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ABSTRACT 

Silicon micropattern devices are crucial components of detector 

systems designed to study decays of exotic subatomic particles containing 

beauty and charm quarks. Among the technologies under consideration for 

use in future particle physics experiments are edgeless silicon pixel detectors. 

In these devices a state-of-the-art fabrication process is used to create sensors 

with a nearly full active area, as compared to conventional sensors which have a 

“guard ring” which is a dead region at the sensor periphery. Prototypes used for 

the study described in this paper were designed and fabricated by VTT Technical 

Research Centre of Finland. In a test beam study, we find that these devices 

perform in accordance with expectations and fulfill the technical needs of their 

intended implementation. This active edge technology is indeed efficient in 

maximizing the useful area of the sensor. More broadly, these devices meet the 

needs of a detector for particle physics, and may also find a role in medical 

imaging or X-ray spectroscopy. 
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EXECUTIVE SUMMARY 

My Capstone Project is a scientific assessment of a new type of detector 

for use in experimental particle physics. In this field, a large team of scientists 

typically designs a large experimental apparatus comprising several types of 

individual detector devices, a data acquisition system, and data processing 

software. The purpose of this detector system is to measure and record 

information on the sub-nuclear particles produced in the energetic proton-proton 

collisions produced at a particle accelerator. An amount of data taken during a 

run of extended duration constitutes a holistic data set, which is studied by a 

multitude of researchers with the goal of confirming theoretical expectations or 

observing new physical processes. The quality of the resulting physics analysis 

depends on the design and performance of the individual detectors, the triggering 

scheme, the amount of data taken, and the resulting experimental uncertainties 

derived from the apparatus and the analysis procedures. Thus, particle physicists 

take on a variety of roles in investigating new analysis methods, and designing or 

building the next generation of detectors. Meanwhile, outside experts such as 

engineers and manufacturers often contribute to this massive and multifaceted 

effort. The work I have done serves as a substantive contribution to the ongoing 

effort to design more effective detectors for particle physics experiments. 

 The High-Energy Physics Group at Syracuse University is one of several 

groups around the world which collaborates on the LHCb experiment. LHCb is 

one of four main experiments at the Large Hadron Collider (LHC) at CERN (the 

European Organization for Nuclear Research) located in Geneva, Switzerland. 

LHCb is specifically intended for the study of the decays of beauty-flavored 

hadrons and other exotic particles, which the LHC’s proton-proton collisions are 
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capable of producing in great numbers. In particle physics, B-mesons are a 

species of particle composed of a quark and an anti-quark: a bottom quark plus 

an up, down, strange, or charm anti-quark (the latter being the antimatter version 

of a quark). The decay of B-mesons are particularly revealing in the study CP-

symmetry, a discrete and fundamental property of the basic forces governing the 

universe. CP symmetry gives that the basic laws of physics are invariant under 

the compound operation of mirror inversion plus a change of particle to anti-

particle. However this symmetry’s main importance is held by its breaking, called 

CP violation, which although very tiny, is one of the essential ingredients in our 

understanding of the stable matter universe that we experience today. The Big 

Bang created equal amounts of matter and antimatter, but this now seems quite 

preposterous, since we see a preponderance of matter over antimatter in the 

observable Universe. This is the basic reason why CP violation must be explored 

and understood. While the Standard Model of particle physics incorporates CP 

violation, the parameters which quantify its role in particle interactions are not 

known with satisfactory experimental precision. Furthermore, it is possible that 

aspects of the model are wrong, and “new physics” may be found. 

 The LHCb experimental apparatus consists of several detector devices 

which serve in studying the aforementioned physics by specializing in measuring 

different characteristics of the particles produced in proton-proton collisions. 

Altogether, the apparatus gathers information about the identity, trajectory, 

momentum and energy of those particles produced, and can identify individual 

particles of interest from the billions spraying out from the collision point. The first 

line of detection is the Vertex Locator, or VELO, which constitutes about 40 

planes of silicon detectors only 8 mm from the beam pipe. As exotic particles and 

their decay products pass through these detectors, a 3-dimensional “electronic 
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photograph” is taken of the process, providing information about the decays 

which physicists aim to study. A better detector would provide more accurate and 

useful information for the analysis; this is the one of the motivations behind the 

LHCb Upgrade project. Numerous devices for future generations of the tracking 

system have been under consideration for some time, including silicon strip 

detectors, silicon pixel detectors, and diamond detectors. I will omit a discussion 

of the advantages and drawbacks of these various types of detectors and instead 

henceforth focus on the particular candidate device which I have studied, namely 

edgeless silicon pixel detectors. 

 Prior generations of silicon detectors have been designed with a dead 

region at the periphery which cannot serve in detection. The purpose of this dead 

region is to host a “guard ring” which maintains a regulated voltage drop between 

the active region and the detector edge for stable operation. The prototype 

devices which I have studied are revamped silicon pixel detectors which feature 

a very small inactive region at the edge, designed by VTT Technical Research 

Centre of Finland. The reduced edge means that in a plane featuring an array of 

many such devices, a higher proportion of the planar area is active in tracking 

particles. The necessary overlapping would also be reduced, minimizing 

unwanted material effects. For an idea of scale, these devices have a size of 

about 1.4 cm x 1.4 cm, with an edge region of less than 0.1 mm. The active part 

of the device comprises a 256 x 256 matrix of pixel detectors, each only 55 μm in 

size. 

 The main test of these devices was conducted in a particle beam at 

CERN in 2012. The test beam setup consists of several pixel detectors in parallel 

which serve as reference, with the device under test in the middle. A pion particle 

beam is directed through all of the devices, each of which individually provides 
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detection information that is used to calculate the tracks of individual particles. 

Using this data in the analysis, we learn much about the performance of the 

detector. A central measure of the quality and accuracy of the device is the 

spatial resolution, which comes on the order of micrometers. This quantifies the 

precision with which the device locates particles passing through. The procedure 

for ascertaining the resolution is as follows. During data taking, the beam 

particles register a hit on each device in the test setup. Sometimes the particle 

deposits charge in more than one pixel, which is handled algorithmically as a hit 

cluster (otherwise it is a 1-pixel cluster). When this data is analyzed, tracks are 

fitted through the hit clusters which approximate the trajectories of the incident 

particles. The residual of a fitted track is calculated by taking the difference 

between the position of the associated hit on the device under test and the 

position where the fitted track intercepts the device. Through fitting a high 

number of tracks, the residual forms a distribution which is somewhat normal. 

The standard deviation of this residual distribution constitutes the spatial 

resolution. 

 The algorithm used to determine the position of a hit cluster is important 

in determining the resolution. While a 1-pixel hit cluster only carries information 

about the amount of charge deposited in a single pixel, a 2-pixel hit cluster 

carries this information for the 2 adjacent pixels. This means that the relative 

amount of charge deposited in the pixels constituting the cluster can be used to 

more accurately estimate the place where the particle actually hit the device. 

Various algorithms are discussed in the scientific literature for optimizing the 

resolution using different formulae to relate the charge deposition topology to 

reconstructed spatial coordinate.  
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Beyond the mathematics of the problem, there is an electronics concern 

rooted in the fact that for a particular device, there may exist a nonlinear 

relationship between the charge deposited in a pixel and the signal read out. 

Thus, a charge calibration which accurately quantifies this relationship allows 

non-linear charge weighting and can theoretically improve the calculation of hit 

position for multiple-pixel clusters as previously described—and improve the 

spatial resolution. This was largely outlined in a 1993 paper by R. Turchetta. 

Since the accuracy of determining the hit position differs depending on cluster 

sizes, there is an angular effect noted in Turchetta’s paper. In brief, a beam of 

incident particles at perpendicular incidence will create a large number of 1-pixel 

clusters with some 2-pixel clusters as well. However, if the device is rotated 

slightly so that the beam is no longer perpendicular to the device, the paths of the 

individual particles are more likely to span pixels whilst traversing the detector, 

creating a preponderance of 2-pixel clusters. As the angle is increased further, 

one begins to see the 2-pixel clusters supplanted by more 3- and even 4-pixel 

clusters. Algorithmically, 2-pixel clusters are optimal for accurately determining 

the hit positions, so the spatial resolution is optimized at an angle of incidence 

where 2-pixel clusters dominate the most. As such, an important part of my study 

was determining the spatial resolution as a function of angle to find this optimum 

point. 

The two devices I studied both exhibited a local minimum in the spatial 

resolution at a moderate angle of incidence close to that predicted for their 

particular geometry.  The resolution performs identically in the horizontal and 

vertical directions of the chip at normal incidence, but the dependence on angle 

was only investigated in the horizontal or X direction. After using a charge 

calibration taken by colleagues at NIKHEF in Amsterdam, and applying further 
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empirical corrections to the cluster algorithms, the resolution improved 

substantially. For one device, F08-W0171, the improvement in resolution at a 

particular threshold was shown to be from 5.56 μm to 5.05 μm. By comparison, 

the individual pixels are 55 μm wide. 

A noted concern with these prototype edgeless sensors is potential 

distortion effects which may appear near the edge of the active region. Prior 

simulations and analyses by other members of the collaboration give reason to 

doubt the fidelity of the edge regions. Due to the reduced area of the guard ring, 

the bias voltage applied across the chip creates a distorted electric field at the 

edges which creates an artificial dominance of 2-pixel clusters and thus hampers 

the efficiency of associating hit clusters to tracks. Formally, the efficiency is the 

ratio of the number of particle tracks associated with hits on the device to the 

total number of tracks impinging on the device. My study examines the devices’ 

efficiency and functionality at the edges in order to evaluate whether the edge 

distortion is problematic for possible implementations. 

I found that the devices performed very well at the edge, in agreement 

with concurrent work by our collaborators at NIKHEF. The devices remained near 

100% efficiency up to and including the pixels at the device boundary. In both, 

efficiency dropped significantly only within several micrometers of the edge—well 

past the last row of pixels. However, we did find confirmation of the 

aforementioned distortion effect near the edges which adulterates the quality of 

any clustering algorithm there. 

Due to my work analyzing these devices, I conclude that the device 

performance is accurate and reliable. While my work is a small part of a much 

larger collaborative effort in the detector physics community, elements of my 

study serve as an original contribution to the collective knowledge of these state-
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of the-art devices. In conjunction with work done by others in the collaboration 

working with other prototypes, this validates consideration of the use of 

“edgeless” silicon detectors for particle physics experiments. In addition, such 

devices may find a future in medical imaging and X-ray crystallography (which 

have historically been dominated by silicon strip detectors). Principally, the 

advanced properties of these detectors place them at the forefront of 

experimental detector technology, with the potential to provide to physicists the 

data of tomorrow. 

1 THEORETICAL MOTIVATION 

The LHCb experiment is dedicated to the experimental study of heavy 

flavor physics at the Large Hadron Collider (LHC), the world’s highest energy 

accelerator located at CERN (the European Organization for Nuclear Research) 

in Geneva, Switzerland. The primary purposes of LHCb are to observe 

interesting decay modes of two types of fundamental sub-nuclear particles: 

beauty and charm hadrons, and to find evidence of new physics. One of the 

possible manifestations of new physics is the uncovering of new sources of CP 

violation. CP violation is an important question which must be addressed: the 

scientific community has no complete explanation for why the universe is 

populated by a disproportionate amount of matter, while antimatter is virtually 

nonexistent. After the Big Bang a situation where matter and antimatter were 

present in equal quantities evolved in the current matter-dominated universe. An 

essential ingredient for this transition is CP violation. In the current understanding 

of the subatomic particle interactions (the Standard Model) CP violation is 

incorporated in the so-called CKM matrix. However this source of CP violation is 
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too small to explain the baryon excess in the current universe. Thus new sources 

of CP violation are expected. In general, new physics is expected to manifest 

itself in flavor physics, and there are strong theory motivations to expect 

deviations from standard model expectations in beauty and charm decays.  The 

reason LHCb was proposed to explore this rich phenomenology in search of 

clues that can lead us to a deeper understanding of CP violation. 

The CKM mechanism is the Standard Model’s parameterization of flavor-

changing weak decays of quarks.1 This matrix is unitary, and thus for 3 

generations of quarks it encompasses 4 independent parameters, one of which 

describes CP violation in the quark sector: 

   
  
  
  

     
         
         
         

    
 
 
 
   . ( 1 ) 

The charged current interactions couple each up-type quark [ (u)p, (c)harm, and 

(t)op] with a linear combination of  down-type quarks [ (d)own, (s)trange, and 

(b)ottom ]. Furthermore, by properties of unitary matrices,   

                             , ( 2 ) 

where     represents the identity matrix and    is the scalar complex conjugate of 

 . Existing analyses of experimental data offer a fairly sturdy determination of the 

CKM matrix elements: 

          

                                             
        

                                           
       

                
                     

                        
         

   . ( 3 ) 

A significant portion of current effort in analyzing data from LHCb is 

devoted toward an accurate parameterization of the CKM mechanism. The 

unitarity of the CKM matrix allows the construction of a unitary triangle based on 
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its matrix elements. In order for the 

Standard Model to be self-consistent, 

this triangle must be unitary and hence 

must close, as seen in Error! 

Reference source not found.. 

2 THE LHCB 

EXPERIMENT 
 

Supercolliders such as the LHC produce exotic decays in the debris 

produced by the proton-proton collisions at high energy. In conjunction with this, 

an experimental apparatus such as the LHCb detector is needed which captures 

information about these exotic decays. Such system is placed under many 

demands and constraints which are summarized to follow. Various detector 

devices operate synchronously to provide information which allows identification 

of particles and calculation of their trajectory, momentum, and energy. The 

quality of the resulting data analysis hinges on the quality of information available 

from the detector. Huge numbers of events are created during a data-taking run, 

generating an enormous amount of data that cannot be all processed and stored. 

A trigger algorithm is needed to filter the “needle in the haystack” which is the 

useful information. This trigger is crucial and relies on very fast detectors that are 

the first line of detection for the collider’s products. Each collision produces 

hundreds of tracks, and there are a few collisions every 50 ns. Most of this data 

has to be thrown out expediently, requiring sensor devices and front end 

electronics close to the collision point. This introduces an additional complication 

in that the experiment generates substantial radiation which damages sensitive 

Figure 1.1. Unitary triangle formed from 

parameters of CKM matrix. 
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electronics such as particle detectors and computer chips over time. Various 

teams at collaborating institutions each contribute to specific detector 

subsystems that collectively make up the monstrous complexity that is the LHCb 

detector. 

The Vertex Locator (VELO) is an important component of the existing 

implementation of the LHCb detector, the development of which Syracuse 

University’s High-Energy Physics group has been a large contributor. Its purpose 

is to reconstruct the vertex topology of the events produced in the pp interaction. 

As beauty and charm are relatively “long lived” quarks, their distinct signature is a 

displaced vertex. This shows the importance of a precise vertex reconstruction in 

our experiment. The VELO detector is the closest to the interaction point of the 

collider, thus it operates in a severe, non-uniform radiation environment, while 

maintaining spatial precision on the order of 4 µm.2 The lifetime of the LHCb 

experiment provides for several upgrades in order to improve the apparatus for 

higher collider beam energies; considerable effort has gone toward development 

of detector technologies which could allow us to improve on the VELO for the 

LHCb upgrade. The criteria for these novel technologies include high spatial 

precision and resistance to radiation dose over time (radiation-hardness). Among 

the technologies under consideration are edgeless silicon pixel detectors, silicon 

microstrip detectors, and synthetic diamond detectors. 
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2.1 SILICON PIXEL DETECTORS AND THE LHCB VELO UPGRADE 

In a silicon detector, a charged particle of sufficient energy passing 

through the silicon bulk causes ionization. This frees electrons from the 

silicon atoms; the new electron vacancies constitute a positive charge carrier 

called “holes.” Typically, about 24,000 electron-hole pairs are produced. A 

reverse bias across the sensor is applied, causing both charge carriers to drift 

apart toward collecting electrodes. This induces an electronic signal which 

can be amplified, and if the electrodes are segmented into pixels, this 

provides information on where and when the particle traversed the detector. 

 

 

Figure 2.1. Cutaway diagram of a silicon pixel detector. 

 

A study published by R. Turchetta in 1993 examined various tracking 

algorithms for silicon microstrip detectors, and the associated methods for 

determining the spatial resolution of the detector.3 (The spatial resolution serves 

as a measure of the device’s precision or quality.)  The paper, which is relevant 

for both strip and pixel-based detectors, considers algorithms for incident 

particles impinging at near-normal angle as well as for larger angles. At near-

normal incidence (θ = 0°), the vast majority of hits form 1- or 2-pixel cluster hits 

on the device by passing through 1 or 2 adjacent pixels and depositing sufficient 
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charge to be registered as a cluster. Here, 2-pixel clusters are more useful in 

accurately determining the position of the hit, so the paper theoretically predicts 

optimal resolution at an angle where 2-pixel clusters are dominant. This local 

minimum is quoted as 

            
 

 
  , ( 4 ) 

 

where P is the pitch of the device (i.e., the width of the individual pixels), and t is 

the thickness of the detector.  

An experimental test of silicon pixel detectors was conducted in 2009 and 

published in 2011 in order to assess the viability of such devices for use in a 

future device or upgrade.4 This prior study established a methodology along with 

substantial software for evaluating the devices on multiple criteria. The particular 

devices tested were of the TimePix make, with individual pixels of size 55 x 55 

µm, planar size 1.4 x 1.4 cm, and thickness 300 µm. The relevant contributions 

of the study are the electronics setup of the test bench for data acquisition, 

calibrations of the device, empirical corrections to the data, and confirmation of 

the aforementioned relationship between spatial resolution and incident angle. 

Moreover, the study revealed a best spatial precision on the order of 4 µm, 

which places these pixel detectors in the same league as the previously 

mentioned VELO technology. What was not detailed in this paper which is 

very important to the viability of an implementation is the fact that the device 

design possesses a significant guard ring area at the device periphery where 

there is no detection capability. This limits the usefulness of an 

implementation somewhat because the total area of a large plane composed 

of these devices would suffer from dead regions near the edge of each 
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constituent device. Hence, this leads to the present study which we have 

conducted an examination of a new class of pixel detector prototypes that 

attempt to assuage this problem with a reduced guard ring—so-called 

“edgeless” sensors. 

    The prototypes used for the study described in this paper were 

designed by VTT Technical Research Centre of Finland, whose team developed 

a state-of-the-art fabrication process to create sensors with a negligible guard 

ring at the sensor edges.5  Furthermore the edge is “active” in that it is doped to 

participate in charge collection. The intention of such a feature is to allow a tile-

like arrangement of many of these sensors to create a large-area imaging array 

for an implementation such as the upgrade to the VELO detector. Preliminary 

tests done by VTT reveal some strange behavior in the edge regions of these 

devices such as an increased response in the second-to-last row of pixels near 

the edge compared to the rest of the chip, and a decreased response in the last 

row. However, another team reported a “world record” of less than 2 μm-wide 

region of insensitivity at the edge of the chip for an n-on-n edgeless pixel detector 

coupled to TimePix readout.6 This is exactly the class of chip which we chose to 

study, and that for which we examined in detail the efficiency at the edge. 
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3 TEST DEVICES 

 The two test devices which we studied extensively were designated F08-

W0171 and H08-W0171. For simplicity we shall refer to them as F08 and H08. 

These prototype sensors were produced by VTT and share several 

characteristics. 

 F08 H08 

Thickness 200 μm 200 μm 

Pitch 55 μm 55 μm 

Sensor Type n-on-n n-on-n 

Pixel-to-Edge Distance 55 μm 100 μm, floating guard ring 

Predicted Optimal 
Angle 

15.4° 15.4° 

Table 1 

These devices each saw some travel, having been transported to both Syracuse 

and NIKHEF for calibration and other tests after the testbeam procedure 

described in the following section was conducted at CERN in 2011. 

 

4 EXPERIMENTAL METHODS 

4.1 THE TIMEPIX TESTBEAM RUN 

The test devices of interest to this paper, as well as others, were 

experimentally tested in 2012 at CERN using a test beam setup. The object of 

this setup is to evaluate the performance of a detector device using several other 

position-sensitive devices as reference. The physical apparatus of the test, called 

the tracking telescope, consists of 9 TimePix reference planes in a parallel 

arrangement, sandwiched between two scintillators. The reference planes are 

silicon pixel detectors, from a previous iteration of the TimePix design, with 300 

µm thickness; they are mounted on rails such that depending on the test in 
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question, the distance between the individual devices can be adjusted. This is 

shown in Figure 4.1. Additionally, various electronics modules assist in 

generating and recording trigger signals from these devices. A collimated pion 

beam was used to register hits on the devices for the test. Data is read out from 

the reference planes using RelaxD data acquisition modules.  

 We note the following details in the electronics setup for thoroughness. 

The data-taking operation of the test beam is based on the concept of a shutter. 

When the two scintillators fire in coincidence, the shutter is opened and the 

devices begin data taking. Simultaneously, the setup counts the number of 

scintillator triggers prior to opening, and closes the shutter after either a certain 

amount of time has elapsed or a certain number of triggers has been received, 

whichever happens first. During the periods in which the shutter is opened, the 

devices involved in the telescope test have the capability to take data either in 

Time-over-Threshold (TOT) mode or Time-of-Arrival (TOA) mode. In TOT mode, 

the device measures the time interval in which the charge continuously collected 

from each pixel surpasses (or is “over”) the minimum charge threshold of the 

device. This may be used to ascertain the amount of charge deposited by a 

particle passing through one or more pixels. However, there is a nontrivial 

relationship between TOT information and deposited charge which will be 

discussed later. In TOA mode, the device measures the time between the 

previously-mentioned charge threshold crossing and the shutter closing. 

Together, the reference planes operating in TOT and TOA mode provide an 

accurate history and location of the tracks of the beam particles. This may be 

used as a reference for the device under test (DUT): another sensor placed in 

the middle of the telescope setup on a rotation stage, whose properties we wish 

to measure. The DUT is operated in TOT mode for intensive study of its 
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properties. The purpose of the rotation stage was to allow the angle of incidence 

of the beam on the device under test to vary. This test setup was used to gather 

the data on which the present analysis on various aspects of the detector was 

performed. 

 

 

 

Figure 4.1.  Example of device arrangement for the 2011 TimePix test beam setup. 

 

4.2 SPATIAL RESOLUTION 

 The primary measure of the device performance is the spatial resolution. 

We calculate this as follows: When a constituent particle of the beam passes 

through the telescope, it registers a hit on each device of the telescope. This is 

detected by creating an electronic signal in one or more pixels of the silicon pixel 

array of each device. The software written to analyze this data reconstructs 

particle tracks through these hits on the reference planes. Next, these tracks are 
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projected onto the device under test and the location where the tracks impinge 

on the device under test is calculated. The software then attempts to match these 

tracks with hits on the device under test by pairing hits with nearby impinging 

tracks. The difference between the hit position and the projected track intercept 

on the DUT in the horizontal (x) or vertical (y) direction constitutes the residual in 

x or y for that particular association. With many hits, the residuals form a 

distribution; the standard deviation of this distribution defines the spatial 

resolution in x or y for the device. That measures how well the incident track can 

be localized. Using the rotation stage, data was taken over a range of angular 

values for the two test devices to determine the relationship of spatial resolution 

versus incident angle. 

 

Figure 4.2. Cluster width in X as a function of angular orientation for F08 device. 

 Because the rotation stage itself is subject to some measurement error, a 

method was established in the prior study for determining the absolute 0-degree 

angle. In other words, there may be some intrinsic angular offset which must be 
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accounted for when examining the resolution as a function of angle. The method 

used to determine this intrinsic offset relies on the known relationship between 

angle of incidence and cluster width. For example, as the angular rotation of the 

device in y is increased, a beam particle will on average cross more pixels as it 

traverses the device, thereby creating hit clusters with a greater width in x. The 

proportion of hit clusters of different widths changes with angle; its shape can be 

examined for where 1-pixel-wide clusters appear the most to determine the 

intrinsic offset, as shown in Figure 4.2. 

The prior study established that there exists a nonlinear relationship 

between the amount of charge collected from a pixel in the detector and the 

corresponding response of the electronics. While the devices are expected to 

perform reasonably well when this relationship is assumed to be linear, it was 

shown previously that the device resolution can be improved through a charge 

calibration which quantifies this nonlinear relationship for the device. This 

calibration is performed by using a purely electronic setup to pass test pulses of 

varying amount to the individual channels of the device (65,536 in all) and 

reading out the response. In theory, a separate calibration curve could be fit to 

data for each individual channel, which would most accurately calibrate the data 

obtained from the test beam for calculating the residuals. However, there are 

several issues with this approach. Fitting 65,536 curves is extremely 

computationally expensive. Moreover, an actual implementation of such devices 

would comprise a substantial number of sensors which would make this method 

too prohibitively complicated. Hence, the per-pixel method was discarded in favor 

of an average calibration which applies a single response function to the entire 

chip. 
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 To perform the calibration, the test devices were shipped to NIKHEF 

where, using a test setup, 256 channels evenly spaced across the chip were 

pulsed. The calibration data for these channels was then averaged together, and 

a surrogate function fit to this data to obtain the average calibration. The form of 

the function is 

 

                     
 

   
 , ( 5 ) 

where gain, ToT0, c, and T are parameters. As a small correction, when 

performing the fit the function is convolved with a Gaussian to account for 

electronic noise in the channel 

  

                       
 

   
    

    
        

   
   . ( 6 ) 

 

The surrogate function fit to the data for the H08 device is shown in Figure 4.3. 

 One concern with the charge calibration was whether the channel 

response was more or less the same for different channels. In order to address 

this concern, we fit each of the 256 tested channels with the surrogate function to 

observe any variation of the calibration parameters across the chip. The variation 

among channels proved to be substantial, but we nonetheless confirmed the 

efficacy of the average calibration across the chip after subsequent corrections 

were performed.  
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Figure 4.3. Surrogate function fit for the average calibration across the H08 chip. 

After the calibration, it is necessary to apply another correction in order to 

account for non-linear charge sharing. This phenomenon arises due to the 

physical effects in the detector. Since the pixel size is large compared to the 

diffusion width of drifting electrons in 200 μm thick silicon, charge sharing among 

pixels in a hit cluster is imperfect, and this hampers the accuracy of the hit 

position determination. The charge sharing behavior is captured well in a quantity 

η, which for our purposes is a 2-dimensional distribution of the calculated position 

of a hit versus the position of the track with which it is associated. Perfectly linear 

charge weighting would result in this distribution clustering around a simple linear 

function. Empirically, this is not what is found. It turns out that the charge offset 

which is initially unaccounted for prior to charge calibration helps to mitigate the 

nonlinear η shape, and that after applying the charge calibration the charge 

sharing actually worsens. Thus, we apply an empirical correction in the following 

way. First, we identify the necessary correction to the η distribution by fitting a 5th-

degree polynomial function to the profile of the inverse η distribution from a small 

sample of the data. An example of this fit is shown in Figure 4.4. Then, this 
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inverse function is applied to the complementary data, and the resultant η 

distribution is linear. Once the charge calibration and η-correction have been 

determined, the benefits of such efforts become clear in the way of an improved 

spatial resolution, especially at normal incidence.  

 

Figure 4.4. Fit to the inverse eta profile for F08 at 1000e threshold to determine the empirical correction. 

After the study of the spatial resolution’s angular dependence and 

improvements thereof, the effects of different charge collection thresholds and 

bias voltages on the performance of the device under test were also studied. For 

the F08 device, the spatial resolution study was conducted at four different 

thresholds; for the H08 device, the spatial resolution study was conducted at four 

different bias voltages. 

4.3 EFFICIENCY AT THE SENSOR EDGE 

Another important aspect of the test devices which we wish to evaluate is 

their performance at the very edge of the chip. This is important for evaluating 

that the usable area of the sensor is maximized. The figure of merit to be used at 

the edge of the device is the track-matching efficiency. In the data taken from the 
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test beam setup, the device registers many hits whose position is calculated from 

charge-weighting algorithms. In the domain of a given pixel, there are a number 

of hits located there. A fraction of these hits are associable with reference tracks; 

this defines the track-matching efficiency. These are considered “real” hits. When 

the test beam is focused on the center regions of the device under test, this 

fraction is nearly 100%. For data runs where the beam is focused at the edge to 

study the behavior there, we expect a quick drop-off close to the edge, with the 

key figure being, how close to the edge the device still performs efficiently. We 

omit a detailed discussion of the reasons for strange behavior at the edge other 

than the fact that we expect a distorted electric field in the peripheral regions to 

be partly responsible for these edge effects. 

 

5 RESULTS 

5.1 SPATIAL RESOLUTION STUDY 

Firstly, we note that the previously discussed calibration and η correction 

procedures were effective in improving the spatial resolution of the device. The 

benefit of these corrections to the residual distributions was ubiquitous but most 

dramatic at normal incidence. The contribution from 2-pixel-width clusters to the 

overall residual distribution improved the most after applying the corrections. See 

Error! Reference source not found. for an example of the improvement in 

residuals for the F08 device. 

The two test devices have thickness 200 µm and pitch 55 µm, 

corresponding to a prediction of 15.4° for the local minimum. With both devices, 

we found a relationship of spatial resolution versus angle of incidence which 
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qualitatively agreed with the Turchetta prediction. With increasing angle from 

normal incidence, the resolution improved toward a local minimum on the order 

of 4 µm in the vicinity of 15°. The charge sharing corrections improved the 

resolution substantially away from this local minimum, e.g., at normal incidence.  

 

Figure 5.1. Residuals for F08 at normal incidence before and after applying corrections. 

For the F08 device, the resolution exhibits this optimal angle at three 

different thresholds (750e, 1000e, 2000e), as seen in Figure 5.2. These 

thresholds signify the minimum number of electrons which must be read out from 

the device in order to register a hit. The lowest threshold, 750e, lies very close to 

the “noise threshold” which is the amplitude of fluctuations caused by purely 

random noise signals in the electronics. As the threshold is increased to 1000e 

and 2000e, the structure of the angle scan changes little. The data taken at 

3000e did not include as broad an angular range but serves as a sanity check: 

the magnitude of the resolution near the local maximum at 0° remains constant 

across the thresholds. For the H08 device, the results are similarly encouraging, 

(a) before 

correction 

(b) after 

correction 
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for different biases, and show best spatial resolution on the order of 4 µm.  This 

is indicated in Figure 5.3. 
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Fig. 4.3.1 
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Figure 5.2. Spatial resolution versus angle for the F08 device at four different charge collection 
thresholds, denoted by the number of electrons: 750e, 1000e, 2000e, and 3000e. 
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Figure 5.3. Spatial resolution versus angle for H08 device at four different reverse bias voltages: -40 V, -
60 V, -80 V and -100 V.   
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5.2 EDGE STUDY 

Data which was taken with the beam oriented near the edge of the test 

devices allows us to assess their performance in the periphery with higher 

statistics. Before calculating the track-matching efficiency, we examined the 2D 

distribution of number of hits per pixel. A strange effect which we observed was 

an inflamed penultimate row of pixels: the second to last row from the edge had 

an abnormal number of hits. This should be noted as a discontinuous “ridge” in 

the histogram even in light of the fact that the beam spot was centered near 

there. In Figure 5.4, this is shown on the left edge for the F08 device, and on the 

right edge for the H08 device. The reason why this occurs is not well understood. 

The effect suggests a disproportionate allocation of hits to the hyperactive row of 

pixels. 

 

 

Figure 5.4. Distributions of pixel hit position for the F08 and H08 test devices. Note the inflamed row of 

pixels at the edge. 

Our examination of the efficiency at the edge is testament to the effectiveness of 

the new edge technology of these sensors. Due to the participation of the active 

edge region in the charge collection process, the device continued to efficiently 
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match hits with tracks even past the last true row of pixels. A cross section of the 

2D efficiency calculation was made near the edges and is shown in Figure 5.5. 

This forms a 1D distribution which can be fitted as a function of position to 

analyze the efficiency drop-off near the edge. Noting that the efficiency drop-off 

exhibits a sigmoidal shape, we used a surrogate function of the form 

 

                           . ( 7 ) 

Having fit the function to the data at the edge of both devices, we then used the 

derived parameters to solve H(x) = 0.9, in order to obtain the distance from the 

edge of the chip where the device falls below 90% efficiency. According to this 

calculation, the F08 device falls below 90% efficiency at 12.3 µm from the edge 

of the chip, and the H08 device falls below 90% efficiency at 2.2 µm from the 

edge. 
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Figure 5.5. Efficiency near the edge of the F08 and H08 chips, fit with sigmoidal surrogate function. 
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6 CONCLUSION 

We find that the silicon pixel sensor test devices perform in accordance with 

expectations and fulfill the technical needs of their intended implementation. The 

spatial granularity of this class of device is adequate for an implementation for an 

upgrade to the LHCb vertex detector or a similar experiment. The state-of-the-art 

active edge technology is effective in maximizing the useful area of the sensor 

with minimal drawbacks in the form of edge distortion effects. Beyond use in 

particle physics, edgeless silicon pixel detectors may also find a future in 

implementations for medical imaging or X-ray spectroscopy. 
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