
Syracuse University
SURFACE

Dissertations - ALL SURFACE

August 2017

Mappings Between Annuli of Smallest p-Harmonic
Energy
Daniel Cuneo
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

Part of the Physical Sciences and Mathematics Commons

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL
by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

Recommended Citation
Cuneo, Daniel, "Mappings Between Annuli of Smallest p-Harmonic Energy" (2017). Dissertations - ALL. 758.
https://surface.syr.edu/etd/758

https://surface.syr.edu?utm_source=surface.syr.edu%2Fetd%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu?utm_source=surface.syr.edu%2Fetd%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=surface.syr.edu%2Fetd%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/758?utm_source=surface.syr.edu%2Fetd%2F758&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


ABSTRACT

An important topic in the calculus of variations is the study of traction-free problems,

in which deformations between given domains in Rn are allowed to slip on the boundary,

without prescribing boundary values. For annuli A = A(r, R) and A∗ = A(r∗, R∗), we seek

the traction-free minimizer of the p-harmonic energy among homeomorphisms in Sobolev

class W 1,p(A,A∗). For such a mapping, the p-harmonic energy is defined by

Ep[h] =

∫
A

|Dh(x)|pdx

Classical methods fail for traction-free problems. We will use a novel approach based on

the concept of free Lagrangians, described as differential forms L(x, h(x), Dh(x))dx whose

integral depends only on the homotopy class of h. We find that the solution to the p-harmonic

variational problem depends on the relative thickness of A and A∗.
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Chapter 1

Introduction

A classical problem in the calculus of variations concerns the existence of a minimizer for a

given energy integral, subject to prescribed values.

Problem 1.0.1. Let a bounded domain X ⊂ Rn and a function f : ∂X → R be fixed. For

a given class A of mappings on X and a stored energy function E = E(x, y,M), does there

exist a map h0 ∈ A with h0|∂X = f such that

∫
X

E(x, h(x), Dh(x))dx ≥
∫
X

E(x, h0(x), Dh0(x))dx

for all h ∈ A?

Classical methods can be used to reduce this variational problem to a problem involving

differential equations. A rich theory addressing these problems exists [2, 3].

A modification of the classical problem is the so-called traction-free problem, where no

values of the solution are prescribed. For a traction-free problem, mappings between given

domains are allowed to slide on the boundary of the target. This area of study is compelling
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because new tools and nonclassical approaches are needed to answer traction-free problems.

Classical methods for this problem fail. The traction-free problem for the conformal, or

n-harmonic, energy has been solved on annuli in Rn [7].

We generalize these results for the p-harmonic energy when p is greater than the dimension

of the space.

Definition 1.0.2. Let X be a domain in Rn. For p > 1, the p-harmonic energy of a mapping

h Sobolev class W 1,p(X,Rn)is given by

Ep[h] =

∫
X

|Dh(x)|pdx (1.1)

Problem 1.0.3. Does there exist a homeomorphsim h0 in the Sobolev class W 1,p(A,A∗)

such that Ep[h0] = inf{Ep[h]}, where the infimum is taken over all homeomorphsisms in

W 1,p(A,A∗)?

When p = n, we have the conformal energy. The methods of [7] are followed, but

considering different powers of integrability significantly complicates the calculations. For

mappings between annuli A = A(r, R) and A∗ = A(r∗, R∗), we find the solution of the p-

harmonic variational problem depends on the relative thickness of the annuli. We now briefly

present the main results.

When R∗
r∗

= R
r
, we have a harmonic mapping h0(x) = r∗

r
x of A onto A∗. If h is any

homeomorphism in Sobolev class W 1,p(A,A∗), we can estimate Ep[h] using Holder’s inequality
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and Hadamard’s inequality. If |X| =
∫
X
dx, then we have

∫
A

|Dh(x)|pdx ≥ |A|−
p−n
p

∫
A

|Dh(x)|ndx


p
n

≥ |A|−
p−n
p

nn
2

∫
A

Jh(x)dx


p
n

=
n
p
2 |A∗| pn
|A| p−nn

Equality holds throughout for the conformal mapping h0, so we see it is the desired homeo-

morphism.

Suppose the target annulus A∗ is conformally thinner than A. We say we are in the

contracting case when R∗
r∗
< R

r
. If A∗ is not too thin relative to A, we can find a p-harmonic

energy-minimal radial homeomorphism. If A∗ is too thin relative to A, then there is no such

homeomorphism, but we can still find a radial p-harmonic energy minimizer. The following

two theorems state these results.

Theorem 1.0.4. Let A and A∗ be annuli in Rn with H+

(
R
r

)
< R∗

r∗
< R

r
, where H+ : [1,∞)→

[1,∞) is an increasing function depending on n and p, defined in (4.27). If p > n, then there

exists a unique radial homeomorphsim h0(x) = H(|x|) x
|x| that maps A onto A∗ such that

∫
A

|Dh(x)|p dx ≥
∫
A

|Dh0(x)|p dx

for every homeomorphism h : A→ A∗ of Sobolev class W 1,p(A,A∗).

Theorem 1.0.5. Let A and A∗ be annuli in Rn with R∗
r∗
< H+

(
R
r

)
. If p > n, then there is

no p-harmonic energy minimal radial homeomorphism of A onto A∗, but there exists a radial
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map h0(x) = H(|x|) x
|x| of A onto A∗, which is a limit of homeomorphsisms, such that

inf


∫
A

|Dh(x)|p dx

 =

∫
A

|Dh0(x)|p dx

where the infimum is taken over the class of homeomorphisms in Sobolev class W 1,p(A,A∗).

Now suppose the target annulus A∗ is conformally thicker than A. We say we are in

the expanding case when R∗
r∗

> R
r
. If A∗ is not too thick relative to A, there is a radial

homeomorphism with minimal p-harmonic energy. However, in higher dimensions if A∗

is too thick relative to A, we have constructed homeomorphisms with smaller p-harmonic

energy than every radial mapping of A onto A∗. We have the following theorems, which are

restated in more detail in Chapter 5.

Theorem 1.0.6. Let A and A∗ be annuli in Rn, and suppose p > n. There exists a function

H+ : [1,∞) → [1,∞), depending on n and p (see Theorem 5.2.4), such that if R
r
< R∗

r∗
<

H+

(
R
r

)
, then there exists a radial homeomorphsim h0(x) = H(|x|) x

|x| that maps A onto A∗

such that ∫
A

|Dh(x)|p dx ≥
∫
A

|Dh0(x)|p dx

for every homeomorphism h : A→ A∗ of Sobolev class W 1,p(A,A∗).

Theorem 1.0.7. Let A and A∗ be annuli in Rn for n ≥ 4, and suppose p > n. Surprisingly,

there exists a function H− depending on n and p (see Example 5.2.1), such that whenever

R∗
r∗

> H−
(
R
r

)
, there exists a non-radial homeomorphism h0(x) that maps A onto A∗ such
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that ∫
A

|Dh(x)|p dx ≥
∫
A

|Dh0(x)|p dx

for every radial homeomorphism h : A→ A∗ of Sobolev class W 1,p(A,A∗).

In this work, Chapter 1 presents some necessary preliminary material introducing no-

tation and describing the appropriate class of mappings under consideration. The main

computational tools are then introduced in Chapter 2. These are special differential n-forms

called free Lagrangians, whose integral will be independent of choice of mapping within the

appropriate class.

Armed with the n-forms to integrate, we describe in Chapter 3 some inequalities we

will use to estimate Ep[h]. In Chapter 4, we construct p-harmonic radial mappings that are

candidates for the energy minimizer. Lastly, we pull together the tools from Chapters 2-4 to

give proofs of the main theorems.

1.1 Preliminaries

1.1.1 Basic notation

Throughout our paper, we will let n > 2 denote the dimension of the space. The sets X

and Y will be bounded domains in Rn of finite connectivity, unless otherwise specified. The

set Rn
0 = Rn − {0} will be the punctured Euclidean space, and R̂n = Rn ∪ {∞} will be

the one-point compactification of Rn. For vectors v, w ∈ Rn, we will use the inner product

〈v, w〉 = vTw, and |v| will denote the Euclidean norm of v, given by |v|2 = 〈v, v〉. The cross

product of n− 1 vectors v1, . . . , vn−1 in Rn is denoted by v1×· · ·× vn−1. In certain contexts,
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a point x ∈ Rn will be equated with the vector x− 0.

For a domain X ⊂ Rn, its boundary will be denoted by ∂X. We will write the (n − 1)-

dimensional sphere of radius t > 0 by Sn−1
t = {x ∈ Rn : |x| = t}, and Sn−1 will be reserved

for the unit sphere. Also throughout the paper, 0 < r < R <∞ and 0 < r∗ < R∗ <∞ will

be fixed, and A and A∗ will be the annuli

A = {x ∈ Rn : r < |x| < R}, A∗ = {x ∈ Rn : r∗ < |x| < R∗}. (1.2)

The set of all n× n real matrices will be denoted Rn×n. The transpose of a matrix A ∈

Rn×n will be denoted AT and the cofactor matrix of A will be denoted A]. For A,B ∈ Rn×n,

we will use the inner product 〈A|B〉 = tr(ATB). The Hilbert-Schmidt norm, also called the

Frobenius norm, of a matrix A ∈ Rn×n is denoted |A|, and is given by |A|2 = 〈A|A〉. The

normalized Hilbert-Schmidt norm is [A]2 = 1
n
tr(ATA). If h : X → Rn is a differentiable

mapping, then Dh will denote its Jacobi matrix. We will write the ith component of h as

hi. Subscripts will denote derivatives ∂h
∂xj

= hj. The Jacobian determinant will be written as

Jh(x) = det(Dh(x)). If φ : X → R is a differentiable function, its gradient will be denoted

∇φ.

If V : Rn → Rn is a locally integrable vector field, its divergence will be understood in

the weak sense, that is, for all φ ∈ C∞0 (Rn),

∫
Rn

div(V )φ = −
∫
Rn

〈V,∇φ〉. (1.3)

Similarly, if M : Rn → Rn×n is a locally integrable matrix field, then for all φ ∈ C∞0 (Rn,Rn),
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the divergence of M is defined by

∫
Rn

〈div(M), φ〉 = −
∫
Rn

〈M |Dφ〉. (1.4)

We see that if r1, r2, . . . , rn are the row vectors of M , then

div(M) =



div(r1)

div(r2)

...

div(rn)


. (1.5)

1.1.2 Polar Coordinates

Because of the rotational symmetry of A and A∗, we find polar coordinates to be the most

convenient coordinate system with which to work. In this system, we represent each point

x ∈ Rn
0 using a number t > 0, called the radial coordinate, and a point σ ∈ Sn−1, called the

spherical coordinate. The coordinates are given by t = |x| and σ = x
|x| . Clearly, x = tσ.

If x ∈ Rn
0 is a point, it will also be useful to use the normal and tangential vectors

of Rn at x. The normal vector at x is N(x) = x
|x| . The tangential vectors, denoted by

T1(x), . . . , Tn−1(x), form an orthonormal basis for the tangent space to Sn−1
t , where t = |x|.

We see that together, {N, T1, . . . , Tn−1} is an orthonormal basis for Rn at x. It may only be

possible to choose the vectors Ti(x) to depend continuously on x locally, but many important

locally defined quantities we will study are actually independent of basis, and as such are

well defined globally.
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If X ⊂ Rn
0 , we can define the polar derivatives of a differentiable function h : X → Rn.

The normal derivative of h at x is hN(x) = Dh(x)N . It is immediate from the chain rule

that the normal derivative in polar coordinates is hN(x) = ∂h
∂t

(tσ). For i = 1, 2, . . . , n − 1,

the ith tangential derivative of h at x is hTi(x) = Dh(x)Ti. Together, hN , hT1 , . . . , hTn−1 are

called the polar derivatives of h.

The Hilbert-Schimdt norm of Dh is independent of basis, so we have

|Dh|2 = |hN |2 + |hT1|2 + |hT2|2 + · · ·+ |hTn−1 |2 = |hN |2 + (n− 1)|hT |2, (1.6)

where we define |hT |2 = 1
n−1

(
|hT1|2 + |hT2|2 + · · ·+ |hTn−1|2

)
. We also note that the Jacobian

can be written in terms of polar derivatives as

Jh = det(Dh) = 〈hN , hT1 × · · · × hTn−1〉. (1.7)

The expression hT1 × · · · × hTn−1 is also independent of choice of basis.

Proposition 1.1.1. If h : X → Y is a differentiable mapping with Jh(x) 6= 0 almost every-

where, then we have (Dh])T x
|x| = hT1 × · · · × hTn−1.

Proof. The claim follows from Cramer’s Rule: Dh](x)Dh(x) = Jh(x)I. We begin by taking

the inner product of (Dh])T x
|x| with each tangential derivative of h. For i = 1, . . . , n− 1, we

have

〈
(Dh])T

x

|x|
, hTi

〉
= 〈N, (Dh])DhTi〉 = Jh(x)〈N, Ti〉 = 0. (1.8)
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Therefore, (Dh])T x
|x| is orthogonal to each tangential derivative, and hence parallel to the

cross product hT1 × · · · × hTn−1 . Taking the dot product with hN , we then have

〈
(Dh])T

x

|x|
, hN

〉
= 〈N, (Dh])DhN〉 = Jh(x)〈N, N〉 = Jh(x). (1.9)

Comparing the expressions in (1.7) and (1.9), we arrive at

〈
hN , (Dh])T

x

|x|

〉
=
〈
hN , hT1 × · · · × hTn−1

〉
(1.10)

We saw that (Dh])T x
|x| is parallel to hT1×· · ·×hTn−1 , and we see from (1.7) that hT1×· · ·×hTn−1

is only perpendicular to hN when Jh(x) = 0. Therefore, (Dh])T x
|x| − hT1 × · · · × hTn−1 is not

perpendicular to hN almost everywhere. So (1.10) implies the claim.

When working with mappings between annuli, we will be using mappings conveniently

described in polar coordinates. We say that h : Rn
0 → Rn

0 is a radial map, or radial stretching,

if there is a function H : (0,∞) → (0,∞), called the normal strain function of h, such

that h(tσ) = H(t)σ. We will call a mapping Φ : Sn−1 → Sn−1 a spherical sliding, and if

h : Rn
0 → Rn

0 is given by h(x) = H(t)Φ(σ), it will be called a quasiradial map.

Now suppose h : X → Rn is a differentiable quasiradial map, where X is as above. We

will compute the components of hN and hTi . Let e1, . . . , en be the standard basis vectors of

Rn, and say h(x) = H(|x|)Φ
(
x
|x|

)
. We see hi(x) = 〈h(x), ei〉 = H(|x|)Φi

(
x
|x|

)
. So

hij(x) = Ḣ(|x|)Φi

(
x

|x|

)
xj
|x|

+
H(|x|)
|x|

Φi
j

(
x

|x|

)
− H(|x|)
|x|

xj
|x|

n∑
k=1

Φi
k

(
x

|x|

)
xk
|x|

(1.11)
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where Ḣ(t) = dH
dt

. The terms in (1.11) are the entries of Dh. Since
n∑
i=1

x2
i = |x|2, we compute

that the ith component of hN = Dh N is

n∑
j=1

[
Ḣ(|x|)Φi

(
x

|x|

)
xj
|x|

+
H(|x|)
|x|

Φi
j

(
x

|x|

)
− H(|x|)
|x|

xj
|x|

n∑
k=1

Φi
k

(
x

|x|

)
xk
|x|

]
xj
|x|

=Ḣ(|x|)Φi

(
x

|x|

) n∑
j=1

x2
j

|x|2
+
H(|x|)
|x|

n∑
j=1

Φi
j

(
x

|x|

)
xj
|x|
− H(|x|)
|x|

n∑
j=1

x2
j

|x|2
n∑
k=1

Φi
k

(
x

|x|

)
xk
|x|

=Ḣ(|x|)Φi

(
x

|x|

)
+
H(|x|)
|x|

[
n∑
j=1

Φi
j

(
x

|x|

)
xj
|x|
−

n∑
k=1

Φi
k

(
x

|x|

)
xk
|x|

]
= Ḣ(|x|)Φi

(
x

|x|

)

Similarly, if Tk =
n∑
i=1

aki ei, then we have
n∑
j=1

akjxj = 0 because 〈Tk, N〉 = 0. So the ith

component of hTk = Dh Tk is

n∑
j=1

[
Ḣ(|x|)Φi

(
x

|x|

)
xj
|x|

+
H(|x|)
|x|

Φi
j

(
x

|x|

)
− H(|x|)
|x|

xj
|x|

n∑
k=1

Φi
k

(
x

|x|

)
xk
|x|

]
aki

= Ḣ(|x|)Φi

(
x

|x|

) n∑
j=1

xj
|x|
akj +

H(|x|)
|x|

n∑
j=1

Φi
j

(
x

|x|

)
akj −

H(|x|)
|x|

n∑
j=1

xja
k
j

|x

n∑
k=1

Φi
k

(
x

|x|

)
xk
|x|

=
H(|x|)
|x|

n∑
j=0

Φi
j

(
x

|x|

)
akj ,

It follows that

hN(x) = Ḣ(|x|)Φ
(
x

|x|

)
, |hN | = Ḣ(|x|) (1.12)

hTk =
H(|x|)
|x|

ΦTk

(
x

|x|

)
, |hT | =

H(|x|)
|x|

[
DΦ

(
x

|x|

)]
(1.13)

where
[
DΦ

(
x
|x|

)]2

=
|ΦT1 |

2+···+|ΦTn−1
|2

n−1
is the normalized Hilbert-Schmidt norm of the differ-

ential matrix DΦ : T x
|x|
Sn−1 → TΦ( x

|x|)
Sn−1. Note for radial mappings, Φ : Sn−1 → Sn−1 is
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the identity map, for which [DΦ] = 1.

1.2 Theory of Homeomorphisms

We now present some definitions and remarks about the mappings to be used herein. Be-

cause our primary concern is the p-harmonic energy of a mapping, defined using an integral

operator, we will work in the space of Sobolev mappings W 1,p(X,Y) := {h ∈ W 1,p(X,Rn) :

h(x) ∈ Y a.e. x ∈ X}, where p > n. If h ∈ W 1,p(X,Y), then the derivative Dh(x) is defined

for almost every x ∈ X. Also note that by the Meyers - Serrin theorem, smooth Sobolev

mappings C∞(X,Rn) ∩W 1,p(X,Rn) are dense in W 1,p(X,Rn).

From the point of view of elasticity theory [1, 8], homeomorphisms and their weak limits

in the Sobolev norm are the natural class of mappings to use, since they introduce no cracks

or holes in Y. These mappings are sometimes called deformations of X onto Y. We briefly

state some properties of these weak limits. Let hν : X→ Y be a sequence of homeomorphisms

which converges weakly in W 1,p(X,Y) to a mapping h : X→ Y. We know that the sequence

also converges c-uniformly when p ≥ n, and thus h is also continuous. While the weak limit

may no longer be a homeomorphsim, it does have a right inverse.

Theorem 1.2.1. [6, Theorem 1.4] If hν is a sequence of homoeomorphsims of X onto Y

which converges weakly in W 1,p(X,Y) to h, then mapping h is continuous and Y ⊂ h(X) ⊂ Y.

Furthermore, there exists a measurable mapping f : Y→ X such that

h ◦ f = id : Y→ Y

11



everywhere on Y. This right inverse mapping has bounded variation.

On each deformation of domains we consider, we may impose two conditions without loss

of generality. First, it preserves orientation within the domains. Secondly, it will preserve

order of the boundary components. We will discuss the behavior of a deformation at the

boundary, where the deformation need not be defined. We begin with a definition.

Definition 1.2.2. Let h : X → Y be a mapping between domains in Rn. If {xj} is a

sequence of points in X converging to a point in ∂X such that {h(xj)} also converges, then

lim
j→∞

h(xj) is called a cluster value of h. The set of all cluster values of h will be denoted

h(∂X) =

{
lim
j→∞

h(xj) : xj ∈ X, lim
j→∞

xj ∈ ∂X
}
, (1.14)

assuming both limits exist.

Next, it is easy to see h(∂X) ⊂ ∂Y for a homemorphsim h. The result is also true when

we consider the weak uniform limits of homeomorphsims, see [6].

Proposition 1.2.3. If h : X → Y is a homeomorphism, then the cluster values of h lie in

the boundary of Y.

For y ∈ h(∂X), say there exists a sequence {xj} ⊂ X with lim
j→∞

xj = x ∈ ∂X and

lim
j→∞
{h(xj)} = y. Since {h(xj)} ⊂ Y, we have that y ∈ Y = Y∪ ∂Y. Since h is a homeomor-

phism, it has a continuous inverse h−1. If y ∈ Y, then lim
j→∞

h−1(h(xj)) = h−1(y) would be in

X. But lim
j→∞

h−1(h(xj)) = lim
j→∞

xj = x ∈ ∂X. So y /∈ Y. Thus, y ∈ ∂Y.

For m-connected domains X and Y, let us label the boundary components of ∂X and ∂Y

12



as

∂X = X0 ∪ X1 ∪ · · · ∪ Xm−1

∂Y = Y0 ∪ Y1 ∪ · · · ∪ Ym−1

with X0 and Y0 being the boundaries of the unbounded components of Rn −X and Rn −Y,

respectively. A deformation h : X → Y preserves the order of boundary components if

h(Xi) ⊂ Yi for each i = 0, . . . ,m− 1. We will denote the class of all orientation-preserving,

order-preserving homeomorphsims in W 1,p(X,Y) and their weak limits as A(X,Y). These

will be called admissible mappings of X onto Y.

We close this section with some remarks on the specific case when X = A and Y = A∗.

We will simply use A = A(A,A∗) to denote the class of admissible mappings of A onto A∗. In

light of Proposition 1.2.3, we see that if h : A→ A∗ is an order-preserving homeomorphsim,

then |h| : A → (r∗, R∗) extends continuously to the boundary as h : A → [r∗, R∗]. Since h

is assumed to be order preserving, we must have |h(x)| = r∗ when |x| = r and |h(x)| = R∗

when |x| = R.

1.3 Direct Method in the Calculus of Variations

Here, we briefly present the solution of a classical variational problem using the calculus

of variations [2]. Fix a bounded domain X in Rn, and let g0 ∈ W 1,p(X,Rn) be given.

We will denote the class of W 1,p Sobolev mappings h : X → Rn with h = g0 on ∂X by

13



g0 + W 1,p
0 (X,Rn). We wish to find h0 ∈ g0 + W 1,p

0 (X,Rn) such that

min{Ep[h] : h ∈ g0 + W 1,p
0 (X,Rn)} = Ep[h0] (1.15)

A necessary condition is that h0 will satisfy the Lagrange-Euler equation. This differential

equation comes from the calculus of variations. For a fixed φ ∈ C∞0 (X,Rn), we can consider

a family of variations hε(x) = h0(x) + εφ(x) of h0. If h0 satisfies (1.15), then we see the

function ε → Ep[hε] has a local minimum at ε = 0. The Lagrange-Euler equation is the

differential equation given by dEp[hε]

dε

∣∣∣
ε=0

= 0.

Proposition 1.3.1. The Lagrange-Euler equation of Ep is

div(|Dh|p−2Dh) = 0 (1.16)

Proof. To see this, we remark that Dhε = Dh0 + εDφ, and simply compute

dEp[hε]
dε

=

∫
X

∂

∂ε
|Dhε|p =

∫
X

p

2
〈Dhε|Dhε〉

p
2
−12〈Dhε|Dφ〉 =

∫
X
p|Dhε|

p−2
2 〈Dhε|Dφ〉.

Evaluating at ε = 0, we get that

dEp[hε]
dε

∣∣∣
ε=0

= p

∫
X
〈|Dh0|

p−2
2 Dh0|Dφ〉 = −p

∫
X

〈div(|Dh0|
p−2
2 Dh0), φ〉. (1.17)

Since dEp[hε]

dε

∣∣∣
ε=0

= 0 for all φ ∈ C∞0 (X,Rn), we conclude that (1.17) implies (1.16).

The local minimizers of Ep are given the special name of p-harmonic mappings. We will see

14



that p-harmonic mappings are actually the absolute minimizers of Ep among g0+W 1,p
0 (X,Rn).

Definition 1.3.2. If h ∈ W 1,p(X,Rn) with div(|Dh|p−2Dh) = 0, then h is called p-harmonic.

Proposition 1.3.3. If h0 is a p-harmonic mapping with h0 = g0 on ∂X, then we have

Ep[h0] = min{Ep[h] : h ∈ g0 + W 1,p
0 (X,Rn)}.

Proof. This is readily proved using a convexity argument. Pick h ∈ g0 + W 1,p
0 (X,Rn). By

Young’s inequality, for p > 1 we have p|Dh0|p−1|Dh| ≤ |Dh|p+ (p−1)|Dh0|p. So we see that

|Dh(x)|p − |Dh0(x)|p ≥ p|Dh0(x)|p−1 (|Dh(x)| − |Dh0(x)|)

= p|Dh0(x)|p−2 (|Dh0(x)||Dh(x)| − |Dh0(x)|2)

(1.18)

Using the Cauchy-Schwarz inequality |Dh||Dh0| ≥ 〈Dh|Dh0〉 and the definition of the

Hilbert-Schmidt norm, integrating (1.18) yields

Ep[h]− Ep[h0] ≥ p
∫
X
|Dh0|p−2 (〈Dh0|Dh〉 − 〈Dh0|Dh0〉) dx

= p
∫
X
|Dh0|p−2〈Dh0|Dh−Dh0〉dx

= p
∫
X
〈|Dh0|p−2Dh0|D(h− h0)〉dx

(1.19)

Since h0 = h = g0 on ∂X, we have that h0 − h ∈ W 1,p
0 (X,Rn). So by the definition of the

divergence, we see that (1.19) is equivalent to

Ep[h]− Ep[h0] ≥ −p
∫
X

〈div(|Dh0|p−2Dh0), h− h0〉. (1.20)

Since h0 satisfied (1.16), we see that Ep[h] ≥ Ep[h0]. Thus, h0 is the solution to (1.15).
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These classical methods fail for the traction free problem; new methods must be used.

This happens for several reasons. In the proof of Proposition 1.3.1, we considered a variation

hε = h0 +εφ. Even if h0 is admissible, there is no guarantee that hε is. However, while we can

be more careful about making a variation of h0, bigger problems are introduced when we allow

mappings to slip on the boundary. In Proposition 1.3.3, we needed that h−h0 ∈ W 1,p
0 (X,Rn)

to show that (1.19) and (1.20) were equivalent. This is not so in the traction-free case.

Finally, we remark that if g0

(
r x
|x|

)
= r∗

x
|x| and g0

(
R x
|x|

)
= R∗

x
|x| , then the minimizer

of Ep among g0 + W 1,p(A,Rn) is attained by a map h0 satisfying (1.16). This map is a

reasonable candidate for the traction free minimizer in class A(A,A∗). We will investigate

this more thoroughly in chapters four and five.
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Chapter 2

Free Lagrangians

2.1 Differential forms

To compute integrals over domains in Rn, differential forms provide the best framework. For

an introduction to differential forms, see Chapter 10 in [11] and Chapter 4 in [4]. We will

write the n-dimensional volume element as dx. The standard n − 1-dimensional area form

on Sn−1
t will be denoted ω. Note that if ωn−1 is the area of the unit sphere Sn−1 ⊂ Rn, then∫

Sn−1
t

dσ = ωn−1t
n−1 for all t > 0.

Let t = |x| for x ∈ R0. The differential of t is the 1-form dt =
n∑
i=1

xi
|x|dxi. We obtain

an (n − 1)-form ?dt =
n∑
i=1

(−1)ixi
|x| dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn by taking the Hodge star of the

differential, where the symbol ̂ above a term stands for omitting that term from the wedge

product. This is also the standard area form on Sn−1. We see that ?dt∧ dt = dx. We define

another (n − 1)-form dσ to be a normalization of ?dt, namely dσ = ?dt
tn−1 . Thus, in polar

coordinates, dx = tn−1dσdt. For any t > 0, we have
∫

Sn−1
t

dσ = ωn−1. We also remark that dσ
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is a closed form. Indeed,

d(dσ) =
n∑
i=1

(
(−1)ixi
|x|n

)
i

dxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=
n∑
i=1

(
nx2

i

|x|n+2
− 1

|x|n

)
dx1 ∧ · · · ∧ · · · ∧ dxn

=

n
n∑
i=1

x2
i

|x|n+2
− 1

|x|n

 dx =

(
n

|x|n
− n

|x|n

)
dx = 0.

If X is a domain in Rn
0 and h : X→ Rn, then the pullback via h of dσ is

h](dσ) =
n∑
i=1

(−1)ihi
|h|n

dh1 ∧ · · · ∧ d̂hi ∧ · · · ∧ dhn. (2.1)

2.2 Examples of Free Lagrangians

We now introduce the concept of free Lagrangians, which will allow us to estimate integrals

such as the p-harmonic energy. We begin with a definition.

Definition 2.2.1. Let L ∈ L1(X×Y×Rn×n) be an integrable function. The n-form Ldx is

a free Lagrangian if

∫
X

L(x, h(x), Dh(x))dx =

∫
X

L(x, g(x), Dg(x))dx

whenever the deformations h : X→ Y and g : X→ Y are homotopic.

One trivial example is an n-form f(x)dx that does not depend on h. Another ex-

ample is the Jacobian determinant. By the change of variable formula, we have that
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∫
X

det(Dh(x))dx = |Y| for all orientation-preserving homeomorphsims h : X → Y. We

will now construct some examples of free Lagrangians on annuli. Throughout this section,

we assume h ∈ C∞(A,A∗) preserves order and orientation. Later, to consider general order-

preserving orientation-preserving homeomorphisms, we will look at limits of these smooth

mappings.

The first example is modelled on the Jacobian determinant Jh(x) = det(Dh(x)).

Example 2.2.2. For any integrable function Φ on (r∗, R∗), we see that

∫
A

Φ(|h|)Jh(x)dx = ωn−1

R∗∫
r∗

Φ(s)sn−1ds (2.2)

does not depend on h, so Φ(|h|)J(h, x)dx is a free Lagrangian.

This formula is proved by changing variables and using polar coordinates to integrate.

∫
A

Φ(|h(x)|)J(h, x)dx =

∫
A∗

Φ(|y|)dy = ωn−1

R∗∫
r∗

Φ(s)sn−1ds.

Our next example again uses integration by polar coordinates.

Example 2.2.3. For Φ ∈ C1[r∗, R∗], the n-form Φ′(|h|)|h|N
|x|n−1 dx is a free Lagrangian. We have

∫
A

Φ′(|h|)|h|N
|x|n−1

dx = ωn−1[Φ(R∗)− Φ(r∗)] (2.3)

for all h ∈ A.
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Here, the normal derivative of a scalar function f : X ⊂ Rn → R is defined by

fN = 〈∇f,N〉.

Integrating the left-hand side of (2.3), we have

∫
A

Φ′(|h|)|h|N
|x|n−1

dx =

∫
Sn−1

R∫
r

Φ′(|h|)|h|Ndtdσ =

∫
Sn−1

R∫
r

[Φ(|h|)]Ndtdσ

=

∫
Sn−1

Φ(|h(tω)|)|t=Rt=r dσ =

∫
Sn−1

Φ(R∗)− Φ(r∗)dσ = ωn−1[Φ(R∗)− Φ(r∗)].

The previous example can be thought of as a radial free Lagrangian, based on the ap-

pearance of the radial derivative. Our third example, in a fashion somewhat dual to the

radial example, can be thought of as a tangential free Lagrangian.

Example 2.2.4. For Φ ∈ C1[r, R], the n-form Φ′(|x|)dt ∧ h]dσ is a free Lagrangian. We

have

∫
A

Φ′(|x|)dt ∧ h]dσ = ωn−1(Φ(R)− Φ(r)), (2.4)

for all h ∈ A.

The idea of the proof of (2.4) relies on the topological concept of the degree of a mapping

between annuli, discussed in detail in [9].

20



Definition 2.2.5. Let h : A→ A∗ be a smooth mapping. We define

deg(h) =

∫
|x|=t

h]dσ, (2.5)

where r < t < R.

To see this is well-defined, fix r < s < t < R. By Stokes’ theorem, we have

∫
|x|=t

h]dσ −
∫
|x|=s

h]dσ =

∫
A[s,t]

d(h]dσ) =

∫
A[s,t]

h](ddσ) = 0.

To prove (2.4), we use Stokes’ theorem and the closed (n− 1)-form dσ to compute that

∫
A

Φ′(|x|)dt ∧ h]dσ =

∫
A

(dΦ(|x|)) ∧ h]dσ =

∫
A

d
(
Φ(|x|)h]dσ

)
=

∫
|x|=R

Φ(|x|)h]dσ −
∫
|x|=r

Φ(|x|)h]dσ = Φ(R)

∫
|x|=R

h]dσ − Φ(r)

∫
|x|=r

h]dσ

= deg(h) [Φ(R)− Φ(r)] .

To show that Example 2.2.4 is a free Lagrangian, it remains to see that (2.4) is constant

up to homotopy. This follows from the following proposition.

Proposition 2.2.6. If h0 : A→ A∗ and h1 : A→ A∗ are homotopic, then deg(h0) = deg(h1).

To prove this proposition, we will show that
∫
|x|=r

h]0dσ =
∫
|x|=r

h]1dσ. We will let X =

[0, 1]×Sn−1
r . IfH : [0, 1]×A→ A∗ is a homotompy withH(0, x) = h0(x) andH(1, x) = h1(x),

we can restrict this map to X. We see that the boundary of X is {0} × Sn−1
r ∪ {1} × Sn−1

r .
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So by Stokes’s Theorem, we have that

∫
Sn−1
r

h]1dσ −
∫

Sn−1
r

h]0dσ =

∫
X

d(H]dσ) =

∫
X

H](ddσ). (2.6)

But recall that dσ is a closed (n − 1)-form, so the right-hand side of (2.6) is 0. Thus,∫
Sn−1
r

h]1dσ =
∫

Sn−1
r

h]0dσ, completing the proof, and showing that (2.4) is a free Lagrangian.

To make use of the estimates in Examples 2.2-4, we will need some inequalities that relate

the normal and tangential derivatives of h to terms that appear in the free Lagrangians.

Proposition 2.2.7. For h ∈ A(A,A∗), we have

|hN ||hT |n−1 ≥ Jh(x) (2.7)

|hN | ≥ |h|N (2.8)

|hT |n−1

|h|n−1
≥ |dt ∧ h]ω| (2.9)

at each x ∈ A. Moreover, equality holds in each instance for radial maps.

To prove (2.7), we can write Jh(x) as in (1.7) and use the estimate

det(Dh) = 〈hN |hT1 × · · · × hTn−1〉

≤ |hN ||hT1 × · · · × hTn−1|

≤ |hN ||hT1| . . . |hTn−1|.

Since the arithmetic mean of n − 1 values is greater than their geometric mean, we have

|hT1| . . . |hTn−1| ≤ |hT |n−1, so (2.7) follows. Backwards inspection shows that equality holds
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for radial maps, since hN , hT1 , . . . , hTn−1 are mutually orthogonal and |hT1| = · · · = |hTn−1 | =

H(t)
t

for h(x) = H(|x|) x
|x| .

We obtain (2.8) simply by noting that |h|2 = 〈h|h〉, and taking the derivative with respect

to the polar coordinate t of both sides. This gives 2|h||h|N = 2〈hN , h〉, which is equivalent

to

|h|N =

〈
hN

h

|h|

〉
. (2.10)

Applying the Cauchy-Schwarz inequality to (2.10) yields (2.8). Again for a radial map

h(x) = H(|x|) x
|x| , we have that |h(x)| = H(|x|) and |hN(x)| = Ḣ(|x|), so equality holds.

To prove (2.9), we use the following proposition.

Proposition 2.2.8. We can write the n-form dt ∧ h](dσ) as hS(x)dx where

hS(x) =
1

|h|n−1

〈
x

|x|
, Dh]

h

|h|

〉

Once we have the proposition, it suffices to show
∣∣∣〈 x
|x| , Dh

] h
|h|

〉∣∣∣ ≤ |hT |n−1 to prove (2.9).

But this follows from Proposition 1.1.1, since

∣∣∣∣〈 x

|x|
, Dh]

h

|h|

〉∣∣∣∣ =

∣∣∣∣〈(Dh])T
x

|x|
,
h

|h|

〉∣∣∣∣
≤
∣∣∣∣(Dh])T x

|x|

∣∣∣∣ ∣∣∣∣ h|h|
∣∣∣∣ = |hT1 × · · · × hTn−1|.

We already saw in proving (2.8) that |hT1 × · · · × hTn−1| ≤ |hT |n−1. Equality holds when

hT1 × · · · × hTn−1 is parallel to h
|h| , and hT1 , . . . , hTn−1 are mutually orthogonal and equal in
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length. This is the case for radial maps.

To prove the proposition, we begin by recalling

h](dσ) =
n∑
i=1

(−1)n
hi

|h|n
dh1 ∧ · · · ∧ d̂hi ∧ · · · ∧ dhn.

We can rewrite the (n− 1)-form dh1 ∧ · · · ∧ d̂hi ∧ · · · ∧ dhn in terms of the (n− 1)-form basis

elements dx1 ∧ · · · ∧ d̂xk ∧ . . . dxn, where k = 1, . . . , n. Note that dhl =
n∑
j=1

hljdxj. We see

that when computing dh1 ∧ · · · ∧ d̂hi ∧ · · · ∧ dhn, we obtain sums of terms of the form

h1
ji
. . . hi−1

ji−1
hi+1
ji+1

. . . hnjndxj1 ∧ · · · ∧ dxji−1
∧ dxji+1

∧ · · · ∧ dxjn .

If the numbers j1, . . . , ji−1, ji+1, . . . , jn are not distinct, then this term is 0. Thus, we need

only consider the terms where, for some k = 1, . . . n, we have the set equality

{j1, . . . , ji−1, ji+1, . . . , jn} = {1, . . . k − 1, k + 1, . . . n}.

Furthermore, we have

dxρ(1) ∧ · · · ∧ dxρ(k−1) ∧ dxρ(k+1) ∧ · · · ∧ dxρ(n) = sgn(ρ)dx1 ∧ . . . d̂xk ∧ . . . dxn

if ρ ∈ Pk. Hereafter, Pk is the permutation group on the set {1, . . . , k̂, . . . , n}.
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From the determinant formula

det


a1

1 . . . a1
m

...
. . .

...

am1 . . . amm

 =
∑
ρ∈Sm

sgn(ρ)a1
ρ(1) . . . a

m
ρ(m),

it follows that

dh1 ∧ · · · ∧ d̂h1 ∧ · · · ∧ dhn =
n∑
k=1

(−1)i+k[Dh]]ikdx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn

We now see that

n∑
i=1

(−1)ihi

|h|n
dh1 ∧ · · · ∧ d̂hi ∧ · · · ∧ dhn =

n∑
i=1

(−1)ihi

|h|n
n∑
k=1

(−1)i+k[Dh]]ikdx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn =

n∑
k=1

(−1)k

|h|n−1

n∑
i=1

[Dh]]ik
hi

|h|
dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn =

n∑
k=1

(−1)k

|h|n−1

[
Dh]

h

|h|

]
k

dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn.

We now wedge this term with dt =
n∑
j=1

xj
|x|dxj. We see that the product of the 1-form a dxj

with the (n− 1)-forms b dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn will be 0 if j 6= k. However, if j = k, the
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wedge product will be the n-form (−1)kab dx. It follows that

dt ∧ h](dσ) =

(
n∑
k=1

xk
|x|
dxk

)
∧

(
n∑
i=1

(−1)ihi

|h|n
dh1 ∧ · · · ∧ d̂hi ∧ · · · ∧ dhn

)

=

(
n∑
k=1

xk
|x|
dxk

)
∧

(
n∑
k=1

(−1)k

|h|n−1

[
Dh]

h

|h|

]
k

dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn

)

=
1

|h|n−1

n∑
k=1

[
Dh]

h

|h|

]
k

xk
|x|
dx =

1

|h|n−1

〈
Dh]

h

|h|
,
x

|x|

〉
dx.

We summarize the results of this section by combining Examples 2.2.2-4 with Proposition

2.2.7 in the following lemma.

Lemma 2.2.9. Let Φ ∈ C[r∗, R∗] be a positive function, and let φ ∈ C1[r∗, R∗] and ψ ∈

C1[r, R] be functions with positive derivative. If h ∈ A, we have the following free Lagrangian

estimates:

∫
A

Φ(|h|)|hN ||hT |n−1 ≥ ωn−1

R∗∫
r∗

Φ(s)sn−1ds (2.11)

∫
A

φ′(|h|)|hN |
|x|n−1

dx ≥ ωn−1[Φ(R∗)− Φ(r∗)] (2.12)

∫
A

ψ′(|x|)|hT |n−1

|h|n−1
dx ≥ ωn−1[Φ(R)− Φ(r)]. (2.13)

Equality holds for radial maps.
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Chapter 3

Algebraic Inequalities

With the free Lagrangian estimates from Lemma 2.2.9 in hand, the integration in the proofs

of Theorems 1.0.3-5 poses no challenge. The hard part is to know what to integrate. This

section is dedicated to establishing the inequalities we will need in Chapter 5.

3.1 Inequalities for the Contracting Case R∗
r∗
≤ R

r

Lemma 3.1.1. Suppose p > n, and let a > 0 and b ≥ 0 be given. Then there exists a

constant c = cp,n(a, b), given in (3.14), such that

(X2 + (n− 1)Y 2)
p
2 ≥ aY n + bXY n−1 − c (3.1)

whenever X ≥ 0, Y ≥ 0. Moreover, there exist constants X0 = X0(a, b) and Y 0 = Y 0(a, b),

given in (3.10), such that equality holds precisely when (X, Y ) = (X0, Y 0).

27



Proof. To prove Lemma 3.1.1, we define the function z(X, Y ) for X ≥ 0 and Y ≥ 0 by

z(X, Y ) = (X2 + (n− 1)Y 2)
p
2 − aY n − bXY n−1. (3.2)

We will find the absolute minimum of z and set −c = min{z(X, Y ) : X ≥ 0, Y ≥ 0}. The

existence of the minimum value of z is easily seen. We know z attains a minimum on the

compact set S = {(X, Y ) : X ≥ 0, Y ≥ 0, X2 + Y 2 ≤ (a+ b)
1

p−n}. Suppose X2 + Y 2 = ρ2 for

ρ > (a+ b)
1

p−n . We estimate z by

z = (X2 + (n− 1)Y 2)
p
2 − aY n − bXY n−1

≥ ρp − aρn − bρn = ρp
(

1− a+ b

ρp−n

)
> 0

Since z(X, Y ) > 0 outside of S, but z

(
0, 1

2

(
a

(n−1)
p
2

) 1
p−n
)
< 0, we conclude z attains an

absolute minimum. We let (X0, Y 0) be a point where z attains its minimum value, so equality

in (3.1) holds at (X0, Y 0).

Since z is smooth, any minimum of z occurs either along the line X = 0, or along Y = 0,

or at a critical point of z.

Along Y = 0, we have z(X, 0) = Xp, which is minimized when X = 0 by inspection.

Along X = 0, we have z(0, Y ) = (n − 1)
p
2Y p − aY n, which is minimized when Y =(

na

p(n−1)
p
2

) 1
p−n

by elementary calculus. Writing Y0 =

(
na

p(n−1)
p
2

) 1
p−n

, we see the minimum

of z possibly occurs at (0, 0) or (0, Y0).

Now suppose that X+ > 0, Y+ > 0, and (X+, Y+) is a critical point of z. We compute
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that

zX(X, Y ) = p(X2 + (n− 1)Y 2)
p−2
2 X − bY n−1 (3.3)

zY (X, Y ) = p(X2 + (n− 1)Y 2)
p−2
2 (n− 1)Y − naY n−1 − (n− 1)bXY n−2 (3.4)

Whenever zY (X+, Y+) = 0, we find that

p(X2
+ + (n− 1)Y 2

+)
p
2 =

na

n− 1
Y n−2

+ + bX+Y
n−3

+ (3.5)

Plugging (3.5) into (3.3) shows zX(X+, Y+) = 0 when

na

n− 1
X+Y

n−2
+ + bX2

+Y
n−3

+ − bY n−1
+ =

(
na

n− 1

X+

Y+

− b

[
1−

(
X+

Y+

)2
])

Y n−1
+ = 0 (3.6)

At this point, we define a function φ(ξ) for 0 < ξ < 1 by φ(ξ) = ξ
1−ξ2 . We observe that

(3.6) is equivalent to φ
(
X+

Y+

)
= (n−1)b

na
. We will set V = Vn(a, b) to be the unique number in

[0, 1) such that

φ(V ) =
V

1− V 2
=

(n− 1)b

na
(3.7)

We see this number exists because φ′(ξ) = 1+ξ2

(1−ξ2)2
> 0, φ(0) = 0, and lim

ξ→1−
φ(ξ) = ∞.

Hence, φ is strictly increasing from 0 to ∞ on [0, 1). We conclude that X+

Y+
= V . Solving
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φ(V ) = (n−1)b
na

explicitly gives

V =

√
n2a2

4(n− 1)2b2
+ 1− na

2(n− 1)b
=

2(n− 1)b√
n2a2 + 4(n− 1)2b2 + na

(3.8)

By evaluating zX(V Y+, Y+) = 0 in (3.3) and dividing both sides by Y n−1
+ , we have

p(V 2 + n− 1)
p−2
2 V Y p−n

+ = b (3.9)

Combining (3.7) and (3.9), we arrive at

Y+ =

(
b

pV (V 2 + n− 1)
p−2
2

) 1
p−n

=

(
na

(n− 1)p(1− V 2)(V 2 + n− 1)
p−2
2

) 1
p−n

(3.10)

We now also have an explicit representation of X+ = V Y+.

The only possible points where z attains a minimum value for X ≥ 0, Y ≥ 0 are (0, 0),

(0, Y0), or (X+, Y+). We now evaluate z at these points. We have

z(0, 0) = 0 (3.11)

z (0, Y0) = −p− n
n

(
na

p(n− 1)
n
2

) p
p−n

(3.12)

z(X+, Y+) = −p− n
n

(
na

(n− 1)p(1− V 2)(V 2 + n− 1)
n−2
2

) p
p−n

. (3.13)

We remark that the function ψ(ξ) = 1

(1−ξ2)(ξ2+n−1)
n−2
2

is increasing on [0, 1), readily seen

30



from its logarithmic derivative

ψ̇

ψ
=

2ξ

1− ξ2
− (n− 2)ξ

ξ2 + n− 1
=

(2ξ2 + 2(n− 1)− (n− 2) + (n− 2)ξ2)t

(1− ξ2)(ξ2 + n− 1)
=

n(ξ2+)t

(1− ξ2)(ξ2 + n− 1)

So, looking at (3.12) and (3.13), we see

z(X+, Y+) = −p− n
n

(
naψ(V )

(n− 1)p

) p
p−n

≤ −p− n
n

(
naψ(0)

(n− 1)p

) p
p−n

= z(0, Y0)

Thus, the minimum of z occurs at (X, Y ) = (X+, Y+). We can now take X0 = X+ and

Y 0 = Y+. Taking

c =
p− n
n

(
na

(n− 1)p(1− V 2)(V 2 + n− 1)
n−2
2

) p
p−n

, (3.14)

we establish (3.1). By backwards inspection, we see equality holds if and only if X = X0

and Y = Y 0, proving Lemma 3.1.1

3.2 Inequalities for the Expanding Case R
r <

R∗
r∗

The second inequality is similar, but depends on a constant, αn,p, given in Definition 3.2.1

below. This constant is defined using a function, f(ξ). Hereafter, for ξ > 1, we will have the
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functions

f(ξ) =
(ξ2 + n− 1)

p−2
2 (ξ2 − 1)p

ξp
(
ξ2 − n−1

p−1

)p−1 (3.15)

g(ξ) =
(ξ2 + n− 1)

(n−1)(p−2)
2

ξn−1(ξ2 − 1)p−n
(3.16)

P (ξ) =
(n− 3)(p− 1)

n− 1
ξ4 − (3p− n− 4)ξ2 + n− 1. (3.17)

We will use these functions to define αn,p, and in the proof of Lemma 3.2.2.

We first discuss some properties of the polynomial P (ξ). Note that P (1) = −2n(p−n)
n−1

< 0.

We see that

P ′(ξ) = 4
(n− 3)(p− 1)

n− 1
ξ3 − 2(3p− n− 4)ξ

If n > 3, then P ′(ξ) < 0 for ξ <
√

(n−1)(3p−n−4)
2(n−3)(p−1)

, and P ′(ξ) > 0 for ξ >
√

(n−1)(3p−n−4)
2(n−3)(p−1)

.

Looking at where P is increasing and decreasing, we conclude there must be an unique

number an,p >
√

(n−1)(3p−n−4)
2(n−3)(p−1)

such that P (ξ) < 0 for 1 < ξ < an,p and P (ξ) > 0 for ξ > an,p.

If n = 2 or n = 3, then P ′(ξ) < 0 for ξ > 1. We take a2,p = a3,p =∞.

Definition 3.2.1. For n > 3, let αn,p be the number such that f(αn,p) = 1. Let α2,p =

α3,p =∞.
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To justify Definition 3.2.1, we compute that the logarithmic derivative of f is

f ′(ξ)

f(ξ)
=

(p− 2)ξ

ξ2 + n− 1
+

2pξ

ξ2 − 1
− p

ξ
− 2(p− 1)ξ

ξ2 − n−1
p−1

= − p(n− 1)P (ξ)

(p− 1)(ξ2 + n− 1)(ξ2 − 1)
(
ξ2 − n−1

p−1

)
ξ

It follows from the sign of P (ξ) that f is increasing on (1, an,p) and decreasing on (an,p,∞).

Since we have f(1) = 0 and lim
ξ→∞

f(ξ) = 1, we see there must be a unique number αn,p ≤ an,p

with f(αn,p) = 1. So Definition 3.2.1 makes sense.

We also compute that the logarithmic derivative of g is

g′(ξ)

g(ξ)
=

(n− 1)(p− 2)ξ

ξ2 + n− 1
− 2(p− n)ξ

ξ2 − 1
− n− 1

ξ

=
(n− 1)P (ξ)

(ξ2 + n− 1)(ξ2 − 1)ξ

This shows that g is decreasing on (1, an,p). We will define g(α2,p) = lim
ξ→∞

g(ξ) = 0 and

g(α3,p) = lim
ξ→∞

g(ξ) = 1.

Lemma 3.2.2. Let p > n. Let a > 0 and b > 0 be given, with bp−1

pn−1ap−n
> g(αn,p). Then

there exists a constant c = c(a, b) such that for all X ≥ 0 and Y ≥ 0, we have

(X2 + (n− 1)Y 2)
p
2 ≥ aX + bXY n−1 − c. (3.18)

Moreover, there exist X0 = X0(a, b) and Y 0 = Y 0(a, b) such that equality holds if and only

if (X, Y ) = (X0, Y 0).

33



Proof. To prove Lemma 3.2.2, we define the function z(X, Y ) for X ≥ 0 and Y ≥ 0 by

z(X, Y ) = (X2 + (n− 1)Y 2)
p
2 − aX − bXY n−1 (3.19)

We will find the absolute minimum of z. We can take (X0, Y 0) to be the point where the

minimum value occurs, and −c = z(X0, Y 0).

We first argue why z attains a minimum value among (X, Y ) with X ≥ 0 and Y ≥ 0.

Let S = {(X, Y ) : 0 ≤ X, 0 ≤ Y,X2 + Y 2 ≤ max((2a)
1
p−1 , (2b)

1
p−n )}. This is a compact set,

and z attains a minimum value on S. Note z
((

a
2

) 1
p−1 , 0

)
< 0. Now suppose (X, Y ) is a

point with X2 + Y 2 = ρ2, where ρ > max((2a)
1
p−1 , (2b)

1
p−n ). Next, we estimate z(X, Y ) as

z = (X2 + (n− 1)Y 2)
p
2 − aX − bXY n−1

≥ ρp − aρ− bρn = ρp
(

1− a

ρp−1
− b

ρp−n

)
> 0

We conclude the minimum value of z over all (X, Y ) with X ≥ 0 and Y ≥ 0 must be attained

on S.

Any relative minimum of z occurs either along the line X = 0, or along Y = 0, or at a

critical point of z.

By inspection, we see that z(0, Y ) = (n − 1)
p
2Y p is minimized at Y = 0. By elemen-

tary calculus, we see that z(X, 0) = Xp − aX is minimized at X =
(
a
p

) 1
p−1

. We will set

X0 =
(
a
p

) 1
p−1

.

Now suppose that X+ > 0, Y+ > 0, and (X+, Y+) is a critical point of z. We compute
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that

zX(X+, Y+) = p(X2
+ + (n− 1)Y 2

+)
p−2
2 X − a− bY n−1

+ = 0 (3.20)

zY (X+, Y+) = (n− 1)
[
p(X2

+ + (n− 1)Y 2
+)

p−2
2 Y − bXY n−2

+

]
= 0 (3.21)

Writing A = p(X2
+ +(n−1)Y 2

+)
p−2
2 and B = bY n−2

+ , we see that (3.20)-(3.21) is equivalent

to

AX+ −BY+ = a

−BX+ + AY+ = 0

which is clearly solved by

X+ =
Aa

A2 −B2
=

A
B
a[(

A
B

)2 − 1
]
B

(3.22)

Y+ =
Ba

A2 −B2
=

a[(
A
B

)2 − 1
]
B

(3.23)

We can now divide (3.22) by (3.23), and using the definition of A and B, compute

X+

Y+

=
A

B
=

p

((
X+

Y+

)2

+ n− 1

) p−2
2

b
Y p−n

+ (3.24)
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Moreover, we can plug in X+

Y+
for A

B
at (3.23) and using the definition of B, we obtain

Y n−1
+ =

a[(
X+

Y+

)2

− 1

]
b

(3.25)

From (3.24) and (3.25), we obtain two different ways to write Y
(n−1)(p−n)

+ in terms of a,

b, and X+

Y+
:

bn−1
(
X+

Y+

)n−1

pn−1

((
X+

Y+

)2

+ n− 1

) (n−1)(p−2)
2

=
ap−n((

X+

Y+

)2

− 1

)p−n
bp−n

,

or equivalently,

g

(
X+

Y+

)
=

bp−1

pn−1ap−n
. (3.26)

Recall that g is decreasing on (1, an,p), and 1 < αn,p < an,p. By our assumption that

bp−1

pn−1ap−n
> g(αn,p), there must be a unique V with 1 < V < αn,p such that

g(V ) =
bp−1

pn−1ap−n
. (3.27)

If n > 3, then g is also increasing on (an,p,∞) and lim
t→∞

g(t) = ∞. So when n > 3, we

also have a unique W > an,p such that

g(W ) =
bp−1

pn−1ap−n
. (3.28)
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We will now define constants YV , YW , XV , and XW by

Y n−1
V =

a

b(V 2 − 1)
, XV = V YV (3.29)

Y n−1
W =

a

b(W 2 − 1)
, XW = WYW (3.30)

We remark that by backward analysis, (XV , YV ) and (XW , YW ) are the only stationary

points of z with X > 0 and Y > 0. Thus, the only possible points where z attains a minimum

value for X ≥ 0, Y ≥ 0 are (0, 0), (X0, 0), (XV , YV ), or (XW , YW ). We now evaluate z at

these points. We have

z(0, 0) = 0 (3.31)

z (X0, 0) = −p− 1

p

(
a

p

) p
p−1

(3.32)

z(XV , YV ) = −p− 1

p

(
a

pf(V )

) 1
p−1

(3.33)

z(XW , YW ) = −p− 1

p

(
a

pf(W )

) 1
p−1

(3.34)

We recall from Definition 3.2.1 that f(ξ) < 1 when ξ < αn,p. Thus, since 1 < V < αn,p,

z(XV , YV ) = −p− 1

p

(
a

pf(V )

) 1
p−1

≤ −p− 1

p

(
a

pf(αn,p)

) 1
p−1

= z(0, Y0).

Similarly, if n > 3, then f(ξ) ≥ 1 for ξ > an,p, and W > an,p > αn,p. So

z(XW , YW ) = −p− 1

p

(
a

pf(W )

) 1
p−1

≥ −p− 1

p

(
a

pf(αn,p)

) 1
p−1

= z(0, Y0).
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Therefore, the minimum of z occurs at (X, Y ) = (XV , YV ). We can now take X0 = XV and

Y 0 = YV . Taking

c =
p− 1

p

(
a

pf(V )

) p
p−1

, (3.35)

we establish (3.18). We see equality holds if and only if X = X0 and Y = Y 0, proving

Lemma 3.2.2.
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Chapter 4

Radial p-harmonic Mappings

In this section, we will find the radial p-harmonic mappings from A to A∗, and investigate

their properties. Throughout this section, we will denote a general radial mapping from A

to A∗ by h, and H : (r, R) → (r∗, R∗) will be its strain function. We will first describe a

generalized p-harmonic equation for radial mappings

L(t,H, Ḣ) = C (4.1)

We will find some principal solutions to this equation, and then use these functions to

construct all radial p-harmonic mappings on A.

4.1 Inner Variational Equation

In Section 1.3, we saw that the p-harmonic mappings are the local minimizers of Ep. Here,

we compute a necessary differential equation for a radial p-harmonic mapping.
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Proposition 4.1.1. Let h ∈ A be a radial mapping with strain function H(t) ∈ C2[r, R]. If

h is p-harmonic, then for each t ∈ [r, R], either

Ḣ(t) = 0 (4.2)

or

(
p−1
n−1

Ḣ2(t) +H2(t)
)
tḦ(t) =

(n− 1)
(
H(t)
t

)3

+ (p− n− 1)
(
H(t)
t

)2

Ḣ(t)− (p− 3)H(t)
t
Ḣ2(t)− Ḣ3(t)

(4.3)

Proof. We arrive at these equations by studying the inner variation equation of the type

studying in [5] for dimension n = 2. To calculate it, we make a variation hε of h as follows.

Fix a test function φ ∈ C∞0 (r, R) and let ε be small enough so that t→ t+ εφ(t) is a diffeo-

morphism of (r, R) onto itself. Then the map Φ(x) = (|x| + εφ(|x|)) x
|x| is a diffeomorphism

from A to itself. We set

hε(x) = h ◦ Φ(x) = H(|x|+ εφ(|x|)) x
|x|

(4.4)

Note that hε is radial, with strain function Hε(t) = H(t+ εφ(t)). The derivative of the strain

function is Ḣε(t) = Ḣ(t+ εφ(t))(1 + εφ̇(t)).

We will now compute the inner variational equation

dEp[hε]
dε

∣∣∣
ε=0

= 0 (4.5)

Recall that p-harmonic mappings are exactly the local minimizers of the p-harmonic energy.

40



Since hε = h when ε = 0, we see that a p-harmonic mapping will satisfy (4.5).

To compute (4.5), we use (1.6) to write |Dh| and (1.12)-(1.13) to write |hN | and |hT | for

a radial map. We thus arrive at

Ep[hε] =

∫
A
|Dhε(x)|pdx =

∫
A

(
Ḣ2
ε (|x|) + (n− 1)

H2
ε (|x|)
|x|2

) p
2

dx (4.6)

= ωn−1

R∫
r

(
Ḣ2(t+ εφ(t))(1 + εφ̇(t))2 + (n− 1)

H2(t+ εφ(t))

t2

) p
2

tn−1dt (4.7)

We note H ∈ C2[r, R] and φ ∈ C∞0 (r, R), and thus the integrand, as well as its derivative

with respect to ε, is bounded. We compute

∂

∂ε

(
Ḣ2(t+ εφ(t))(1 + εφ̇(t))2 + (n− 1)

H2(t+ εφ(t))

t2

) p
2

tn−1

=p

(
Ḣ2
ε (t) + (n− 1)

H2
ε (t)

t2

) p−2
2

Ḣ2(t+ εφ(t))(1 + εφ̇(t))φ̇(t)tn−1

+ p

(
Ḣ2
ε (t) + (n− 1)

H2
ε (t)

t2

) p−2
2

Ḣ(t+ εφ(t))Ḧ(t+ εφ(t))(1 + εφ(t))2φ(t)tn−1

+ (n− 1)p

(
Ḣ2
ε (t) + (n− 1)

H2
ε (t)

t2

) p−2
2 H(t+ εφ(t))Ḣ(t+ εφ(t))φ(t)

t2
tn−1

We may now find dEp[hε]

dε

∣∣∣
ε=0

by differentiating under the integral at (4.7) and setting

ε = 0. So we see

dEp[hε]
dε

∣∣∣
ε=0

= ωn−1

R∫
r

p|Dh|p−2tn−1

(
Ḣ2(t)φ̇(t) + Ḣ(t)Ḧ(t)φ(t) + (n− 1)

H(t)Ḣ(t)φ(t)

t2

)
dt
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Setting dEp[hε]

dε

∣∣∣
ε=0

= 0, we obtain

R∫
r

p|Dh|p−2tn−1

(
Ḣ(t)Ḧ(t) + (n− 1)

H(t)Ḣ(t)

t2

)
φ(t)dt = −

R∫
r

p|Dh|p−2tn−1Ḣ2(t)φ̇(t)dt

(4.8)

We will rewrite the integrand on the left-hand side of (4.8) as

(n− 1)p|Dh|p−4Ḣ(t)tn−2

[(
Ḣ2(t)

n− 1
+
H2(t)

t2

)
Ḧ(t)t+ Ḣ2(t)

H(t)

t
+ (n− 1)

H3(t)

t3

]
φ(t)

Recalling that φ ∈ C∞0 (r, R), we compute the integral on the right-hand side (4.8) using

integration by parts, yielding

−
R∫
r

p|Dh|p−2tn−1Ḣ2(t)φ̇(t)dt =

R∫
r

[
p|Dh|p−2Ḣ2(t)tn−1

]′
φ(t)dt

=

R∫
r

(n− 1)p|Dh|p−4Ḣ(t)tn−2

(
p

n− 1
Ḣ2(t) + 2

H2(t)

t2

)
Ḧ(t)tφ(t)dt

+

R∫
r

(n− 1)p|Dh|p−4Ḣ(t)tn−2

[
Ḣ3(t) + (p− 2)Ḣ2(t)

H(t)

t2
− (p− n− 1)Ḣ(t)

H2(t)

t2

]
φ(t)dt
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Thus, we obtain

R∫
r

|Dh|p−4Ḣ(t)tn−2

[(
Ḣ2(t)

n− 1
+
H2(t)

t2

)
Ḧ(t)t+ Ḣ2(t)

H(t)

t2
+ (n− 1)

H3(t)

t3

]
φ(t)dt

=

R∫
r

|Dh|p−4Ḣ(t)tn−2

(
p

n− 1
Ḣ2(t) + 2

H2(t)

t2

)
Ḧ(t)tφ(t)dt

+

R∫
r

|Dh|p−4Ḣ(t)tn−2

[
Ḣ3(t) + (p− 2)Ḣ2(t)

H(t)

t2
− (p− n− 1)Ḣ(t)

H2(t)

t2

]
φ(t)dt,

or equivalently,

R∫
r

|Dh|p−4tn−2

[
(n− 1)

H3

t3
+ (p− n− 1)

H2

t2
Ḣ − (p− 3)

H

t
Ḣ2 − Ḣ3

]
Ḣφdt

=

R∫
r

|Dh|p−4tn−2

(
p− 1

n− 1
Ḣ2 +

H2

t2

)
tḦḢφdt

Since this is true for all test functions φ, the integrands must be equal. This implies

[
(n− 1)

H3(t)

t3
+ (p− n)

H2(t)

t2
Ḣ(t)− (p− 3)

H(t)

t
Ḣ2(t)− Ḣ3(t)

]
Ḣ(t) (4.9)

=

(
p− 1

n− 1
Ḣ2(t) +

H2(t)

t2

)
tḦ(t)Ḣ(t) (4.10)

So the inner variational equation implies either (4.2) or (4.3).

4.2 The Elasticity Function

At this point, we introduce ηH(t), the elasticity function of H. After exploring some basic

properties of the elasticity function, we use it to combine (4.2) and (4.3) into a nonlinear
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first-order differential equation L(t,H, Ḣ) = C.

Definition 4.2.1. The elasticity function of a differentiable nonzero function H is

η(t) = ηH(t) =
tḢ(t)

H(t)
(4.11)

This function transforms nicely under scaling and dilation. Precisely, for λ ∈ R and

k > 0, if G(t) = λH(kt) then

ηG(t) = ηH(kt) (4.12)

This formula is easily verified, computing Ġ(t) = kλḢ(kt), multiplying by t and dividing by

G(t) = λH(kt).

Moreover, if H is invertible, a similar computation gives the elasticity function of its

inverse in terms of the elasticity function.

Proposition 4.2.2. If there is a nonzero differentiable function F (t) such that H(F (t)) = t,

then

ηF (t) =
1

ηH(F (t))
. (4.13)

We obtain Ḣ(F (t))Ḟ (t) = 1 by differentiating H(F (t)) = t. We then multiply this

equation by t = H(F (t)) and divide by F (t)Ḣ(F (t)) to obtain (4.13).

We can now rewrite (4.3) in terms of ηH . We begin by dividing both sides of (4.3) by
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(
H(t)
t

)3

to obtain

(
p− 1

n− 1
η2
H(t) + 1

)
Ḧ(t)t2

H(t)
= (n− 1) + (p− n− 1)ηH(t)− (p− 3)η2

H(t)− η3
H(t) (4.14)

We then rewrite Ḧ(t)t2

H(t)
using η̇H(t). Differentiating ηH(t) = tḢ(t)

H(t)
yields

η̇H(t) =
t ¨H(t)

H(t)
+
Ḣ(t)

H(t)
− tḢ2(t)

H2(t)

Multiplying by t and solving for Ḧ(t)t2

H(t)
, we obtain

Ḧ(t)t2

H(t)
= η2

H(t)− ηH(t) + η̇H(t)t (4.15)

Plugging this into (4.14) gives

(n− 1) + (p− n)ηH(t)− (p− 3)η2
H(t)− η3

H(t) =

(
p− 1

n− 1
η2
H(t) + 1

)(
η2
H(t)− ηH(t) + η̇H(t)t

)
=
p− 1

n− 1
η4
H(t)− p− 1

n− 1
η3
H(t) + η2

H(t)− ηH(t) +

(
p− 1

n− 1
η2
H(t) + 1

)
η̇H(t)t

or equivalently

(
p− 1

n− 1
η2
H(t) + 1

)
η̇H(t)t = (n− 1) + (p− n+ 1)ηH(t)− (p− 2)η2

H(t) +
p− n
n− 1

η3
H(t)− p− 1

n− 1
η4
H(t)

= (1− ηH(t))

(
p− 1

n− 1
ηH(t) + 1

)(
η2
H(t) + n− 1

)
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Dividing both sides by (1− ηH(t))
(
p−1
n−1

ηH(t) + 1
)

(η2
H(t) + n− 1) t yields

p−1
n−1

η2
H(t) + 1

(1− ηH(t))
(
p−1
n−1

ηH(t) + 1
)

(η2
H(t) + n− 1)

η̇H(t) =
1

t
. (4.16)

We now turn to using the elasticity function ηH to find the p-harmonic inner-stationary

radial mapping h(x) = H(|x|) x
|x| . Multiplying both sides of (4.16) by ηH yields

p−1
n−1

η3
H(t) + ηH(t)

(1− ηH(t))
(
p−1
n−1

ηH(t) + 1
)

(η2
H(t) + n− 1)

η̇H(t) =
Ḣ(t)

H(t)
. (4.17)

If Ḣ(t) = 0, both sides of (4.17) are zero. If Ḣ(t) 6= 0, we can divide by ηH to recover (4.16),

which is equivalent to (4.3). Thus, (4.17) is implied when H satisfies either (4.2) or (4.3).

To make use of (4.17), we use the partial fraction decomposition

p−1
n−1

ξ3+ξ

(1−ξ)( p−1
n−1

ξ−1)(ξ2+n−1)
= 1

n
1

1−ξ −
(

p−1
p2−2p+n

)
1

p−1
n−1

ξ+1

−
(

p2−2p
n(p2−2p+n)

)
ξ

ξ2

n−1
+1
−
(
p2−(n+2)p+2n
n(p2−2p+n)

)
1

ξ2

n−1
+1

(4.18)

We can integrate (4.17) with respect to t and then multiply by −n to obtain

log |1− ηH(t)| +α log
∣∣ p−1
n−1

ηH(t) + 1
∣∣+ β log

(
η2H(t)

n−1
+ 1
)

+ γ tan−1
(
ηH(t)√
n−1

)
= −n log |H(t)|+ C ′

(4.19)

where C ′ is any constant of integration and hereafter,

α = n(n−1)
p2−2p+n

, β = (n−1)(p−2)p
2(p2−2p+n)

, γ =
√
n−1(p−2)(p−n)
p2−2p+n

(4.20)
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We can rewrite (4.19) as

(1− ηH)

(
p− 1

n− 1
ηH + 1

)α(
η2
H

n− 1
+ 1

)β
exp

(
−γ tan−1

(
ηH√
n− 1

))
=

C

Hn
(4.21)

where C is a constant.

Finally, multiplying both sides of (4.21) by Hn gives us

(H − tḢ)

(
p− 1

n− 1
tḢ +H

)α(
(tḢ)2

n− 1
+H2

)β

exp

(
−γ tan−1

(
tḢ√
n− 1H

))
= C (4.22)

We set L to be first-order differential operator on the left hand side of (4.22). The generalized

p-harmonic equation will be

L(t,H, Ḣ) = C (4.23)

We have that (4.23) is equivalent to (4.17). Differentiating (4.23), we recover (4.9) and

(4.10). Therefore, the generalized p-harmonic equation is equivalent to (4.2) and (4.3). In

light of Proposition 4.1.1, the strain function of a radial p-harmonic mapping will satisfy the

generalized p-harmonic equation.

4.3 Principal Solutions

We now turn our attention to constructing p-harmonic radial mappings on A. We will see

these mappings will extend to the punctured space R0. We will build such a mapping by

constructing a principal strain function which we can scale and dilate to obtain the strain
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function H of the radial p-harmonic map h.

We saw in the previous section that the strain function of a radial p-harmonic mapping

must satisfy the generalized p-harmonic equation, or equivalently, (4.21). For this to hold,

1−ηH and p−1
n−1

ηH +1 cannot change signs. We note that ηH(t) > 1 is equivalent to Ḣ(t)
H(t)

> 1
t
.

Integrating this from r to R gives log R∗
r∗
≥ log R

r
. Similarly, if 0 < ηH(t) < 1, we find

log R∗
r∗
≤ log R

r
. Note that ηH = 1 for H = t, and ηH = −n−1

p−1
for H(t) = t−

n−1
p−1 . In these

cases, we have (4.21) with C = 0. The functions H0(t) = t and H∞(t) = t−
n−1
p−1 are our first

principal solutions.

Now consider the case when 1 − η > 0 and p−1
n−1

η + 1 > 0. Our goal is to construct a

function H = H+ such that (4.21) holds with C = 1. The construction begins by defining a

function Γ+(s) for −n−1
p−1

< s < 1 by

Γ+(s) = exp

(
s∫

0

1+ p−1
n−1

τ2

(1−τ)( p−1
n−1

τ+1)(τ2+n−1)
dτ

)
=

( p−1
n−1

s+1)
A′( s2

n−1
+1

)B′
(1−s)

1
n

exp
(
D′ tan−1

(
s√
n−1

))
,

(4.24)

where henceforth,

A′ = p−1
p2−2p+n

, B′ = p2−(n+2)p+2n
2n(p2−2p+n)

, D′ = −
√
n−1p(p−2)

n(p2−2p+n)
. (4.25)

Note that

Γ̇+(s)

Γ+(s)
=

1 + p−1
n−1

s2

(1− s)
(
p−1
n−1

s+ 1
)

(s2 + n− 1)
(4.26)

We see Γ+ is increasing, and thus invertible. We set u+ = Γ−1
+ . Thus, Γ+(u+(t)) = t and

Γ̇+(u+)u̇+ = 1.
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We now use α, β, and γ from (4.20) to set H+ to be

H+ = (1− u+)−
1
n

(
p− 1

n− 1
u+ + 1

)−α
n
(

u2
+

n− 1
+ 1

)− β
n

exp

(
−γ
n

tan−1

(
u+√
n− 1

))
(4.27)

We next compute the logarithmic derivative of H+ using the partial fraction decomposition

(4.18), and apply (4.24), to obtain

Ḣ+

H+

=

[
p−1
n−1

u3
+ + u+

(1− u+)( p−1
n−1

u+ + 1)(u2
+ + n− 1)

]
u̇+ = u+

Γ̇+(u+)

Γ+(u+)
u̇+ = u+

1

t
. (4.28)

Multiplying both sides of (4.28) by t, we arrive at

u+(t) =
tḢ+(t)

H+(t)
= η

H+
(t). (4.29)

We now observe by plugging (4.29) into (4.27) that we indeed have

Hn
+ =

(
1− η

H+

)−1
(

1 +
p− 1

n− 1
η
H+

)−α( η
H+

n− 1
+ 1

)−β
exp

(
−γ tan−1

(
η
H+√
n− 1

))
(4.30)

which clearly satisfies (4.21) with C = 1. The function H+ is a principal solution to the

generalized p-harmonic equation.

Here, we present some basic properties of our principal solution H+. Inspecting (4.24), we

see that Γ+ is smooth, hence so are u+ and H+. By noting Γ+(s) is increasing on
(
−n−1
p−1

, 1
)

,

and Γ+(0) = 1, we also know u+(t) is increasing, and that u+(1) = 0. For all 0 < t <∞, we

observe that

−n− 1

p− 1
< u+(t) = η

H+
(t) < 1
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From (4.27), we see that H+(t) > 0. So by (4.29), Ḣ+ and u+ have the same sign. It follows

that H+ is decreasing on (0, 1) and increasing on (1,∞). Thus, H(t) ≥ H(1) = 1 for all t.

Moreover, because η
H+

< 1, we have

d

dt

H+(t)

t
=
Ḣ+(t)

t
− H+(t)

t2
=
H+(t)

t2

(
η
H+

(t)− 1
)
< 0. (4.31)

It follows that H+(t)
t

< H+(1)
1

= 1 for t > 1. In particular, H+

(
R
r

)
< R

r
.

We now compute limits. From (4.24), we have

lim
s→−n−1

p−1

Γ+(s) = 0, lim
s→1

Γ+(s) =∞. (4.32)

We can use these limits for asymptotic values of H+. By a continuity argument, using (4.32),

we have

lim
t→∞

H+(t)

t
= lim

s→1

H+(Γ+(s))

Γ+(s)

= lim
s→1

(1− s)−1
n

(
p−1
n−1

s+ 1
)−α

n

(
s2

n−1
+ 1
)− β

n
exp

(
− γ
n

tan−1
(

s√
n−1

))
(1− s)−1

n

(
p−1
n−1

s+ 1
)A′ ( s2

n−1
+ 1
)B′

exp
(
D′ tan−1

(
s√
n−1

))
= lim

s→1

 exp
(√

n− 1 tan−1
(

s√
n−1

))
(
p−1
n−1

s+ 1
) p+n−2

p−2
(
s2

n−1
+ 1
) p−1

2


p−2

p2−2p+n

50



lim
t→0

t
n−1
p−1H+(t) = lim

s→−n−1
p−1

Γ
n−1
p−1

+ (s)H+(Γ+(s))

= lim
s→−n−1

p−1

(1− s)−
(n−1)
n(p−1)

(
p−1
n−1

s+ 1
) (n−1)A′

p−1

(
s2

n−1
+ 1
) (n−1)B′

(p−1)
exp

(
(n−1)D′

p−1
tan−1

(
s√
n−1

))
(1− s) 1

n

(
p−1
n−1

s+ 1
)α
n
(
s2

n−1
+ 1
) β
n exp

(
γ
n

tan−1
(

s√
n−1

))
= lim

s→−n−1
p−1

(
(1− s)

p+n−2
p−2

(
s2

n− 1
+ 1

)n−1
2

exp

(√
n− 1 tan−1

(
s√
n− 1

)))− p−2
n(p−1)

Writing

Θ+ =

 (n− 1)
p2−p+2n−2

2(p−2)

n
p−1
2 (p+ n− 2)

p+n−2
p−2

exp

(√
n− 1 tan−1

(
1√
n− 1

))
p−2

p2−2p+n

Ξ+ =

 (p+ n− 2)
p+n−2
p−2 (p2 − 2p+ n)

n−1
2

(p− 1)
n(p−1)
p−2 exp

(√
n− 1 tan−1

(√
n−1
p−1

))
−

p−2
n(p−1)

we conclude that

lim
t→∞

H+(t)

t
= Θ+ (4.33)

lim
t→0

t
n−1
p−1H+(t) = Ξ+ (4.34)

Now consider the case when η > 1. Our goal is to construct a function H = H− such

that (4.21) holds for C = −1. We modify our construction of H+, beginning by defining

Γ−(s) for − p−1
n−1

< s < 1 by

Γ−(s) = exp
s∫

0

p−1
n−1

+τ2

(1−τ)( p−1
n−1

+τ)(1+(n−1)τ2)
dτ

= (1− s)−1
n

(
1 + n−1

p−1
s
)A′

(1 + (n− 1)s2)
B′

exp
(
−D′ tan−1

(√
n− 1s

)) (4.35)
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Note that

Γ̇−(s)

Γ−(s)
=

p−1
n−1

+ s2

(1− s)
(
p−1
n−1

+ s
)

(1 + (n− 1)s2)
(4.36)

We see Γ− is increasing, and thus invertible. We set u− = Γ−1
− . Thus, Γ−(u−(t)) = t and

Γ̇−(u−)u̇− = 1.

For for t 6= 1, we define our last principal solution H−(t) by

H− = u− (1− u−)−
1
n

(
u− +

p− 1

n− 1

)−α
n
(

1

n− 1
+ u2

−

)− β
n

exp

(
−γ
n

tan−1

(
1√

n− 1u−

))
(4.37)

We can now compute its logarithmic derivative

Ḣ−
H−

=
p−1
n−1

+ u2
−

u−(1− u−)
(
p−1
n−1

+ u−
)

(1 + (n− 1)u2
−)
u̇− =

1

u−

Γ̇−(u−)

Γ−(u−)
u̇− =

1

tu−
(4.38)

Multiplying both sides of (4.38) by t, we arrive at

η
H−

(t) =
tḢ−(t)

H−(t)
=

1

u−(t)
. (4.39)

At this point, we need some remarks about u−. Note that Γ−(0) = 1, so u−(1) = 0.

Therefore, ηH− (and indeed, also H−) is not defined by (4.37) at t = 1. We will set H(1) = 0,

defining H(t) for all t > 0. Also, since Γ− is increasing on
(
− p−1
n−1

, 1
)
, it follows that u(t) is

increasing, and we have −n−1
p−1

< u(t) < 0 for 0 < t < 1, and 0 < u(t) < 1 for t > 1. We see

ηH−(t) > 1 for t > 1, and ηH−(t) < − p−1
n−1

for 0 < t < 1.

We consider t > 1, where ηH−(t) > 1. We momentarily restrict ourselves to this case

because we are most interested when H−(t) is positive and increasing (H−(t) > 0 and

52



Ḣ−(t) > 0). These properties for our strain function follow from the assumption that our

radial map h : A → A∗ is order preserving and orientation preserving. Plugging (4.39) into

(4.37), we see

H−n− = ηH−

(
1− 1

ηH−

)(
1

ηH−
+ p−1

n−1

)α(
1

n−1
+ 1

η2H−

)β
exp

(
γ tan−1

(
ηH−√
n−1

))
=

(
ηH− − 1

) (
1 + p−1

n−1
ηH−

)α(η2H−
n−1

+ 1

)β
exp

(
γ tan−1

(
ηH−√
n−1

)) (4.40)

Thus, H− satisfies (4.21) with C = −1.

We now present some properties of H− that follow from its construction. By (4.37), we

see H−(t) and u−(t) have the same sign. So, H−(t) < 0 for t < 1 and H−(t) > 0 for t > 1,

and Ḣ(t) > 0 by (4.39). Since H−(1) = 0, we have that H− is continuous on (0,∞). In fact,

it is a smooth function, and we see it is increasing. Note that ηH−(1) is not defined.

We now compute limits. From (4.35), we have

lim
s→− p−1

n−1

Γ−(s) = 0, lim
s→1

Γ−(s) =∞. (4.41)

We can use these limits for asymptotic values of H−. By a continuity argument, using (4.41),

we have

lim
t→∞

H−(t)

t
= lim

s→1

H−(Γ−(s))

Γ−(s)

= lim
s→1

s (1− s)−
1
n
(
s+ p−1

n−1

)−α
n (1 + (n− 1)s2)

− β
n exp

(
− γ
n

tan−1
(

1√
n−1s

))
(1− s)−1

n

(
1 + n−1

p−1
s
)A′

(1 + (n− 1)s2)B
′
exp

(
−D′ tan−1

(√
n− 1s

))
= lim

s→1

(
p−1
n−1

) p−1

p2−2p+n s exp
[√

n−1(p−2)
p2−2p+n

(
tan−1

(
1√
n−1s

)
− pπ

2n

)]
(
p−1
n−1

+ s
) p+n−2

p2−2p+n (1 + (n− 1)s2)
(p−1)(p−2)

2(p2−2p+n)
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lim
t→0

t
n−1
p−1H−(t) = lim

s→− p−1
n−1

Γ
n−1
p−1

− (s)H−(Γ−(s))

= lim
s→− p−1

n−1

[
(1− s)− 1

n

(
1 + n−1

p−1
s
)A′

(1 + (n− 1)s2)B
′
exp

(
−D′ tan−1

(√
n− 1s

))]n−1
p−1

s−1(1− s) 1
n

(
s+ p−1

n−1

)α
n (1 + (n− 1)s2)

β
n exp

(
γ
n

tan−1
(

1√
n−1s

))
= lim

s→− p−1
n−1

s exp
[ √

n−1(p−2)
n(p2−2p+n)

(
(n−1)p
p−1

tan−1(
√
n− 1s)− (p− n) tan−1

(
1√
n−1s

))]
(
p−1
n−1

) n−1

p2−2p+n (1− s)
p+n−2
n(p−1) (1 + (n− 1)s2)

(n−1)(p−2)
2n(p−1)

Writing

Θ− =

(
p−1
n−1

) p−1

p2−2p+n exp
[√

n−1(p−2)
p2−2p+n

(
tan−1

(
1√
n−1

)
− pπ

2n

)]
(
p+n−2
n−1

) p+n−2

p2−2p+n (n)
(p−1)(p−2)

2(p2−2p+n)

Ξ− = −

(
p−1
n−1

) p2−2p+1

p2−2p+n exp
[
−
√
n−1(p−2)

n(p2−2p+n)

(
(n−1)p
p−1

tan−1
(

p−1√
n−1

)
− (p− n) tan−1

(√
n−1
p−1

))]
(
p+n−2
n−1

) p+n−2
n(p−1)

(
p2−2p+n
n−1

) (n−1)(p−2)
2n(p−1)

we conclude that lim
t→∞

H−(t)
t

= Θ− and lim
t→0

t
n−1
p−1H−(t) = Ξ−.

Because η
H−

(t) > 1 for t > 1, we have

d

dt

H−(t)

t
=
Ḣ−(t)

t
− H−(t)

t2
=
H−(t)

t2

(
η
H−

(t)− 1
)
> 0 (4.42)

for all t > 1. It follows that H−(t)
t

is increasing on (1,∞). In particular, t
H−(t)

> 1
Θ−

for t > 1.

Finally, we remark that when t < 1, we have seen that u−(t), H−(t), and η
H−

(t) are all

negative. By plugging (4.39) into (4.37) and taking the logarithm, we obtain

− 1
n

log
(

1− η
H−

)
− α

n
log
∣∣∣1 + p−1

n−1
η
H−

∣∣∣− β
n

log
(
η2
H−

+ n− 1
)
− D

A
tan−1

( η
H−√
n−1

)
= log |H|

(4.43)
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which satisfies (4.19) with C ′ = 0.

4.4 Generating all radial p-harmonics

We saw that the radial p-harmonic map h : A(r, R) → A∗(r∗, R∗) is the solution to the

Dirichlet problem 
div(|Dh|p−2Dh) = 0

h(x) = r∗
x
|x| |x| = r

h(x) = R∗
x
|x| |x| = R

In this section, we will find a strain function H : (r, R)→ R which, given a, b ∈ R, satisfies

L(t,H(t), Ḣ(t)) = C (4.44)

H(r) = a (4.45)

H(R) = b (4.46)

Here, C is some constant. The system would be overdetermined if the constant was fixed.

We can build solutions to (4.44)-(4.46) using the principal solutions H0, H∞, H+, and H−.

We saw these four functions satisfy (4.44) when C = 0 or C = ±1. Note only in certain cases

will this function H be the strain function of a radial orientation-preserving, order-preserving

homeomorphism h : A→ A∗.

We recall that (4.44) can be written in terms of the elasticity function as (4.21). Since

the elasticity function transforms nicely under scaling and dilation, we see H(t) = λHi(kt)

satisfies (4.21) whenever Hi is a principal solution. Thus, given a and b, we search for the
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correct scaling factor λ and dilating factor k of a principal solution Hi so that H(t) = λHi(kt)

satisfies (4.45)-(4.46). These factors, as well as the choice of principal solution, will depend

on the ratio of b to a. We now consider several cases.

First, suppose that a = 0. Then the function H(t) = b
H−(R

r
)
H−( t

r
) satisfies (4.44)-(4.46).

For all other cases, we will suppose a 6= 0.

We can eliminate one constant from λH(kt) just by dividing. If λH(kt) satisfies (4.44)-

(4.46) for a 6= 0, then H(kR)
H(kr)

= b
a
. We now define two functions Q+(t) = H+(tR)

H+(tr)
and

Q−(t) = H−(tR)
H−(tr)

. We take a moment to establish some properties of these functions.

We first consider Q+(t). We see that it is defined for 0 < t < ∞, and Q+(t) > 0 for all

t. We compute the logarithmic derivative to be

Q̇+(t)

Q+(t)
=
RḢ+(tR)

RH+(tR)
− rḢ+(tr)

rH+(tr)
=

1

t

(
η
H+

(tR)− η
H+

(tr)
)
.

Since R > r and η
H+

= u+ is increasing, it follows that Q̇+ > 0, so Q+ is strictly increasing.

We can now use the asymptotic limits of H+ to show that

lim
t→0

Q+(t) = lim
t→0

H+(tR)

H+(tr)
= lim

t→0

r
n−1
p−1 (tR)

n−1
p−1H+(tR)

R
n−1
p−1 (tr)

n−1
p−1H+(tr)

=
r
n−1
p−1

R
n−1
p−1

(4.47)

lim
t→∞

Q+(t) = lim
t→∞

H+(tR)

H+(tr)
= lim

t→∞

RH+(tR)
tR

rH+(tr)
tr

=
R

r
(4.48)

We now consider Q−(t). Since H−(1) = 0, we see that Q−(t) is undefined for t = 1
r
, and

Q−( 1
R

) = 0. We will show that Q− is decreasing on
(
0, 1

r

)
and on

(
1
r
,∞
)
. Moreover, we have
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the limits

lim
t→0+

Q−(t) =
( r
R

)n−1
p−1

(4.49)

lim
t→ 1

r

−
Q−(t) = −∞ (4.50)

lim
t→ 1

r

+
Q−(t) =∞ (4.51)

lim
t→∞

Q−(t) =
R

r
(4.52)

If t > 1
r
, then H−(tR) > H−(tr) > 0. Thus, Q−(t) is positive on

(
1
r
,∞
)
. If 0 < t < 1

R
,

then H−(tr) < H−(tR) < 0. Thus, Q(t) is also positive on
(
0, 1

R

)
. But if 1

R
< t < 1

r
, we have

H−(tr) < 0 < H−(tR), so Q−(t) is negative on
(

1
R
, 1
r

)
. Considering the sign of Q− near 1

r

gives (4.50) and (4.51).

The other limits use the asymptotic limits of H−, establishing

lim
t→0

Q−(t) = lim
t→0

H−(tR)

H−(tr)
= lim

t→0

r
n−1
p−1 (tR)

n−1
p−1H−(tR)

R
n−1
p−1 (tr)

n−1
p−1H−(tr)

=
r
n−1
p−1

R
n−1
p−1

,

lim
t→∞

Q−(t) = lim
t→∞

H−(tR)

H−(tr)
= lim

t→∞

RH−(tR)
tR

rH−(tr)
tr

=
R

r
.

We will now show Q−(t) is decreasing on
(
0, 1

r

)
and on

(
1
r
,∞
)
. The logarithmic derivative

of Q−(t) at t 6= 1
R
, 1
r

is

Q̇−(t)

Q−(t)
=
RḢ−(tR)

RH−(tR)
− rḢ−(tr)

rH−(tr)
=

1

t

(
η
H−

(tR)− η
H−

(tr)
)
.

We recall that η
H−

(t) = 1
u−(t)

is decreasing and negative on (0, 1), while it is decreasing and
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positive on (1,∞). This implies that η
H−

(tR)− η
H−

(tr) < 0 when 0 < t < 1
R

or when t > 1
r
.

Since Q−(t) > 0 for these values of t, we conclude Q− is decreasing on (0, 1
R

) and (1
r
,∞).

Moreover, if 1
R
< t < 1

r
, we have that η

H−
(tR) > 0 > η

H−
(tr), so η

H−
(tR) − η

H−
(tr) > 0.

But Q−(t) < 0 for 1
R
< t < 1

r
, implying that Q− is decreasing on ( 1

R
, 1
r
). To conclude Q− is

decreasing on (0, 1
r
), we remark that Q−( 1

R
) = 0, Q−(t) > 0 for t < 1

R
, and Q−(t) < 0 for

1
R
< t < 1

r
.

We now return to considering cases where a 6= 0. First, suppose b
a
<
(
r
R

)n−1
p−1 . We have

that Q−(t) is strictly decreasing on
(
0, 1

r

)
. Using limits (4.49) and (4.50), we see there exists

a unique k with 0 < k < 1
r

such that Q−(k) = b
a
. We then see that H(t) = a

H−(kr)
H−(kt)

satisfies (4.46)-(4.46).

If b
a

=
(
r
R

)n−1
p−1 , then we see that H(t) = aH∞( t

r
) = a

(
r
t

)n−1
p−1 satisfies (4.44)-(4.46).

Suppose
(
r
R

)n−1
p−1 < b

a
< R

r
. We have that Q+(t) is strictly increasing on (0,∞). Using

limits (4.47) and (4.48), we conclude there exists a unique k such that Q+(k) = b
a
. We then

see that H(t) = a
H+(kr)

H+(kt) satisfies (4.44)-(4.46).

If b
a

= R
r
, then we see that H(t) = aH0( t

r
) = a

r
t satisfies (4.44)-(4.46).

Now assume R
r
< b

a
. We have that Q−(t) is strictly decreasing on (1

r
,∞) Using limits

(4.51) and (4.52), we conclude there exists a unique k with 1
r
< k such that Q−(k) = b

a
. We

then see that H(t) = a
H−(kr)

H−(kt) satisfies (4.44)-(4.46).

Thus, in all cases, we have found a strain function H(t) satisfying (4.44)-(4.46). So the

map h(x) = H(|x|) x
|x| is a p-harmonic mapping of A into Rn such that |h(x)| = a for |x| = r

and |h(x)| = b for |x| = R.
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4.5 Existence of Radial p-harmonic homeomorphisms

We are interested in finding radial maps that are p-harmonic order-preserving homeomor-

phisms of A onto A∗. Thus, we consider solutions of (4.44)-(4.46) when a = r∗ and b = R∗,

with b
a
> 1.

When R∗
r∗
> R

r
, we saw that there exists k > 1

r
such that H(r) = R∗ and H(R) = R∗ for

H(t) = r∗
H−(kr)

H−(kt). Because H− is strictly increasing, we have that h(x) = H(|x|) x
|x| is

the desired homeomorphism.

If R∗
r∗

= R
r
, then the conformal map h(x) = r∗

r
x is an order-preserving p-harmonic home-

omorphsim.

Suppose R∗
r∗
< R

r
. We defined a constant k by Q+(k) = R∗

r∗
, where Q+(t) = H+(tR)

H+(tr)
was a

strictly increasing function. Taking H(t) = r∗
H+(kr)

H+(kt) gave H(r) = r∗ and H(R) = R∗.

Since H+ is increasing on (1,∞), we have that h(x) = H(|x|) x
|x| is the desired homeomor-

phism if kr ≥ 1, or equivalently,

R∗
r∗

= Q+(k) ≥ Q+

(
1

r

)
=
H+(R

r
)

H+( r
r
)

= H+

(
R

r

)
.

Recall that H+ is increasing on (1,∞) but decreasing on (0, 1). If R∗
r∗
< H+

(
R
r

)
, then

kr < 1. So h(x) = H(|x|) x
|x| is not a homeomorphism, since H(t) is decreasing on

(
r, 1

k

)
but

increasing on
(

1
k
, R
)
. The condition H+

(
R
r

)
≤ R∗

r∗
< R

r
says R∗

r∗
is not too small, relative to

R
r
. Note in the case that p = n = 2, the term H+(R

r
) = 1

2

(
R
r

+ r
R

)
is the classical Nitsche

bound for the existence of harmonic homeomorphsims between annuli [10]. What we have

seen is that there is no radial p-harmonic homeomorphism from A onto A∗ if R∗
r∗
< H+

(
R
r

)
.
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We now construct an important map that is the limit of homeomorphsims when R∗
r∗
<

H+

(
R
r

)
. We recall that H+(t) is increasing on (1,∞), so H+(R

t
) is decreasing on (0, R).

Moreover, since H+(1) = 1, we have

H+

(
R

R

)
<
R∗
r∗

< H+

(
R

r

)
.

Since H+ is continuous, we conclude that there is some number ρ with r < ρ < R such that

H+

(
R
ρ

)
= R∗

r∗
. We then set

H0(t) =


r∗H+

(
t
ρ

)
ρ ≤ t ≤ R

r∗ r ≤ t ≤ ρ

(4.53)

Since Ḣ+(1) = 0, we see that H0 ∈ C1(r, R). In fact, H0 is a limit of homeomorphisms.

Moreover, H0 is increasing, and it satisfies (4.44)-(4.46). The radial map H0(|x|) x
|x| : A→ A∗

is now an admissible map.
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Chapter 5

Radial p-harmonics and Minimal

Energy

In this section, we prove the main results. We will require the free Lagrangian estimates

from Lemma 2.2.9, and the algebraic inequalities given in Lemma 3.1.1 and Lemma 3.2.2.

Throughout this section, we will let h ∈ A(A,A∗) be arbitrary, and we will think of t = |x|

and s = |h(x)|, where r < t < R and r∗ < s < R∗. We will consider the problem in two

subsections.

5.1 The contracting case R∗
r∗
≤ R

r

We begin with the proof of Theorem 1.0.4, restated below.

Theorem 5.1.1. Let A and A∗ be annuli in Rn with H+

(
R
r

)
< R∗

r∗
< R

r
, where H+ refers

to the principal solution to the generalized p-harmonic equation. Then there exists a radial
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homeomorphsim h0(x) = H(|x|) x
|x| that maps A onto A∗ such that

∫
A

|Dh(x)|p dx ≥
∫
A

|Dh0(x)|p dx

for every homeomorphism h : A→ A∗ of Sobolev class W 1,p(A,A∗).

Proof. The existence of such a radial homeomorphism has already been shown. Let h :

A → A∗ be any admissible homeomorphism. We apply Lemma 3.1.1, with carefully chosen

functions a = a(|x|, |h|) and b = b(|h|) as our constants. Since a and b depend on |x| and

|h|, so does the constant c = c(a, b) from the lemma. Letting X = |hN(x)| and Y = |hT (x)|,

we now have the pointwise inequality

(|hN |2 + (n− 1)|hT |2)
p
2 ≥ a(|x|, |h|)|hT |n + b(|h|)|hN ||hT |n−1 − c(|x|, |h|) (5.1)

The functions a and b will be chosen so that equality holds for the radial p-harmonic home-

omorphsim h0 : A→ A∗.

Observe that b(|h|)|hN ||hT |n−1dx is a free Lagrangian. We will also choose an appropriate

function A = A(|x|, |h|) so that a(|x||h|)A(|x|, |h|)|hT |n−1dx is a free Lagrangian. From

Young’s inequality, we have

aA|hT |n−1 ≤ n− 1

n
a|hT |n +

1

n
aAn (5.2)
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with equality when A(|x|, |h|) = |hT (x)|. Combining (5.1) and (5.2) yields

(|hN |2 + (n− 1)|hT |2)
p
2 ≥ n

n− 1
a(|x|, |h|)A(|x|, |h|)|hT |n−1 + b(|h|)|hN ||hT |n−1 (5.3)

−
(

1

n− 1
a(|x|, |h|)An(|x|, |h|) + c(|x|, |h|)

)
(5.4)

We will write

1

n− 1
a(|x|, |h|)An(|x|, |h|) + c(|x|, |h|) = B(|x|, |h|) (5.5)

If H(|x|) = |h0(x)|, then we will show, for all r∗ ≤ s ≤ R∗, that

B(|x|, s) ≤ B(|x|, H(|x|)) (5.6)

Thus, we may estimate the term in (5.4) using a term independent of h. Equality will hold

when h = h0. Integrating all this and using (1.6), we obtain

∫
A

|Dh|pdx ≥
∫
A

n

n− 1
a(|x|, |h|)A(|x|, |h|)|hT |n−1dx+

∫
A

b(|h|)|hN ||hT |n−1dx (5.7)

−
∫
A

B(|x|, H(|x|))dx (5.8)

Equality holds throughout for h0, so this establishes Ep[h] ≥ Ep[h0].

To choose a and b, we must first define a function η(s) for r∗ ≤ s ≤ R∗. Recall that

when H+

(
R
r

)
≤ R∗

r∗
< R

r
, we have an increasing function H(t) whose elasticity function ηH
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satisfies

(1− ηH(t))

(
p− 1

n− 1
ηH(t) + 1

)α
(η2
H(t) + n− 1)β exp

(
γ tan−1

(
ηH(t)√
n− 1

))
=

C

Hn(t)
(5.9)

where C > 0 is a constant. Here, 0 ≤ ηH(t) < 1. Since H is nonconstant, we see from (4.16)

that η̇H(t) satisfies

η̇H(t) =
(1− ηH(t))

(
p−1
n−1

ηH(t) + 1
)

(η2
H(t) + n− 1)(

p−1
n−1

η2
H(t) + 1

)
t

(5.10)

For r∗ ≤ s ≤ R∗, let F (s) be the function with F (H(t)) = t. We now set η(s) = ηH(F (s)).

From Proposition 4.2.2, we have η(s) = 1
ηF (s)

. Using this fact and (5.10), we obtain

η̇(s) =
(1− η(s))

(
p−1
n−1

η(s) + 1
)

(η2(s) + n− 1)(
p−1
n−1

η2(s) + 1
)
η(s)s

(5.11)

We remark that we can use (5.9) to define η(s) implicitly for r∗ ≤ s ≤ R∗ by the formula

(1− η(s))

(
p− 1

n− 1
η(s) + 1

)α
(η(s) + n− 1)β exp

(
γ tan−1

(
η(s)√
n− 1

))
=
C

sn
(5.12)

Since H is the unique function satisfying (5.9), these definitions are equivalent. Differenti-

ating (5.12), we recover (5.11).
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We are now ready to define a and b. We set

a(t, s) =
(n− 1)p

n
(η2
H(t) + n− 1)

p−2
2 (1− η2

H(t))

(
H(t)

t

)p−n(
H(t)

s

)n
(5.13)

b(s) = np(η2(s) + n− 1)
p−2
2 η(s)

(
s

F (s)

)p−n
(5.14)

We the have

c(t, s) =
p− n
n

[
(η2
H(t) + n− 1)

p−2
2 (1− η2

H(t))Hn(t)

(V 2 + n− 1)
n−2
2 (1− V 2)sn

] p
p−n (

H(t)

t

)p
(5.15)

where V = V (t, s) is the function defined at (3.7) by

V

1− V 2
=

(n− 1)b

na
=

η(s)

1− η2
H(t)

[
(η2(s) + n− 1)

p−2
2

sp

F p−n(s)

(η2
H(t) + n− 1)

p−2
2

Hp(t)
tp−n

]
(5.16)

Note that V (t,H(t)) = ηH(t). We record here that the derivatives of V (t, s) found by

logarithmic differentiation are

1 + V 2(t, s)

V (t, s)[1− V 2(t, s)]
Vs(t, s) =

η2(s) + n− 1

sη2(s)
(5.17)

1 + V 2(t, s)

V (t, s)[1− V 2(t, s)]
Vt(t, s) =

p−n
n−1

(η2
H(t) + n− 1)(1− ηH(t))(

p−1
n−1

η2
H(t) + 1

)
(ηH(t) + 1)t

(5.18)

Recall equality holds in (3.1) for Y 0 =

(
na

(n−1)p(V 2+n−1)
p−2
2 (1−V 2)

) 1
p−n

and X0 = V Y 0.
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Therefore, equality holds in (5.2) when

|hT | =
H(|x|)
|x|

(
(η2
H(|x|) + n− 1)

p−2
2 (1− η2

H(|x|))Hn(|x|)
(V 2(|x|, |h|) + n− 1)

p−2
2 (1− V 2(|x|, |x|))|h|n

) 1
p−n

(5.19)

|hN | =
V (|x|, |h|)H(|x|)

|x|

(
(η2
H(|x|) + n− 1)

p−2
2 (1− η2

H(|x|))Hn(|x|)
(V 2(|x|, |h|) + n− 1)

p−2
2 (1− V 2(|x|, |x|))|h|n

) 1
p−n

(5.20)

In particular, when h = h0, we have equality in (5.2).

Next, we set

A(t, s) =
s

t
(5.21)

Equality in (5.3)-(5.4) holds when A(|x|, |h|) = |h|
|x| = |hT |. This occurs for any radial map,

or a radial map composed with a rotation. We also see that

a(t, s)A(t, s) = (η2
H(t) + n− 1)

p−2
2 (1− η2

H(t))

(
Hp(t)

tp−n+1

)
1

sn−1
(5.22)

Thus, a(|x|, |h|)A(|x|, |h|)|hT |n−1dx is a free Lagrangian.

All that remains is to prove (5.6). We investigate the derivative of B(t, s) with respect

to s to maximize B(t, s) for each r < t < R. We have

B(t, s) =
p

n
(η2
H(t) + n− 1)

p−2
2 (1− η2

H(t))

(
H(t)

t

)p
(5.23)

+
p− n
n

[
(ηH(t) + n− 1)

p−2
2 (1− η2

H(t))Hn(t)

(V 2(t, s) + n− 1)
n−2
2 (1− V 2(t, s))sn

] p
p−n (

H(t)

t

)p
(5.24)
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Differentiating B(t, s) with respect to s and using (5.17), we get

Bs(t, s) = −pH
p(t)

ntp

[
(ηH(t) + n− 1)

p−2
2 (1− η2

H(t))Hn(t)

(V 2(t, s) + n− 1)
n−2
2 (1− V 2(t, s))sn

] p
p−n [

(n− 2)V Vs
V 2 + n− 1

− 2V Vs
1− V 2

+
n

s

]
(5.25)

=
pHp(t)

tps

[
(ηH(t) + n− 1)

p−2
2 (1− η2

H(t))Hn(t)

(V 2(t, s) + n− 1)
n−2
2 (1− V 2(t, s))sn

] p
p−n [

V 2[η2(s) + n− 1]

η(s)[V 2 + n− 1]
− 1

]
(5.26)

We know see that Bs(t, s) and V 2(t,s)
V 2(t,s)+n−1

η2(s)+n−1
η(s)

−1 have the same sign. Since V (t,H(t)) =

η(H(t)) = ηH(t), we have for fixed r < t < R that B(t, s) has a critical point at s = H(t).

Next, differentiating V 2(t,s)
V 2(t,s)+n−1

with respect to t and using (5.18) yields

(
V 2(t, s)

V 2(t, s) + n− 1

)
t

=
2(n− 1)V (t, s)

[V 2(t, s) + n− 1]2
Vt(t, s) (5.27)

=
2(p− n)[η2

H(t) + n− 1][1− ηH(t)][1− V 2(t, s)]V 2(t, s)

t
(
p−1
n−1

η2
H(t) + 1

)
(ηH(t) + 1)[V 2(t, s) + n− 1]2[V 2(t, s) + 1]

(5.28)

Thus, we see that V 2(t,s)
V 2(t,s)+n−1

is increasing in t.

Now pick r∗ ≤ s ≤ H(t). We can find r ≤ τ ≤ t with s = H(τ) since H is increasing

and maps onto [r∗, R∗]. Since η(s) = ηH(F (s)), we have by (5.16) that V (τ, s) = η(s). Since

τ ≤ t and V 2(t,s)
V 2(t,s)+n−1

is increasing in t, we have that

V 2(t, s)

V 2(t, s) + n− 1

η2(s) + n− 1

η(s)
− 1 ≥ V 2(τ, s)

V 2(τ, s) + n− 1

η2(s) + n− 1

η(s)
− 1 = 0.

Because V 2(t,s)
V 2(t,s)+n−1

η2(s)+n−1
η(s)

− 1 and Bs(t, s) have the same sign, we see that Bs(t, s) ≥ 0 for

r∗ ≤ s ≤ H(t).
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Similarly, suppose H(t) ≤ s ≤ R∗. We can find t ≤ τ ≤ R with s = H(τ) since H is

increasing and maps onto [r∗, R∗]. Since t ≤ τ and V 2

1−V 2 is increasing in t, we have that

V 2(t, s)

V 2(t, s) + n− 1

η2(s) + n− 1

η(s)
− 1 ≤ V 2(τ, s)

V 2(τ, s) + n− 1

η2(s) + n− 1

η(s)
− 1 = 0.

We see Bs(t, s) ≤ 0 for H(t) ≤ s ≤ R∗. Therefore, B(t,H(t)) = max{B(t, s) : r∗ ≤ s ≤ R∗}.

This establishes that h0 is in fact a minimizer.

We remark that by backwards inspection, equality can only occur for maps h : A → A

with |h(x)| = H(|x|) and |hT (x)| = H(|x|)
|x| . The only such map, up to rotation, is the radial

p-harmonic homeomorphism h0.

Recall that when R∗
r∗
< H+

(
R
r

)
, there is no radial p-harmonic homeomorphsim between

A and A∗. Theorem 1.0.5, restated as Theorem 5.1.2, addresses this case, and the proof is

similar to the one above.

Theorem 5.1.2. Let A and A∗ be annuli in Rn with R∗
r∗

< H+

(
R
r

)
. The map h0(x) =

H(|x|) x
|x| , where H = H0 is defined in (4.53), is the limit of homeomorphisms in W 1,p(A,A∗),

and we have

inf


∫
A

|Dh(x)|pdx

 =

∫
A

|Dh0(x)|pdx

where the infimum is taken over homeomorphisms in Sobolev class W 1,p(A,A∗).

Proof. To prove this theorem, we recall there exists r < ρ < R such that H+

(
R
ρ

)
= R∗

r∗
, and

break up the domain A = A(r, ρ] ∪ A(ρ,R). We will then choose functions A, a, and b and

proceed as in the proof of Theorem 5.1.1. Applying Lemma 3.1.1 and Young’s inequality
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with X = |hN(x)| and Y = |hT (x)|, we obtain

∫
A

|Dh|pdx ≥
∫

A(r,ρ]

(
a|hT |n + b|hN ||hT |n−1 − c

)
dx+

∫
A(ρ,R)

(
a|hT |n + b|hN ||hT |n−1 − c

)
dx

(5.29)

≥
∫

A(r,ρ]

n

n− 1
aA|hT |n−1dx+

∫
A(r,ρ]

b|hN ||hT |n−1dx−
∫

A(r,ρ]

[
1

n− 1
aAn + c

]
dx+

(5.30)∫
A(ρ,R)

n

n− 1
aA|hT |n−1dx+

∫
A(ρ,R)

b|hN ||hT |n−1dx−
∫

A(ρ,R)

[
1

n− 1
aAn + c

]
dx

(5.31)

We begin with (5.31). We choose a, b, and A as

a(t, s) =
(n− 1)

p
2 p

n

(r∗
t

)p−n
(5.32)

b(s) = 0 (5.33)

A(t, s) =
r∗
t

(r∗
s

)n−1

(5.34)

In the context of Lemma 3.1.1, we have V = V (a, b) = 0 and c = c(a, b) = (p−n)(n−1)
p
2

n

(
r∗
t

)p
.

Thus, (5.31) reads

∫
A(r,ρ]

(n− 1)
p−2
2 prp∗

|x|p−n+1

|hT |n−1

|h|n−1
dx−

∫
A(r,ρ]

(n− 1)
p
2

n

(
r∗
|x|

)p [
pr

n(n−1)
∗

(n− 1)|h|n(n−1)
+ p− n

]
dx (5.35)

≥
∫

A(r,ρ]

(n− 1)
p−2
2 prp∗

|x|p−n+1

|hT |n−1

|h|n−1
dx−

∫
A(r,ρ]

(n− 1)
p−2
2 [p− n+ 1]

(
r∗
|x|

)p
dx (5.36)
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The inequality holds for all maps h : A → A∗ since |h| ≥ r∗. Equality holds throughout

when |hN | = 0, |hT | = r∗
|x| = r∗

|x|

(
r∗
|h|

)n−1

and |h| = r∗. This happens on A(r, ρ] precisely for

the map h0.

We now turn our attention to the annulus A(r, R). Recall there must be some C > 0

such that

(1− ηH0(t))

(
p− 1

n− 1
ηH0(t) + 1

)α(
ηH0(t)

n− 1
+ 1

)β
exp

(
γ tan−1

(
ηH0(t)√
n− 1

))
=

C

(H0(t))n

(5.37)

We will again denote the right inverse of H0 by F : [r∗, R∗]→ [ρ,R]. We define η(s) implicitly

for r∗ ≤ s ≤ R∗ by the formula

(1− η(s))

(
p− 1

n− 1
η(s) + 1

)α
(η(s) + n− 1)β exp

(
γ tan−1

(
η(s)√
n− 1

))
=
C

sn
(5.38)

From (5.37), we have η(H0(t)) = ηH0(t). Differentiating (5.38), we obtain

η̇(s) =
(1− η(s))

(
p−1
n−1

η(s) + 1
)

(η2(s) + n− 1)(
p−1
n−1

η2(s) + 1
)
η(s)s

(5.39)

We are now ready to define A, a, and b for ρ ≤ t < R and r∗ < s < R∗. We set

a(t, s) =
(n− 1)p

n
(η2
H(t) + n− 1)

p−2
2 (1− η2

H(t))

(
H(t)

t

)p−n(
H(t)

s

)n
(5.40)

b(s) = np(η2(s) + n− 1)
p−2
2 η(s)

(
s

F (s)

)p−n
(5.41)

A(t, s) =
s

t
(5.42)
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We the have

c(t, s) =
p− n
n

[
(η2
H(t) + n− 1)

p−2
2 (1− η2

H(t))Hn(t)

(V 2 + n− 1)
n−2
2 (1− V 2)sn

] p
p−n (

H(t)

t

)p
(5.43)

where V = V (t, s) is the function defined at (3.7) by

V

1− V 2
=

(n− 1)b

na
=

η(s)

1− η2
H(t)

[
(η2(s) + n− 1)

p−2
2

sp

F p−n(s)

(η2
H(t) + n− 1)

p−2
2

Hp(t)
tp−n

]
(5.44)

Note that these are the same functions chosen in the proof of Theorem 5.1. The integrals

in (5.32) are now

∫
A(ρ,R)

p(η2
H(|x|) + n− 1)

p−2
2 (1− η2

H(|x|))H
p(|x|)

|x|p−n+1

|hT |n−1

|h|n−1
dx+ (5.45)

∫
A(ρ,R)

np(η2(|h|) + n− 1)
p−2
2 η(|h|)

(
|h|

F (|h|)

)p−n
|hN ||hT |n−1dx− (5.46)

∫
A(ρ,R)

p

n
(η2
H(|x|) + n− 1)

p−2
2 (1− η2

H(|x|))
(
H(|x|)
|x|

)p
dx+ (5.47)

∫
A(ρ,R)

p− n
n

[
(η2
H(|x|) + n− 1)

p−2
2 (1− η2

H(|x|))Hn(t)

(V 2 + n− 1)
n−2
2 (1− V 2)|h|n

] p
p−n (

H(|x|)
|x|

)p
dx (5.48)

The values of the first three integrals are independent of h. The integrand of the fourth

is again maximized at |h| = H(|x|), so we can estimate it from below using an integral
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independent of h, as in the proof of Theorem 5.1. Thus, for every admissible h : A→ A∗,

∫
A

|Dh(x)|pdx =

∫
A(r,ρ]

|Dh(x)|pdx+

∫
A(ρ,R)

|Dh(x)|pdx (5.49)

≥
∫

A(r,ρ]

|Dh0(x)|pdx+

∫
A(ρ,R)

|Dh0(x)|pdx =

∫
A

|Dh0(x)|pdx (5.50)

Equality holds throughout for h0, so it is the minimizer.

5.2 The Expanding Case R∗
r∗
> R

r

In this case, we saw that there exists a unique p-harmonic order preserving radial homeo-

morphism h0 : A → A∗ of the form h0(x) = λH−(k|x|) x
|x| where λ > 0 and kr > 1. We

write H(t) = λH−(kt). By classical methods, this homeomorphism is the minimizer among

all radial mappings of A into A∗. Theorem 1.0.7 states the surprising fact that the radial

minimizer is not always the traction-free minimizer of Ep. This is proved by the following

example.

Example 5.2.1. Suppose n ≥ 4 and R∗
r∗

> H−(δ)
H−(δ r

R
)
, where δ = Γ−

(√
n−3

(n−1)(p−n+1)

)
, and

let h0 be the minimizer among radial maps. Then there exists a map h1 ∈ A(A,A∗) with

Ep[h1] < Ep[h0].

Proof. Writing h0(x) = H(|x|) x
|x| , we first show the assumption that R∗

r∗
> H−(δ)

H−(δ r
R

)
implies

ηH(t) >
√

(n−1)(p−n+1)
n−3

. Indeed, recall that we defined a constant k > 1
r

in Chapter 4 by

Q−(k) = R∗
r∗

, where Q−(t) = H−(tR)
H−(tr)

is a decreasing function. Our assumption R∗
r∗
> H−(δ)

H−(δ r
R

)

simply means Q−(k) > Q−( δ
R

).. Because Q−(t) is decreasing, we have kR < δ. We also
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recall that the elasticity function η
H−

(t) = 1
u−(t)

is decreasing. Thus, since H(t) = λH−(kt)

for some λ > 0, we have for r < t < R

ηH(t) = η
H−

(kt) > η
H−

(kR) > η
H−

(δ) =
1

u(δ)
=

√
(n− 1)(p− n+ 1)

n− 3
. (5.51)

Next, we construct h1 : A → A∗, and then prove that Ep[h1] < Ep[h0]. Let Π : Sn−1 →

R̂n−1 be the stereographic projection of Sn−1 ⊂ Rn through the south pole onto R̂n−1, and

let f τ : R̂n−1 → R̂n−1 be the dilation given by f τ (x) = τx. The map Φτ = Π−1 ◦ f τ ◦ Π :

Sn−1 → Sn−1 is called a spherical homothety, and

−
∫

Sn−1

[DΦτ ]n−1dσ =
1

ωn−1

∫
Sn−1

[DΦτ ]n−1dσ = 1 (5.52)

For α2 > (n−1)(p−n+1)
n−3

, take 1 < τ <
√

n−3
(n−1)(p−n+1)

α. It is a fact that

[DΦτ ]n−1 ≤ τn−1 <

(
n− 3

(n− 1)(p− n+ 1)
α2

)n−1
2

(5.53)

Define F (s) =
(
α2 + (n− 1)s

2
n−1

) p
2

for s > 0. Then differentiation yields

Ḟ (s) = p
(
α2 + (n− 1)s

2
n−1

) p−2
2
s

3−n
n−1

F̈ (s) = p
(
α2 + (n− 1)s

2
n−1

) p−4
2
s

4−2n
n−1

(
(p− n+ 1)s

2
n−1 − n− 3

n− 1
α2

)

So when 0 < s <
(

n−3
(n−1)(p−n+1)

α2
)n−1

2
we see that F is concave. Hence using (5.53), we can
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apply Jensen’s inequality, showing

−
∫

Sn−1

(α2 + (n− 1)[DΦτ ]2)
p
2 = −

∫
Sn−1

F
(
[DΦτ ]n−1

)
(5.54)

< F

−∫
Sn−1

[DΦτ ]n−1

 = F (1) = (α2 + n− 1)
p
2 (5.55)

We now define a quasiradial map h1(x) = H(|x|)Φτ
(
x
|x|

)
, and show that Ep[h1] < Ep[h0].

We integrate in polar coordinates. Using inequality (5.55) with α = ηH(t) >
√

(n−1)(p−n+1)
n−3

,

we have

Ep[h1] =

∫
A

(
Ḣ2(|x|) + (n− 1)

H2(|x|)
|x|2

[DΦτ ]2
) p

2

dx =

∫
A

Hp(|x|)
|x|p

(
η2
H(|x|) + (n− 1)[DΦτ ]2

) p
2 dx

=

R∫
r

∫
Sn−1

Hp(t)

tp
(
η2
H(t) + (n− 1)[DΦτ ]2

) p
2 tn−1dσdt

=ωn−1

R∫
r

Hp(t)

tp−n+1

∫
Sn−1

(
η2
H(t) + (n− 1)[DΦτ ]2

) p
2 dσdt

<ωn−1

R∫
r

Hp(t)

tp−n+1

(
η2
H(t) + n− 1

) p
2 dt = ωn−1

R∫
r

(
Ḣ2(t) + (n− 1)

H2(t)

t2

) p
2

tn−1dt

=

∫
A

(
Ḣ2(|x|) + (n− 1)

H2(|x|)
|x|2

) p
2

dx = Ep[h0]

This example shows that if R∗
r∗

is too big, relative to R
r
, then radial symmetry is lost in

the minimizer of Ep. However, we can show that the radial map h0 is the minimizer of Ep,

provided R∗
r∗

is not too large.
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Lemma 5.2.2. Let Q(ξ) = (n−3)(p−1)
n−1

ξ3 + (p− 3)ξ2 − (2p− n− 1)ξ − (n− 1). There exists

a number bn,p > 1 such that Q(bn,p) = 0 and Q(ξ) < 0 for 1 < ξ < bn,p. If n > 3, then

bn,p <
√

n−1
n−3

.

The proof of the lemma is elementary. First, note Q(1) = −2(p+n−2)
n−1

< 1. We now

consider cases. For n = 2, we see that

Q(ξ) = −(p− 1)ξ3 + (p− 3)ξ2 − (2p− 3)ξ − 1 (5.56)

= (p− 3)ξ2(1− ξ)− 2ξ3 − (2p− 3)ξ − 1 (5.57)

If 3 > p > 2, then (5.56) shows that Q(ξ) < 0 for all ξ > 0. If p > 3, then (5.57) shows that

Q(ξ) < 0 for all ξ > 1. Thus, we can take b2,p =∞.

For n = 3, we have

Q(ξ) = (p− 3)ξ2 − (2p− 4)ξ − 2

= (p− 3)

(
ξ − p− 2−

√
p2 − 2p− 2

p− 3

)(
ξ − p− 2 +

√
p2 − 2p− 2

p− 3

)

We observe that
p−2−
√
p2−2p−2

p−3
< 1 <

p−2+
√
p2−2p−2

p−3
since Q(1) < 0. We take b3,p =

p−2+
√
p2−2p−2

p−3
.

Now suppose n > 3. The we have Q
(√

n−1
n−3

)
= (p − n)

√
n−1
n−3

[√
n−1
n−3
− 1
]
> 0. Since

Q(1) < 0, there exists a number 1 < b <
√

n−1
n−3

with Q(b) = 0. By the fundamental theorem

of algebra, there are no more than three such numbers. Take bn,p to be the smallest number

in
(

1,
√

n−1
n−3

)
with Q(bn,p) = 0.

Since g(ξ) is decreasing on (1, αn,p), there is a number 1 < α′n,p < αn,p so that g(α′n,p) =
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(
R
r

)(n−1)(p−n)
g(αn,p).

Definition 5.2.3. Set α0 = min{α′n,p, bp,n}. Let δ0 = Γ−

(
1
α0

)
. This constant depend on n,

p, and R
r
.

We are now ready to restate Theorem 1.0.5.

Theorem 5.2.4. Let A and A∗ be annuli in Rn. Let H− be the principal solution of the

generalized p-harmonic equation and α0 be the constant defined in Definition 5.2.3. If R
r
<

R∗
r∗
<

H−(δ0 Rr )
H−(δ0)

, then there exists a radial p-harmonic homeomorphism h0(x) = H(|x|) x
|x| with

∫
A

|Dh(x)|pdx ≥
∫
A

|Dh0|pdx

for every homeomorphism h : A→ A∗ of Sobolev class W 1,p(A,A∗).

Proof. We begin by showing that R
r
< R∗

r∗
<

H−(δ0
R
r

)

H−(δ0)
is equivalent to 1 < ηH(t) < α0 for all

r < t < R. We recall that k is defined by Q−(k) = R∗
r∗

, where Q−(t) = H−(tR)
H−(tr)

is a decreasing

function on
(

1
r
,∞
)
. Moreover, for r < t < R, we have ηH(t) = η

H−
(kt) = 1

u−(kt)
, which is

decreasing. Thus,

ηH(t) = η
H−

(kt) < α0, ∀t ∈ (r, R)⇔ η
H−

(kR) =
1

u(kR)
< α0

⇔ u(kR) <
1

α0

⇔ kR < δ0 ⇔
R∗
r∗

< Q−

(
δ0

R

)
=
H−(δ0

R
r
)

H−(δ0)

Therefore, 1 < ηH(t) < α0 is equivalent to R
r
< R∗

r∗
<

H−(δ0
R
r

)

H−(δ0)
.
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Recall that when R
r
< R∗

r∗
, we have an increasing function H(t) satisfying

(1− ηH)

(
p− 1

n− 1
ηH + 1

)A
(η2
H + n− 1)B exp

(
D tan−1

(
ηH√
n− 1

))
=

C

Hn
, (5.58)

where C < 0 is a constant. For r∗ < s < R∗, let F (s) be the function with F (H(t)) = t, and

let η(s) = ηH(F (s)). From (5.58), we see that η(s) satisfies

(1− η)

(
p− 1

n− 1
η + 1

)A
(η2 + n− 1)B exp

(
D tan−1

(
η√
n− 1

))
=
C

sn
. (5.59)

This could be taken as the definition of η(s).

We can define functions a(s, t) and b(s) to be

a(s, t) =
p (η2(s) + n− 1)

p−2
2 (η2(s)− 1)

η(s)

sp−1

F p−1(s)

(
F (s)

t

)n−1

(5.60)

b(s) =
p(η2(s) + n− 1)

p−2
2

η(s)

sp−n

F p−n(s)
(5.61)

Recall the function f(ξ) from Definition 3.2.1. We remark that α2,p =∞. Thus, if n = 2,

we have g(α2,p) = 0, so bp−1

pn−1ap−n
> g(α2,p) automatically if n = 2. Suppose that n ≥ 3. Note

by (5.60)-(5.61), we have that

bp−1

pn−1ap−n
= g(η(s))

(
t

F (s)

)(n−1)(p−n)

≥ g(η(s))
( r
R

)(n−1)(p−n)

(5.62)

Recalling our assumption that 1 < ηH(t) = η(H(t)) < α0, and that g is decreasing on (1, α0),
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the definition of α′n,p shows

bp−1

pn−1ap−n
≥ g(η(s))

( r
R

)(n−1)(p−n)

≥ g(αn,p). (5.63)

We may now invoke Lemma 3.2.2. Letting X = |hN(x)| and Y = |hT (x)| in Lemma 3.2.2

and using (1.6), we have

|Dh|p ≥ a|hN |+ b|hN ||hT |n−1 − c. (5.64)

Equality holds when X = X0(a, b) and Y = Y 0(a, b). By our choice of a and b, we have that

Y 0 =

(
η2(s)− 1

V 2 − 1

) 1
n−1 s

t
X0 =

(
η2(s)− 1

V 2 − 1

) 1
n−1 V s

t
(5.65)

where V = V (t, s) is defined by

g(V ) = g(η(s))

(
t

F (s)

)(n−1)(p−n)

. (5.66)

We see when t = |x| and s = H(|x|) that V = ηH(x), so Y 0 = H(|x|)
|x| and X0 = Ḣ(|x|).
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Integrating (5.64) with t = |x| and s = |h(x)|, we see we have

∫
A

|Dh|p ≥
∫
A

p (η2(|h|) + n− 1)
p−2
2 (η2(|h|)− 1)

η(|h|)
|h|p−1

F p−n(|h|)|x|n−1
|hN |dx (5.67)

+

∫
A

p(η2(|h|) + n− 1)
p−2
2

η(|h|)
|h|p−n

F p−n(|h|)
|hN ||hT |n−1dx (5.68)

−
∫
A

(p− 1)

(
p (η2(|h|) + n− 1)

p−2
2 (η2(|h|)− 1)

η(|h|)
|h|p−1

F p−n(|h|)|x|n−1

) p
p−1

[f(V )]−
1
p−1dx

(5.69)

The integrals on the right-hand side of (5.67) and in (5.68) are free Lagrangians. To finish

showing that Ep[h] ≥ Ep[h0], we only need study the integral in (5.69).

We will now let

c(t, s) =

(
p (η2(s) + n− 1)

p−2
2 (η2(s)− 1)sp−1

η(s)F p−n(s)tn−1

) p
p−1

[f(V )]−
1
p−1 (5.70)

where V is defined by (5.66). We claim that

max{c(t, s) : r∗ ≤ s ≤ R∗} = c(t,H(t)). (5.71)

To prove our claim, we will show that

cs(t, s) ≥ 0 s ≤ H(t) (5.72)

cs(t, s) ≤ 0 s ≥ H(t) (5.73)

We will need to find the sign of cs.
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Taking the logarithmic derivative of (5.70) with respect to s, we come to

(p− 1)cs(t, s)

c(t, s)
=p

[
(p− 2)η(s)η̇(s)

η2(s) + n− 1
+

2η(s)η̇(s)

η2(s)− 1
− η̇(s)

η(s)
+
p− 1

s
− (p− n)Ḟ (s)

F (s)

]
− f ′(V )Vs

f(V )

(5.74)

=p

[
(p− 1)η4(s)− (p− n− 2)η2(s) + n− 1

η(s)(η2(s)− 1)(η2(s) + n− 1)
η̇(s) +

(p− 1)η(s)− (p− n)

sη(s)

]
(5.75)

− (n− 1)pP (V )Vs

(p− 1)V (V 2 + n− 1)(V 2 − 1)
(
V 2 − n−1

p−1

) (5.76)

We now take the logarithmic derivative of (5.59), yielding

p−1
n−1

η3(s) + η(s)

(1− η(s))
(
p−1
n−1

η(s) + 1
)

(η2(s) + n− 1)
η̇(s) =

1

s
. (5.77)

Using this relationship, (5.75) simplifies to give

(p− 1)η4 − (p− n− 2)η2 + n− 1

η(η2 − 1)(η2 + n− 1)
η̇ +

(p− 1)η − (p− n)

sη
=

Q(η(s))

sη2(η + 1)
(
p−1
n−1

η2 + 1
) (5.78)

To compute (5.76), we begin with the logarithmic derivative of (5.66),

(n− 1)P (V )Vs
V (V 2 + n− 1)(V 2 − 1)

=
(n− 1)P (η(s))η̇(s)

η(s)(η2(s) + n− 1)(η2(s)− 1)
− (n− 1)(p− n)

sη(s)
(5.79)

=
Q(η(s))( p−1

n−1
η2(s)− 1)

sη2(η + 1)
(
p−1
n−1

η2 + 1
) (5.80)
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From here, it is clear that (5.76) simplifies as

(n− 1)pP (V )Vs

(p− 1)V (V 2 + n− 1)(V 2 − 1)
(
V 2 − n−1

p−1

) =
(n− 1)pQ(η(s))( p−1

n−1
η2(s)− 1)

(p− 1)sη2(η + 1)
(
p−1
n−1

η2 + 1
) (
V 2 − n−1

p−1

) .
(5.81)

Plugging (5.81) and (5.78) into (5.74)- (5.76), we find

cs(t, s)

c(t, s)
= p

Q(η(s))

sη2(s)(η(s) + 1)
(
p−1
n−1

η2(s) + 1
) (1−

p−1
n−1

η2(s)− 1
p−1
n−1

V 2 − 1

)
(5.82)

We now recall that g(V ) = g(η(s))
(

t
F (s)

)(n−1)(p−1)

and that g is decreasing on (1, an,p).

Note s ≤ H(t) is equivalent to t
F (s)
≥ 1. Since η(s) ≤ α0 < an,p we have g(η(s)) ≤ g(V ) for

s ≤ H(t). This implies that V < η(s), so
p−1
n−1

η2(s)−1
p−1
n−1

V 2−1
≥ 1. Recalling that Q(η(s)) < 0 since

η(s) ≤ bn,p, we see by (5.82) that cs(t, s) ≥ 0. Similarly, if s ≥ H(t), we will have V > η(s),

so cs(t, s) ≤ 0.

This establishes (5.73) and (5.72), proving the claim. Therefore, we have that

∫
A

(
p (η2(|h|) + n− 1)

p−2
2 (η2(|h|)− 1)

η(|h|)
|h|p−1

F p−n(|h|)|x|n−1

) p
p−1

[f(V )]−
1
p−1

≤
∫
A

(η2
H(|x|) + n− 1)

p−2
2 ((p− 1)η2

H(|x|)− (n− 1))

(
H(|x|)
|x|

)p
,

with equality holding when |h(x)| = H(|x|). Using this estimate in (5.69) finishes the

proof.
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