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ABSTRACT 

Physics-based infiltration models, like Lawrence Berkeley Laboratory (LBL) and Alberta 

Infiltration Model (AIM-2), have been used to predict infiltration rate in near real time.  

These models are constructed from the driving forces of wind and temperature difference 

across the building enclosure system, both of which cause pressure differences across the 

enclosure system for infiltration. The models incorporate other major factors like 

building leakage characteristics, distributions of openings, microenvironment conditions 

around the building enclosure as affected by building shields, topography and building 

shape. The accuracy of the models dependents on getting these factors right. However, 

these factors are specific for individual buildings and measuring these factors in occupied 

buildings is difficult. In theory, these can be determined by using a generalized table and 

blower door test but  it requires heavy equipment and skilled work force, which is 

difficult to implement in occupied houses.  

 In this dissertation, a methodology is developed to determine the air change rate (ACH) 

and indoor air quality (IAQ) in near-real time by combining a physics-based infiltration 

model with a tracer gas decay test method. The methodology is applicable to naturally 

ventilated houses. Existing infiltration models are modified explicitly to include the 

impact of the wind direction.  The input data for the model also include indoor air 

temperature and weather data.  Tracer gas method is used to determine the infiltration 

model parameters using a multi variable nonlinear regression analysis. Once these 

parameters are obtained, it is able to predict the ACH with 10% and 16% error for AIM-



 

 

2 and LBL models, respectively. This method does not require the blower door test.  

Furthermore, a low cost device, a combination of  𝐶𝑂2 sensor, solenoid valve and 

temperature sensor, has been developed to apply the methodology to measure ACH and 

IAQ in near-real time without the need for skilled personnel. 
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SYMBOLS 

A= leakage area, 𝑓𝑡2 𝑜𝑟 𝑚2 
𝐴𝑒= Total effective leakage area,  𝑓𝑡2 𝑜𝑟 𝑚2 
𝐴𝑐=ceiling leakage area,  𝑓𝑡2 𝑜𝑟 𝑚2 
𝐴𝑓=floor leakage area ,  𝑓𝑡2 𝑜𝑟 𝑚2 

ACH = Air change rate , ℎ−1 
B = interaction coefficient 
b = width , 𝑓𝑡 𝑜𝑟 𝑚 

C = flow coefficient or building leakage characteristics, 
𝑐𝑓𝑚

(𝑖𝑛.𝑜𝑓 𝑤𝑎𝑡𝑒𝑟)2 
𝑜𝑟

𝑚3

ℎ(𝑃𝑎)𝑛
 

𝐶𝑐 = ceiling building leakage characteristics, 
𝑐𝑓𝑚

(𝑖𝑛.𝑜𝑓 𝑤𝑎𝑡𝑒𝑟)2 
𝑜𝑟

𝑚3

ℎ(𝑃𝑎)𝑛
 

𝐶𝑓 = floor building leakage characteristics, 
𝑐𝑓𝑚

(𝑖𝑛.𝑜𝑓 𝑤𝑎𝑡𝑒𝑟)2 
𝑜𝑟

𝑚3

ℎ(𝑃𝑎)𝑛
 

𝐶𝑤 = wall building leakage characteristics, 
𝑐𝑓𝑚

(𝑖𝑛.𝑜𝑓 𝑤𝑎𝑡𝑒𝑟)2 
𝑜𝑟

𝑚3

ℎ(𝑃𝑎)𝑛
 

𝐶𝑓𝑙𝑢𝑒 =flue building leakage characteristics, 
𝑐𝑓𝑚

(𝑖𝑛.𝑜𝑓 𝑤𝑎𝑡𝑒𝑟)2 
𝑜𝑟

𝑚3

ℎ(𝑃𝑎)𝑛
 

𝐶𝑑= discharge coefficient 

𝐶𝑝= wind pressure coefficient 

𝐶𝑠 = the wind shelter effect 
𝐶𝑡 = Tracer gas concentration, 𝑝𝑝𝑚 

g =gravitational acceleration, 
𝑓𝑡

𝑠2  𝑜𝑟 
𝑚

𝑠2 

𝐺𝑡  = tracer gas generation rate , lb/min 

h = height,  𝑓𝑡 𝑜𝑟 𝑚 

l = length,  𝑓𝑡 𝑜𝑟 𝑚 

m = mass, 𝑙𝑏𝑚 𝑜𝑟 𝑘𝑔 

𝑚̇ = mass flow rate, 
𝑙𝑏𝑚

𝑚𝑖𝑛
 𝑜𝑟 

𝑘𝑔

𝑚𝑖𝑛
  

n = flow exponent 

𝑁 =Air change rate, ℎ−1 

𝑃 =pressure, 𝑖𝑛 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟  𝑜𝑟 𝑃𝑎 

𝑃𝑟𝑒𝑓=Pressure reference 4 Pa 

Q =flow rate , 
𝑓𝑡3

ℎ
 𝑜𝑟 

𝑚3

ℎ
 

𝑄𝑤= wind induced infiltration, 
𝑓𝑡3

ℎ
 𝑜𝑟 

𝑚3

ℎ
 

𝑄𝑠= stack induced infiltration, 
𝑓𝑡3

ℎ
 𝑜𝑟 

𝑚3

ℎ
 

T = temperature, F or R 
t = time, ℎ−1 
V=volume, 𝑓𝑡3 𝑜𝑟 𝑚3 
Z = the neutral pressure line fraction. 
 
Greeks 
𝑣=wind velocity , mph 

ρ =air density, 
𝑙𝑏𝑚

𝑓𝑡3
 

𝑓𝑠 = stack coefficient  
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 𝑓𝑤 = wind coefficient 
 
Subscripts 
w =wind 
i = indoor 
o=outdoor 
NPL=neutral pressure height 
 lvg = leaving 
ent= entering  
t= tracer gas 
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1 INTRODUCTION 

The housing sector uses around 40% of the total energy consumption in the U.S. (Skon 

et al., 2011; Younes et al., 2012). The rising cost of energy and instability of the energy 

market and the global climate change suggest that the world needs to rethink its 

energy usage.  Different efforts and tight measures have been taken for sustainable 

development around the world since the 1970’s oil crisis.   One important area of 

improvement is building heating and cooling energy efficiency. Buildings lose heat by 

conduction, ventilation and infiltration.  Infiltration accounts for up to 50% of the 

heating load for residential buildings (Younes et al., 2012). New standards are in place 

to make airtight buildings in order to reduce the house heating and cooling load.  Old 

buildings, however, require retrofitting to improve their energy efficiency.  

Engineers used different methods to predict the infiltration rate,  which is also defined 

as Air Change Rate in terms of air changes per hour (ACH) –i.e., the total volumetric 

airflow rate (
𝑚3

ℎ
 𝑜𝑟 

𝑓𝑡3

ℎ
) due to infiltration divided by the volume of the house (in 𝑚3 

or 𝑓𝑡3).  A study from the Lawrence Berkeley National laboratory database on air 

leakage indicated that the normalized average leakage air change rate of old houses 

was 1.18 ACH with a standard deviation of 0.81 ACH at 50 Pa.   In newly constructed 

houses, the leakage rate drops to 0.55 ACH for convectional houses and even less for 

energy efficient houses as shown in table 1 (Sherman and Matson, 2002). Blower door 

test was used to measure the ACH.  The test method  is discussed in chapter two.   
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Table 1: US house air leakage at 50 Pa differential pressure (Sherman and 

Matson, 2002) 

Program No. of 
house 

Normalize
d leakage 

Standard 
Deviation 

Method 
used 

Conventional: Not built as a 
part of energy-efficient 
program 

1200 0.55 0.55 Blower door 

Energy efficient: Improved  
construction (non- Alaska 
home) 

3100  0.31 0.13 Blower door 

AKWarm: Program in Alaska 4400 0.23 0.1 Blower door 

 

For most residential houses in the U.S, infiltration is the main source of ventilation. 

Airtight buildings raise concern in indoor air quality (IAQ) unless mechanical 

ventilation is used (Skon et al., 2011). According to the U.S. Environmental Protection 

Agency (EPA), people spend 90% of their time, on average, indoors and indoor air 

pollutant concentrations are 2 to 5 times higher than the outdoors.  It is important to 

have adequate amount of infiltration or air change rate .  

Infiltration airflow is driven by the pressure difference across the building envelope. 

For a naturally ventilated house with a certain leakage opening, this driving force is 

caused by the temperature difference between the inside and the outside climate as 

well as by the wind. They are unsteady and difficult to predict.   Air tightness also plays 

an important role. Beside the air tightness, occupants’ activities such as entering and 
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leaving the house, opening windows, turning on the kitchen or bathroom exhaust fan, 

also affect infiltration flow. 

 

 

 

 

 

 

 

Figure 1 shows factors that affect the infiltration mechanism in a naturally ventilated 

house. It depends on the indoor and outdoor temperature difference, wind speed, 

wind direction, building enclosure system, human behavior, building surroundings, 

building shape, building orientation, and topography.   

The main question is how do we measure the ACH for occupied and naturally 

ventilated houses? Monitoring the indoor air quality of the house is important to 

create a healthy and comfortable environment. Temperature, relative humidity and 

CO2 level are the most common parameters monitored for IAQ. Nevertheless, they are 

not sufficient to predict the ACH near-real time.  

Figure 1: Factors that affect infiltration 

Mechanical 
System 

Building 
infiltration 

Building 
Enclosure 

Wind 
direction 

Wind speed 
Topography 

Indoor 
temperature Outdoor 

temperature 

Building 
Surrounding 

Human activity 

Building shape 
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The two standard methods to measure ACH are the building pressurization method 

and tracer gas method.  Building pressurization method is used to compare infiltration 

between buildings and to measure building leakage characteristics.  However, it is not 

applicable to near real time infiltration measurement. Tracer gas method is the most 

accurate infiltration measurement near-real time. The choices of the tracer gas are 

limited. Most tracer gases are toxic, flammable or have impact on global warming. The 

presence of the occupant in the test site could affect the measurement for tracer gas 

like carbon dioxide.  Therefore, tracer gas methods are also not applicable at occupant 

presence.  Both tracer gas method and building pressurization method are expensive 

and inconvenient for continuous monitoring ACH in occupied residential houses.   

Infiltration models are an alternative way to determine the infiltration rate in the 

building. The most common infiltration models are Reduction Pressurization Test, 

Regression Technique, ASHRAE Model, Building Research Establishment (BRE) model, 

Lawrence Berkley Laboratory (LBL) model, and Alberta Infiltration model (AIM-2).   

All the infiltration models require blower door test to determine building leakage 

characteristics, which is expensive and requires skilled labor. Physics based models, 

LBL and AIM-2, give a better prediction than the other imperial model.  These models 

are constructed from infiltration driving forces: wind and stack effect induced 

pressure differences across the building enclosure. They also include all of the 

important parameters like neutral pressure level, wind shield effect and building 

leakage characteristics. The accuracy of these models heavily depends on quantifying 

these factors. However, these factors  are specific to individual buildings. Building 

pressurization test, also known as blower door test, is essential to determine building 
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leakage characteristics, which requires expensive equipment and skilled labor. To 

overcome these challenges, this dissertation addresses the following two research 

questions: 

1.  Is it possible to measure ACH for occupied residential house by combining 

the infiltration model and tracer gas method with comparatively lower cost 

and less equipment for skilled work force?  

2. Is it possible to determine the leakage characterizes without the blower door 

test? 

 

1.1 Problem statement  

Continuous monitoring of the infiltration rate for naturally ventilated residential 

buildings has an impact on understanding energy lost mechanisms as well as indoor 

air quality. This information will help homeowners to understand the indoor air 

quality of the house as well as the building leakage characteristics to take action in a 

timely manner and create an energy efficient and healthy building. To do this, 

measuring ACH for naturally ventilated houses plays a vital role.   

The only currently available direct method to measure ACH continuously is constant 

concentration tracer gas method.  The equipment is sophisticated and expensive. Most 

tracer gases used for this technique are toxic and flammable, which cannot be used at 

the presence of occupants. Moreover, they can contribute to global warming. 

Therefore, it is difficult to continuously monitor ACH in naturally ventilated residential 

buildings.  
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The indirect way to predict the infiltration is to use the infiltration model based on the 

indoor and outdoor climate conditions.  The current available ACH models have error 

up to 100 times (Lordache and Catalina, 2012). They require building blower door test 

to determine building air leakage characteristics. This test requires skilled labor and 

expensive equipment.   

In this dissertation, a methodology is developed to measure ACH for naturally 

ventilated buildings near real time by combining the infiltration model and CO2 

measurements with less expensive equipment. 

1.2 Research objective  

The objectives of this research are to: 

 develop a method to monitor infiltration rate for naturally ventilated houses in 

near-real time. 

 develop a method to diagnosis a building envelope system by monitoring the IAQ, 

weather, ACH and energy consumption.  

1.3 Research Scope 

This work is limited to the following conditions: 

 Single family houses with light frame structure 

 Infiltration is the main source of ventilation which is affected by climates, building 

enclosure and building micro environment 
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1.4 Dissertation Outline 

This dissertation is organized in six chapters. The chapters are summarized below: 

Chapter 2 Literature review: Available infiltration measurement and available 

infiltration models for naturally ventilated houses are investigated. The driving force, 

leakage mechanisms, and factors that affect infiltration are reviewed. The drawbacks 

of the existing near-real time infiltration measurement and models are also discussed.  

Chapter 3 Combines IAQ monitoring and modeling method to determine ACH near real 

time:  A methodology is developed to measure ACH by combining IAQ monitoring and 

an infiltration models. The wind induced infiltration equation is modified to include 

the effect of wind direction.  

Chapter 4 Experimental facility and instrumentation:  A detail description of the test 

facility and the equipment used to validate the proposed methodology are presented. 

Chapter 5 Results and discussion: Experiments are done to validate assumptions and 

limitations taken to develop the methodology. The results and discussions are 

presented in this section 

Chapter 6 Application: A low cost monitoring device is introduced to apply the 

developed methodology in a single-family house. This chapter describes the device 

and its application.  

Chapter 7 Summary and Conclusions: Major findings of the research are summarized. 

Chapter 8 Future works: Future works are discussed to make the proposed technique 

applicable, affordable, and accessible. 
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2 AIR INFILTRATION 

Infiltration is the main source of ventilation for most residential buildings in the U.S. 

Therefore, it is important to measure or predict the impact of infiltration to 

understand the heating and cooling energy consumption and indoor air quality. 

Different measuring and infiltration perdition models are used to determine 

infiltration rate in naturally ventilated houses. The infiltration mechanism, infiltration 

model, and infiltration measurement techniques are discussed in this chapter. 

2.1  Air Infiltration mechanisms 

Infiltration is caused by the pressure difference across the building envelop, which is 

not 100% airtight.  The air tightness of the building enclosure system is dependent of 

the building material and workmanship of the building construction. Wind and 

temperature difference between the indoor and outdoor climate creates the  pressure 

difference that causes the air to leak through the opening and cracks of the building 

envelop. Depending upon the size and distribution of leakage paths, air leakages are 

categorized as: 

1. Concentrated leakage:  this is leakage through a large opening (door and/or 

window) and cracks with short path. It only has heat loss, not condensation. The 

flow is turbulent and it is defined by the following orifice equation: 

 

                                    𝑄 = 𝐶𝑑𝐴√
2∆𝑃

𝜌0
                                                   𝑒𝑞𝑛(1) 
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where 𝐴 is leakage opening area, ∆𝑃  is pressure difference across the opening , 𝐶𝑑 

is discharge coefficient and  ρ  is air density 

2. Diffuse leakage:  this is leakage through small cracks in the wall and others in 

which air travels long distance. It causes heat loss and condensation.  Flow is 

laminar and expressed in a Couette flow equation: 

𝑄 =
𝑏ℎ3

12𝜇𝑙
∆𝑃                                             𝑒𝑞𝑛(2)    

where, 𝑏 is the length, ℎ the height of the crack’s cross section, 𝑙 is the length of 

leakage path in flow direction,  and μ is  the viscosity of air . 

 

The above two equations can be presented by a single power law equation:  

𝑄 = 𝐶(∆𝑃)𝑛                                                            𝑒𝑞𝑛(3) 

where, ∆𝑃 is pressure difference across the building enclosure,  𝐶 is the flow 

coefficient, 𝑛 is the flow exponent which is between 0.5 and 1 (corresponding to fully 

developed turbulent flow and laminar flow, respectively).  In practice this value is 

between 0.6 and 0.7 . (Awbi, 2003).  

The value of C and n are defined by a multi-point pressurization/depressurization test 

also known as blower door test. The flow coefficient (𝐶) depends on the building 

material and workmanship. The flow exponent (𝑛), however, reflects the type of 

leakage (i.e.  concentrated or distributed).  
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 Driving force 

Leakage through building enclosure is driven by pressure difference.  This pressure 

difference is mainly caused by wind and/or thermal buoyancy (Stack effect).  Gusting 

wind controls the infiltration for low-rise buildings. For high-rise buildings, stack 

effect can causes significant air movement. These driving forces act independently 

(Younes et al., 2012). 

 Wind effect 

Wind pressure depends on wind velocity, wind direction, local terrain, topography and 

building shape (Younes et al., 2012). 

Pressure caused by wind is derived from the Bernoulli equation as: 

∆𝑃𝑤 = 0.5𝐶𝑝𝜌𝑣2                                                    𝑒𝑞𝑛(4)   

where, 𝐶𝑝  is the wind pressure coefficient , 𝜌 is air density , and 𝑣 is wind velocity. 

The value of  𝐶𝑝   incorporates factors that affect the wind pressure, such as building 

geometry, wind velocity,  and building exposure (surrounding, topography, and 

roughness of the terrain  in the wind direction) (Younes et al., 2012).  

According to Awbi (2003), wind speed from weather station needs evaluation since 

the speed is affected by different factors.  The mean wind speed is determined as 

follows: 

𝑣

𝑣𝑟
= 𝑏𝐻𝑎                                                           𝑒𝑞𝑛(5)  
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where, 𝑣𝑟 is the mean wind speed from the weather station, H is the height above 

ground,  and a and b are terrain parameters given in Table 2. 

Table 2 : Terrain factor (Awbi, 2003) 

Terrain 𝑏 𝑎 

Open flat country 0.68 0.17 

Country with scatter wind break 0.52 0.20 

Urban 0.35 0.25 

City 0.21 0.33 

 

 

 Stack effect                

Stack effect is caused by the temperature difference across the building envelope. 

Pressure difference induced by stack effect is given as: (Lawrence Berkeley National 

Laboratory, 2006; Sherman and Matson, 2002) 

∆𝑃𝑠 = −𝜌𝑔(ℎ − 𝐻𝑁𝑃𝐿) (1 −
𝑇0

𝑇𝑖
)                                             𝑒𝑞𝑛(6)  

where, ℎ is height,  𝐻𝑁𝑃𝐿 is neutral pressure height, and  𝑇𝑖 and 𝑇0 are the indoor and 

outdoor temperature, respectively. 

Determining the neutral pressure height is difficult. Shaw [9] found that the ratio of 

neutral pressure plane height with the building height is around 0.7 from two school 

buildings.  This ratio is recommended to be between 0.2 and 0.7 (Lawrence Berkeley 

National Laboratory, 2006). 
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2.2 Infiltration modeling 

Estimating air infiltration is important in designing the HVAC system of a house. 

Currently different models are available to estimate the ACH. In general, these models 

can be categorized into empirical and network models. 

 Empirical models 

The empirical models are based on collected data and regression analysis. They do not 

explicitly identify the important factors that affect infiltration. The most common 

empirical models to predict infiltration rate are: 

1. Reduction Pressurization Test 

2. Regression Technique  

3. ASHRAE model 

 Reduction pressurizing test 

This is the most widely used method. The infiltration is estimated from pressurization 

test data. It can be calculated in two ways: single point method and multipoint point 

method. In the single point method, the air flow rate required to pressurize the 

building at 50 Pa is measured.  Dividing this flow rate by 20 gives the average 

infiltration rate: 

𝑄 =
𝑄50

20
                                                             𝑒𝑞𝑛(7) 
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where 𝑄50 is leakage at 50 Pascal pressure difference and Q is infiltration. This model 

gives the average infiltration rate. Flow rate is not dependent on the driving force. 

In a multipoint method, Blower Door Test is performed at a different pressure 

difference and power law is used to extrapolate for a particular pressure. The 

reduction pressurization test is however,  not applicable to measure ACH in real time 

since the building has to be pressurized.  

 Regression Technique 

Pressurization data was incorporated with the driving source to fit the data. The 

leakage is given as (Awbi, 2003): 

𝑄 = 𝑎 + 𝑏∆𝑇 + 𝑐𝑣2                                                   𝑒𝑞𝑛(8)  

where 𝑇 is temperature, 𝑣 is wind speed, and 𝑎, 𝑏 and 𝑐 are parameters obtained from 

fitting the data.  This method is not reliable because it does not consider the impact of 

wind direction and shielding effect. 

 ASHRAE model  

ASHREA infiltration model is an over simplified equation that combines the wind and 

stack pressure in the infiltration equation. This model tries to include the effect of the 

building type and shielding effect. The impact of wind direction is not considered in 

this model.  The modeled infiltration (Q) is given as: 

𝑄 = 𝐴√(𝑓𝑠∆𝑇 + 𝑓𝑤𝑣2)             [
𝑚

ℎ

3

]                                    𝑒𝑞𝑛(9)  
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where, A is leakage area, 𝑓𝑠 is stack coefficient, 𝑓𝑤 is wind coefficient, and 𝑣 is weather 

station wind speed. The value of the stack and the wind coefficient is given in Tables 3 

and 4 . 

 

Table 3: Stack coefficient 

Building type Stack coefficient (𝑓𝑠) 

One store 0.00188 

Two-stores 0.00376 

Three-stores 0.00564 

 

Table 4: Wind coefficient: wind shielding factor 

 Building wind coefficient  (𝑓𝑤) 

Shielding class One-story Two-story Three -
story 

No  local shielding  0.00413  0.00544  0.00640 

Light local shielding (few 
obstruction) 

0.00319  0.00421  0.00495 

Moderate local shielding (other 
building with similar height 

0.00226  0.00299  0.00351 

Heavy Shielding ( tall building , 
suburb) 

0.00135 0.00178 0,00209 

Very Heavy shielding  (urban area) 0.00041 0.00054 0.00063 
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 Network Air infiltration model 

These models are physics based models. They are categorized as a single zone model 

and multi-zone model. According to ASTM E779-10 (ASTM E779-10, 2010), a single 

zone is defined as aggregated space in which the pressure differences between any 

two spaces in the aggregation is  less than 5% of the inside-outside pressure 

difference.   In a single zone model, the internal condition of the building is assumed 

to be homogenous. The accuracy of the single zone method is around ±25% (Awbi, 

2003).  The whole house is considered as single zone. A multi-zone model is applied 

for well-defined building zones. As the purpose of this study is to develop a relative 

simple and easy to use approach to quantify the average air change rate of the whole 

house, we limited the study scope to single zone models.  

The wind induced infiltration and stack induced infiltration are calculated separately 

and combined using superposition.   Based on how the wind and stack pressure 

induced infiltration calculated, a single zone model is classified as (Awbi, 2003): 

1. Building Research Establishment model (BRE) 

2. Lawrence Berkeley Laboratory model (LBL) 

3. Alberta –infiltration model (AIM-2) 

 

2.2.2.1.1 Building Research Establishment Model (BRE) 

The BRE model predicts infiltration in the naturally ventilated houses induced by wind 

and stack.  The wind and stack induced infiltrations are calculated separately and are 

then combined to determine the total infiltration rate: 
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𝑄 = √𝑄𝑤
2 + 𝑄𝑠

2                                                                  𝑒𝑞𝑛(10) 

where,  𝑄 is total infiltration, 𝑄𝑤 is wind induced infiltration, and 𝑄𝑠 is stack induced 

infiltration.  

The wind induced infiltration ( 𝑄𝑤) and the stack induced infiltration ( 𝑄𝑠)  are 

calculated by:         

  𝑄𝑤 = 𝐶 [𝜌𝑣2]𝑛𝑓𝑤(𝜃)                                                          𝑒𝑞𝑛(11) 

𝑄𝑠 = C [
∆𝑇𝜌𝑔ℎ

𝑇𝑖𝑛
]
𝑛

𝑓𝑠                                                           eqn(12) 

where, 𝐶 is the building leakage characteristic constant, 𝑛 is the building leakage 

exponent, 𝜌  is  air density, 𝑛 is wind velocity,  𝑓𝑤 is wind factor, and 𝑓𝑠 is stack factor. 

𝑇𝑖𝑛 is the indoor air temperature, ∆𝑇 is the inside and the outside air temperature 

difference, 𝑔 is gravitational acceleration, and ℎ  is the  building height.  

The building leakage characteristic constant (𝐶) and the building leakage exponent (𝑛) 

are determined from building pressurization test.   The values of wind factor (𝑓𝑤) and 

stack factor (𝑓𝑠) are given in Table 5 below. The wind factor is determined as a function 

of building type, building leakage exponent, and wind direction.  
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Table 5: Values of stack and wind factors for BRE model  (Awbi, 2003) 

House type n 𝑭𝒔 𝑭𝒘(0 deg 
wind) 

𝑭𝒘(90 deg 
wind) 

𝑭𝒘(270deg 
wind) 

Detached 0.5 0.26 0.17 0.20  

0.6 0.23 0.15 0.18  

0.7 0.2 0.13 0.16  

Semi-
detached 

0.5 0.26 0.16 0.18 0.12 

0.6 0.23 0.15 0.16 0.10 

0.7 0.20 0.14 0.15 0.08 

Centre 
terrace 

0.5 0.26 0.20 0.13  

0.6 0.23 0.18 0.10  

0.7 0.20 0.16 0.08  

 

 

 

2.2.2.1.2 Lawrence Berkeley Laboratory model (LBL) 

Sherman and Grimsrud (1980)  introduced LBL model. Like the BRE model, the wind 

induced and the stack induced infiltration rates are calculated separately and 

combined using a simple quadratic superposition shown below:  

𝑄 = √𝑄𝑤
2 + 𝑄𝑠

2                                                     𝑒𝑞𝑛(13) 

where   𝑄 is the total infiltration, 𝑄𝑤 is wind induced infiltration, and 𝑄𝑠 is stack 

induced infiltration.  
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 Wind induced infiltration is calculated based on wind speed and leakage area as 

shown below: 

       𝑄𝑤 = 𝑓𝑤𝐴𝑒𝑣                                                      𝑒𝑞𝑛(14) 

where,  𝐴𝑒 is the effective leakage area and 𝑓𝑤 is wind factor  , and v is the wind speed.  

Effective leakage area ( 𝐴𝑒) is defined as:  

𝐴𝑒 =
𝐶(∆𝑃𝑟𝑒𝑓)

𝑛

√2∆𝑃𝑟𝑒𝑓/𝜌
                                                         𝑒𝑞𝑛(15) 

where Δ 𝑃𝑟𝑒𝑓 is the reference pressure, 𝜌  is outdoor air density, C is the building 

leakage characteristics , n is  the  building leakage exponent. 

The building leakage characteristic (C) and exponent (n) are determined from  the 

Blower Door Test.  The reference pressure is usually considered as 4 Pa.  

 

The effective leakage area is a sum of ceiling leakage area (𝐴𝑐 ), floor leakage area (𝐴𝑓), 

and wall leakage area(𝐴𝑤) . They are used to determine wind and stack factors in this 

model.   

𝐴𝑒 = 𝐴𝑐 + 𝐴𝑓 + 𝐴𝑤                                                     𝑒𝑞𝑛(16) 

 

 

Further, the building leakage parameters X and R are defined based on the leakage 

distribution as follows: 
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𝑅 =
𝐴𝑐 + 𝐴𝑓

𝐴𝑒
                                                          𝑒𝑞𝑛(17) 

𝑋 =
𝐴𝑐 − 𝐴𝑓

𝐴𝑒
                                                        𝑒𝑞𝑛(18) 

The wind factor (𝑓𝑤) is one of the parameters used to calculate the wind induced 

infiltration.  It is defined as: 

𝑓𝑤 = 𝑘√(1 − 𝑅)
3

[∝ (
𝐻

10
)𝛾/∝′ (

𝐻′

10
)𝛾′

]                                 𝑒𝑞𝑛(19) 

where k is shield coefficient,  ∝  and 𝛾 are terrain parameters at the building , H is the 

building height,  H’ is the height where the wind measurement is taken, and  ∝′ and 

 𝛾′ are the terrain parameters at the weather station. R is the sum of leakage fraction 

defined in  𝑒𝑞𝑛(17). 

The value of the terrain parameters ( ∝ 𝑎𝑛𝑑 𝛾 ) and generalized shielding coefficient 

(k) are given in Table 6 and Table 7, respectively. 
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Table 6: Terrain parameter (Sherman and Grimsrud, 1980) 

Terrain description ∝ 𝜸 

Ocean or body of water 0.1 1.3 

Flat terrain with some isolated obstacle e.g. Building and 
trees well separated from each other 

0.15 1 

Rural area with low buildings, trees, etc. 0.2 0.85 

Urban , industrial or forest areas 0.25 0.67 

Centre of large city 0.35 0.47 

 

Table 7: Generalized Shielding Coefficient (Sherman and Grimsrud, 1980) 

Description k 

No obstructions 0.34 

Light local shield with few obstruction 0.3 

Moderate local shielding , some obstruction within two house heights 0.25 

Heavy shielding , obstruction around most of the perimeter 0.19 

Very heavy shielding , large obstruction surrounding perimeter within 
two house heights 

0.11 
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The stack-induced infiltration is given as:  

𝑄𝑠 = 𝑓𝑠𝐴𝑒√∆𝑇                                                  𝑒𝑞𝑛(20) 

where 𝑓𝑠  is stack factor, 𝐴𝑒 is the  effective leakage area and ∆𝑇 is the indoor and the 

outdoor temperature difference.   

For buildings whose neutral pressure level is not known, the stack factor is given as: 

𝑓𝑠 = [
(1 + 0.5𝑅)

3
] ∙ [1 − (

𝑋2

(2 − 𝑅)2
)]√

𝑔𝐻

𝑇𝑖
                                  𝑒𝑞𝑛(21) 

where 𝑔 is gravitational acceleration, 𝑇𝑖 is the indoor air temperature, and 𝐻 is the 

building height. 𝑅 and 𝑋 are the building leakage fractions defined in  𝑒𝑞𝑛(17) and 

𝑎𝑛𝑑   𝑒𝑞𝑛(18) respectively. 

When building has a known neutral pressure height, the stack factor (𝑓𝑠) is given as: 

𝑓𝑠 = [
(1 + 0.5𝑅)

3
] ∙ [

√8 𝑍(1 − 𝑍) 

√𝑍 + √1 − 𝑍
]√

𝑔𝐻

𝑇𝑖
                              𝑒𝑞𝑛(22)    

where  R is the leakage fraction ( 𝑒𝑞𝑛(17)), g is gravitational acceleration , 𝑇𝑖 is the 

indoor temperature, 𝐻 is the  building height and  Z is the neutral pressure  line 

fraction. 

The neutral pressure line fraction is defined as: 

   𝑍 =
𝐻𝑛𝑝𝑙

𝐻
                                                           𝑒𝑞𝑛(23)  

where  𝐻𝑛𝑝𝑙  is the neutral pressure line and H is the building height.  
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2.2.2.1.3 Alberta –infiltration model (AIM-2) 

In 1990, Walker and Wilson developed Alberta air infiltration model (AIM-2) based on 

the stack and wind effect (I. S. Walker and Wilson, 1990) . Unlike the BRE and LBL 

models, the interaction of the stack and the wind effects is considered in this model.   

AIM-2 model is given as: 

𝑄 = (𝑄𝑠

1
𝑛 + 𝑄𝑤

1
𝑛 + 𝐵(𝑄𝑠𝑄𝑤)

1
2𝑛)

𝑛

                                   𝑒𝑞𝑛(24) 

where Q is total infiltration, 𝑄𝑠 is infiltration due to the stack effect, 𝑄𝑤 is infiltration 

due to the wind effect, B is the interaction coefficient (B= -0.3), and n is the building 

leakage exponent  

The building leakage characters coefficient (C) and exponents (n) are important inputs 

and obtained from Blower Door Test. The interaction coefficient (B) can be assumed 

to be -0.3. 

Before defining each term in the AIM-2 model given above, it is important to introduce 

the leakage fraction parameters. 

The total building leakage characteristic coefficient is a combination of leakage 

characteristics of the wall, the floor, the ceiling, and the flue as shown below: 

𝐶 = 𝐶𝑐 + 𝐶𝑓 + 𝐶𝑤 + 𝐶𝑓𝑙𝑢𝑒                                                  𝑒𝑞𝑛(25) 

where 𝐶𝑐, 𝐶𝑓, 𝐶𝑤 , and  𝐶𝑓𝑙𝑢𝑒 are the leakage characteristics of the ceiling, the floor, the 

wall, and the flue, respectively.  If the building does not have a flue leakage,  𝐶𝑓𝑙𝑢𝑒  is 

zero.   
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The leakage fraction parameters are define as: 

𝑅 =
𝐶𝑐 + 𝐶𝑓

𝐶
                                                          𝑒𝑞𝑛(26)  

𝑋 =
𝐶𝑐 − 𝐶𝑓

𝐶
                                                         𝑒𝑞𝑛(27) 

𝑌 =
𝐶𝑓𝑙𝑢𝑒

𝐶
                                                              𝑒𝑞𝑛(28) 

where R is the  sum of leakage fraction, X is the subtraction of leakage fraction, and  Y 

is the flue leakage fraction . 

Infiltration induced by the stack effect is given as: 

𝑄𝑠 = 𝐶𝑓𝑠𝑃𝑠
𝑛                                                              𝑒𝑞𝑛(29) 

 

where C is the total building leakage coefficient, n is the building leakage exponent, fs 

is the stack effect factor, and 𝑃𝑠 is the pressure induced by  stack effect. 

The pressure difference created by the stack effect is given as : 

𝑃𝑠 = 𝜌𝑜𝑔ℎ(
𝑇𝑖 − 𝑇𝑜

𝑇𝑖
)                                                              𝑒𝑞𝑛(30) 

 

where 𝜌𝑜 the outdoor air density, g is gravitational acceleration, h is the ceiling height 

of the upper most story, 𝑇𝑖 is the indoor temperature, and 𝑇𝑜  the outdoor temperature. 
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The Stack flow factor (𝑓𝑠) is derived from leakage characteristics of the building and 

defined as: 

𝑓𝑠 = (
1 + 𝑛𝑅

𝑛 + 1
) (

1

2
−

1

2
(𝑀)

5
4)

𝑛+1

+ 𝐹                                   𝑒𝑞𝑛(31) 

where 

𝑀 =
(𝑋 + (2𝑛 + 1)𝑌)2

2 − 𝑅
                                                                            

𝐹 = 𝑛𝑌(𝑍 − 1)
3𝑛−1

3 (1 −
3(𝑋𝑐 − 𝑋)2𝑅1−𝑛

2(𝑍 + 1)
)                                        

 𝑋𝑐 = 𝑅 +
2(1 − 𝑅 − 𝑌)

𝑛 + 1
− 2𝑌(𝑍 − 1)𝑛                                                   

𝑍 =
𝐻𝑛𝑝𝑙

𝐻
                                                                                                         

                                           𝐻𝑛𝑝𝑙 = neutral pressure line  

 H = building height  

𝑛 = building leakage exponent 

𝑅 = sum leakage fraction 

𝑋 =subtraction of leakage fraction 

𝑌 = flue leakage fraction  
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The Infiltration induced by the wind effect is given by: 

𝑄𝑤 = 𝐶𝑓𝑤𝑃𝑤
𝑛                                                             𝑒𝑞𝑛(32) 

where C is the building leakage characteristic, n is the building leakage exponent, 𝑓𝑤 is 

the wind factor, and 𝑃𝑤 is the wind pressure. 

Pressure induced from the wind is given as: 

𝑃𝑤 = 𝜌𝑜  
(𝐶𝑠𝑣)2

2
                                                        𝑒𝑞𝑛(33) 

where  𝐶𝑠 is the wind shelter effect in wind direction,  𝜌𝑜  is the outdoor air density, 

and v is wind speed. 

The shelter effect coefficient is given in Table 8 below.  

Table 8:  Wind Shelter Coefficient (Walker and Wilson, 1990) 

Shelter 
coefficient  𝐂𝐬 

Description 

1.0 No obstructions or local shielding 

0.9 Light local shielding with few obstructions within two house 
heights  

0.7 Heavy shielding, many large obstructions within two house 
heights 

0.5 Very heavy shielding, many large obstructions within one house 
height 

0.3 Complete shielding , with large buildings immediately adjacent 
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For homes with crawlspace, the wind factor is calculated as: 

𝑓𝑤 = 0.19(2 − 𝑛) (1 − 𝑅 (
𝑛

2
− 0.2))(1 − ((

𝑋 − 0.2(1 − 𝑅 − 1.5𝑌)

2
)

2

)

0.75

) 

 𝑒𝑞𝑛(34) 

For houses with basement foundation or slab on the ground, the wind factor is given 

as: 

𝑓𝑤 = 0.19(2 − 𝑛) (1 − (
𝑋 − 𝑅

2
)
1.5−𝑌

) −
𝑌

4
(
𝑋 + 𝑅 + 2𝑌

2
− 2𝑌 (

𝑋 + 𝑅 + 2𝑌

2
)

4

)     

 𝑒𝑞𝑛(35) 

where n is the building leakage exponent, R is the sum of leakage fraction, X is the 

subtraction of leakage fraction, and Y is the  flue leakage fraction. 

 Comparison of LBL, AIM-2 and BRE model  

LBL, AIM-2, and BRE models are physics based models that are developed from the 

driving forces of wind and stack.  The stack induced infiltration rate and the wind 

induced infiltration are calculated separately and then combined. The major 

differences of the three models are summarized below: 

1. LBL and BRE use simple quadratic superposition method to combine stack 

and wind induced infiltrations, while AIM-2 has additional term representing 

the interaction between wind and stack effects. 

2. BRE uses overall leakage characteristics.  LBL and AIM-2 models distributed 

the leakage to the floor, the ceiling, and the wall.  
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3. Flue factors can be treated separately only in the AIM-2 model. 

4. AIM-2 includes the effect of crawl space, basement, and flue, while LBL and 

BRE models do not.  

 Drawbacks of existing infiltration models  

The empirical models lack precision unless the model coefficients are determined 

from the air-tightness test for the specific house of interest. They do not consider 

important factors like shield, terrain and wind direction.  The physics based models, 

LBL and AIM-2, require building blower door test to determine the air leakage 

characteristics which is expensive and require skill. It is also difficult to measure the 

stack factor and the wind factor which are unique for each building and its 

surroundings.  Most models used standard tabulated factors to estimate the values 

based on the qualitative approach. This will lead to large error.  The leakage 

characteristics are assumed to be uniformly disturbed, which is not accurate. Walls 

with windows and doors tend to have higher leakage than the others.  Visual 

inspection of the distribution of the leakage to the ceiling, floor, and wall was used in 

AIM-2 and LBL which could cause an error.  
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2.3 Air Change Rate and Building Leakage Characterization 

Measurement 

Understanding the air change rate is important for predicting the energy loss due to 

infiltration. McWilliams ( 2002) reviewed different techniques to measure  the air flow 

across envelope. She covered Tracer gas method (constant decay method, constant 

concentration method, constant injection method, and pulse injection), fan 

pressurization, AC pressurization, infrasonic impedance, acoustic technique, and 

quantified thermography.  Claesson and Mattsson (2007) proposed a transient 

pressurizing method to measure air leakage. Fan pressurization and tracer gas 

methods are the standard and widely used methods for measuring ACH. They are 

defined in ASTM standard   E779- 10 and E741-11, respectively. The available ACH 

measurement techniques are presented below. 

 Air pressurization and depressurization 

Air pressurization and depressurization method, also known as the Blower Door Test, 

is the easiest and commonly used in building physics to estimate the air leakage in the 

building and/or to characterize the building envelope system. The measurement is 

done using a blower or fan, a differential pressure measurement device and an air flow 

meter. The building is pressurized /depressurized and kept at a certain pressure. 

Using mass balance concept, the amount of air pumped in the building to pressurize 

the building is assumed to be the leakage rate at that particular pressure difference 

across the envelope. Pressurization and depressurization might not give the same 
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result since the flow path is different (Shaw, 1980). This method is a steady state 

process and has to be done at stable climate condition (Awbi, 2003; Shaw, 1980). To 

avoid the wind and the stack effect, the building is recommended to be pressurized 

between 10 Pa and 60 Pa.  At least five data points are required and the rest of air 

leakage data are interpolate using the power law (ASTM E779-10, 2010, p. 779). This 

method has uncertainty of  10% to 13%. If we increase the number of data points, the 

uncertainty can be reduced to 5.5%(Lordache and Catalina, 2012).  According to the 

ASTM 779-10 standard, this test has to be performed under two conditions. The wind 

speed has to be less than 1 m/s and the building height multiplied by the 

indoor/outdoor temperature difference has to be less than 200 m-°C. The 

disadvantages of this method are: 

1.  It uses excessive pressure than the natural condition.  

2. It cannot be used to measure ACH near real time.  

3. The large volume of air pumped into the building can affect the indoor air 

temperature (Dewsbury, 1996). 

According to (Walker et al 1997), the leakage characteristic obtained from the power 

law can be extended to the low pressure range(0-10 Pa). 

 Dynamic (AC) pressurization 

Dynamic pressurization technique measures a leakage rate as low as 4 Pa pressure 

difference. Sinusoidal change in building volume produces periodic pressure 

difference which is related to air leakage. The frequency and the amplitude is affected 

by the air tightness of the building (Awbi, 2003; Mattsson and Claesson, 2007). No air 

is pumped into the room so it can keep the room temperature. This method can 
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measure real time leakage. But this system is less common and only measures leakage 

at a given pressure. The equipment is more expensive than the blower door test 

method. It is less dependent on climate condition. (Modera and Sherman, 1985.). 

 Transient pressurization method 

Mathson and Claesson (2007) proposed a new method to measure building air 

leakage. This method only needs pressure differential measurement. The building is 

pressurized to a set point and then the air inlet valve is closed. The declining 

differential pressure across the wall is measured continuously.  The measurement has 

to be taken with high frequency at least 20 times per minute and has to be collected 

over the entire pressure range. This data uses to determine the building leakage rate. 

This method is sensitive to wall or envelop deformation. The elasticity nature of the 

air barriers and insulation materials affects this method(Mattsson and Claesson, 

2007). 

 Tracer gas method 

Tracer gas methods are widely used method to measure ACH next to pressurization 

method. It is the only available method to measure ACH near-real time. The equipment 

is expensive and requires skilled personnel to perform the measurements. The 

measurement is performed by injecting tracer gas into the measure room or zone and 

monitoring the concentration of the tracer gas.    

The choice of tracer gas is determined by safety, uniqueness, and measurability. It 

should  not react to any part of the building material.  It has to be insensibility for air 

flow or air density.  In the past numerous gases were used in tracer gas method: 
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Helium (He), hydrogen(𝐻2), oxygen(𝑂2), carbon-monoxide (CO), methane (𝐶𝐻4), 

nitrous oxide (𝑁2𝑂), acetone, sulphur hexafluoride(𝑆𝐹6), carbon dioxide (𝐶𝑂2),  

radioactive noble gases (argon-41 and krypton-85), halogenated hydrocarbons (such 

as  Hexafluorobenzen (𝐶6𝐹6), and perfluorocarbons (PFC)(Laussmann and Helm, 

2011; Shaw, 1984)  .  Due to safety and health related issues 𝐻2, 𝑂2, 𝐶𝐻4, CO, 𝑁2𝑂 and 

radioactive noble gases cannot be used in the presence of occupants. SF6 and 

halogenated hydrocarbons have ozone depletion potential. They are forbidden in 

some countries and some states in the US like California. (Sherman, 1990)   

Using CO2 as a tracer gas has advantages and disadvantages. CO2 is less harmful. A 

reasonably priced device easily detects this gas. The main disadvantage is that the 

human CO2 generation rate varies based on the number of occupants, their age, sex, 

and activities. The presence of living things contaminates the measurement.  The other 

disadvantage is that the outdoor concentration could be varying between 350-450 

ppm or more. (Laussmann and Helm, 2011) 

Different studies were made to understand the effect of tracer gas choice on the 

accuracy of air measurement. Most of the research showed that CO2 overestimate the 

air change rate measurement and SF6 underestimated it.  Table 8 presents the 

previous studies.  The ACH ratio measured using CO2 and SF6 varies between 0.8 to 

1.02.  
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Table 9: Effect of tracer gas choice. 

 𝑨𝑪𝑯𝑪𝑶𝟐

𝑨𝑪𝑯𝑺𝑭𝟔

 
Std. Dev. Method 

Riffat(Riffat, 1991) 0.794 Not available Decay method 

Shaw(Shaw, 1984) 1.1 Not available Decay method 

Laussman and Helm 

(Laussmann and Helm, 2011) 

1.021 0.08  

 

The four standard tracer gas methods to estimate the air change rate are: 

1. Decay method 

2. Constant concentration method 

3. Constant injection method 

4. Pulse method and  

 Decay method 

The decay method is applicable for air tight buildings. It is commonly used for a steady 

flow.  The equipment is less expensive compared to the other tracer gas methods. The 

test is performed by injecting a certain amount of tracer gas into the building with a 

well mix condition.  The concentration of the tracer gas decays through time.  The 

tracer gas concentration is measured for a given time. Then ACH rate is derived from 

the following equation. 

𝐶𝑡 = 𝐶𝑡_𝑜𝑒
−𝑁 𝑡                                                    𝑒𝑞𝑛(36) 
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where C is the tracer gas concentration, Co is the tracer gas initial concentration,  t is 

time and N is Air change rate. 

 Constant Injection method 

The constant injection method is applicable to leaky space. The flow has to be steady. 

a constant amount of tracer gas is injected into the sample space and the injection rate 

and concentration are measured. From that we drive the ACH from the following 

equation.   

𝐶𝑡 =
𝐺𝑡

𝑄
(1 − 𝑒−𝑁𝑡)                                                𝑒𝑞𝑛(37) 

where 𝐺𝑡 is the  tracer gas injection rate, Q is flow rate,  t is time and N is Air change 

rate. 

 Constant concentration method 

The constant concentration method may apply for varying ventilation with unsteady 

flow measurement. This method is more complex than the other tracer gas method. It 

requires skilled labor and advanced equipment. The equipment is  connected to  the 

tracer gas. The tracer gas concentration in the sample space is measured continuously. 

The equipment injects a certain amount of tracer gas through time to keep a constant 

concentration. The equipment has a sophisticated control system to perform this test.  

From the collected data the air change rate is calculated as: 

𝐺𝑡 − 𝑉𝑁𝐶𝑡 = 0                                                             𝑒𝑞𝑛(38) 

where V is volume, 𝐺𝑡 is the tracer gas injection rate, 𝐶𝑡 is the tracer gas concentration, 

and N is air change rate. 
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 Pulse injection 

A certain amount of tracer gas is delivered to the zone and sample where taken some 

distance away from the injection point. The measurement period started before 

injecting the tracer gas. This technique is similar to the decay method except the 

amount of tracer gas injected is measured. This technique is applicable for single or 

multi-zone.  

 Acoustic Method 

Lordache and Catalina (2012) developed a new method to measure air infiltration 

using acoustics.  A noise generator and two sonometers are used for the experiment.  

The noise generator produces sound. The two sonometers record the sound 

transmission loss between the indoor and outdoor environment. Sound transmission 

loss is related to air infiltration. The error of this measurement is around 5%. The 

method is less expensive than the classical pressurization test. It can be done by short 

time. This method is not yet accepted as a standard method and cannot be used for 

continuous ACH measuring. 
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2.4 Existing near-real time ACH measurements drawbacks 

Constant concentration tracer method is the only current acceptable method to   

measure near real time ACH. Most of the tracer gasses used for this method are either 

toxic or hazardous for human health (CO, 𝑁2𝑂 etc) and/or have global warming or 

ozone depletion potential. 𝐶𝑂2 under a certain concentration level is the preferable 

gas to use for near-real time monitoring for occupied building. The downside of using 

𝐶𝑂2 as a tracer gas is that the measurement could be affected by the 𝐶𝑂2  generated 

by leaving thing in the test area. The outdoor concentration varies by season and hour 

of the day.  This method is expensive and requires skilled labor to perform the 

measurement.  
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3 COMBINED IAQ MONITORING AND MODLEING METHOD TO 

DETERMINE ACH NEAR REAL-TIME 

3.1 Introduction 

AIM-2 and LBL infiltration models are relatively more accurate physics based models 

to predict infiltration rate induced by the wind and the stack effect. But they could give 

error up to 100% (Lordache and Catalina, 2012). The main challenge is to predict the 

stack factor, wind factor, the terrain effect, the shield effect and the building leakage 

characteristics. The blower door test is commonly used to determine the leakage 

characteristics and the other factors are obtained from generalized tables based on 

qualitative prediction. But these factors are building specific. The accuracy of the 

model is heavily dependent on getting these parameters correct.   In this chapter, a 

new methodology is developed to determine the ACH rate in near-real time by 

combining the tracer gas method with infiltration model. The infiltration models are 

modified to include the impact of the wind direction on the local wind speed. The 

assumptions and limitations of the methodology are discussed in detail. This 

methodology is designed to be applicable for naturally ventilated occupied buildings 

with a low cost device and unskilled personnel.   

.    
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3.2 Assumption and limitation   

 Single zone model  

Determining ACH from the Tracer gas method is derived from the mass balance 

equation for a single zone.  A single family house can be considered as a single zone if 

there is no restriction between the rooms. This can be achieved by leaving the room 

doors open.  

 Well mixed condition 

The mass balance equation is also developed under the assumption of a well-mix 

condition, which means the air quality throughout the zone is assumed to be the same. 

In the single family house, running a circulation fan could create a well-mixed 

condition. 

 Measuring fluctuating ventilation using tracer gas decay method 

The decay method is usually used to measure ACH for steady flow rate.  This method 

can be used to measure unsteady flow rate if the tracer gas concentration is measured 

at a sufficiently high frequency.   

 CO2 as a tracer gas 

CO2 gas is easily accessible and inexpensive. Carbon dioxide sensors are relatively 

inexpensive.  But it has the following disadvantages: 

1. The outdoor air contains CO2 gas.  

2. The outdoor CO2 concentration could vary over time. 
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3. The tracer gas measurement can be contaminated by the presence of living 

organisms. 

The following caution should be taken when using  CO2 as a tracer gas 

1. The tracer gas decay method should be performed when the concentration of 

the room is above 100 ppm from the background concentration. 

2. The rate of change of the outdoor of 𝐶𝑂2  concentration is very low compare 

to the rate of change of indoor concentration. For this reason, the outdoor 𝐶𝑂2  

concentration can be taken as constant.  

3. The tracer gas decay experiment should be performed in the absence of any 

additional 𝐶𝑂2 sources in the test area.  
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3.3 Modified Infiltration Models 

AIM-2 and LBL models are discussed in the Chapter 2 in detail. Both models are based 

on the driving forces: wind and the stack effect. AIM-2 model also incorporates the 

interaction of the stack and wind induced infiltration. Table 10 presents the summary 

of these models.  

Table 10: LBL and AIM-2 model summary 

 LBL Model AIM-2 Model 

Total 

infiltration 

𝑄 = (𝑄𝑠
2 + 𝑄𝑤

2 )1/2 
𝑄 = (𝑄𝑠

1
𝑛 + 𝑄𝑤

1
𝑛 − 0.3(𝑄𝑠𝑄𝑤)

1
2𝑛)

𝑛

 

Stack Effect 
𝑄𝑠 = 𝑓𝑠𝐶(4)𝑛√

𝜌𝑜

8
(𝑔ℎ (

𝑇𝑖 − 𝑇𝑜

𝑇𝑖
))

1/2

 𝑄𝑠 = 𝑓𝑠𝐶 (𝜌𝑜𝑔ℎ (
𝑇𝑖 − 𝑇𝑜

𝑇𝑖
))

𝑛

 

Wind effect 
𝑄𝑤 = 𝑓𝑤𝐶(4)𝑛√

𝜌𝑜

8
𝑣 𝑄𝑤 = 𝑓𝑤𝐶 (𝜌𝑜

𝐶𝑠𝑣
2

2
)

𝑛

 

 

where 𝑄𝑠 and 𝑄𝑤 are infiltrations induced by stack effect and wind effect respectively. 

𝐶 is the total building leakage coefficient, n is the building leakage, 𝑓𝑠 is the stack effect 

factor, 𝑓𝑤 is the wind factor, 𝑔 is gravitational acceleration, ℎ is building height, 𝑇𝑖 are 

the indoor temperature,  𝑇𝑜  the outdoor temperature, 𝜌𝑜 is  the outdoor air density, 

and  𝑣 is wind speed from the weather station. 

One of the drawbacks of the LBL and AIM-2 models is  the assumption that wind 

direction has no significant impact on the wind factor (Walker and Wilson, 1990). 
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One wind factor is used for all wind direction in these models.   Wilson and Walker ( 

1991) indicated that the wind direction has a significant effect on the infiltration rate 

like wind speed and temperature difference.   To get a better understanding of the 

impact of terrain and surrounding effect on wind speed, comparison was made 

between the two weather stations.  BEST laboratory has a weather station located on 

top of the building. The data was collected every minute. Another weather data was 

also obtained from National Oceanic and Atmospheric (NOAA) at Syracuse Airport. 

 

Figure 2: Wind speed 
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Figure 3: Wind direction 

 

Figure 2 and Figure 3 show the wind speed and the wind direction, respectively.   Even 

if the wind speed trend is the same for both locations, the magnitude is different. 

 

Figure 4: NOAA and BEST wind speed ratio vs wind direction 

Figure 4 shows the ratio of the wind speed measured from the site and the wind speed 

from the airport weather against the wind direction.  The higher ratio indicates that 

there is a greater wind shield effect.  The east (Wind direction=90 degree) and the 
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southwest side of the building (wind direction= 250 deg) have the highest wind shield 

effect which is expected.  The satellite picture shows that the east side of the building 

is shielded by vegetation.  The topography map of the area indicates a hill is located on 

the west side of the building.  The satellite photo and the topography around the test 

site are presented in next chapter. It is important to note that the wind shield effect is 

dependent on the wind direction. Taking one shield factor in the standard LBL or AIM-

2 model would lead to error.  

In this dissertation, a discrete function is used to determine the wind factor (𝑓𝑤) . It  

captures the effect of the local condition, such as the terrain and building’s 

surrounding microclimate, as a function of wind direction for the specific building.  

The wind factor function is given as: 

𝑓𝑤 =

[
 
 
 
 
 
 

𝑓1          𝑤ℎ𝑒𝑟𝑒   0 ≤ 𝜙 < 30
𝑓2          𝑤ℎ𝑒𝑟𝑒   30 ≤  𝜙 < 60
𝑓3          𝑤ℎ𝑒𝑟𝑒  60 ≤  𝜙 < 90

.

.

.
 𝑓12          𝑤ℎ𝑒𝑟𝑒   330 ≤ 𝜙 < 360

                              𝑒𝑞𝑛(39)    

Where 𝑓𝑤 is the wind factor and 𝜙 is the wind direction.  Wind angels 0, 90, 180, and 

270 indicate wind blows from north, east, south and west, respectively.  
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3.4 Tracer gas technique to measure ACH 

Determining the ACH from tracer gas technique is derived from conservation of mass 

in a control volume, like building enclosure system.  Conservation of mass of air for a 

given control volume  is given as:(Sherman, 1990)  

𝑑𝑚𝑖𝑛

𝑑𝑡
+ 𝑚̇𝑒𝑛𝑡 − 𝑚̇𝑙𝑣𝑔 = 𝐺𝑎                                          𝑒𝑞𝑛 (40) 

where 
𝑑𝑚𝑖𝑛

𝑑𝑡
  is the rate of change of mass  inside the control volume , 𝑚̇𝑒𝑛𝑡 is mass flow 

rate entering  control volume , 𝑚̇𝑙𝑣𝑔  is mass flow rate leaving the control volume and  

𝐺𝑎 is air generation rate inside the volume.  

Mass in the control volume is defined as: 

𝑚 = 𝜌𝑉                                                 𝑒𝑞𝑛 (41)  

where 𝜌  is density  and 𝑉 is volume. 

Mass flow rate is given as:   

𝑚̇ = 𝜌𝑄                                               𝑒𝑞𝑛 (42) 

where 𝑚̇  is mass flow rate, 𝑄  is volume flow rate and  𝜌 is density. 

Substituting the above two equations in 𝑒𝑞𝑛 (40) gives: 

𝑑(𝜌𝑉)𝑖𝑛

𝑑𝑡
+ 𝜌𝑒𝑛𝑡𝑄𝑒𝑛𝑡 − 𝜌𝑙𝑣𝑔𝑄𝑙𝑣𝑔 = 𝐺𝑎                                𝑒𝑞𝑛 (43) 
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For the building enclosure system, the following assumption are taken: 

1.  The building enclosure system is rigid. V is constant. 

2. Air is assumed as an incompressible fluid in this study.  

3. The outdoor air and the indoor air density difference  is assumed to be small 

in this study (𝜌𝑙𝑣𝑔 ≈ 𝜌𝑒𝑛𝑡 ≈ 𝜌). 

4. There is no other air source in the control volume (𝐺𝑎=0). 

5. The building maintains a well mix condition. 

Applying these assumptions in  𝑒𝑞𝑛(43) gives:  

𝑄𝑒𝑛𝑡 = 𝑄𝑙𝑣𝑔 = 𝑄                                                     𝑒𝑞𝑛 (43) 

For tracer gas, the mass conservation equation is given as: 

𝑑(𝐶𝑡𝑚)𝑖𝑛

𝑑𝑡
+ 𝐶𝑡_𝑒𝑛𝑡𝑚̇𝑒𝑛𝑡 − 𝐶𝑡_𝑙𝑣𝑔𝑚̇𝑙𝑣𝑔 = 𝐺𝑡                                        𝑒𝑞𝑛 (44) 

Where 
𝑑(𝐶𝑡𝑚)𝑖𝑛

𝑑𝑡
  is the rate of change of tracer gas mass  inside the control volume, 𝐶𝑡_𝑒𝑛𝑡 

is the tracer gas concentration of the air entering the control volume, 𝐶𝑡_𝑙𝑣𝑔 is the tracer 

gas concentration of the air exiting the control volume, 𝑚̇𝑒𝑛𝑡 is mass flow rate of air  

entering  control volume, 𝑚̇𝑙𝑣𝑔  mass flow rate air leaving the control volume and  𝐺𝑡 

is tracer   gas   generation rate inside the volume.  

Substituting  𝑒𝑞𝑛 (40) and 𝑒𝑞𝑛 (41) in 𝑒𝑞𝑛 (44) gives: 

𝑑(𝐶𝑡𝜌𝑉)𝑖𝑛

𝑑𝑡
+ 𝐶𝑡_𝑒𝑛𝑡𝑄𝑒𝑛𝑡𝜌𝑒𝑛𝑡 − 𝐶𝑡_𝑙𝑣𝑔𝑄𝑙𝑣𝑔𝜌𝑙𝑣𝑔 = 𝐺𝑡                                  𝑒𝑞𝑛(45) 
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Combining  𝑒𝑞𝑛 (43) and 𝑒𝑞𝑛 (45)  gives: 

𝑑(𝑉𝐶𝑡)𝑖𝑛

𝑑𝑡
+ 𝑄(𝐶𝑡_𝑒𝑛𝑡 − 𝐶𝑡_𝑙𝑣𝑔) =

𝐺𝑡

𝜌
                                           𝑒𝑞𝑛 (46) 

The entering concentration, 𝐶𝑡_𝑒𝑛𝑡 , is same as outdoor air concentration (𝐶𝑡_𝑂𝑢𝑡). For 

a well mix condition, the leaving air concentration (𝐶𝑡_𝑙𝑣𝑔) is the same as the indoor 

concentration (𝐶𝑡_𝑖𝑛). From continuous monitoring of the concentration of the tracer 

gas, we can derive the instantaneous infiltration by discretizing the above equation as 

follows: 

𝑉
𝐶𝑡_𝑖𝑛 − 𝐶𝑡_𝑖𝑛𝑖−1

Δ𝑡
+ 𝑄(𝐶𝑡_𝑜𝑢𝑡 _𝑖 − 𝐶𝑡_𝑖𝑛𝑖

) =
𝐺𝑡𝑖

𝜌
                               𝑒𝑞𝑛 (47)  

where V is volume of the house; Q is the infiltration rate, 𝐶𝑡_𝑖𝑛 is the tracer gas 

concentration inside the house, 𝐶𝑡_𝑜𝑢𝑡 is the outside air tracer gas concentration, and 

𝐺𝑡 is tracer gas generation rate.   By monitoring of the pollutant concentration level 

and the generation rate, it is theoretically possible to determine the infiltration rate 

from 𝑒𝑞𝑛 (47)   and given as:  

  

𝑄 =
1

(𝐶𝑡_𝑜𝑢𝑡𝑖 
− 𝐶𝑡_𝑖𝑛𝑖

)
 (−𝑉

𝐶𝑡_𝑖𝑛 − 𝐶𝑡_𝑖𝑛𝑖−1

Δ𝑡
+ 

𝐺𝑡𝑖

𝜌
 )                           𝑒𝑞𝑛 (48)   
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3.5 Determining near real time ACH by combined infiltration 

model and tracer gas method  

In this dissertation, a different approach is used to measure the infiltration in near real 

time. A methodology is developed to combine infiltration model (AIM-2 or LBL) with 

tracer gas method. As shown in Figure 5 below, the methodology has two parts: 

building calibration and monitoring. The first step of this methodology is to calibrate 

the building to determine the infiltration model parameters: the wind factor, the stack 

factor and the building leakage characteristics. Nonlinear multi-variable regression is 

applied to the AIM-2 or LBL infiltration models to determine these parameters instead 

of Blower test and tabulated data. The input variables for the regression are ACH from 

the tracer gas method, indoor air temperature, outdoor air temperature, and wind 

speed and wind direction. Sufficient data is required to get a better result.  The tracer 

gas method and regression technique are only required for calibration. Once the 

parameters are determined, using real time indoor temperature, outdoor 

temperature, wind speed, and wind direction in the infiltration model gives near real-

time ACH for naturally ventilated houses with a better accuracy. 
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Preparing the house for a tracer gas decay test is the starting point to determine the 

infiltration model parameter. The calibration should be done in the absence of 

occupants or living things. All door and windows should be closed. The indoor air 

temperature is measured every minute. The weather data (temperature, wind speed 

and wind direction) for every minute is obtained from a nearby weather station.  For 

this study, the National Oceanic and Atmospheric Administration (NOAA) weather 

data collected at Syracuse airport was used.  A well mix condition is created inside the 

house by running the circulation fan  continuously.  The next step is to apply tracer gas 

method to determine the infiltration rate. CO2 is injected until it reaches 1200 ppm. 

This tracer gas concentration limit is set based on CO2 sensor capacity.  It can be 

injected in the return duct or after the circulation fan. The CO2 concentration is 

measured every minute. For leaky house the infiltration rate is higher. The tracer gas 

Nonlinear Multi-

variable regression 

(fw, fs, C and n) 

Infiltration model 

AIM-2/LBL 

 

Monitored data: 

 Wind speed 
 Wind 

direction  
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 bIndoor 

temperature  

 

Tracer Gas Decay 
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 Wind factor (fw), 
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Figure 5: Methodology to determine ACH near real time using tracer gas 

and weather data in the infiltration model 
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decays faster and reaches the outdoor CO2 concentration before collecting enough 

data to do the regression.  For this kind of situation, the tracer gas is injected again 

when the room CO2 level reaches 600 ppm. The data collected from the BEST 

laboratory indicates that the outdoor CO2 concentration is between 360 to 380 ppm. 

It is important to note that the presence of CO2 in the background would affect the 

ACH measurement. The impact is discussed in the next chapter.  From the CO2 

concentration data, ACH is determined for every minute.  

Once the weather data, the infiltration rate and the room temperature are known for 

every minute, nonlinear multi-variable regression technique is used to determine the 

infiltration model parameters. The regression variables, which are also the infiltration 

model parameters, are: 

1. Building leakage characteristic constant , 𝐶 

2. Building leakage exponent, 𝑛 

3. Wind factor, 𝑓𝑤 

4. Stack factor, 𝑓𝑠  

To get valid results from the regression test, it is important to use the following the 

reasonable constraints based on fundamental physics: 

1. Building exponent is between 0.5 and 1, corresponding to fully developed 

turbulence and laminal flows through leakage openings.  

2. The building leakage characteristic (C)  is always great than 0. 

3. The combined shield and wind factor (𝑓𝑤) is between 0 and 1. 

4. The stack factor (𝑓𝑠) is between 0 and 1. 
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Once the infiltration model parameters are determined from the regression, the 

infiltration of the house is calculated more accurately from the nearby weather data 

(wind speed, wind direction, the outdoor temperature) and the indoor temperature.   
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4 EXPERIMENTAL FACITLITY AND INSTRUMENTATION 

4.1 Test house and location 

The experiment was performed in the Building Enclosure System Technology (BEST) 

laboratory located at Sky top Rd, Syracuse NY.  The BEST laboratory is a two story 

building constructed in 2009 with the collaboration of Oakridge National  Lab, Air 

Barrier Association of America, NYSERDA, and Syracuse University. The building has 

41ft length, 33ft width, and 21ft height. It has no internal partitions.   The first and 

second story of the building are connected with a stairway opening. This laboratory 

was constructed to test a wall assembly air leakage and thermal performance in a real 

weather condition.  The house has thirty-four slots to test wall assemblies at a time. 

 

 

Figure 6: BEST laboratory 



51 

 

Figure 7 shows the building surrounding. The building north and east sides are 

shielded by trees.  An office building is located in the west side of the test house. The 

south side has no shield.    

  

Figure 7:  Best Lab surrounding (google map) 
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Figure 8 shows the topographical map of the area.  There is a hill on the southwest side 

of the BEST laboratory building. The elevation difference is around 120 feet. A single 

story office building is also located in the west side of the laboratory at lower elevation, 

about 10 feet from BEST laboratory.  

 

Figure 8: Best lab Topography (http://nyfalls.com/maps/ny-maps-topo-24000/) 

 

 

 

 

 

BEST lab 

 

http://nyfalls.com/maps/ny-maps-topo-24000/
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4.2 Instrumentation 

The building has a central air system to cool and heat the house. The circulation system 

fan can be set to run continuously. The building is also equipped with blower door test 

equipment. The building has a local weather station to measure the local wind speed, 

wind direction, humidity, precipitation, and solar radiation.  

 

Figure 9: BEST lab equipment and arrangement 

Figure 9 shows the laboratory instrumentation inside the building. The experiment 

setup is designed to perform tracer gas decay method, tracer gas constant 

concentration method, and blower door test method simultaneously or separately.   
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INNOVA gas monitoring system is used for the tracer gas method. 𝑆𝐹6 tracer gas was 

used to perform a constant concentration method test.  The 𝑆𝐹6 gas cylinder is directly 

connected to INNOVA gas monitoring system. The gas monitor injects a certain 

amount of 𝑆𝐹6 to keep the concentration constant. The tracer gas was injected next to 

the circulation fan. The fan creates a turbulent air flow that insure a well mix condition. 

A tube is used to connect the INNOVA gas monitor output to the duct system. The 𝑆𝐹6 

concentration and injection rate are measured every minute.  The monitoring system 

has internal build PID control to keep the concentration at a certain level by dosing the 

necessary amount.    

 For the Decay method, 𝐶𝑂2 gas was used. The 𝐶𝑂2 cylinder was directly connected to 

the duct unit right after the circulation fan. After the 𝐶𝑂2 concentration reached a 

certain level, the valve was closed manually. INNOVA gas monitor is used to measure 

the 𝐶𝑂2 concentration. Outdoor 𝐶𝑂2 concentration was also monitored. The air 

samples are collected from three different locations : the first floor, the second floor, 

and outside of the building.   

The building is also equipped to run the blower door test.  

The blower fan is installed to the west side of the building. The blower fan speed is 

controlled by a VFD drive connected to a PID controller. The controller set the fan 

speed to keep the required pressure difference across the building enclosure.   The air 

flow rate required to keep the pressure difference is measured using an orifice 

damper. It is installed in the duct before the fan inlet. The correlation between the flow 

rate and the pressured drop is used to determine the building leakage characteristics.   
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5 RESULTS AND DISCUSSION 

5.1 Introduction 

The new methodology to measure ACH measurement near-real time for naturally 

ventilated house is discussed in chapter 3.    In this chapter, experimental results to 

validate the methodology and its assumptions are presented and discussed.  

5.2 Single zone model and well mixed condition 

This experiment was designed to validate the well mix condition at residential houses 

when the circulating fan runs continuously. This assumption only holds true if tracer 

gas concentrations are similar on the first and second floor for any given time.  Both 

decay and constant concentration tracer gas methods are used for this experiment.  

𝐶𝑂2 and 𝑆𝐹6 gases are used for decay and constant concentration tracer gas method, 

respectively. For decay test, the carbon dioxide gas was injected into the air circulation 

system after the circulation fan.  It is injected until the concentration reaches to 1250 

ppm in the house. The 𝐶𝑂2 concentration data was collected through the decay process 

from the first and second floors. The INNOVA gas monitoring system injected 𝑆𝐹6 gas, 

at the same location as the 𝐶𝑂2.  The system was set to keep the gas concentration at 

the 8mg/m3 on the second floor. Samples were taken from both floors.   
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Figure 10 shows the 𝑆𝐹6 tracer gas concentrations in the first floor and second floor 

for constant concentration method.  The second floor concentration is very close to 

the setting point, which is 8mg/m3. 

 

Figure 10: SF6 concentrations on first and second floors  

 

Figure 11: CO2 concentration on first and second floors  
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Figure 11 presents the concentrations of carbon dioxide in the first and second floor 

for decay test.   

The percentage error was calculated and used to compare the result for both tracer 

gas methods.  The percentage error was calculated as:  

|𝑬𝒓𝒓𝒐𝒓%| =
|(𝑪𝒕𝟏𝒔𝒕

− 𝑪𝒕𝟐𝒏𝒅
)|

𝑪𝒕𝒂𝒗𝒈

∗ 𝟏𝟎𝟎                                                 𝑒𝑞𝑛 (49)    

where,            |𝑬𝒓𝒓𝒐𝒓%|= absolute percentage error 

  𝑪𝒕_𝒂𝒗𝒈 =   The average room tracer gas average (
𝑪𝐭_𝟏𝒔𝒕+𝑪𝐭_𝟐𝒏𝒅

𝟐
  ) 

  𝑪𝐭_𝟏𝒔𝒕= Tracer gas concentration on the first floor 

𝑪𝐭_𝟐𝒏𝒅= Tracer gas concentration on the second floor 

 

Table 11: The percentage error of tracer gases between the first and second 

floor 

 

Table 11 shows the error analysis between the first and  second floor concentration 

levels.  The calculated percentage errors of the 𝐶𝑂2 and the 𝑆𝐹6 gases are less than 

0.104% and 1.13%, respectively.  From this, it is reasonable to assume that a well mix 

condition can be maintained by running the circulation fan continuously. It can also be 

 𝑺𝑭𝟔 gas 𝑪𝑶𝟐 gas 

Average error (%) 1.13 0.104 

Standard deviation (%) 0.7 0.117 
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deduced that the atomic weight difference between the two tracer gases has less 

impact on the well mix condition. 

5.3 Decay method to measure varying ventilation 

The decay method is usually used to measure steady air flow and constant 

concentration method for a varying flow rate. Performing the decay tracer gas method 

does not require sophisticated equipment and skill labor. It is relatively cheaper 

compare to the other tracer gas methods. The advancement of the sensor and 

computer technology enables us to measure the tracer gas concentration at high 

sampling frequency. Here we tried to use decay method to measure varying ventilation 

by capturing the tracer gas concentration at reasonable frequency. The 𝐶𝑂2 gas was 

used as the tracer gas for the decay method. The constant concentration method, 𝑆𝐹6 

as a tracer gas, was used as the reference. 

This experiment was performed using INNOVA tracer gas system.   The data is 

collected for every minute. The ACH obtained from the two tests are presented in 

Figure 12 below. The measured air change rate varied from 0.1 to 0.4 1/h.   The ACH 

rate obtained from the decay and constant concentration methods followed the same 

trend.  
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Figure 12: Constant concentration verses constant injection 

The error calculation was performed using the following equation:  

𝒆𝒓𝒓𝒐𝒓% =
|(𝑨𝑪𝑯𝒄𝒐𝒏𝒔𝒕 − 𝑨𝑪𝑯𝒅𝒆𝒄𝒂𝒚)|

𝑨𝑪𝑯_𝒄𝒐𝒏𝒔𝒕
∗ 𝟏𝟎𝟎                                   𝑒𝑞𝑛 (50)    

where,             𝒆𝒓𝒓𝒐𝒓% = percentage error 

𝑨𝑪𝑯𝒄𝒐𝒏𝒔𝒕   = air change rate measure using tracer gas constant 

concentration tracer gas method 

𝑨𝑪𝑯𝒅𝒆𝒄𝒂𝒚= air change rate measure using tracer gas decay method 

The absolute average error was 10% with a standard deviation of 7.8. From this result, 

it is reasonable to assume that the decay method can be used to measure the dynamic 

ACH for naturally ventilated houses with an uncertainty of ±10% on average.    
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5.4 The effect of tracer gas in the background  

The disadvantage of using 𝐶𝑂2 as a tracer gas is its presence in the background or 

outdoor air. The impact was investigated in this section. The experiment was 

performed using the INNOVA gas monitoring system. The fan control was set to run 

continuously to create the well-mixed condition. 𝐶𝑂2  and 𝑆𝐹6 gasses were used to 

perform the decay method and constant concentration method. The outdoor 𝐶𝑂2 

concentration was also monitored.  

Figure 13 presents the 𝐶𝑂2 concentration of the indoor and outdoor air. The outdoor 

𝐶𝑂2 concentration fluctuated between 345 to 365 ppm. The indoor 𝐶𝑂2 concentration 

level decayed from 1100 ppm to 365ppm. The data was monitored until the indoor 

concentration reached the outdoor concentration. The rate of change of the outdoor 

air 𝐶𝑂2 concentration was very small compared to the indoor. It is reasonable to 

assume that the outdoor 𝐶𝑂2 concentration as constant. 

 

Figure 13: Indoor and Outdoor CO2 Concentration level 
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Figure 14: Air change obtained from constant concentration and decay method 

Figure 14 shows the ACH obtained from the decay and constant concentration 

methods. Both methods followed the same trend until it reaches 08:00 time, where the 

indoor and outdoor 𝐶𝑂2 concentration level difference was around 40 ppm. After this 

point, the ACH from decay method started to depart from the constant concentration 

method. From this experiment suggested that the use of decay method with 𝐶𝑂2 is 

viable when the indoor air concentration is 100 ppm above the background level to be 

on the safe side. 
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5.5 Non-linear multi-variable regression technique to determine air 

leakage characteristics, wind factor and stack factor 

 A new methodology was introduced in chapter three to determine the ACH by 

combining the tracer gas method with the AIM2 or LBL infiltration model. The tracer 

gas method is used to determine the building leakage characteristics, the stack factor, 

and the wind factor using nonlinear multi-variable regression method. The models are 

modified to calculate the wind factor based on the wind direction. The equation is 

given in 𝑒𝑞𝑛 (39).  An experiment was performed to validate this methodology.  

The INNOVA gas monitoring system was used to measure the ACH for every minute. 

The room temperature was set to 75 F. The Syracuse airport weather data was 

obtained from NOAA. Figure 15 presents the wind speed and the wind direction data 

for every minute. Figure 16 shows for the outdoor temperature in a minute interval. 

Using this data, non-linear multi-variable regression was used to determine the model 

parameters for both AIM-2 and LBL models. The result is presented in Table 12.   
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Figure 15: Wind speed and wind direction data 

 

 

Figure 16: Outdoor air temperature data 
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Table 12: Model parameters obtained from regression test 

 Wind 
Direction 
(deg) 

AIM-2-
Regression 

LBL-
Regression 

Leakage Characteristics (C)  1.022 1.521 

Leakage characteristics 
exponents(n) 

 0.677 

0.704 

Stack factor ( fs)  0.489 0.177 

Wind factor (fw) 

0 and 30 0.469 0.410 

30 and 60 0.584 0.426 

60 and 90 0.576 0.426 

90 and 120 0.393 0.434 

120 and 150 0.402 0.306 

150 and 180 0.452 0.392 

180 and 210 0.434 0.318 

210 and 240 0.396 0.291 

240 and  270 0.509 0.359 

270 and 300 0.505 0.371 

300 and 330 0.499 0.408 

330 and 360 0.475 0.559 
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Figure 17 shows the wind factor as a function of the wind direction. The wind factor 

has a lower value for wind that comes from the east and southwest side. This is 

expected.  As it was explained in the test site location in chapter 4, the southwest side 

and east side wind shield factor should be higher because of the hill and the vegetation, 

respectively. Including the local wind factor effect as a function of the wind direction 

increases the accuracy of the infiltration models. 

 

 

Figure 17: Air change obtained from constant concentration and decay method 

Figure 18 shows the calculated ACH rate using the new methodology and the 

measurement ACH. The AIM2-Regression model fits measured ACH better than the 

LBL-Regression model.  The LBL-Regression model tends to underestimate the higher 

ACH. The wind effect dominates the higher ACH.  In the AIM-2-Regression model 

equation, the wind effect infiltration doubled the wind velocity. The application of the 

building leakage characteristics, C and n, in the AIM-2 infiltration equation is also 

different from LBL model as it was shown on Table 10.   
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Figure 18:  ACH from measurement, AIM-2-Regression, and LBL-Regression
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Figure 19 and 20 present the comparison between the measured and predicted ACH  

for the AIM2-Regression and LBL-Regression models, respectively. The AIM2-

Regression model captures the entire measured infiltration spectrum better than the 

LBL-Regression model. The LBL-Regression tends to underestimate the infiltration 

rate due to the wind effect and overestimate infiltration rate cause by the stack effect. 

. 

 

Figure 19: AIM-2-Regression result 
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Figure 20: LBL-Regression result 

The absolute percentage   error was used to compare the AIM-2-Regression and LBL-

Regression results. The error is calculated using the following equation: 

|𝑬𝒓𝒓𝒐𝒓%| =
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𝑨𝑪𝑯𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅
∗ 𝟏𝟎𝟎               𝑒𝑞𝑛 (51)    

Where               |𝑬𝒓𝒓𝒐𝒓%| =percentage error 

                            𝑨𝑪𝑯𝒎𝒆𝒂𝒔𝒖𝒔𝒓𝒆𝒅 =   Air change rate measured using tracer gas method 

  𝑨𝑪𝑯𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅  = Air change rate calculated using AIM-2 or LBL model 
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Table 13: Average percentage error for LBL-Regression and AIM-2-Regression 

model 

 AIM-2-Regression LBL-Regression 

|𝐸𝑟𝑟𝑜𝑟%| 9.7% 15.6% 

Standard deviation 9.2% 14.1% 

 

Table 13 indicates that the AIM-2-Regression result has average an error of 9.7 % and  

standard deviation of 9.2%.  The LBL-Regression result, however, indicates an average 

error of 15.6% and a standard deviation of 14.1% 

 

 

Figure 21: The error distribution of AIM-2 Regression and LBL-Regression 
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63% of the data measured has an accuracy of   ±0.025 1/h and 90% measured data 

has accuracy of ± 0.05 1/h. 

From the result above, it can be concluded that the AIM2-Regression model predicts 

the air change rate better than the LBL-Regression model.  

Figure 22 presents the infiltration rate due to the wind effect from the AIM-2-

Regression model and LBL-Regression model. The wind effect dominates the ACH 

when the wind speed is higher. At a higher wind speed, the AIM-2-Regression model 

predicts a higher ACH than the LBL-Regression model. 

 

Figure 22: ACH due to wind effect 
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Figure 23: ACH due to stack effect 

Figure 23 presents the stack effect ACH calculated from AIM-2-Regression model and 
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difficult to determine this ratio. Three different ratios (0.37, 0.5’ and 0.6) were taken 

and analyzed.   

Figure 24 presents the predicted ACH using the new method (AIM-2-Regression) and 

three standard AIM-2 models against the measured ACH. The new proposed method 

follows closely the measured ACH trend.  The ACH calculated when X=R=0.6 predicts 

the ACH better when the ACH less than 0.2.  A lower ACH is usually dominated by the 

stack effect.  The ACH calculated using X=R=0.37 predicts the ACH better when the 

ACH is greater than 0.2, which is dominated by wind effect.
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Figure 24: Comparison between measured and predicted ACH

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1
8

0
1

5
9

2
3

8
3

1
7

3
9

6
4

7
5

5
5

4
6

3
3

7
1

2
7

9
1

8
7

0
9

4
9

1
0

2
8

1
1

0
7

1
1

8
6

1
2

6
5

1
3

4
4

1
4

2
3

1
5

0
2

1
5

8
1

1
6

6
0

1
7

3
9

1
8

1
8

1
8

9
7

1
9

7
6

2
0

5
5

2
1

3
4

2
2

1
3

2
2

9
2

2
3

7
1

2
4

5
0

2
5

2
9

2
6

0
8

2
6

8
7

2
7

6
6

2
8

4
5

2
9

2
4

3
0

0
3

3
0

8
2

3
1

6
1

3
2

4
0

3
3

1
9

3
3

9
8

3
4

7
7

3
5

5
6

3
6

3
5

3
7

1
4

3
7

9
3

3
8

7
2

3
9

5
1

4
0

3
0

4
1

0
9

4
1

8
8

4
2

6
7

4
3

4
6

A
ch

(1
/h

)

ACH Measured

AIM-2 standard    X=R=0.5

AIM-2-Regression

AIM-2 standard      X=R=0.6

AIM-2 standard      X=R=0.37



 

 

74 

 

 

Figure 25: AIM-2 model error distribution 

Figure 25 shows the absolute error distribution of the AIM-2 models. The new method 

shows a better accuracy.  Almost 98% of the recorded data has an accuracy of ± 0.05 

ACH. The standard AIM-2 with X=R=0.37 tends to have the lowest accuracy.    

The standard AIM-2 model when X=R=0.6 appeared to give a better ACH prediction 

than the other standard AIM-2 model. But this is not true. The reason is that much of 

the data recorded is below 0.2, ACH which indicates that the infiltration is dominated 

by stack effect. The impact of the leakage distribution estimation on the standard AIM-

2 model is better explained in the Figure 26 below. The AIM-2 model with X= R=0.6 
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0.35, it is better estimated when X=R=0.37. A key advantages of the AIM-2-Regresssion 

is that it does not need to quantify the air leakage distribution ratios X and R.   

 

 

Figure 26: ACH measured and ACH predicted using AIM-2 model 
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5.6  Compare the models with other studies 

Different studies were made to validate the infiltration models. (Franciso and 

Palmiter, 1996) studied in ten single-family homes. (Wang et al., 2009) evaluated the 

AIM-2 model. The results are  presented in Table 7 below. 

 

Table 14 :  Comparison of AIM-2 regression with AIM 2 model done in other 

studies 

 AIM-2-
Regression 
(BEST Lab) 

Standard AIM-2 
model prediction 

(BEST Lab) 

Franciso and 
Palmiter, 1996 

Wang et 
al., 2009 

Leakage 
Distribution 

Not 
Applicable 

X=R
=0.6 

X=R=
0.5 

X=R=
0.37 

X=R=
0.5 

X=0 & 
R=0.5 

X=0 & 
R=0.5 

|Error %| 9.7 17.3 24 35 16.2 46 19 

Standard 
Deviation (%) 

9.2 12.7 18.6 22.6   16 

 

Table 14 shows the percentage error of AIM-2 model for BEST laboratory and work 

done in  previous studies.  We can see that the AIM-2-Regression is the only method 

able  to predict the ACH with an average absolute value error less than 10 %. 
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5.7 The impact of regression data size and data quality 

The AIM-2-Regression model predicts the ACH better than the standard AIM-2 model.  

In this section, the impact of the data size and the data range was studied.  The total 

number of data collected was 4400.  The data was split to two parts.  The first part of 

the data is used to determine the model parameters and the rest of the data is used to 

predict the ACH.  Six regression analyses were done. Table 15 shows the data size used 

for each regression to determine the model parameter.  

Table 15 :  Data size used in the regression 

 Total data size Data size used for 
regression analysis 

Data size used to 
predict ACH 

Regression 1 4400 300 4100 

Regression 2 4400 450 3950 

Regression 3 4400 600 3800 

Regression 4 4400 750 3650 

Regression 5 4400 900 3500 

Regression 6 4400 1050 3350 
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The ACH percentage error was calculated using   𝑒𝑞𝑛 (51)   for the six regression 

results. Figure 27 shows the impact of the data size used to determine the AIM-2-

Regression model parameter on the average error. The error is 18% for the data size 

of 300. It drops to 10% when the data size is increased to 450. Not a huge impact was 

observed by increasing the data size by more than 450.  

 

Figure 27: Impact of the data size in  AIM-2-Regression model 

The above result did not indicate the impact of the data quality. In the new AIM-2-

Regression model the wind factor is dependent on the wind direction.   Figure 28 

shows the data size in the  wind direction range. One fourth of the collected data has a 
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Figure 28: Data distribution based on wind direction 

To understand the impact of the data quality, the data was filtered for wind direction 

between 270 and 300. AIM-2-Regression model used a single wind factor (𝑓𝑤) for the 

wind direction range.  Figure 29 presented the wind speed and the wind direction of 

the filtered data. This data set contained wind speed range from 1 m/s to 9 m/s. The 

data size is 1100.  

 

Figure 29: Wind speed data for wind direction between 270 and 300 degree 
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Six regressions were estimated to determine the AIM-2-Regression model parameter 

using different data size.  Table 16 presents the data size used to do the regression 

test. The rest of the data was used to predict the ACH.  

Table 16 :  Data size used in the regression for the filtered data 

 Total data Data size used for 
regression  

Data size used ACH 
prediction 

Regression 1 1160 50 1190 

Regression 2 1160 100 3950 

Regression 3 1160 200 3800 

Regression 4 1160 250 3650 

Regression 5 1160 300 3500 

Regression 6 1160 350 3350 

 

The average ACH percentage error was calculated using  𝑒𝑞𝑛 (51)  . Figure 30 presents 

the ACH percentage error as a function of the data size used to determine the model 

parameter. The error dropped from 20% to 11% when the data size used for 

regression increased from the first 50 to first 100. The first 50 data points contained 

wind speed range from 4 to 5 m/s.  However, the first hundred data points contained 

a wind speed range from 4 to 7 m/s. If we looked the first 250 data points, the data 

cover the wind speed range from 1 to 9m/s and the error reduces to 8%.  This shows 

that the accuracy of this model is highly dependent on wind speed spectrum in each 

wind direction. In this dissertation, the wind direction range was 30 degree as shown 

in  𝑒𝑞𝑛 (51). 
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Figure 30: Impact of the data size quality on  AIM-2-Regression model 
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6 APPLICATION 

6.1 Application                                           

A simple low cost monitoring and measuring device was constructed to apply the new 

methodology developed in chapter three. The device should be able to perform the 

tracer gas decay method and measure the room temperature. The weather data is 

collected from the nearby weather station (e.g. airport weather  data) .  The user 

should be able to control when to perform the tracer gas test or to monitor the indoor 

air quality.  The device is composed of a temperature sensor, humidity sensor, carbon 

dioxide sensor, a solenoid valve, and Arduino Yun micro controller.  The Arduino 

microcontroller is the integral part of this device. This microcontroller is selected for 

the following reasons: 

1. It is cheap. It costs from $30 to $70  based on additional  futures. 

2. It can be connected to Wi-Fi or internet. 

3. It stores data on a SD card.  

4. It is easily programmable and uses an open source program. 



 

83 

 

 

Figure 31: IAQ monitoring and measuring device 

 

Figure 32: Device schematic diagram 

Figures 31 and 32 show the picture and the schematic diagram of the IAQ monitoring 

and measuring device. The device uses a 110 ACV power supply.  This power is 

converted to 5 VDC, 24 VDC, and 12 VDC to power the microcontroller, 𝐶𝑂2 sensor and 
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solenoid valve, respectively. The microprocessor power output is used to power the 

temperature and humidity sensors. The sensors output signals are connected to the 

microprocessor analog inputs and the data is stored in the SD drive.  This data can be 

downloaded through direct connection to the computer or through a Wi-Fi connection. 

 The device has two settings: calibration and monitoring. The toggle switch is used to 

select these options.   When the switch is turned on, the device is set to run the tracer 

gas decay method and to measure the room temperature.  The red LED light turns on 

to indicate that the tracer gas might be injected. Based on the tracer gas concentration 

the microprocessor turns the solenoid valve on and off using solid state relay.  The 

solenoid valve gas input is connected to the tracer gas cylinder and the valve output is 

connected to the return duct in the air circulation system.   

Calibration is important to determine the infiltration model parameter of the house. 

To do the calibration, the following items should be satisfied: 

1. CO2 sources (occupants and pet) should not be in the house. 

2. Windows and entrance doors should be closed. 

3. Doors between rooms should be left open.  

4. The circulation fan must be set to run continuously. 

5. The device tracer gas input should be connected to the CO2 cylinder and the 

gas output should be attached to the return duct. 

This device injects the tracer gas into the room until it reaches 1200 ppm. The CO2 

sensor is capable of measuring up to 1200 ppm. The valve turns off and tracer gas 
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injection stops. The tracer gas concentration is measured for every minute and stored 

into the SD card.  The valve turns on when the tracer gas concentration reaches 550 

ppm.  This process repeats until the switch is turned off.   

When the switch turns off, the device is set to monitoring mode. The solenoid valve is 

closed and 𝐶𝑂2 is not injected into the test space.  The green LED light turns on. The 

device measures the 𝐶𝑂2  level, the room temperature, and the room humidity for 

every minute. 

This  device was tested in the BEST laboratory.  The device was set to calibration mode 

to determine the AIM-2 model parameter using tracer gas decay method. The data was 

collected for every minute.  The test was run for two days. Figure 33 shows the tracer 

gas, 𝐶𝑂2, concentration in the decay process. Tracer gas was injected four times during 

the test period.  The injection time interval between the second and the third injection 

as well as the third and fourth injection were short.  This shows that the infiltration 

rate was higher between these periods.  
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Figure 33:  𝑪𝑶𝟐 concentration measurement 

The Syracuse airport  weather data was obtained from NOAA. Figure 34 shows the 

wind direction of the collected data.  Figure 35 presents the data size  as a function of 

wind direction. The data shows that the wind was blowing in northeast, north, east, 

and northwest directions.  

 

Figure 34: Wind direction 
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Figure 35: Data distribution in a wind direction 

Figure 36 presents the wind speed. The wind speed varied from 0.5 m/s to 8 m/s. 

Figure 37 shows the indoor and the outdoor air temperature. The indoor air 

temperature data was collected using the new device.   The outdoor temperature data 

was obtained from NOAA.  

 

Figure 36: Wind speed 
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Figure 37: Indoor and outdoor temperature 

Non-linear multi-variable regression analysis was used to determine the AIM-2 model 

parameter.  The results are presented in table 17. The wind factor (𝑓𝑤) values for wind 

direction between 60 and 150 degree are small.  This is expected because trees shield 

the east side of the building.  The wind factor for wind direction between 120 and 330 

might not be valid because sufficient data was not collected. 
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Table 17: Model parameters obtained from regression test 

 Wind Direction 
(deg) 

AIM-2-
Regression 

Leakage Characteristics (C)  1.230 

Leakage characteristics 
exponents(n) 

 0.520 

Stack factor ( fs)  0.561 

Wind factor (fw) 

0 and 30 0.432 

30 and 60 0.392 

60 and 90 0.287 

90 and 120 0.181 

120 and 150 0.203 

150 and 180 0.558 

180 and 210 0.706 

210 and 240 0.831 

240 and  270 0.609 

270 and 300 0.425 

300 and 330 0.412 

330 and 360 0.355 

 

Figure 38 presents the measured ACH from the device and the calculated ACH using 

parameters from Table 12 and Table 17. The measured value and the AIM-2-

Regression value using the new device data follow the same trend.  The AIM-2-

Regression result from Table 12 parameters is higher. The reason is that the wind 

factor for wind direction between 0 and 120, and between 330 and 360 degree are 

inaccurate because insufficient data was not collected to get a valid regression result. 
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Figure 38: Measured and predicted ACH 
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7 SUMMARY AND CONCLUSIONS 

The most advanced models, AIM-2 and LBL, rely on determining the building leakage 

characteristic, the shield effect and the leakage distribution ratio. The standard way of 

measuring building leakage characteristics is building pressurization test. Other 

parameters are obtained from qualitative analysis and tabulated data.  This technique 

requires skilled labor and expensive equipment.  Shield effect and leakage distribution 

are difficult to determine. In this dissertation, a methodology is developed to combine 

the tracer gas method and infiltration models to predict ACH in the occupied house 

with better accuracy and less cost.  The decay tracer gas is used to calibrate building 

leakage characteristics and the surrounding shield effect. This method does not 

require skilled person or heavy equipment. A simple device was developed to 

implement the method in low income naturally ventilated houses.  

The method, its’ assumptions, and its’ limitations were validated. The findings are 

summarized as followed:  

- Running the circulation fan in naturally ventilated house creates a well-mix 

condition. 

- Decay tracer gas method can be used to estimate near-real time ACH, if the 

decay process is captured in a minute interval. 

- The standard AIM-2 or LBL accuracy is heavily dependent on air leakage 

distribution factors (X and R). These factors are difficult to predict. 
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- Weather data, 𝐶𝑂2 monitoring and decay method can be used to predict the 

building leakage characteristics, wind factor, and stack factor.  

- AIM-2-Regression method predicts ACH better than LBL-Regression 

- The accuracy of the new methodology is dependent on the number of records 

and the data quality obtained from regression analysis. The data quality is 

mainly focused on a wide wind speed spectrum in the wind direction range. 

- The advancement in sensor technology and microprocessor make tracer gas 

decay method easier and cheaper to measure building leakage characteristics 

than pressurization test.  
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8 FUTURE WORK 

This work can be extended in the following areas: 

1. The new methodology is applicable to measure ACH when the house doors 

and windows are closed. The method could be extended to include the impact 

of the opened doors and windows.  The impact of human interaction with the 

building can also be explores.  

2. The requirement of 𝐶02 cylinder to calibrate the building might not be 

convenient for the user. The 𝐶02  concentration in the house when the 

occupants leave might be used to calibrate the model parameter. The 

concentration should be high enough from the outdoor 𝐶02  concentration.  

3. The new device can be extended to measure the occupants’ number based on 

the Wi-Fi signal received from the mobile phone and/or 𝐶02  level. This will 

help to estimate the ACH required base on the occupant.  
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9 APPENDIX 

Appendix A: Pressurization test Procedure 

The purpose of this test is to determine the building leakage characteristics. The fan 

blows air to the room to keep the set pressure difference across the building enclosure 

to set point.  The air flow is measured using IRIS damper. The pressure difference 

across the IRIS damper is measured and converted to flow rate. The Pressurization 

test procedure is stated below: 

1. Turn on the fan. 

2. Set up the PID fan controller to keep the pressure difference between the indoor 

and outdoor at 10 Pa. 

3. Wait till the pressure difference measurement stabilized. 

4. Measure and log the pressure difference across the IRIS damper.  This pressure 

difference is convert to the flow rate 

5. Increase the set point by 10 Pa  

6. Follow step 3 and 5 
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Appendix B:  Tracer gas decay test Procedure 

Tracer gas decay method is used to measure the air change rate in the control volume. 

Tracer gas is injected into the test space until it reaches a set level.  The tracer gas 

concentration is measure every minute. The air change rate is calculated from this 

data. To do this experiment we have to a well-mix condition in the test space.  The 

procedure of decay tracer gas method is stated as followed: 

1. Turn on the circulation fan to create a well mix-condition. 

2. The CO2 cylinder is directly connected to the air circulation system before or after 

the circulation fan. 

3. Set the INNOVA tracer gas monitor to measure and  log the concentration level 

every minute. 

4.  The CO2 cylinder is directly connected to the air circulation system before or after 

the circulation fan. 

5. Inject CO2 gas  by opening the cylinder valve until the concentration reaches 1300 

ppm  

6. Close the cylinder valve.  

7. Stop the experiment when the concentration reaches the background tracer gas 

level 
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Appendix C:  Tracer gas constant concentration test Procedure 

The INNOVA tracer gas monitoring system is used to perform this test. The equipment 

measure and inject the tracer gas to keep the room concentration at a constant level.  

The tracer gas injection is directly proportional to the infiltration rate. This test 

procedure is: 

1. Turn on the circulation fan to create well mix condition. 

2. Connect the tracer gas pressurized cylinder to the Multipoint sampler 

3. Run auto-calibration. 

4. Set the INNOVA Tracer gas monitor PID control to maintain SF6 Concentration to 

8 mg/m3. The device is set to control the concentration level of the second floor.  

5. Set the INNOVA device to monitor the tracer gas concentration level  

6. Run the experiment  
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