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ABSTRACT

Mobile data traffic has experienced unprecedented growth recently and is predicted
to grow even further over the coming years. As one of the main driving forces behind
this growth, wireless transmission of multimedia content has significantly increased
in volume and is expected to be the dominant traffic in data communications. Such
wireless multimedia traffic requires certain quality-of-service (QoS) guarantees.

With these motivations, in the first part of the thesis, throughput and energy
efficiency in fading channels are studied in the presence of randomly arriving data
and statistical queueing constraints. In particular, Markovian arrival models includ-
ing discrete-time Markov, Markov fluid, and Markov-modulated Poisson sources are
considered, and maximum average arrival rates in the presence of statistical queueing
constraints are characterized. Furthermore, energy efficiency is analyzed by deter-
mining the minimum energy per bit and wideband slope in the low signal-to-noise
ratio (SNR) regime.

Following this analysis, energy-efficient power adaptation policies in fading chan-
nels are studied when data arrivals are modeled as Markovian processes and statistical
QoS constraints are imposed. After formulating energy efficiency (EE) as maximum
throughput normalized by the total power consumption, optimal power control poli-
cies that maximize EE are obtained for different source models.

Next, throughput and energy efficiency of secure wireless transmission of delay
sensitive data generated by random sources are investigated. A fading broadcast

model in which the transmitter sends confidential and common messages to two re-



ceivers is considered. It is assumed that the common and confidential data, generated
from Markovian sources, is stored in buffers prior to transmission, and the transmitter
operates under constraints on buffer/delay violation probability. Under such statisti-
cal QoS constraints, the throughput is determined. In particular, secrecy capacity is
used to describe the service rate of buffers containing confidential messages. More-
over, energy efficiency is studied in the low signal-to-noise (SNR) regime.

In the final part of the thesis, throughput and energy efficiency are addressed con-
sidering the multiuser channel models. Five different channel models, namely, multi-
ple access, broadcast, interference, relay and cognitive radio channels, are considered.
In particular, throughput regions of multiple-access fading channels are character-
ized when multiple users, experiencing random data arrivals, transmit to a common
receiver under statistical QoS constraints. Throughput regions of fading broadcast
channels with random data arrivals in the presence of QoS requirements are studied
when power control is employed at the transmitter. It is assumed that superposition
coding with power control is performed at the transmitter with interference cancel-
lation at the receivers. Optimal power control policies that maximize the weighted
combination of the average arrival rates are investigated in the two-user case. Energy
efficiency in two-user fading interference channels is studied when the transmitters
are operating subject to QoS constraints. Specifically, energy efficiency is charac-
terized by determining the corresponding minimum energy per bit requirements and
wideband slope regions. Furthermore, transmission over a half-duplex relay channel
with secrecy and QoS constraints is studied. Secrecy throughput is derived for the
half duplex two-hop fading relay system operating in the presence of an eavesdrop-
per. Fundamental limits on the energy efficiency of cognitive radio transmissions are
analyzed in the presence of statistical quality of service (QoS) constraints. Minimum
energy per bit and wideband slope expressions are obtained in order to identify the

performance limits in terms of energy efficiency.
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CHAPTER 1

INTRODUCTION

OBILE data traffic has experienced unprecedented growtntgcand is pre-

IVI dicted to grow even further over the coming years. For iresait is projected
that global mobile data traffic will increase 7-fold betwe16 and 2021, reaching 48.3
exabytes per month by 2021 [5]. As one of the main driving dsrbehind this growth,
wireless transmission of multimedia content has signifigancreased in volume and is
expected to be the dominant traffic in data communicationdeéd, mobile video traffic
already accounted for 60 percent of the total mobile daffidia 2016 and is predicted to
become more than three-fourths of the world’s mobile datfi¢crby 2021 [5].

This exponential growth in the flow of mobile data and multihi@econtent has signif-
icant implications on wireless networks. For one, wirelesdtimedia traffic requires cer-
tain quality-of-service (QoS) guarantees. For instanceoice over IP (VolP), multimedia
streaming, interactive video, and online gaming applicetj constraints on delay, packet
loss, or buffer overflow probabilities need to be imposedhsd acceptable performance
and quality levels can be met for the end-users. Anotheremprence is heterogeneity
in network traffic. Wireless networks now carry heterogersewaffic in diverse environ-
ments, and successful design of networks, efficient usesaiurees, and effective QoS

provisioning for multimedia communications critically mend on the appropriate choice



of source traffic models. For instance, while voice traffin be accurately modeled as an
ON/OFF process with fixed-rate data arrivals in the ON stidtg traffic can be bursty and
video traffic, which exhibits correlations, can be modelkadistically using autoregressive,
Markovian, or Markov-modulated processes [4].

Finally, it is important to note that this increased trafbgether with the given QoS re-
guirements need to be supported by wireless systems eguipieonly limited bandwidth
and power resources. Especially, due to limited energyablaifor mobile units and rising
energy costs and environmental concerns, energy efficiengyeless communications is
a key concern (see e.g., [2] and [33]). Therefore, it is @uim identify the fundamen-
tal performance limits (e.g., in terms of maximum achieeatbiroughput and minimum
energy per bit) in order to determine how to most effectiugijize the scarce resources.
With this motivation, in this thesis we investigate the thgbput and energy efficiency of
wireless systems when data arrivals are in general randwiQaS constraints in the form

of limitations on the asymptotic buffer overflow probabég are imposed.

1.1 Literature Review

1.1.1 Wireless Throughput and Energy Efficiency under Statisti-

cal Queueing Constraints

Satisfying QoS requirements is critical for most commuticanetworks, and how to sat-
isfy QoS constraints for various source traffic models hanlome of the key considerations
in the networking literature. In particular, besides corienal queueing theory, network
calculus has been introduced by Cruz in early 1990s as aythe@ddress the delay and
other deterministic service guarantees in networks byimgalith queueing systems [34]
—[36]. Subsequently, Chang in [6] developed the stochastision of the network calcu-
lus. More specifically, the theory of effective bandwidtheaime-varying source has been

formulated to identify the minimum amount of transmissiaterthat is needed to satisfy



the statistical QoS requirements (see also [7] — [38]). THesry is based on the logarith-
mic moment generating function of the arrival process amdlated to the large deviation
principle. Moreover, statistical QoS constraints are isgzbas limitations on buffer/delay
violation probabilities. Effective bandwidths of variossurce models have been investi-
gated extensively in the literature. For instance, Elwalidl Mitra studied the effective
bandwidth of Markovian traffic sources (including Markowdulated fluid and Markov-
modulated Poisson sources) in [11] under constraints ohuffer overflow probability. It
is shown that effective bandwidth is given by the maximuneeiglue of a matrix derived
from source parameters and service requirements. In [f2[;twe bandwidth formula-
tions were provided for multi-class Markov fluids as well asmoryless (Poisson) and
discrete-time Markov sources. In [39], the authors stutheckffective bandwidths of gen-
eral stationary sources and derived a first order approiomaf the effective bandwidth
in terms of the mean arrival rate and index of dispersion.

In wireless communications, the instantaneous channeloigpvaries randomly de-
pending on the channel conditions. Hence, in addition testhece characteristics, trans-
mission rates for reliable communication are also timeAvay. In such cases, randomly
time-varying servers can be considered in the queueingsystodel. Indeed, motivated by
the wireless channel, Stolyar in [40], Venkataramanan andhl[41], and Sadiq and de Ve-
cianain [42] employed tools from the theory of large dewasi and investigated scheduling
rules (e.g., MaxWeight, Exponential, and Radial Sum-Rate®lonic scheduling) while
controlling the large deviations of queues. Following &eotmethod, the time-varying
channel capacity can be incorporated into the theory ot¥e bandwidth by regarding
the channel service process as a time-varying source wgitive rate and using the source
multiplexing rule ([9, Example 9.2.2]). Using a similar appch, as a dual concept to ef-
fective bandwidth, Wu and Negi defined in [10] the effectia@acity, which describes the
maximum constant arrival rate that a given time-varyingiserprocess can support while

satisfying the statistical QoS requirements. Indeed, worKk 0] revitalized the consid-



eration of statistical queueing constraints in the contéxtireless communications, and
the effective capacity of wireless transmissions has beesstigated intensively in various
settings (see e.qg., [43]-[21]). For instance, Tang and glmaf®4] considered the effective
capacity when both the receiver and transmitter know thamaneous channel gains, and
derived the optimal power policy that maximizes the systeroughput under QoS con-
straints. Liuet al. in [27] considered fixed-rate transmission schemes and/zetlthe
effective capacity and related resource requirements fankbl, wireless channel models
and Markov fluid sources. In [47] and [48], effective cappaat cognitive radio channels
was studied. In [49], multi-antenna communication in thespnce of queueing limitations
was investigated. Soret al. in [51] addressed correlated Rayleigh fading channels and
studied the effective capacity under different adaptite olicies. In this study, perfor-
mance in the presence of probabilistic delay constrairdsvaniable rate sources was also
analyzed by considering a Gaussian autoregressive sourdel m

Energy efficiency in the presence of statistical QoS comgréas also been addressed
recently. For instance, the fundamental limits of enerdiciehcy in the low signal-to-
noise ratio (SNR) regime in fading channels were determunadkr QoS constraints in
[18]. Musavian and Le-Ngoc in [19] incorporated the cirquotver consumption into their
analysis of energy efficiency. Ret al. in [20] investigated the minimum energy per bit
and wideband slope in a hybrid cellular system. Liu in [21fsidered the optimal power
control to achieve the maximum energy efficiency. Helmy angs8¥ian in [22] consid-
ered a multichannel scenario in which they obtained thexagdtpower allocation for each
channel to achieve the maximum global energy efficiency. héug in [23] studied the
energy-efficient design in downlink OFDMA systems. In a récgtudy in [26], the au-
thors analyzed energy-efficient resource allocationeggias in MIMO-OFDM systems in
the presence of random arrivals and statistical QoS remeings. In particular, they char-
acterized the optimal energy-efficient queue-length bassdurce allocation policy that

minimizes the total power consumption while satisfying @eS requirements. Further-



more, in [28]-[30], power control policies were examinedlenQoS constraints.

1.1.2 Secure Transmission over Wireless Fading Channels

Addressing security considerations is essential in weelBdmmunication networks due
to the ease in eavesdropping of wireless transmission$ #ig motivation, information-
theoretic security has been extensively investigatedirstance, in [68] and [69] wiretap
channels with fading have been studied whereas author®Jrafidl [71] incorporated the
multiple antenna settings to wiretap channels. Furtheemibre energy efficiency of se-
cure and reliable communication schemes have been addresseveral recent studies.
The work in [72] addressed secure communication in the Igwadito-noise ratio (SNR)
regime and identified the minimum energgr secret bitand the wideband slope (which
are two key performance metrics in the low SNR regime [57]ptivated similarly by en-
ergy efficiency requirements, Comaniciu and Poor in [73gstigated the security-energy
tradeoff from an information theoretic perspective. Zhangl. in [74] studied three-node
MIMO wiretap channels in order to design an energy efficigrtpder. Nget al. in [75]
considered secure OFDMA systems and addressed the enBoiggnéfesource allocation
problem. Kalantaret al. in [76] investigated the power control in wiretap interfece
channels where users either work together or act as selfedsndimilar to our motiva-
tion, Chen and Lei in [77] took energy efficiency, securitd&oS guarantees into account
jointly and worked on maximizing the secrecy energy efficiewhile having constraints
on delay. In [78] and [79], Zhet al. investigated the cross layer scheduling of OFDMA
networks with both open and private data transmissions30i fwo medium-access pro-
tocols were proposed and the mean service rate, the soulaEsqueue and the secret
keys queue was analyzed. Shafie and Al-Dhahir [81] proposedveork scheme that con-
sists of a source node and a destination in the presencefef bided relay node and an
eavesdropper, while taking the data burstiness of souterergy recycling process at the

relay into account. In [82], secure and stable throughggioreis investigated by employ-



ing beamforming based cooperative jamming that dependseochtannel side information
available at the transmitter. In [83], authors assumeddhét the distribution of eaves-
dropper is known at the transmitter and studied the problanrhaximizes the long-term
data admission rate while having constraints on the seaatage and stability of the data
gueue. Khalilet al. in [84] derived upper and lower bounds on the secrecy capatthe

flat fading channel with limitations on delay. For more distaggarding the advances in
this rich field of physical-layer security in wireless commizations, we refer to surveys

and overviews provided in [85]-[91].

1.1.3 Throughput and Energy Efficiency in Multiuser Channels

Multiple-access channel (MAC) model, in which multiple tssehare a communication
medium to send their messages to a common receiver, is ohe ofidin building blocks
of multiple-user communication scenarios, modeling, fatance, uplink in cellular and
satellite communications and wireless LANSs. It is well-lumthat Gaussian MAC capacity
region is achieved by having simultaneous transmissiams the users (i.e., superposition
coding) with successive cancelation decoding at the rec§]. Similar transmission and
reception strategies are optimal in multiple-access fadimnnels as well [59]. In [60],
effective capacity framework was employed to study theughput regions of multiple-
access fading channel subject to statistical queueingreomis under the assumption that
arrival rates to all users are constant.

Broadcast channel (BC) model, in which we have one sendesriting to multiple
receivers, is one of the main building blocks of multiuseralgss networks. For instance,
downlink in cellular, broadcasting, and satellite comneation systems is modeled as a
broadcast channel. Due to the importance and common usapes# channel models,
they have been extensively studied from an information rétéo perspective in order to
design and analyze efficient transmission strategies (geg®8] and [93] and references

therein). For instance, Li and Goldsmith in [94] charactedi the ergodic capacity region



of fading broadcast channels and determined the optimalires allocation policies. They

showed that the capacity region, which is achieved by sws#ipn coding and successive
decoding whose order is determined by the effective noigeldeis convex. As noted

before, providing QoS guarantees has become a very impadasideration in wireless

networks due to the fact that mobile multimedia data traffangisting of e.g. voice over

IP, streaming and interactive video) has surged in recestsywith the widespread use of
social networking tools, video-sharing sites, and onliasong applications. With this mo-

tivation, in [95] authors have studied the throughput ragiof fading broadcast channels
in the presence of QoS constraints. However, only constdatarrivals were addressed in
[95].

Due to the broadcast nature of wireless transmissionsfenémce is a common form
of distortion experienced in especially densely-deploy@@less networks. Interference
channel models explicitly take into account this type otatison and have been exten-
sively studied from an information-theoretic perspecsee e.g., [96], [97], and references
therein).

Secure communication of confidential messages is a key oontavireless networks
due to the broadcast nature of wireless transmissions. nRgcenformation-theoretic
physical-layer security for wireless communications haswh considerable attention. In
particular, based on the seminal work in [65], secrecy dapatwireless links have been
extensively studied. In [65], Wyner addressed the secpritplem in a wiretap channel
by using information theoretic methods. In this model, theet@pper receives a noisier
version of the signal received at the intended user. Thesselirecy capacity is defined as
the supremum of the achievable communication rates fronramsmitter to the intended
receiver while keeping the eavesdropper ignorant of thesaggs Recently, studies have
also been conducted on cooperation for secrecy [98]. Ftangs, in [99] and [100], the
authors considered decode-and-forward (DF) strategiedag networks.

Energy and bandwidth are two critical resources in wiretgsamunications. Due to



unprecedented growth in mobile applications and wirelessworks and the fact that much
of the prime radio spectrum has already been allocated &mifspapplications, the scarcity
in the spectrum has become a serious concern. On the othéy teent measurements
have shown that the licensed spectrum is considerably utlitezd across many time and
frequency slots. This has led to much interest in dynamictspen access strategies and
cognitive radio systems [101] which can more effectivelyness the available bandwidth

by, for instance, utilizing the spectrum holes.

1.2 Main Contributions

In Chapter 3, throughput and energy efficiency in fading cledsare studied in the pres-
ence of randomly arriving data and statistical queueingstamts. In particular, we
consider Markovian arrival models including discretediflarkov, Markov fluid, and
Markov-modulated Poisson sources. Employing the effedbandwidth of time-varying
sources and effective capacity of time-varying wireleasgmissions, maximum average
arrival rates in the presence of statistical queueing caims$ are characterized. For the
two-state (ON/OFF) source models, throughput is deterthimelosed-form as a function
of the source statistics, channel characteristics, antitgjwh service (QoS) constraints.
Throughput is further studied in certain asymptotic reginfeurthermore, we analyze en-
ergy efficiency by determining the minimum energy per bit andeband slope in the low
signal-to-noise ratio (SNR) regime. Overall, the impacsofirce characteristics, QoS re-
quirements, and channel fading correlations on the thrpughnd energy efficiency of
wireless systems is identified.

We note that the studies on the effective capacity of wireldsannels have primar-
ily concentrated on constant arrival rates in the analysithe throughput and energy
efficiency. Departing from this approach, we in this chagbeplicitly take into account

the randomness and burstiness of the source traffic. Incpkatj we address Markovian



source models including discrete-time Markov, Markov fl@dd Markov modulated Pois-
son sources, and conduct a performance analysis. Mordispgj our contributions can

be listed as follows:

e A framework with which source randomness can be incorpdraté¢he throughput

analysis of wireless transmissions is provided.

e Fortwo-state (ON/OFF) source models, closed-form expasare obtained for the
maximum average arrival rate in terms of the source stegiséiffective capacity of
wireless transmissions, and the QoS expofdewhich quantifies how strict the QoS

constraints are.
e Throughputis characterized in the lgixand high-SNR regimes.

e An energy efficiency analysis is conducted and minimum gnpgeg bit and wide-

band slope expressions are determined for both constaméaddm arrival models.

¢ Via both analytical and numerical results, the impact ofreeuandomness, fading
correlations, and queueing constraints on the wirelessutimput and energy effi-

ciency is identified.

e Throughput of multiple-input multiple-output (MIMO) wikess communication chan-
nels is studied an energy efficiency analysis is conducteeustatistical queueing

constraints.

In Chapter 4, we again explicitly model the information flost®chastically using
Markovian models and study energy-efficient wireless tréasion strategies in the pres-
ence of statistical QoS constraints imposed on buffer awenfirobabilities. In particular,
we identify energy-efficient power control policies in fadichannels for different source
arrival models. We further investigate the tradeoff betw#aoughput and energy effi-

ciency (EE).
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The studies on energy efficiency and power control condueitdeffective capacity
formulations have mainly centered around the assumptiansthurces have constant ar-
rival rates. In this chapter, we take into account the stsihaature of information flows
and investigate the effect of the randomness and burstofeg®e source traffic on the
energy-efficient design of wireless systems. Specifically,consider Markovian source
models (namely discrete-time Markov, Markov fluid, and bdigcrete and fluid Markov
modulated Poisson processes (MMPP)) and determine thmapnergy-efficient power

allocation policies. The contributions of this chapter barfurther detailed as follows:

e Considering two-state (ON/OFF) source models, througlepptessions are pro-
vided and subsequently energy efficiency metric is ideutfe discrete-time Markov,
Markov fluid, and MMPP arrival models. Overall, an analytiftamework is pro-
vided to study the energy efficiency of wireless transmissia the presence of ran-

dom data arrivals and statistical queueing constraints.

e After taking both the circuit and transmission power inte@mt, optimal power
allocation policies that maximize the energy efficiency @eeermined for different

source models.

e Power control policies that maximize the throughput undiéree energy efficiency

or power constraints are also obtained.

¢ In addition to single-channel systems, power allocatiott eontrol strategies that
maximize the throughput in multichannel systems undergnefficiency constraints

are determined.

¢ Via both analytical and numerical results, the impact ofrsewandomness, channel
fading, queueing constraints, and power control strasegethe energy efficiency is

identified. Tradeoff between energy efficiency and throurligexplored.
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In Chapter 5, we study the secure communication of delagises data traffic gen-
erated by Markovian sources (e.g., discrete-time MarkasKdv fluid, discrete-time and
continuous-time Markov modulated Poisson sources) arestigate the fundamental per-
formance limits of secure throughput and energy efficienogeun statistical buffer/delay

violation constraints. In particular, we can list the cdmitions of this chapter as follows:

e Considering two-state (ON/OFF) Markovian source modalsughput expressions
for common and confidential messages in terms of sourceststatieffective capacity
of wireless transmissions of common and confidential messamd QoS exponent

6 are provided.

e Energy efficiency metrics, namely the minimum energy peabd wideband slope,
are identified for discrete-time Markov, Markov fluid, and tdav-modulated Pois-
son arrival models again in terms of important system, cekmamd source parame-

ters.

e The effect of source randomness, channel correlatioresgeequirements, buffer/delay
QoS constraints on the performance metrics are identifigodih common and con-

fidential messages from both analytical characterizat@osnumerical results.

e Throughput and energy efficiency metrics are obtained wheriransmitter knows
the channel statistics but not the realizations of the chlafading, and therefore

sends the confidential data at a fixed rate.

In Chapter 6, we assume that the time-varying channel dondiaire not known at the
transmitter and consequently, transmission rate is fixexedrrate transmission over the
Rayleigh fading channel is modeled as an ON-OFF Markov flu@tg@ss. Under these
modeling assumptions, our main contributions are the éhiction of a general framework
for performance analysis in the low-power regime, deteatiom of closed-form expres-
sions for the minimum energy per bit and wideband slope, &adacterization of the im-

pact of source and channel parameters and queueing coitswaithe energy efficiency.
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In Chapter 7, we conduct throughput and energy efficienclyaisafor multiuser sce-

narios under QoS constraints. More specifically, we havéath@ving contributions.

e In Section 7.1, we investigate the throughput regions otiplelaccess fading chan-
nels when the users experience random arrivals and opeitatpresence of quality-
of-service (QoS) constraints. Consideration of QoS guaemis motivated by the
recent exponential growth of wireless transmissions oftineldia content. In this
study, a more general scenario is considered in which ugpesience random Markov
arrivals. In particular, we combine the theory of effectbandwidth of time-varying
random arrivals and the theory of effective capacity of tvaeying wireless trans-
missions in order to characterize the throughput regionsmutiple-access fading

channels.

e In Section 7.2, we characterize the throughput regions dinfabroadcast chan-
nels when superposition coding with successive decodiam@oyed together with
power control. We further propose an optimal power conttgbathm. We deter-
mine the throughput region and sum-throughput for the taerease and compare
different strategies including time division multipleginvith power control and su-

perposition coding without power adaptation.

e In Section 7.3, we investigate the energy efficiency in fetence channels when
users operate under QoS limitations. More specifically, aresiler three strategies
for communication in the two-user case, which are time dwisvith power con-
trol, treating interference as noise, and simultaneousdiag. As metrics of energy
efficiency, we determine the corresponding minimum energyhbit and wideband
slope regions for these strategies. We compare the penfmgsan the presence of

different levels of interference and different QoS coristg

e In Section 7.4, we consider a two-hop wireless channelnggetti which the relay

node, employing the DF strategy, helps the communicatitwesn the source and
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destination. We assume that the wireless communicatioalfsdoplex and hence
the relay can not transmit and receive simultaneously. Vépiaithe energy per bit
as the metric of energy efficiency. We impose constraintshenbuffer overflow

probabilities. We study secure cooperative communicatiomer QoS constraints

and investigate the energy efficiency by determining themmim energy per bit.

e In Section 7.5, we address the efficient use of both bandveidthenergy resources
by investigating the energy efficiency of cognitive radistgyns. Motivated by the
recent rapid growth in mobile multimedia applications whisay exhibit bursty traf-
fic and require certain QoS guarantees for acceptable peafore levels at the end-
users, we consider a setting in which data arrivals are nedded a two-state Markov

process and statistical buffer constraints are imposdteatdgnitive transmitter.
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CHAPTER 2

PRELIMINARIES ON STATISTICAL

QUEUING CONSTRAINTS

2.1 Queueing Constraints

We assume that the data to be transmitted is generated frahomrasources and is first
stored in a buffer before transmission. Statistical camsts are imposed on the queue

length. In particular, we assume that the buffer violatbmefflow probability satisfies

>
i 08 Pr{Q>q}

q—00 q

iy (2.1)

where() denotes the stationary queue length, amslthe decay rate of the tail distribution

of the queue length. The above limiting formula implies tloatargeq, we have

Pr{Q > ¢} ~ ™. (2.2)
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Indeed, a closer approximation is [10]

Pr{Q > ¢} ~ ce™% (2.3)

wheres = Pr{@ > 0} is the probability of non-empty bufferFrom (2.3), we notice that,
for a sufficiently large threshold, the buffer overflow probigy should decay exponentially
with rate controlled by the QoS exponeéhtNote that a® increases, stricter queueing or
QoS constraints are imposed, while looser queueing contstrare implied by smaller
values off. Conversely, for a given buffer threshajcand overflow probability limit =

Pr{@ > ¢}, the desired value df can be determined as

1
0 = —log °

S (2.4)
q €

In the given setting, the delay violation probability isatharacterized to decay expo-

nentially and is approximated by [52]

Pr{D > d} ~ ¢e 0" (0)d (2.5)

where D is the queueing delay in the buffer at steady statis, the delay threshold, and
a*(0) is the effective bandwidth of the arrival process, desdribelow.

Next, we introduce the notions of effective bandwidth anigéative capacity which
we subsequently employ to formulate the wireless throughptading channels in the

presence of random arrivals and statistical queueing EN.

Effective Bandwidth

Effective bandwidth characterizes the minimum constamtgmission (or service) rate re-

quired to support the given random data arrival processewthi¢ buffer overflow proba-

1Probability of non-empty buffer can be approximated from thtio of average arrival rate to average
service rate [22].
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bility is limited or more explicitly the statistical queungj constraint described by (2.1) is
satisfied. Le{a(k), k = 1,2, ...} be a sequence of nonnegative random variables, describ-
ing the random arrival rates. Let also the time-accumulategal process be denoted by
A(t) = Zzzl a(k). Then, the effective bandwidth is given by the asymptotgalithmic
moment generating function of(¢) [6], i.e.,

1
a*(f) = lim 0 logE {40} . (2.6)

t—oo Ot

In Section 2.2, we describe the effective bandwidth of défifd source arrival models

in detail.

Effective Capacity

Effective capacity, as a dual concept to effective bandwidtentifies the maximum con-
stant arrival rate that can be supported by a given timehvgrservice process while sat-
isfying (2.1). Let{v[k],k = 1,2,...} denote the discrete-time stationary and ergodic
stochastic service process afifd] = >, _, v[k] be the time-accumulated service process.

Then, the effective capacity is given by [10]
" _
Cg(SNR 0) = _tliglo % log. E {e GSM}. (2.7)

Note that we have assumed that the fading coeffici¢hts change independently from
one block ofm symbols to another. Under this assumption, effective dapsienplifies to

CE(SNR 0) = —% log, E {6_9”} (2.8)

wherev is the instantaneous service (or equivalently transmidsade in one block. If the
channel input sequende; } is an independent and identically distributed (i.i.d.)s=tce

of Gaussian random variables with zero mean and vari&nteen the service rate can be



19

written as

V= i log, (1 + SNRz;) (2.9)

i=1
where we have defined = |h;|?. Hence, the effective capacity in the units of bits/block is

1 m
C(SNR 6) = — log, E {6—921-:1 1°g2<1+SNRZi>} . (2.10)

Remark 1. In the special case of independent channel coefficients ah &ock and

Rayleigh fading, we can express the effective capacityosed-form as

m 6 1 0 1
Cg(SNRO)= —— log,|SNR Tz2¢SNRT( 1 — , — (2.11)
0 log,2" sNR
m m 0 1
= mlogy(SNR — —— — —log, I'| 1 ———, — 2.12
mlog,(SNR OSNR~ 6 °* < log,2’ SNR) (2.12)

wherel'(s,w) = [° 7*~'e~"dr is the upper incomplete gamma function.

2.2 Effective Bandwidths of Different Source Models

Discrete-Time Markov Sources

In this subsection, we consider discrete-time Markov seunodels. Assume that the
transition probability matrix of the-state irreducible and aperiodic Markov source process
is denoted byl, and)\; is the arrival rate in state Moreover,A = diag {\1, A2, ..., A, } IS

the diagonal matrix of arrival rates. Then, the effectivadwidth of this discrete Markov

source is given by [9]

a(f) = - log, [sp(e”*J)] (2.13)
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where sp-) is the spectral radius of the input matrix. Note that theistairy distribution

7 can be found from the solution of

w1l =1,

== (2.14)

wherer = [, T, ..., m,) andl = [1,... 1]T.

In order to unveil the key relationships and tradeoffs, wesider a particularly simple
two-state model. We assume that data arrival is either intNeor OFF state in each
block duration ofm symbols. When the state is ON bits arrive (i.e., the arrival rate is
bits/block), while there are no arrivals in the OFF stater. thts two-state model, the state

transition probability matrix is given as

J— P11 Pr2 . (2.15)

P21 P22

Given the above transition matrik, the effective bandwidth for this ON-OFF Markov

model can be derived as [9]

a*(e’ )\) _ %logecl?11+:0226w+\/(1011+ID2226A9)2—4(P11+P22—1)8w) (2.16)

wherep,; denotes the probability of staying in the OFF state from doelbto another.
Similarly, p»» denotes the probability of staying in the ON state. The phodib@s of tran-
sitioning from one state to a different one are thereforeotkhbyp,; = 1 — pyy and
pi2 = 1 — p11. For these transition probabilities, we can easily seetti@probability of

the ON state in the steady state is

Pon=— 11 (2.17)
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Therefore, the average arrival rate is

1—pn

= Ao =g

(2.18)

which is equal to the average departure rate when the quaustsady state [8].

Markov Fluid Sources

In this subsection, we address Markov fluid sources wheresdliece arrival process is
modeled as a continuous-time Markov chain. Assume €as the irreducible tran-
sition rate matrix of the Markov chainy; is the arrival rate in the™ state, andA =
diag {\1, A2, ..., A\ }. Then, the effective bandwidth of this source is given by] [112]

a*(0) = (A + %G) (2.19)

wherey(-) denotes the maximum real eigenvalue of the input matrix. M rote that the

stationary distributionr of the continuous-time Markov chain can be found by solving

ml=1,
7G =0 (2.20)
wherer = [my,m,...,7,),0=10,...,0]7 and1 = [1,..., 1],

In order to derive closed-form expressions in our analysesagain consider two states
(ON/OFF). When there is no arrival, the state is OFF. Wherstae is ON, the arrival rate
is A bits/block. The transition rate matrix for a two-state MarKluid is in the form of

— (0%

G = , (2.21)
B =B

whereq is the transition rate from OFF state to ON state whereasthe transition rate
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from ON state to OFF state. Using (2.19), we can express faetiee bandwidth as

a*(6) = % 6A— (a+ B) + V(O = (@ + B))? + dab)| . (2.22)

The probability of ON statery,, is required to define the average rate. Inserting the gener-

ator matrixG in (2.21) into (2.20), we obtain the ON state probability as

«
= Py = . 2.23
2 ON a+t B ( )
Therefore, the average arrival rate of the two-state Mafkost process is
APoy = A — (2.24)
T = = . .
avg ON o+ 5

Continuous-Time Markoo Modulated Poisson Sources

In this subsection, we assume that the data arrival to thferisfa Poisson process whose
intensity is controlled by a continuous-time Markov chdtor instance, the intensity of the
Poisson arrival process Js in the:™ state of the Markov chain. Therefore, the source ar-
rival is modeled as a Markov-modulated Poisson process (FIMRssuming that th& is

the irreducible transition rate matrix of the Markov chamla\ = diag {\1, A, ..., A\, } IS

the diagonal matrix of the intensities of the Poisson alsiiradifferent states, the effective

bandwidth is given by [11], [12]

@(O) =g (@ ~1)A+G). (2.25)

As in previous sections, we consider a two-state (ON/OFRJehm which there are
no arrivals in the OFF state (i.e., the intensity)sand the intensity of the Poisson arrival

process is\ bits/block in the ON state. Assuming the same generatotixn@tas in (2.21),
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we can express the effective bandwidth as

a*(@)zQ—le[(69—1))\—(Oz+5)]+2—16\/[(69—1))\—(a+5)}2+4a(69—1))\.

(2.26)
Note that the average arrival rate in bits/block is agaiegiboy
Favg = APon = A —— (2.27)
avg — ON — a _‘_6- .

We further note that if the transition rate = 0, then we havePoy = 1. In this case,
MMPP model specializes to a pure Poisson source with irtiensbits/block, and the

effective bandwidth of this source is given by
(e —1) A (2.28)

Discrete-Time Markov Modulated Poisson Sources

In this source model, the data arrival to the buffer is a Roigrocess whose intensity
is controlled by a discrete-time Markov chain. Again, theensity of the Poisson arrival
process is\; in the i state of the Markov chain and the source arrival is modelea as
Markov-modulated Poisson process (MMPP). Assume thatainsition probability matrix
of the n-state irreducible and aperiodic Markov source proces®iwted byJ and and

A = diag {1, \a, ..., A\, } is the diagonal matrix of the intensities of the Poissorvatsi

in different states, the effective bandwidth is given by][112]

a(f) = % log, [sp <e<e€_1)AJ>] (2.29)

We again consider a two-state model in which the intensith@foisson arrival process is

A and0 in the ON and OFF states of the Markov chain, respectivelgr&iore, the source
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arrival is modeled as a Markov-modulated Poisson proceddRR®). Assuming that the
matrix J in (2.15) is the transition probability matrix of the Markahain, the effective

bandwidth is given by [6].

a(f) =

1 P +p22€)\<86_1> \/(pn +p226/\(86_1))2— 4(p11 + pa2 — 1)6’\<69_1)
) log, 5 + 5

(2.30)
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CHAPTER 3

WIRELESS THROUGHPUT AND
ENERGY EFFICIENCY WITH RANDOM
ARRIVALS AND STATISTICAL

QUEUEING CONSTRAINTS

3.1 Throughput with Markovian Source Models

In this section, we formulate the throughput of wirelessrigdchannels when the data
arrivals are random and statistical queueing constraretgy@osed. More specifically, we
consider Markovian arrival models introduced in Sectidh Bamely discrete-time Markov
sources, Markov fluids and Markov-modulated Poisson dsivithe states in these Markov
processes are differentiated by the corresponding arates in these states, e.g., the arrival

rate in the™ state is)\,. If the stationary distribution of the Markov process is ol by
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7, the average arrival rate in anstate Markov source model simply becomes

,ravg == Z ﬂ-i )\Z (3.1)
=1

which is equal to the average departure rate when the quaustsady state [8].

We seek to determine the throughput by identifying the maxmaverage arrival rate
that can be supported by the fading channel described imo8etl.1 while satisfying the
statistical QoS limitations given in the formin (2.1). Asim in [8, Theorem 2.1], (2.1) is
satisfied, i.e., buffer violation probability decays expohally fast with rate controlled by
the QoS exponem, if the effective bandwidth of the arrival process is eqoahee effective

capacity of the service process, i.e.,
a*(0) = Cg(SNR 0). (3.2)

Hence by solving (3.2), we can determine the maximum aveaadeal rater;, (SNR 0).
By specifying the effective bandwidth of different sourcedrls and incorporating the
effective capacity of time-varying wireless transmissiam (2.10), the maximum average
arrival rate can be determined for generadtate Markovian source models. Indeed, several
n-state source models are addressed in Section 3.2. Howewar,analysis in this section,
to illustrate the impact of the arrival and system paransater lucid setting, we concen-
trate on the two-state (ON-OFF) arrival models and providsed-form expressions for
the maximum average arrival rates in terms of the sourcenpeteas and the effective ca-
pacity of the wireless transmissions. We also identify tharacteristics of the throughput
in the low+¥ and high-SNR regimes. We note that the analysis througlmsisection is
applicable to any arbitrary fading correlation within edatiing block, with the exception

of high-SNR characterizations which are obtained undeasisesimption of i.i.d. fading.
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Fig. 3.1. System Model.

3.1.1 Channel Model

As depicted in Fig. 3.1, we consider a point-to-point linkiwa single transmitter and
single receiver. In this system, the data generated by theceas initially stored in a
buffer at the transmitter before it is transmitted over agl@ss channel. We consider a
flat-fading channel between the transmitter and receineragsume a block-fading model
with a block duration ofn symbols. Hence, fading varies independently from one biock
another. On the other hand, we further assume that in each Qlgation ofrm symbols,
fading can be arbitrarily correlated. The channel inpupatirelation within each block

can be expressed as
yi:hixi—l—nifori:l,l...,m (33)

wherez; andy; are the channel input and output, respectively. The aveagegy of the

inputisé&, i.e.,
E{|z;|*} = €. (3.4)

n; denotes the zero-mean, circularly-symmetric, complexsSian noise with variance

E{|n;|*} = Ny. Hence, the signal-to-noise ratio is

CE{lePy_ €
E{|n2} ~ Ny

SNR (3.5)
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Above in (3.3),h; denotes the fading coefficient. Fading coefficients arerasduto be
identically distributed, and the fading distribution camdrbitrary with finite variance.
While the ensuing analysis is applicable to a general clagsding distributions, we
use a Gauss-Markov fading model in the numerical resultsamstime that the Gaus-
sian fading coefficients in each block of symbols follow the correlation patteriy =
ph;_1 +w; wherew; is an independent, zero-mean Gaussian random variableavidmce
E{|w;|*} = (1—p?)oi, p € [0, 1], ands? is the common variance of the fading coefficients
{h;}. Note that wherp = 1, we have full correlation, whereas= 0 models the case of

independent fading.

3.1.2 Discrete-Time Markov Sources

In this section, we consider two-state (ON/OFF) discreteddasources described in Sec-
tion 2.2, and initially characterize the maximum averagevalrratery, , that can be sup-
ported by the fading channel while satisfying the stat@t@oS limitations given in the

formin (2.1).

Theorem 3.1.1.For the two-state (ON/OFF) discrete Markov source, the mmaxn aver-
age arrival rate (in bits/block) as a function of the QoS axguatd, effective capacity of the

fading channeCz(SNR 6), and the state transition probabilities is expressed as

(3.6)

0

20CE(SNRO) _ | 0C5(SNRY)
1 — p11 — Pag + Page?CE(SNRO) ]

P
r;vg(SNRe) Sl IOge (

Proof: See Appendix A.1.

Note thatr},, above is formulated in terms of the effective capadity, of wireless
transmissions. In Fig. 3.2, we plot the the maximum averagesarate as a function of
the effective capacity for different source charactessstvhend = 1. It is easy to verify
that whenPoy = 2_;%;22 = 1 or equivalentlyp; = 1, (3.6) simplifies to},4(SNR ¢) =

Cr(sNr, 0). Hence, when the source is always ON and therefore the Brek@at a constant
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Fig. 3.2: Maximum average arrival ratg,, vs. effective capacity’z(SNR) for different
source statistics. No fading correlation, i~ 0. 0 = 1.

rate, maximum average arrival rate is equal to the effectamacity, as also observed in
Fig. 3.2. On the other hand, we notice in this figure thaPgs diminishes and the source
becomes more bursty, throughput diminishes as well andlenslerage arrival rates are
supported for given effective capacity.

As also indicated in the above discussion and seen in (3§)$NR 0) is in general a
function of the state transition probabilities of the Marlarrival process in the presence
of buffer constraints. On the other hand, as shown in thevietig result, this dependence

disappears if no buffer constraints are imposed, i.e., viher.
Theorem 3.1.2.As the statistical queueing constraints are relaxed byrigtthe QoS ex-

ponent? approach zero, the maximum average arrival rate converges t

lim 7, o(SNR ) = > E{log,(1 + SNRy)} bits/block (3.7)

1=1
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Moreover, the first derivative of,,, with respect t@ atf = 0 is

0r§vg(SNR 0)

1 m
R0 IS oo (1 S o 1+ S0, )

0=0 i,j=1

N3

<§:E{log2(1 + SNI%-)}) (3.8)

where we defing as

— (1 — p22)(p11 +p22)
" (1 =p11)(2—pu — pa2) (3.9)

Proof: See Appendix A.2.

We see from (3.7) that if no statistical buffer constraints emposed i.e., il = 0,
then the maximum average arrival rate is equal to the Shaceyearcity of the block-fading
channel, and therefore is independent of the statistieabaiteristics of the discrete Markov
arrival model. Moreover, the dependence of the maximunvalrrate in this regime on
the channel statistics is only through the marginal distrdns of the fading coefficients.
Hence, channel correlation in each fading block does naot aty role. However, this
radically changes whef > 0. For instance, we notice from (3.8) that even with a small
increase i, 13,4 starts varying with the source and channel statistics, emphfied by
the dependence of the first derivativeipand the covariance function.

Having discussed the lowregime above, we next provide a characterizatiorfgfSNR )

at high SNR values for i.i.d. Rayleigh fading.

Theorem 3.1.3.Assume that the channel fading coefficients are i.i.d. irhddock and
fading power: = |h|* is exponentially distributed with unit mean (i.e., Raytefgding is

experienced). Then, we have

P i 1
Flopre 1082 SNR+ O(1) ifo > Toase

1
ET;vg(SNR 0) =1 Ponlog, SNR+O(1) if0 <6 < (3.10)

log, e

log, SNR+ O(1) ifg=0
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aSSNR— oc.

Proof: See Appendix A.3.
Note that the high-SNR slope is defined as [55]

Lyx (sNR O
Se = lim M. (3.11)
SNR—oo  log, SNR

Theorem 3.1.3 shows that the high-SNR slope of the maximuraérate for the two-state

discrete Markov source that can be supported in the i.i.ddRgtyfading channel is

Pon —jf g > 1

Olog, e logy e
Soo = Pon ifo<6< log12e . (312)
1 ifo=0

It is interesting to observe from Theorem 3.1.2 that whenuftebconstraints are imposed
i.e., whend = 0, the high-SNR slope i§,, = 1, again independent of the source statistics.
On the other hand, wheh > 0, S, becomes proportional to the ON probability and is
now less than one unless the arrival rate is constant. Fumtire, ford values greater than
@, S, Starts decreasing with increasifigHence, the result in Theorem 3.1.3 quantifies
the performance degradation experienced at high SNR lduelto source randomness and
statistical buffer constraints.

Let us further simplify the source model and ggt = 1 — s andps; = s. The source
is now described by the single parameteNotice that with this choice we havéyy = s
and hence becomes a measure of the burstiness of the source. The sthaliethe less
frequently the data arrives and the more bursty the sourmenbes. At the other extreme,

if s =1, source is ON all the time and we have constant arrival raitthErmore, with the

above choice of; andp,,, the expression for the maximum average arrival rate sfragli
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to

0CE(SNRO) _ (1 —
c ( 5)>, (3.13)

S

S
T;vg(SNR 9) = 5 loge (

which can readily be seen to be a diminishing function decreases. Therefore, source
burstiness generally hurts the throughput if we keep akiotfariables fixed.

We can further observe this in Fig. 3.3, where we plot the maxn average arrival rate
(or equivalently the throughput) as a function of SNR fofafiént values of and the QoS
exponent. Numerical analysis verifies that as the source becomes booséy with lower
values ofs, throughput diminishes. Conversely, throughput is mazeadiwhens = 1 i.e.,
when we have constant arrival rates. It is also interestngatice from (3.13) that the

arrival rate in the ON state, which is given By = LSNR’@

, increases as diminishes.
Hence, smalles implies that data arrives less frequently but with burstmofeased rates.
We also observe in Fig. 3.3 that the throughput reductiontdupeirstiness is more severe
at high SNRs. This is indeed a consequence of the fact that®IMR slope gets smaller
as Pon = s decreases, as discussed above. Finally, we see in Fig. &8.pdlformance

degradation is experienced@screases and hence stricter buffer constraints are indpose

In Fig. 3.4, we plot the SNR levels required to support a giseerage arrival rate
as a function of the ON-state probability for different v@guof the QoS exponefit We
observe that agoy decreases and hence the source becomes more bursty, degiNire
level increases in general. Interestingly, a sharper asgas experienced under stricter
buffer constraints (e.g., wheh= 0.5 rather thart = 0.1), indicating higher power/energy
costs in these cases.

The low+¥ regime is investigated in Fig. 3.5 where we plot the maximuerage arrival
ratery,q vs. QoS exponerit for different Poy values. We sesNR = 1. We notice that all

three curves converge to the same throughput vgye)) as — 0, confirming the result
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Fig. 3.3: Maximum average arrival rat§, vs. signal-to-noise ratisNR for different
values off and source statistics. No fading correlation, ise= 0.
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in (3.7). Hence, source characteristics do not affect tteufhput if no queuing constraints
are imposed. A8 increases, throughput diminishes and the reductiof) jiis more severe
for more bursty sources (e.g., whégy = 0.4). We notice that, as predicted by (3.8), this
is already reflected by the different slopesrgf; in the vicinity of ¢ = 0. Hence, overall
the system for more bursty sources becomes more cautiousugpadrts smaller average
arrival rates in order to avoid buffer overflows.

In Fig. 3.6, we again plot the throughput as a functidout for different values op,
which quantifies the correlation between fading coeffigenteach fading block. We fix
SNR = 1 and setPony = 0.5. Similar to burstiness, fading correlation does not hawe an
effect on the throughput wheh= 0. When# > 0, higher correlation (i.e., larges results
in lower supported throughput under the same QoS constraint

Finally, we have conducted simulations to further verify theoretical analysis and re-
sults. In particular, in the simulations, for fixed QoS exgot?#, SNR, and state transition
probabilitiesp;; andpy, of the ON/OFF discrete Markov source, we initially deterenin
the maximum average arrival rate from (3.6) and the cornedipg maximum arrival rate

in the ON state. Then, using the given statistical charaetgons and the maximum ar-
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Fig. 3.6: Maximum average arrival ratg,, vs. QoS exponent for different fading
correlations.Pony = 0.5.

rival rate, we generate random Markov arrivals and assuatetik arriving data is initially
stored in the buffer before being transmitted. Transmissabes are simulated by gener-
ating realizations of i.i.d. Gaussian fading coefficieffteroughout this process, we track
the queue evolution and the buffer state (i.e., the queughgas the Markov arrivals oc-
cur (and hence more data gets stored) and transmissionsyaigreates according to the
generated fading coefficients are performed, clearing stateeoff the buffer. In Figs. 3.7
and 3.8, we plot the simulated buffer overflow probabilty{ () > ¢} and delay violation
probabilityPr{D > d}, respectively, as functions of the corresponding threds)dbllow-
ing 107 runs of the simulation. We notice that while the theoretaadlysis makes use
of results from the theory of large deviations and is geheegplicable for large thresh-
olds, the simulation results are interestingly in excéllagreement with the theoretical
predictions even at small values of the thresholds. Foaits, we note from (2.3) that
log, Pr{@ > q} =~ log, s — fq and hence is expected to decay linearly;iwith slope
6. We indeed observe this linear decay in Fig. 3.7 (where tleflow probabilities are
plotted in logarithmic scale) for even small to moderateigalofq. Moreover, the slopes

of the simulated curves, denoted &y, are very close to the originally selected value of
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Fig. 3.7: Buffer overflow probability’r{(Q) > ¢} vs. buffer thresholg for different values
of 6. P11 = Pog = 0.8, SNR =0 dB

6. Similar conclusions apply to Fig. 3.8 as well. In this figudtelay violation probabilities
are determined by keeping track of the delay experiencethéyata stored in the buffer
until transmission. We again notice that the logarithm & tielay violation probability
decays linearly with threshold(or equivalently the delay violation probability diminisé
exponentially withd). Note that the slope of the linear decay is predicted frorh)(&® be
fa*(0) wherea*(0) is the effective bandwidth of the source. Again, the slopthefsimu-
lated curves are almost the same as this theoretical sldpe,\ss indicated in the legend

on the figure.

3.1.3 Markov Fluid Sources

In this section, we consider Markov fluid sources. In thedwlhg, we go through similar
steps as in the previous subsection and initially deterrtiivemaximum average arrival
rates of ON/OFF Markov fluid sources that can be supportedhéyireless channel as a
function of the source transition rates and the effectiy@cay of wireless transmissions.
Subsequently, we give characterizations of the maximumageearrival rates in the loW-

and high-SNR regimes.
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Fig. 3.8: Delay violation probabilitYr{ D > d} vs. delay threshold for different values
of 8. p11 = pae = 0.8, SNR =0 dB

Theorem 3.1.4.For the two-state (ON/OFF) Markov fluid source, the maximwarage
arrival rate is given as

0CE(sNRO) + o + 8

GCp(snr0) - CE(SNR ). (3.14)

T;Vg(SNR 9) = PON

Proof: See Appendix A.4.

Note that maximum average arrival rate generally dependBentransition rate matrix
of the Markov fluid source. At the same time, similar to theet#$e case, when there are no
QoS constraints, source characteristics do not have arganop the throughput. However,
this changes drastically wheéh> 0 even iff is vanishingly small. These properties are

demonstrated analytically in the result below.

Theorem 3.1.5.As the statistical queueing constraints are relaxed byrigtthe QoS ex-

ponent) approach zero, we have

lim 7}
G

(SNR) = i E {log,(1 + SNR;)} bits/block (3.15)

i=1
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and

orr. (SNR =
M S EZ covlog,(1+ SNR;), logy(1+ SNRy;) }
o =0 253
¢ [~ 2
-3 (;E {log,(1 + SNE’Zz‘)}> (3.16)
where( is defined as
20

__ 2% 3.17
¢ ala+ B) ( )

Proof: See Appendix A.5.

We note that wher > 0, r;,, depends on the source and channel statistics. In (3.16),
we observe the dependence of even the first derivative omehaarrelations and source
statistics via the covariance function and the paramgtegspectively.

Next we present a high-SNR characterization of the througfgrs Rayleigh fading.

Theorem 3.1.6.Assume that the channel fading coefficients are i.i.d. irhddock and
fading power: = |h|* is exponentially distributed with unit mean (i.e., Raytefgding is

experienced). Then, we have

Lov_ 1o, SNR+ O(1) if ) > 2

Olog, e logs e

1

—Tag(SNRO) = Ponlogy SNR+O(1)  if 0 <6 < 1~ (3.18)
log, SNR+ O(1) ifg=0

ASSNR— o0.

The proof of Theorem 3.1.6 is omitted due to its similaritythe proof of Theorem
3.1.3in Appendix A.3. Similar conclusions as in Sectionitnghediately apply.

Note that the throughput expression in (3.14) suggestsfohaufficiently high SNR



1.8F

161

141

12

39

T T
r-—-+— 6=1, a=100, p=0

— - —0=1, a=50, =50
=1, a=20, p=80
— - —6=10, 0=100, B=0
— — —8=10, a=50, p=50
=10, 0=20, B=80

N
r_/m

avg
-
T
\
N\
\
\

0.8
0.6 - -
0.4F - - =

02rf,. ~

Fig. 3.9: Maximum average arrival rat§, vs. signal-to-noise ratisNR for different
values off and source statistics. No fading correlation, ise= 0.

levels leading t&dC'z(snr, 0) > o + 3, we have

Tavg(SNR 6) ~ PonCE(SNR 0). (3.19)

Hence, at high SNRs, the maximum average arrival rate depemdhe source statistics
only through the ON probability. This is noted in the highfSKehavior in (3.18) as well.

In Fig. 3.9, we plot},,vs. SNR curves for different, 3, andd values. We immediately
observe that throughput diminishes with increagirajd decreasingon. In Fig. 3.10, we
analyze the effect of.,q Pon, anda + 5 on the required SNR levels. For Markov fluid
sources, ON state probability is not the sole indicator astmess. Having lowy and
S values also indicates that source is more bursty as thaticambetween ON and OFF
states becomes less frequent. Hence, OFF state can be msistgue. Wheny andj are
large, state transitions occur more rapidly, leading tosiokgquired SNR levels. Again, we
notice that the burstiness is harmful for the system.

In Fig. 3.11, we plot the maximum average arrival ralg as a function off for

different values ofx and 5. Notice that by keepingr = (3, the ON probabilityFPoy is
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Fig. 3.10: Required SNR vs. ON probabilifypy, for a given average arrival raté = 0.5.
No fading correlation, i.ep = 0.

fixed at 0.5, while average durations of ON and OFF states asityhe values oft = 3
change. For example, higherandj values lead to shorter periods for ON and OFF states
on average. As an outcome of this fact, we observe in the fitpatehigher throughput is

achieved with sources having higher- 5.

3.1.4 Continuous-Time Markov Modulated Poisson Sources

Now, we address two-state (ON/OFF) MMPP sources. Simikslfor the previous source
models, we determine the maximum average arrival rate oMik&P source, which can
be supported by the fading channel in the presence of QoSraonts, and investigate the
throughputin the low# and high-SNR regimes. The results can be immediately dpesda

to pure Poisson sources by settjng- 0.

Theorem 3.1.7.For the two-state (ON/OFF) MMPP source model, the maximuenage

arrival rate is

0[0CE(sNRO) + a + ]

’r’avg<SNR 8) - PON (eg_ 1) [QCE<SNR 8) + O[]

Cr(SNRO). (3.20)
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Fig. 3.11: Maximum average arrival ratg,, vs. QoS exponertt for different values ofv
andgs. Poy = 0.5, p = 0, andSNR= 0 dB.

Proof: See Appendix A.6.

It is interesting to observe that the throughput with the MME®urce is almost identical
to that with the Markov fluid source model, save only for thdtiplicative factoregi_1 in
(3.20). Note thate;L_1 < 1 for & > 0 and diminishes exponentially fast with increasing
0. Hence, the throughput is generally smaller with MMPP sesii@nd decreases fast with
6. This can be attributed to the much more randomness/besstiwe experience with an
MMPP source with respect to the previous Markov models. wethe arrival rate in the
ON state, rather than being a constant as in the previous,dasgetermined by a Poisson
process. Hence, the presence of the tgﬁgﬁ){ is due to this Poisson property. Indeed,
if we have a pure Poisson source, the maximum average aratelisry ((SNR ¢) =
ﬁ Cr(SNR ) obtained by settingg = 0. The cost of this additional randomness is

reflected in the following results as well.

Theorem 3.1.8.As the statistical queueing constraints are relaxed byrigtthe QoS ex-
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ponent? approach zero, we have

lim 15,4(SNR 0) = ; E {log,(1 4+ SNR;)} bits/block (3.21)
and
ors,o(SNRO o
Dol MBIV NS Cology (14 SNR). loga(1+ SNR,))
0 0 257,
C m 2 1 m
-3 <;Eﬂ {log,(1 + SNI%)}) ~3 ;E {logy(1 + SNR;) }
(3.22)
where
2p
= 3.23
= et B (3.23)

Proof: See Appendix A.7.

When the system is free of QoS limitations, the maximum ayeearival rate for the
MMPP source again turns out to be equal to the Shannon cgpldoivever, the throughput
has a steeper decline in the Igiwegime due to the third term on the right-hand side of

(3.22).

Theorem 3.1.9.Assume that the channel fading coefficients are i.i.d. irhddock and
fading powerz = |h|? is exponentially distributed with unit mean (i.e., Raytefgding is

experienced). Then, we have

P : 1
WCS'{OW log,SNR+O(1) if 6> oas e

L.
Eravg(SNR 9) = 0 FPon 10g2 SNR+ O(l) ifo< < @ (3.24)

ef—1

log, SNR+ O(1) if =0

ASSNR— o0.

Since the ratio between the MMPP throughput and Markov flardughput always
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Fig. 3.12: Maximum average arrival ratg,, vs. signal-to-noise ratisNR for different
values off and different source statistics. No fading correlatio, h = 0.

stays ate@’%_l, we can immediately obtain the above high-SNR charact#sizausing the
formulations in (3.18).

In the numerical results, we have similar conclusions abenMarkov fluid case. The
primary difference is the reduced throughput for giverwhich, for instance, is readily
seen when we compare Figs. 3.9 and 3.12, where we have tipoiugh SNR curves
for Markov fluid and MMPP sources, respectively. In Fig. 348 display the maximum

average arrival rate},, as a function of). We seta + § = 100 andSNR = 1, and vary

vg

« and 5 and hence the ON probability. We note thatfas, decreases, the performance

degrades faster with increasifigas indicated by the steeper slopes.

3.1.5 Discrete-Time Markov Modulated Poisson Process

In order to determine the maximum average arrival rate imseof C'z(¢), we insert the

effective bandwidth expression in (2.30) into (3.2) andchabt

2
<p11+p2267"(66_1) - 2690E> = (p11+p2267~(e@—1))2_ 4(p11+ p2 — 1)67(86_1) (3.25)
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After solving the above equation for we obtain the maximum average arrival rate as

v (g)= PN [l (Y —puc"Y A (3.26)
v e —1) “\(1—=p11—pa2) +paee?©e)

Having formulated the maximum average arrival rates in saofrthe effective capacity
and source statistics, we next identify the optimal powertr@d policies, maximizing the
energy efficiency. In order to have convex optimization jpeols below, we need to show
that throughput,4(¢) is concave in SNR= E{;(0,2)}. In [18, Lemma 1], it is proven
that effective capacity is a concave function of SNR. In [lif]s shown that effective
bandwidth of the source is strictly monotonically incregsand is also convex in source
arrival rates. Therefore, inverse function of the effegthandwidtha*~! (C(0)) exists
and is a nondecreasing concave function of the effectivaagpwhich is concave in SNR.

Using the composition properties of concave functions,[@& immediately conclude that

the maximum average arrival rate

rhg(0) = Pona™ ' (CE(0)) (3.27)



45

is also a concave function of SNR.

3.1.6 Comparative View of Source Models and Performance Lev-
els

In our analysis, we have considered discrete-time Markarkgv fluid, and MMPP arrival
models. All models possess the Markovian property in thesesehat the evolution of
the Markov chains and hence the state transitions satisfyMéarkov condition and are
described by the transition probability matrix in the cakeiscrete-time models and by the
transition rate matrix in the case of fluid (or equivalenthntnuous-time) models. Also,
state holding times are geometrically distributed in digettime models and exponentially
distributed in continuous-time models, and hence exhilgithemoryless property.

At the same time, there are distinct differences betwednréiiit source models. For
instance, transitions between states occur in discrete steps in discrete-time Markov
models while the Markov chain can spend a continuous amdutiine in any state in
Markov fluid models (i.e., the length of time spent in any estigt a continuous random
variable or more explicitly holding times are exponenyidistributed as also noted above).
MMPP models are further differentiated. In the discreteetiMarkov and Markov fluid
models, arrival rates are assumed to be constant in any gie¢é®. On the other hand,
when the arrivals are modeled as MMPP, arrival rate is Pnisistributed in each state
with a different intensity. Hence, MMPP sources exhibit ghleir level of variation in this
sense and can be regarded as a more bursty source.

We also remark that ON/OFF discrete-time Markov and Markoidfsource models
can be easily specialized to the source with a constantahmate by letting ON state
probability Poy = 1. On the other hand, wheff,y = 1 in the ON/OFF MMPP source, we
have a pure Poisson arrival source.

Finally, we note that although there is a certain degreeroilaiity in the analysis of

discrete-time Markov and Markov fluid models and their tlgloput performances (e.qg.,
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high-SNR characterizations are the same in Theorems 3t.34.6), the set of results
for one model do not immediately follow from those for the esttmodel as seen in the
throughput formulationsin (3.6) and (3.14) and the definisiofn and( in (3.9) and (3.17),
respectively. However, there is a clear distinction when RRVsources are considered. As
also discussed in Section 3.1.4, higher level of burstioé$4MPP sources penalizes the

performance, and lower throughput levels are achievednerge with these sources.

3.2 Energy Efficiency Analysis

In this section, we conduct a low-SNR analysis and invettigiae energy efficiency in
fading channels when data arrivals are random and stalisiecueing constraints are im-
posed. We first identify the energy efficiency metrics. Sghsatly, we consider different
source arrival models and provide closed-form expres$mribe energy efficiency metrics
when the arrival rate is constant or follows a two-state M&i&n model. We also numer-
ically analyze specifia:-state Markovian sources. Similarly as in the previousisect

arbitrary fading correlation within each fading block isxeadered in the analysis.

3.2.1 Energy Efficiency Metrics

Before defining the energy efficiency metrics, we briefly diéscthe concavity of the max-
imum average arrival rate as a function of SNR in the twoest@N/OFF) arrival models

(or if the arrival rates in am-state model can be expressed as multiples of a certain sin-
gle rate). In [18, Lemma 1], it was proven that effective @iyais a concave function

of SNR. Elwalid and Mitra [11] showed that the effective badth of a source is mono-
tonically increasing when any arrival rate increases and is convex in the arrival rates
{A1, A2, ..., An}. In the ON/OFF arrival models, we have a single arrival ratSince ef-
fective bandwidth is a monotonically increasing and corfuexction of \, the inverse func-

tion of the effective bandwidth*~! exists and is a nondecreasing concave function. More
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specifically, the maximum arrival rate can be expressed @R ) = a* ' (C(SNR 0)),
which is a nondecreasing concave function of the effectaacity, which is concave in
SNR. Using the composition properties of concave functj8t we realize that the max-
imum arrival rate is concave in SNR. Thus, the maximum awegagval rater; ,(SNR, 0)
is also concave in SNR.

In our analysis, following the approach in [57], we study thmimum energy per bit
and the wideband slope, which is defined as the slope of thetrapefficiency curve at
zero spectral efficiency, as the performance metrics ofggrefficiency. While minimum
bit energy is a performance measure in the limisag — 0 (due to the concavity of the

throughput), wideband slope has emerged as a tool thatemnablto analyze the energy

efficiency at low but nonzersnRlevels. In our setup, we define energy per bit as

E, SNR
— = 3.28
No  734(SNRO)/m (3.28)

where the normalization with: is due to our assumption thet,, is in the units of bits per
m symbols (or equivalently per block).

The minimum energy per bﬁ—gmin under QoS constraints can be obtained from

B, SNR 1
— = lim = - . 3.29
Nomin ~ SNR-0 révg(SNRa 0)/m T;vg(o)/m ( )

At %mm, the slopeS, of the throughput versuk, /N, (in dB) curve is defined as [57]

* o(SNR 0

Sy = lim TagSNRO)/m o) (3.30)

5, B 10logy, 2 — 10log,, 22 10

N_giN_gmin 0810 N, 0810 Ny min
The wideband slope can also be found from
2(74,4(0) /m)’

So = 9 log, 2 3.31
O T RO 83
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wherer;,4(0) andi},4(0) are the first and second derivatives, respectively, of thetfan
7avg(0) With respect to SNR at zero SN%min andsS, essentially provide a linear approx-

imation of the throughput curve at low SNR levels.

3.2.2 Energy Efficiency with Constant Arrival Rate

In this section, we assume that the source arrival rate isl.fiddence, we investigate
the energy efficiency in the absence of source randomnes®xardine the impact of
fading correlation and queueing constraints. As discussélde previous section, effec-
tive capacity,C'r(SNR, ), characterizes the maximum constant arrival rate in the-pre
ence of QoS constraints described by the QoS expahehtence, we in this case have
Tag(SNR ) = Cp(SNR 0). In the following result, we provide the minimum bit energy

and wideband slope expressions under these assumptions.

Theorem 3.2.1.Assume that the source arrival rate is constant. Then, timénum energy
per bit and wideband slope expressions as a function of th® @gonend are given,

respectively, by

(3.32)

and

S 2(E {z})?
’ olon 3 Doigjer COV{zs, 2} + E {22}

(3.33)

where coVz;, z;) = E{z;z;} — E{z;}[E{%,} is the covariance of; and z;.
Proof: See Appendix A.8.

Remark 2. As can be seen in (3.32), the minimum energy per bit, whicbhiegaed in the

asymptotic regime in which SNR vanishes, does not deperfteddS exponert hence
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is not affected by the presence of the buffer limitationgle&d, this is the fundamental
limit in Gaussian channels [57]. Wideband slofg on the other hand, depends on the
QoS constraints via the QoS exponéntt can be easily seen that higher the valug/pf
the stricter the QoS constraints are and the smaller the esaiithe wideband slope is,
indicating the increased energy requirements. Furtheendrcan be readily verified that
wideband slope decreases with increased fading correlatfor conversely, variations in

the channel conditions are favorable for improved enerdjgieficy.

In Fig. 3.14, we plot the normalized maximum average arnigée ~7*  as a func-

m = avg

tion of the energy per bi% for different correlation factorg whenf = 1 andE{z} =

E{|h|*} = 07 = 1. As predicted by Theorem 3.2.1, all curves converge to theesaini-

log,, 2
Efz}

On the other hand, wideband slopes are different for diffevalues ofp. As discussed

mum energy per bit o}%mm = = log, 2 = —1.59 dB assNRand hence?, , vanish.

avg

above, ag and hence correlation diminishes from 1 to O, slopes inerpasgressively. It

is also interesting to note that in the absence of QoS conttrae., wherd = 0, such a

distinction disappears. The wideband slope becafes Z%E{{;}f, which clearly does not

depend on the fading correlation.

3.2.3 Energy Efficiency with Discrete-Time Markov Sources

Starting with this subsection, we incorporate random alsiinto our energy efficiency
analysis and determine how source randomness affects tloerpance.

ON-OFF Discrete-Time Markoo Sources

We assume that data arrival is either in the ON or OFF statach block duration ofn
symbols. As we have previously stated, in the ON stateits arrive (i.e., the arrival rate
is A bits/block) while there are no arrivals in the OFF state.oBelwe provide our results

on energy efficiency.
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Fig. 3.14: Normalized maximum average arrival rae; €, VS. energy per biif,—g for
different fading correlationgl = 1, m = 10.

Theorem 3.2.2. Assume that the source arrival rate is random and followsdbecribed
discrete-time ON-OFF Markov model. Then, the minimum gnpeg bit and wideband

slope expressions as a function of the QoS expdharg given, respectively, by

E,  log,2
Nomn ~ E{2) (3:39
and
Sy = 2E{=})7 (3.35)

mog P (E {Z}) mloegez E%:l COV{Ziv Zj} +E {22}

wheren is defined in(3.9).

Proof: See Appendix A.9.

Interestingly,%mm again turns out to be a very robust quantity. Regardlessediilffer
constraints, channel correlations, and randomness ofrthala, the minimum received
energy per bit isﬁ—gmm = log,2 = —1.59 dB whenE{z} = 1. On the other hand, the

impact of random arrivals on the wideband slope is perspisiio (3.35). When compared
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to (3.33), we immediately notice that having random argWehds to the introduction of the

termnkfg”"b2 (E{z})? in the denominator of (3.35). Notice that when = 1 andp;; = 0,

we havePoy = 1, meaning that we have a constant arrival rate. In this case, 0
and indeed (3.35) specializes to (3.33). More generallyhaxeen > 0 for all pyq1, pee €
[0,1]. Therefore, random arrivals potentially decreases thebadd slope and increases
the energy requirements.

This is more clearly seen again in the special case in which= 1 — s andpy, = s.

Now, we have) = % = % and the wideband slope is

22

2(E{z})?
So = 1= m : (3.36)
P (B {2} + i Yo coviz, 2} + E {22}

As Pon = s decreases, the wideband slope decreases as well. Therb®ource be-
coming more bursty leads to increased energy per bit. Thiisssrated in Fig. 3.15 where
maximum average arrival rate vs. energy per bit is plottettha same channel fading and
correlation model as in Fig. 3.14 is used. In this figure, wauaged = 1 andp = 0.75.
As predicted, the minimum bit energies are all the same. heweave have diminishing
slopes with decreasingoy. Note that for a fixed average arrival rate,/as, gets smaller,
source becomes more bursty. Data arrives less frequenthyibua higher rate. This in

turn increases energy per bit as implied by smaller widelstopues.

Discrete-Time Markov Sources with n States

In this model, we assume that there are- 1 sources, each having its own ON and OFF
states. In the ON state, a source sends data to the buffes et of\ bits/block. Oth-
erwise, it is in OFF state in which no data is generated. I $bi-up, depending on how
many sources are active (i.e., are in ON state), data asiiwdhe buffer can be regarded as
a discrete-time Markov process withstates. In thé'" state of this model,;; — 1) sources

are active. For simplicity, we assume that the probabilitgach source being active in a
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Fig. 3.15: Maximum average arrival rafner;\,g VS. energy per bi% for different values
of Pon = s whenp = 0.75, 0 = 1, andm = 10.

given block iss, independent of the previous states and of the other saurbes, the state

probabilities will be given by

(3.37)

1\ 4
™= <n 1)5’_1(1 —s)ttfori=1,2,...,n.
’L—

Note that the system is essentially memoryless becausestatehis independent of the

previous state. Hence, transition probability matrix beee

-7r1 9 7Tn-
g | " " (3.38)
|1 T2 uy
Using (3.37) we can write the average rate expression as
" /n—1 1 i s
Tavg = Z (2 B 1)qZ (1—g)" " — 1A = (n—1)gA\. (3.39)

i=1
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s when channel blocks are uncorrelated énd 1. Number of states for the arrival process
isn = 10.

For this case, we do not have closed-form expressions. Hawexe can easily obtain
the effective bandwidth and maximum average arrival rat@arically. In particular, by
numerically solving (3.2) and using (3.39), we can detestite maximum average arrival

rater,,

as a function of SNR. In Fig. 3.16, we display the maximum agerarrival rate
as a function of energy per bit. Similarly as in the simple ORF model, we observe that
when source burstiness is decreased by increasiagergy efficiency improves.

To have a better understanding of the effect of the QoS aingdr average arrival rate
curves in Fig. 3.17 are obtained for differéhtalues. We first notice that QoS exponént
does not have any effect on the minimum energy per bit bealserves merge at1.59
dB which is again the minimum energy per bit for @Values. However, energy efficiency
degrades with stricter QoS conditions as increa8irgduces the wideband slope.

Finally, for comparison purposes, we depict the througlgsua function of SNR in
Fig. 3.18 for different source characteristics @hlues. The trends in the throughput vs.
SNR curves for the consideredstate discrete Markov source are observed to be similar

to those in Fig. 3.3 plotted for the ON-OFF discrete Markourse. For instance, again
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when channel blocks are uncorrelated and 0.5. Number of states for arrival process is
n = 10.

increased source burstiness (i.e., lower values of s) aintiestqueueing constraints (i.e.,
higher values) result in the degradation of the throughput for lhatb+state (ON/OFF)

andn-state source models.

3.2.4 Energy Efficiency with Markov Fluid Sources
ON-OFF Markov Fluid Model

Now, we consider Markov fluid sources with two states, nan@#y state with no arrivals
and ON state in which the arrival rate ss The generating matrix is defined in (2.21).

Minimum energy per bit and wideband slope are derived in¢hlewing result.

Theorem 3.2.3. Assume that the source arrival is modeled by a two-state QBN
continuous-time Markov chain. Then, the minimum energybfteand wideband slope

expressions as a function of the QoS expofiare given, respectively, by

E,  log.,2

FOmin E {Z} (3.40)
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and

= 2(E {})?
So = CIOGgT2 (E {Z}>2 + ml(?ge2 Z?fj:l COV{Zi, Zj} +E {22} (341)

where( = a(j—im as defined if(3.17)

Proof: See Appendix A.10.

Similarly as before, QoS constraints and source randondwesst affect the minimum
energy per bit. On the other hand, it is seen in (3.41) thatrtipact of source arrival
characteristics on the wideband slope is via the stateiti@msatesc and3. For instance,
larger thex value, the higher the wideband slope is. This is due to theliat asy, which
is the transition rate from OFF state to ON state, incredbessystem is more likely to be
in the ON state. Contrarily, wideband slope diminishes witlieasings. This is expected
as well since largep leads to higher OFF-state probabilities. The effectvadnd g is
illustrated in Fig. 3.19, where maximum average arrivat rad. energy per bit is plotted.
In this figure, we sel = 1 andp = 0.75. As predicted, the same minimum energy per bit

is achieved for different values efand, while wideband slope increases with increasing
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« or decreasing.

n-State Markov Fluid Birth-Death Process

In this subsection, we consider a birth-death process frMharkov fluid source. We
assume that there anestates and the arrival rate in tié state is; — 1)\ fori = 1,...,n.

The generating matrix for the birth-death process is in thenfof

-—a « 0 O-
g —(a+p) a 0 0
0 :
G = i (3.42)
. ", 0
0 0 B —(a+p8) «
0 0 -5 B

Hence, the transition rate from statéo state; + 1 is o whereas the transition rate from
statei to statei — 1 is 5. The effective bandwidth of this source, which does not heave

simple closed-form expression, can be found from (2.19)ortier to conduct an energy
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efficiency analysis, average arrival rate needs to be ifilethtas well. Using (2.20) and

(3.42), we can easily determine that the stationary distiob as

i—1 1
:(E> _<f) fori=1,2,....n (3.43)
1-(5)

When% # 1,a # 0andg # 0. If any of these inequalities is not satisfied, state prdiiss

can be obtained by limiting functions.
Now, under the assumptions that# § and the arrival rate in stateis \; = (i —

1)\(SNR), the average arrival rate is given by

gt (- 1)
T A—g0-¢)

A(SNR) (3.44)

where{ = 3

Remark 3. Note that(3.44)specializes tq2.24)if n = 2. Whené — oo, the probability
of then'" state approaches, and the arrival rate will be(n — 1)\(SNR at steady state.
On the other hand, fof = 0, the state of the source is stuck at the first state in which the

arrival rate is zero.

Numerically, we can obtain the effective bandwidth of thetate birth-death Markov
fluid process using (2.19). Subsequently, solving (3.2) iandrporating (3.44), we can
determine the maximum average arrival refg(SNR), which we further employ for char-
acterizing the energy efficiency. The results of this nuoanalysis are displayed in the
following figures. In Fig. 3.20, we demonstrate the effectvadn the energy efficiency.
In particular, when3 is kept fixed, increasing improves the energy efficiency as in the
two-state case. We illustrate the effect of QoS constramfsy. 3.21. Similar conclusions
as before readily apply. QoS exponérdoes not alter the minimum bit energy, which is

—1.59 dB again, but the wideband slope is reduced with increasing
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are uncorrelated! = 1, § = 100 and the number of states of the arrival processs 10.

0.5

0.45F
0.4
0.35F
0.3
E

%‘ 0.25F
0.2
0.15F
0.1

0.05F

! - - - 6=10

, ——6=1

, co 9201
/ — 6=0.01{]

7/
7/
7/
/
/
7/
7/
/
/
/
7/
7/ B
. -
) -
) -
/ -
AR . . . . .
-15 -1 -0.5 0 0.5 1 1.5 2
E,/N, (dB)

Fig. 3.21: Maximum average arrival ratg,, vs. energy per bi% when channel blocks

are uncorrelated and = 8 = 50. Number of states of the arrival modellis.



59

3.2.5 Energy Efficiency with Markov-Modulated Poisson Process
ON-OFF Markov-Modulated Poisson Process

Again, we initially address the two-state model in whichréhare no arrivals in the OFF
state and the intensity of the Poisson arrival processiisthe ON state. The generating

matrix G is the same as in (2.21).

Theorem 3.2.4.Assume that the source arrival is modeled by a two-state QPR)
Markov modulated Poisson process. Then, the minimum eperdyit and wideband slope

expressions as a function of the QoS expofiare given, respectively, by

By e —1log, 2
= _Z " 7%e” 3.45
NOmin 9 E{Z} ( )
and
929 E 2
S, 7B 1z)) (3.46)

— leQZQ (E{z})2 + mhfgeQ D orioy cov{z, 2} + E{2?}

where¢ = a(jiﬁ) as defined irf(3.17)

Proof: See Appendix A.11.

Remark 4. It is interesting to observe that, unlike the previous aatisnodels, minimum
energy per bit in the case of MMPP source depends on the Qaghent#. More specifi-
cally, minimum energy per bit increases witf — 1)/6 which is an increasing monotonic
function of¢ and always greater than one fér > 0. On the other hand, a8 — 0,
(e —1)/60 — 1. Therefore,%min > 1&%2}2 with equality only if no QoS constraints are
imposed (i.e., wheé = 0). Furthermore, in addition to its significant impact on thenm

imum energy per bit, increasingleads to much quicker reduction in the wideband slope
due to the presence of the te@aﬁ_—l in (3.46) Hence, overall, energy costs grow very fast

asf increases. This is again because of the additional rand@saeising from Poisson
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Fig. 3.22: Maximum average arrival rafner;\,g VS. energy per bil]%g whenp = 0.75,
6 =1, andm = 10.

arrivals in the ON state.

Remark 5. From (3.46) we note that the effect of the state transition rateand S on
the energy efficiency is the same as in the Markov fluid souomem Increasingy or
decreasings improves the energy efficiency of the system because thenegssof the

data arrivals is reduced and the buffer overflows can be aaaia lower energy costs.

We plot the maximum average arrival rate vs. energy per Biidn 3.22. We seE{ -}
=1 andd = 1 for which the minimum energy per bit 576 dB. The increase in bit energy
with respect to-1.59 dB is due tol0 log,,((e/ — 1)/6) = 10log,,(e — 1) for § = 1. From
the figure, we can again infer that adjustingor 5 to increase the ON state probability

makes the system more energy efficient due to the increake imitleband slope.

n-State Markov-Modulated Poisson Process

Finally, we consider an-state MMPP process and assume that the intensity of thed?ois
arrivals in thei'" state is(i — 1)\. For the Markov transitions between states, we con-

sider the birth-death process and adopt the transitiormatex G from (3.42). We solve
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Fig. 3.23: Maximum average arrival r@%n&;Vg VS. energy per bi% when channel blocks
are uncorrelated? = 1, 5 = 100 and the number of Markov states for the arrival process
isn = 10.

for the maximum intensity\*(SNR 6) by incorporating (2.25) into (3.2). Then, using the
expression in (3.44), we obtait},,(SNR, 0).

In Figs. 3.23 and 3.24, we depict the maximum average amratal as a function of
the energy per bit with uncorrelated channel coefficienisgpassumed in each block. In
Fig. 3.23, we set» = 10, ¢ = 1 and/ = 100, and demonstrate how influences the
energy efficiency of system. The observation has simiéitith other Markovian sources
regarding the source burstiness. Interestingly, the mimrenergy per bit is again76 dB
as in the two-state case, leading to the conclusion thatuh#er of states does not alter
%min in this case. The degradation in energy efficiency due t@aszd is shown in Fig.
3.24. As described in the two-state case, higher valuégioé., stricter QoS constraints)
result in higher%mm and smaller wideband slope. Therefore, even for relatigahall

increases i, we can have large gaps between curves, indicating signifycaigh energy

costs.



0.5

0.45
041
0.35
0.3

:g 0.25F
0.2
0.15
0.1

0.05F

- — —06=15

- —e=l ||

8205

1
E,/N, (dB)

L
2

62

Fig. 3.24: Maximum average arrival r@%n&;Vg VS. energy per bi% when channel blocks
are uncorrelated and = g = 50. Number of Markov states for the arrival process is

n = 10.

3.3 Energy Efficiency in Multiple-Antenna Channels

3.3.1 Channel Model

We consider a flat-fading MIMO channel model between thestratier and receiver. We

assume that transmitter and receiver hasandnyp antennas, respectively. The channel

input-output relation can be expressed as

y = Hx + n.

(3.47)

Note thatx denotes the x 1-dimensional channel input vector, apdlienotes the z x 1-

dimensional channel output vector. Input average ener@f fix||*} = £. n denotes the

zero-mean, circularly-symmetric, complex Gaussian noigle dimensionny x 1. The

covariance matrix of noise is given &{nn'} = NyI, wherel is the identity matrix.
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Hence, the signal-to-noise ratio is

_B{xI?y €

SNR = = : 3.48
B}~ nels (349)
Furthermore, we define the normalized input covarianceirasr
E T
K, — {’gx 3 (3.49)

with trace trK,) = 1.

Finally, H denotes the z x ny—dimensional random channel matrix whose components
are the fading coefficients of the channels between the sfworeling transmitting and re-
ceiving antennas. We assume that the componeris béve arbitrary distributions with
finite variances unless specified otherwise. Additionally,assume block-fading scenario
in which the realization of matri¥l remains fixed over a block and changes independently

from one block to another.

3.3.2 Effective Capacity of Wireless Transmissions with MIMO

Channels

For the MIMO fading Gaussian channel with channel perfektipwn at the transmitter
and receiver, the maximum instantaneous service rate wiémgnput covariance matrix

K. is the instantaneous channel capacity, which is expressed a
R = log,(I + ngSNRHK H). (3.50)

With uniform power allocation across transmit antennas, itfput covariance matrix is

K, = %I. Hence, we have the effective capacity expression as

CE(SNR 0) = —% log, E{exp <—9 log, det(I + %SNRHHT))} : (3.51)
T
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If the input covariance matrix is optimized, then the effextapacity is given by

1
CE(SNR 0) = ~Onn log, E {exp (—9 Imax log, det(I + nRSNRHKxHT)) } . (3.52)

3.3.3 Energy Efficiency of MIMO Channels with Discrete Markov
Sources

In this section, we consider discrete Markov sources andciiaracterize the energy effi-

ciency metrics for uniform power allocation. Due to spaca@tations, we omit the proofs.

Theorem 3.3.1.With uniform power allocation, i.e., when the input covaga matrix is

K, = L1, the minimum energy per bit and wideband slope are given by

_nT

E, nrlog, 2

-~ = 3.53
Nomin ~ nrE {tr (HTH)} ( )
2E? {tr (H'H)}
So = —5r— - - T — (3.54)
Tog 3 {tr (H'H)} + @var(tr (H'H)) +E{tr (HH)2)}
where tr(-) denotes the trace of a matrix and
_ (1= p)(p11 + p22) (3.55)

(1 =p11)(2—pu — pa2)

Remark 6. WhenH has independent zero mean unit variance complex Gaussiaioma

entries, we have [8]

E {tr (HTH)} = nrnr
E {tr 2(HTH)} = anT(anT -+ 1) (356)
E{tr (HH)?*)} =ngnr(ng+ng).
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Inserting these int¢3.53)and (3.54) we obtain

b D5t 3.57
No min 71% ( )
2
§0= T (3.58)
log, 2 log, 2 nrnr nrnNT

Above, the minimum energy per bit depends only on the numbezaeive antennas.
This dependence is somewhat expected as having more racg@raas leads to higher re-
ceived power and the performance improves. Interestisgly;ce randomness and queue-
ing constraints do not have any impact ﬁfpmm, which is achieved asNR vanishes. On
the other hand, these play an important role at non-gerovalues as seen in (3.58). More
specifically, wideband slope depends on the source randssfingstiness through which
is a function of the source transition probabilities. Hengean be regarded as a measure
of source burstiness in the lo8NR regime. For instance, if the source is always ON (i.e.,
p11 = 0 andpyy = 1), then data arrives at a constant rate and there is es$gntbadource
burstiness. In such a case, we indeed have0. Hence, the first term in the denominator
of (3.58) vanishes. Otherwise, the presence of this norivegarm lowers the wideband
slope, which lets us conclude that random arrivals in gemenéthe energy efficiency.

In (3.58), queueing constraints are reflected via the Qo®reqtd. In particular, we
notice that higher values @f which imply stricter queueing constraints, result in deval
slopes, again deteriorating the energy efficiency. Anotiervation is that the decrease
in Sy due to having random arrivals (i.e., having> 0) is proportional tof as seen from

the presence of the terpgf;—z. Hence, source burstiness is more detrimental underestrict

1
nrNT

gueueing limitations. Finally, we note from the teﬂfﬁz that having multiple anten-
nas partially offsets the reduction dfy due to stricter queueing constraints.
Next, we provide similar characterizations when the trassion power is optimally

allocated across different antennas in the EnRregime.

Theorem 3.3.2.With optimal power allocation, the minimum energy per bid andeband
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slope are given by

E, log, 2
- c , 3.59
Nomin  10E Do (HTH) ) (3-59)
2
Sy = (3.60)

01t ol (e () — 1) + 3 (0 ()

log, 2 log, 2

wherel is the multiplicity of\,,...(E {H'H}), andr(om.(H)) is the kurtosis of the maxi-

mum singular value of the matrid and is defined as [53]

E{N, (H'H)}

K (Omex(H)) = 55 Dmax(HH) T

(3.61)

Remark 7. Regarding the effect of source randomness and queueingrairs, we have
identical observations as in the case of uniform power atmn. Here, the major differ-
enceis thal%min andsS, are achieved by transmitting in the maximal-eigenvalueespace

of H'H.

In the numerical results, we assume uniform power allooatid therefore set the input
covariance matrix aK, = 1/nrI. We consider a fading model in which the components of
H are independent and identically distributed Gaussianaanhariables with zero mean
and unit variance. In the figures, we plot maximum averageeamate vs. energy per
bit curves in the lowsNRregime to depict%mm andS, and how they are affected by the
number of antennas, QoS exponénand source burstiness.

In Fig. 3.25, we plot,, vs. f,—g for different number of receive antennag and differ-
ent ON-state probabilitieson. We setn; = 5. Verifying the analytical characterizations,
we observe tha%min diminishes and the curves shift to the leftrag increases. For the
same number of antennas, as the source becomes more buest¥di decreases from

0.5 to 0.2), wideband slope becomes smaller wﬁglneqin stays fixed. In Fig. 3.26, we set

nr = 5 and varyny and Pon. AS expected,f,—gmin remains the same while the wideband
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Fig. 3.26: Maximum average arrival ratg,, vs. energy per bilf,—z whend = 0.1 and
nr = 5.
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Fig. 3.27: Maximum average arrival ratg, vs. energy per bi% when Poy = 0.2.

slope diminishes with decreasingy andnr. Hence, beyon(%min, energy costs grow
with more bursty sources, and some of this degradation cawdreome by increasing the
number of transmit antennas. In Figs. 3.25 and 3.26, we hepetke QoS exponent fixed
atd = 0.1. In Fig. 3.27, we sef’ oy = 0.2 and analyze the impact of varyirtgy n,, and

ng on the energy efficiency. We notice that@sicreases from 0.1 to 0.5 and hence the
gueueing constraints become stricter, wideband slopesakee significantly for the same
set of antennas, so much so that all curves with 0.5 are below those with = 0.1 for

% > —8 dB regardless of the number of transmit and receive antennas

3.3.4 Energy Efficiency of MIMO Channels with Markov Fluid

Sources

In this section, we conduct a similar analysis for Markovdlaburces and obtain the fol-

lowing results.

Theorem 3.3.3.When the input covariance matrixks, = %I, the minimum energy per
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bit and wideband slope are given by

E, nrlog, 2

— = £ ) 3.62

Nomin  ngrE {tr (HTH)} ( )
2E2 {tr (H'H)) 3.69

S0 = 1o§< SE2 {tr (HTH)} + 10 Svar (tr (HTH)) + E {tr (HTH)?)}

Remark 8. WhenH has independent zero mean unit variance complex Gaussiaioma

entries, we have

By log, 2
5 (3.64)
No min n%%
2
§o= e (3.65)
10ge 10ge 2 ngnr npnT

Theorem 3.3.4.With optimal power allocation, the minimum energy per bid andeband

slope are given by

Eb 10g 2
— = £ ) 3.66
Nomin  "RE { Amax (HTH) } ( )
2
Sy = (3.67)

10252 + 1og662 (#(Tmax(H)) = 1) + (0max(F))

wherel is again the multiplicity o\, (E {HH}), k(0max(H)) is as defined ir{3.61)

Remark 9. Regarding the impact of the parameters, nz, andf, we have similar ob-
servations as for the discrete-Markov source. On the otlardh source characteristics

appear in the formulations via the parameter= — which essentially quantifies the

a+B
source burstiness. Note thatis the transition rate from OFF to ON state whereass
the transition rate from ON to OFF state. Note further thatenlax = 1 and 5 = 0 and

thereforePon = 1 and data arrival rate is constant, we haye= 0.

Fig. 3.28 examines the effect af; and source characteristics on the energy efficiency.
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Fig. 3.29: Maximum average arrival ratg,, vs. energy per bil]EVg when#d = 1 and
nr = D.

For all plots, we have’on = ﬁ = 0.5. We notice that lower transition ratesand
result in smaller wideband slopes, indicating higher epersts. Note that low values of
«a and g imply longer ON and OFF durations on average. Hence, OFE stat be more
persistent. As before, we observe that more receive arddaad to smaller values of the
minimum energy per bit.

In Fig. 3.29, we varyir, a, andj while keepingPon andn i fixed. Minimum energy

per bit is the same for all scenarios while wideband slopedsiced for smaller values of

nr, o, andp.
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CHAPTER 4

ENERGY-EFFICIENT POWER CONTROL
IN FADING CHANNELS WITH
MARKOVIAN SOURCES AND QOS

CONSTRAINTS

4.1 Channel Model

We consider a flat-fading channel between the transmitéreceiver. The channel input-

output relation can be expressed as

wherez; andy; are the channel input and output, respectively, andenotes the channel
fading coefficient. We assume that the transmitter, equippieth perfect channel side
information (CSlI), performs power control. Hence, the srait powerP (0, z;), where

z; = |h;|? and@ is a QoS parameter described in the following section, sasith QoS
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requirements and fading. Fading coefficients are assumieelittentically distributed, and
the fading distribution can be arbitrary with finite vari@ncWe consider a block-fading
model and assume that the realizations of the fading caaitigistay fixed for a block
of symbols and change independently for the next block. Ilinén;} is a sequence of
independent, zero-mean, circularly-symmetric, compleax$sian noise components with

varianceE{|n;|*} = Np.

4.2 Energy-Efficient Power Control

In this chapter, we employ rate per unit energy (in bitsgyals the performance metric of

energy efficiency. In our setup, we define energy efficiend) @&

B Tavgl?) Tavgl?)

" (EPE) +P)/NB  (FE{0.2)} + ) 42)

whereP,. is the circuit power and is the efficiency of the power amplifier, and =
P./Ny,B. Normalization with the noise powé¥, B in the denominator above is performed
in order to express EE in terms of the instantaneous gM¥Rz), and to perform optimiza-
tion overp (9, z) and have simplifications in the expressions. Furthermoréetused in

subsequent formulations, we define functidf)gas

9(0) =E {[1 4+ u(8,2)z]"*} (4.3)

where agairp = 07 B log, €.

After formulating the energy efficiency, we can express thenaally energy-efficient



73

power control problem as

g i

wo.2) (LE{p(0,2)} + pe)

Next, we will address special cases of this optimizatiorbfmm by considering specific

arrival models and incorporating the corresponding aveeagval rate expressions.

4.2.1 Discrete Markov Source

In this section, we consider ON-OFF discrete Markov arrivaldels and determine the
optimal power adaptation strategy that maximizes the greffgciency. After inserting the
maximum average arrival rate expression in (3.6) into thmopation problem in (4.4)
and simplifying the expressions by eliminating the conistarms, we can formulate the

optimal power allocation problem as

lo 1-p119(9)
/’L*(e Z) = arg max ge (1_P11—P22)g2(0)+p22g(9)
’ 1(0,2) %]E {M(Q’ Z)} + e

(4.5)

where the functiory(-) is defined in (4.3). Note that any function that can be expgekss
as the ratio of a convex function over a concave one is quasxo[31, Example 3.38]
and the negative of a quasiconvex function is quasiconddeace, the objective function
in (4.5), being a concave function divided by an affine fumctof power allocation, is

a quasiconcave function of the instantaneous SNR z). By introducing an additional

1Since the theory of effective bandwidth and effective citganakes use of tools from large deviations
and characterizes the performance in the large-queu¢hleagime, we consider a saturated buffer in our
analysis, and the optimal power control policies are oletdinnder the assumption that there is always data
to transmit from the buffer.
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variabley = o the problem can be transformed into

1
E{Lu(0,2)}+

. B 1 —p119(0) )
u(IHI,lzl)nZO ¥ log, ((1 — P11 — P22)9%(0) + p229(0) (4.6)
subject to P <%E {8, 2)} + ,uc) =1. (4.7)

The problem in (4.6) is a convex optimization problem. Tlenes we can use the convex
optimization tools and determine the sufficient and neagd€arush-Kuhn-Tucker (KKT)

conditions. By denoting the Lagrange multiplier bywe form the Lagrangian as

- 1 —pug(0)
L6, 2), 9, 2) =~ logE(u—pn ) (0] + p229<9>)
) {wéE{u(e, 9} 4 ) - 1} . 4.8)

Now, the KKT conditions are given in (4.9)—(4.11)

o (PR} + ) =1 4.9
— oz O e (1 —pi)(1 — p22) 1 & _
vez L+ u(f,2)2 ((1—png(9))((1—Pn—p2z)g(9)+p22)+9(9))+ e =0
(4.10)
1o 1 —puig(f) 1 . _
1 ga((l e ——T ) +p22g<e>) " <6EW’ ) “C) . (#.11)

Note that (4.9) is due to the constraint in (4.7). (4.10) ahdX) are obtained by taking
the derivative of the Lagrangian in (4.8) with respecpté, =) and, respectively. After
simplifying (4.10), we obtain

A4 (0, 2)2) A(ee) . (4.12)

(I—p11)(1—p22) _‘_L
(1—p119(0))((1—p11—p22)9(0)+p22) ' 9(6)
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By solving (4.12) foru(0, =), the optimal power allocation is found as

. 1 177"
w0, z) = — — = (4.13)
vite z1+e ¥
where
A/ (o¢)
V= (I1=p11)(1—p22) 41 (4'14)

(1—p119(0))(1—p11—p22)9() +p22) ' 9(0)

and[c]"= max (¢, 0). We notice that.* (0, z) = 0 whenz < v. Hencey can be regarded as
the fading gain threshold for transmission. When we comgltespecial case of constant-
rate arrivals (i.e., when we have,y = 1), the above equation far specializes to the
corresponding one in [19]. Note that the expressionfior(4.14) depends on the Lagrange
multiplier A (and hences can also be considered as a scaled Lagrange multiplier). By

combining (4.11) with (4.14), we obtain (4.15).

(1—p11)(1—p22) 1 e\ (1=pqyq— 2(0 0
T P00 ((—p11—p22)90) 5 p22) T 90) (1=p11=p22) @ (0) +p229(0)

+vpe (%E{,u(@, z)}+uc) =0 (4.15)

Equation (4.15), which does not depend kncan be used to determineby incor-
porating the source statisttcand computingg {x(6, )} and ¢#). For instance, in the
case of Rayleigh fading, the fading power is exponentiabyrdbuted with density func-

tion f.(z) = e~#, and by using the expression fo(d, =) in (4.13), these key expectations

2|t is interesting to note that the optimal power contis(9, z) depends on the source statistics (e.g.,
transition probabilitie®,; andpsys) only throughw.
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can be determined in closed-form as follows:

E{u(9, z}—/ LH = } e *dz
s 5
1 e 1 .
— <;) F(m : 1/) + Ei(-v), (4.16)

:/ (3)‘@ e *dz +/ e *dz
v v 0

1
,V) +1—e" (4.17)
to

Above,T'(s,w) = [* 7°~'e~7dr is the upper incomplete gamma function an¢ugi =
— fffu gdr is the exponential integral. When, = 1—s, p»» = s, we have a memoryless

discrete source and power allocation problem becomes

min — ¥ log, ( > (4.18)
w(0,2)>0
1.

subject toy (- E{u(e 2} pe) = (4.19)

Thus, Lagrangian function transforms into

Ao —(1-s
Ll 2),,A) = —wm(%”) + [wéE {u(0.2)} + pe) = 1] . (4.20)
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Now, the KKT conditions become

o (P00} 4 ) =1 @21)
el i 22
Yoo -a-seoF e " )
— log{@) < E{u8,z2)}+ uc) = 0. (4.23)

Power allocation policy formula is still as in (4.13) but novis determined from

A —(1-s
- [0(6)~(1- $)(a(0))’] 14&) #0e (LR (6,2 + ) 0.

(4.24)

Next, we provide numerical results for the general casesardie Markov source with
memory. For the numerical analysis, we set the values ofdlenpeters aB. = 1, Ny = 1,
o=1,¢ = 1. InFig. 4.1, we plot energy efficiency (EE) vs. maximum agerarrival
ratery,q With varying source parameters. Note that wipgn= 1 andp;; = 0 (and hence
Pon = 1), we have a source with constant arrival rate. Indeed, tisé ferformance is
achieved in this case and maximal EE value (or equivalehtypeak of the EE curve) is
the largest. We further notice in the figure that initiallg thaximal EE values diminish and
are achieved at a lower valuedf,, whenp,, and consequentlifoy decrease and therefore
the source burstiness increases. However, interestingiyw, is diminished from 0.5 to
0.2, maximal EE value slightly increases even thoiigh is smaller whem,, = 0.2. This
is due to the fact thaPoy is not the only criterion to indicate the burstiness of thetem.
In fact, as we have shown in [24], a measure of burstiness\aBNRs is -1 —222)(P11+r22)

(1=p11)(2—p11—p22)

whose greater values imply a more bursty source. Indeedesfiression assumes a larger

value whenpy; = 0.5. On the other hand, as SNR increases and higher averagal arriv
rates are supportedory becomes a more relevant indicator of burstiness and theesour

with p,, = 0.2 starts leading to lower EE values, following a crossovewken the two
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Fig. 4.1: Energy efficiency EE vs. maximum average arrivi@rg,,wheno =1, P, = 1,
Nog=1,e=1.
curves.

In Fig. 4.2, we plot the optimal power control policy that nrakzes the energy effi-
ciency as a function of the instantaneous fading power gatuéNe note in all cases that
no power is allocated for transmissionriis below a threshold (i.ew;). Power level initially
increases asincreases above the threshold and then starts diminiskinéuather grows.
Hence, power control is essentially a combination of waliedi policy (for low values of
z) and channel inversion policy (for large values:pf We also observe that more power is
consumed (and consequently average power consumptiagés)ldor a less bursty source
at the maximal EE point.

In Fig. 4.3, we plot the EE vsrj,4 curves for different values of the circuit power
P.. We readily notice that aP. diminishes, a higher level of EE is achieved at a lower
value ofr,, Indeed, if circuit power is not taken into account (i.e.wé setP. = 0),
then maximum EE is achieved asymptoticallyrgg and hence SNR approach zero [24].
Hence, circuit power has significant impact on the perforrean

In Fig. 4.4, we plot the maximum EE as a function of the QoS erpd¥ for discrete
Markov sources with different source statistics. We notalircases that EE diminishes

with increasingfd. Hence, more stringent buffer/delay constraints is deinital to EE.
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Fig. 4.3: Energy efficiency EE vs. maximum average arrived rg,, for different values
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Also, similarly as before, the highest levels of EE are a#diwhen the arrival rate is
constant (i.e., whepy; = 1 andp;; = 0.), and the EE diminishes as the sources become
more bursty.

Finally, in Figs. 4.5 and 4.6, we display simulation result$n particular, in Fig.
4.5, we have the buffer overflow probabiliti®s{@ > ¢} plotted as a function of the
buffer threshold; with both optimal power control and no power control (i.eithafixed
transmission power). Note that we plot the buffer overflowhabilities in logarithmic

scale. Note further from the approximation in (2.3) for Egghat

log Pr{@ > ¢} =~ —fq + logz. (4.25)

Hence, the logarithm of the overflow probability is expedtedecay linearly ird for large

g. Indeed, we observe this linear decay already even forrathall values of;. Moreover,

3We conduct the simulations as follows. We initially fix thelue of the QoS exponertt (e.g.,0 =
2,1, or0.5 in the figure) to provide a certain level of statistical Qo%uguntee. Then, using the theoretical
results from our analysis, we determine the EE-maximizipgneal power control and the value of, at
which EE is maximized. Subsequently, we generate randawataccording to the discrete Markov process
with average rate;,,. We simulate the service process by generating random ehtatting and using the
optimal power control. Then, we have kept track of the bustate among the arrivals and departures, and
evaluated the frequency of exceeding a given threshdtddetermine the values of overflow probabilities.
Considering the same, , and the same average power and hence the same EE level, weepaaéed the
simulations with no power control.
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Fig. 4.5: Buffer overflow probabilityPr{) > ¢} vs. buffer threshold for cases with
optimal EE power control and fixed power whBp = 1, Ny = 1, ¢ = 1. Discrete Markov

source withp; = pay = 0.75.
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Fig. 4.6: Delay violation probabilityPr{D > d} vs. delay threshold for cases with
optimal EE power control and fixed power whBp = 1, Ny = 1, ¢ = 1. Discrete Markov

source withp; = pay = 0.75.
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the simulations show excellent agreement with the thezaleinalysis. Solid curves are for
the case with optimal power control. We note that the sinedlaurves lead to simulatéd
values 0f2.006, 1.001, and0.496 as indicated in the figure when we et 2, 1, and0.5,
respectively, at the beginning of the simulations. Henlee duffer overflow probabilities
decay exponentially at the predicted rates even for veryllsrmbues ofg. In Fig. 4.5,
the dashed curves next to the solid ones are the corresgpodarflow probabilities at
the same,, and EE levels but when no power control is employed. We imatet)i
recognize that we have smaller valueg/oh such cases (i.ef, = 1.754,0.843 and0.345
as opposed to haviy= 2.006, 1.001 and0.496, respectively, in the power control cases)
meaning that for the same threshgldthe buffer overflow probabilities are higher when
transmission power is fixed. Hence, the same EE can be attbuteat the cost of having
more frequent buffer overflows. Conversely, we can also bayfor the same overflow
probability, a higher EE is achieved when power control ismed. These observations
further demonstrate the benefits of power control in pratgettings.

In Fig. 4.6, we plot the delay violation probabiliB+{ D > d} in logarithmic scale as a
function of the delay thresholdlagain from the simulations. Note from the approximation

in (2.5) that

logPr{D > d} ~ —60a*(0)d + logs. (4.26)

Hence, the logarithm of the delay violation probability igected to decrease linearly
in d with slope—6a*(6) wherea*(0) is the effective bandwidth of the arrival process.
We essentially have similar observations as in Fig. 4.5.cffipally, we again have ex-
cellent agreements with theory (e.g., the theoretical eslim the power control cases
arefa*(0) = 0.3927,0.6944, and 1.2022 while the corresponding simulated values are
fa*(0) = 0.3923,0.6865, and1.1510, respectively), and having no power control increases

the frequency of delay violations at a given delay threshold
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(0 GE {u(0.2)} + uc) =1, (4.31)
—o—1 Ozﬁ 1 )\_’(/) -
— Yoz [1+ u(0, z)z] (9(9) (o log, g(@))2 + g(@)> + = 0, (4.32)
a+ [ —log,9(f) 1 B
o —Toz. 9(0) log, 9(0) + A (EE {0, 2)} + uc) = 0. (4.33)

4.2.2 Markov Fluid Source

Now, we consider the optimal power control with Markov fluidusces. By using the
maximum average arrival rate expression in (3.14) in theahje function, eliminating
the constanf’oy, and using the definition of(g) in (4.3), we can recast the optimal power
control problemin (4.4) as

_ a+p—log,g(f) log 9(9)

“(0, z) = arg max o—log, 8(6)
wi0.2) Bubs  TE{u(0,2)} + e

(4.27)

Again, by introducing the additional variable= o the problem can be trans-

1
E{1u(0,2)}+
formed into

o+ 3 —log,g(f)

u(glzl)nzo a —log, g(6) log, 9(0) (4.28)
subject to ¥ (lE {10, 2)} + /%) 1 (4.29)
€

By employing convex optimization tools, we can determine shfficient and necessary

KKT conditions. First, the Lagrangian function is given as

a+ [ —log,9(0)
o — loge g(@)

FA PR {(6,2)} + 1)~ 1] (4.30)

L(M(@, Z)? ¥, )‘> =1

log, 9(0)

The KKT conditions are given in (4.31)—(4.33) at the top & tiext page. Similarly as for
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the discrete Markov source, (4.31) is due to the constraif4.29). (4.32) and (4.33) are
obtained by taking the derivative of the Lagrangian in (3\8ih respect tq.(0, z) and,

respectively. After simplifying (4.32), we obtain

L A
2[4 (8, 22 e ——/ &) —. (4.34)
9(0)(a—log, 9(0))”

g(0)

Due to similarities between (4.12) and (4.34), the optin@k@r control function is ob-

tained to be in the same form as for discrete Markov sourcegssagiven by

1 11"
o, z) = | —4——F — - (4.35)
viteziHe %
but now with
Mo (4.36)
af + 1

9(6)(a—log. 9(6))* " 9(0)

Now, we can combine (4.33) with (4.36) to obtain

[C)) a+ 5 —log, g(0)
of 11 a-—log. g(h)

(a—log, 9(0))
1
it (EE{uw,z)} w) o, (4.37)

log, 9(0)

which can further be used to numerically evaluate

In Fig. 4.7, we plot the EE vs. maximum average arrival rgfg curve for different
Markov fluid sources. As expected, the source with= 0, being the constant arrival
source, has the best performance in terms of energy efficiek&a reduces, the source
becomes more bursty and the performance degrades.

In Fig. 4.8, we again plot the EE vg;, curves for a Markov fluid source with transition
ratesa = 2 and/ = 8, considering the optimal power control, suboptimal wdiléng

power control, and constant-power transmissions. As d@gpeoptimal power control
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leads to the maximum EE and outperforms the other two schemfgsmly over the entire
range. Water-filling power control results in the seconghlest EE level. At the same time,
it is interesting to observe that transmission with corispanwer starts performing better
than that with the water-filling policy as;,, increases. This observation highlights the
importance of identifying the optimal power control sincater-filling takes into account

neither source randomness nor QoS constraints.

4.2.3 Markov-Modulated Poisson Processes

The throughput expressions for discrete-time and contiatiome Markov-modulated Pois-
son sources have similarities to those for discrete-timekbaand Markov fluid sources,
respectively. Particularly, (5.13) is obtained by scali@g) with egi_l The same observa-
tion holds regarding the comparison between (3.14) and)3hese scaling differences
do not alter the optimal power control problem. Therefdne,dptimal power control poli-
cies for the discrete-time and continuous-time MMPP saiace the same as for the cases

of discrete and fluid Markov sources, respectively.

4.3 Optimal Power Control with EE Constraints

As noticed in the previous section, when the primary godiésthaximization of the energy
efficiency, small throughput values can be attained esihetithe source is bursty. On the
other hand, in certain wireless systems, the goal is to magithe throughput while being
cognizant of the energy efficiency requirements. Motivdigdsuch systems, we in this
section assume that there is a minimum energy efficiencyti@nson the system and we

seek to find the optimal power allocation scheme to maxintgghroughput. The optimal
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power allocation problem is formulated as

o raf?) (4.3
gl
subject to "avg9) > Cmin(0) (4.39)

B0, 2)} + e

where EE;, represents the minimum required EE level. This optimizapooblem also
enables us to characterize the tradeoff between the thpaigind energy efficiency.

Note that the constraint can also be expressed as
1
~Tavg(0) + EBmin(6) | “E {11(0,2)} + pe| <0. (4.40)

Again, we first demonstrate that the power allocation pnolkeconvex and hence we
can use convex optimization tools to solve the problem. Aswlised at the end of Section
5.2, the objective functior; ,(9) in (4.38) is a concave function pf(0, z). It can be easily
seen that the constraint in (4.40) is a convex functiop(df ) as it is the summation of a
negative concave function and an affine function. Hencel #iggangian can be expressed

as

£(u0.2).0) = T ) M -r3(0,9) + EEol0) 1B 1000, + ] 442

4.3.1 Discrete Markov Source

The Lagrangian for discrete Markov source is simplified to

B Po 1 —p19(0) _ 1
06,0 = (143 P g, <(1—pn—pm);(e)wmg(m)AEE”“'””) [EE{“(Q’Z”*“C |

(4.42)
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After taking the first derivative, we obtain (4.43)

Pon - _1< (1 —p11)(1 — p2o) 1 > 1
1+XN)—— o0z [1+u(0, ¢ + —AEEmin(6)- = 0.
(A =gmoz L+ u(6,2)2 (1=p119(0)) (1 —p11 —p22)9(0) +p22)  9(0) Emin(0)
(4.43)
(4.43) can further be expressed as
214 pu(0,2)2] 7 =, (4.44)
where we define as
.- MEEW(D) )
—P11 —p22
Q€(1 T )\)PON ((1—17119(9))((1—1711—p22)9(9)+p22) _'_@)
Using (4.44), we can derive the power allocation formula as
1 177"
,LL(@, Z) = 1 e —:| . (446)
1+o 7140 ¥

We see that the power control formula for rate maximizatiodar EE constraints is similar
to that for maximizing EE. The key distinction lies in thedaulation forv in (4.45) which
is different from (4.14).

In Fig. 4.9, we address the tradeoff between throughput aedgyg efficiency by
solving the power control problem and determining the maxmthroughput level under
different energy efficiency constraints. More specificallye plot the percentage gain in
throughput by backing off from the maximal energy efficiepoynt, which is represented
by the 100% EE gairf. The figure shows us that decreasing the energy efficiencs lea

to significant improvement in throughput. For instar@@} reduction from the maximal

4Therefore, we can formulate EE gain percentag(%—ggf x 100% where EE,, ... IS the maximum

energy efficiency. Similarly, throughput gain percentagéefined as;# x 100% whereri, v pmaz
avg, EEmax 4
is the average arrival rate at the maximum EE point.
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Fig. 4.9: Throughput;,, gain % vs. EE gain % = 1. (Discrete Markov Source)

energy efficiency point results i50 to 90% gain in throughput depending on the source
characteristics. Eveh% decrease in energy efficiency generates abbout gain on the
throughput. We also note that the largest gain is realizéloacase of constant arrival rate,

and increasing burstiness reduces the throughput gain.

4.3.2 Markov Fluid Source

For Markov fluid source, Lagrangian function is given by

Pona+ 6 —log, g(6)

L(u(0.2), %) = 1+ N === g(d)

108, 9(6) ~ NEEmn(6) | B {(6.,2)} + e

(4.47)
and the optimal power control policy has the same form as.#6)with v defined as

v— AIEEmin(0) . (4.48)

af
QE(l + )\)PON <—2 + ﬁ)

9(0)(a—log. 9(0))

In Fig. 4.10, we again demonstrate the tradeoff betweerggregficiency and through-

put when the source is modeled as a Markov fluid. We immedgiateterve that havingx a



90

190 :
e, e =10, B=0
180~ o, == 0=8,p=8 |
NS = = =q=5,p=8
~ . ‘e,
170} SIS a=2, =8 |
\\ ‘S,
S OsS ,
160} ST
~'S
B RIS
T 150f Sl
© ~SS
=) *’g,",,
3140t S
= \\\
N,
1301 S8
3«
120} 34
3.
3
110}
100 . . .
80 85 90 95 100

EE gain %

Fig. 4.10: Throughputy,, gain % vs. EE gain %! = 1. (Markov Fluid Source)

small reduction in the energy efficiency results in subsahgain in the throughput. On the
other hand, the percentage of the gain decreases as thmé&ssaf the source increases

(i.e. by decreasing while 5 is fixed).

4.3.3 Markov Modulated Poisson Processes

The LagrangianC(u(9, z), \) and the scaled Lagrange multiplierfor the discrete-time
and continuous-time Markov-modulated Poisson sourcedbeammediately obtained by
replacingd with (e? — 1) in the corresponding expressions for discrete Markov ancktia

fluid sources, respectively.

4.4 Optimal Power Control with Average Power Con-
straints

In this section, we consider a setting in which throughputiméation is the sole concern

of the wireless system, and we study the optimal power cbsiirategy that maximizes the
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throughput under an average power constraint. The opttiaizproblem is formulated as

plax - Taug(0: %) (4.49)
. 1 _
subjectto ~E{P(4,2)} + P. < P. (4.50)
€

Note that the optimization problems studied in previougieas have no explicit average
power constraints. However, implicitly average power ¢asts are imposed through
the energy efficiency requirements due to the fact that gneffgciency eventually starts
diminishing with increasing average transmit power letAgwever, explicit average power
constraints can be addressed without much difficulty as weodstrate in this section.
The optimization problem in this section is again convexrmializing all the terms in

the constraint in (4.50) with the noise powssB and denoting the averagarR = NE’B,

the Lagrangian function can be written as

L((60, 2), \) = g6, 2) — A {%E (06, 2)} + 1o — SNR} | (4.51)

In the following analysis, we obtain the power allocationdtion for different source
models using a similar approach as in previous section<ifgadly, we initially evaluate
the first derivative of the Lagrangian function with respect (6, ) and make it equal to
0. For all sources, the optimal power control is in the sammfas in (4.46) with different
v expressions which we describe below for each source.

The first derivative of the Lagrangian for the discrete Markource is obtained in

(4.52) at the top of the next page.

@gz 1+ u(0, z)z]_g_l (

(1= p11)(1 —p22) 1 A
0 * ) €

(1 = p119(0))((1 = p11 — p22)a(0) +p2)  9(0)
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Fig. 4.11: Maximum average arrival ratg,, vs. average powdP whend = 1. (Discrete
Markov Source)

Using (4.52) v is derived as

v= A : (4.53)

(1=p11)(1—p22) 1
oeFon ((1—20119(9))((1—?11—p22)9(9)+1022) T g(@))

We plot the throughput vs. average power curve in Fig. 4.1drevive take into account
different discrete Markov sources. As noted before, theé pedormance is realized for
the case of constant arrival rates (i.e., whgn = 1 andp;; = 0), and the throughput
degrades with increased burstiness. Comparing the peafares with source models with
parameterg,,; = 0.5, p;; = 0.8 andpy, = 0.2, p;; = 0.8, we observe that ON probability,
Pon, becomes a dominant factor on performance as average pogveases. Source with
smaller Poy (i.e., the one with transition probabilities, = 0.2, p;; = 0.8) has lower

performance. On the other hand, when the average poweraisvedy low, this source

outperforms the one with parametess = 0.5, p;; = 0.8 since the metrigl(i;f’ff(é(fgjf;zz)

is a more critical burstiness factor at low SNR values (as discussed in Section 4.2.1) .

Indeed, in this case, the transition probabilifies = 0.5, p;; = 0.8 result in a larger value

for (1@"’22)@“*{22) indicating a more bursty source in the low-SNR regime.
p11)(2—p11—Pp22)

For the Markov fluid case, we obtain (4.54) given on the negeys the first derivative
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of the Lagrangian with respect g6, z).

Fon —o-1 af Ly A
—5 % (14 (0, 2)z] (g(@) (@ 105 9(0)" + 9(9)> ; 0. (4.54)

The parameter that we use in power allocation formula is given by

A0

p - (4.55)
eePon (s + 59

V=

For Markov fluid source we demonstrate the throughput asetiumof average power
in Fig. 4.12. Similarly as before, burstiness hurts theqrenince.

For discrete-time and continuous-time MMPP, the first agdiwes of the Lagrangian
functions with respect te.(0, z) are given, respectively, by (4.52) and (4.54) Wﬁgﬁ
replaced by(;;%ly and with the corresponding threshold parametags/en, respectively,

by (4.53) and (4.55) whehd is replaced by (e — 1).
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4.5 Optimal Power Control in Multichannel Systems

In this section, motivated by the fact that multicarrier mhels employing orthogonal fre-
guency division multiplexing (OFDM) can be regarded as mb#énnel systems, we ex-
tend our power control analysis to multichannel commuiocalinks. In a multichannel

scenario (e.g., in multicarrier models), assuming thatettaee X' subchannels each with

bandwidth% the instantaneous service rate becomes

K
B
R(z) = ,; = logy (1+ mi(2)2) (4.56)
Above, we defingu,(z) = %, whereP, (6, z) is the instantaneous transmission power
K
in the k™ subchannel, and = [z, ..., zx], wherez, = |h;|? is the magnitude-square

of the fading coefficient in thé™ subchannel. Under the block-fading assumption, the

effective capacity with” subchannels can be expressed as

Cr(0) = —% log, E {e_GTR(Z)}

K
— 1 —0TB-L logy (1411 (2) 2
——glogeE{He K 082\ THE )2k

k=1
} . (4.57)

In order to keep the analysis concise in this section, we cohsider the problem

=ls

of finding the optimal power allocation scheme that maximi#tee throughput under a
minimum energy efficiency constraint for discrete Markod &tarkov fluid sources. The
optimal power allocation problem can be expressed as th@aiolg convex optimization

problem:
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nax Tavg(0; 2) (4.58)
. T;vg(ea Z)
subject to > EEmin(0) (4.59)

LS K E{u0,2)} + pe

where we defing.(0,z) = [11(0,2), ..., ux(0,2)], ju.(0,2) = %"g) andg, = lec% Conin

is the minimum required energy efficiency level.

We can further rewrite the constraint as

K
—Tavg(0, 2) + EEmin(0) E > E{u(0,2)} + pe| <0. (4.60)
k=1

Now, the Lagrangian becomes

‘C(:u(ev Z)v )‘) = T;vg(ev Z)

-2 {—r;\,g(e, 2)+EEmin(0)

S B {0, 2) b

}

K
= (0, 2). (4.61)
k=1

To determine the optimal power control policy, we have tosider the solution of

OL(u(0,2z), \)

oo a " (4.62)

If we havep;(0,z) > 0fori € Ny = {1,..., K}, complementary slackness dictates
that the corresponding Lagrangian multiplieris zero [31]. In the rest of the analysis we

exploit this property.

4.5.1 Discrete Markov Source

First, let us define
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B Pon 1 —pug(¥)
L(p(60,2), ) =1+ X)= loge((1 — P — pe)@?(0) + p229(9))

— AEEnn(0) [1 > E{u()} + b

K
=S hlz). (4.64)
k=1

P _o_ _e
AN EE Lt aa(2)2] E T[4 ()= 4
itk

(1 —P11)(1 —p22) 1 B . 1 _
) ((1 —p119(0))((1 — p11 — p22)9(0) + p22) + 9(9)) AEEmin(0) . 0 (4.65)

k=1

0(60,2) = E {Hum(z)zkr%} (4.63)

wherep = 0T Blog, e. The Lagrangian for the discrete Markov source is expregsed
(4.64) on the next page.

Initially, we assume that we utilize all of the subchannelstfansmission. Then, we
can immediately state that = 0 for all ; and derive the optimality equations as in (4.65)
on the next page by calculating the derivatives with resfmegt for : € .

We simplify (4.65) as

V= Zy [1_'_,uk(z)zk]_%_ln[l_'_,uz'(Z)Zi]_% , ke N (4.66)
i#k

wherev is a scaled Lagrangian multiplier

L AKEEqgin(0) log, 2 (4.67)
(1—p11)(1—p22) 1)’ ’
e(1+A)PonTB ((1—png(e>>(<1—pu—p§§>g<e>+p22> +@)

By solving equations in (4.66), the optimal power allocatoan be written as

1 1
(0,2) =— ———. ke (4.68)

— K(1+o0) Zke
vite HiENO ZZ




97
Now we define\; as

1 1
1 50 (4.69)
v T¥e Hie_/\/o ZiK(leQ) Zk

le ]CEN()

If N1 = Ny holds, then (4.68) is the optimal solution, otherwise wedrteeapply a recur-

sive strategy which we describe as an algorithm in Table 1.

Algorithm 1 The optimal power control algorithm that maximizes thropigigiven a min-
imum EE constraint
1: GivenN; computeN; = |\
2: Initialize k = 1;
: while NV, # N,._; do

4: Nk+1:{n€/\/k Ve 1 o —L>O};

w

_K Zn
K+N K+Nyo
v ke HiENk i

5 N1 = [Nes1l;
6: k=k+1,
7: end while

8: DefineN* = N, andK* = |Ny|;

. L — — 5 forne N
: ,un(‘gaz) = v RHETC Tlie e 2 ¢

[(e]

7

0 otherwise

Remark 10. In the algorithm, basically, we first employ the formulg4n68)for the power
allocation. Then, if all power levels are above zero, we shapalgorithm. Otherwise, for
subchannels with power levels less than zero, we do noteflcany power and we cease

using these subchannels in the algorithm.

Fig. 4.13 depicts the energy efficiency as a function of th&imam average arrival
rate (or equivalently throughput) with varying source euderistics and the number of
subchannels. The random arrivals are modeled as a disciateMprocess. When we
have a higher ON probability or more subchannels, the syk@srbetter performance in
terms of energy efficiency as the maximum EE point is the lgbet of all scenarios when
Pon = 1andK = 4. The source burstiness is in general an important factdraiptesence

of QoS constraints because increasing burstiness by déugeae ON probability makes
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the system more susceptible to buffer overflows. To avoithéndpuffer overflow proba-
bilities, the system supports smaller throughput with thee energy budget. As noted
above, having more subchannels improves the energy effici&ssentially, when we use
a single channel, the random variations in the wirelessmélamhich can be detrimental
in the presence of buffer overflow constraints, have a mgafsgant impact.

In Fig. 4.14, we analyze the tradeoff between throughputearegy efficiency. Sim-
ilarly as in Fig. 4.9, we describe the maximum EE point (itee, peak of the bell-shaped
EE curves in Fig. 4.13) ak00% on thex-axis and decrease the energy efficiency while
computing the gain in the throughput. This figure shows hovelmtlnroughput can be
improved by sacrificing from the maximum energy efficienchheTobservation from Fig.
4.14 is that throughput improvement for less bursty souisésgher. Also, with smaller
number of subchannels, we observe a larger improvement.

In Fig. 4.15 where we again depict the energy efficiency asetion of the through-
put, we investigate how the system performs under diffelerls of burstiness and QoS
requirements. We notice that burstiness does not depet@@only. Although systems

with p;; = pee = 0.2 andp;; = pee = 0.8 have the samépy = 0.5, they perform
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differently. Sources with higher transition probabilifom one state to a different state
(i.e., highemp, andp,;) exhibit reduced burstiness, and hence we have betterrpafce
with the source having,; = p,, = 0.2. Additionally, more stringent QoS constraints (i.e.
higher values of)) clearly reduce the energy efficiency of the system no mattext the

source characteristics are.

4.5.2 Markov Fluid Source

The Lagrangian function of the Markov fluid source is given by

Pon a4+ —1og,.g(0)
9 o — loge g(e)

L(p(0,2),A) = (1+1) log.9(0) — AEEnin(0)

1 K

k=1
K
k=1

Again, we initially assume that we utilize all subchannelstfansmission. Then, we can
immediately state that;, = 0 for all : and derive the following optimality equation in (4.71)

by calculating the derivatives with respectitofor i € N:

Pon 0%y ) 41 (2)2]F of !
I R (RO (i am)
—AEEmin(e)l = 0. (4.71)

€
We can simplify (4.71) as

v =z [+ m(2)a] T [+ m(2)2] %, ke N (4.72)
i#k

wherev is defined as

AKEEqin(0) log, 2

e 1))
€(1+A)PonTB (g(G)(a—loge 9(9))° + 9(9)>

(4.73)

V=
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Note that, the formulation of in (4.72) is exactly the same as in (4.66). Thus, the optimal
power control for the case with the Markov fluid source foléofnrom (4.68) and algorithm
from Table 1.

In Fig. 4.16, we plot the energy efficiency vs. maximum averagival rate curves
for Markov fluid arrivals. We immediately observe that hayimore subchannels again
improves the performance in terms of energy efficiency. Alse maximum energy effi-
ciency is achieved at a larger throughput level whigRy or K (number of subchannels)
increases. Additionally, we notice that at high SNR levetgujvalently for large-;, , val-
ues), increased burstiness can offsetimprovements dhe todreased number of subchan-
nels, as evidenced by the crossover between the dashed(@urvehicha = 10,5 = 0
and hence the arrival rate is constant, &id= 1 ) and dot-dashed curve (for which
a=53=5K =4).

For Markov fluid sources, we analyze the energy efficiencytarmlighput tradeoff in
Fig. 4.17. From Fig. 4.16, we observe the steep loss in eredfigyency for more bursty
sources. This observation is further reflected in Fig. 4dtha throughput gain is lower

for more bursty sources when we have the same percentagerdiceafrom the energy
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efficiency. Overall, we also note that instead of workinghegt dbptimal energy efficiency

point, if we reduce the energy efficiency by ab@a%, we can obtain gains, reaching up

to almost twice the throughput levels.

Finally, in Fig. 4.18 we plot the energy efficiency curveshwirying number of sub-

channels and QoS constraints for the Markov fluid source.irAgaur previous observa-

tions are verified as increasing the number of subchanikiets decreasing the value of

QoS exponent enhances the energy efficiency.
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CHAPTER 5

SECURE TRANSMISSION OF
DELAY-SENSITIVE DATA OVER

WIRELESS FADING CHANNELS

5.1 Channel Model

As depicted in Figure 5.1, we consider a fading broadcastrotlan which a transmitter
sends common and confidential messages to two receiversalyEesare stored in buffers
before being transmitted. Specifically, confidential mgesantended for receiver 1 and
receiver 2 are kept in buffers labeled 1 and 2, respectiadyshown in Fig. 5.1, and

common messages are stored in buffer 0. Since delay-senddta traffic is considered,

__ i Bufferl
i -
— -
=

Buffer 2 o h1 ni
—_— g =
- = ha nz

Buffer 0 g
=it 5

Fig. 5.1: Two-receiver broadcast channel model.
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statistical queueing constraints are imposed in ordemtdt buffer overflows and delay
violations. We assume flat-fading between the transmittel receivers. The channel

input-output relation can be expressed as

wherez is the channel input ang; is the output at the™ receiver forj € {1,2}. Input
signal includes both confidential and common messagesagedransmitted signal energy
isE{|z|?} = £. Moreover, in (5.1)h; denotes the fading coefficient in the channel between
the transmitter and receivgr Finally, n; denotes the zero-mean, circularly-symmetric,
complex Gaussian background noise at recejveith varianceE{|n;|*} = N,. Hence,
theinput signal-to-noise ratigSNR) is

_ E{lePy €

SNR= —u 11 =
E{|n;]?}  No

—1,2. (5.2)

While fading coefficients can have arbitrary distributionigh finite energies, we assume
that block-fading is experienced. Hence, the realizatimhthe fading coefficients stay

fixed for a block of symbols and change independently for # hlock.

5.1.1 Instantaneous Secrecy Capacity of Confidential Messages

and Capacity of Common Message Transmissions

In this section, we describe the secrecy capacity in detad general case in which the
transmitter sends both common and confidential messémeso receivers, and, with that,
we identify the service rates of our queueing model. Confideand common messages
are sent simultaneously and it is assumed that common neeissdgcoded at the receiver

in the presence of the interference from the confidentiabagstransmission. Confidential

1Here, we consider standard information-theoretic argusmegarding the definition of messages and
how they are encoded and transmitted over fading chanreds(g., [67], [68]).
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messages of two receivers are sent necessarily using tinsged duplexing depending on
the channel strengths. More specifically, confidential mgsss only sent to the receiver
with the higher received SNR.

Secrecy capacity quantifies the maximum achievable rateg@fre communication.
For instance, it is well-known that the secrecy capacityasffidential message transmis-
sion with the signal-to-noise ratio denoted by SNR in thespnee of an eavesdropper is

given by
R(SNR) = [log,(1 + SNRz,,) — log,(1 4 SNRz,)|" . (5.3)

Note that the above formula of secrecy capacity is a geneaecvath z,,, and z, denoting
the magnitude squares of the fading coefficients of chamfidie intended user and eaves-
dropper, respectively. When the transmitter sends sepacatfidential messages to each
user as we have assumed and described in Section 5.1, thiended user can be regarded
as an eavesdropper.

Having two confidential messages and one common messagedotssnsmitter allo-
cates its power for the transmission of these messages. 3Wemaghat when confidential
message intended for receiviés being senty; portion of the power is used for confiden-
tial message transmission while— ;) portion of the power is used for common message
transmission. Additionally, we define the regions for tidieision duplexing of confiden-

tial messages as

I = {(21,22) eR* 2z > 22},

Fg = {(21,22) S R2+ 2 < 22} .

For instance, when we havey, z;) € I', only confidential message intended for receiver

1 is transmitted along with the common mes<agdes previously stated, the common mes-

2We note that the event af, = z, occurs with zero probability if the fading powets and z; have
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sage is decoded in the presence of interference from cotidlemessage transmissions.
Both users can decode the common message when it is sentatlaeyyaboth can decode,
implying that the common message is sent at the minimum hateltoth channels can
support. Hence, the instantaneous transmission rate gbthenon message becomes

(1 — 51)SNRzy
1+ 0;SNRzy

(1 — 52)SNRy

Ry (SNR) = 1 1
0(SNR) Og2< + 1 + 0,SNRz,

) 1{I';} + log, (1 + ) 1{T,}.

(5.4)

After subtracting the common message from the receivedskitire receiver with the better
channel can decode its confidential message without angfergace from the common
message. Therefore, we can express the instantaneoushisaios rate of confidential

messages intended for receivers 1 and 2, respectively, as

1+ 0;SNRz
1 + 02SNRz

where1{-} denotes the indicator functién

continuous distributions, as frequently assumed in thistitaal modeling of the wireless fading channel
in the literature. However, in the case of discrete fadirgjritiutions, this event is in general a non-zero
probability event. In such a case, the secrecy capacityd aad hence no confidential message transmission
can be performed. All the power can be allocated to the trésssom of the common message by setting
90 =0.

3The secrecy rate expressions in (5.5) and (5.6) are derived the generic expression in (5.3) For
instance, in (5.5)z; andz, correspond to:,, andz., respectively, and the signal-to-noise ratidiSNR.
Additionally, the indicator function essentially repratethe operatioft] ™, ensuring that the secrecy rate is
zeroifz; < zo.
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5.2 Throughput of Secure Transmissions with Random

Data Arrivals Under QoS Constraints

In this section, we investigate the throughput of the trassion of confidential and com-
mon messages, considering different random source typegluted in Section 2.2. In
order to highlight the impact of random arrivals, we alsoradd the case of a source with
a constant arrival rate. For each source type, we charaetdre maximunaveragear-
rival rate as the maximum throughput. Thus, we determinghtaaighput by deriving the
maximum average arrival rate in terms of SNR for both constate arrivals and the four
Markovian arrival models.

We note that our initial analysis considers perfect chasigd information (CSI) at
the transmitter. Hence, we assume that the transmitter &tlosvrealizations of;, andz,.
This is an accurate assumption, for instance, in a celldanario in which the base sta-
tion knows the channel conditions and the users are not imadidut still the confidential
messages are to be kept private from the unintended userdtivess the case of no CSI

subsequently in Section 5.4.

Constant-Rate Source

Throughput in the case of constant-rate arrival is giverheyeffective capacity. For each

message, the effective capacity is given by
Cri(SNR 0;) = —% log, E{e %#SNR for j = 0,1, 2. (5.7)

Note that fori = 1 and2, we have the maximum constant arrival rates of the confidenti
messages at the transmitter, which are intended for raselvand 2, respectively. For=
0, we have the maximum constant arrival rate of the common agesat the transmitter.

Note further that the QoS constraiftof different messages can in general be different.
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We also define the function $NR) as
g,(SNR) = E { e #HSNRIL _ ~0:Cr(SNRa:), (5.8)
Note that with this definition, we have

Cri(SNR 0;) = —% log, 9;(SNR). (5.9)

As it will be seen in subsequent subsections, maximum aeesagval rates for random

sources can also be concisely expressed using the fung{exRy.

Discrete Markov Source

In this case, we assume that (confidential and/or commongagesarrivals to the buffers
at the transmitter are according to a discrete-time Markwirtc In the case of ON-OFF
discrete Markov source, introducing effective bandwidtpression in (2.16) into (3.2),
and solving forr, we can obtain the maximum arrival ratg SNR, ¢) and then express the

maximum average arrival rate as a function of the effectagacityCr as

£20iCri(SNR ;) —pneeicEi(SNR%)
‘ 1_p11—p22 +p22€€icEi(SNR,€i)

Pon < 1 — p119;(sNR) )
=1 . 5.10
o (1—p11—p22) 97 (SNR) + 220, (SNR) (5.10)

fori =0, 1,2, where g(SNR) is defined in (A.59).
Note that the probability of the ON state is given Byy = 2_1];17”}]722 If we use the

assumptiop;; = 1 — s andpss, = s (and hencePoy = s), the expression for average

arrival rate can be simplified further as

. s eliCri(SNRO:) _ (1 _ ¢
Tavgi<SNR7 0;) = 9. log, ( S ( )) . (5.11)
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Fig. 5.2: Maximum average arrival rate of the confidentiaksagje of the first uset,,y,
VS. average signal-to-noise raB8Rwhen#; = 1 andéd; = 0.5.

It can be easily verified that,,,; is @ monotonic function of, i.e., ass (and hence ON-
state probabilityPon = s) increases, the maximum average arrival rate increasesed/e
this effect in Fig. 5.2 where we plot the relationship betwegaximum average arrival rate
of the confidential message of the first user vs. avesagecurves for different values of
and correlation coefficient. We consider a Rayleigh fading environment and assume that
the fading powers; andz, are exponentially distributed with unit means, iB{z;} =

cov(z1,22)

E{z} = 1, and correlation coefficient = . Numerical evaluation verifies

var(z1 )var(z1 )
that ass increases, maximum average arrival rate increases fongne andp. Hence,
as the source becomes less bursty, throughput improves, thks correlation between the
channels of the legitimate user and eavesdropper has awctimpshe throughput. Higher
correlation values lead to diminished secrecy capacitychvtesults in smaller throughput
values.

We have also performed buffer simulations to further veaty theoretical analysis.
Initially, we set the values of the QoS exponéniSNR, source state transition probabilities

p11 andpy, of the ON/OFF discrete Markov source, and determined thearmax average

arrival rate the system can support using the theoreticalaciterizations in this section.
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Fig. 5.3: Buffer overflow probability’r{@) > ¢} vs. buffer threshold for both confiden-
tial and common messages whign= 0.5,0, = 2,6y = 1,01 = 9o = 0.7, p11 = p2s = 0.8
and SNR =1.

We also calculated the corresponding maximum data ariataly in the ON state. Then,
we initiated the simulation by generating the random dataads according to the Markov
source model, and generating the Gaussian fading coetBdienthe service rates. In this
process, we have kept track of the buffer length oM&rruns. We have compared the
simulated buffer lengths with different thresholds to deti@e how frequently a threshold
is exceeded and identify the overflow probabilities. In E@, we plot the buffer overflow
probability (in logarithmic scale) vs. buffer threshaldWe obtain excellent results from
these simulations. Specifically, we determined the siredl&@oS exponent valuékin,
from the slopes of the buffer overflow probability curves e tfigur¢. The simulated
Osim Values were obtained @s0171,0.9433, 0.5018 when the corresponding theoretidal
values were, 1, 0.5, respectively. Hence, if we originally sét= 2 and design the system
accordingly, the buffer overflow probability decays with exponents,, = 2.0171,

matching the prediction very well.

“Note from (2.3) that the overflow probability is expected &have in logarithmic scale asg Pr{Q >
q} =~ —0q + log¢. Hence, the slope of the logarithmic overflow probability bsiffer threshold; curve is
proportional to—6.
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Fig. 5.4: Maximum average arrival rate of the confidentiaksagje of the second user
Tavg2 VS. average signal-to-noise raBaRwhend, = 1, p = 0.05 andd, = 0.5.

Markoo Fluid Source

Similarly as in the case of discrete Markov source, for the @FRF Markov fluid source,

incorporating (2.22) into (3.2), we determine the maximwarage arrival rate as

0,Cpi(sNR ;) + a + 8
0,Cpi(sNr 0;) +
~ Pona+ 3 —log, gi(SNR)

T 6, o —log, g, (SNR)

rzvgi(SNR 0;) = Pon Cri(SNR 6;)

log, 9;(SNR) (5.12)
fori =0, 1, 2. Note that the probability of ON state is given Bsy = o

In Fig. 5.4, we plot the maximum average arrival rate of thefickential message of the
second user as a function of averay® while considering different channels and Markov
fluid sources. Specifically, we assume different pairs ofsii@rce state transition rates
and g and different expected channel gai§z,} = . As in Fig. 5.2, we still assume
thatz; andz, are exponentially distributed, aritf -; } = 1. It is observed that increasing
« and decreasing simultaneously increase the ON-state probability, and reduce the
burstiness of the source, and as a result, throughput sese&urthermore, better channel

conditions for the legitimate user lead to improved thrqughdue to increase in secrecy
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capacity.

Discrete-Time Markov Modulated Poisson Source

In order to express the maximum average arrival rate in t&ids;, we again insert the

effective bandwidth expression in (2.30) into (3.2) anchabt

. Pon 1 — p110;(SNR)
(SNR 6,)— ) i , 5.13
ravg(SNR ) CE ((1—p11—p22)g?(SNR) +P220;(SNR) o

Continuous-Time Markoo Modulated Poisson Source

We find the following maximum average arrival ratg, by incorporating (2.26) into (3.2):

Pon a4+ (3 —log, g;(SNR)
(e =1) «a—log, g;(SNR)

P (SNR 6) = — log, g,(SNR.  (5.14)

5.3 [Energy Efficiency Of Secure Transmissions with Ran-
dom Data Arrivals Under QoS Constraints

In this section, we investigate the energy efficiency of thagmission of confidential and
common messages for various source types discussed phvidusing the throughput
formulas we have obtained, we analyze the energy efficiendydarive closed-form ex-

pressions of the minimum energy per bit and wideband slope.

5.3.1 Minimum Energy per Bit

The minimum energy per bit in (3.29) characterizes the mimmenergy needed to send
one bit reliably over the wireless fading channel underistal queueing constraints.

Lower minimum energy per bit levels indicate higher enerifjgiency. First, we formulate
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the minimum energy per bit for the confidential messages as

=0 Jim X r(l')SNR _ .* r(I) (5.15)
No mini  SNR—0 Tang‘(SNRv ‘92) Tavgi(o)

fori = 1, 2. Similarly for the common message, the minimum energy perdomes

By . [(1=8)Pr(Iy) + (1 - 6) Pr(I)] SNR
FOmin,O a SNllrQn—m T;vg)(SNRa 90)
(1 - 51) Pr(f‘l) + (1 - 52) PI‘(FQ)

. (5.16)

Taven(0)

Below, we initially characterize the minimum energy peffbitthe case of constant-rate
arrivals, and subsequently show that the same minimum gipengbit levels are achieved

when discrete-time Markov and Markov ON-OFF sources arsidened.

Proposition 5.3.1. When the data arrival rate is constant, the minimum energybpte
expressions for the confidential message transmissionsceiviers 1 and 2 under QoS

constraints are given, respectively, by

E, Pr(T'y) log, 2

— = ¢ 517
Nomin:  Er{z1 — 2} ( )
By _ Pr(I'y) log, 2 (5.18)

Nominz  Ery {22 — 21}’

and the minimum energy per bit for the common message trasemiunder QoS con-

straints is given by

E, - [(1 — (51) Pr(Fl) -+ (1 — 52) Pr(f‘2>] loge 2
ﬁOmin,O B (1 =061)Er{z2} + (1 — 09)Er,{z} (5.19)

wherePr(I'y) = Pr(z; < z3), Pr(I's) = Pr(z1 < z2), andd; is the fraction of the power

used for the transmission of the confidential message toveace MoreoverEr, denotes
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the expectation in regiofi; while Er, is similarly defined in the complement regibn

Proof: See Appendix A.12.
When z; and z, are independent and exponentially distributed viif;} = 1 and
E{z} = v, we havePr(I';) = ﬁ andPr(I';) = -7, and we can get closed-form

expressions for the minimum energy per bit formulationsodlews:

— =log. 2, — = — (5.20)
No min 1 Ny min,2 v
E 1
2o 0 e (5.21)
No min,0 8

Interestingly, for both ON-OFF discrete-time Markov andrktav fluid sources, mini-
mum energy per bit expressions are the same as those atiaithedpresence of constant-

rate sources.

Proposition 5.3.2. When data arrivals are modeled as ON-OFF discrete-time Maidkr
Markov fluid processes, the minimum energy per bit exprasdmr confidential and com-
mon message transmissions under QoS constraints remassithe as those for the con-

stant arrival rate model and hence are given(byl7) (5.18) and(5.19) respectively.

Proof: See Appendix A.13.

Heretofore, we have seen that the minimum bit energy exjoresslo not depend on
either the queueing constraints or the source randomnesse Bpecifically, minimum
bit energy of confidential/lcommon message transmissiansh& same regardless of the
value of the QoS exponeftand whether data arrives at a constant rate or according to
an ON-OFF Markov process. However, this is not the case wheeoomsider more bursty

Markov-modulated Poisson arrivals, as shown in the resldivia

Proposition 5.3.3. When the source arrivals are modeled as ON-OFF discrete-tm

continuous-time MMPPs, the minimum energy per bit expsasdior confidential and com-
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mon message transmissions under QoS constraints are gasgectively, by

E, (e’ — 1) Pr(I'y) log, 2

A : 5.22

NO min, 1 ‘91EF1{Z1 - 22} ( )

E, (e’ — 1) Pr(I'y) log, 2

A : 5.23

NO min,2 ‘92EF2 {22 - Zl} ( )
By (e®—1)[(1 —6,) Pr(T'y) + (1 — &) Pr(I'y)] log, 2 (5.24)
N(] min,0 60 [(1 — (51)E1—\1{Z2} —+ (1 — 52)EF2{21}] . .

Proof: See Appendix A.14.

For MMPP sources, minimum energy per bit now depends on ti&e@ponent through

e?—1 e?—1

the term=,—=. Since“~;~ > 1 for § > 0 and increases with increasifiga higher energy

per bit is required for MMPP sources (compared to constai&-and ON-OFF Markov
sources) and energy cost grows as the QoS constraints benoneestringent. Interest-
ingly, energy per bit expressions still do not depend on grezific parameters of the ran-
dom arrival model (such as transition probabilities/ratethe Markov chain and intensity
of the Poisson arrivals).

As also noted before, Proposition 5.3.2 shows that the mimnenergy per bit for
discrete-time Markov and Markov fluid sources are the saneralse constant-rate source.
The primary intuitive reasoning behind this result is thet minimum energy per bit is an
asymptotic performance metric achievedsa® — 0, and the impact of source burstiness
significantly diminishes at these asymptotically IswR levels for discrete-time Markov
and Markov fluid sources. Specifically, asirR diminishes, the fixed arrival rate (in the
ON-state of the Markov models) that can be supported by theless channel decreases
as well, resulting in less and less impact on buffer overflang delay violations.

On the other hand, if the arrival process is MMPP, the intgridithe Poisson process

is reduced with decreasirgNR. However, the arrival process is still a Poisson process but
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with a smaller intensity, meaning that there is still a ptabty, however small, for the
instantaneous arrival rate in the ON state to be large sime@rrival rate depends on the
realization of a Poisson distributed random variable. ldeMMPP source is more bursty
in the low-SNR regime than discrete-time Markov and Markov fluid sourcesl #is is
reflected in the larger minimum energy per bit values as showire results of Proposition

5.3.3.

5.3.2 Wideband Slope

Minimum energy per bil]‘%min is the ultimate performance limit of energy-efficient opera
tion. At the same time, it is an asymptotic performance roetchieved in the limit asSNR
vanishes. In this subsection, we complement%pr%analysis by characterizing the wide-
band slope of confidential and common message transmidsiatifferent source models.
Unlike the minimum energy per bit, wideband slope is digtioceach source and depends
on the source statistics. In this subsection, we also peavignerical results to demonstrate
the effectiveness of the linear approximation of the thigug in the lowsSNR regime in

terms of]’f,—g . and wideband slop§,, and to identify the impact of secrecy requirements,

mi

source randomness, QoS constraints, and channel cayretatienergy efficiency.

Constant-Rate Sources

Proposition 5.3.4.For constant-rate arrivals, the wideband slope expression common

and confidential message transmissions under QoS conisti@igiven by

Soi= 2 (E {fl(())}) _ (5.25)
: 106;2var<fi(0)> — E{fi(o)}

fori = 0,1,2 where we have definefl(SNR = R;(SNR log, 2 with R;(SNR being the

instantaneous rate of confidential or common message givéh.4)—(5.6), and the first



118

and second derivatives ¢f(SNR at SNR= 0 are given by

[1(0) = 61 (21 — 2) H{z 2 20},

F2(0) = 65 (20 — 21) 1{z1 < 22},

fo(0) = (1 = 81)21{z1 > 20} + (1 — 89) 21 1{z1 < 20},
F1(0) = =67 [} — 23] 1{z1 22},

f2(0) = =63 [ — 2] 1{z <z},

fb(O) = (1= >z — (1 —02)21{zn<z}. (5.26)

Proof: See Appendix A.15.

Above, Sy is the wideband slope for common message transmission Whilend
Sp,2 denote the wideband slope of confidential message transmss® receivers 1 and 2,
respectively.

For independent and exponentially distributedind z, with E{z;} = 1 andE{z,} =

v, the wideband slope expressions simplify to

2
So1= (5.27)
ez (1+27) +dy +2
2
Soa=— S (5.28)
s (142) + 442

If we further assume that, = d, = 4, then the wideband slope for common message

becomes

2

0o + 1-62 °

log, 2 (1-0)2

So0= (5.29)
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Discrete-Time Markov Sources

Next, we consider ON-OFF discrete-time Markov sources tvihsition probabilities de-

noted byp,; for i, j € {1, 2}.

Proposition 5.3.5. The wideband slope expressions for confidential and comnessage

transmissions under QoS constraint are given by

(= {50))
Soi= 2 (5.30)
nits (B{£:0)}) + epvar(£:0)) - B{ fi(0)}

for i = 0,1,2, where f;(0) and f;(0) are given in (5.26). Additionallyy previously is

defined |I'(39) asn = (1(1;1712)2()2({;1—1’_327222)2) ’

Proof: See Appendix A.16
Again, for independent and exponentially distributgdand z; with E{z;} = 1 and

E{z} = ~, the wideband slope expressions are given as

2
80,1: 011 0, ) (531)
log, 2 "—@(14‘2’7)"—4’}/4‘2
2
So2=— 6 P — (5.32)
10232 + log262 (1 + ;) + ; + 2

If we further assume that, = d, = 4, then the wideband slope for common message

becomes

. (5.33)

When compared with the corresponding wideband slope esipresin (5.27)—(5.29) for
the constant-rate source, we notice that wideband slomeulas above in (5.31)—(5.33)
for the discrete Markov source differ only due to the preseoicthe termloi—"?, which

reflects essentially the source randomness with the pagamethis additional term leads
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avg,1

E,/N, (dB)
Fig. 5.5: Maximum average arrival rate of first user’s conftitld message;,, vs. energy
per bit]’f,—g in dB whend; = 1, p = 0.05 ands; = 0.5.

to smaller wideband slopes, indicating the detrimentalaotf source randomness on
energy efficiency. Note also that when = 0 andp,; = 1, discrete Markov essentially
becomes a constant-rate source and we have).

In Fig. 5.5, the maximum average arrival rate of the confidémessage for the first
user vs. energy per bit is plotted. We consider an ON-OFFRelisdMarkov source with
pi1 = 1 — s andpy, = s (and hence’ony = s). We assumé = 1 andd; = 0.5. The
channel power gaing, andz, are exponentially distributed with{z;} = 1, E{z} = v
and correlation coefficient = 0.05. As predicted, the minimum energy per bit does
not depend on source burstiness or the second user chaatisiicd, i.e.,y. There is
a slight increase in the minimum energy per bit values a@uean the cases of secrecy
as compared to no secrecy. The main reason for this is thelabon in the channel
conditions of the two users. Without any correlation, theimum energy per bit becomes
equal to—1.59 dB. As a result of similar minimum energy per bit values, vindied slope
becomes a critical performance indicator in the low-SNRmeg We notice that wideband
slope diminishes when secrecy requirements are imposedlsmavhen source burstiness
increases with diminishing ON-state probabily = s. We also observe that, as the

second user (or equivalently eavesdropper) channel ¢onglimprove, i.e., as increases,
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Fig. 5.6: Maximum average arrival rate of common messgggvs. energy per bi% in
dB whené, = 1, p = 0.05 andd; = o, = 0.5.

we have smaller wideband slopes.

We illustrate the maximum average arrival rate of the commessage vs. energy per
bitin Fig. 5.6, assuming the parameter setting 1, p = 0.05 andd; = d, = 0.5. We again
verify that source characteristics do not play a role in thlei® of the minimum energy per
bit. Better channel conditions for the second user imprixeedverall energy efficiency
of the transmission of the common message by improving thenmim energy per bit.
We also notice that wideband slope is the same when we akechthnnel conditions.
However, source burstiness has a negative impact on thebandeslope, thus, on the

energy efficiency as well.

Markov Fluid Sources

In the following, we characterize the wideband slope in th&ecof ON-OFF Markov fluid

arrivals with transition rates and.

Proposition 5.3.6. The wideband slope expressions for confidential and comnessage
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transmissions under QoS constraint are given by

2 SE [io}) 52
(B{/:0)}) + esvar(/:0)) + B{ fi(0)}

C102;2
fori = 0, 1,2, wheref;(0) and f;(0) are defined in(5.26) Note further that is defined in

_ _ 28
(3.17)as( = et d)

Proof: See Appendix A.17.
Similarly as for the previous arrival models, we can simylife wideband expressions
for the confidential message transmissions to the followihgn we have independent and

exponentially distributed; andz, with E{z;} = 1 andE{z,} = v:

2

So1 = : (5.35)
s+ g (14+29) + 4y +2
2
So2=— : - ~—— (5.36)
10262 + log262 (1 + ;) + ; + 2

If we further assume that, = d, = 4, then the wideband slope for common message

becomes

. (5.37)

The common theme in the above expressions and the onespmmrd#sg to other source
types (i.e., expressions in (5.27)—(5.29) and (5.31)-3(%.18 that wideband slope expres-
sions depend on three critical factors: QoS expofgsurce burstiness parameteir(the
case of Markov fluid source angin the case discrete Markov source, which both become
zero when the arrival rate is constant), and channel statigtrough®{z,} = ~. For in-
stance, wideband slopes diminish¥aacreases and more stringent buffer/delay constraints

are imposed.
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Fig. 5.7: Maximum average arrival rate of first user’s conftitld message;,, vs. energy
per bit]’f,—g whend, =1,y =1 andd;, = 0.5.

We depict, in Fig. 5.7, the maximum average arrival rate efdbnfidential message
for the first user vs. energy per bit for Markov fluid sourcethvdifferent values ofr and
B. We assumé = 1, v = 1 andé; = 0.5. In the case of no secrecy, the minimum energy
per bit is equal to-1.59 dB and it remains unchanged under different source chaiscte
tics. With secrecy, source burstiness again does not impaaninimum energy per bit.
However, as channel correlation increases, the energyeeitic degrades due to higher
minimum energy per bit. Additionally, the source charasters have significant impact
on the wideband slope e.g., wideband slope decreases ag& $mmomes more bursty (i.e.,

as we change the state transition rates from 9 and5 = 1toa = 1 andg = 9).

MMPP Sources

Next, we address ON-OFF MMPP sources.

Proposition 5.3.7.When the source is modeled as discrete-time MMPP the widietlape

expressions for confidential and common message traneméssnder QoS constraint are
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Fig. 5.8: Maximum average arrival rate of common messgggvs. energy per bi% in
dB whenp = 0.8,v =1, p;; = 0.1 andp,, = 0.9.

given by

. o (E{i0}) | 539
0 (E{f;(o)}) +loii62var<fi(0)) + E{ﬁ(O)}

i
nlogCZ

fori = 0,1,2 wheref;(0) and f;(0) are defined irn(5.26)and1 is defined in(3.9).
When the source is modeled as continuous-time MMPP the amndietlope expressions

for confidential and common message transmissions undecQudraint are given by

So.i= e (E {fz'(0>}) (5.39)

Gt (B{£10)}) F egvar(£0)) + E{ Fi(0)}

fori =0, 1,2 where( is defined in3.17)

We omit the proof as it is rather straightforward due to tHatrenship between the
throughputs of the Markov and MMPP sources.

In Fig. 5.8, we illustrate the maximum average arrival rdt¢he common message
vs. energy per bit when the source is ON-OFF discrete-timeRRMMNe sep = 0.8,

v =1, p;; = 0.1 andpy, = 0.9, and study the impact of different values &f and ;.
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For the MMPP source, the minimum energy per bit depends oQt&exponent, and it
decreases dk diminishes, indicating less stringent queueing constsairower allocation
has no impact on the minimum energy per bit. However, witheypmwer allocated to the

common message, the wideband slope becomes higher.

5.4 Throughput and Energy Efficiency with no Chan-
nel Knowledge at the Transmitter

In this section, we depart from the perfect transmitter GSuanption of the previous sec-
tions and consider a scenario in which the transmitter hasSlo Specifically, we assume
that the transmitter does not know the realizations of tlamokl fading coefficients, which
is relevant in cases in which the eavesdropper is passiveahdous. This also represents
a worst-case scenario due to the fact that even the legéiom@nnel is not known. Treating
the eavesdropper as malicious, we address a special cdse mfviously treated system
model. In particular, we do not consider common messagsrasion and assume that
the transmitter just intends to send confidential messagexeiver 1 while keeping them
private from receiver 2 (which is regarded as the eaves@mpp

Not knowing the realizations of the channel fading coeffitsé; andh,, the transmit-
ter sends the data at the fixed rate\dfits/s/Hz. As before, instantaneous secrecy capac-
ity R(SNR) = [log,(1 + SNRz;) — log,(1 4+ YSNRz,)] " quantifies the maximum achievable
rates of secure communication where= |h;|2. Hence, if\ < R(SNR), then reliable
and secure communication is attained and therefore then#ted message is decoded
correctly while eavesdropper is being kept ignorant of tlessage. If, on the other hand,
A > R(SNR), secrecy outage occurs. Under these assumptions, thessgrihk can be
modeled as a two-state discrete-time Markov chain. Spetiifithe channel is assumed to

be in the ON state ik < R(SNR), while the channel is in the OFF state when- R(SNR).
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The steady-state probability for the ON state can be eabiigined as

22 —1
P{I'}= P{R(SNR) >\}=P {21 > 2 yzy + SR } (5.40)

/ / Zl, 22)dz1dz2 (541)
22

722"1'—8—

where we defing’ = {(z1, 2z2) € RT : A < R(SNR)}.

5.4.1 Effective Capacity with no Channel Knowledge at the Trans-

mitter

In [9, Chap. 7, Example 7.2.7], it is shown for Markov modathprocesses that

A0 1

A0 _ 2 tow B{o(6(0)M)). (5.42)
Above,M is the transition matrix of the underlying Markov processj a(¢) is a diagonal
matrix whose components are the moment generating fursctbnhe processes in the
Markov states. We assume that the fading coeffici¢nt$ change independently from
one block to another. Under this assumption, the effectiygacity can be obtained as

Cr(SNR 0) = AT = —% log, [1-P{T}(1—e "] (5.43)

whereP{I'} is the channel ON-state probability given in (5.41).

5.4.2 Energy Efficiency with Discrete Markov Sources

First, we consider ON-OFF discrete Markov sources. We asarae that channel fading
powersz; andz, are independent exponentially distributed with means 1-gnespec-
tively. In the following result, we characterize the comsid energy efficiency metrics

under these assumptions.
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Proposition 5.4.1. The minimum energy per bit and wideband slope achieved wehi
rate secure transmissions in the presence of an eavesdrofpeON-OFF discrete Markov

data arrivals and statistical QoS constraints are given by

=e(y+1)log,2, (5.44)

1

0(n—1) Oe(v+1) e(y+1)”?
212g62 + 21(;yg62 +ey+ =3

NO min

So= (5.45)

respectively, withy defined in(3.9).

Proof: See Appendix A.18.

As in the perfect CSI case, the minimum energy per bit in (bddés not depend on the
QoS exponent and source statistics while the wideband slope in (5.45¢dép on both.
Specifically, wideband slope decreases with stricter Qm8dtions (i.e., with increasing
) and increased source burstiness (i.e., with langer

It is also interesting to compare the minimum energy pertptessions achieved with
perfect CSI and no CSI. Recall from (5.20) that with perfe@,Ghe minimum energy
per bit for the confidential message transmission to rec@iassuming exponentially dis-

tributed fading powers witfi{z;} = 1 andE{z,} = v is
—  =log,2. (5.46)

Comparing this with (5.44), we immediately identify the @aohal energy cost per bit of
not having channel knowledge at the transmittejeés + 1) — 1] log, 2. Hence, the char-
acterization in Proposition 5.4.1 nicely quantifies thergneost of not having transmitter
CSl in secure wireless transmissions.

Following the same methodology as described in the disonsHi Fig. 5.3, we have
again performed simulations in the case of no transmittdr @S~ig. 5.9, we plot the

buffer overflow probability vs. buffer threshold We again have very good agreement
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Fig. 5.9: Buffer overflow probabilityr{Q > ¢} vs. buffer thresholg for different values
of 6. P11 = P22 = 0.8, SNR =0.05

with theoretical predictions. In particular, the simuthi;, values were obtained as
1.9306, 1.0657,0.5109 when the corresponding theoretidavalues were2, 1, 0.5, respec-
tively.

As also noted above, Proposition 5.4.1 shows that while timenmam energy per bit
does not depend on the source statistics and QoS expéntetwideband slope depends
on both and decreases as burstiness parametereases. We see these clearly in Fig. 5.10,
where we plot the maximum average arrival rate vs. energ\bjppdor discrete Markov
sources with varying statistics. As predicted, the minimemargy per bit stays the same
at 5.76 dB, which is more than 7 dB larger than the minimum energy peofo—1.59
dB achieved in the case of perfect CSI. We also observe thatsavith smallep,; and
greatern,, (while keepingp; + po2 = 1) has a smallen value and correspondingly larger

wideband slope. Hence, lower source burstiness benefientrgy efficiency.

5.4.3 Energy Efficiency with Markov Fluid Sources

In this section, we consider ON-OFF Markov fluid sources amlarly as in the previous

section identify the energy efficiency metrics.
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Fig. 5.10: Maximum average arrival ratg,, vs. energy per bit% with various source

statistics wherd = 0.5.

Proposition 5.4.2. The minimum energy per bit and wideband slope achieved wehi

rate secure transmissions in the presence of an eavesdrepiireON-OFF Markov fluid

data arrivals and statistical QoS constraints are given by

So=
0(¢—1) Oe(v+1) e(y+1)”?
2oz, 2 T 21<;Yg62 +ey+ =5

respectively, wherg is defined in(3.17)

Proof: See Appendix A.19.

(5.47)

(5.48)
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CHAPTER 6

ENERGY EFFICIENCY OF FIXED-RATE
TRANSMISSIONS WITH M ARKOV
ARRIVALS UNDER QUEUEING

CONSTRAINTS

6.1 Channel Model and Fixed-Rate Transmissions

We consider a flat-fading channel between the transmitéreceiver. The channel input-

output relation can be expressed as
y(t) = h(t)x(t) 4 n(t) (6.1)

wherez(t) andy(t) are the complex-valued (i.e., low-pass equivalent) inpdt@utput sig-
nals, respectively, and(¢) denotes the zero-mean, circularly-symmetric, complexssau
sian noise. The signal-to-noise ratio is defined®R = %, where P denotes the power

of the input signal,N,/2 is the power spectral density of the noise dnds the channel
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bandwidth. Above in (6.1),(¢) denotes the multiplicative fading component representing
the attenuation and phase shift experienced in the chaiWvelconsider a Rayleigh fad-
ing channel and assume thait) is a zero-mean complex Gaussian process. Therefore,
z(t) = |h(t)]* has an exponential distribution.

Not knowing the channel conditions, the transmitter sehdsata at the fixed rate of
R bits/s/Hz. If the wireless channel changes slowly and héitestays almost a constant
over a coding block, the instantaneous channel capacityedaiding Gaussian channel can

be formulated in bits/sec/Hz as

C(t) = log, (1 + NfBz(t)> = log, (1 + SNRz(?)) . (6.2)

Then, we assume that ® < C(t), reliable communication is attained and hence the
transmitted message is decoded correctly. If, on the ottwed R > C'(¢), outage occurs
and retransmission is needed. Under these assumptionsohlegying the approach in

[27], model the wireless link as a two-state continuousetMarkov chain. The channel is

assumed to be in the ON statelif< C(t) or equivalentlyz(¢) > ¢, where( = QSR,'\TIQ. The
channel is in the OFF state whe(t) < (. We denote transition rates from ON to OFF

state as\ and from OFF to ON state as Now, the transition rate matrix can be expressed

- A
as Q =

I
These transition rates need to be consistent with the piepesf the channel. The
stationary probabilities are easily obtained@g for the ON state and aﬁi—u for the OFF

state. Without loss of generality, we assume th{a} has unit variance. Then, we can write

o A
r{z = e Fdz=eC= —— )
Pr{=(t) > ¢} /C a pea 6.3)
Pr{z(t) §C}:/046_Zdz:1—6_<:%’u. (6.4)

Hence, we have. = ke ¢ andu = k(1 — e~%) wherex = \ + u can be seen as the
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exponential decay rate of the memory of the underlying Rglglehannel as discussed in

[27] and can be determined from the channel statistics.

6.2 Energy Efficiency of Fixed-Rate Transmission of ON-

OFF Markov Sources

6.2.1 Markov Fluid Sources

For the two-state Markov fluid source, the average arrival isa

o

a+p

r (6.5)

Tavg = Ponr =

wherePony= «/(a+ 3) is obtained from the equations in (2.20) and the generatigixn
in (2.21). In the Markov fluid model, maximum arrival rate tlean be supported by fixed-
rate transmissions in the presence of buffer constraintsbeaobtained by solving (3.2)
and the maximunaveragearrival rater;,(SNR ¢) can be determined from (6.5). In the
following result, we characterize this maximum averag&alkrate in the low-SNR regime

and find the minimum energy per bit requirement and the widelstope.

Theorem 6.2.1. Assume that the source arrivals and fixed-rate transmissmrer the

Rayleigh-fading channel are both modeled as ON-OFF contisttime Markov processes.
The decay rate of the memory of the Rayleigh channel is déibgte. Then, the minimum
energy per bit and wideband slope expressions as a funcfioéheochannel and source

parameters and the QoS exponérare given, respectively, by

K,
NO min

Sy = _ (6.7)

=elog,2 =2.7512dB, and (6.6)
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Proof: We first consider the condition in (3.2) and express it for ké&rfluid transmis-

sion and source models as

Or—(a+B)++/(Or—(a+B))2+4abr  OR+(A+p)—/ (OR+(A+1))2—4N0R
20 = 20 . (68)

Note that the equality in (6.8) enables us to determine th@armam arrival rate;*, in the
Markov fluid source model and the corresponding optimal fixadsmission raté* for
the given channel parameters (e.g., the transition rate®d ;) and the imposed queueing
constraints specified by the QoS expongntliote further that as seen in (3.29) and (3.31),
we have to determine the first and second derivatives wifith respect tasNRat SNR = 0

in order to identify the minimum energy per bit and widebataps. In (6.8), we have
dependence oaNRthrough\ andy. It is important to also note that optimum arrival and

transmission rates® and R* in general depend asNR as well.

Initially, we consider an arbitrary fixed-rate transmissstrategyR? (SNR) for any given
SNR. After multiplying both sides of (6.8) witRf and taking the derivative with respect
to SNR, we obtain the equation in (6.9), given at the top of the nextep where we have
definedg(SNR) — ¢~ SR

(0r(SNR)— (a + 3))607(SNR) + 2207 (SNR)
V(Or(SNR) = (a + )% + 4afr(SNR)
BI(SNR) + (OR(SNR) +x)0R(SNR) — 2kg(SNR)AR(SNR) — 253(SNR)AR(SNR)
V/(OR(SNR) + x)2 — 4xg(SNR)OR(SNR)

07(SNR) +

(6.9)

Next, we letSNR — 0. Noting that the arrival rate(0) = 0 and transmission ratg(0) = 0
atsNR= 0 and we havey(0) = 2 the equality in (6.9) simplifies to
[0

Faug(0) = 7(0)— 5= R(0)27 7O, (6.10)

Assume thaf?(SNR) has the following second-order expansiosiaR = 0:

R(SNR) = aSNR+ bSNR + 0(SNR) (6.11)



134

for some constantsandb. Then, plugging the result in (6.10) into the formula of mmoim

energy per bit, we immediately obtain

Ey, 2¢
Nowr (6.12)
which characterizes the minimum energy per bit for a givangmission rate witR(O) =
a. The smallest value o%min can be obtained by optimizing over the choice:ofit can
be easily seen that = 1/ log, 2 is the optimized value which we use in (6.12) in order
to obtain the minimum energy per bit expression given in)(6 As another equivalent
approach, note that this optimal = 1/ log, 2 indeed maximizegz(0)2~2© = g2 =
3¢~ Since maximizing'(SNR ¢, R) = 7(0)SNR+ o(SNR) in the low-SNRregime up to first
order is equivalent to maximizing0), we readily conclude thak*(0) = a* = 1/log, 2.
Hence, from (6.10), we hawig,,(0) = a* 27", Plugging this?;,,(0) into (3.29), we again
obtain the desired result in (6.6).

In order to determine the wideband slope, we first take thergkderivative of both
sides of (6.8) with respect &NRand evaluate them atNrR = 0. With further simplification
we can easily derive the second derivative of the maximumeaeearrival rate with respect

to SNRatSNR= 0 as in (6.13).

Fun(0) =0(1(0)? | 2 (2720 ) 2_po]

+ 97RO [21-3(0) (1 — R(0)log, 2) — (R(0))*(log, 2)2] . (6.13)

When we use the optimadt*(0) = a* = 1/log, 2 value, we notice that

avg

(0) does not
depend o = R(0)/2.
Finally, inserting (6.10) and (6.13) into (3.31) and usirig= 1/ log, 2, we obtain the

wideband slope expression in (6.7). [ |

Remark 11. Note that the minimum energy per bit in (6.6) does not depand®QoS ex-
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ponent and hence does not get affected by the presence of the buififgraints. However,
when compared with the ultimate limit %min = log, 2 = —1.59 dB achieved when the
transmission rate is given by the Shannon capacity, we ethiat fixed-rate transmissions
incur a certain cost and the minimum energy per bit has sicguifily increased tQ.7512

dB.

Remark 12. The wideband slope expression in (6.7) depends on the Qo8exfi, chan-
nel memory:, and the Markov source characteristics through the traositatesa and .

In particular, we see that a& increases (i.e., more strict buffer constraints are imub)se
or x decreases meaning that channel memory decays more slosvhyave smaller wide-
band slopes, resulting in smaller average arrival ratestet same energy per bit level or
equivalently higher energy per bit to support the same atnate. Hence, stricter queue-
ing constraints and/or more correlated channel adversdfgc the energy efficiency in
the lowsNRregime. Furthermore, increasing source burstiness, fetance by decreasing
« and increasings while keepingy +  constant, also lowers the wideband slope and
degrades the energy efficiency. Note that smallevith « + 5 constant means that the
stationary distribution of the ON staté,, is smaller. Hence, data arrivals occur in less

frequent bursts.

Remark 13. It is interesting to note that in the absence of buffer caxists, i.e., wherd =

0, wideband slope expression becorigs- 2/e = 0.7358. Hence, we have no dependence
on channel memory and source characteristics. We alsoenthiat the wideband slope is
smaller compared t&, = 1 achieved in Rayleigh fading channels when Shannon capacity
is considered [57]. Hence, the cost of fixed-rate transroissis reflected in the wideband

slope as well.

In Figure 6.1, we plot the maximum average arrival rgtgas a function of the energy
per bit% whenf = 1, 10. For givend, different curves are obtained for different values of

k, o, andg while o + S is fixed. Note that the special case in whjg¢h= 0 corresponds to
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Fig. 6.1: Maximum average arrival ratg,, vs. energy per bi% whenf = 1, 10.

constant arrival rate. Confirming our discussions abovepbgerve that, regardless of the
buffer constraints and source characteristics, all cuaipgsoach the same minimum energy
per bit level of2.7512 dB. However, smallerx and hence more slowly decaying channel
memory, lowery and largers and hence more bursty source, and lafg@nd hence stricter
buffer constraints, all lower the wideband slope and heeselt in degradations in the

energy efficiency.

6.2.2 Discrete-Time Markov Sources

Finally, we note that we provide above a general frameworkeftergy-efficiency anal-
ysis in the low power regime with time-varying sources. White primarily apply this
framework to Markov fluid sources, other source models caar@yzed by following

a similar approach. For instance, for a discrete-time Mai®dI-OFF source for which

. . . pin p . e
the state transition probability matrix i$ = o , the effective bandwidth is given
P21 P22
er? er?)2— —1)er? . .
by a(f,r) = glogeelﬁp” +\/(p“+p222 D~ Alon tp2—1) ) . Using the techniques of the

proof of Theorem 6.2.1, we readily have the following chégaeation for the discrete-time

Markov source model with the same transmission and chassahaptions.



137

Theorem 6.2.2. Assume now that the source arrival follows the discretet@N-OFF
model described above. Then, the minimum energy per bit ateband slope expressions
as a function of the channel and source parameters and thee@p8nent) are given,

respectively, by

K,
NO min

So =

= elog,2 =2.7512 dB, and

1
0 e—1 (co—1)
log, 2 [T + } +

N

where we have defined = w(%f and

p3+2(1—p11) _ [p22(p11+p22)—2(p11 +p22—1)]

w= 2(2—p11—p22) 2(2—p11—p22)°3

Based on Theorem 6.2.2, similar conclusions as in the Maflka source model can

immediately be drawn for the discrete-time Markov source/els.
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CHAPTER 7

ANALYSIS OF MULTIUSER CHANNELS
WITH MARKOV ARRRIVALS UNDER

QOS CONSTRAINTS

7.1 ThroughputRegions of Multiple-Access Fading Chan-

nels with Markov Arrivals and QoS Constraints

7.1.1 Channel Model

We consider a multiple-access fading channel in whi¢husers transmit to a common
receiver. We assume that each user experiences Markov miatdsa Randomly arriving
data is initially buffered at each user before transmiseiear the multiple-access channel.
For each random source traffic, certain statistical QoStcainss are imposed at each user
in order to limit the buffer violation probability.

In the considered multiple-access channel, each link expegs flat-fading and the

channel input-output relation can be expressed as
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M
y=> hxi+n (7.1)
i=1

where z; is the channel input of thé" user andy is the output at the receiver. Av-
erage transmitted signal energy of tieuser isE{|z;|?} = &. Moreover,n denotes
the zero-mean, circularly-symmetric, complex Gaussiarkdpaund noise at the receiver

with varianceE{|n|?} = N,. Hence, the signal-to-noise ratio (SNR) of tHeuser is

SNR; = I]EE{{"I;";}} = ]f,—o fori =1,..., M. Finally, in (7.1),h; denotes the fading coefficient in
the channel between the ugeaind the receiver. While fading coefficients can have arbi-
trary distributions with finite energies, we assume thatklfading is experienced. Hence,
the realizations of the fading coefficients stay fixed for ackl of symbols and change

independently for the next block.

7.1.2 MAC Throughput Region

In this section, we initially describe our throughput metais the maximum average ar-
rival rate that can be supported in a setting in which arsivaale modeled as ON-OFF
Markov processes, service rates are given by the instamianghannel capacities, and
buffer overflow probabilities are limited as described irt®m: 2.1. In particular, we for-
mulate the maximum average arrival rates by using both tafeebandwidth and effective
capacity formulas. We subsequently consider three diftesgategies for communication
in multiple-access fading channels, namely time-divisiotihh power control, superposi-
tion coding with fixed decoding order, and superpositionimgdvith variable decoding
order. Each scheme leads to different service rates ateliffeisers and results in different

throughput regions.

TDMA

Time division is a simple strategy in which the users sent gignals in non-overlapping

intervals. Hence, interference is avoided in this caseattdst of reduced transmission
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rates. Usei transmitsr; fraction of the time with energy; /7;. Therefore, instantaneous

service rates in bits/channel use are

SNR; 2;

R;(SNR)) = 7; log, (1 + ) fori=1,... M (7.2)

7

where agair; = |h;|*. With these service rates, the effective capacity expoessdf the

users become

1 _%Ti g SNR;z;
Cri(SNR)) = ~7 log, E {e o g (1455 >} : (7.3)

(2

Superposition Coding with Fixed Decoding Order (SC-FDO)

In this strategy, transmitters simultaneously send the dad the receiver decodes the
received sum-signal in a fixed-order denotedrpy(for £ = 1, ..., M!) during 7 fraction

of the time. Note that signals adf/ users can be decoded ! different orders. Note
also that the time fractiongr, } satisfyr, > 0 andz,i”:!1 7. = 1. The throughput region
is characterized by varying the values{ef.}. In 7, fraction of the time, instantaneous

service rate of userin bits/channel use is given by

SNR; Z;
ka(i) = log2 1+ 1 — |- (7.4)

Note from the above rate expression that ysesith 7 (j) > m(i) is decoded later than
useri; when decoding order;, is employed and hence usesees usej’s signal as interfer-
ence. Through successive interference cancelation, gimalsi of the previously-decoded

users do not interfere. Accordingly, the effective capaexpression is given by

1 !
Cri(SNR) = 7 log, E {e—ei Z%:WRWD} , (7.5)

)
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Superposition Coding with Variable Decoding Order (SC-VDO)

In this method, users again transmit simultaneously. Hewelifferently from the previous
scheme in which the decoding is fixed in each fraction of time now consider varying
the decoding order depending on the channel states or meodisplly channel fading
magnitude-squares= [z, ..., 2] € RY. Assume that the space of fading pow&rg is
partitioned into)M! regions denoted byT', }2, . If z € T'y, the decoding order,, is used
at the receiver. For a given partition, the effective calyagkpression of theé™ user can

now be expressed as

1 !
Cri(SNR) = —-log, E {e—"i Zit Rwl{zefk}} (7.6)

wherel{-} is the indicator function, an&., ;) is given in (7.4). Since determining the op-
timal partition of the fading state space is in general adliffitask, we consider suboptimal
strategies in order to demonstrate the possible improvenoéadopting variable decoding

order. In particular, one strategy is

M) oA oo (7.7)
SNRy(1)2n(1) ~ SNRy2)2x2) ~ SNRyar)Zx(nr)

whose performance was shown in [60] to be close to that of piienal one, which max-
imizes the weighted sum-throughput in the special case ofusers and constant arrival

rates.

7.1.3 Numerical Results

While the analysis above is general, we in this section ple@aumerical results considering
the case of two users, i.el/ = 2, and assuming a symmetric setting in whghr, =
SNR, = SNRandf; = 6, = 6. The channel fading magnitude-squargsand z, are

exponentially distributed with arbitrary correlatigpn Also, for discrete Markov sources,
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Fig. 7.1: Throughput regions for discrete Markov sourcegemh = 1, SNR = 10 and
p=0.

we setp;; = 1 — g andps, = ¢. In all figures, we plot the regions of average arrival rates
(or equivalently the throughput regions) achieved by TDNE-FDO and SC-VDO.

In Figure 7.1, we plot the throughput regions j@s = ¢ = 0.5 andq = 0.3 when
the arrivals are modeled as a discrete Markov process andve®h= 1, SNR = 10, and
p = 0. For these parameter values, we notice that the SC-VDO tisengtrategy in (7.7)
provides the largest throughput region, demonstratingbireefits of variable-decoding
order. Interestingly, sum-rate achieved by TDMA exceeds ¢fi SC-FDO. In this figure,
we also observe the impact of burstiness on rate regions.n\Whe= ¢, which is the
probability for ON state, has a lower value, data arrivalgieén rate- occur less frequently
and hence the source is more bursty. It is clearly seen tkhe¢dsed source burstiness
reduces the throughput regions of all strategies in a sirfakhion.

In Figs. 7.2 and 7.3, we plot the throughput regions agaisicening discrete Markov
arrivals. In Fig. 7.2, we observe that increasthifyjom 0.1 to 1 (or equivalently imposing
more stringent QoS constraints) reduces the throughpignegWe also notice that while
TDMA results in the smallest throughput region for lesscst@oS constraints (i.e., when
0 = 0.1), TDMA sum rate exceeds that of SC-FDO whkis increased td. Hence, buffer

constraints have significant impact on the performanceftdrént communication strate-
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Fig. 7.2: Throughput regions for discrete Markov sourcegmh= 0.5, SNR = 10 and
p=0.

gies. In Fig. 7.3, we see that increasing SNR expectedlyongs the throughput regions.
Surprisingly, TDMA sum-rate becomes the largest at SNIR, which is in stark contrast
to the results in the absence of buffer constraints in whibiMA is always suboptimal
with respect to superposition transmissions.

In Fig. 7.4, we consider Markov fluid arrivals. Fading coaten isp = 0.1. We
demonstrate the effect of different values of the transitetescy and 5 on the throughput
region. Havingy small and3 large (witha+ /3 fixed) results in a smaller probability for the
ON state, representing a more bursty source. Again, as in7Flg we note that increased

burstiness hurts the throughput.

7.2 Power Control in Fading Broadcast Channels with
Random Arrivals and QoS Constraints

7.2.1 Channel Model

We consider a fading broadcast channel model with one contraosmitter and\/ re-

ceivers or users as depicted in Figure 7.5. The transmipereences)/ data flows gener-
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Fig. 7.3: Throughput regions for discrete Markov sourcegmipn = 0.5, # = 0.7 and
p=0.

ated by Markovian sources. Each flow is intended for a diffeuser and is buffered before
transmission in a separate queue. In the fading broadcasheh the channel input-output

relation between the transmitter and tHeuser can be expressed as
yi:hix+ni fori = ]_,...,M (78)

wherez is the transmitted signal anglis the received signal at th# receiver. The trans-

mitter operates under an average power constraiit.oHence, the average transmitted

p

signal energy i€{|z[*} = £

= & where B denotes the system bandwidth and it is as-
sumed that the symbol rate i complex symbols/s. Moreovet, denotes the zero-mean,
circularly-symmetric, complex Gaussian background natsbe;™ receiver with variance
E{|n;|*} = Ny Hence, the signal-to-noise ratio (SNR), defined with respethe noise

level of the first receiver, is

_E{jz?} P &

SNR = = = —
E{|7’L|2} BNQl NQ

(7.9)

where weNy; = Nj.
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Fig. 7.4: Throughput regions for Markov fluid sources whea 1, SNR= 10 andp = 0.1.
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Fig. 7.5: Fading broadcast channel with random arrivals.

Furthermore, in (7.8);; denotes the fading coefficient in the channel between the-tra
mitter and receiver. While fading coefficients can have arbitrary distribusomith finite
energies, we assume that block-fading is experienced. d{1é&me realizations of the fading
coefficients stay fixed for a block of symbols and change ieddpntly for the next block.

Finally, we assume that power control is employed at thestratter. Hence, the in-
stantaneous power transmitted to each user is a functioneoturrent fading state =
(21,...,2u) Wherez; = |h;|* denotes the fading power. We can express the instantaneous

transmit power to user as P;(z) and denote the instantaneous transmitted SNR level to
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user: as

pi(z) = pa (7.10)

BNo; "

Now, the average power constraint at the transmitter besome

M
E {sz} — SNR (7.11)
i=1

Noi
wherey; = ok

7.2.2 Throughput Regions of Fading Broadcast Channels with Power

Control

In this section, we first identify the transmission ratesaigiiig broadcast channels achieved
with superposition coding and successive interferenceatktion, and determine the through-
put regions by formulating the maximum average arrivalgét@t can be supported in the
broadcast channel. Subsequently, we address the optiwal montrol for the two-user
case, describe the Lagrangian optimality conditions, amdige an optimization algo-

rithm.

Transmission Rates with Superposition Coding and Effective Capacity

In order to find the throughput region, we first determine tfiective capacities of the
transmissions to users in the broadcast channel. The tas&ous service rate to user
achieved by superposition coding at the transmitter andessive interference cancelation

at the receiver is given by [94] [93]

11i(2) 2
R; =log, |1+ , | (7.12)
i ( 1+ o0 (222 1 {2 > m}>
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wherel{-} is the indicator function. Now, using (2.8) we can expressfiective capacity

of the transmission to th&' user as
1
Cp(0;) = —5 log. E {e Ml i=1,., M. (7.13)

Maximum Average Arrival Rates under QoS Constraints

In this section, we formulate the maximum average arrivedgaf Markovian sources
that can be supported by transmissions over the fading basadhannel under statistical
gueueing constraints. Specifically, we consider two-dWdekov arrival models in which
the arrival rates are and0 in the ON and OFF states, respectively. Stationary digiobu

of ON state is denoted d%y. Therefore, the average arrival rate of usersimply
Tavg = PoNTi- (7.14)

Next, we seek to determine the maximum average arrivaligethat can be supported
while satisfying the statistical QoS limitations given mmetform in (2.1). As shown in
[8, Theorem 2.1], if the effective bandwidth of the arrivabpess is equal to the effective

capacity of the service process, i.e.,

then, (2.1) is satisfied, i.e., buffer violation probalyilitecays exponentially fast with rate
controlled by the QoS exponefit Hence, the solution of (7.15) provides the maximum ar-
rival rater;(6;) of the data flow intended for usgrwhich can be supported in the broadcast

channel for the given QoS exponéht Then, the maximum average arrival rate is

r

avg (05) = 17(0:) Poy. (7.16)
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We adopt this maximum arrival rate as our throughput metricesaverage arrival rate is
equal to the average departure rate when the queue is irystedd [8]. We first show that
the throughput is concave in eagh In [18, Lemma 1], it is stated that effective capacity
is a concave function g wherep = {p1, o, . . ., as } represents the vector composed of
the power allocation policies. Reference [11] shows thigicéif’e bandwidth of the source
is strictly monotonically increasing and is also convex anirge arrival rates. Therefore,
the inverse function of the effective bandwidth™ (C(#)) is a nondecreasing concave
function of the effective capacity, which is concaveun Using the concavity properties
of the composition of functions [31], we realize that the imaxm average arrival rate
rag(0) = Pona* ™' (Cg(#)) is concave.

With this concavity property, we present the optimal powartool problem as the fol-
lowing convex optimization problem in which the weightedrsaf average arrival rates is
maximized over all power allocation policigssatisfying the average sum power constraint

at the transmitter:

M
max Y Airag (0:), (7.17)
=1
M
subject toE {Z%“i} = SNR (7.18)
=1

where{);} are the weights satisfying’ ", \; = 1.

Optimal Power Control in the Two-User Case

For the broadcast channel with two users, there are tworéiffedecoding orders. Ac-
cording to the rate expression in (7.12), the user with thtéeebehannel can decode the
information of the other user and cancel the interferencévertsthe ratio of the noise
powers asy = % we define two regions for the decoding orders. When the &dann
conditions are such thate I' = {z : vz; > 25}, first user can decode and eliminate the

message intended for the second user. Whenl™® = {z : vz; < 2y}, first user decodes
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its message in the presence of the interference from thalsigended for the second user.

Hence the instantaneous service rates of both users arelgive

log, (1 + Z)z zecTl
Ry = g2(1 + p(z)z1) 7 (7.19)

log, (1 + %) zel*

(z)z
log, (1 + 1+‘;21(Z)Z22/7) zcl (7.20)

logy(1 4 po(z)2z0) z €Tl

Ry

For the case of two users, the Lagrangian of the convex apinon problem in (7.17)-

(7.18) is given by

L(p1, pra; 5) = M7 aygqr (01) + AT ayp(02) — K(E {u1+yp2f — SNR) (7.21)

wherex is the Lagrange multiplier.
Next, we determine the optimality conditions. By taking therivative of the La-

grangian with respect t@, andy, in regionsl” andI'™*, we obtain the optimality conditions

given in (7.22)—(7.25), where = mg—z
A1 —o1—1
1 o1
m logGQ( + 1121) 21
A ( po(z) 2o )_772_1 p2z2” /7y
— 1+ —k=0 VzeZ 7.22
Gog 2\ T T m@=mi) O m@ay (7.22)
A2 < ,uz(Z)Zz >_92_1 22
1+ — k=0 VzeZ 7.23
g2\ T Tt m@ary)  Ttm@ai (7.23)

A1 ( H1z1 )_Ql_l 21
14— ——— — k=0 VzeZ 7.24
1 log, 2 L+ poezry 1+ poz1y ( )
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M <1+ H1z1 )_Ql_l p121°7y

4y log, 2 L+ poz1y (14 poz17y)?
A2 —09o—1
1 02 P ze 7.25
+ b logGQ( + p2(2)22) B—yk=0 Vze (7.25)

These are the conditions that need to be satisfied by the algpioaver control policy. In
these optimality conditions;; andy, vary according to the source type and characteristics.
Assumingg;(6;) = E {e—“’iRi}, expressions fot; for different arrival models (including

the Markov arrivals) are given by the following:

e Constant Arrival:

Vi = gi(0;). (7.26)

e Discrete Memoryless Sourcg, = ¢; andp}, =1 — g;,.

9:(0,)— (1—q)[9:(0))]”

P = (7.27)
qi
e Discrete Markov Source:
1/ Poni
P = /Fon — (7.28)
1 URN = o M
9i (05 )-pi19:(0:))° (1-p117P52)9: (0:)+Phy
e Markov Fluid Source:
()11 (0:)) — al?/ Pane
b = gz(QZ)[Oge(QZ(QZ)) a]/ ONi (7.29)

[log. (9:(6:)) — o] [log (g:(0:)) —a — ] = B

Now, for some special cases, we can obtain the followingioglahips for the optimal

power control policies utilizing the optimality conditienWhenz € T', using (7.23), we
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obtain the optimal power control policy for the second user a

+

1 14z
o= | — N L Tl (7.30)

09+1 29 e2+1 Z2
vy
T+pize/y

wherey, = 21%:2 and[c]+ = max (c,0). Henceu; = 0 whenu; > (712 - %) From

(7.22), we can derive; whenus = 0 as

+
= {11 - 1] (7.31)

S 01 z
+1_ 7 1
ylgl 21 o1+1

wherev; = “21%8<2 [f 11, 2£ 0, then the(u;, 1) pair can be found by solving (7.22) and (7.23).

Therefore,u, is the positive solution to the equation below
1

21 o1 Z29 o2+l
—(1+p1z1) 9" — (—) =0. 7.32
Vl( ) va(1 + p1z2/7) (7:32)

Similar method can be applied to power control policies when I'°. Therefore, by

simplifying the equations in (7.24) and (7.25) we obtain

1
2o o1 21 ertl
2o = () = 7.33
V2( H2a) va(1 4 poz1y) ( )

As we do not have any closed-form expressions for the optioakr control policies
in general, we resort to numerical computations to find ogksirategies. We propose the
algorithm in Table 1 to determine the optimal power controliges. This algorithm is
similar to that in [95] (in which only constant-rate arrigadre addressed) with the major
difference that we employ more general formulations#@rand), in order to take into
account the random arrivals and Markov properties. Esa@ntin this algorithm there
are two loops which we search for the, v, (outer loop) andk (inner loop). First we

initialize these values, and until we satisfy the averageguoconstraint, we update.
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Fig. 7.6: Maximum average arrival rate regidng,q  7a,q) Of the two users whefi = 2, SNR=
0.1, v = 1 and source has discrete Markov property witeR = 0.5.

After satisfying average power constraint, we updateith@nd, values and return to
inner loop again to find the fitting value ef We continue the algorithm until the change
in ¢ and, values is small and below a threshold.

In the application of the algorithm, we have the used subgrddnethod for updating
11, 1o andk in order to have convergence. Gaussian quadrature methedsgloyed in

the computation of the integrals.

7.2.3 Numerical Results and Discussion

For the numerical analysis, we assume thadndz, are independent exponential random
variables with unit mean. Also, we assume= 1, SNR = 0.1 andf = 2 unless stated
otherwise. Discrete Markov sources are considered in Higsand 7.7, and Markov fluid
sources are addressed in Figs. 7.8 and 7.9.

Furthermore, we consider three different strategies, hasuperposition coding with
optimal power control (SC with PC), time-division multiglag with power control (TDM
with PC), and superposition coding without power contr& (@thout PC). SC with PC is

the case we have concentrated and described in the chayttee. relatively simple strategy



153

Algorithm 2 The optimal power control algorithm that maximizes the viatggl sum of

throughput expressions

1. Given Ay, Ao, Initialize v, s;
2: Initialize
3: Determiney, = "¥tlo%2 ), — Jnv2los 2,

A A2
4: if yz; > 2z then
5: if 2, > vy then .
. _ 1 1
6: H1 = [Vf’#zlgf—if N ,
7 if g > 7(1/—12 — %) or zp < vy then
8: Mo = 0;
9: else
10: if (7.32) returns positive solutidhen
11: Computeul, uy from (7.22) and (7.23);
12: end if
13: end if
14: else
n
. _ _ 1 1 .
15: MI_O,M2_[W_Z] '
16: end if
17: else
18: if zo > vy then )
. _ 1 1 .
19: Mo = [yzﬁwe—ﬁ% 22] :
20: if po > %CT — i) or z; < vy then
21: w1 =0;
22: else
23: if (7.33) returns positive solutidhen
24: Computeul, uy from (7.24) and (7.25);
25: end if
26: end if
27: else
n
. _ _ 1 1 .
28: po =0, py = [uf’#zﬂ—’f—if 21] ;
29: end if
30: end if

31: if uy andpu, do not satisfy the average power constraien

32: Updatex and return to Step;

33: end if

34: Update; andi, usingu; andpus;

35: if new values ot); andi, do not agree with the previous valuiben
36: Return to Ste3;

37: end if

38: Declareu; andy, as the optimal power allocation policies.




154
of TDM with PC, transmitter sends the data to one user at a tisireg time-sharing and
employ the optimal power control policies for the singleusase given by

+

In SC without PC, transmitter sends the data to both usermsltsineously but no power
adaptation is considered. Hence, transmission occurseat figwer levels.

In Fig. 7.6 we plot the throughput region (or equivalentlg ttegion of maximum
arrival rates) in the two-users case for two different Olkesprobabilities. Whefoy = 1,
source arrival rate is constant. On the other hand, disbtat&ov arrivals are experienced
when Poy = 0.5. SC with PC provides the largest throughput region out otlaike
strategies. Each point on the boundary of this region isiobthby varying the weights
{A} in the optimization problem in (7.17) and obtaining the oyt power control policy
for each case. TDM with PC leads to the second largest thputgiegion. However,
transmission with constant power gives a much smaller egfen for the same parameters,
demonstrating the effectiveness of power control. In tigisre, we also observe the impact
of the source burstiness. We see that when the source bebomség with Pon = 0.5, the
rate region shrinks for all strategies compared to the césertstant arrivals, i.e., when
Pon=1.

For the same six scenarios, we plot the sum rate as a fundtsnRan Fig. 7.7. Sim-
ilar conclusions as in the previous figure apply. HowevegN®increases, we notice that
the gap in performance between SC with PC and TDM with PC dghes. Hence, TDM
becomes an effective strategy at low SNR levels. Moreowetofv SNR values, transmis-
sion with constant power affects the performance more fogmitly than having a bursty
source.

In Fig. 7.8, we plot the throughput region when the data alsito the transmitter

are from Markov fluid sources. Burstiness in Markov fluid simsr can be described by
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Fig. 7.7: Sum rate vsSNRwhenf = 2 and~ = 1 with discrete Markov source.
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0.1, v = 1 and source has Markov fluid property.
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Fig. 7.9: Sum rate vsSNRwhen# = 2 and~ = 1 with Markov fluid source.

the ON-state probability’oy and the parameters of the generating matriand 3, which
describe the rate of change between states. When thesegtararhave higher values,
states fluctuate more frequently. In the figure, we use twiergifit source models with the
samePon = 0.5. Whena; + 5; = 100, rate regions are larger. In this case, switching
between ON and OFF states happens relatively fast. Henog;doration data flows to
the buffers are often avoided. For sources with+ 5, = 2, ON-state can persist with
higher probability because probability of switching fromecstate to another is small. This
can lead to large bursts of data, which is detrimental in tiesgnce of buffer constraints.
Hence, we see that the rate region shrinks. Similarly asgn Fi6, we observe that SC
with PC provides the largest rate region while SC without R@gthe worst rate region.
In Fig. 7.9, we use the same scenarios as in Fig. 7.8, but weth@osum rate vs.
SNRcurves. Again, we can immediately draw similar conclusid@garly, decreasing the
values ofo andg hurts the system by reducing the throughput. The SC withGutRategy
leads to the smallest sum-throughput out of all stratediesvever, assNRincreases, the

performance gap between TDMA with PC and SC without PC temdsinish.
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Fig. 7.10: The system model.

7.3 Energy Efficiency in Fading Interference Channels

under QoS Constraints

7.3.1 Channel Model

As depicted in Figure 7.10, we consider a two-user flat-fadinerference channel model
in which each transmitter, operating under buffer constsaisends information to its in-
tended receiver while causing interference to the otheyutin the cross-links. In this
interference channel, the input-output relationshipstmmexpressed as

y1 = hyz + hojza + 1y (7.35)

Yo = hioxy + hooma + N

wherez; is the channel input from thé&' transmitter and); is the received signal at th
receiver, fori, j € {1,2}. Average transmitted signal energyli$|z;|*} = &. Moreover,
n; denotes the zero-mean, circularly-symmetric, complexsSiam noise with variance
E{|n;|?} = No. Hence, the™ transmitter’s signal-to-noise ratio (SNR) is

E{lz:*} &
E{[n:[?}  No

SNR, = =1,2. (7.36)

We denote the ratio of the SNRs of first and second usevsa%k}—%.
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Finally, in (7.35),h,; denotes the random fading coefficient of the channel betiween
i transmitter ang'™ receiver, and;; = |h;;|? is the magnitude-square of the fading co-
efficient. While fading coefficients can have arbitrary dizitions with finite energies, we
assume that block-fading is experienced. Hence, the atialiis of the fading coefficients

stay fixed for a block of symbols and change independentlthinext block.

7.3.2 Energy Efficiency in Fading Interference Channels

In this section, we consider three different strategiec@@nmunication over interference
channels, namely time-division with power control, tregtinterference as noise, and si-
multaneous decoding. We investigate the energy efficiehtdyese schemes by determin-

ing the corresponding minimum energy per bit and widebaogesexpressions.

Time Division with Power Control

Time division is a simple strategy in which the transmitteend their signals in non-
overlapping intervals. Hence, interference is avoidecdia tase at the cost of reduced
transmission rates. In the two-user model, transmittent@isthe data fraction of the time
with energy&; /«. Consequently, the remainirig) — «) fraction of the time is dedicated to
transmitter 2. The following result provides a charactgian of the energy efficiency in

the low-SNR regime.

Proposition 7.3.1. For time division with power control, the minimum energy pérand
wideband slope expressions of both pairs of users as a imofithe fading statistics and

the QoS exponemtare given, respectively, by

Ey log, 2 by log, 2
= = and— = ,
Nomin1  E{z11} Nomine  E {220}

(7.37)
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2(E{zn1})*
8071 = and (738)
102162 var(zi;) + 1E {2} }
2(E 2
S0z = —5; (E {z22)) (7.39)

fog, 2 Var(222) -+ ﬁE {232} .

where« is the fraction of time allocated to transmitter 1, and {&r denotes the variance

of the random variable:.

Proof: When time division is employed for transmission, the in&tanous service rates

of the two transmitters in bits/channel use are

R, = alog, (1 v SNRlZ”) . and (7.40)
Ry = (1— a)log, (1 v SlNR_lzf) , (7.41)

respectively. With these service rates, the effective capaxpressions, i.e., the arrival

rates that can be supported by the two transmitters, become

1 _ O ° SNR; =
Cpi1(SNR) = ~9 log, E {e Tog, 2 | ge(1+—a1 11)} 7 (7.42)
1
1 _0a(l—o) o SNRy =
CEQ(SNRZ) = —9_ logeE {6 210862 1 ge(l"r 1a_22>} . (743)
2

Now, the first and second derivatives of the effective capscatSNR, = 0 andsSNR, = 0,

respectively, are

) o E {211} . . E{ZQQ}
CEl(O) = 10g82 andCEQ(O) = 10g62 (744)
6, 1 )
CEl(O) = — (lOge 2)2V3.r(211) + Olege 2E {le} (745)
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0, 1

CE2<0) = — (loge 2)2var(z22) + —(1 — a) loge 5

E{:3}]. (7.46)

Inserting the expressions in (7.44), (7.45), and (7.4&) B129 and 3.31, we obtain the

minimum bit energy and wideband slope expressions. O

Remark 14. It is seen that the minimum bit energies are functions of trdymean of the
fading magnitude-squares of the direct links and are indelpat of the QoS exponefit
and time-sharing parameter, which generally affect the wideband slopes. For instance,
the wideband slopes diminish with increasingly more s@iof constraints or equivalently

larger values of the QoS exponéht

Treating Interference as Noise

In this strategy, transmitters simultaneously send tha dat the receivers regard the in-

terference as noise.

Proposition 7.3.2. If interference is treated as noise, the minimum energy pieard
wideband slope expressions as a function of the fadingsgtatand the QoS exponeht

are given, respectively, by

E log, 2 E log. 2
b o OBef gpgt = 28t (7.47)
Noming  E {z11} Nominz E {292}
2(E 2
So1 = 3 Bl and (7.48)
log, svar(zin) + E{zf; +2vz11201 }
Soo = 2(E {22} (7.49)
| 10(;2e svar(z) + E {232 + %222212}

wherey = % is the ratio that is kept fixed as botnR andSNR approach zero.
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Proof: In this case, the maximum instantaneous service ratessfthénnel use are

SNR; 211
Ry =1 1+ ————— and 7.50
—tog, (14 20 (7.50
SNRp 2992
=1 _— . .
Ry =log, (1 + = SNRIZH) (7.51)

Accordingly, the effective capacity expressions are givgn

1 _071 ° SNR1Z11
CEI(SNRI) = —9— loge E {e 103;521 Ee (1“1‘ 1+SNR2221) } (7_52)
1
1 __% SNR, =
Cp2(SNRy) = — log, E {6 Tog3 108e (1+—1+SNR12Z212> } ) (7.53)
2

First and second derivatives of the effective capacitiesiat = 0 andSNR, = 0, respec-

tively, can easily be determined as

. E{z . E{z
Cr(0) = lo{g112} andCp,(0) = lo{g 222} (7.54)
Ep(0)=— |1 ! g2 4o 7.55
m(0) = — (log, 2)2var(z11) + log, 2 {211 + 7211221} (7.55)
e o 0, 1 , 2
EQ(O) = — mvar(zgg) —+ @E 259 + ;,222212 . (756)

Inserting the above derivative expressions into 3.29 a8, 3ve obtain the desired result.

O

Remark 15. We immediately notice that the minimum bit energy exprassice the same
as in time division strategy. Hence, asymptotically as Stssh, similar energy effi-

ciency performances are achieved by both methods. On tlee béimd, wideband slopes
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are evidently different, leading to the conclusion thafedént levels of energy efficiency
can be attained when SNRs are small but nonzero. Note alsavthaow expectedly have

wideband slopes depending on the interference strengbludjtrz;, and zy;.

Simultaneous Decoding

Final method we consider is simultaneous decoding. In ttheme, transmitters again
send the information simultaneously but as a key differdrama the previous subsection,
receivers attempt to decode both messages. Therefore utatiopal complexity of de-
coding is higher at the receivers.

Before presenting the result, we first define the region:
I' = {211, 291, 212, 222 Z 0: Z11 + YZ21 < Z19 + ’YZQQ} . (757)

Proposition 7.3.3. For simultaneous decoding, the minimum energy per bit aniéland
slope expressions as a function of the fading statisticsthad)oS exponeritare given,

respectively, by

E, log, 2 ,
— =—>__fori=1,2and (7.58)
Nomini  E{3:(0)}

8o 2(E{g:(0)})?
C lvar(g,(0)) + E {5:(0)}

e

fori=1,2 (7.59)

where

) 1211 + (1 — Ozl) [(211 + Yz21 — 7222)]—’_ if Zel
1(0) = (7.60)

a9z11 + (1 — Oég)zlg if ZeTI¢
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) (1 —aq)ze0 + 1201 if Zel
G2(0) = (7.61)

+
(1 — ag)z92 + Qg [(222 + % — %)] if Zel*“

§1(0) = arzfy + (1= ) [(zin +7221)? = (v222)?] T i Z €T (7.62)

agziy + (1 — ag) [(z12 +7222)% — (y222)?]  if Z €T

§2(0) = (1- a1)(z22)2 + g [(z21 + %)2 . (%)2} it 7er

. (7.63)
(1 —ag)(222)* + a2 [(Z% + 229)? — (2—1)2} if 7 cre

Above,a; € [0,1] anday, € [0, 1] are time-sharing parameters between different oper-
ating points on the achievable instantaneous rate regiosirafiltaneous decoding, arid

represents the collectiofe, 291, 212, 222}

Proof: To derive the effective capacity formulas, we first need ntdy the instan-
taneous service rates achieved with simultaneous deco#imggiven channel gains, the

instantaneous rate region achieved with simultaneousdileg s [96]

Rl < 10g2(1 + SNRle)

R2 < 10g2(1 + SNRQZQQ) (7 64)

R + Ry < min {1Og2(1 + SNR; 211 + SNRQZgl) ,

logy(1 + SNR; 212 + SNRy292) } .

Therefore, transmission rates have different regionsrm#ipg on which term is the mini-
mum in the sum rate constraint in (7.64) or equivalently Wwhe¥ = {z1, 291, 212, 202} IS
in regionI” or not. Transmission rates on the boundary of this regiorbeacharacterized
as in (7.65) and (7.66) on the next page. In these expressiors [0, 1] andas € [0, 1]
are the time sharing parameters (for wher I" andZ < I'¢, respectively) between differ-

ent operating points on the boundary of the achievable egfiemn. Using these maximum
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+
Ry = aglogy(1+SNRyz11) + (1 — aq) [logQ (HSNR”“*SNRQZM)}

If Zel — 1SN 222
R, = alog, <1 + ﬁgﬁ%) + (1 — 1) logy(1 + SNRyz55)
(7.65)
P Ry = aylogy(1+ SNR21;) + (1 — ay) log, (1 + %)
+
R2 = (g |:10g2 <1+S|\11Fj?§2’\?;;2\11|?1z12>] + (1 - 042) 10g2(1 + SNRQZQQ)
(7.66)
service rate expressions, effective capacity formulaseanritten as
1
Cri(SNR) = ~3 log, E{e~ %"} fori=1,2. (7.67)

We defineg;(SNR)) = R;log, 2. First and second derivative of the effective capacity at

SNR; = 0 andsSNR, = 0, respectively, are given by

Cri(0) =E { iig(O)g} fori=1,2 (7.68)
o 5:(0)\* | §i(0) o
CEZ(O) ——E{@Z <10ge2> + 10g62} fori = 1,2 (769)

where the derivativeg;(0) and;(0) are defined in the Proposition. Similarly as before,

inserting these derivative expressions into 3.29 and 3v8have the result. O

Remark 16. We note that the minimum bit energy expressions are ditférem those

achieved with time division and treating interference as@oThe comparison of minimum
bit energies of different strategies is provided througimeuical results in the next section.
In general, we observe that improved energy efficiency isréxpced in strong interference

channels when simultaneous decoding methods are employfes r@ceivers.
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7.3.3 Numerical Results and Discussion

In this section, we provide numerical results obtaineduioMonte Carlo simulations. We
set the SNR ratio ag = 1 and assume that the QoS exponents are equali.e. f,. All

channel coefficients are assumed to be independent. Maoretaanel fading coefficients
of the direct links are identically distributed. Fading ffméents of the cross links are also

pairwise identically distributed.

Time Division with Power Control vs Treating Interference as Noise

We first compare the energy efficiencies of time division ipléking and treating inter-
ference as noise. Since both achieve the same minimum epergyit, we investigate
the wideband slope regions in Figs. 7.11 and 7.12. In theseeBg we assume that
E{z}} = E{z%,} = 2 andE{z;} = E{z»} = 1. In Fig. 7.11, we havé, = 6, = 1. In
this figure, curved line represents the slope region of timsidn multiplexing. Rectangu-
lar regions are the slope regions of treating interferesagogse. For strong, medium, and
weak interference scenarios, we Bty 291 } = E{222212} equal to 4, 2, and 1, respec-
tively. In the figure, we notice that the slope region of tiggiinterference as noise grows
expectedly as the interference weakens, and this strateggttain points outside the slope
region of time division multiplexing when the interferensaveak. Hence, both users can
achieve relatively high wideband slopes and operate maggrefficiently.

The effect of buffer constraints is demonstrated in Fig.27.1In Figs. 7.12(a) and
7.12(b), strong interference is considered, and henctrtgaaterference as noise performs
worse. In Fig. 7.12(a), we havg = 6, = 0.1, which is increased to 10 in Fig. 7.12(b).
Hence, in the latter case, we have more strict QoS limitatibmsuch a scenario, we notice
in Fig. 7.12(b) that both slope regions become smaller aswlagproach each other. Hence,
under strict QoS constraints, energy efficiency degradas,time division and treating
interference as noise start providing comparable perfooes Similar observations are

noted in Figs. 7.12(c) and 7.12(d), in which weak interfeeeis considered.
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Fig. 7.11:5, vs. S, » for different interference levels for time division withywer control
(curved line) and treating interference as noise (recti@ngegions).f; = 6, = 1.

Energy Efficiency of Simultaneous Decoding

Finally, we address the energy efficiency of simultaneogsdieg. Our focus is the min-
imum energy per bit, which is possibly different from thos@@ed by time division and
treating interference as noise. In Figs. 7.13 and 7.14, wEtipé minimum energy per bit
achieved by transmitter 1 as a function of the time sharingrpatersy; andas,. The flat
planes represent the bit energy levels achieved by timsidivimultiplexing and treating
interference as noise. In Fig. 7.13, in which weak interfegeis considered, we observe
that simultaneous decoding requires higher minimum bitgiase and is therefore not fa-
vorable. On the other hand, we note in Fig. 7.14, where iaterfce is strong, that simul-

taneous decoding can lead to significant gains in minimunnggneer bit requirements.
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time division with power control (curved line) and treatimgerference as noise (rectangu-
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7.4 Energy Efficiency in Fading Relay Channels under

Secrecy and QoS Constraints

7.4.1 Channel Model

Fig. 7.15 depicts the two-hop communication link we considethis section. In this

model, destinatio® gets information from sourc8with the help of an intermediate relay

nodeR, while the eavesdroppér listens both transmissions. Due to half-duplex commu-

nication, eavesdropper listens either the source or relagyagiven time.
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When the source is transmitting, the channel input-outgiationships are given as

Yr = hllxs + Ny, (770)

Ye1 = N12Ts + Ny (7.71)

Above,x, denotes the input signal from the sourgeis the received signal at the relay and
Y1 IS the received signal at the eavesdropper.andh;, denote the fading coefficients in
the channels between the source and relay and the sourcenaestieopper, respectively.
n, andn,; represent the zero-mean, circularly-symmetric, complaxgsian noise samples
with variancesE{|n,|*} = Ny andE{|n.|*} = No..

We consider DF relaying. Therefore, the relay decodes thesage based on the re-
ceived signaly, and re-encodes and forwards it to the destination in theesutent time

interval. The input-output relationships are now given as

Ya = ho1x, + ng, (7.72)

Ye2 = hooZy + Nea. (7.73)

Above, x,. denotes the re-encoded input signal from the relgyis the received signal at
the destination ang.; is the received signal at the eavesdropges. andh;, denote the
fading coefficients in the corresponding channels. Sityilas aboveyn, andn., are again
the zero-mean, circularly-symmetric, complex Gaussidsencomponents with variances
E{|n4|*} = Ny andE{|n.|?} = No.. We assume that the average energies of the trans-
mitted signals ar&{|z,|*} = E{|z,.|*} = £. Hence, the signal-to-noise ratio between
legitimate users is defined as

_ E{la?} _ E{la?} €

SR E(n P} E{(naP) Mo (7.74)

Due to possibly different noise power levels at the legitenasers and eavesdropper, the
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signal-to-noise ratio at the eavesdropper is defineshgs = %SNR For simplicity, we

denotey = .

7.4.2 Preliminaries
Effective Capacity

In the half-duplex systemy; = 7 € (0, 1) portion of the time source transmits, while
75 = 1 — 7 portion of the time relay transmits. Therefore, the effextapacities of the

source and relay are given by
Rp(SNR 6;) = —91 log, E{e~"7"} fori = 1,2. (7.75)

If the channel input sequence is an independent and idéwtdiatributed (i.i.d.) se-
guence of Gaussian random variables with zero mean andheaida then the instanta-
neous service rate is

Ai = logy (14 SNRz;p) fori =1, 2. (7.76)

On the other hand, in the presence of an eavesdropper, that@seous secrecy rate is

the service process (with which secrecy can be achievedsajizen by
Ai = [logy(1 + SNRz;;) — log, (1 + vSNRz,)| ™ fori = 1,2. (7.77)

Remark 17. We assume th& — RandR — Dlinks are secured individually by transmitting
at the rates given in (7.77). Note that as shown in [103], midgpendent randomization at
the source and relay, securing each hop from the eavesdrapagantees secrecy of the

overall communication from the source to destination.
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Energy Efficiency Metrics

In this section, we employ energy per bit as the performanegicnof energy efficiency.

In our setup, we define energy per bit as

by, 2E /Ny B 2SNR (7.78)
No  Rg(01,02,SNR)  Rp(6), 02, SNR) '

whereRg (6, 02, SNR) is the throughput of a half-duplex relay channel. Note thathave
2& in the numerator since we take into account the energy copsomby both the source
transmitter and relay transmitter. In [102], the throughpiuthe half-duplex fading relay

channel under statistical buffer constraints is charasdras follows:

Case lt; > 0, : RE(91, 92, SNR) = —eil IOgeE {6_91%)\1} , (779)
Case 10, < 0y : Rp(6y,0,,SNR) = —eil log, E {e" """}, (7.80)

where7 = min {7y, 7"} and7 = min {7, 7'}. 7 is given by

E {X2(SNR)}
— . 7.81
T E{M(SNR} + E {\a(SNR)} (7.81)
7* is the solution of the equality
1 —617 A 1 —02(1—7%)A
——logeE{e ! 1} :——logeE{e 2 2}. (7.82)
01 02
7' is the solution of the equality
_i —017'M1 | _i —02(1—7") A2 (02—01)7"\1
5 los. E {e } - (logeE {e } Y log,E {e }) . (7.83)

In our analysis, we study the minimum energy per%;i'r[nin under QoS constraints,
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which can be obtained from [57]

E 2SNR 2
= = lim = - . (7.84)
Nomin  SNR=0 Rp(01,02,SNR)  Rp(6;,0,, SNR)

7.4.3 Energy Efficiency Of Two-Hop Wireless Communication

In this section, we analyze the energy efficiency of a two-imneless system using the
minimum energy per bit. We first consider the case in which exrexy constraints are
imposed. Subsequently, we address the scenario in whiommiation needs to be kept

confidential from an eavesdropper.

No Secrecy Constraints

In this case, the system is a simple two-hop wireless chaméthe instantaneous trans-
mission rate for both source and relay is given by (7.76).tNe& determine the minimum

energy per bit for this scenario.

Theorem 7.4.1. Assume thasNRis the same for botls — RandR — D links. With block

fading assumption, the minimum energy per bit is given by

& o 2(E {211} —|—E{221}) 10g82
NOmin - E{zll}E{Zﬂ} .

(7.85)

Proof: Since we have two different throughput expressions acogriié; andé, val-
ues, we determine the minimum energy per bit for Ho#se landCase Il.
Whené; > 6, the throughput expression is given in (7.79). We take thevalire of

the throughput expression with respecsir, which is given by

E {6—91%)\1(SNR) |:7:)\1 (SNR) + %}\I(SNR)} }
RE(‘917 62, SNR) —

E {6—91’7')\1(SNR)}

(7.86)

Note that,7 is the first derivative of the time sharing parameter in techSNR. When
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SNR — 0, (7.86) can be simplified to
RE(ela 02,0) = T(0)E {)\1(0)} : (7.87)

Since7 = min {7y, 7"}, we need to determing(SNR) and7*(SNR) asSNR — 0. We can

easily see that

L E {\2(SNR) }
70(0) = fim & {M(SNR)T + E {\2(SNR)} (7.88)
E {}\Q(SNR)}
— lim —— ' (7.89)
SNR=0 R {Al(SNR)} +E {)\Q(SNR)}
E iz} (7.90)

T E{zu} +E{em}

where (7.89) follows by the application of the L'Hopitalsle. In order to findr*(0) we
can use the first order approximations of the expressionstindides of equality in (7.82).

Thus, we obtain the equality below
T*(O)E {211} = (1 - T*(O)) E {221} y (791)

from which we find that*(0) = 7,(0). We use this result in (7.87), and obtain the first

derivative as

' E {2z}
RE(91792’0) = E{le} + E{Zgl}

E {z} log,e. (7.92)

Inserting (7.92) into (7.84), we obtain the minimum energy Ipit expression in (7.85).
When#;, < 60, andsSNR — 0, we have a similar first derivative expression for the
throughput as in (7.87):
Ri(61,6,0) = 7(0)E {Al(O)} . (7.93)

We know that- = min {7/, 79 }. By using the first order approximations of the both sides of

the equality in (7.83), we can determin€0). More specifically, in the limit aSNR — 0,
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this equality becomes

POE () = (1 — 7 O)E Gk - OB G}, (7:99)

from which we conclude that'(0) = 7,(0). Therefore, for both cases, first derivative of

the throughput and hence minimum energy per bit are the same. |

Secrecy Constraints

In this case, information needs to be kept confidential. Tdwesdropper listens the com-
munication over botts — RandR — D links. For this case, the minimum energy per bit

expression is determined in the following result.

Theorem 7.4.2. Assume thasNRis the same for botls — Rand R — D links. Further
assume that SNR of the eavesdropp@anNR = vSNR With block fading assumption, the

minimum energy per bit is given by

Ly _ 2 (E {[211 — 72’12]+} +E {[221 - 7222]+}) log, 2
No min E {[z11 — v212) "} E {[221 — y220] "}

. (7.95)

Proof: We first note that the expressions in (7.87) and (7.93) arbcate in the pres-
ence of secrecy constraints as well. Hence, although thentasheous rates have changed,
we can easily determine thatind7 are still equal tay, at zeroSNR Therefore, considering

(7.89) with the rate expression in (7.77), we obtain

E {[z21 — 72’22]+} .
E{[21 — 212"} +E {[z21 — 7222 " }

7(0) = 7(0) = (7.96)

Combining (7.96) with (7.87) and (7.93) and inserting theroi(7.84), we obtain the

minimum energy per bit expression given in Theorem 7.4.2.
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Fig. 7.16: Locations of source (S), eavesdropper (E), rétyand destination (D).

7.4.4 Numerical Results and Discussions

In this section, we provide numerical results in which weestigate, in addition to the
minimum energy per bit, throughput vs. energy per bit anthdise curves. In the numer-
ical computations, we assume for ease of exposition thatdldes are linearly aligned as
in Fig. 7.16. SNR level is the same in all channels (he= 1). d denotes the distance be-
tween the source and destinatidpjs the distance between the source and relaydanmsl
the distance between the source and eavesdropper. Witdssuifigenerality, we sét= 1.
While the analysis is applicable any fading distributioe, @onsider Rayleigh fading links.
In this setting, by selecting the path-loss exponent asednfignitude squares of the fading

coefficients, which are exponentially distributed, haweftillowing mean values:
e S—RIink: E{z,} =1/d},
e S—Elink: E{z5} = 1/d,
e R—Dlink: E{zo1} =1/(d — dy)*,
e R—EIlink: E{2p} =1/(dy — d.)*.

Fig. 7.17 plots the maximum arrival rates as a function of@neer bit when there is
no eavesdropper present. We assume that the relay is Idoatteel middle of the source
and destination, meaning thét = 0.5d. Our objective in this figure is to compare the
impact of different values of QoS exponents (while assumiing: 6,). As expected, the

minimum energy per bit, which we have seen to be independefiiro Theorems 7.4.1
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Fig. 7.17: Maximum arrival rat&z(6,, 62) vs. energy per bit;, /N, without eavesdrop-
per.

and 7.4.2, is not altered at different values of QoS expandsdr this case, the minimum
energy per bit is computed as7.61 dB and we can see all curves intersects-at61 dB
when SNR is zero. We also observe thahcreases and buffer constraints become more
stringent, the required}, /N, increases and hence energy efficiency degrades for any given
nonzero arrival raté& .

Fig. 7.18 depicts the maximum arrival rates that can be suggavhile keeping the
data secret from an eavesdropper. We assume that eavesdi®fmrated between source
and relay at a distance df = 0.3d. The relay is again in the middle, i.el, = 0.5d.

We also assume that channels betwBen D andR — E to be independent. Therefore,
the correlation coefficient between the fading coefficienthe relay to destination link
and that of the relay to eavesdropper linkois= 0. On the other hand, we assume that
S — RandS - Elinks can possibly have correlated channel coefficientschEairve in
Fig. 7.18 is plotted for a different value pf, which denotes the correlation coefficient of
the fading coefficients of source to relay and source to elmopper links. We observe
that the minimum energy per bit varies with the correlatiogfticient. In particular, when

the correlation coefficient increases, the energy requargrfor the same throughput in-
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Fig. 7.18: Maximum arrival rat& (61, 02) vs. energy per bit, /N, in the presence of an
eavesdropper wheh = 0.1, 60, = 0.01.

creases. Thus, correlation hurts the energy efficiency.ré@ason behind this phenomenon
is that secrecy rates diminish as correlation increasegeelth, the secrecy rate is zero if
the channels are fully correlated, in which case no amouenefgy is sufficient for se-
cure transmission of the arriving data. Moreover, compartsetween Figs. 7.17 and 7.18
reveals the significant energy costs of secrecy. Note th&t &€ponent does not have any
effect on the minimum energy per bit. Thus, despite havirfigidint QoS constraints in
these two figures, the penalty of secrecy on the energy eftigiis clear by just comparing
the minimum energy per bit values.
Indeed, we can easily compute the minimum energy per bitdérm (7.95) when
~ = 1 and there is no correlation. First, we need to compute theaapons in the

formula.

Lemma 7.4.3.Assume thaty; andw, are uncorrelated exponential random variables with

meansu; and u, respectively. We can easily obtain

E {[wl — ’LUQ]+} = ,ulltj—l,uz. (797)
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Fig. 7.19: Maximum arrival rat& (6, , 02) vs. distance between source and relawhen
0 =60, =0.1

When we use the formulation (7.97) in (7.95), the minimunrgn@er bit becomes

a8 (d — do)®
D (A0 p(d—dy) Y ) op 2. 7.98
NOmin ( 0+ dé _'_( 0) + (dO _de>4 08, ( )

When we insert the distance values we use in Fig. 7.18, wendibiaminimum energy per
bit as6.26 dB, verifying the observation in this figure in the case of narelation.

It is expected that the locations of the nodes are criticatlie arrival rates that the
system can support. To investigate the impact of locateglot the throughput vs. relay
location curves in Figs. 7.19 and 7.20. We analyze the effedifferent SNR values on
the throughput and best location for the relay in Fig. 7.18S@xponents are chosen as
0, = 6, = 0.1 and there is no correlation between the channels. As exghe8dR affects
the throughput positively. However, we have diminishinyres as SNR increases since
eavesdropper shares the same SNR with the relay. Integlystine location that gives the
highest throughput changes with the SNR as well. When SN&lisaed, the optimal relay
location is closer to the source.

The effect of the QoS exponents is addressed in Fig. 7.20. a&fp the constraint on

the relay buffer (i.e., the relay QoS exponent) fixed whilargfing the constraint on the
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Fig. 7.20: Maximum arrival rat& (6, , 02) vs. distance between source and relawhen
05 = 0.1 andSNR = 1.

source buffer. We also assume tisalR = 1 and no correlation exists between any pair
of channels. It is immediate to see that stricter buffer tamsts (i.e., higher values of
;) reduce the throughput. The important inference is thatnathe buffer constraints get
stricter, the optimal location of the relay at which the thghput is maximized again gets
closer to the source. Hence, low SNR and HMdavels have similar impact on the system.
Notice that relay in this case becomes closer to the eavegdras well, which tends to
adversely affect the security of the — D link. But, this is preferred as th® — R link
becomes the bottleneck.

Finally, in Fig. 7.21, we plot the minimum energy per bit asadtion ofd,, for different
values ofd,. Clearly, if the eavesdropper approaches the source ordstndtion, the
minimum energy per bit increases. We further observe thatttimal location of the
relay at which the lowest minimum energy per bit is attaineanges in the same direction
as that of the eavesdropper location. For instance, as thes@@pper approaches the

source, so does the relay. This is again due t@&theR link becoming the bottleneck.
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Fig. 7.21: Minimum energy per bit},/N,, . vs. distance between source and refgy
whend, = 0.1 andSNR= 1.

7.5 Energy Efficiency in Cognitive Radio Channels with

Markov Arrivals

7.5.1 Channel Sensing

Secondary users are assumed to operate over bloecksgimbols. In each block, channel
sensing is performed over the initial durationro$ymbols to determine the primary users’
activity (i.e., whether the channel is idle or busy). We assithat the primary users’
activity remains unchanged over one block duration. Howegtivity between the blocks
is modeled as a Markov chain with two states, denotedBbgnd I, corresponding to
“busy” and “idle" channels, respectively. In stdBe channel is occupied by the primary
users whereas statendicates no primary user activity in the channel. In the ikd&rchain,
P, ; represents the transition probability from state statej wherei, j € {I, B}. Note

thatzj P, ; = 1 and the probabilitie$’s ; and P; 5 are denoted by andg, respectively.
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As in [48], we formulate channel sensing as a binary hypaskhesting problem:

Ho :yi =n; 1=1,2,....n (7.99)

Hi:yy=w;+n; i=1,2,....,n
where hypotheseX, and?{; describe the absence and presence of primary users, respec-
tively. Above, n; represents the circularly symmetric, zero-mean, compsekdround
Gaussian noise samples with variafitgn;|?} = N, andw; denotes the primary users’
faded sum signal at the secondary receiver, which is indbgregnand identically dis-
tributed according to circularly symmetric, zero-meanmptex Gaussian with variance
E{|w;]?} = 02. We assume that secondary users employ energy detectdr edricpares

the total energy gathered in the sensing duration with sktwle )\, i.e., we have
1 n
T(y) == luil 23 X (7.100)
=1

The test statistid’(y) above followsy? distribution with2n degrees of freedom. Under
this statistical assumption, the false alarm and detegiobabilities can be expressed in
terms of the regularized Gamma functifia, x) [62, eq. 6.5.1] as follows:
- n
Pf = Pl"{T(y) > )\‘Ho} = Pr(%l‘?’[o) =1-P (F,n) ,
0

- nA
Py =Pr{T(y) > \|H1} = Pr(H1|H1) =1—-P (mﬂl) :

Above, P(a,r) = VF(‘Z;;’), wherey(a, x) is the lower incomplete Gamma function [62, eq.

6.5.2], andl'(a) is the Gamma function [62, eq. 6.1.1]. Additionally; and#, denote

the busy and idle sensing decisions, respectively.
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7.5.2 Cognitive Radio Channel Model

Following channel sensing, data transmission is initiateer a flat-fading channel in the
remaining block duration ofm — n) symbols. The transmission power levels are chosen
depending on the sensing decision. More specifically, tieeaae power ig; in the case
of channel being detected as busy, and ?idn the case of channel being detected as idle.
In general, we hav®; < P, in order to control the interference on the primary users.

We consider a block-fading channel model in which the fadiogfficients remain con-
stant over each block ofi symbols. Under these assumptions, the complex channelinpu

output relation can be described as

hx +n under#,
y = (7.101)

hx+n-+w underH;

whereh denotes the circularly-symmetric, complex fading coegfitiwith finite variance,
i.e.,E{|h|*} < co. Additionally, x andy are the complex channel input and output vectors
with length(m — n), respectively, anav andn again denote the primary users’ received
faded signal and background Gaussian noise, respectively.

As a result of different channel sensing decisions and thermd#l’s true state, we have
four possible scenarios, together with correspondingasitpinoise ratio expressions and

the instantaneous channel capacities listed in the fotigwi

e Scenario I: Busy channel is sensed as busy (Correct-detection)

SNR; = NOPTlaa andC; = (m — n) lOg(l + SNRlz).

e Scenario Il: Busy channel is sensed as idle (Miss-detection)

SNR, = NO?T{ZO%U andCy = (m — n)log(1 4+ SNRz).

e Scenario lll: Idle channel is sensed as busy (False-alarm)

SNR; = £t andC; = (m — n) log(1 + SNRyz).
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e Scenario IV: Idle channel is sensed as idle (Correct-detection)

SNR; = % andCy = (m — n)log(1 4+ SNRyz).

Above, we have defined = |h|*> and expressed the instantaneous channel capacities. Ac-
tual transmission rates will depend on the sensing decisigrand?{,. More specifically,

underH; (i.e., in scenarios 1 and 3), the transmission rate is
R1(SNRy, 2) = (m — n)log(1 + SNR; 2). (7.102)

On the other hand, undét, (i.e., in scenarios 2 and 4), the secondary users send data at

the rate

Ry(SNRy, 2) = (m — n) log(1 + SNRy2). (7.103)

7.5.3 Effective Capacity of Cognitive Radio Channels

In this section, we formulate the effective capacity whiblamcterizes the maximum con-
stant arrival rates that can be supported in the presenagfef loonstraints through cogni-
tive radio transmissions. Before deriving the effectivpamty expression for the cognitive
radio channel, we initially construct a state transitiond@lo In scenario 1, transmission
rate R;(SNRy, z) equals the channel capacity and in scenario 3 (in which we felge
alarm), Ry (SNRy, z) is less than the channel capacity due to the fact that seopndars
actually do not experience interference from the primagrsis.e. SNR; < SNR;. Hence,
in both scenarios, the channel is in the ON state where feltedmsmission is achieved. In
scenario 2 (in which we have miss detection), transmissite¥, (SNRy, z) is greater than
the channel capacity due to interference caused by the priosers, i.e.SNR, > SNR;.
Thus, the channel is in the OFF state and reliable commuaica not attained due to
errors. Therefore, the transmission rate is effectivelg z2a1d retransmissions are required.

Finally, in scenario 4R5(SNRy, 2) is equal to the channel capacity and therefore the chan-
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nel is again in the ON state. As a result, we have four statesgtahin the state transition

model for the cognitive radio channel as depicted in Fig27.2

(1) Correct Detection < ON
Busy channel is sensed as busy M L
\/‘(Q O pi2
[\t \>/‘-\p«
[ 3\ OFF =% (2) Miss Detection

22
| )
‘ [ “\ /'\ @ __/ Busy channel is sensed as idle
Y R & "M\
\ J ) o
\ / X 3\
P:E\A/ /
=/ [
on e\ ||
(3) False Alarm ) & IQ" \ | ]
Idle channel is sensed as busy \___ - \\ |
S NN
% 2 2 -”'t;
\ &S
( ON i (4) Correct Detection
\ @ Idle channel is sensed as idle
\/\—/'P«
( ]
_/

Fig. 7.22:The state-transition model for the cognitive radio chanwiéh four states.

Next, we determine the transition probabilities from state statej, denoted byp;;
in the figure. Note that the channel is actually busy in thé¢ fiwe states and we see that
the transition probabilities from these states to the fitatesare equal. The channel is
actually idle in the last two states and their transitiorbatalities are the same. Hence, the
transition probabilities can be grouped into two with regpe the channel’s true state, i.e.,
being busy or idle. With this observation, the transitionhabilities between each state

can be derived as

pin = (1= s)Pq pr1 = qFu,
o= (1 —35)(1—P, =q(1— Py),
Di2 ( )( d) Pr2 Q( d) (7_104)
Dis = sPs pr3 = (1 —q) Py,
pi4:S<1_Pf) pk4:(1—Q)(1—Pf)

fori = 1,2 andk = 3,4. Above, P, and P; denote the detection and false-alarm proba-
bilities, respectively, in channel sensing, andndq are the transition probabilities in the
two-state Markov chain for primary user activity. The< 4 state transition matrix is de-

noted byG where[G];; = p;;. Note thatG has a rank of due to having only two linearly
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independent row vectors.

The effective capacity, which identifies the maximum constarival rate that a given
service process can support in order to guarantee stati€@S constraint given in (2.1),
is formulated as [6] [10]

1
ot

A(—0)

loge E{e—GS[t]} £ - 0 )

Cg(0) = — tlim (7.105)
whereS|[t] £ 23.:1 R;[j] is the time-accumulated service process &id] is the discrete-
time stationary and ergodic service process. Gartnes-gHE) limit of the service process
is defined byA(6;) = lim,_, + log, E{e”[1}. In [9, Chap. 7, Example 7.2.7], it is shown

for Markov modulated processes that
A0 1
A0 L tow B{o(0(9)G)) (7.106)
Above,G is the transition matrix of the underlying Markov procesgj a(d) = diag(¢1(0), ..., ¢4(0))

is a diagonal matrix whose components are the moment gemgfanctions of the pro-

cesses with 4 states. In our case, we have
b(0) = diag{eeRMSNRl)’ 1, e@Rl(SNR1)7 e@RQ(SNR4)} _

Since the rank of(6)G is 2, spectral radius(¢(#)G) is given by the maximum root of the
characteristic polynomial of the matriX6)G. Hence, we can derive the effective capacity
expression of the cognitive radio channel as in (7.107) enrntéxt page by combining
(7.105), (7.106).

Cu(6) = — ——log, E{% |010)pin + 62(0)piz + 03 (0)prs + G4(O)pa

Om

+ %\/[%(ﬂ)pﬂ + ¢2(0)piz — ¢3(0)prs — ¢4(9)pk4} 2_|_ 4(p1(0)pr1 + D2(0)pr2) (d5(0)pis + ¢4(9)pi4)}

(7.107)
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7.5.4 Energy Efficiency Metrics

We have defined the average signal-to-noise ratio as

Favg . Pr{ﬁl}?l + PI‘{?‘ZQ}?Q

SNRavg = N, Ny (7109
_ A(sPa+qPy) +5(1—Pa)+q(1— P) Py (7.109)
s+yq No .
P,
_ P 7.110
o ( )

Y(gPa+sPr)+s(1=Pp)+q(1—Py
s+q

where we have defined = ) and% = . Furthermore, we de-
noteé = }’V—% With the help of these definitions, we can determine fror)(Be maximum
arrival rater*(SNRyg, 0) that can be supported in the cognitive radio channel forrgive

SNRyg Q0S exponemt. Then, the maximum average arrival rate is
Tavg(SNRavg, ) = 7" (SNRayg, ) Pon- (7.111)
In this section, we employ energy per bit as the performanegicnof energy efficiency.

In our setup, we define energy per bit as

— = . 7.112
No T;vg(SNRanv 9)/m ( )

In our analysis, following the approach in [57], we study themimum energy per bit
and the wideband slope, which is defined as the slope of tlotrapefficiency curve at zero
spectral efficiency. While the minimum bit energy is a parfance measure in the limit as
SNRyg — 0, wideband slope has emerged as a tool that enables us tazarhé/ energy

efficiency at low but nonzersNR,q levels. The minimum energy per lﬁ;min under QoS
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constraints can be obtained from [57]

Ey i SNRavg 1
— - 11m = - .
Nomin SNRug—0 Tyg(SNRavg, 0) /m 75,4(0,0)/m

(7.113)

At ﬁ—gmm, the slopeS, of the spectral efficiency versus,/N, (in dB) curve is defined as

[57]
“ (SNRu, 0
So= lim Paug( SNRavg, )/ 101og,, 2. (7.114)

E E
B B 101 e —101 =2
No ¥ N0 min 0logyg No 0logyg Nomin

Considering the expression for normalized effective capaithe wideband slope can be
found from ,
2(7%,40
So = —M log, 2 (7.115)
avg(0)/m

T*
wherer;,4(0) andi%,4(0) are the first and second derivatives, respectively;;of with
Ly

respect tSNRayg at ZEroSNRavg. 72 andS, provide a linear approximation of the spectral

efficiency curve at low spectral efficiencies.

7.5.5 Energy Efficiency in Cognitive Radio Channels with Markov

Arrivals

Having formulated the effective bandwidth of two-state ktar arrivals and effective ca-
pacity of the cognitive radio channel and having introduttexlenergy efficiency metrics,

we now derive the minimum energy per bit and wideband slomaiirsetting.

Theorem 7.5.1.Assume that the source arrival rate is random and followsd#scribed
ON-OFF model with the state transition matexgiven in (2.15), and the cognitive radio
channel is characterized by the state transition maix Then, the minimum energy per

bit as a function of the sensing performance, channel cardit and QoS exponefitis
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given by
E log_ 2
= 208 (7.116)
0 min %;q ((qu+spf)1i%+8(1—Pf)>E{Z}
whereyp = 2@PatsPitsU=Fp)ral=Fi) 55 defined before. Moreover, if we set ¢ = 1, the

s+q

wideband slope is given l{y.117)on the next page.

s 2(5 ¢ +s(1-Pp)) (B{=))?
0 (7%—2)loeg’zz(él—lg+s(1—Pf))2(IE{z})2+1027:2(5(1—15)2+s(1—Pf)>E{z2}+m”jn(§(l—1€)2-i-s(l—]:’f)>E{z2}
(7.117)
In (7.117) we have defined= [(1 — s)P; + sPf], & = w(;-.)°, and
_ap+2(1—an)  [om(onn + ) — 2(an +3Oéz2 - 1)]2' (7.118)
2(2 — 1] — 0422) 2(2 — 11 — 0422)
Proof: We sets + ¢ = 1. We first simplify the relationship in (3.2) to
a1 + ae” + \/(0411 + up0e™)? — 4(on1 + agp — 1)er?
2
1
(7.119)

- E {§e—eR1(SNR1) + 5(1 — Pf)e—GRz(SNR4) +(1—s)(1— Pd)}.

We denote the right hand side of (7.119)5%1{7@. Taking the derivative of both sides of
(7.119) with respect t8NRyq, We obtain

#(SNRavg) Bagoe™  (aq1 + ae™)Bagy — 2(any + agy — 1)0e™?
Vg 2 2\/(a11 + a226r6)2 _ 4(a11 T g — 1)6’”9
(Q(SNRavg))2

Next, we [etSNRyg — 0. Then, we have(0) = 1 and the first derivative of (SNRyg) at



189

SNRag = 0 becomes

f(m —n) ( gl

9(0) = - olog.2 \"1+¢

+s(1 - Pf))E{z}. (7.121)

Since the arrival rate — 0 whenSNRyg — 0, the equality in (7.120) becomes

) g (a1 + o)y — 2(aq; + agg — 1)
r(0)0 | =~ + 2(2 — ay — o) }
- (;(((?)))2 N eg(oﬂllog? Z) (§1 15 +s(1 - Pf))E {=}, (7.122)

from which we can obtain an expression f¢6) and derive

1—0(11

Fav0) = f<0)m (7.123)
_(m=n) (. v
~ plog, 2 <81+§+8(1_Pf))E{Z}- (7.124)

Plugging in the result in (7.124) into (3.29), we immedigtabtain (7.116).
In order to determine the wideband slope, we first take therskderivative of both

sides of (7.119) with respect 8\NR,,q and evaluate them &NR,,g = 0 as

FO— LT gy — 20002 = (0)9(0)

2 -y —ag

= 2(9(0))* - 4(0) (7.125)

where (7.125) follows from the fact that0) = 1, andn is defined in (3.9). Using the above
equality and the expression fof0) obtained from the equality in (7.122), we can easily
derive the second derivative of the maximum average anatalwith respect t8NRyg at

Faolt) = EZDEON 250, (7129
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wherejj = n(%f andg(0) is given by

.o 1| [/0(m—n) 2 9m-n)|{_( 7 \*
9(0)_?[< log, 2 ) " og, 2 ]<3<1+§>+8(1_Pf)>E{22}'

Finally, inserting (7.124) and (7.126) into (3.31), the aliédnd slope expression in (3.35)

is readily obtained. O

Remark 18. Minimum energy per bit does not depend on the QoS expérarihe bursti-
ness of the source. Interestingly, burstiness of the pynuaer activity, signal power of
the primary user, reliability of channel sensing have anactpn the minimum energy per
bit. Increasings or ¢ when the other parameter is kept fixed results in increas@ihmim
energy per bit. However, wher+ ¢ = 1, increasings (i.e., increasing the probability of
idle channel) improves the energy efficiency of the seconalser. As expected, higher in-
terference from the primary user decreases the energyegftigias it decreases the channel
capacity for the secondary user when the primary user ivacthdditionally, the minimum
energy per bit formula depends on the sensing performarcdeatection and false alarm

probabilities P; and Py whose impact is analyzed through numerical results below.

Remark 19. Although the QoS exponehtioes not have any effect on the minimum energy
per bit, it introduces a penalty on the energy efficiency uoéng the wideband slope.
The burstiness of the source also degrades the energy effyci®/ increasing the value of
n and again diminishing the wideband slope. Similarly as id][3he effect of the source

burstiness vanishes in the absence of QoS requirements.

Next, we present numerical results in which we assume Raylieiding. Therefore,
fading magnitude-square = |h|? has an exponential distribution with{-} = 1. Fur-
thermore, the noise power and the power of the primary usecgived faded signal are

assumed to b&/, = 0.01 ands? = 0.01, respectively, (i.e{ = o2 /Ny = 1).

Ly

~¢» and

In Fig. 7.23, we plot the maximum average arrival rate vs.rgneer bit,

investigate the effect of source burstiness on the enefigyegfcy of cognitive radio trans-
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Fig. 7.23: Maximum average arrival rate;,,/m vs. energy per bitj’% with different source
burstiness whefi = 1.

missions under QoS constraints. The transition probaslin the Markov chain of pri-
mary user activity are set to= 0.9 andq = 0.1. Each block has a duration of = 100
symbols and a duration of = 20 symbols is used for channel sensing. The threshold of
the energy detector is chosen)as- 0.014. With these values of and ), the detection and
false-alarm probabilities becontg = 0.9235 and P; = 0.0478. We observe in the figure
that as the probability of the ON state of data arrivals disias and hence source bursti-

ness increases, wideband slope is decreased, reducingettyy efficiency of the system.

In Fig. 7.24, we plot the minimum energy per b%min’ as a function of the sensing
durationn (while A = 0.014) for different values of the transition probabiliti@sand
g in the Markov chain of primary user activity. In the lower §ighre, we provide the
corresponding detection and false alarm probabilitiesnagsa a function of.. We see
that when the primary user activity decreases and as a ribsufirobability of channel
being idle increases, smalle%gmin is attained at a lower value of. Indeed, when the
channel idle probability i®r{H,} = = = 0.9, the smallest value o%min is achieved

s+q

whenn = 2. However, it is important to note that for this very short seg duration,
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the detection probability is small as well, which can leadigmificant interference on the

primary user.

Omin

Eb/N

0.4t
03f
02t

0.1f

0 10 20 30 40 50 60 70 80 90

Fig. 7.24:Minimum energy per bit and;-P; vs sensing duration.

Finally, in Fig. 7.25, we plot the minimum energy per b%min, and detection and
false-alarm probabilitiest’;- P, as a function of the sensing threshaldwhile n = 20).
We notice that for smalk, we have frequent false alarms and therefore sensing italiab
is low, leading to high values o%mm. Increasing the threshold initially improves the
sensing reliability and lowers t}“%min. On the other hand, increasing the threshold beyond

its optimum value at Which%min is minimized, starts degrading sensing reliability by
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reducing the detection probability and results in higﬁ{%m values.
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Fig. 7.25:Minimum energy per bit an@®;-P; vs sensing threshold.
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CHAPTER 8

FUTURE RESEARCH DIRECTIONS

8.1 QoS-Driven Energy-Efficient Power Control in Cog-
nitive Radio Channels with Markov Arrivals

In Section 7.5.3, we analyzed the energy efficiency in cognitadio channels with dis-
crete Markov arrivals under QoS constraints. This work carextended by addressing
all of the source arrival models studied in this thesis. Aeotpromising approach is to
design optimal power control algorithms for cognitive ulsgtaking the circuit power into
account. This problem can focus on maximizing the througlopenergy efficiency of

cognitive users in the presence of one or more of the follgwinstraints:

e Maximum average and/or peak power constraint

Maximum average and/or peak interference constraint

Constraint on sensing duration

Constraint on false alarm probability or detection probgbi

Constraint on energy efficiency
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8.2 Throughput and Optimal Resource Allocation in
the Finite Blocklength Regime under QoS Constraints

In this thesis, one of the main assumptions has been thatotfiag:blocklength is suf-

ficiently long for the transmission rates to be accuratelgrapimated by the Shannon
capacity and data transmission is reliable. An intereshingre research direction is to
utilize recent characterizations in the literature andster the finite blocklength coding
regime, in which the data transmission is no longer arbiyraeliable. Especially when

the blocklength is short, the error probability (due to epibecomes significant even if
the rate is selected below the Shannon limit. By formulathegeffective capacity in the
FBL regime, we can express the throughput, analyze the ingfaandom arrivals on the

performance, and design optimal resource allocation sekem
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APPENDIX A

APPENDIX

A.1 Proof of Theorem 3.1.1:

Using the effective bandwidth formulation in (2.16), we e&xpress (3.2) in the following

equivalent form:

%loge<pll+p226w+\/(p11+p2228’\6)2—4(p11+p22—1)8w) — . (A1)

Then, we rewrite the above equality as

P11 +p22€/\6 + \/(pn + pa2e??)2— 4(py11+ poe —1)eM = 2660E, (A.2)

from which, after moving the first two terms on the left-hamdiesto the right-hand side

and taking the square of both sides, we obtain

2
(pr1+ p22e™)’ = 4(pri+ po2— 1) = (266% — P11 —P226A6) : (A.3)
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Now, by simply exchanging the second term on the left-hadd siith the term on the

right-hand side, we have

2
(p11+ P22€A9)2 - (266% —Pu —P226’)‘9) = 4(p11+ pa— 1)6A67 (A.4)

(2p11+ 2pase™’ — 2e79F) 2°CF = 4(py1 + poy — 1)V (A.5)
After further rearrangements, we have
(p11 + a2 — 1 — pa2e?@P)e = py 7 — 29", (A.6)

Solving the equation fok, we get

1 2005 (SNRO) 0C 5 (SNRO)
A*(SNR ) = — log, ( ¢ pue )

0 1 —pi1 —pa+ p22690E(SNR,9) (A.?)

which provides the maximum arrival rate in the ON state. We rmaw express the maxi-

mum arrival rate ag*(SNR 6) = PonA*(SNR #) and obtain the expression in (3.6). [

A.2 Proof of Theorem 3.1.2:

Let us define

0 m
b(0) = o—9Cs(SNRO) _ {e—@ Zi—lloge(lJrSNRzz-)} . (A.8)
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The following properties of> can be verified easily:

¥(0) =1, (A.9)

¥(0) =E {— Z logy (1 + sNrz; e~ =i 1°g2(1+SNRZ’i)} , (A.10)

i=1

. 2
zp(e) =K { (Z log, (1 + SNRZZ-)> e? ZTllOg?(HSNRZZ)} , (A.11)

i=1

and

i=1

)(0) =E { (Z log, (1 + SNRZ,-)) } (A.13)

¥(0) :—E{ZlOgQ(l—l-SNRZi)}, (A.12)

wherey» and+) denote the first and second derivatives/ofiith respect td, respectively.

Additionally, we define; ,(SNR ¢) as

Iiug(SNR ) = / 129). (A.14)

Therefore, by applying L'Hopital’s rule and lettirtlg— 0, maximum average arrival rate

and its slope can be easily found as

limr3,g(SNR 6) = £1(0), (A.15)

871;vg<SNF\)7 ‘9) o fl (0)
=T (A.16)

Now, replacinge~?“=(SNR®) with 4(6) in the expression of,(SNR 6) in (3.6), we can

expressfi(0) as

f10) = Pon[log, (1—p119(6)) —log, (1—p11 —p22)¥*(0)+p2t)(9))] - (A.17)
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£1(0) = Pon—g - (A.21)

1=pu(0)  (1=pi—p22)¥(0)+p2 ¥(0) o
=P0Nﬂ_p“ —l_p“_p”—l}zﬂ(ow[— ut +(1‘p”‘p22)2+1}(¢(o>)2}

d [ —p1h(0) (1—p11—pa2)ih(0) @D(O)]

L=pn L=pn (L=p11)? (1—pu)?
(A.22)
=~ 30 + (1) (4(0)) (A.23)
=—FE { <Z log, (1 + SNRZZ-)> } +(1—n) |E {Z log, (1 + SNRZZ-)} (A.24)

i=1 =1
Therefore, we derive, () whend — 0 as

; _ —p11¢(0) _ (1—P11—p22)¢(0) _@b(O)

F1(0) = Fow 1=pu(0)  (1—p11—p22)¥(0)+pa2 @D(O)] (A.18)
o —phu I—p11—p2 _ :

= Pon [1—2311 = 1} ¥ (0) (A.19)

=E {zm: log,(1 + SNRZi)} . (A.20)

1=1

Note that (A.18) follows by taking the first derivative of tlegpression in (A.17) with
respect td, and (A.19) is obtained using the property th@0) = 1. Finally, (A.20) and
hence the result in (3.7) immediately follow from (2.17),12) and (A.15).

Next, we determine the slope of the throughput in (3.8) asQb& exponent ap-
proaches zero. For this, we only need to derive the secondatiee expressiorfl(O),
which is done at the top of the next page. (A.21), (A.22) an@BAfollow from straight-
forward algebraic steps. Inserting (A.12) and (A.13) ikd@), we obtain (A.24). Finally,
the result in (3.8) follows by combining (A.24) and (A.16). O
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A.3 Proof of Theorem 3.1.3:

In the analysis of the high-SNR slope of the effective cayaiihas been shown in [49]

that

_% log, E {6—610g2(1+SNRz)}

_ ngQe 10g2 SNR + 0(1) |f 8 > 10g126 (A 25)

log, SNR+ O(1) if0<6< 2

log, e

wherez is exponentially distributed with unit mean. If we assune fading in each block

isi.i.d., then the effective capacity expression in (24€3omes

1 m
crom - (T
1 - —0lo SNRz;
= 7 log, (EE {ePlos1+SNRe )}> (A-27)
_ _% log, E { e~0105(1+SNR)) (A.28)

Furthermore, the maximum average arrival rate in (3.6) @Gaexpressed as

Tavg(SNR, 0)
P e20CE(SNRO) (1 _ »  o—0CE(SNRO)
S Y p— (= pu ) (A.29)
0 fCESNRO) (1 — p1y — pag) e 0CEENRE) 4 py))
P HCE(SNRO) (1 _ 4 o—0CEH(SNRY)
R ( e — ) (A.30)
0 (1 — p11 — pao) €7 0CENRI) 4 4o,
— Fon <1Og ICE(SNRO) 4 156 (1 — 16—6CE(SNR0>)
9 e e
— log, ((1 — P11 — Pag) e PCEENRO) p22) ) (A.31)
P,
= % log, e?C7(SNRO) | (1) (A.32)
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where (A.30) and (A.31) follow from straightforward algahr operations and (A.32) is
due to the fact tha€'z(snr ) increases without bound &R increases and hence the
terme—C=(SNRO) yanishes asymptotically in the formulations.

Finally, combining (A.25), (A.28), and (A.33), we immediat obtain the desired result
in (3.10) for the cases in which > 0. Whend = 0, the result follows from (3.7) in

Theorem 3.1.2. O

A.4 Proof of Theorem 3.1.4:

Using (2.22), we can rewrite (3.2) as
(0N — (a + B)— 20CE)° = (X — (a + )% + 4o (A.34)
which can further be simplified to
—20CE(20\ — 2(a+ B)— 20CE) = 4abd . (A.35)
Next, solving for)\, we obtain
_ 0Cp(s\RO) +a+ 3

A*(SNR,0) = Cp(snm 0) T o CE(SNR 6). (A.36)

Finally, using the expression in (2.24), we derive the maximaverage arrival rate given

in (3.14). 0



202

) (a+ 8 —log.¥(0)) G%)

; T ¥(0)
RO =l PO“{ a0 a-togu@p |
o+ —log, ¥(6) ¥(4)
"o log,w(0) 4(0) } (A-38)
o af W (0)
b P!+ e ] A9
=— PONO‘(JZLB&(O) (A.40)

=E {i log, (1 + SNRZZ-)} (A.41)

i=1

A.5 Proof of Theorem 3.1.5:

Similar as in the Proof of Theorem 3.1.2 in Appendix A.2, wéirter;, ,(SNR, 0) = sz(m

with
o+ B - loge w<9)

f2(0) = —Pon a —log, ¥ (0) log, 1(0). (A.37)

Now, we have (A.15) and (A.16) hold with replaced withf,. The remainder of the proof

requires only the determination of the first and second davies of f»(0) atd = 0. The
first derivativef2(0) is given at the top of the next page in (A.38)-(A.41). Note {#a38)
and (A.39) follow from straightforward algebraic stepsddA.40) is obtained by noting
the property thai)(0) = 1. Finally, (A.41) and hence the result in (3.15) immediately
follow from (2.23), (A.12) and (A.15).

Next, we obtain the slope expression in (3.16) in the limithess QoS exponertt ap-
proaches zero. For this, we characterize the second deei\ﬁadpressiorfg(o) on the next
page in (A.42)—(A.45) . (A.42), (A.43) are readily obtainead (A.44) is determined by
noting thaty>(0) = 1. We incorporate (A.12) and (A.13) into (A.44) to obtain (B)4The
result in (3.16) follows by combining (A.45) and (A.16) (Wif; replaced withf5). O
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60 do a — log, 1(0))?

B 208 (=33) (i(0) o 3o (io)
R PO“{@« log, 4(0)) (ww)) [ ] | 50 - (ww))

7(0) = Tim — Pors { [1 1 ap } Z(e) } (A.42)

(A.43)
. 23 N2
= —(0) + (1 - m) (@D(U)) (A.44)
. 2 28 m 2
=-FE { (; log,(1 + SNRZZ')> } +(1— m) E {;10g2(1 + SNRZi)}]
(A.45)

A.6 Proof of Theorem 3.1.7:

We find the maximum average arrival ratg,(SNR ¢) by incorporating (2.26) into (3.2)

and expressing (3.2) as

((e” =)A= (a+ B) — 20C)”

= ((" = DA = (a +B))” +4a(e’ — 1)A. (A.46)

Similarly as in the proof of Theorem 3.1.4, we can simplifg ttbove equality and solve

for the maximum Poisson arrival intensity in the ON statelitam

0 [0CE(sNR 0) + o + ]

A*(SNR, ) = (e?—1) [0CE(snr, ) + @

Cr(SNR 6). (A.47)

With this characterization, the maximum average arriva ria readily obtained from

(2.27). 0
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A.7 Proof of Theorem 3.1.8:

Employing f»(¢) defined in (A.37), we can express the maximum average aret@ias

0
Thg(SNR 0) = ej;Q(—)r (A.48)
Then, the throughput in the limit #sapproaches zero is given by
. _f(0)
tinrg(snR 0) = i 20— (o) (A.49)

Inserting the result from (A.41) into (A.49), we obtain (B)2Next, we determine the slope

of the throughput whefi approaches zero:

T i - G 450
T e
i med
AP g A5
_ fzéO) _ faéo)‘ (A.54)

(A.50) follows by taking the derivative of the expressior{A148) with respect t@. (A.51)

is obtained by simplifying (A.50). We apply L'Hopital’s rellon (A.51) to get (A.52) and
further simplify it in (A.53). Finally, we obtain (A.54), wbh we used to derive (3.22) by
inserting (A.41) and (A.45) into (A.54).
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A.8 Proof of Theorem 3.2.1:

When the arrival rate is fixed, the following equality holds:
Tavg(SNR, ) = C(SNR, 0). (A.55)

Therefore, in formulas (3.29), (3.31), we can 6sg0) and Cx(0) instead ofi,4(0) /m

andi

(0)/m respectively, where we have defin€g(SNR 0) = Cr(SNR #)/m as the

normalized effective capacity. Minimum energy per bit andetand slope becomes

Nomin Cp(0)’ (.59
and '
_2(Cp(0))?
Sy = CE(O) log, 2. (A.57)

Thus, we only need to obtain the first and second derivati/€3 (SNR 6) with respect to
SNR at SNR = 0 to determine the minimum energy per bit and wideband slope.fik&t

express the effective capacity given in (2.10) as
1
Cg(SNR) = —— log, 9(SNR) (A.58)
Om
where we have defined

0 m .
g(SNR) — E {6_ loge 2 Zi:l loge(l“rSNRZ'L) } ) (A59)
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Now, the first and second derivatives@f (SNR) with respect to SNR are easily seen to be

given by
Co(SNR) = —— ggzg and (A.60)
¢ n(SNR) = —%Q(SNWS(N:&F:][ g(SNRI® (A.61)

whereg andg denote the first and second derivatives of the function b reispect tsNR

and can be expressed as

g(SNR) = — f E{Ziz" ¢ g2 i 11°ge(1+SNRZ>} (A.62)

— 1 + sNrz;

and

9(SNR)
0 “ 22 0 2%
_ ]E 7 1]
log,2 {( ; (1+5sNRz;)? i log,2 Z; (1+sNrz;)(1 +SNRZj)>
0 s |
% ¢ Tog.2 ikl ge(1+SNRzz)}. (A.63)

Then, atSNR = 0, we have

Ep(0) = > E{=u} _ E{z} (A.64)

mlog,2  log, 2

and

0> 2311 cov{z, 2} +log.2 Y " E {27}
m(log, 2)°
m m 2
_ _9 > ijm1 2je1 COV{zi, 2} + mlog 2E {z%} (A.65)
m(log, 2)?

CE(O) ==
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where we have used the facts that” | E{z;} = mE{z} and} " E{z?} = mE{z*}
due to our assumption that the fading coefficients and thexdt;}'s are identically dis-
tributed.

Plugging the expressions in (A.64) and (A.65) into thoseArb6) and (A.57), we
readily obtain the minimum energy per bit and wideband ske@essions in (3.32) and

(3.33). m

A.9 Proof of Theorem 7.5.1:

To show the result, we need to obtain the first and secondadmesg ofr}, ,(SNR). We first

avg(

express the maximum average arrival rate in (3.6) as

g SNR 0) = 72 [log, (1~ pugSNR)) o, (G(SNR)

— loge ((1 — P11 — pgg)Q(SNR) —|—p22)] (A66)

where we have used the definition ta4t=(SNRO) — with g(SNR) defined in (A.59).

(SNR>
Taking the first derivative with respect 8NR, we obtain

Pon
0

—Pug(SNR)  §(SNR) (1 — pi1 — p22)Y(SNR)
1 —pud(SNR)  g(SNR) (1 —p11 — p22)9(SNR) + pos |

(A.67)

avg(SNRv 9)

Next, we letSNR — 0. Since the arrival rata — 0 whensSNR — 0, the equality in (A.67)

becomes
. 1 B
Taugl0, 0) = @PON 1 pilzlm -1 1pilp11p22] (A.68)
L @ mE{z}
== loge Z {z} = -3 (A.69)
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where Poy = ﬁ Plugging the result in (A.69) into (3.29), we immediateltain
(7.116).
In order to find the wideband slope, we first determine the rsaterivative of the

maximum average arrival rate with respects®R and then evaluate it &NR = 0 as

follows:

- Q(O) b1 (1 — P11 — P22)
awal0,0) =—=F, — -1

g g( ) 0 oN 1 —pn I —pn

[g(o)]2 P% (1 — P11 — p22)2
- Pon| — o 14
o N (1 —=pn)? (1 —p11)?
_ % Y (1—17) [g<9)] ‘ (A.70)

(A.70) follows from the fact thay(0) = 1, andn is defined in (3.9). Finally, inserting
(A.69) and (A.70) into (3.31), the wideband slope exprasgio(3.35) is readily obtained.
[

A.10 Proof of Theorem 3.3.3:

We differentiate the maximum average arrival rate expoesisi (3.14) with respect to SNR

and obtain

Tavg(SNR 6) = Pon

20C5(SNR)C5(SNR) + (o + 5)Cp(SNR)
0CE(SNR) + «

[0C%(SNR) + (o + 5)C(SNR)] #C 5 (SNR)

- (0CE(SNR) + )2 } - (A.71)

As SNR — 0, we can easily derive

a+f . o _ mE{z}
- Ce(0) =Cr(0) = og, 2 (A.72)

f’;vg(oa 9) = Pon
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where we use the facts th@i;(0) = 0 and Poy = pawE Plugging the result in (A.72) into
(3.29), we immediately obtain (6.6).
In order to determine the wideband slope, we additionakg the second derivative of

the maximum average arrival rate with respecsit® and evaluate it &NR = 0 as

Fad0.6) = C0) = 2225 (C(0)) (73)

Now, inserting the results in (A.72) and (A.73) into (3.3hdausing the formulations in

(A.64) and (A.65), we obtain (3.41). [ |

A.11 Proof of Theorem 3.2.4:

The proof is rather straightforward after realizing thaf(SNR,¢) of the MMPP source
given in (3.20) is equal to the maximum average arrival rathe Markov fluid source in
(3.14) scaled withee@—_l. Therefore, making use of the results in (A.72) and (A.73,0an
immediately express the first and second derivativeg gfSNR ) at SNR= 0 as

0C5(0) OmE{z}

Pl 0:0) = o= ) = = Dlog. 2 (A.74)

0

Favgl0,0) = @=1)

Cp(0) — a(%fﬁ) <C’E(0)>2} . (A.75)

Then, the expressions in (3.45) and (3.46) are obtaineduggpig (A.74) and (A.75) into
(3.29) and (3.31).
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A.12 Proof of Proposition 5.3.1

First, we define minimum energy per bit for the confidentiabesges as

By _ 0iPr(ly) (A.76)
NO min,i P"’;vgi(o)

wherei = 1, 2. Similarly for the common message, the minimum energy pdrdzomes

& . (1 - 51) PI‘(Pl) + (1 - 52) PI‘(FQ)
Nomno P2 (0) | (A7)

As the arrival rate is constant, we can use effective capaaitthe throughput formula.
Therefore, we can exchangg,,(0) with Cg(0) in the minimum energy per bit equation.
For the proofs, we primarily focus on th€sNR) function that is defined in (A.59).

Now, the first derivative o€z (SNR) with respect to SNR is easily seen to be given by

1g(sWR
0, 0,(SNR

Cpi(SNR) = (A.78)

whereg,(SNR) denote the first derivative of the function(gNR) with respect tesNR. It
can be readily seen that(@) = 1. If we usef;(SNR) as the instantaneous service rate in
nats (i.e.R;(SNR) = f;(SNR) log, 2), then we have the relation

0;

6:0) = 1, 5E {70} (A79)

where the first derivative expressiofi$0) for i = 0,1, 2 are given by

F1(0) =61 (21 — 22) 1{z1 > 2},
fg(O) = 52 (22 — Zl) 1{21 <2’2} ,

f()(O) = (1 — 51)221{21 222} + (1 — 52)211{21 <22} . (A80)
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By insertingf;(0) formulations above to (A.79), and thgy{0) to (A.78) consecutively, we
obtain the minimum energy per bit expressions for confid¢maimd common messages in

(5.17) - (5.19) using (A.76) and (A.77).

A.13 Proof of Proposition 5.3.2

First, we prove the result for the discrete Markov source né&d to obtain the first deriva-

tive of 73,4 (SNR). Let us rewrite the maximum average arrival rate in (3.6) as

FPon
0;

—log, ((1 — P11 — p22)gi(SNR)+p22)] (A.81)

avgi(SNR 6:) =" 2" [log, (1~ p11g;(SNR)) — lo, (g(SNR))

where g(SNR) is defined in (A.59). Taking the first derivative with resp&ztSNR, we

obtain
. FPon| —pugi(SNR)  d;(SNR)
* (SN ‘9@ — % )
Faugi (SNR 6:) 0; |1—p110;(SNR)  g;(SNR)
1 —py — . (SNR
(1= pi1 — p2)Gi(SNR) _ (A.82)
(1 = p11 — P22)G;(SNR) + oy
When we leiSNR — 0, the first derivative expression becomes
. _6,(0) Cpu . l-pu—pn|  [fi(0)
Favgi(0) = =p— Fon T T Ty ]_loge2 (A.83)

wherePoy = -——21_ Note that ¢0) = 1. Plugging the result in (A.80) and (A.93) into

2—p11—p22”
(A.76) and (A.77), we immediately obtain (5.17) - (5.19).

Now, we show the proof for the Markov fluid source. We evaluhte derivative of

Tavgi(SNR) in (3.14) with respect tsNRand obtain (A.84) given at the top of the next page.

When we letSNR — 0, the first derivative expression simplifies to
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- y_ Fon a |+ B —log, g(snr) o + 3 — log, g;(snr) g, (SNR)
avgi(SNR01) = == {loge GNRIR| "y o, g (v | T o~ lom, g(sw) g (SNR)
(A.84)
. Pona+ 8, (0
Tavgi(o) = atp ; f( ) (A.85)

0, « 6:0) = log, 2

where Poy = o135 Note that g0) = 1. Plugging the result in (A.80) and (A.85) into

(A.76) and (A.77), we immediately obtain (5.17) - (5.19).

A.14 Proof of Proposition 5.3.3

The proof is straightforward as we note that the maximumagyearrival rate;, ,; (SNR)

of discrete-time MMPP source in (5.13) is the scaled versidhat of the discrete Markov
source in (3.6). The scaling factori;éi—l. The same assertion can be made for the rela-
tionship between the maximum average arrival rates of noatis-time MMPP in (A.47)
and Markov fluid source in (3.14). Therefore, the minimumrgpeer bit expressions for
discrete-time and continuous-time MMPP sources can benmutdy scaling the formula-

tions in (5.17)-(5.19) wittf—.

A.15 Proof of Proposition 5.3.4

Let us recall that the wideband slope is given by

2(75,4(0))”

Sp = ———
’ i2g(0)

log, 2. (A.86)

When the arrival rate is constant, we can excharigg (SNR) with Cr;(SNR). For the
wideband slope, in addition to the first derivative of thetilghput, we also need to obtain

the second derivative of the throughput. Second derivaitofethe effective capacity at
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SNR = ( can be computed as

Oni(SNR) = — 91 [@(sNR) - (gstR))?] | (AST)

i | 9i(SNR) -\ g;(SNR)

To simplify this equation, we derive the second derivatii/g,0SNR) atSNR= 0 as

00) = ok (£} + (lgm {70)) (n.88)

e

where the second derivative expressigﬁmé) fori =0, 1,2 are given by

£i(0) = =67 [27 — 23] 1{z1 > =},
f2(0) = =62 [22 — 23] 1{z1 < 22},

fo(0) = —(1 =6 21{z > 2} — (1 — 62)221{z <2} . (A.89)

We insertf;(0) in (A.80) andf;(0) in (A.89) ontog,(0) in (A.79) andg,(0) in (A.88)
in order to obtain first and second derivative expressionthefeffective capacity. By
incorporating the (A.78) and (A.87) on (A.86) we obtain whded slope expression in
(5.39).

A.16 Proof of Proposition 5.3.5

In order to find the wideband slope, we need to determine tbenskederivative of the

maximum average arrival rate with respectsioR. As SNR — 0 the second derivative
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expression is given by

92(0) P11 (1 — P11 — p22)
=2 p| = 11—
0; o I —pn 1—pn
[gz(o>]2 p% (1—1711—]922)2
+ Pon| — 1 — 14— PP
0; o (1—p11)? (1 —pn)?
G060 (A.50)

wheren is defined in (3.9). The fact thgf(0) = 1 is taken into account in (A.90). Finally,
inserting (A.69) and (A.90) into (A.86), the wideband sl@gxpression in (5.30) is readily

obtained.

A.17 Proof of Proposition 5.3.6

In order to find the wideband slope, we need to determine tbenskederivative of the
maximum average arrival rate with respecsttR. WhensNR — 0, the second derivative

expression is given by

i

a(0,6,) = — Lo {%(@ 2B G0 - gi<o>>}

0, |az™ «o
G0 [g:(0))*
== (1-¢) G (A.91)

where( is defined in (3.17) and we again use the fact thét)g= 1. Finally, inserting

(A.85) and (A.91) into (A.86), we obtain the wideband slogpression in (5.34).
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A.18 Proof of Proposition 5.4.1

First, we define ¢SNR) = 1-P{I';} (1 — e~*) . For the ON-OFF discrete Markov source

the maximum average arrival rate can be rewritten as

N PON ( 11— pllg(SNR) )
SNR) = ~ Mg | A.92
avg( SNR) p % (1=p11—p22)9?(SNR) +p220(SNR) (A:%2)

In order to find the minimum energy per bit and wideband slepe need to determine
the first and second derivatives of the maximum averageahmae with respect teSNR
Initially, we take the first derivative of maximum average\al rate and leSNR — 0 as

follows:
fjgvg(o) = @ (A.93)

For this, we also need to characterize the first derivatigg 8¥R). We start with the Taylor

series expansion of the fixed raten the low-SNR regime:

=

b
SNR SNR? SNR?). A.94
log, 2 - log, 2 +ol ) ( )

Now, the first derivative of (BNR) is given by

§(SNR) = —LP{F FA—e ™) +P{D }36—_9A (A.95)
g ~ 9sNR U1 c YU OsNR’ '
As SNR — 0, we have\ — 0. Therefore aBNR = 0, we have
9(0) = lim P{T }(—e)e—”ﬂ (A.96)
I = o Rho T U OSNR’ '

To proceed we need to obtain the probability expres§ién, }. For independent and
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exponentially distributed; andz; with unit mean, we can obtain

P{I'} = / e = / e “dzydzy (A.97)
0 2>"yZQ+S—2>\|\Té
g (A.98)
- 22y +1° '
Now, we can simplify the expression in (A.96) as
e ® a
9(0) = — A.99

and inserting this expression into (3.29), we obtain theimmirm energy per bit as

Eb L 0 (7+1)10ge2

o _ A.100
NO min g(O) ae”" ( )

Finally, we want to determine the smallest possible mininauargy per bit expression. It
can be easily seen that the smallest value for the minimumygmper bit is obtained when
a = 1, leading to the minimum energy per bit expression in (5.44).

In order to find the wideband slope, we first determine the rsaterivative of the
maximum average arrival rate with respects®R and then evaluate it &NR = 0 as
follows:

P (0) — _w + (1 _ n)i (A.lOl)

avg

Note thaty, is defined in (3.9). The first derivative of gNR) at SNR = 0 is given by (A.96),

and the second derivative is
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. T 8P{F1} 86_9)‘ 86_”
9(0) = Srhlgio JSNR OSNR | P{Fl}é)SNR2

e 0 5 2a*y Oa?
= 2b(a —1)] . A.103
v+ 1log, 2 a+7+1+loge2+ (a=1) ( )

(A.102)

The wideband slope expression can be determined inseln@fg$t and second deriva-

tive expressions in (A.93) and (A.101) into (3.31):

2160)°
So = = —— log, 2 (A.104)
W5 (G0))
1
_ . A.105)
0(n—1) 0 atl | 2b(a—1) (
2lZg€2 + log, 2e—¢ + e*l“ + aZe=¢

Since the wideband slope is defined as the slope at the miniemamgy per bit, we set
a = 1. Note that with this choice, parametevanishes a8b(a — 1) — 0in (A.105). Thus,

we obtain the formulation in (5.45).

A.19 Proof of Proposition 5.4.2

The maximum average arrival rate of Markov fluid source carebeitten as

r;vg(SNR) =—

PON|:1_|_ B

: o). @06

a—log,(g(sNR

By taking the first derivative of the expression in (A.106Qdatting SNR — 0, we

obtain the following:

. P, . 500
Fag(0) = —% {1 + g} 9(0) = —%. (A.107)

By combining (A.107) with (A.99) as — 1, and inserting into (3.29), we obtain the

minimum energy per bit given in (5.47).
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Now, we take the second derivative of the maximum averageahrate with respect to

SNRand then evaluate it &\R — 0

o= = (B 1= D)o+ (1+2)a0)]  aaom

~9(00) [9(0)]°
_ 7+(1—O ; (A.109)

Note that,( is defined in (3.17). We derive the wideband slope expredsyonsing
(A.107), (A.109) and (3.31). Again, since the wideband slgpdefined at the minimum

energy per bit, we set = 1 and obtain the formulation in (5.48).
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