}.

Thus, Theorem 4.3 and Corollary 4.4 imply that median-TWF/median-RWF for the

model with both sparse arbitrary outliers and dense bounded noises achieves the same con-

vergence rate and the same level of estimation error as the model with only bounded noise.

In fact, together with Theorem 4.2 and Proposition 4.1, it can be seen that applying median-

TWF/median-RWF does not require the knowledge of the noise corruption models. When
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there do exist outliers, median-TWF/median-RWF achieves almost the same performance

as if the outliers do not exist. Empirically, under dense noise, the median-TWF reaches

better accuracy than median-RWF because of the delicate truncation rule.

4.4 Numerical Experiments

In this section, we provide numerical experiments to demonstrate the effectiveness of

median-TWF and median-RWF, which corroborates with our theoretical findings.We first

show that, in the noise-free case, the median-TWF and median-RWF perform similarly

as TWF [61] for exact recovery. We set the parameters of median-TWF and median-

RWF as specified in Section 4.2.1 and Section 4.2.2 respectively, and those of TWF and

RWF as suggested in [61] and [68] respectively. Let the signal length n take values from

1000 to 10000 by a step size of 1000, and the ratio of the sample complexity to the sig-

nal length, m/n, take values from 2 to 6 by a step size of 0.1. For each pair of (m,n),

we generate a signal x ∼ N (0, In×n), and the measurement vectors ai ∼ N (0, In×n)

i.i.d. for i = 1, . . . ,m. For three algorithms, a fixed number of iterations T = 500

are run, and the trial is declared successful if z(T ), the output of the algorithm, satisfies

dist(z(T ),x)/‖x‖ ≤ 10−8. Figure 4.1 shows the number of successful trials out of 20 trials

for both algorithms, with respect to m/n and n. It can be seen that for all three algorithms,

as soon asm is above 4n, exact recovery is achieved for both algorithms. Around the phase

transition boundary, the performance of median-TWF is slightly worse than that of TWF,

which is possibly due to the inefficiency of median compared to mean in the noise-free

case [73]. The empirical sample complexity of median-RWF is slightly better than RWF

because the truncation improves the stableness of RWF.

We next examine the performance of median-TWF and median-RWF in the presence

of sparse outliers. We compare the performance of median-TWF and median-RWF with

not only TWF but also an alternative which we call the trimean-TWF, based on replacing
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Fig. 4.1: Sample complexity of median-TWF, median-RWF, RWF and TWF for noise-free
data: the gray scale of each cell (m/n, n) indicates the number of successful recovery out
of 20 trials.

the sample mean in TWF by the trimmed mean. More specifically, trimean-TWF requires

knowing the fraction s of outliers so that samples corresponding to sm largest gradient

values are removed, and truncation is then based on the mean of remaining samples.

We fix the signal length n = 1000 and the number of measurements m = 8000. We as-

sume each measurement yi is corrupted with probability s ∈ [0, 0.4] independently, where

the corruption value ηi ∼ U(0, ‖η‖∞) is randomly generated from a uniform distribution.

Figure 4.2 shows the success rate of exact recovery over 100 trials as a function of s at

different levels of outlier magnitudes ‖η‖∞/‖x‖2 = 0.1, 1, 10, 100, for the four algorithms

median-TWF, median-RWF, trimean-TWF and TWF.

From Figure 4.2, it can be seen that median-TWF and median-RWF allow exact recov-

ery as long as s is not too large for all levels of outlier magnitudes, without any knowledge

of the outliers, which validates our theoretical analysis. Unsurprisingly, TWF fails quickly
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Fig. 4.2: Success rate of exact recovery with outliers for median-RWF, median-TWF,
trimean-TWF, and TWF at different levels of outlier magnitudes.

even with very small fraction of outliers. No successful instance is observed for TWF

when s ≥ 0.02 irrespective of the value of ‖η‖∞. Trimean-TWF requires knowing the

number of outliers and does not exhibit as sharp phase transition as median-TWF, and in

general underperforms our median-TWF, except when both ‖η‖∞ and s gets very large,

see Figure 4.2(d). This is because in this range with large outliers, knowing the fraction

s of outliers provides substantial advantage for trimean-TWF to eliminate them, while the

sample median can be deviated significantly from the true median for large s. Moreover, it

is worth mentioning that exact recovery is more challenging for median-TWF and median-

RWF when the magnitudes of most outliers are comparable to the measurements, as in

Figure 4.2(c). In such a case, the outliers are more difficult to exclude as opposed to the

case with very large outlier magnitudes as in Figure 4.2(d); and meanwhile, the outlier
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magnitudes in Figure 4.2(c) are large enough to affect the accuracy heavily in contrast to

the cases in Figure 4.2(a) and 4.2(b) where outliers are less prominent. In general, median-

RWF can tolerate larger fraction of outliers than median-TWF. This could be due to that

the lower-order objective reduces the variance and brings more stable search direction.

We now examine the performance of median-TWF and median-RWF in the presence of

both sparse outliers and dense bounded noise. The entries of the dense bounded noisew is

generated independently from U(0, ‖w‖∞), with ‖w‖∞/‖x‖2 = 0.001, 0.01 respectively.

The outliers are then generated as ηi ∼ ‖w‖ · Bernoulli(0.1) independently. Figure 4.3(a)

and Figure 4.3(b) depict the relative error dist(z(t),x)/‖x‖ with respect to the iteration

count t, for uniform noise at different levels. It can be seen that median-TWF under outlier

corruption clearly outperforms TWF under the same situation, and acts as if the outliers do

not exist by achieving almost the same accuracy as TWF under no outliers. Moreover, the

solution accuracy of median-TWF has 10 times gain from Figure 4.3(a) to Figure 4.3(b)

as ‖w‖∞ shrinks by 1/10 , which corroborates Theorem 4.3 nicely. Furthermore, it can

be seen that median-RWF converges faster than other algorithms, which is due to good

curvature of low-oder objective and corroborates the result in [68]. It can also be seen

that the solution returned by median-RWF is not as accurate as median-TWF. This is be-

cause that median-TWF employs more delicate truncation rule (1Ei1) which may reduce the

contribution of dense noises.

Finally, we consider when the measurements are corrupted both by Poisson noise and

outliers, which models photon detection in optical imaging applications. We generate each

measurement as yi ∼ Poisson(|〈ai,x〉|2), for i = 1, · · · ,m, which is then corrupted with

probability s = 0.1 by outliers. The entries of the outlier are obtained by first generat-

ing ηi ∼ ‖x‖2 · U(0, 1) independently, and then rounding it to the nearest integer. Figure

4.4 depicts the relative error dist(z(t),x)/‖x‖ with respect to the iteration count t, where

median-TWF and median-RWF under both Poisson noise and sparse outlier noise has al-

most the same accuracy as, if not better than, TWF under only Poisson noise.
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Fig. 4.3: The relative error with respect to the iteration count for median-TWF, median-
RWF and TWF with both dense noise and sparse outliers, and TWF with only dense
noise.(a) and (b): Uniform noise with different levels.

4.5 Conclusions

In this chapter, we study provably effective approaches, median-TWF and median-RWF,

for phase retrieval when the measurements are corrupted by sparse outliers that can take

arbitrary values. Our strategy is to apply gradient descent with respect to carefully chosen

loss functions, where both the initialization and the search directions are pruned guided by

the sample median. We show that both algorithms allow exact recovery even with a constant

proportion of arbitrary outliers for robust phase retrieval using a near-optimal number of

measurements up to a logarithmic factor. Our algorithm performs well for phase retrieval

problem under sparse corruptions. We anticipate that the technique developed here will be

useful for designing provably robust algorithms for other inference problems under sparse

corruptions.
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Fig. 4.4: The relative error with respect to the iteration count for median-TWF, median-
RWF and TWF with both Poisson noise and sparse outliers, and TWF with only Poisson
noise.

4.6 Technical Proofs

4.6.1 Proof Roadmap

Broadly speaking, the proofs for median-TWF and median-RWF follow the same roadmap.

The crux is to use the statistical properties of the median to show that the median-truncated

gradients satisfy the so-called Regularity Condition [1], which guarantees the linear conver-

gence of the update rule, provided the initialization provably lands in a small neighborhood

of the true signal.

We first develop a few statistical properties of median. We then analyzes the initializa-

tion that is used in both algorithms. We then state the definition of Regularity Condition and

explain how it leads to the linear convergence rate. We provide separate detailed proofs for

two algorithms in Section 4.6.2 and Section 4.6.3, respectively, because they involve differ-

ent bounding techniques that may be of independent interest due to different loss functions.

We define the quantile of a population distribution and its sample version.

Definition 4.5 (Generalized quantile function). Let 0 < p < 1. For a cumulative distribu-
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tion function (CDF) F , the generalized quantile function is defined as

F−1(p) = inf{x ∈ R : F (x) ≥ p}. (4.18)

For simplicity, denote θp(F ) = F−1(p) as the p-quantile of F . Moreover for a sample

sequence {Xi}mi=1, the sample p-quantile θp({Xi}) means θp(F̂ ), where F̂ is the empirical

distribution of the samples {Xi}mi=1 .

Remark 1. We note that the median med({Xi}) = θ1/2({Xi}), and we use both notations

interchangeably.

Next, we show that as long as the sample size is large enough, the sample quantile

concentrates around the population quantile (motivated from [145]), as in Lemma 4.6.

Lemma 4.6. Suppose F (·) is cumulative distribution function (i.e., non-decreasing and

right-continuous) with continuous density function F ′(·). Assume the samples {Xi}mi=1 are

i.i.d. drawn from F . Let 0 < p < 1. If l < F ′(θ) < L for all θ in {θ : |θ − θp| ≤ ε}, then

|θp({Xi}mi=1)− θp(F )| < ε (4.19)

holds with probability at least 1− 2 exp(−2mε2l2).

Proof. See Section 4.6.4.

Lemma 4.7 bounds the distance between the median of two sequences.

Lemma 4.7. Given a vectorX = (X1, X2, ..., Xn), reorder the entries in a non-decreasing

manner

X(1) ≤ X(2) ≤ ... ≤ X(n−1) ≤ X(n).
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Given another vector Y = (Y1, Y2, ..., Yn), then

|X(k) − Y(k)| ≤ ‖X − Y ‖∞, (4.20)

holds for all k = 1, ..., n.

Proof. See Section 4.6.4.

Lemma 4.8, as a key robustness property of median, suggests that in the presence of

outliers, one can bound the sample median from both sides by neighboring quantiles of the

corresponding clean samples.

Lemma 4.8. Consider clean samples {X̃i}mi=1. If a fraction s (s < 1
2
) of them are corrupted

by outliers, one obtains contaminated samples {Xi}mi=1 which contain sm corrupted sam-

ples and (1 − s)m clean samples. Then for a quantile p such that s < p < 1 − s, we

have

θp−s({X̃i}) ≤ θp({Xi}) ≤ θp+s({X̃i}).

Proof. See Section 4.6.4.

Finally, Lemma 4.9 is related to bound the value of the median, as well as the density at

the median for the product of two possibly correlated standard Gaussian random variables.

Lemma 4.9. Let u, v ∼ N (0, 1) which can be correlated with the correlation coefficient

|ρ| ≤ 1. Let r = |uv|, and ψρ(x) represent the density of r. Denote θ 1
2
(ψρ) as the median

of r, and the value of ψρ(x) at the median as ψρ(θ1/2). Then for all ρ,

0.348 < θ1/2(ψρ) < 0.455,

0.47 < ψρ(θ1/2) < 0.76.

Proof. See Section 4.6.4.
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We next consider the model that the measurements are corrupted by both bounded noise

and sparse outliers given by (4.2), and show that the initialization provided by the median-

truncated spectral method in (4.5) is close enough to the ground truth, i.e., dist(z(0),x) ≤

δ‖x‖.

Proposition 4.10. Fix δ > 0 and x ∈ Rn, and consider the model given by (4.2). Suppose

that ‖w‖∞ ≤ c‖x‖2 for some sufficiently small constant c > 0 and that ‖η‖0 ≤ sm

for some sufficiently small constant s. With probability at least 1 − exp(−Ω(m)), the

initialization given by the median-truncated spectral method obeys2

dist(z(0),x) ≤ δ‖x‖, (4.21)

provided that m > c0n for some constant c0 > 0.

Proof. See Section 4.6.4.

Once the initialization is guaranteed to be within a small neighborhood of the ground

truth, we only need to show that the truncated gradient (4.7) and (4.10) satisfy the Reg-

ularity Condition (RC) [1, 61], which guarantees the geometric convergence of median-

TWF/median-RWF once the initialization lands into this neighborhood.

Definition 4.11. The gradient∇`(z) satisfies the Regularity Condition RC(µ, λ, c) if

〈∇`(z), z − x〉 ≥ µ

2
‖∇`(z)‖2 +

λ

2
‖z − x‖2 (4.22)

for all z obeying ‖z − x‖ ≤ c‖x‖.

The above RC guarantees that the gradient descent update z(t+1) = z(t) − µ∇`(z)

converges to the true signal x geometrically [61] if µλ < 1. We repeat this argument below

2Notation f(n) = Ω(g(n)) or f(n) & g(n) means that there exists a constant c > 0 such that |f(n)| ≥
c|g(n)|.
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for completeness.

dist2(z − µ∇`(z),x) ≤ ‖z − µ∇`(z)− x‖2

= ‖z − x‖2 + ‖µ∇`(z)‖2 − 2µ 〈z − x,∇`(z)〉

≤ ‖z − x‖2 + ‖µ∇`(z)‖2 − µ2‖∇`(z)‖2 − µλ ‖z − x‖2

= (1− µλ)dist2(z,x).

4.6.2 Proofs for Median-TWF

We first show that∇`tr(z) in (4.7) satisfies the RC for the noise-free case, and then extend

it to the model with only sparse outliers, thus together with Proposition 4.10 establishing

the global convergence of median-TWF in both cases. At last we prove Theorem 4.3 in the

presence of both sparse outliers and dense bounded noise.

Proof of Proposition 4.1

We consider the noise-free model. The central step to establish the RC is to show that

the sample median used in the truncation rule of median-TWF concentrates at the level

‖z − x‖‖z‖ as stated in the following proposition.

Proposition 4.12. If m > c0n log n, then with probability at least 1− c1 exp(−c2m),

0.6‖z‖‖z − x‖ ≤ θ0.49, θ0.5, θ0.51(
{∣∣|aTi x|2 − |aTi z|2∣∣}mi=1

) ≤ ‖z‖‖z − x‖, (4.23)

holds for all z,x satisfying ‖z − x‖ < 1/11‖z‖.

Proof. Detailed proof is provided in Section 4.6.4.

We note that a similar property for the sample mean has been shown in [61] as long

as the number m of measurements is on the order of n. In fact, the sample median is

much more challenging to bound due to its non-linearity, which also causes slightly more
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measurements compared to the sample mean.

Then we can establish that 〈∇`tr(z), z − x〉 is lower bounded on the order of ‖z−x‖2,

as in Proposition 4.13, and that ‖∇`tr(z)‖ is upper bounded on the order of ‖z −x‖, as in

Proposition 4.14.

Proposition 4.13 (Adapted version of Proposition 2 of [61]). Consider the noise-free case

yi = |aTi x|2 for i = 1, · · · ,m, and any fixed constant ε > 0. Under the condition (4.8), if

m > c0n log n, then with probability at least 1− c1 exp(−c2ε
−2m),

〈∇`tr(z), z − x〉 ≥
{

1.99− 2(ζ1 + ζ2)−
√

8/πα−1
h − ε

}
‖z − x‖2 (4.24)

holds uniformly over all x, z ∈ Rn satisfying

‖z − x‖
‖z‖

≤ min

{
1

11
,
αl
αh
,
αl
6
,

√
98/3(αl)

2

2αu + αl

}
, (4.25)

where c0, c1, c2 > 0 are some universal constants, and ζ1, ζ2, αl, αu and αh are defined in

(4.8).

The proof of Proposition 4.13 adapts the proof of Proposition 2 of [61], by properly

setting parameters based on the properties of sample median. For completeness, we include

a short outline of the proof in Section 4.6.

Proposition 4.14 (Lemma 7 of [61]). Under the same condition as in Proposition 4.13,

if m > c0n, then there exist some constants c1, c2 > 0 such that with probability at least

1− c1 exp(−c2m),

‖∇`tr(z)‖ ≤ (1 + δ) · 2
√

1.02 + 2/αh‖z − x‖ (4.26)
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holds uniformly over all x, z ∈ Rn satisfying

‖z − x‖
‖z‖

≤ min

{
1

11
,
αl
αh
,
αl
6
,

√
98/3(αl)

2

2αu + αl

}
, (4.27)

where δ can be arbitrarily small as long as m/n sufficiently large, and αl, αu and αh are

given in (4.8).

Proof. See the proof of Lemma 7 in [61].

With these two propositions and (4.8), RC is guaranteed by setting

µ < µ0 :=
(1.99− 2(ζ1 + ζ2)−

√
8/πα−1

h

2(1 + δ)2 · (1.02 + 2/αh)
,

λ+ µ · 4(1 + δ)2 · (1.02 + 2/αh) < 2
{

1.99− 2(ζ1 + ζ2)−
√

8/πα−1
h − ε

}
.

Proof of Theorem 4.2

We next consider the model (4.2) with only sparse outliers. It suffices to show that

∇`tr(z) continues to satisfy the RC. The critical step is to bound the sample median of the

corrupted measurements. Lemma 4.8 yields

θ 1
2
−s({|(aTi x)2 − (aTi z)2|}) ≤ θ 1

2
({|yi − (aTi z)2|}) ≤ θ 1

2
+s({|(aTi x)2 − (aTi z)2|}.

(4.28)

For simplicity of notation, we let h := z − x. Then for the instance of s = 0.01, by

Proposition 4.12, we have with probability at least 1− 2 exp(−Ω(m)),

0.6‖z‖‖h‖ ≤ θ 1
2
({|yi − (aTi z)2|}) ≤ ‖z‖‖h‖. (4.29)

To differentiate from E i2, we define Ẽ i2 :=
{∣∣(aTi x)2 − (aTi z)2

∣∣ ≤ αhmed
{∣∣yi − (aTi z)2

∣∣} |aTi z|
‖z‖

}
.
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We then have

∇`tr(z) =
1

m

m∑
i=1

(aTi z)2 − yi
aTi z

ai1Ei1∩Ei2

=
1

m

m∑
i=1

(aTi z)2 − (aTi x)2

aTi z
ai1Ei1∩Ẽi2︸ ︷︷ ︸

∇clean`tr(z)

+
1

m

∑
i∈S

(
(aTi z)2 − yi

aTi z
1Ei1∩Ei2 −

(aTi z)2 − (aTi x)2

aTi z
1Ei1∩Ẽi2

)
ai︸ ︷︷ ︸

∇extra`tr(z)

.

Choosing ε small enough, it is easy to verify that Propositions 4.13 and 4.14 are still

valid on∇clean`tr(z). Thus, one has

〈∇clean`tr(z),h〉 ≥
{

1.99− 2(ζ1 + ζ2)−
√

8/πα−1
h − ε

}
‖h‖2,∥∥∇clean`tr(z)

∥∥ ≤ (1 + δ) · 2
√

1.02 + 2/αh‖h‖.

We next bound the contribution of∇extra`tr(z). Introduce q = [q1, . . . , qm]T , where

qi :=

(
(aTi z)2 − yi

aTi z
1Ei1∩Ei2 −

(aTi z)2 − (aTi x)2

aTi z
1Ei1∩Ẽi2

)
1{i∈S}.

It can be seen that |qi| ≤ 2αh‖h‖. Thus ‖q‖ ≤
√
sm · 2αh‖h‖, and

∥∥∇extra`tr(z)
∥∥ =

1

m

∥∥ATq
∥∥ ≤ 2(1 + δ)

√
sαh‖h‖,∣∣〈∇extra`tr(z),h

〉∣∣ ≤ ‖h‖ · ∥∥∥∥ 1

m
∇extra`tr(z)

∥∥∥∥ ≤ 2(1 + δ)
√
sαh‖h‖2,

whereA = [a1, . . . ,am]T . Then, we have

−〈∇`tr(z),h〉 ≥
〈
∇clean`tr(z),h

〉
−
∣∣〈∇extra`tr(z),h

〉∣∣
≥
(

1.99− 2(ζ1 + ζ2)−
√

8/πα−1
h − ε− 2(1 + δ)

√
sαh

)
‖h‖2,
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and

‖∇`tr(z)‖ ≤
∥∥∇clean`tr(z)

∥∥+
∥∥∇extra`tr(z)

∥∥
≤ 2(1 + δ)

(√
1.02 + 2/αh +

√
sαh

)
‖h‖. (4.30)

Therefore, the RC is guaranteed if µ, λ, ε are chosen properly and s is sufficiently small.

Proof of Theorem 4.3

We consider the model (4.2), and split our analysis of the gradient loop into two regimes.

•Regime 1: c4‖z‖ ≥ ‖h‖ ≥ c3
‖w‖∞
‖z‖ . In this regime, error contraction by each gradient

step is given by

dist (z − µ∇`tr(z),x) ≤ (1− ρ)dist(z,x).

It suffices to justify that ∇`tr(z) satisfies the RC. Denote ỹi := (aTi x)2 + wi. Then by

Lemma 4.8, we have

θ 1
2
−s
{∣∣ỹi − (aTi z)2

∣∣} ≤ med
{∣∣yi − (aTi z)2

∣∣} ≤ θ 1
2

+s

{∣∣ỹi − (aTi z)2
∣∣} .

Moreover, by Lemma 4.7 we have

∣∣∣θ 1
2

+s

{∣∣ỹi − (aTi z)2
∣∣}− θ 1

2
+s

{∣∣(aTi x)2 − (aTi z)2
∣∣}∣∣∣ ≤ ‖w‖∞,∣∣∣θ 1

2
−s
{∣∣ỹi − (aTi z)2

∣∣}− θ 1
2
−s
{∣∣(aTi x)2 − (aTi z)2

∣∣}∣∣∣ ≤ ‖w‖∞.
Assume that s = 0.01. By Proposition 4.12, if c3 is sufficiently large (i.e., c3 > 100), we

still shave

0.6‖x− z‖‖z‖ ≤ med
{∣∣yi − (aTi z)2

∣∣} ≤ ‖x− z‖‖z‖. (4.31)
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Furthermore, recall Ẽ i2 :=
{∣∣(aTi x)2 − (aTi z)2

∣∣ ≤ αhmed
{∣∣(aTi z)2 − yi

∣∣} |aTi z|
‖z‖

}
. Then,

∇`tr(z) =
1

m

m∑
i=1

(aTi z)2 − yi
aTi z

ai1Ei1∩Ei2

=
1

m

(∑
i/∈S

(aTi z)2 − (aTi x)2

aTi z
ai1Ei1∩Ei2 +

∑
i∈S

(aTi z)2 − (aTi x)2

aTi z
ai1Ei1∩Ẽi2

)
︸ ︷︷ ︸

∇clean`tr(z)

− 1

m

∑
i/∈S

wi

aTi z
ai1Ei1∩Ei2︸ ︷︷ ︸

∇noise`tr(z)

+
1

m

∑
i∈S

(
(aTi z)2 − yi

aTi z
1Ei1∩Ei2 −

(aTi z)2 − (aTi x)2

aTi z
1Ei1∩Ẽi2

)
ai︸ ︷︷ ︸

∇extra`tr(z)

.

For i /∈ S, the inclusion property (i.e. E i3 ⊆ E i2 ⊆ E i4) holds because

∣∣yi − (aTi z)2
∣∣ ∈ ∣∣(aTi x)2 − (aTi z)2

∣∣± |wi|
and |wi| ≤ 1

c3
‖h‖‖z‖ for some sufficient large c3. For i ∈ S, the inclusion E i3 ⊆ Ẽ i2 ⊆ E i4

holds because of (4.31). All the proof arguments for Propositions 4.13 and 4.14 are also

valid for∇clean`tr(z), and thus we have

〈∇clean`tr(z),h〉 ≥
{

1.99− 2(ζ1 + ζ2)−
√

8/πα−1
h − ε

}
‖h‖2,∥∥∇clean`tr(z)

∥∥ ≤ (1 + δ) · 2
√

1.02 + 2/αh‖h‖.

Next, we turn to control the contribution of the noise. Let w̃i = wi
aTi z

1Ei1∩Ei2 , and then we

have

‖∇noise`tr(z)‖ =

∥∥∥∥ 1

m
AT w̃

∥∥∥∥ ≤ ∥∥∥∥ 1√
m
AT

∥∥∥∥∥∥∥∥ w̃√m
∥∥∥∥ ≤ (1 + δ)‖w̃‖∞ ≤ (1 + δ)

‖w‖∞
αl‖z‖

,

when m/n is sufficiently large. Given the regime condition ‖h‖ ≥ c3
‖w‖∞
‖z‖ , we further
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have

‖∇noise`tr(z)‖ ≤ (1 + δ)

c3αl
‖h‖,∣∣〈∇noise`tr(z),h

〉∣∣ ≤ ∥∥∇noise`tr(z)
∥∥ · ‖h‖ ≤ (1 + δ)

c3αl
‖h‖2.

We next bound the contribution of∇extra`tr(z). Introduce q = [q1, . . . , qm]T , where

qi :=

(
(aTi z)2 − yi

aTi z
1Ei1∩Ei2 −

(aTi z)2 − (aTi x)2

aTi z
1Ei1∩Ẽi2

)
1{i∈S}.

Then |qi| ≤ 2αh‖h‖, and ‖q‖ ≤
√
sm · 2αh‖h‖. We thus have

∥∥∇extra`tr(z)
∥∥ =

1

m

∥∥ATq
∥∥ ≤ 2(1 + δ)

√
sαh‖h‖,∣∣〈∇extra`tr(z),h

〉∣∣ ≤ ‖h‖ · ∥∥∇extra`tr(z)
∥∥ ≤ 2(1 + δ)

√
sαh‖h‖2.

Putting these together, one has

〈∇`tr(z),h〉 ≥
〈
∇clean`tr(z),h

〉
−
∣∣〈∇noise`tr(z),h

〉∣∣− ∣∣〈∇extra`tr(z),h
〉∣∣

≥
(

1.99− 2(ζ1 + ζ2)−
√

8/πα−1
h − ε− (1 + δ)(1/(c3α

l
z) + 2

√
sαh)

)
‖h‖2, (4.32)

and

‖∇`tr(z)‖ ≤
∥∥∇clean`tr(z)

∥∥+
∥∥∇noise`tr(z)

∥∥+
∥∥∇extra`tr(z)

∥∥
≤ (1 + δ)

(
2
√

1.02 + 2/αh + 1/(c3α
l
z) + 2

√
sαh

)
‖h‖. (4.33)

The RC is guaranteed if µ, λ, ε are chosen properly, c3 is sufficiently large and s is

sufficiently small.

• Regime 2: Once the iterate enters this regime with ‖h‖ ≤ c3‖w‖∞
‖z‖ , each gradient iter-

ate may not reduce the estimation error. However, in this regime each move size µ∇`tr(z)
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is at most O(‖w‖∞/‖z‖). Then the estimation error cannot increase by more than ‖w‖∞‖z‖

with a constant factor. Thus one has

dist (z − µ∇`tr(z),x) ≤ c5
‖w‖∞
‖x‖

for some constant c5. As long as ‖w‖∞/‖x‖2 is sufficiently small, it is guaranteed that

c5
‖w‖∞
‖x‖ ≤ c4‖x‖. If the iterate jumps out of Regime 2, it falls into Regime 1.

4.6.3 Proofs for Median-RWF

We first show that ∇Rtr(z) in (4.10) satisfies the RC for the noise-free case, and then ex-

tend it to the model with only sparse outliers, thus together with Proposition 4.10 establish-

ing the global convergence of median-RWF in both cases. At last, we prove Theorem 4.3

in the presence of both sparse outliers and dense bounded noise.

Proof of Proposition 4.1

The central step to establish the RC is to show that the sample median used in the trun-

cation rule of median-RWF concentrates on the order of ‖z−x‖ as stated in the following

proposition.

Proposition 4.15. If m > c0n log n, then with probability at least 1− c1 exp(−c2m),

0.5‖z − x‖ ≤ θ0.49, θ1/2, θ0.51

({∣∣|aTi z| − |aTi x|∣∣}mi=1

)
≤ 0.8‖z − x‖, (4.34)

holds for all z,x satisfying ‖z − x‖ < 1/11‖z‖.

Proof. See Section 4.6.4.

Next we give a bound on the left hand side of RC.

Proposition 4.16 (Adapted version of Proposition 2 of [61]). Consider the noise-free mea-

surements yi = |aTi x| and any fixed constant ε > 0. Ifm > c0n log n, then with probability
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at least 1− c1 exp(−c2m),

〈∇Rtr(z), z − x〉 ≥ {0.88− ζ ′1 − ζ ′2 − ε} ‖z − x‖2 (4.35)

holds uniformly over all x, z ∈ Rn satisfying ‖z−x‖‖z‖ ≤
1
20

, where c0, c1, c2 > 0 are some

universal constants, and ζ ′1, ζ
′
2 are given by

ζ ′1 := 1−min

{
E

[
ξ21{ξ≥0.5

√
1.01α′h

‖z−x‖
‖x‖ }

]
,E

[
1{ξ≥0.5

√
1.01α′h

‖z−x‖
‖x‖ }

]}
ζ ′2 := E

[
ξ21{|ξ|>0.5

√
0.99α′h}

]

for some ξ ∼ N (0, 1) and α′h = 5.

Proof. See Section 4.6.4.

Proposition 4.16 indicates that 〈∇Rtr(z), z − x〉 is lower bounded by ‖z − x‖2 with

some positive constant coefficient. In order to prove the RC, it suffices to show that

‖∇Rtr(z)‖ is upper bounded by the order of ‖z − x‖ when z is within the neighborhood

of true signal x.

Proposition 4.17 (Lemma 7 of [61]). Ifm > c0n, then there exist some constants c1, c2 > 0

such that with probability at least 1− c1 exp(−c2m),

‖∇Rtr(z)‖ ≤ (1.8 + δ)‖z − x‖ (4.36)

holds uniformly over all x, z ∈ Rn satisfying ‖x−z‖ ≤ 1
11
‖x‖ where δ can be arbitrarily

small as long as c0 sufficiently large.

Proof. See Section 4.6.4.

With the above two propositions, RC is guaranteed by setting µ < µ0 :=
2(0.88−ζ′1−ζ′2−ε)

(1.8+δ)2

and λ+ µ · (1.8 + δ)2 < 2(0.88− ζ ′1 − ζ ′2 − ε).
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Proof of Theorem 4.2

We consider the model (4.2) with only outliers, i.e., yi = |〈ai,x〉|2 + ηi for i =

1, · · · ,m. It suffices to show that ∇Rtr(z) satisfies the RC. The critical step is to lower

and upper bound the sample median of the corrupted measurements. Lemma 4.8 yields

θ 1
2
−s({||aTi x| − |aTi z||}) ≤ θ 1

2
({|√yi − |aTi z||}) ≤ θ 1

2
+s({||aTi x| − |aTi z||}. (4.37)

For the simplicity of notation, we let h := z − x. Then for the instance of s = 0.01,

Proposition 4.15 yields that if m > c0n log n, then

0.5‖h‖ ≤ θ 1
2
({|√yi − |aTi z||}) ≤ 0.8‖h‖ (4.38)

holds with probability at least 1− 2 exp(−Ω(m)).

To differentiate from T i, we define T̃ i :=
{∣∣|aTi x| − |aTi z|∣∣ ≤ α′hmed

{∣∣√yi − |aTi z|∣∣}}.

We then have

∇Rtr(z) =
1

m

m∑
i=1

(
|aTi z| −

√
yi
)
ai1T i

=
1

m

m∑
i=1

(
|aTi z| −

√
yi
)
ai1T̃ i︸ ︷︷ ︸

∇cleanRtr(z)

+
1

m

∑
i∈S

((
|aTi z| −

√
yi
)
1T i −

(
|aTi z| − |aTi x|

)
1T̃ i
)
ai︸ ︷︷ ︸

∇extraRtr(z)

.

Under the condition (4.38), the inclusion property (i.e., T i1 ⊆ T̃ i ⊆ T i2 ) holds, and all

the proof arguments for Propositions 4.16 and 4.17 are also valid to ∇cleanRtr(z). Thus,

one has

〈
∇cleanRtr(z),h

〉
≥ (0.88− ζ ′1 − ζ ′2 − ε) ‖h‖2∥∥∇cleanRtr(z)

∥∥ ≤ (1.8 + δ)‖h‖.
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We next bound the contribution of∇extraRtr(z). Introduce q = [q1, . . . , qm]T , where

qi :=
((
|aTi z| −

√
yi
)
1T i −

(
|aTi z| − |aTi x|

)
1T̃ i
)
1{i∈S},

and then |qi| ≤ 1.6α′h‖h‖. Thus, ‖q‖ ≤
√
sm · 1.6α′h‖h‖, and

∥∥∇extraRtr(z)
∥∥ =

1

m

∥∥ATq
∥∥ ≤ 1.6(1 + δ)

√
sα′h‖h‖,∣∣〈∇extraRtr(z),h

〉∣∣ ≤ ‖h‖ · ∥∥∇extraRtr(z)
∥∥ ≤ 1.6(1 + δ)

√
sα′h‖h‖2,

whereA = [a1, . . . ,am]T . Then, we have

〈∇Rtr(z),h〉 ≥
〈
∇cleanRtr(z),h

〉
−
∣∣〈∇extraRtr(z),h

〉∣∣
≥
(
0.88− ζ ′1 − ζ ′2 − ε− 1.6(1 + δ)

√
sα′h
)
‖h‖2,

and

‖∇Rtr(z)‖ ≤
∥∥∇cleanRtr(z)

∥∥+
∥∥∇extraRtr(z)

∥∥
≤
(
1.8 + δ + 1.6(1 + δ)

√
sα′h
)
‖h‖.

Therefore the RC is guaranteed if µ, λ are chosen properly, δ is chosen sufficiently small

and s is sufficiently small.

Proof of Theorem 4.3

We consider the model (4.2) with outliers and bounded noise. We split our analysis of

the gradient loop into two regimes.

• Regime 1: c4‖z‖ ≥ ‖h‖ ≥ c3

√
‖w‖∞. In this regime, error contraction by each
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gradient step is given by

dist (z − µ∇Rtr(z),x) ≤ (1− ρ)dist(z,x). (4.39)

It suffices to justify that ∇Rtr(z) satisfies the RC. Denote ỹi := (aTi x)2 + wi. Then by

Lemma 4.8, we have

θ 1
2
−s

{∣∣∣√ỹi − |aTi z|
∣∣∣} ≤ med

{∣∣√yi − |aTi z|∣∣} ≤ θ 1
2

+s

{∣∣∣√ỹi − |aTi z|
∣∣∣} .

Moreover, by Lemma 4.7 we have

∣∣∣θ 1
2

+s

{∣∣∣√ỹi − |aTi z|
∣∣∣}− θ 1

2
+s

{∣∣|aTi x| − |aTi z|∣∣}∣∣∣ ≤√‖w‖∞,∣∣∣θ 1
2
−s

{∣∣∣√ỹi − |aTi z|
∣∣∣}− θ 1

2
−s
{∣∣|aTi x| − |aTi z|∣∣}∣∣∣ ≤√‖w‖∞.

Assume that s = 0.01. By Proposition 4.15, if c3 is sufficiently large (i.e., c3 > 100), we

still have

0.5‖h‖ ≤ med
{∣∣√yi − |aTi z|∣∣} ≤ 0.8‖h‖. (4.40)

Furthermore, recall T̃ i :=
{∣∣|aTi x| − |aTi z|∣∣ ≤ α′hmed

{∣∣|aTi z| − √yi∣∣}}. Then,

∇Rtr(z) =
1

m

m∑
i=1

(
|aTi z| −

√
yi
)
ai1T i

=
1

m

(∑
i/∈S

(
|aTi z| − |aTi x|

)
ai1T i +

∑
i∈S

(
|aTi z| − |aTi x|

)
ai1T̃ i

)
︸ ︷︷ ︸

∇cleanRtr(z)

− 1

m

∑
i/∈S

(
√
yi − |aTi x|)ai1T i︸ ︷︷ ︸
∇noiseRtr(z)

+
1

m

∑
i∈S

((
|aTi z| −

√
yi
)
1T i −

(
|aTi z| − |aTi x|

)
1T̃ i
)
ai︸ ︷︷ ︸

∇extraRtr(z)

.
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For i /∈ S, the inclusion property (i.e. T i1 ⊆ T i ⊆ T i2 ) holds because

∣∣√yi − |aTi z|∣∣ ∈ ∣∣|aTi x| − |aTi z|∣∣±√|wi|
and

√
|wi| ≤ 1

c3
‖h‖ for some sufficient large c3. For i ∈ S, the inclusion T i1 ⊆ T̃ i ⊆ T i2

holds because of (4.40). All the proof arguments for Propositions 4.16 and 4.17 are also

valid for∇cleanRtr(z), and thus we have

〈
∇cleanRtr(z),h

〉
≥ (0.88− ζ ′1 − ζ ′2 − ε) ‖h‖2,∥∥∇cleanRtr(z)

∥∥ ≤ (1.8 + δ)‖h‖.

Next, we turn to control the contribution of the noise. Let w̃i = (
√
yi − |aTi x|)1T i .

Then |w̃i| <
√
|wi| and we have

‖∇noiseRtr(z)‖ =

∥∥∥∥ 1

m
AT w̃

∥∥∥∥ ≤ ∥∥∥∥ 1√
m
AT

∥∥∥∥∥∥∥∥ w̃√m
∥∥∥∥ ≤ (1 + δ)‖w̃‖∞ ≤ (1 + δ)

√
‖w‖∞,

when m/n is sufficiently large. Given the regime condition ‖h‖ ≥ c3

√
‖w‖∞, we further

have

‖∇noiseRtr(z)‖ ≤ (1 + δ)

c3

‖h‖,∣∣〈∇noiseRtr(z),h
〉∣∣ ≤ ∥∥∇noiseRtr(z)

∥∥ · ‖h‖ ≤ (1 + δ)

c3

‖h‖2.

We next bound the contribution of∇extraRtr(z). Introduce q = [q1, . . . , qm]T , where

qi :=
(
(|aTi z| −

√
yi)1T i − (|aTi z| − |aTi x|)1T̃ i

)
1{i∈S}.
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Then |qi| ≤ 1.6α′h‖h‖, and ‖q‖ ≤
√
sm · 1.6α′h‖h‖. We thus have

∥∥∇extraRtr(z)
∥∥ =

1

m

∥∥ATq
∥∥ ≤ 1.6(1 + δ)

√
sα′h‖h‖,∣∣〈∇extraRtr(z),h

〉∣∣ ≤ ‖h‖ · ∥∥∇extraRtr(z)
∥∥ ≤ 1.6(1 + δ)

√
sα′h‖h‖2.

Putting these together, one has

〈∇Rtr(z),h〉 ≥
〈
∇cleanRtr(z),h

〉
−
∣∣〈∇noiseRtr(z),h

〉∣∣− ∣∣〈∇extraRtr(z),h
〉∣∣

≥
(
0.88− ζ ′1 − ζ ′2 − ε− (1 + δ)(1/c3 − 1.6

√
sα′h)

)
‖h‖2,

and

‖∇Rtr(z)‖ ≤
∥∥∇cleanRtr(z)

∥∥+
∥∥∇noiseRtr(z)

∥∥+
∥∥∇extraRtr(z)

∥∥
≤
(
1.8 + δ + (1 + δ) · (1/c3 + 1.6

√
sα′h)

)
‖h‖. (4.41)

Thus, the RC is guaranteed if µ, λ, ε are chosen properly, c0, c3 are sufficiently large and

s is sufficiently small.

• Regime 2: Once the iterate enters this regime with ‖h‖ ≤ c3

√
‖w‖∞, each gradi-

ent iterate may not reduce the estimation error. However, in this regime each move size

µ∇Rtr(z) is at mostO(
√
‖w‖∞). Then the estimation error cannot increase by more than√

‖w‖∞ with a constant factor. Thus one has

dist (z − µ∇Rtr(z),x) ≤ c5

√
‖w‖∞ (4.42)

for some constant c5. As long as
√
‖w‖∞ is sufficiently small, it is guaranteed that

c5

√
‖w‖∞ ≤ c4‖x‖. If the iterate jumps out of Regime 2, it falls into Regime 1.



123

4.6.4 Proofs of Supporting Lemmas

Proof of Lemma 4.6

For simplicity, denote θp := θp(F ) and θ̂p := θp({Xi}mi=1). Since F ′ is continuous and

positive, for an ε, there exists a constant δ1 such that P(X ≤ θp − ε) = p − δ1, where

δ1 ∈ (εl, εL). Then one has

P
(
θ̂p < θp − ε

)
(a)
= P

(
m∑
i=1

1{Xi≤θp−ε} ≥ pm

)
= P

(
1

m

m∑
i=1

1{Xi≤θp−ε} ≥ (p− δ1) + δ1

)
(b)

≤ exp(−2mδ2
1) ≤ exp(−2mε2l2),

where (a) is due to the definition of the quantile function in (4.18) and (b) is due to the fact

that 1{Xi≤θp−ε} ∼ Bernoulli(p− δ1) i.i.d., followed by the Hoeffding inequality. Similarly,

one can show for some δ2 ∈ (εl, εL),

P
(
θ̂p > θp + ε

)
≤ exp(−2mδ2

2) ≤ exp(−2mε2l2).

Combining these two inequalities, one has the conclusion.

Proof of Lemma 4.7

It suffices to show that

|X(k) − Y(k)| ≤ max
l
|Xl − Yl|, ∀k = 1, · · · , n. (4.43)

Case 1: k = n, suppose X(n) = Xi and Y(n) = Yj , i.e., Xi is the largest among {Xl}nl=1

and Yj is the largest among {Yl}nl=1. Then we have either Xj ≤ Xi ≤ Yj or Yi ≤ Yj ≤ Xi.

Hence,

|X(n) − Y(n)| = |Xi − Yj| ≤ max{|Xi − Yi|, |Xj − Yj|}.
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Case 2: k = 1, suppose that X(1) = Xi and Y(1) = Yj . Similarly

|X(1) − Y(1)| = |Xi − Yj| ≤ max{|Xi − Yi|, |Xj − Yj|}.

Case 3: 1 < k < n, suppose that X(k) = Xi, Y(k) = Yj , and without loss of generality

assume that Xi < Yj (if Xi = Yj , 0 = |X(k) − Y(k)| ≤ maxl |Xl − Yl| holds trivially). We

show the conclusion by contradiction.

Assume |X(k)−Y(k)| > maxl |Xl−Yl|. Then one must have Yi < Yj and Xj > Xi and

i 6= j. Moreover for any p < k and q > k, the index of X(p) cannot be equal to the index

of Y(q); otherwise the assumption is violated.

Thus, all Y(q) for q > k must share the same index set with X(p) for p > k. However,

Xj , which is larger than Xi (thus if Xj = X(k′), then k′ > k), shares the same index with

Yj , where Yj = Y(k). This yields contradiction.

Proof of Lemma 4.8

Assume that sm is an integer. Since there are sm corrupted samples in total, one can

select at least d(p− s)me clean samples from the left p portion of ordered contaminated

samples {θ1/m({Xi}), θ2/m({Xi}), · · · , θp({Xi})}. Thus one has the left inequality. Fur-

thermore, one can also select out at least d(1− p− s)me clean samples from the right

1 − p portion of ordered contaminated samples {θp({Xi}), · · · , θ1({Xi})}. One has the

right inequality.

Proof of Lemma 4.9

First we introduce some general facts for the distribution of the product of two corre-

lated standard Gaussian random variables [143]. Let u ∼ N (0, 1), v ∼ N (0, 1), and their

correlation coefficient be ρ ∈ [−1, 1]. Then the density of uv is given by

φρ(x) =
1

π
√

1− ρ2
exp

(
ρx

1− ρ2

)
K0

(
|x|

1− ρ2

)
, x 6= 0,
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where K0(·) is the modified Bessel function of the second kind. Thus the density of r =

|uv| is

ψρ(x) =
1

π
√

1− ρ2

[
exp

(
ρx

1− ρ2

)
+ exp

(
− ρx

1− ρ2

)]
K0

(
|x|

1− ρ2

)
, x > 0, (4.44)

for |ρ| < 1. If |ρ| = 1, r becomes a χ2
1 random variable, with the density

ψ|ρ|=1(x) =
1√
2π
x−1/2 exp(−x/2), x > 0.

It can be seen from (4.44) that the density of r only relates to the correlation coefficient

ρ ∈ [−1, 1].

Let θ1/2(ψρ) be the 1/2 quantile (median) of the distribution ψρ(x), and ψρ(θ1/2) be the

value of the function ψρ at the point θ1/2(ψρ). Although it is difficult to derive the analytical

expressions of θ1/2(ψρ) and ψρ(θ1/2) due to the complicated form of ψρ in (4.44), due to

the continuity of ψρ(x) and θ1/2(ψρ), we can calculate them numerically, as illustrated in

Figure 4.5. From the numerical calculation, one can see that both ψρ(θ1/2) and θ1/2(ψρ)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

Correlation ρ

Q
ua

nt
ile

 θ
p(ψ

ρ)

p=0.49
p=0.50
p=0.51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Correlation ρ

D
en

si
ty

 ψ
ρ(θ

p)

p=0.49
p=0.50
p=0.51

Fig. 4.5: Quantiles and density at quantiles of ψρ(x) across ρ.

are bounded from below and above for all ρ ∈ [0, 1] (ψρ(·) is symmetric over ρ, hence it is

sufficient to consider ρ ∈ [0, 1]), satisfying

0.348 < θ1/2(ψρ) < 0.455, 0.47 < ψρ(θ1/2) < 0.76. (4.45)
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Proof of Proposition 4.10

Denote ỹi := |aTi x|2 + wi for convenience. We first bound the concentration of

med({yi}), also denoted by θ 1
2
({yi}). Lemma 4.8 yields

θ 1
2
−s({ỹi}) < θ 1

2
({yi}) < θ 1

2
+s({ỹi}). (4.46)

Moreover, Lemma 4.7 indicates that

θ 1
2
−s({ỹi}) ≥ θ 1

2
−s({|aTi x|2})− ‖w‖∞, (4.47)

θ 1
2

+s({ỹi}) ≤ θ 1
2

+s({|aTi x|2}) + ‖w‖∞. (4.48)

Observe that aTi x = ã2
i1‖x‖2, where ãi1 = aTi x/‖x‖ is a standard Gaussian random

variable. Thus |ãi1|2 is a χ2
1 random variable, whose cumulative distribution function is de-

noted asK(x). Moreover by Lemma 4.6, for a small ε, one has
∣∣∣θ 1

2
−s({|ãi1|2})− θ 1

2
−s(K)

∣∣∣ <
ε and

∣∣∣θ 1
2

+s({|ãi1|2})− θ 1
2

+s(K)
∣∣∣ < ε with probability 1 − 2 exp(−cmε2) and c is a con-

stant around 2 × 0.472 (see Figure 4.5). We note that θ 1
2
(K) = 0.455 and both θ 1

2
−s(K)

and θ 1
2

+s(K) can be arbitrarily close to θ 1
2
(K) simultaneously as long as s is small enough

(independent of n). Thus, one has

(
θ 1

2
−s(K)− ε− c

)
‖x‖2 < θ 1

2
({yi}) <

(
θ 1

2
+s(K) + ε+ c

)
‖x‖2, (4.49)

with probability at least 1− exp(−cmε2). For the sake of simplicity, we introduce two new

notations ζs := θ 1
2
−s(K) and ζs := θ 1

2
+s(K). Specifically for the instance of s = 0.01, one

has ζs = 0.434 and ζs = 0.477. It is easy to see that ζs − ζs can be arbitrarily small if s is

small enough.

We next estimate the direction of x, assuming ‖x‖ = 1. On the event that (4.49) holds,
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the truncation function has the following bounds,

1{yi≤α2
yθ1/2({yi})/0.455} ≤ 1{yi≤α2

y(ζs+ε)/0.455} ≤ 1{(aTi x)2≤α2
y(ζs+ε+c)/0.455}

1{yi≤α2
yθ1/2({yi})/0.455} ≥ 1{yi≤α2

y(ζs−ε)/0.455} ≥ 1{(aTi x)2≤α2
y(ζs−ε−c)/0.455}.

On the other hand, denote the support of the outliers as S, and we have

Y =
1

m

∑
i/∈S

aia
T
i ỹi1{(aTi x)2≤α2

yθ1/2({yi})/0.455} +
1

m

∑
i∈S

aia
T
i yi1{yi≤α2

yθ1/2({yi})/0.455}.

Consequently, one can bound Y as

Y 1 :=
1

m

∑
i/∈S

aia
T
i (aTi x)21{(aTi x)2≤α2

y(ζs−ε−c)/0.455} − c ·
1

m

∑
i/∈S

aia
T
i � Y

� 1

m

∑
i/∈S

aia
T
i (aTi x)21{(aTi x)2≤α2

y(ζs+ε+c)/0.455} + c · 1

m

∑
i/∈S

aia
T
i

+
1

m

∑
i∈S

aia
T
i α

2
y(ζ

s + ε+ c)/0.455 =: Y 2,

where we have

E[Y 1] = (1− s)(β1xx
T + β2I − cI),

E[Y 2] = (1− s)(β3xx
T + β4I + cI) + sα2

y

(ζs + ε)

0.455
I,

with

β1 := E

[
ξ41{

|ξ|≤αy
√

(ζs−ε−c)/0.455
}]− E

[
ξ21{

|ξ|≤αy
√

(ζs−ε−c)/0.455
}]

β2 := E

[
ξ21{

|ξ|≤αy
√

(ζs−ε−c)/0.455
}]

β3 := E

[
ξ41{

|ξ|≤αy
√

(ζs+ε+c)/0.455
}]− E

[
ξ21{

|ξ|≤αy
√

(ζs+ε+c)/0.455
}]

β4 := E

[
ξ21{

|ξ|≤αy
√

(ζs+ε+c)/0.455
}]
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where ξ ∼ N (0, 1).

Applying standard results on random matrices with non-isotropic sub-Gaussian rows

[142, equation (5.26)] and noticing that aiaTi (aTi x)21{|aTi x|≤c} can be rewritten as bibTi

where bi := ai(a
T
i x)1{|aTi x|≤c} is sub-Gaussian, one can obtain

‖Y 1 − E[Y 1]‖ ≤ δ, ‖Y 2 − E[Y 2]‖ ≤ δ (4.50)

with probability 1 − exp(−Ω(m)), provided that m/n exceeds some large constant. Fur-

thermore, when ε, c and s are sufficiently small, one further has ‖E[Y 1] − E[Y 2]‖ ≤ δ.

Putting these together, one has

‖Y − (1− s)(β1xx
T + β2I − cI)‖ ≤ 3δ. (4.51)

Let z̃(0) be the normalized leading eigenvector of Y . Repeating the same argument as

in [1, Section 7.8] and taking δ, ε to be sufficiently small, one has

dist(z̃(0),x) ≤ δ̃, (4.52)

for a given δ̃ > 0, as long as m/n exceeds some large constant.

Furthermore let z(0) =
√

med{yi}/0.455z̃(0) to handle cases ‖x‖ 6= 1. By the bound

(4.49), one has

∣∣∣∣med({yi})
0.455

− ‖x‖2

∣∣∣∣ ≤ max

{∣∣∣∣ζs − ε− c0.455
− 1

∣∣∣∣ , ∣∣∣∣ζs + ε+ c

0.455
− 1

∣∣∣∣} ‖x‖2

≤ ζs − ζs + 2ε+ 2c

0.455
‖x‖2. (4.53)

Thus

dist(z(0),x) ≤ ζs − ζs + 2ε+ 2c

0.455
‖x‖+ δ̃‖x‖ ≤ 1

11
‖x‖
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as long as s and c are small enough constants.

Proof of Proposition 4.12

We show that the sample median used in the truncation rule concentrates at the level

‖z−x‖‖z‖. Along the way, we also establish that the sample quantiles around the median

are also concentrated at the level ‖z − x‖‖z‖.

We first show that for a fixed pair z and x, (4.23) holds with high probability. For

simplicity of notation, we let h := z − x. Let ri = |(aTi x)2 − (aTi z)2|. Then ri’s are

i.i.d. copies of a random variable r, where r = |(aTx)2 − (aTz)2| with the entries of a

composed of i.i.d. standard Gaussian random variables. Note that the distribution of r is

fixed once given h and z. Let x(1) denote the first element of a generic vector x, and

x−1 denote the remaining vector of x after eliminating the first element. Let Uh be an

orthonormal matrix with first row being hT/‖h‖, ã = Uha, and z̃ = Uhz. Similarly,

define U z̃−1 and let b̃ = U z̃−1ã−1. Then ã(1) and b̃(1) are independent standard normal

random variables. We further express r as follows.

r = |(aTz)2 − (aTx)2|

= |(2aTz − aTh)(aTh)|

= |(2ãT z̃ − ã(1)‖h‖)(ã(1)‖h‖)|

= |(2hTz − ‖h‖2)ã(1)2 + 2(ãT−1z̃−1)(ã(1)‖h‖)|

= |(2hTz − ‖h‖2)ã(1)2 + 2b̃(1)‖z̃−1‖ã(1)‖h‖|

= |(2hTz − ‖h‖2)ã(1)2 + 2
√
‖z‖2 − z̃(1)2ã(1)b̃(1)‖h‖|

=

∣∣∣∣∣∣
(

2
hTz

‖h‖‖z‖
− ‖h‖
‖z‖

)
ã(1)2 + 2

√
1−

(
hTz

‖h‖‖z‖

)2

ã(1)b̃(1)

∣∣∣∣∣∣ · ‖h‖‖z‖
=:
∣∣∣(2 cos(ω)− t)ã(1)2 + 2

√
1− cos2(ω)ã(1)b̃(1)

∣∣∣ · ‖h‖‖z‖
=: |uṽ| · ‖h‖‖z‖
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where ω is the angle between h and z, and t = ‖h‖/‖z‖ < 1/11. Consequently, u =

ã(1) ∼ N (0, 1) and ṽ = (2 cos(ω) − t)ã(1) + 2| sin(ω)|b̃(1) is also a Gaussian random

variable with variance 3.6 < Var(ṽ) < 4 under the assumption t < 1/11.

Let v = ṽ/
√

Var(ṽ), and then v ∼ N (0, 1). Furthermore, let r′ = |uv|. Denote the

density function of r′ as ψρ(·) and the 1/2-quantile point of r′ as θ1/2(ψρ). By Lemma 4.9,

we have

0.47 < ψρ(θ1/2) < 0.76, 0.348 < θ1/2(ψρ) < 0.455. (4.54)

By Lemma 4.6, we have with probability at least 1 − 2 exp(−cmε2) (here c is around

2× 0.472),

0.348− ε < med({r′i}mi=1) < 0.455 + ε. (4.55)

The same arguments carry over to other quantiles θ0.49({r′i}) and θ0.51({r′i}). From Figure.

4.5, we observe that for ρ ∈ [0, 1]

0.45 < ψρ(θ0.49), ψρ(θ0.51) < 0.78, 0.336 < θ0.49(ψρ), θ0.51(ψρ) < 0.477 (4.56)

and then we have with probability at least 1− 2 exp(−cmε2) (here c is around 2× 0.452),

0.336− ε < θ0.49({r′m}), θ0.51({r′m}) < 0.477 + ε. (4.57)
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Hence, by multiplying by
√
Var(ṽ), we have with probability 1− 2 exp(−cmε2),

(0.65− ε)‖z − x‖‖z‖ ≤ med
({
|(aTi z)2 − (aTi x)2|

})
≤ (0.91 + ε)‖z − x‖‖z‖,

(4.58)

(0.63− ε)‖z − x‖‖z‖ ≤ θ0.49, θ0.51

({
|(aTi z)2 − (aTi x)2|

})
≤ (0.95 + ε)‖z − x‖‖z‖.

(4.59)

We note that, to keep notation simple, c and ε may vary line by line within constant factors.

Up to now, we prove that for any fixed z and x, the median or neighboring quantiles of{
|(aTi z)2 − (aTi x)2|

}
are upper and lower bounded by ‖z−x‖‖z‖ times constant factors.

To prove (4.23) for all z and x with ‖z − x‖ ≤ 1
11
‖z‖, we use the net covering argument.

Still we argue for median first and the same arguments carry over to other quantiles.

To proceed, we restate (4.58) as

(0.65− ε) ≤ med
({∣∣∣∣(2(aTi z)

‖z‖
− a

T
i h

‖h‖
‖h‖
‖z‖

)
aTi h

‖h‖

∣∣∣∣}) ≤ (0.91 + ε) (4.60)

holds with probability at least 1−2 exp(−cmε2) for a given pairh, z satisfying ‖h‖/‖z‖ ≤

1/11.

Let τ = ε/(6n+ 6m), let Sτ be a τ -net covering the unit sphere, Lτ be a τ -net covering

a line with length 1/11, and set

Nτ = {(z0,h0, t0) : (z0,h0, t0) ∈ Sτ × Sτ × Lτ}. (4.61)

One has cardinality bound (i.e., the upper bound on the covering number) |Nτ | ≤ (1 +

2/τ)2n/(11τ) < (1 + 2/τ)2n+1. Taking the union bound, we have

(0.65− ε) ≤ med
({
|2(aTi z0)− (aTi h0)t0||aTi h0|

})
≤ (0.91 + ε), ∀(z0,h0, t0) ∈ Nε

(4.62)
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with probability at least 1− (1 + 2/τ)2n+1 exp(−cmε2).

We next argue that (4.62) holds with probability 1−c1 exp(−c2mε
2) for some constants

c1, c2 as long as m ≥ c0(ε−2 log ε−1)n log n for sufficiently large constant c0. To prove this

claim, we first observe

(1 + 2/τ)2n+1 � exp(2n(log(n+m) + log 12 + log(1/ε))) � exp(2n(logm)).

We note that once ε is chosen, it is fixed in the whole proof and does not scale with m

or n. For simplicity, assume that ε < 1/e. Fix some positive constant c′ < c − c2. It then

suffices to show that there exists a large constant c0 such that if m ≥ c0(ε−2 log ε−1)n log n,

then

2n logm < c′mε2. (4.63)

For any fixed n, if (4.63) holds for some m and m > (2/c′)ε−2n, then (4.63) always holds

for larger m, because

2n log(m+ 1) = 2n logm+ 2n(log(m+ 1)− logm) = 2n logm+
2n

m
log(1 +

1

m
)m

≤ 2n logm+
2n

m
≤ c′mε2 + c′ε2 = c′(m+ 1)ε2.

Next, we can always find a constant c0 such that (4.63) holds form = c0(ε−2 log ε−1)n log n

for any n. Such c0 can be easily found for large n. For example, c0 = 4/c′ is a valid option

if

(4/c′)(ε−2 log ε−1)n log n < n2. (4.64)

Moreover, since the number of n that violates (4.64) is finite, the maximum over all such

c0 serves the purpose. Next, one needs to bound

∣∣med
({
|2(aTi z0)− (aTi h0)t0||aTi h0|

})
−med

({
|2(aTi z)− (aTi h)t||aTi h|

})∣∣
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for any ‖z − z0‖ < τ, ‖z − z0‖ < τ and ‖t− t0‖ < τ .

By Lemma 4.7 and the inequality
∣∣∣∣|x| − |y|∣∣∣∣ ≤ |x− y|, we have

∣∣med
({
|2(aTi z0)− (aTi h0)t0||aTi h0|

})
−med

({
|2(aTi z)− (aTi h)t||aTi h|

})∣∣
≤ max

i∈[m]

∣∣(2(aTi z0)− (aTi h0)t0
)

(aTi h0)−
(
2(aTi z)− (aTi h)t

)
(aTi h)

∣∣
≤ max

i∈[m]

∣∣(2(aTi z0)− (aTi h0)t0
)

(aTi h0)−
(
2(aTi z)− (aTi h)t

)
(aTi h0)

∣∣
+ max

i∈[m]

∣∣(2(aTi z)− (aTi h)t
)

(aTi h0)−
(
2(aTi z)− (aTi h)t

)
(aTi h)

∣∣
≤ max

i∈[m]

(∣∣2aTi (z0 − z)
∣∣+
∣∣(aTi h0)t0 − (aTi h)t

∣∣) ∣∣aTi h0

∣∣
+ max

i∈[m]

∣∣2(aTi z)− (aTi h)t
∣∣ |aTi (h0 − h)|

≤ max
i∈[m]
‖ai‖2(3 + t)τ + max

i∈[m]
‖ai‖2(2 + t)τ ≤ max

i∈[m]
‖ai‖2(5 + 2t)τ

On the event E1 :=
{

maxi∈[m] ‖ai‖2 ≤ m+ n
}

, one can show that

∣∣med
({
|2(aTi z0)− (aTi h0)t0||aTi h0|

})
−med

({
|2(aTi z)− (aTi h)t||aTi h|

})∣∣
< 6(m+ n)τ < ε.

We claim that E1 holds with probability at least 1 − m exp(−m/8) if m > n. This can

be argued as follows. Note that ‖ai‖2 =
∑n

j=1 ai(j)
2, where ai(j) is the j-th element

of ai. Hence, ‖ai‖2 is a sum of n i.i.d. χ2
1 random variables. Applying the Bernstein-

type inequality [142, Corollary 5.17] and observing that the sub-exponential norm of χ2
1 is

smaller than 2, we have

P
{
‖ai‖2 ≥ m+ n

}
≤ exp(−m/8). (4.65)

Then a union bound concludes the claim.

Further note that (4.62) holds on an eventE2, which has probability 1−c1 exp(−c2mε
2)
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as long as m ≥ c0(ε−2 log 1
ε
)n log n. On the intersection of E1 and E2, inequality for θ 1

2

(i.e., median) in (4.23) holds. Such net covering arguments can also carry over to show that

inequalities of θ0.49 and θ0.51 in (4.23) also hold for all x and z obeying ‖x− z‖ ≤ 1
11
‖z‖.

Proof of Proposition 4.13

The proof adapts that of [61, Proposition 2]. We outline the main steps for complete-

ness. Observe that for the noise-free case, yi = (aTi x)2. We obtain

∇`tr(z) =
1

m

m∑
i=1

(aTi z)2 − (aTi x)2

aTi z
ai1Ei1∩Ei2

=
1

m

m∑
i=1

2(aTi h)ai1Ei1∩Ei2 −
1

m

m∑
i=1

(aTi h)2

aTi z
ai1Ei1∩Ei2 . (4.66)

One expects the contribution of the second term in (4.66) to be small as ‖h‖/‖z‖ decreases.

For each i, we introduce two new events

E i3 := {
∣∣(aTi x)2 − (aTi z)2

∣∣ ≤ 0.6αh‖h‖ · |aTi z|},

E i4 := {
∣∣(aTi x)2 − (aTi z)2

∣∣ ≤ 1.0αh‖h‖ · |aTi z|}.

One the event that Proposition 4.12 holds, the following inclusion property

E i3 ⊆ E i2 ⊆ E i4 (4.67)

is true for all i, where E i2 is defined in Algorithm 3. It is easier to work with these new

events because E i3’s (resp. E i4’s) are statistically independent across i for any fixed x and

z. To further decouple the quadratic inequalities in E i3 and E i4 into linear inequalities, we

introduce two more events and state their properties in the following lemma.
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Lemma 4.18 (Lemma 3 in [61]). For any γ > 0, define

Diγ := {
∣∣(aTi x)2 − (aTi z)2

∣∣ ≤ γ‖h‖|aTi z|}, (4.68)

Di,1γ :=

{
|aTi h|
‖h‖

≤ γ

}
, (4.69)

Di,2γ :=

{∣∣∣∣aTi h‖h‖ − 2aTi z

‖h‖

∣∣∣∣ ≤ γ

}
. (4.70)

On the event E i1 defined in Algorithm 3, the quadratic inequality specifying Diγ implicates

that aTi h belongs to two intervals centered around 0 and 2aTi z, respectively, i.e., Di,1γ and

Di,2γ . The following inclusion property holds

(
Di,1γ

1+
√
2

∩ E i1
)
∪
(
Di,2γ

1+
√
2

∩ E i1
)
⊆ Diγ ∩ E i1 ⊆

(
Di,1γ ∩ E i1

)
∪
(
Di,2γ ∩ E i1

)
. (4.71)

Specifically, following the two inclusion properties (4.67) and (4.71), we have

Di,1γ3 ∩ E
i
1,γ3
⊆ E i3 ∩ E i1 ⊆ E i2 ∩ E i1 ⊆ E i4 ∩ E i1 ⊆ (Di,1γ4 ∪ D

i,2
γ4

) ∩ E i1 (4.72)

where the parameters γ3, γ4 are given by

γ3 := 0.248αh, and γ4 := αh.

Further using the identity (4.66), we have the following lower bound

〈∇`tr(z),h〉 ≥ 2

m

m∑
i=1

(aTi h)21Ei1∩D
i,1
γ3
− 1

m

m∑
i=1

|aTi h|3

|aTi z|
1Di,1γ4 ∩Ei1

− 1

m

m∑
i=1

|aTi h|3

|aTi z|
1Di,2γ4 ∩Ei1

.

(4.73)

The three terms in (4.73) can be bounded following Lemmas 4, 5, and 6 in [61], which

concludes the proof.

Proof of Proposition 4.15
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Observe that

||aTi x| − |aTi z|| =


|aTi h|, if (aTi x)(aTi z) ≥ 0;

|2aTi x+ aTi h|, if (aTi x)(aTi z) < 0.

The following lemma states that {(aTi x)(aTi z) < 0} are rare events when ‖x − z‖ is

small. Hence, med
({∣∣|aTi x| − |aTi z|∣∣}mi=1

)
can be viewed as med({|aTi h|}mi=1) with a

small perturbation.

Lemma 4.19. If m > c0n, then with probability at least 1− c1 exp(−c2m),

1

m

m∑
i=1

1{(aTi x)(aTi z)<0} < 0.05 (4.74)

holds for all z,x satisfying ‖z − x‖ < 1
11
‖x‖.

Proof. See Section 4.6.4.

By Lemma 4.8 and Lemma 4.19, we have

θp−0.05

(
{|aTi h|}

)
≤ θp

({∣∣|aTi x| − |aTi z|∣∣}) ≤ θp+0.05

(
{|aTi h|}

)
(4.75)

for all x and z satisfying ‖x− z‖ ≤ 1
11
‖z‖ with high probability.

For the model (4.1) with a fraction s of outliers, due to Lemma 4.8, we have that

θ 1
2
−s({

∣∣|aTi x| − |aTi z|∣∣}) ≤ θ 1
2
({|√yi − |aTi z||}) ≤ θ 1

2
+s({

∣∣|aTi x| − |aTi z|∣∣}). (4.76)

Combining with (4.75), we obtain that

θ0.45−s({|aTi h|}) ≤ θ 1
2
({|√yi − |aTi z||}) ≤ θ0.55+s({|aTi h|}). (4.77)

Next it suffices to show that θ0.45−s, θ0.55+s({|aTi h|}) are on the order of ‖h‖ for small s.
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Let ãi = |aTi h|/‖h‖. Then ãi’s are i.i.d. copies of a folded standard Gaussian random

variable (i.e., |ξ| where ξ ∼ N (0, 1)). We use φ(·) to denote the density of folded standard

Gaussian distribution.

For s = 0.01, we calculate that

φ(θ0.44) = 0.67, φ(θ0.45) = 0.67, φ(θ0.55) = 0.60, φ(θ0.56) = 0.59 (4.78)

θ0.44(φ) = 0.58, θ0.45(φ) = 0.6, θ0.55(φ) = 0.76, θ0.56(φ) = 0.78. (4.79)

By Lemma 4.6, the sample quantiles concentrate on population quantiles. Thus, for any

fixed pair (x, z),

(0.6− ε)‖h‖ ≤ θ1/2({
∣∣|aTi x| − |aTi z|∣∣}mi=1) ≤ (0.76 + ε)‖h‖, (4.80)

holds with probability at least 1− 2 exp(−cmε−2).

Following the argument of net covering similarly to that in Section 4.6.4, the proposi-

tion is proved.

Proof of Proposition 4.16

The proof adapts the proof of Proposition 2 in [61]. We outline the main steps for

completeness. Observe that for the noise-free case, yi = |aTi x|. We obtain

∇Rtr(z) =
1

m

m∑
i=1

(
(aTi z)− |aTi x| ·

aTi z

|aTi z|

)
ai1T i

=
1

m

∑
i/∈B

(aTi h)ai1T i +
1

m

∑
i∈B

(aTi z + aTi x)ai1T i , (4.81)

where B := {i : (aTi x)(aTi z) < 0}. If ‖h‖/‖x‖ is small enough, the cardinality of B is

small and thus one expects the contribution of the second term in (4.81) to be negligible.

We note that events T i are not statistically independent. To remove such dependency,



138

we introduce two new series of events

T i1 := {
∣∣|aTi x| − |aTi z|∣∣ ≤ 0.5α′h‖h‖}, (4.82)

T i2 := {
∣∣|aTi x| − |aTi z|∣∣ ≤ 0.8α′h‖h‖}. (4.83)

Due to Proposition 4.15, the following inclusion property

T i1 ⊆ T i ⊆ T i2 (4.84)

holds for all i, where T i is defined in Algorithm 4. It is easier to work with these new events

because T i1 ’s (resp. T i2 ’s) are statistically independent for any fixed x and z. Because of

the inclusion property (4.84), we have

〈∇Rtr(z),h〉 ≥ 1

m

∑
i/∈B

(aTi h)21T i1 −
1

m

∑
i∈B

|aTi z + aTi x| · |aTi h|1T i2 . (4.85)

Under the condition i /∈ B, we have T i1 = {
∣∣aTi h∣∣ ≤ 0.5α′h‖h‖}. Under the condition

i ∈ B, we have T i2 = {
∣∣aTi x+ aTi z

∣∣ ≤ 0.8α′h‖h‖}. For convenience, we introduce two

parameters γ1 = 0.5α′h and γ2 = 0.8α′h.

We next bound the two terms in (4.85) respectively. For the first term, because of the

inclusion B ⊆ {i : |aTi x| < |aTi h|}, we have

1

m

∑
i/∈B

(aTi h)21T i1 =
1

m

∑
i/∈B

(aTi h)21{|aTi h|≤γ1‖h‖}

≥ 1

m

m∑
i=1

(aTi h)21{|aTi h|≤γ1‖h‖}1{|aTi x|≥|aTi h|}

≥ 1

m

m∑
i=1

(aTi h)21{|aTi h|≤γ1‖h‖}1{|aTi x|≥γ1‖h‖}.

A simpler version of Lemma 4 in [61] gives that if m > c0n, with probability at least
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1− c1 exp(−c2mε
2)

1

m

m∑
i=1

(aTi h)21{|aTi h|≤γ1‖h‖}1{|aTi x|≥γ1‖h‖} ≥ (1− ζ ′1 − ζ ′2 − ε)‖h‖2 (4.86)

holds for all h ∈ Rn, where ζ ′1 := 1−min

{
E

[
ξ21{ξ≥

√
1.01γ1

‖h‖
‖x‖ }

]
,E

[
1{ξ≥

√
1.01γ1

‖h‖
‖x‖ }

]}
and ζ ′2 := E

[
ξ21{|ξ|>

√
0.99γ1}

]
for ξ ∼ N (0, 1).

For the second term, we have

1

m

∑
i∈B

|aTi z + aTi x||aTi h|1T i2 ≤ γ2‖h‖
1

m

∑
i∈B

|aTi h| ≤ γ2‖h‖
1

m

m∑
i=1

|aTi h|1{|aTi x|<|aTi h|},

(4.87)

where the second inequality is due to the inclusion property B ⊆ {i : |aTi x| < |aTi h|}.

Lemma 4.20. For any ε > 0, if m > c0nε
−2 log ε−1, then with probability at least 1 −

C exp(−c1ε
2m),

1

m

m∑
i=1

|aTi h| · 1{|aTi x|<|aTi h|} ≤ (0.12 + ε) ‖h‖ (4.88)

holds for all non-zero vectors x,h ∈ Rn satisfying ‖h‖ ≤ 1
20
‖x‖. Here, c0, c1, C > 0 are

some universal constants.

Proof. See Section 4.6.4.

Thus, putting together (4.86), (4.87) and Lemma 4.20 concludes the proof.

Proof of Proposition 4.17

This proof adapts the proof of Lemma 7 in [61]. Denote vi :=
(
aTi z − |aTi x|sgn(aTi z)

)
1T i .

Then

∇Rtr(z) =
1

m
ATv,
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where A is a matrix with each row being aTi and v is a m−dimensional vector with each

entry being vi. Thus, for sufficiently large m/n, we have

‖∇Rtr(z)‖ =

∥∥∥∥ 1

m
ATv

∥∥∥∥ ≤ 1

m
‖A‖ · ‖v‖ ≤ (1 + δ)

‖v‖√
m

where the last inequality is due to the spectral norm bound ‖A‖ ≤
√
m(1 + δ) following

from [142, Theorem 5.32].

We next bound ‖v‖. Let v = v(1) + v(2), where v(1)
i = aTi h1T i\Bi and v(2)

i = (aTi x+

aTi z)1T i∩Bi , where Bi := {(aTi x)(aTi z) < 0}. By triangle inequality, we have ‖v‖ ≤

‖v(1)‖ + ‖v(2)‖. Furthermore, given m > c0n, by [45, Lemma 3.1] with probability 1 −

exp(−cm), we have

1

m
‖v(1)‖2 =

1

m

m∑
i=1

(aTi h)2 ≤ (1 + δ)‖h‖2.

By Lemma 4.19, we have with probability 1− C exp(−c1m)

1

m
‖v(2)‖2 ≤ (0.8α′h‖h‖)2 ·

(
1

m

m∑
i=1

1{(aTi x)(aTi z)<0}

)
≤ 0.8‖h‖2

holds, where the last inequality is due to Lemma 4.19. Hence,

‖v‖√
m
≤
(√

1 + δ +
√

0.8
)
‖h‖.

This concludes the proof.

Proof of Lemma 4.19

Denote correlation ρ := zTx
‖z‖‖x‖ . Under the condition ‖z − x‖ ≤ 1

11
‖x‖, simple calcu-

lation yields 0.995 < ρ ≤ 1. It suffices to show that the result holds with high probability

for all x and z satisfying ρ > 0.995. Since now the claim is invariant with the norms of x

and z, we assume that both x and z have unit length without loss of generality.



141

We first establish the result for any fixed x and z and then develop a uniform bound

by covering net argument in the end. We introduce a Lipschitz function to approximate the

indicator function. Define

χ(t) :=



1, if t < 0;

−1
δ
· t+ 1, if 0 ≤ t ≤ δ;

0, else;

and then χ(t) is a Lipschitz function with Lipschitz constant 1
δ
. In the following proof, we

set δ = 0.001. We further have

1{(aTi x)(aTi z)<0} ≤ χ
(
(aTi x)(aTi z)

)
≤ 1{(aTi x)(aTi z)<δ}. (4.89)

For convenience, we denote bi := aTi x and b̃i := aTi z. Then (bi, b̃i) takes the jointly

Gaussian distribution with mean µ = (0, 0)T and correlation ρ (bi and b̃i have unit variance).

We next estimate the expectation of 1{(aTi x)(aTi z)<δ} as follows.

E[1{(aTi x)(aTi z)<δ}] = P
{

(aTi x)(aTi z) < δ
}

=

∫∫
τ1·τ2<δ

f(τ1, τ2)dτ1dτ2, (4.90)

where f(τ1, τ2) is the density of the jointly Gaussian random variables (bi, b̃i). Note that

E[1{(aTi x)(aTi z)<δ}] is decreasing on ρ and for the case ρ = 0.995 we get E[1{(aTi x)(aTi z)<δ}] =

0.045 numerically. This implies that

E[χ
(
(aTi x)(aTi z)

)
] ≤ 0.045

for δ = 0.001. Furthermore, χ
(
(aTi x)(aTi z)

)
for all i are bounded and hence sub-
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Gaussian. By Hoeffding type inequality for sub-Gaussian tail [142], we have

P

[
1

m

m∑
i=1

χ
(
(aTi x)(aTi z)

)
> (0.045 + ε)

]
< exp(−cmε2), (4.91)

for some universal constant c, as long as ρ ≥ 0.995.

We have proved so far that the claim holds for fixed x and z. We next obtain a uniform

bound over all x and z with unit length. Let N ′ε be an ε-net covering the unit sphere in Rn

and set

Nε = {(x0, z0) : (x0, z0) ∈ N ′ε ×N ′ε}. (4.92)

One has cardinality bound (i.e., the upper bound on the covering number) |Nε| ≤ (1 +

2/ε)2n. Then for any pair (x, z) with ‖x‖ = ‖z‖ = 1, there exists a pair (x0, z0) ∈ Nε

such that ‖x−x0‖ ≤ ε and ‖z−z0‖ ≤ ε. Taking the union bound for all the points on the

net, we claim that

1

m

m∑
i=1

χ
(
(aTi x0)(aTi z0)

)
≤ 0.045 + ε, ∀(x0, z0) ∈ Nε (4.93)

holds with probability at least 1− (1 + 2/ε)2n exp(−cmε2).

Since χ(t) is Lipschitz with constant 1/δ, we have

∣∣χ ((aTi x)(aTi z)
)
− χ

(
(aTi x0)(aTi z0)

)∣∣ ≤ 1

δ

∣∣(aTi x)(aTi z)− (aTi x0)(aTi z0)
∣∣ . (4.94)

Moreover, by [61, Lemma 1],

1

m
‖A(M)‖1 ≤ c2‖M‖F , for all symmetric rank-2 matricesM ∈ Rn×n, (4.95)

holds with probability at least 1 − C exp(−c1m) as long as m > c0n for some constants
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C, c0, c1, c2 > 0. Consequently, on the event that (4.95) holds, we have

∣∣∣∣∣ 1

m

m∑
i=1

χ
(
(aTi x)(aTi z)

)
− 1

m

m∑
i=1

χ
(
(aTi x0)(aTi z0)

)∣∣∣∣∣
≤ 1

m

m∑
i=1

∣∣χ ((aTi x)(aTi z)
)
− χ

(
(aTi x0)(aTi z0)

)∣∣
≤ 1

δ
· 1

m
‖A(xzT − x0z

T
0 )‖1 due to (4.94)

≤ 1

δ
· c2‖xzT − x0z

T
0 ‖F due to (4.95)

≤ 1

δ
· c2(‖x− x0‖ · ‖z‖+ ‖z − z0‖ · ‖x0‖) ≤ 2c3ε/δ.

On the intersection of events that (4.93) and (4.95) hold, we have

1

m

m∑
i=1

χ
(
(aTi x)(aTi z)

)
≤ (0.045 + ε+ 2c3ε/δ) , (4.96)

for all x and z with unit length and ρ ≥ 0.995. Since ε can be arbitrarily small, the proof

is completed.

Proof of Lemma 4.20

We first observe that for any γ,

1{|aTi x|<|aTi h|} ≤ 1{|aTi x|<γ‖x‖} + 1{|aTi h|≥γ‖x‖} ≤ 1{|aTi x|<γ‖x‖} + 1{|aTi h|≥20γ‖h‖} (4.97)

where the last inequality is due to the assumption ‖h‖‖x‖ ≤
1
20

.

To establish the lemma, we set γ = 0.15 and denote γ′ := 20γ = 3. We next respec-

tively show that

1

m

m∑
i=1

|aTi h|1{|aTi x|<γ‖x‖} ≤ (0.11 + ε)‖h‖ (4.98)
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for all x,h ∈ Rn, and

1

m

m∑
i=1

|aTi h|1{|aTi h|>γ′‖h‖} ≤ (0.01 + ε)‖h‖ (4.99)

for all h ∈ Rn.

We first prove (4.98). Without loss of generality, we assume that h and x have unit

length. We introduce a Lipschitz function to approximate the indicator functions, which is

defined as

χx(t) :=



1, if |t| < γ;

1
δ
(γ − |t|) + 1, if γ ≤ |t| ≤ γ + δ;

0, else.

Then χx(t) is a Lipschitz function with constant 1
δ
. We further have

1{|aTi x|<γ} ≤ χx(a
T
i x) ≤ 1{|aTi x|<γ+δ}. (4.100)

We first prove bounds for any fixed pair h,x, and then develop a uniform bound later on.

We next estimate the expectation of |aTi h|1{|aTi x|<γ+δ},

E[|aTi h|1{|aTi x|<γ+δ}] =

∫∫ ∞
−∞
|τ1|1{|τ2|<γ+δ} · f(τ1, τ2)dτ1dτ2, (4.101)

where f(τ1, τ2) is the density of two jointly Gaussian random variables with correlation
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ρ = hTx
‖h‖‖x‖ 6= ±1. We then continue to derive

E[|aTi h|1{|aTi x|<γ+δ}]

=
1

2π
√

1− ρ2

∫ ∞
−∞
|τ1| exp

(
−τ

2
1

2

)
·
∫ γ+δ

−(γ+δ)

exp

(
−(τ2 − ρτ1)2

2(1− ρ2)

)
dτ2dτ1 (4.102)

=
1√
2π

∫ ∞
−∞
|τ1| exp

(
−τ

2
1

2

)
·
∫ γ+δ−ρτ1√

2(1−ρ2)

−γ−δ−ρτ1√
2(1−ρ2)

exp
(
−τ 2

)
dτdτ1 by changing variables

=
1√
8π

∫ ∞
−∞
|τ1| exp

(
−τ

2
1

2

)
·

(
erf

(
γ + δ − ρτ1√

2(1− ρ2)

)
− erf

(
−γ − δ − ρτ1√

2(1− ρ2)

))
dτ1

(4.103)

For |ρ| < 1, E[|aTi h|1{|aTi x|<γ+δ}] is a continuous function of ρ. The last integral

(4.103) can be calculated numerically. Figure 4.6 plots E[|aTi h|1{|aTi x|<γ+δ}] for γ = 0.15

and δ = 0.01 over ρ ∈ (−1, 1). Furthermore, (4.102) indicates that E[|aTi h|1{|aTi x|<γ+δ}]

is monotonically increasing with both θ and δ. Thus, we obtain a universal bound

E[|aTi h|1{|aTi x|<γ+δ}] ≤ 0.11‖h‖ for γ < 0.15 and δ = 0.01, (4.104)

which further implies E[|aTi h|χx(aTi x)] ≤ 0.11‖h‖ for γ < 0.15 and δ = 0.01.
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Fig. 4.6: E[|aTi h|1{|aTi x|<γ+δ}] with respect to ρ
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Furthermore, |aTi h|χx(aTi x)’s are sub-Gaussian with sub-Gaussian norm O(‖h‖). By

the Hoeffding type of sub-Gaussian tail bound [142], we have

P

[
1

m

m∑
i=1

|aTi h|χx(aTi x) > (0.11 + ε) ‖h‖

]
< exp(−cmε2), (4.105)

for some universal constant c.

We have proved so far that the claim holds for a fixed pair h,x. We next obtain a

uniform bound over all x and h with unit length. LetN ′ε be a ε-net covering the unit sphere

in Rn and set

Nε = {(x0,h0) : (x0,h0) ∈ N ′ε ×N ′ε}.

One has cardinality bound (i.e., the upper bound on the covering number) |Nε| ≤ (1 +

2/ε)2n. Then for any pair (x,h) with ‖x‖ = ‖h‖ = 1, there exists a pair (x0,h0) ∈ Nε

such that ‖x − x0‖ ≤ ε and ‖h − h0‖ ≤ ε. Taking the union bound for all the points on

the net, one can show

1

m

m∑
i=1

|aTi h0|χx
(
aTi x0

)
≤ 0.11 + ε, ∀(x0,h0) ∈ Nε (4.106)

holds with probability at least 1− (1 + 2/ε)2n exp(−cmε2).

Since χx(t) is Lipschitz with constant 1/δ, we have the following bound

∣∣χx (aTi x)− χx (aTi x0

)∣∣ ≤ 1

δ

∣∣aTi (x− x0)
∣∣ . (4.107)
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Consequently, on the event that (4.95) holds, we have

∣∣∣∣∣ 1

m

m∑
i=1

|aTi h|χx
(
aTi x

)
− 1

m

m∑
i=1

|aTi h0|χx
(
aTi x0

)∣∣∣∣∣
≤ 1

m

m∑
i=1

∣∣|aTi h|χx (aTi x)− |aTi h0|χx
(
aTi x0

)∣∣
≤ 1

m

m∑
i=1

∣∣aTi (h− h0)
∣∣+

1

m

m∑
i=1

1

δ

∣∣aTi h0

∣∣ · ∣∣aTi x− aTi x0

∣∣ due to (4.107)

≤ c′2‖h− h0‖+
1

δ
· c2‖h0(x− x0)T‖F due to (4.95)

≤ c3ε/δ.

On the intersection of events that (4.106) and (4.95) hold, we have

1

m

m∑
i=1

|aTi h|χx
(
aTi x0

)
≤ (0.11 + ε+ 2c3ε/δ) , (4.108)

for all x and h with unit length.

We next prove (4.99). Without loss of generality, we assume that h has unit length. We

introduce a Lipschitz function to approximate the indicator functions, which is defined as

χh(t) :=



|t|, if |t| > γ′;

1
δ
(|t| − γ′) + γ′, if γ′(1− δ) ≤ |t| ≤ γ′;

0, else.

Then, χh(t) is a Lipschitz function with constant 1
δ
. We further have

|aTi h|1{|aTi h|>γ′‖h‖} ≤ χh(a
T
i h) ≤ |aTi h|1{|aTi h|>γ′(1−δ)‖h‖}. (4.109)

We first prove bounds for any fixed h, and then develop a uniform bound later on.
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We next estimate the expectation of |aTi h|1{|aTi h|>γ′(1−δ)‖h‖} as follows:

E[|aTi h|1{|aTi h|>γ′(1−δ)‖h‖}] =

∫ ∞
−∞
|τ |1{|τ |>γ′(1−δ)} · f(τ)dτ,

= 2 · 1√
2π

∫ ∞
γ′(1−δ)

τ exp

(
−τ

2

2

)
dτ

=

√
2

π
exp(−γ′2(1− δ)2/2) < 0.01 for γ′ = 3, δ = 0.01, (4.110)

where f(τ) is the density of the standard Gaussian. We note that E[|aTi h|1{|aTi h|>γ′(1−δ)‖h‖}]

is monotonically increasing with δ and decreasing with γ′. Furthermore, E[χh(a
T
i h)] ≤

0.01‖h‖ for γ′ ≥ 3 and δ ≤ 0.01.

Moreover, χh(aTi h) for all i are sub-Gaussian with sub-Gaussian norm O(‖h‖). By

the Hoeffding type sub-Gaussian tail bound [142], we have

P

[
1

m

m∑
i=1

χh(a
T
i h) > (0.01 + ε) ‖h‖

]
< exp(−cmε2), (4.111)

for some universal constant c.

We have proved so far that the claim holds for a fixed h. We next obtain a uniform

bound over all h with unit length. Let Nε be an ε-net covering the unit sphere in Rn. One

has cardinality bound (i.e., the upper bound on the covering number) |Nε| ≤ (1 + 2/ε)n.

Then for any h with unit length, there exists a h0 ∈ Nε such that ‖h − h0‖ ≤ ε. Taking

the union bound for all the points on the net, one can show

1

m

m∑
i=1

χh(a
T
i h0) ≤ 0.01 + ε, ∀h0 ∈ Nε (4.112)

holds with probability at least 1− (1 + 2/ε)n exp(−cmε2).
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Consequently, we have

∣∣∣∣∣ 1

m

m∑
i=1

χh(a
T
i h)− 1

m

m∑
i=1

χh(a
T
i h0)

∣∣∣∣∣
≤ 1

m

m∑
i=1

∣∣χh(aTi h)− χh(aTi h0)
∣∣

≤ 1

δ
· 1

m

m∑
i=1

∣∣aTi (h− h0)
∣∣

≤ 1

δ
c′2‖h− h0‖ ≤ c3ε/δ,

where the second inequality is because χh(t) is Lipschitz continuous with constant 1/δ.

On the intersection of events that (4.112) and (4.95) hold, we have

1

m

m∑
i=1

χh(a
T
i h) ≤ (0.01 + ε+ c3ε/δ) , (4.113)

for all h with unit length.

Putting together (4.108) and (4.113), and since ε can be arbitrarily small, the proof is

completed.
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CHAPTER 5

FUTURE WORK

We study the robust PCA problem and the phase retrieval problem in this dissertation. For

the robust PCA problem we provide a more refined analysis of PCP via local coherence.

For the phase retrieval problem, we first propose a fast algorithm RWF that solves phase

retrieval by minimizing a nonconvex and nonsmooth quadratic loss function. This loss

function sacrifices the smoothness but enjoys advantages in statistical and computational

efficiency. We further propose a median truncation approach to modify existing TWF and

RWF algorithms to resist the outliers that are often encountered in the phase retrieval mea-

surements. Our median truncation modified algorithms do not require prior knowledge of

outliers and perform well in an oblivious manner.

These works motivate us to further explore several directions in the future. We describe

two interesting problems that are under consideration.

5.1 Structural Phase Retrieval

In practice, signals often have specific structures e.g., non-negativity, sparsity, etc. Mo-

tivated by the idea of compressive sensing, it is anticipated that with the prior structural

knowledge, the number of measurements that is required to guarantee exact recovery can
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be substantially reduced.

Specifically, [79] proposed the thresholded Wirtinger flow algorithm to recover a sparse

underlying signal, which showed that the true signal x can be recovered with high probabil-

ity and a linear convergence rate, as long as the number of samples isO(k2 log n), where k

is cardinality of the support set of x. One interesting future direction is to modify the RWF

algorithm to exploit such structures to assist the recovery. The lower-order loss function

may offer simplicity and improvement to the proof of the performance guarantee in such

cases.

The heuristic algorithm can be designed as in Algorithm 5. We introduce an amending

function H(·) which can admit the prior knowledge of the signal, e.g., sparsity level and

non-negativity.

Algorithm 5 Reshaped Wirtinger Flow with Prior
Input: y = {yi}mi=1, {ai}mi=1, amending function H , gradient stepsize µ;

Initialization: Same as in RWF (see Algorithm 1).
Gradient loop: for t = 0 : T − 1 do

Compute the amending parameter τ (t),

Update z(t+1) = Hτ (t)

(
z(t) − µ · ∇`(z(t))

)
. (5.1)

Output z(T ).

We anticipate such a modified algorithm can improve the sample complexity achieved

in [79] and expedite the convergence due to the lower-order loss function.

5.2 Fast and Robust Low-rank Matrix Recovery

Motivated by the success of nonconvex heuristics in phase retrieval problem, researchers

have extensively studied the nonconvex approaches to recover the low-rank matrix.
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Problem 5.1 (Low-rank Matrix Recovery). FindX ∈ Rn×p with minimal rank such that

A(X) = y (5.2)

where A : Rn×p → Rm is a affine transformation (known) and y ∈ Rm is the observation

vector (known).

Suppose that the underlying solution X is a rank-r positive semidefinite matrix, and

can be decomposed as X = UUT , where U ∈ Rn×r. Recently, [85, 86] proposed to

minimize the following loss function

`(Z) :=
1

4m
‖A(ZZT )− y‖2, (5.3)

where Z ∈ Rn×r. The recovery of the true matrix is guaranteed by minimizing the non-

convex objective (5.3), when A is composed of independent Gaussian matrix measure-

ments (i.e., elements are independent Gaussian random variables). Specifically, [86] pro-

posed an algorithm that achieves the linear convergence rate and the sample complexity

O(nr3 log n).

However, it consumes huge space to store the Gaussian matrices especially when the

dimension becomes large. Thus rank-1 measurement matrices are preferred in this scenario

[27]. For the positive semidefinite (PSD) matrixX = UUT , the measurements become

yi = 〈aiaTi ,X〉 = aTi Xai = ‖UTai‖2, i = 1, . . . ,m, (5.4)

where ai ∈ Rn are the measurement vectors and m is the number of measurements.

It is interesting to extend the idea of RWF to improve the low-rank matrix recovery.

Instead of minimizing (5.2), we propose to minimize a lower-order loss function

R(Z) :=
1

2m

m∑
i=1

(‖ZTai‖ −
√
yi)

2. (5.5)
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We anticipate that the above loss function will bring us benefit on the convergence rate and

the sample complexity.

It is also interesting to consider the robust low-rank matrix recovery [146]. We expect

that the median-truncation approach will provide new improvement along this line.
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