Syracuse University

SURFACE

Syracuse University Honors Program Capstone Syracuse University Honors Program Capstone
Projects Projects

Spring 5-1-2014

Optimum Path Planning for an Impaired Aircraft

Suzannah Bailey

Follow this and additional works at: https://surface.syr.edu/honors_capstone

6‘ Part of the Navigation, Guidance, Control and Dynamics Commons

Recommended Citation

Bailey, Suzannah, "Optimum Path Planning for an Impaired Aircraft" (2014). Syracuse University Honors
Program Capstone Projects. 753.

https://surface.syr.edu/honors_capstone/753

This Honors Capstone Project is brought to you for free and open access by the Syracuse University Honors Program
Capstone Projects at SURFACE. It has been accepted for inclusion in Syracuse University Honors Program Capstone
Projects by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/honors_capstone
https://surface.syr.edu/honors_capstone
https://surface.syr.edu/honors_capstones
https://surface.syr.edu/honors_capstones
https://surface.syr.edu/honors_capstone?utm_source=surface.syr.edu%2Fhonors_capstone%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/226?utm_source=surface.syr.edu%2Fhonors_capstone%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/honors_capstone/753?utm_source=surface.syr.edu%2Fhonors_capstone%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Optimum Path Planning for an
Impaired Aircraft

A Capstone Project Submitted in Partial Fulfillment of the
Requirements of the Renee Crown University Honors Program at
Syracuse University

Suzannah Bailey
Candidate for BS and BA Degrees
and Renee Crown University Honors
May 2014

Honors Capstone Project in Aerospace Engineering

Capstone Project Advisor:

Professor John F. Dannenhoffer, 11

Capstone Project Reader:

Professor Melissa Green

Honors Director:

Stephen Kuusisto, Director

Date: 23 April 2014

Abstract

Proportionally speaking, it is safer to travel by plane than any other
form of transportation. However, in some parts of the world such as Africa,
the lack of updated aircraft, instability within the region, and inexperience of
flight crews contribute to a higher rate of aircraft incidents and accidents.
This capstone combines elements from aerospace engineering, as well as
international relations to create a program to mitigate these risks.

This new algorithm, the Bailey Algorithm, is very different from the
commonly used Dijkstra Algorithm. Unlike Dijkstra, the Bailey Algorithm not
only incorporates the distance traveled between cities, but it also applies
costs at airports visited along the way. To effectively generate the best
possible path, the Bailey Algorithm combines the Dijkstra Algorithm with an
optimization method called Simulated Annealing.

To show the effectiveness and variety of the Bailey Algorithm, several
scenarios were created, based on real incidents. These scenarios were then
applied in a 600 mi? area in East Africa. Selecting this region allowed for
variation in topography, and therefore more constraints to be used in
defining scenarios.

To account for a variation of possible impairments, some scenarios
dealt with mechanical malfunctions, such as one where cabin pressurization
becomes a problem, restricting the plane from flying above 5,000 feet. Other
scenarios depend on the way the plane interacts with the environment. For
example, in one scenario, there is a leak of toxic chemicals, which means the
plane cannot fly over National Parks or other protected areas.

Although this program was only exercised on a small number of
airports in East Africa, the Bailey Algorithm is able to be modified for any
region of airports around the globe. Due to scenarios being created that
involve mechanical malfunctions, environmental impacts, and passenger
health, the Bailey Algorithm has shown that it is applicable in a variety of
situations. In addition, it is easily adaptable to more than the seven scenarios
considered.

Table of Contents

203 1 T 1
Table Of CONTENES......ccovcmsmrmrmsrsmsmsrsrsmss s 2
EXeCUutive SUMMATYcomismmsssssnss 4
ACKNOWIEdZEMENLScvurermmsmssssssmssssssssmsmssssssnsssssssssssssssssssssssassssssssassssssasassssssssassnses 7
Chapter 1: Background INformation ... 8
Introduction and Preliminary WorkK.......u s 8
RUDNIWAYS weturinsassmsssssssssssssmsssessssssssssssssss snsssssssssnsssssssssssssnnes 11
Plane INfOormation ... s sssssssasasassssssssens 14
Data PreParation ... s sssssssssssssssssssssssssssssssssssssasasssssssens 15
Y0 1 = 1 0 18
Chapter 2: Existing Path Planning Algorithms.........cccocumsmmmmmmsnsmsmssssssnssssnnns 26
0010 0 T 1 U 00) 26
The A* AIGOTTtRIM ... ————————— 27
The DijKkstra AIGOrithm ... —————— 29
Chapter 3: The Bailey Algorithm ... 30
00100 T L U 00) 30
Exploring the Bailey Algorithm.......ccossssssss 32
Chapter 4: Demonstration of the Bailey Algorithmcccuonnmnnnsnsnsnsannns 44
L0 0= g T4 T, 44
o) 4 B) (0 0 45
Yol 1 = 1 0 49
Yo=Y 1 b= 1 0 0 52
Yol 1 b= 0 55
o) 1 B) (0 59
Yol 1 = 0 62
Chapter 5: CONCIUSIONS ... sssssssssssssssssssssssssasas 65
Works for Any Arrangement Of Cities ... 66
Simulated Annealing is a Robust Optimization Method.........c.coousnnenescsssisasens 70
Penalty Value is Acceptable.......sssssssssssssssssssssssssssssssss 73
Chapter 6: Future WorkK...... s 76
Sources Cited and Consulted ... ———— 78
Appendix A—Excel Spreadsheets.........couinnnnnnnnnnsn 79
Appendix Al: Runway Information ... 79
Appendix A2: Complete Data ... 80
Appendix A3: CONSIraAINTES. ... s 81
Appendix A4: Conclusion Supporting Tables.......co———— 82
Random City INfOrmation ... sssssssssssssssssees 82
Simulated Annealing Robust Test (SCENArio 1)ceeneemeeeerseesnseeseesseesssessseens 82
Simulated Annealing Robust Test (SCENATio 5) .oenreereeneereeseineeereesesseesesseessesseeans 83

Appendix B—MATLAB Code

Appendix B1: The Bailey AIgorithm ...
Appendix B2: Method Test COde.....ccmmmmmmmmmmmmmimismsmssssssssssssssssssssssssssssssssssssssses

Executive Summary

As an aerospace engineer and international relations dual major, it
was important for me to pick a capstone that combined elements from both
disciplines. Under the advisement and guidance of Prof. John F.
Dannenhoffer, III this was accomplished. This capstone, entitled “Optimal
Path Planning for an Impaired Aircraft,” created a program to generate
emergency action plans that would allow an aircrew to mitigate risks
associated with potential impairments.

This capstone began in Spring 2013 with the official proposal. The
objective was to create a new path-planning algorithm that, given a specific
scenario, could plot a path to safety. In an effort to make sure the capstone
stayed on track, weekly meetings were held with Dr. Dannenhoffer. Before
each meeting, a summary was sent detailing the work that had been done
since the last meeting. The capstone continued up through the Spring 2014
semester. At this point, it was turned into a presentable paper with the help
of Professor Melissa Green, as the Reader.

This new algorithm, the Bailey Algorithm, is a significant extension of
the commonly used Dijkstra Algorithm. The Dijkstra algorithm is one that is
likely found in a standard GPS unit. It simply finds the shortest path from the
origin to the destination.

Unlike Dijkstra, the Bailey Algorithm not only incorporates the
distance traveled between cities, but it also applies costs at airports visited

along the way. This is revolutionary because this means the Bailey Algorithm

takes into consideration the middle steps taken to get to the destination. To
effectively generate the best possible path, the Bailey Algorithm combines
the Dijkstra Algorithm with an optimization method called Simulated
Annealing. Simulated Annealing is an approach to finding the minimum value
of a given function. Applying it to the Bailey Algorithm, Simulated Annealing
takes the initial and final airports and finds the path that has the lowest cost.
This cost value is a combination of the distance traveled as well as the cost
associated with visiting each city.

To show the effectiveness and broad applicability of the Bailey
Algorithm, several scenarios were created, based on real incidents. Over a
dozen aircraft incidents and accidents were surveyed to track down common
impairments that could occur. From these, the seven most common were
turned into scenarios. These scenarios were then applied in a 600 mi2 area in
East Africa. Selecting this region allowed for variation in topography, and
therefore more constraints to be used in defining scenarios.

To account for a variation of possible impairments, some scenarios
dealt with mechanical malfunctions, such as one where cabin pressurization
becomes a problem, restricting the plane from flying above 5,000 feet. When
this scenario was run, the Bailey Algorithm successfully generated the
shortest path, while avoiding airports along the way that violated the
elevation constraint.

Another scenario depends on the way the plane interacts with the

environment. For example, in one scenario, there is a leak of toxic chemicals,

which means the plane cannot fly over National Parks or other protected
areas. Once again, the Bailey Algorithm was able to find the optimum path
while respecting the constraints.

A third scenario concerns with an ill passenger. Due to conflicts in the
region, the passenger is unable to fly over the airspace of a specific country.
However, they also need a hospital. The Bailey Algorithm was able to
effectively find a path to take that finds hospitals while also avoiding Uganda,
the forbidden country.

Although this program was only exercised on a small number of
airports in East Africa, this report will demonstrate that the Bailey Algorithm
is able to be modified for any region of airports around the globe. Due to
scenarios being created that involve mechanical malfunctions, environmental
impacts, and passenger health, the Bailey Algorithm has shown that it is
applicable in a variety of situations. In addition, it is easily adaptable to more

than the seven scenarios considered.

Acknowledgements

My sincerest thanks go out to Professor John F. Dannenhoffer, III.
Without his guidance, support, and patience this project would have never
taken flight. Thank you for knowing when to give me a push in the right
direction, and when to sit back and let me make mistakes. Thank you also to
Professor Melissa Green for taking the time to read my many drafts and
respond to my numerous questions. This capstone reads much better due to
your comments. Finally, thank you to my parents, for trying to understand

what [was doing and constantly offering words of encouragement.

Chapter 1: Background Information

Introduction and Preliminary Work

This Capstone project, entitled “Optimum Path Planning for an
Impaired Aircraft,” encompasses both aerospace engineering and
international relations. The goal was to create a path-planning algorithm that
could take a specific impairment of an aircraft and generate an optimal path
to safety.

In an effort to make the scope of the capstone manageable, airports
needed to be selected in a relatively small region. To include an international
aspect, this region was chosen to be in Africa. To pick a particular part of
Africa, the prevalence of airports and airstrips was considered. In Figure 1,
below, the yellow planes indicate larger airports, defined as having millions
of visitors travelling through annually on major airlines.! The blue airplanes

represent medium-size airports that have regular regional traffic.2

1 “Airports in Africa.” Megginson Technologies, Ltd. Updated 2009.
2 Ibid.

Uzl Guinea
-
J;one}l."\ JCote
Fl = d'lvoire /g
T iia,

de . %
——_

L

Mozar{nbique

Figure 1: Airports in Africa

The East Africa region was chosen because it offered variety in terms
of mountains, large bodies of water, forests, and rebel activity. This variety
would allow for very different scenarios to be used by the Bailey Algorithm
to plot a path. Knowing this, the region shown in Figure 2 was selected.3 In
this figure, there are small pink planes as well. These planes represent
airstrips that do not have regular service, the smallest of the three levels
depicted.* This 620 square mile region included airports in Kenya, Uganda,

Tanzania, Rwanda, Burundi, and the Democratic Republic of Congo.

3 Ibid.
4 Ibid.

T e & gL I -l a
B OFJ Jinja o y y
E':Lw Kakamega u y
) Kisu ?W#
= E od ‘__ v * Ikt ya *
Masaka onas Natienal Park .
s h? Kora MNati
Re
> r eseny
Kisii Embu
I‘u"a-guy.
B Tanme 5 o
. g ’ - 28 oulunt
TPark Athi/River
tinal MaasahhMara
Je0a Mational Reseng y f Sout:K
igi Game . b
e Serengeti y
& MNational Park Chm
M\l::,é;# Natifhal Park
.= s Mgorongoro e E
—I—I Conservation - *g:i
kil Area Rllimanjaro o

Figure 2: East African Airports

Having established the region and goal of the algorithm, it was time to

research air accidents and incidents. After surveying dozens of incidents, two

main trends became apparent:

e Common Plane: The DC-10 was involved in many air disasters. This

can be attributed to its popularity and long lifespan.

e Common Causes: The three most common issues associated with

disasters were: decompression or loss of pressure due to puncture of

fuselage, loss of engine(s) or engine power, and fuel leaks.

The following sections in this chapter will explore the significance of

runways, the importance of plane selection, the process of preparing the raw

data, and the listing of the scenarios.

10

Runways

Before the Bailey Algorithm could be written, certain data needed to
be collected. This included the location, elevation, direction, length, and
surface of all the runways in the region. This information would be crucial
when it came to selecting the “best” runway for an airplane to land safely on.

In an effort to have a large variety of airports, 30 different runways
were chosen. A sample of the information collected is shown below. A full

copy of the chart can be found in Appendix A.

ELEVATION LENGTH
AIRPORT CODE LOCATION ft nmi mi m COORDINATES FEET nmi METERS SURFACE DIRECTION
Adjumani Airport HUA) Adjumani, Uganda 2611 043 0455 796 03"20'19"N, 31°46°08"E 3710 0611 1130 Unpaved 09/27
Moyo Airport 0YG Moyo, Uganda 31000 0.51 0.587 540 03"38'57"N, 31°45'54"E | 4260 0.702 1300 Unpaved 02/20
Arua Airport RUA Arua, Uganda 3551 0.65 0.748 1204 03°02'50"N, 30°54'44"E 5600 0.922 1700 Unpaved 18/36
Gulu Airport ULl Gulu, Uganda 3510 0.58 0.665 1070 02°48'00"N, 32°16'30"E | 10314 1.659 3144 Asphalt 17/35

Table 1: Runway Data

The first column is the airport name, followed by the code used to
address it. The third column is the airport location. The next four columns
are the elevation of the runway. Some of the information provided was in feet
and some was in meters, meaning a conversion was necessary.> To remain
consistent with typical aerospace units, the units of nautical miles were
chosen. The column after the elevation shows the coordinates of the runway.
The next three columns correspond to the length of the runway, in feet,
nautical miles, and meters. The final columns are the surface and the
orientation of the runway.

In terms of surface, there was a range of options. Some were paved,

some were ice, and some were unpaved. The surface of the runways was

5 “Airports in Kenya.” Air Broker Center International AB. 2009.

11

necessary to know because it would affect the ground roll distance of the
plane after landing. Based on the runway length, certain runways would not
be possible for the plane to land on because there would not be enough
space.

While recording all this information, the orientation of the runway
was also noted. The orientation corresponds to the numbers printed on the

ends of the runway, as shown in Figure 3:6

Figure 3: Runway Orientation

The numbers shown are the magnetic compass heading of the
runway, ranging from 0 to 360 degrees, divided by 10 and rounded to the
nearest integer. Using this convention, 0 degrees corresponds to due North.
Each runway will have two numbers depending on which side of the runway

the plane is entering or leaving. These numbers will always be 18 off from

6 “Logan Plans to Add 600-Foot Runway Safety Area on Harbor Deck.” Boston
Globe, March 18, 2009.

12

each other, since they are 180 degrees apart.” Figure 4, below, shows this

naming convention:8

Figure 4: Runway Orientation

7 John Dannenhoffer, III, “Capstone Meeting: January 23.” (Capstone Meeting,
MAE 499: Honors Capstone Project, Syracuse, NY January 23, 2014).

8 “Model Railroad Layouts: Airport Runways and Accessories.” Bakatronics
LLC, February 15, 2014.

13

Plane Information

The Bailey Algorithm is not dependent on one specific plane. Instead,
it uses certain parameters such as the take off distance and cruise altitude to
create viable scenarios. In Chapter 6, more specific aerodynamic
characteristics will be discussed. However, in order for this algorithm to be
as realistic as possible, a specific plane was chosen. This would allow
characteristics of the plane to be used, such as stability, weight, fuel tank
capacity and other variables that impact performance.

Knowing the region that was chosen, it was assumed that an older,
more reliable and common plane would be more realistic. For this reason,
the Cessna 172/182, Piper Cherokee, and DC-3 were all considered as the
possible plane for the project.

There is often missionary work in the East African region selected.
Based on research completed, the DC-3 is a plane that is commonly used for
such work. Selecting the DC-3 includes additional benefits for the Bailey
Algorithm as well. In the first place, the DC-3 requires a longer ground roll at
landing than the Cessna or Piper. This will allow a scenario to be created that
uses runway length as a constraint. Secondly, the DC-3 was built with an
unpressurized cabin.? This allows a scenario to be created that includes an

altitude restriction.

9 “DC-3: The Genesis of a Legend.” DC-3/Dakota Historical Society, Inc. March
26,2014.

14

Data Preparation

Before the program can be run, the airport locations, as coordinate
points, are imported from an Excel spreadsheet into MATLAB. The locations
in the Excel sheet were obtained from researching airports and runways in
the East African region. In the Excel sheet, the latitude and longitude were
converted into coordinate points. To do this, the following conversion factors
were used:

e There are approximately 69 miles between each degree of latitude. At
the Equator, which is where most of the airports are located, the
distance between each line of longitude is also 69 miles. As the lines of
longitude approach the poles, the distance between each degree
shrinks to zero.

e There are 60 minutes within each degree. Using the 69 miles as a
base, this means each minute is approximately 1.15 miles apart.

e There are 60 seconds in each minute. Converting this into miles

results in 0.019 miles per second.

Once these values were known, it was easy to convert the latitude and
longitude into coordinate values. The coordinate values of the airports were
found from summing the degrees, minutes, and seconds for each latitude and
longitude measurement. In order to convert into nautical miles, the preferred
unit for aerospace application, the sum was divided by 1.15. For simplicity, it

was determined that the equator and 33° East should be the origin of the

15

graph. Once this was known, the airports could be graphed. Figure 5 shows

the locations of the airports.

200

1o

-0

Ciztancs from Equatar [nmi)

=200

300

Ajrport Locations

2
T T T ¥t T T T

*
* 4
* #*
*
* * 4
*
*
* 4
*
L
*
* * #* # i
*
* *
* #* * % T

*
|

1
=300

1 1 1 - 1 1 1
=200 -100 i 100 ML 300 400
Distance from 33 Degrees E [nmi]

Figure 5: Airport Locations

In addition to graphing the airports, certain features were noted and

graphed as well. In this case, hospitals, Lake Victoria, and Mountains were

the notable features. They can be seen in Figure 6 below:

16

Ajrport Locations
. *

: : : : : : % Airpor
200 k. e ERRETRERITY L e B I # Mountan |
: . % : : Lake

: : : Hospital

k... P *— P

oo k... U A

Ciztan ce from Equator [nmi)
*
*
¥

111 | S * g

R e

1 1 1 1 1 & 1 1 1
-300 -200 -100 i 100 Tan0 300 400
Distance fromn 33 Degrees E(nmi)

Figure 6: Notable Features

Knowing the configuration of airports and points of interest, seven

scenarios were created. They are described in the section below.

Scenarios

1. While flying over an area inhabited by rebel forces, a barrage of
bullets punctured the fuselage. Even thought the DC-3 was
unpressurized, with an operating altitude of 10,000 feet, this caused
some passengers to suffer from hypoxia (insufficient oxygen). In order

to accommodate these passengers, the plane is unable to fly above

5,000 feet.

In this scenario, the penalty would be associated with cities, or nodes,
that have an altitude greater than 5,000 feet. While in reality, planes can fly
unpressurized up to an altitude of 12,500 feet, some individuals start to
experience health problems due to lack of oxygen at altitudes as low as 8,000
feet.

In this particular case, the region selected is heavily mountainous.
Some of the selected runways are at extreme altitudes that would prevent an
impaired plane from landing, making this scenario realistic.

When flying, occasionally planes are restricted to specific altitudes.
This scenario could be easily modified to account for that variation as well.
For example, due to government regulations, a plane cannot fly lower than Z
feet. This variability shows the importance of selecting an altitude restriction
as a scenario.

In the MATLAB code, this scenario uses the X and Y locations of the

airports as well as the elevation of each airport. Since this particular scenario

18

prohibits the plane from passing an airport that exceeds an elevation of

5,000 feet, it was also important to convert the elevation into nautical miles
to remain consistent. Upon completing this conversion, it was apparent that
the restriction prohibited the path from visiting an airport with an elevation

over 0.82 nautical miles.

2. One of the flight attendants alerts the pilots that there is a passenger
in desperate need of immediate medical attention. She is not sure
what is wrong, but knows that the passenger needs the best medical
facility that can be reached ASAP. In order to help the passenger, the
pilot is given a list of high-level hospitals. S/he must select an airport
close to one of these. However, the passenger is a former rebel, and
therefore not allowed in Ugandan airspace. The pilot must land at the

closest runway without crossing into Uganda.

This scenario takes two constraints into consideration: location of
hospitals and what country the plane is flying in. Unlike most constraints, the
hospital constraint would provide a reward instead of a penalty. In a scenario
that has a penalty, the Bailey Algorithm adds the penalty to the cost.
However, for this scenario, the reward means the value for the penalty is
instead subtracted, resulting in a lower cost.

Additionally, there is the cost associated with restricted airspace. Like

the elevation restriction in the previous scenario, there is a cost penalty

19

associated with visiting a node within this restricted space. Since there are
“no fly zones” set up around the world, this is a viable scenario. By specifying
two constraints, the scenario is slightly more challenging to fulfill. This is a
reflection of the complex problems facing international travel today.

In this particular scenario, if the airport was not in Uganda AND there
was a hospital close by, then the penalty value was subtracted from the cost.
To indicate whether or not an airport was in Uganda, logical values were
used. When the data was collected, a value of “1” indicated that yes, the
airport was in Uganda. A “0” indicated that it was not. This same convention

was used to identify if there was a hospital nearby.

3. Unfortunately, the tubes containing the hydraulic fluid were not
replaced when they should have been, and they sprung a large leak of
toxic Skydrol hydraulic fluid. Unfortunately, this batch contained
maximum levels of organophosphates, which are, according to the
EPA, “highly acutely toxic to bees, wildlife, and humans.”10 In order to
protect the environment, the plane cannot fly over national parks or

protected areas.

Forests, bodies of water, and national parks are essential for the

survival of many groups of people. Humans need food, water, and shelter to

10 U.S. Department of Health and Human Services, “Toxicological Profile for
Hydraulic Fluids,” September 1997.

20

survive. However, toxic chemicals used with planes can cause serious
devastation when leaked.

By leaking the toxic Skydrol fuel, real hydraulic fluid still used today,
airlines can have a devastating effect on the environment, reflecting poorly
on the airlines. Coupling this poor public image with the fines associated with
polluting a national park and the airlines would want to be able to avoid
protected areas. For this scenario, Lake Victoria and National Parks were
chosen as the natural features that were considered “protected areas.”

Like Scenario 2, this scenario depended on logical values. Airports
located in or very close to National Parks or Lake Victoria were assigned a
value of “1,” in the Excel sheet. At this time, there are specific entry columns
for specific natural features. This would show that the program could avoid

the protected areas.

4. Aflock of Goliath Herons sprung up suddenly. The pilot had enough
time to react so that only the port engine was damaged.
Unfortunately, it failed completely. Since the rate of climb for an
aircraft is dependent on the difference between power available and
power required, losing an engine would lower the climbing abilities of
an aircraft, resulting in a lowered Rate of Climb. For simplicity, it is
assumed that the plane can only climb to an airport thatis ata

maximum altitude 20% higher than the airport just visited.

21

Assuming that the DC-3 was not in the best shape, and therefore the
reported Rate of Climb might no longer be applicable, it was assumed that
the aircraft could only travel to an airport that was at an elevation less than
20% higher than the current airport. For simplicity’s sake, this was
independent of the distance between airports.

Over 40% of all bird strikes can result in engine damage.1! This can
constrain the ability of a plane to climb. This particular scenario could be
modified for other mechanical problems that would also impact the rate of
climb, such as thrust available or elevator motion.

Since the important quantity for this scenario is elevation, it was
crucial to input the elevation for each corresponding airport. To calculate the
cost associated with an impaired Rate of Climb, the following equation was
used. If the value returned was greater than 1.2, then the constraint was
violated. In the equation, “i” represents the current airport, and “i+1” is the
next airport in the sequence.

Airport Elevation (i + 1)
Airport Elevation (i)

5. Flying over Lake Victoria, the pilot notices she is almost out of fuel.
She remembers asking for 600 gallons of fuel, so she is originally
confused. However, she then remembers that it was a Tanzanian who

refueled the plane. The Tanzanian accidentally did not look at the

11 Roger Nicholson and William Reed, “Strategies for Prevention of Bird-
Strike Events,” Aero Quarterly, Quarter 3: 2011, 19.

22

units and instead put in 600 liters of fuel (~158 gallons). With no fuel,
the plane is effectively turned into a glider. The pilot knows she has
enough to make it to her destination, but she only wants to fly by
runways of at least 5000 feet, enabling her to land safely at any

airport along her way if necessary.

Without a consistent international unit system, it is entirely possible
for mistakes of this magnitude to be made. However, just because the plane is
out of fuel does not mean that a crash is inevitable. It is theoretically possible
to glide a plane to a safe landing. To model this, the Bailey Algorithm
assumed a runway length of 5,000 feet was the minimum distance for a safe
landing. When coming in without power, there is no reverse thrust available
to slow the plane. This means a longer runway distance is required.

Runway length is a serious concern for two reasons. First of all, when
landing, the plane needs enough distance to slow down safely to protect the
passengers. Second, once the plane lands at an airport, it does not sit there
forever, it has to be able to take back off. In order to achieve takeoff, the
plane must generate enough thrust to overcome the weight of the plane. The
thrust is increased as the speed increases. In order for this to happen, the
plane needs a long enough runway to build up enough speed.

This same scenario could be used when there is a complete loss of
power. The cause for the impairment is not what matters, but how the plane

reacts. As with scenario 1, the runway length was converted into nautical

23

miles and the imported into the MATLAB code. Unlike scenario 1, where
there was a penalty for going over the constraint, this scenario has a penalty
for going under the constraint. Since the length was chosen to be 5,000 feet,
this translates to 0.82 nautical miles as the minimum runway length

allowable.

6. While flying a special New Year’s flight, a rogue firework exploded
near the rudder of the plane, severing one of the 2 connections.
Shrapnel from the firework got wedged in between the fuselage and
the rudder, locking it into a right turn position, and overriding the
safety mechanisms in place to prevent such a thing from occurring.

With the rudder locked the plane is not capable of making left turns.

The Bailey algorithm looks at the node being visited and takes the
cross product of the link used to get there and the one leaving. If the cross
product is negative, the turn is considered “left,” and “right” if the cross
product is positive. By using the cross product, it does not matter where the
plane started. Since the cross product will determine direction, it will work
no matter if the plane is going from Airport 5 to Airport 25, or the other way
around.

Initially, the thought was that links could be designated as either a
“left” or “right” turn. Instead, it was decided that using cross products was

more efficient. In this particular scenario, left turns are prohibited. However,

24

the program could be easily modified to prevent right turns or all turns, only
favoring straight paths. Furthermore, this scenario counts all left turns as
bad. In future versions, the code could be modified to allow slight turns, to

see how the cost is affected.

7. Inarush to load the plane quickly, the ground crew neglected to
properly tie down the cargo. As a result, during takeoff, items shifted
moving the center of gravity to the aft of the plane, making the center
of gravity aft of the stick-fixed neutral point. This leads to static
instability, with the nose inclined above the fuselage, rotating the

aircraft away from the equilibrium point.

Unfortunately, this is a serious unrecoverable issue. When the plane is
stable, it has a center of gravity either forward of, or located at the stick fixed
neutral point. However, by neglecting to properly secure cargo, the cargo can
shift, therefore shifting the center of gravity.

When the center of gravity is behind the stick fixed neutral point, the
plane is statically unstable. This means that the plane becomes too sensitive
to handling by a pilot. Tragically, this scenario often leads to fatal
consequences.

As this capstone progressed, it was discovered that to account for this
scenario would take more time and resources than were available. For this

reason, this scenario would be one to be considered as future work.

25

Chapter 2: Existing Path Planning Algorithms

Introduction

Path planning algorithms are more prevalent than most people would

realize. They exist in mapping software and GPS units, but the concept
behind them exists in many more aspects of life. For example, a first-year
student will “map” out their college courses. Like a GPS unit, this takes into
consideration where you started and where you want to end up. Think of
each required class as a “node.” Once a student completes a class, it is on to
the next one. This is similar to how GPS units and other mapping programs

work.

How the program determines which “node” to go to on the way to the

final destination is where a specific algorithm is used. In the next sections,

two common mapping algorithms, A* and Dijkstra will be explained. Both of

these algorithms are commonly used for mapping, but both have drawbacks

as well.

26

The A* Algorithm

The first mapping algorithm that will be discussed is the A*
(pronounced “A-Star”) algorithm. This algorithm operates in a 2-dimensional
field. The basic idea of the program is that it takes a “start” location and an
“end” location and fills in a grid between the two. The grid essentially
consists of vertices (nodes), including the start and end “node,” that make up
all possible locations for a path to get from the start to the end.

Once the start location is known, the remaining “nodes” on the grid
are split into “possible” or “impossible” nodes. In very simple terms, a node is
“possible” if it is connected to the start node. From the list of “possible”
nodes, the cost is calculated.

The goal of the A* algorithm is to find the path with the lowest cost.
With the A* algorithm, the cost is calculated using a very basic formula: F = G
+ H.12 In this case, the “G” term is the cost associated with moving from the
current node to the next node.13 This can be different based on the specific
movement being made, direction traveled, or any other factor.

The “H” term is what defines the A* algorithm. The “H” term is a value
associated with moving from the current square to the final square.14
Essentially, this value is a guess, since the program does not know what path

will be chosen. The “H” stands for “heuristic.” A heuristic is a method used to

12 Patrick Lester, “A* Pathfinding for Beginners,” Policy Almanac, July 18,
2005.

13 Ibid.

14 [bid.

27

improve problem solving, such as finding the best path. The value of the
heuristic can change as the path is developed. For example, if there is a large
blockage between the current node and the final destination, the heuristic
might be very large.

Once the next node is chosen, the process of calculating the cost is
repeated until the path is complete. Since the “G” value tends to remain
constant, the value of the heuristic is the important value in the A* algorithm.
This means that the heuristic can have an impact on what the final path is.

A high heuristic means short computational time, but not necessarily
the shortest path.1> If the heuristic has a value of zero, then the A* algorithm

has essentially become the next algorithm mentioned, the Dijkstra algorithm.

15 [bid.

28

The Dijkstra Algorithm

As mentioned in the previous section, the Dijkstra algorithm is
essentially the A* algorithm with a heuristic value of zero. In other words,
Dijkstra simply looks for the lowest cost to get from one starting point to
another “node.”16

When Dijkstra starts, it recognizes a start and an end node. Assigning
a value of zero to the current node (starting node), it assigns a value of
infinity to all other nodes. From the starting node, Dijkstra calculates the cost
to each available node as the distance to the next node added to the current
node’s value. If the new value for the unvisited node is less than the current
value of that node, then the value is replaced to the lesser one and that node
becomes the next one in the path. For example, if the start node is 0, and the
distance to the Node 2 is 4, then Node 2 now has a value of 4, not infinity.

At each node, all possible connection costs are calculated. Once it
calculates the shortest distance to the next node, it accepts the node and
repeats the process.

This penalty value associated with a node is what sets the “Bailey”
algorithm apart. As will be explained in the next section, this algorithm is
able to assign a penalty function that accounts for the way in which the plane
arrived at the node, something no other path planning algorithm has been

able to do.

16 “Dijkstra’s Shortest Path Algorithm,” Cornell University, accessed April 21,
2014.

29

Chapter 3: The Bailey Algorithm

Introduction

The Bailey algorithm is different from any other existing mapping
program. Not only does it look at how one got to a specific node, but it also
looks ahead to see where one is going. This is the biggest difference from the
Dijkstra Algorithm, and what truly sets the Bailey Algorithm apart.

The Bailey algorithm does incorporate Dijkstra, as a method to
establish an initial cost. Like Dijkstra, initially the cost for each link is
calculated based on the distance between the nodes. However, based on a
certain scenario, a specific penalty is applied to certain nodes, allowing the
Bailey Algorithm to reject certain nodes that are too expensive to visit. By
doing this, the Bailey algorithm finds the best path, not necessarily the
shortest path.

Another way the Bailey algorithm is different from Dijkstra is that the
Bailey algorithm incorporates Simulated Annealing as the method to
calculate the best path. Simulated Annealing will be explained in the
subsequent sections. Briefly summarized, Simulated Annealing is an
optimization method used to find the “best” possible solution. What makes
the Simulated Annealing program unique is that it allows solutions that
initially do not appear to be the best option to be considered. The Bailey

Algorithm uses a function to evaluate whether the new path is “not too much

30

worse.” If it fulfills this requirement, then the new path will be accepted as a
possible solution.

In the rest of this chapter, a flow chart diagram explaining the Bailey
algorithm will be included and explained in detail. A complete copy of the

code is contained in Appendix B1.

31

Exploring the Bailey Algorithm

Import Data

Delaunay Paths Mearest Neighbor

TriPlot

Start, End

Dijkstra: Initial

Secenario

Calculate
and Penalty

Penalty Value ' ! ' Metrop Function

Mo Accepts?

t Enough? STOP

Figure 7: Flow Chart

The flow chart in Figure 7 shows how the Bailey Algorithm works. The
purple boxes correspond to built-in MATLAB functions. For clarity, the start
of the portion of the algorithm that uses Simulated Annealing is marked with
the orange box. The green boxes indicate the values that will change based on
the size of the region being used, the location of the airports, and the specific
scenario being run. The red box indicates when the code is considered

complete.

32

Once the initial data preparation had been completed and the airports
were graphed, it was necessary to connect the airports. The links connecting
the airports are what determine the baseline “cost” to go from one airport to
another.

There are two possible methods for connecting the airport nodes: the
nearest neighbor approach, or using the built-in MATLAB function Delaunay.
The nearest neighbor method is very simple. A radius of R nautical miles is
initially decided upon. Around each node, a circle is drawn corresponding to
this radius. Any other node that falls within that circle is then connected to
the centermost node. This process is repeated for all nodes. An example is
shown below in Figure 8. This is for a radius of R = 100 nmi. Even though the
radius selected was 100 nmi, there are still some airports that are not linked

to any others.

33

Mearest Meighbor, B =100

200

-100 -

=200 -

=300 -

1 1 1 1 e 1 1 1
=300 -200 -100] 100] 300 400

Figure 8: Nearest Neighbor Method

The Delaunay triangulation is slightly more complicated. All of the
nodes are arranged such that a triangular shape can connect them. However,
the triangle is not arbitrary. Once three nodes have been connected by a
triangle, a circle is drawn around the points such that the three vertices of

the triangle just touch the sides of the circle, making a circumcircle.

Figure 9: Triangle and Circumcircle

34

Each triangle is generated in an optimal way so that the minimum
angle is maximized. Not only does this ensure that the triangles are as close
to equilateral as possible, but it also means there are no other points within
each circumcircle, making Delaunay unique.l” Delaunay repeats the iterative
triangle-making process until this condition is fulfilled.

The difference in approach between the two linking methods would
result in different paths being drawn. Using the nearest neighbor method
would require specifying a maximum distance for allowable links. This can
result in many consequences, such as unreachable nodes if the link length is
too short. A radius that is too large will allow all nodes to be linked, making
this algorithm invalid. On the other hand, using the nearest neighbor method
could shorten processing time, which is beneficial to a computer program.

To help determine which method to use, a short program entitled
“Method Test” was written. This code can be found in Appendix B2. The
Method Test code took the airport locations used in this capstone and
calculated the distance to travel along all the links. The results are shown

below in Figure 10.

17 “Delaunay Triangulation.” MathWorks Inc. 2014.

35

g _
10 Whichis betters
158 1
Euclidian Distance
Delaunay
1.56
1.54
ul
b
.
| =
3152t
2
L]
fa
a2
(=]
o5t
148 -
|
14 1 1 1 4 L 1
ﬁIJIJ 200 300 400 s00 GO0 Fan

Link Length

Figure 10: Delaunay Compared to Nearest Neighbor

In Figure 10, the X-axis represents the distance between the nodes in
nautical miles. The Y-axis represents the total distance traveled between all
of the links, also in nautical miles. The blue line represents the distance
traveled using the nearest neighbor method. Clearly, as the link length
increases, the total distance needed to visit all nodes decreases. The red line
corresponds to the Delaunay triangulation. Since the Delaunay triangulation
is independent of the link length, this value remains constant throughout the
experiment.

The intersection between the two lines occurs at a total distance of

approximately 1.54 * 105 nmi. When comparing this to the range for the total

36

distances generated from the nearest neighbor approach, it is clear that
Delaunay is less than 20% from either extreme value. This supported the
decision to use Delaunay.

Upon completion of the Delaunay links, Figure 11 was generated:

Delaunay Links

3nn T T T T T
200 - _
100 - i

nE _
-100 i
-200 _
=300 i
-4%[!!] -EE:IJ -1E:IJ I.!I 1EIEI 2L‘IIEI 300

Figure 11: Delaunay Paths

From here, it is now possible for the user to determine which airport
to “start” and “end” from. For this program, the user clicks on the desired
start and end nodes, as seen in Figure 12. The starting airport is designated
with a green dot, and the red dot indicates the final airport. The title of the

graph shows which nodes are the first and final of the path.

37

Travel fram Ajrport Sto Ajrpart 22

200

100 -

-100

=200

=500

1 1 1 i 1 1
=300 =200 -100 n 100 200 300 400

Figure 12: Start and End Node

Initially, the cost is calculated as the same cost to run Dijkstra. That is,
the distance of each link being traveled. When this occurs, the cost is added
to the title of the graph. For the actual cost to be calculated, the user needs to
identify a particular scenario for the code to run. Once the user identifies the
scenario, the Bailey Algorithm begins to process the paths. Each time the
path cost is generated, the Algorithm applies a penalty value if necessary. The
penalty remained the same for each scenario. It was based on the average of
the vertical and horizontal spread of the data. If the scenario requires a
penalty, then the value is added to the cost. However, if the scenario required

areward, the cost was subtracted from the cost.

38

For this example, Scenario 1, with a penalty for exceeding a certain
elevation, will be shown. Running the same case as the example above, it is

possible to see the initial cost:

Cuost from &lrport 5 Lo Airport 2205 TOT. 139135
T T T T

200 |

100

=100 F

=200+

=300 +

I / 1 1
-1aa 0 100 200 3nn 400
Figure 13: Initial Path

| |
-300 =200

Once the initial cost is known, it is now possible to incorporate the
Simulated Annealing into the code. Simulated Annealing is an optimization
method that is used to the “global minimum of a function.”18 In this case, the
minimum of the function is the path with the lowest cost to go from the
starting city to the ending city. Simulated Annealing was established based
on the metal annealing process.1? In the annealing process, metals are heated
and cooled repeatedly in an effort to make them more ductile, more

homogenous, and more workable. With every heating and cooling cycle, the

18 Jasbir Arora, Introduction to Optimum Design, (Boston: Elsevier, 2012),
630.
19 Ibid.

39

temperature used to heat the metal is lowered. Likewise, Simulated
Annealing works by establishing an initial “temperature” and then “cooling”
it off slowly. In other words, large changes can be made initially at the high
starting temperature. As the temperature is lowered, smaller changes are
accepted. For this example, the initial cost generated by Dijkstra is 707. Thus,
the initial temperature is 707.

The program runs for 1000 tries at this initial temperature. The way
Simulated Annealing works is that it randomly selects a link to perturb. With
each iteration, a random link is randomly bumped either left or right. Figure
14, below, shows a possible perturbation. The green arrows indicate the path

is being bumped left and the orange arrows indicate a bump right.

Costfrom Airport Sto Arport 2205 707139135

200 +

100 +

-100 +

=200 F

=300 +

1 | 1
300 300 400

Figure 14: Path Perturbation

Once the segment has been bumped, a new path is created. This can

be seen in Figure 15. In this case, the orange path is the new path.

40

200

100 -

-100

=200

-300

I |
300 4010

Figure 15: New Path

After generating the new path, the cost is recalculated. In order to
recalculate the cost, it is first necessary to know the sum of the link distance.
This provides the baseline cost. Added to this is the penalty value. The
penalty is a function of area covered by the graph, it will remain constant for
any scenario. Throughout this capstone, the penalty value was calculated
based on the spread of the coordinate points. The distance was calculated
between the extremes in both the vertical and horizontal directions, and then
averaged. Once the average was known, it was then divided by 5 to provide
the penalty value. However, when and how often the penalty is applied
depends on the specific scenario being called. Table 2 briefly describes what

penalty each scenario is associated with:

41

Scenario Constraint Penalized

1 Elevation

Country Airspace, Hospital Proximity
Natural Features

Rate of Climb

Runway Length

Stick Fixed Neutral Point Location
Turn Direction

N O WD

Table 2: Scenarios and Penalties

Clearly, enacting each scenario between the same initial and final
cities will result in very different paths. Once the new path has been
completely generated, it is time to either accept or reject it.

Acceptance of the path is done using the “Metrop” function. This
function is based on the one provided in Numerical Recipes in C.20 Essentially,
Metrop looks for a path cost that is “not too much worse” than the previous
path. To determine if this is true, Metrop looks at two possible equations:

old cost — new cost < 0

—(old cost—new cost)
random number from0—1 <e temperature

In these equations, the “old cost” is the cost from the previous
iteration, and the “new cost” is the cost for the current iteration. The
“temperature” is determined based on the iteration. If the cost difference is
deemed “not too much worse” then the path adjustment is accepted. After
each iteration, the number of acceptances are recorded. At the end of each of

1000 tries worth of temperatures, if there are enough accepted paths then

20 William T. Vetterling et al., Numerical Recipes in C: The Art of Scientific
Computing, (New York: Cambridge University Press, 1992), 351.

42

the temperature is reduced by 10% and the 1000 tries are repeated for the
new temperature. This process will continue for 100 iterations of
temperature, or until there are no more accepted perturbations, whichever
comes first.

At the end of the program, the best path will be shown, along with the
cost. Continuing the example from Scenario 1, the following graph represents

the best path to from Airport 5 to Airport 22:

Cost from &drport 5 to Airport 2213 563 973386
T T T T

200

100 +

=100 +

=200 +

=300

1 1
300 400

Figure 16: Best Path

Clearly, the cost has gone down, demonstrating that Simulated
Annealing works. In the next chapter, an example will be done that shows the
program can find an acceptable path, accounting for any penalties that may

occur.

43

Chapter 4: Demonstration of the Bailey Algorithm

Overview

The Bailey Algorithm inputs the data from Excel into MATLAB so that
it can select the appropriate values for each scenario. In Table 3, an excerpt
from the Excel Sheet, it is clear to see the X and Y location of each airport
with respect to the predetermined origin. The elevation is recorded in
nautical miles. The fourth column uses logical values to designate the
presence of a hospital. A value of zero means there is not a nearby hospital,
and a value of one indicates there is a hospital close to that particular airport.
This same identification convention is used to determine whether a
particular airport is close to a natural feature. The runway length is the sixth
column. For consistency, it is also in terms of nautical miles. The final column
indicates the country the airport is in. To account for Scenario 2, this column
also uses logical values to show whether or not the airport is in Uganda.

X Location Y Location Elevation Hospital MNat'l Feat. RW Length l..l|_;ar|da

-73.8678 200.3139 0.42571577 0 0 0.61058809 1
-74.1078 2189417 0.5101949 0 0 070110654 1
-125.273 182.8261 0.65025163 0 0 059210424 1

Table 3: Constraint Variables and Values

In the following sections, each scenario will be briefly reintroduced,
followed by the specific way the scenario affects the code. A series of graphs

reflecting the path progression the scenario makes will be presented.

44

Scenario 1

This scenario describes an elevation constraint. A penalty is assessed
when the plane passes through an airport at an elevation above 5,000 feet. In
this particular Algorithm, mountains that are located between the nodes
were not considered, but they could be added in during future work.

To show that the Bailey Algorithm is capable of accounting for an
elevation constraint, the user chose the start node as 4 and the final node as
29. These two particular nodes are linked through node 10 and 11, both of
which violate the constraint. By selecting these as an example, it is possible

to see the evolution from a path with violations to one that adapts.

Path Node
Start Node 4
Node of Violation 10,11
Final Node 29

Table 4: Scenario 1

Once the user identifies the start and final nodes, the Bailey Algorithm
starts running. In Figure 17, the initial path is shown to be: 4-8-9-30-11-29.
For all scenarios, the initial cost is generated using Dijkstra’s Algorithm
within the Bailey Algorithm. However, the Bailey Algorithm generates the
first path. This means that violations can occur. Unfortunately, this violates
the constraint at both Airport 11 and Airport 29. These violations are shown

by the yellow dots.

45

200

100

-100

=300

I f]]
=100 I] 100 200 300 400
Figure 17: Scenario 1, Initial Path

I 1
-300 =200

To be able to show the intermediate steps, a “Pause” command was
inserted when this Scenario was run. By doing this, the Bailey Algorithm
paused after each graph was generated before continuing to run. This
showed each new possible path slowly enough for the graphic images to be
captured, like the one presented in Figure 18, where the path is 4-7-5-17-26-
19-27-24-25-15-30-29. Clearly, there are still violations occurring. However,
this shows Simulated Annealing’s approach of accepting paths that are not

“too much worse” before moving on.

46

Cost from Ajrport 4 bo Airpod 2905 2023 928750

200

100

=100+

=200

=300

I I I
-300 =200 -100 0 100 200 3na 400

Figure 18: Scenario 1, Intermediate Path

Allowing the code to run to completion settles on the best path. The
code was considered complete when enough temperature iterations had
been run to prevent changes in the path. Not only does Figure 19 not have
any constraint violations, but it also has a short distance resulting in a low

cost.

47

Scenario 2

In this scenario, there are two constraints: there must be an airport
nearby, and the plane cannot cross through Uganda. Unlike the other
scenarios, this one provides a reward instead of a penalty for passing
through airports that satisfy both constraints. At this time, “no fly zones” that
occurred between airports were not considered, but will be discussed in
Chapter 6.

As with Scenario 1, the user selected the following start and end

nodes, knowing the “Nodes of Violation” were likely to be part of the initial

path.
Path Node
Start Node 16
Nodes of Violation 1,2,3,4,6,7
Final Node 9

Table 5: Scenario 2

To demonstrate this scenario, the path was charted from Airport 16 to
Airport 9. Figure 20, below, shows the initial path as well as the airports in
violation. With the initial path, the airports visited are 16-5-3-2-4-7-12-10-6-
9. Of those visited, 3, 2, 4, 7, and 6 are in Uganda. Looking at the cost, as
shown on the top of the graph, shows this was clearly an expensive path to

take. The high expense comes from going through airports in Uganda.

49

Costfrom Ajrport 16 bo Arport 8is 1038 162207

100k

-100

=200

=300

1 1
-200 -100 1] 100 200

1 1 1
=300 300 400

Figure 20: Scenario 2, Initial Path

As with Scenario 1, a pause command was inserted to allow for the
graphs to appear slowly. Once the number of temperature iterations had
become larger than 10, meaning the code had been running for a while, the

following path was generated:

Costiram Arpott 1660 Arport 3is 797052901

200 +

100 -

-100 -

I | I f 1 1
-300 -200 -1aa i 100 200 300 400

Figure 21: Scenario 2, Intermediate Path

50

In this solution, there are no airports in Uganda, but, this is a very

expensive path in terms of distance traveled. The path shown is 16-18-20-

12-11-30-15-25-24-23-22-13-29-11-9. As a viewer, it is clear to see that

eliminating the loop would greatly shorten the distance traveled. As the

Bailey Algorithm finished running and the temperature value decreased, the

Algorithm removed the loop. The final path, going from 16-21-18-20-12-11-

9, is shown in Figure 22.

200 -

100

-1on

=200

=300

Cost frotn Arport 16 o Arport 9is 552.213477

I 1 f 1
-500 -200 -100 n 1an 200 300

Figure 22: Scenario 2, Final Path

51

Scenario 3

In this scenario, the plane is penalized for flying over national parks or
wildlife areas. Knowing which nodes would result in a violation, it was
possible for the user to select a start and end node that would make a path

with a high likelihood of containing a node of violation:

Path Node
Start Node 9
Nodes of Violation 7,12,17,19, 21, 22, 29
Final Node 26

Table 6: Scenario 3

In the initial path, 9-30-15-14-13-29-11-9-6-12-7-4-1-3-5-17-18-19-
26, there were numerous violations. Some, such as 12, 7 and 18, were due to

close proximity to Lake Victoria. The rest were National Parks.

Cost from Arport 9to Arport 2613 2934774805
T T T T

200 -

o0k

-1o0

=200 1

-300

1 1 I i 1 |
=300 -200 -100 0 100 200 300 400

Figure 23: Scenario 3, Initial Path

As with the previous scenarios, once the temperature had been

changed over 10 iterations, the Bailey Algorithm found a path that had been

52

updated to have a shorter distance traveled, but still had the same number of
violations. Figure 24 shows this intermediate solution. The number of nodes
of violation coupled with the loop the path takes shows that there are still
improvements that can be made. The intermediate path contains the
following airports: 9-6-7-5-4-6-12-29-13-14-22-27-19-26, as found by the

Bailey Algorithm.

Cost from &irport 9ko Alrport 26is 2452 8736587

200 +

100+

-100

=200 F

=300+

] i I I
=200 -100 i 100 200 300 400

300
Figure 24: Scenario 3, Intermediate Path

As the Bailey Algorithm finished running, it found the “best” solution.
This path, going from 9-30-15-25-24-27-26 does not contain any violations.

It also is the shortest path, in terms of distance traveled.

53

54

Scenario 4

In this scenario, one of the engines is damaged. This means that the
plane is unable to ascend as quickly as it would normally. For this reason, the
airports between the starting and ending node must not exceed 1.2 times the
altitude of the airport before.

The following path was generated based on the user-defined start and

end node:
Path Node
Start Node 9
Node of Violation LOTS
Final Node 19

Table 7: Scenario 4

Initially, this generated the following path. The links marked with an
“X” are the ones that violate the constraint. For simplicity, a small chart
follows Figure 26 to clearly show which links were violated. The violated
links are highlighted in red. These two graphics reveal that there are four

violations.

55

200

100

-1010

=200

300

Costfrom &rpoart 9to Ajrport 19is 1970 444691

1 1 I F 1
-300 -200 -10a 0 1an 200 300

Figure 26: Scenario 4, Initial Path

Node Percent Change in Altitude

4-5 1.15
5-3 0.98
3-2 0.78
2-1 0.84
4-7 1.08
7-20 1.00
 20-13 148
13-14 0.99
14-29 1.11
29-13 0.90
13-22 0.74
22-19 0.91

Table 8: Scenario 4, Initial Links Violated

]
400

56

Similarly, there is an improvement between the initial path and the

intermediate path. However, there are still three links that violate the

constraint.

Costfrom Arpoart 9to Ajrport 1905 1363, 676246

200

100

-100

=200

=300

1 1 I F 1
-300 -200 -10a 0 1an 200 300

Figure 27: Scenario 4, Intermediate Path

Node Percent Change in Altitude
30-14 0.95
14-13 1.00
13-12 0.67
29-30 0.94
30-28 0.71
28-25 0.91
25-24 0.78
23-22 091
22-19 0.92

Table 9: Scenario 4, Intermediate Links Violated

57

At the conclusion of the code, there is still a constraint that is violated.
Even though this is the case, the cost is still extremely low. To fix this, a

stronger penalty could be applied to the violation value.

Costfrom Ajrport 9to Airport 1915 567811319

200

100

-100 -

-20n -

-300 -

400
Figure 28: Scenario 4, Final Path

Node Percent Change in Altitude

10-12 0.63

12-20 0.99

20-19 1.00

Table 10: Scenario 4, Final Links Violated

58

Scenario 5

In this scenario, the runway length provides the constraint that the
Bailey Algorithm takes into consideration. In particular, the pilot must fly a
route that contains intermediate nodes of at least 5,000 feet in order to land
safely if (s)he cannot make it to the final destination.

The user selected the start and final node. Based on the initial path, it
was apparent there were numerous nodes that violated this constraint along

the path. The following path was chosen to demonstrate the effectiveness of

the code:
Path Node
Start Node 1
Node of Violation 2,6,9,10,13
Final Node 11

Table 11: Scenario 5

In this case, the initial path was 1-4-8-6-9-11. This caused a violation

of airport 6 and 9, as seen with the yellow dots in Figure 29.

59

Costfrom Airport 1ha Airport 1106 869.7224 18
T T = T T

200+

100+

=100+

=200+

-300 -

1 1 i 1 1
=300 =200 =100 i 100 200 300 400

Figure 29: Scenario 5, Initial Path

As with the other scenarios, the path underwent many modifications
and perturbations. Approximately halfway through the temperature
iterations, the following path was generated before being rejected. This path

was an improvement over the initial, with only one violation:

Costfrom Airport 1o Ajrport 11is 552231193
T T T T

200 |

1m0 +

-100

=200

-300

Figure 30: Scenario 5, Intermediate Path

60

Looking at the final path, we see that the overall cost did not decrease
by very much. This is because to avoid the penalty associated with the city,

the path had to extend a little longer.

Cost from Airport 1o Airport 1165 545 605696

100+

=100 -

=200

=500

1 1 f 1 1
=300 =200 -100 i 100 200 300 400

Figure 31: Scenario 5, Final Path

61

Scenario 6

In this scenario, the plane is impaired in its turning ability. After being
hit by debris, the rudder jammed, causing the plane to be unable to turn left.

Initially, the path contained numerous left turns, resulting in a very
high initial cost. As with Scenario 1, the user selected the following start and
end nodes, knowing the “Nodes of Violation” were likely to be part of the

initial path.

Path Node
Start Node 5
Nodes of Violation LOTS
Final Node 24

Table 12: Scenario 7

Costfrom Ajrport Sto Adrport 2465 1154135285

200

100

-100

=200

=300 E

I 1 I | 1 |
=300 =200 -100 i 100 200 300 400

Figure 32: Scenario 7, Initial Path

Once the program had been running for a while, the intermediate path
was created. As with some of the other examples, this was an example where

a path was suggested as it was “not too much worse.” In this example, it is

62

clear that the cost is so high due to the high contribution from the penalty

function - it makes up nearly 1/3 of the total cost.

Cost fror Airport Sto Ajrport 24 is 1490 587945

200

100

-100

=300

I 1 Y 1 I
=300 -200 -100] 100 200 300 400

Figure 33: Scenario 7, Intermediate Path

At the final path, there are still two left turns. Like the intermediate
step, they account for approximately of the total cost. In a future version
of this code, this could be corrected by adding a more severe penalty. Having
said that, only one of the turns is an extreme turn. It is possible that the slight
left was the result of the turn being made that was almost 360 degrees to the

right, resulting in a slight left.

63

200

100

-1on

=200

=300

Cost fromm Ajrport Sto Airport 24§5 776224153

1
=300

1
=200

1 |
-1on 0 100 200

Figure 34: Scenario 7, Final Path

|
300

|
400

64

Chapter 5: Conclusions

As was explained in earlier sections, the main aspect that
differentiates the Bailey algorithm from all other mapping algorithms is the
ability to assign a penalty value to the intermediate nodes. By incorporating
this penalty, the Bailey algorithm sets itself apart from the shortest path
algorithms. Other algorithms, like those in GPS units, only look ahead. They
do not take into consideration how one got to their current location. Some
GPS units are able to account for traffic that might occur along the way,
showing that there is some existing software similar to the Bailey Algorithm.

This very fact is what makes the Bailey algorithm matter in real life.
This algorithm allows for paths to be charted that satisfy specific constraints
at all points along the path. For example, if the plane needs a runway of a
certain length in order to land safely, the route it flies should be populated
with airports along the way that it could land at, just in case it cannot make it

to the final destination.

65

Works for Any Arrangement of Cities

This program is just a model. It will work for any airplane, almost any
scenario (See Scenario 7), and any collection of cities.

To show that the code will work for any arrangement of cities, the
random number generator in MATLAB was used, generating X and Y
coordinates for “Airports” as well as a random assortment of elevations. The

resulting graph, including the Delaunay links, is shown in Figure 35:

Triplat

0.7

06|

sk

04+

03

n2

01

01

Figure 35: Random City Arrangement

66

These cities were run through Scenario 1, a complete table of values

used is included in Appendix A4. As with the earlier scenarios, an initial path

was generated:

Costfrom Airport 7to Ajrport 6is 3.102351

0.8 E

07| -

P—

06}] .

0.5]

0.4 R

0.3 _

0.2 g

01 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1

Figure 36: Initial Path

This initial path has two violations: first at node 10 and then node 8.

As the code runs, it eliminates one of the violations, resulting in the

intermediate graph shown in Figure 37, below.

67

Cosk from Airport Tho Alrport Gis 1753482

0.6

07 E

0.5k

04+

02k

IR

0.1

Figure 37: Intermediate Step

However, there is still the violation. This is corrected by the time the

code finishes. The final path solution is displayed below in Figure 38:

Cost fram &irport 7to &rport Gis 1.857680

0T E

06|

I3 5

04

03

02k

RN

1 1 1 1
0.1 0.2 0.3 0.4 0.3 0.6 0.7 0.8 0.4 1

Figure 38: Final Path

68

This shows that this code is easily adaptable for different city
arrangements. Not only is the origin changed, but the number of cities used is

also different. In addition, the scale being tested is dramatically different.

69

Simulated Annealing is a Robust Optimization Method

While this project produces viable results, how can one be sure the
results are consistent? By determining how robust the Simulated Annealing
method is, this question can be answered. If the Simulated Annealing method
is robust, it means that the optimizer is a good one that can stand up to
scrutiny. A weak optimizer will report many different answers for the same
scenario. It is possible for Simulated Annealing to return different values for
different runs. As mentioned earlier, the Annealer randomly perturbs a link
for each iteration. This randomness can result in slightly different costs being
produced for the same start and end node.

To demonstrate how robust the Simulated Annealer is, the code was
run ten times for Scenario 1, from airport 28 to airport 17. The complete data
table is in Appendix A4. The result is shown in Figure 39. In this image, each
run is graphed against the score it generated. There are two values for the
final cost that were repeated multiple times: 662 and 915. This shows that
the method of simulated annealing can often find the local minimum, but
occasionally struggles to find the global minimum. Since the cost accounts for
the distance traveled as well as the penalty applied at each node, it is possible
for slightly different paths to be generated. Additionally, if a change is not
made initially, the scaling factor that determines what changes are allowed

might be reduced, resulting in a slightly higher cost path.

70

How Robust is Simulated Annealing?

(1/2)

1200.00

1000.00

800.00

600.00

400.00

200.00

0.00 T T T T T 1

Cost to Travel from 28-17, Scenario 1

Run Number
e=(mw(Cost Per Run e Average Value

Figure 39: Simulated Annealing Robust Test (1/2)

Referring to Appendix A4 for the full table, the standard deviation is
revealed to be approximately 121 nmi. Since the average is calculated to be
around 800 nmi, a standard deviation of 121 nmi is only about 15% of the
data spread. Relatively speaking, this is not too large of a data spread. While
this shows that the simulated Annealer is not perfect, it also shows that the
Simulated Annealing method is acceptable for the majority of the time.

Furthermore, closely examining Figure 39 reveals that there are two
local minima that the Simulated Annealer focused on. The value of 662 and
915 both occurred multiple times. This shows that the annealer is settling on
a solution, but has not quite reached it yet. Adjusting the temperature scale
factor could allow for the annealer to settle on a more consistent number.

To provide another set of data, Scenario 5 was tested as well. For this

test, the start node was selected to be 17 and the final node was 8. This

71

would force the code to avoid nodes 21 and 6, as they both would violate the

constraint of runway length.

How Robust is Simulated Annealing? (2/2)

1000.00
900.00
800.00
700.00
600.00
500.00
400.00
300.00
200.00
100.00

0.00 T T T T T 1

Run Number

Cost to Travel from 17-8, Scenario 5

e=(me(Cost Per Run e Average Value

Figure 40: Simulated Annealing Robust Test (2/2)

In this test, the standard deviation was calculated to be about 106
nmi, again showing that the Simulated Annealer is robust. Like the results
from Scenario 1, the Simulated Annealing optimizer found the same local
minima multiple times. As mentioned previously, the results could be
improved by adjusting the temperature scale factor. Based on these two
conclusions, it can be assumed that there would be similar results for the

other scenarios.

72

Penalty Value is Acceptable

When calculating the penalty value, it was important not to hard code
in a value. If a set value was hard coded in, the results would be very different
if all the airports were located between zero and one, compared to ones that
might go from zero to one hundred.

To calculate the penalty value, the average of the vertical distance and
horizontal distance covered by the data was taken. This number was then
divided by 5, to allow for situations to be “not too much worse.” This resulted
in a penalty value of about 111 for each scenario. This made the penalty
value a function of the data spread, allowing it to be transferred to any set of
data.

To test the significance of the penalty value, five different values were
chosen. Initially, it was thought that the values tested would go up to ten, but
upon running the code, it became apparent that a value larger than 3 resulted
in the Simulated Annealing deciding all paths were too expensive, making the

first guess always the accepted path.

Penalty Values Tested
0.2
0.5
1
2
3

Table 13: Coefficients of Penalty Values Tested

The code was run numerous times at each penalty value. The cost

obtained was then averaged out and graphed against the penalty value. To

73

show the effect of cost, the same two scenarios were run: Scenario 1 from 28-
17 and Scenario 5 from 17-8. It was interesting to note that when the penalty
value reached a certain point, it was too high for the Simulated Annealer to
consider. This resulted in the Annealing process only being completed for

one temperature iteration.

Scenario 1 Penalty Evaluation
3000

2500

2000

1500

Cost

1000

500

0 0.5 1 1.5 2 2.5 3 3.5
Penalty

Figure 41: Penalty Value for Scenario 1

74

Cost

1800

1600

1400

1200

1000

800

600

400

200

Scenario 5 Penalty Evaluation

0.5 1 1.5 2 2.5 3 3.5
Penalty

Figure 42: Penalty Value for Scenario 5

75

Chapter 6: Future Work

It became apparent that this could be extended much more than the
work that was completed. Alterations and extensions could be made to the
scenarios, more features could be included, and the code could be modified
to be more accommodating.

With regards to specific scenarios, in the future, modifications could
be made to account for Scenario 6, the change in the Stick Fixed Neutral
Point, and center of gravity. When the SFNP shifts, there are serious
consequences. At this point, there is not a qualitative way to account for this
shift, and therefore it is unable to be viable at this time.

A scenario could also be added to account for runway direction for
towered airports. This could provide the plane with a penalty for taking off
and landing a specific way, based on the wind or the direction the plane is
unable to turn. Furthermore, the code could be altered to account for flight
patterns at each airport. This modification could also be adapted to include a
constraint based on runway surface.

In the future, the code could be modified to incorporate aerodynamic
characteristics of a specific plane. For example, a scenario could be added
that would account for a malfunction with the Rate of Climb ability. This
would require knowing the cruise speed for the plane to fly and take into
consideration the distance between nodes.

More features could be added to the data MATLAB inputs. This could

include mountains located in the middle of links, rather than right at an

76

airport or “no fly zones” that would prohibit flying in a certain area. Similarly,
it could be made so that links are prohibited from crossing over Lake
Victoria. Both of these could be done by dropping the respective links from
Dijkstra, but it would provide more of a challenge, and make the program
more generic, to have MATLAB identify the paths as problematic and remove
them.

Furthermore, the code could be adapted to include a “severity” of the
penalty. For example, turns that only go “a little left” are not penalized as
heavily as sharp, 90 degree left turns. It could also allow for a severity in the
other scenarios as well. Perhaps for Scenario 3, it is worse to fly over Lake
Victoria than it is to fly over a National Park. This could also be applied to the
scenario with hospitals. The closer the airport is to the hospital, the less
severe the penalty is.

The last piece of notable future work would be to apply this code to
completely different scenarios. For example, it could be incorporated into
GPS units for charting the best path home in rush hour traffic, knowing
certain stops have to be made along the way. Similarly, the Bailey Algorithm
could be used for delivery vehicles to find the best way to deliver food or
packages. It could also be used for everyday activities like completing

scavenger hunts, or charting out what classes to take when.

77

Sources Cited and Consulted

“Airports in Africa.” Megginson Technologies, Ltd. Updated 2009.
http://www.ourairports.com/continents/AF /#lat=6.3152985383300
33,lon=17.578125,z00m=2,type=Map,airport=DGAA,continent=AF.

“Airports in Kenya.” Air Broker Center International AB. Updated 2009.
http://www.aircraft-charter-world.com/airports/africa/kenya.htm.

Arora, Jasbir. Introduction to Optimum Design. Boston: Elsevier, 2012.

Cornell University, “Dijkstra’s Shortest Path Algorithm.” Accessed April 21,
2014.
http://www.cs.cornell.edu/courses/cs312/2002sp/lectures/lec20/le
c20.htm.

Dannenhoffer, 111, John. “Capstone Meeting: January, 23.” Capstone Meeting,
MAE 499: Honors Capstone Project from Syracuse University,
Syracuse, NY, January 23, 2014.

“DC-3: The Genesis of a Legend.” DC-3/Dakota Historical Society, Inc.
Accessed March 26, 2014. http://www.dc3history.org/dc3.htm.

“Delaunay Triangulation.” MathWorks Inc. 2014.
http://www.mathworks.com/help /matlab/math/delaunay-
triangulation.html.

Lester, Patrick. “A* Pathfinding for Beginners.” Policy Almanac. July 18, 2005.
http://www.policyalmanac.org/games/aStarTutorial.htm.

“Logan Plans to Add 600-Foot Runway Safety Area on Harbor Deck.” Boston
Globe, March 18, 2009. Accessed February 15, 2014.
http://www.boston.com/news/local /breaking news/2009/03/logan

plans to.html.

“Model Railroad Layouts: Airport Runways and Accessories.” Bakatronics
LLC. Accessed February 15, 2014.
http://www.bakatronics.com/shop/category.aspx?catid=117.

Nicholson, Roger and William Reed, “Strategies for Prevention of Bird-Strike
Events,” Aero Quarterly, Quarter 3: 2011.

U.S. Department of Health and Human Services. “Toxicological Profile for
Hydraulic Fluids.” Accessed April 22, 2014.
http://www.atsdr.cdc.gov/ToxProfiles/tp99.pdf.

Vetterling, William T., William H. Press, Saul A. Teukolsky, and Brian
Flannery. Numerical Recipes in C: The Art of Scientific Computing. New
York: Cambridge University Press, 1992.

Wachman, Monica. “What is the Altitude of a Plane in Flight?” Travel Tips.
Accessed April 21, 2014. http: //traveltips.usatoday.com/altitude-
plane-flight-100359.html.

78

Appendix A—Excel Spreadsheets

Appendix Al: Runway Information

ELEVATION LENGTH
AIRPORT CODE LOCATION FEET nmi MILES METERS COORDINATES FEET mmi METERS SURFACE DIRECTION
Adjumani Alrpert HUAL | Adjumani, Uganda 2511 043 0.495 796 03°20'19°N, 31°45'08"E | 3710 0.611 1130 Unpaved 0927
Moy Alrpart OY¥G | Mayo, Uganda 3100 0.51 0.587 540 03°38'57"M, 31°45'54"E | 4260 0702 1300 Unpaved 02/20
Arua Alrport RUA Arua, Uganda 3951 0.65 0.748 1204 DF'02'S0"N, 30°54'44"E | 5600 0922 1700 Unpaved 18/36
Gulu Alrport ULU | Guly, Uganda 3510 0.58 0665 1070 D24E'00"N, 32°16'30°E 10314 1699 3184 Asphalt 17735
Bunia Alrport BUX Orlentale, Conge 045 067 O.7EE 1233 DI'33'S7UN, IOCLI1SE | E07O0 1 1850 lce 14132+
Soroti Adrpert SRT | Soretl, Uganda 3541 0.6 063 1110 01°43'30°N, 33°3718"E | 2525 Dw1E 770 Tarmac 09/27
Entebbe International Alrgert | EB8 | Kampala, Uganda 3782 0.62 0716 1153 DO'02'A1'N, 32°26'35"E 12000 1976 3558 Asphalt | 17/35
Lekichoggio Alrport LKG Lokichoggio, Kenya 2115 0.35 0.401 £45 (4°12'18"N, 34°20042°E | £194 102 1888 Asphalt | 03/21%*
Lodwar Alrport LOK | Lodwar, Kenya 1715 0.28 0.325 523 03°07'20°M, 35°3F36°E | 3281 054 1000 Asphalt | 0927
Kitale Alrport KTL | Kitale Kenya 50700 1 115 1450 DO'SH'30'N, 34°57°38"E | 4757 0783 1450 Asphalt | 22/04
Eldaret International Airpart EDL | Elderet, Kenya 7050 115 1335 2150 DO'24'16"N, 35°14°20°E 11400 1EF7 3475 Asphalt U8/26
Kisumu Alrgort KIS | Kisumu, Kenya 3795 063 0718 1157 DO'0S'10'S, 34°4344° 10836 1783 3300 Asphalt 08/24

Mara Serena Lodge Alrstrip MRE Masal Mara, Kenya 5600 0.92 1051 1707 01°24'1B"S, 35°D0'3E"E | 2700 D445 820 | Unpaved | 04/22**
Nairobl Wilson Alrpert WIL Nairobl, Kenya 5546 | 081 105 1690 01719'12"5, 36°48'54"E 5052 | DB32 1540 Asphalt | 14/32
Joma Kenyatta Int'l Alrport NBO Nairobl, Kenya 5327 | 0.BE 1009 1624 01719'09"5, 36°55'39"E | 13507 | 2.224 4117 Asphalt | 06/24
Kigali International Alrport KGL Kigali, Rwanda 4891 0.B1 0825 1491 01°57'59"S, 30°0759"E 11482 | 1891 3500 Paved 1028
Bujurnbura International Alrport | BIM | Bujurmbura, Burundi 2582 043 D483 787 03"19'26"S, 29°19'07°E | 11811 | 1945 3500 Asphalt | 17735
Nwanza Alrport NWZ | Nwanza, Tanzania 3763 062 0713 1147 02°26'40"S, 32°55'57°E 10827 | 1.783 3300 Asphalt 1230
Shinyanga Alrpart SHY Shinyanga, Tanzania 3800 063 OF2 1158 |03°36'34"5, 33°30'15"E | 6562 | 1.081 2000 Gravel 11/29
Musoma Alrport MUZ | Musoma, Tanzania 3783 | 062 O.T1E 1153 01°30'10"S, 33°qR0E"E 5248 | QB4 1600 | Grass 18/316
Bukoba Airport BRZ Bukoba, Tanzanla 3766 062 0713 1148 01719'56"S, 31°, 49'16"E | 4921 081 1500 Gravel 13/31
Lake Manyara Alrgort LKY Lake Manyara Matl Park, Tanzania 4150 0.68 0.788 1265 03°22'33"5, 35°49'08"E | 4003 | 0659 1220 Asphalt 12/30
Arusha Alrport ARK | Arusha, Tanzania 4550 075 DBB2 1387 03"22'00"5, 36°3719"E 5315 | D.BTS 1620 Asphalt | 09/27
Kilimanjaro International Alrport | JRO | Hal District, Tanzania 2932 Q.48 0.555 894 | 03°25'46"S, 3TDA'2E"E 11811 | 1845 E00 Asphalt 09/27
Arnboseli Alrport ASV | Ambosell National Park, Kenya 3757 | 0.62 | 0.712 1145 02'38'32"5, 371500"E 3284 | D541 1001 Asphalt | 15/33**
Kalernie Airport FMI Katanga, Congo 5741 Q.55 1087 1750 05'52'32"5, 29°15'00"E 5741 | Q945 1750 Asphalt | 0&/24
Dodoma Adrport DOD | Dedoma, Tanzania 3537 | 0.6 0O.683 1109 06%10'13"5, 35°44'58"E 6689 | 1.103 204F Asphalt 10428
Ernbu Alrpert HKEM | Embu, Kenya 4150 O.68 0.7 1265 00'34'08"S, 37°29'32"E 2953 | DABE 900 Asphalt 08/16**
Nakuru Alrgost NUU Nakuru, Kenya 6200 102 1174 1900 00°18'00"S, 36°0D9°'36"E | 5607 | 0823 1709 Asphalt 16/34**
Myeti Airpart NYE Myen, Kenya 5830 096 1.104 1777 00%20'24"5, 36°54'36"E A050 DeET 1230 Unpaved 02/20%*

79

Appendix A2: Complete Data

10 Latitude Longitude LatDeg LatMin LatSec SUR [mi] DIST [nmi] LongDeg Lenghin LongSec SUM [mi) DIST [nmid] Ee {m| Eew (ft] Length [m) Length [f]

3" 20'15°N
33851
Q3h0E'507N
QE ' 00N
1°33'51
01°43'30°N
01%43'31°N
(L
(L P
(St
iE gl
Q058307
00" 24'167N
0051078
a1*2a'187%
01°18'127%
01°18'137%
01°18'057°%
01°557'557%
a3*18'267%
Q& 26'als
3°36'347%
a1°30'10°%
a1°19'567%
a3 22'337%
a3 22'00°%
3" 25'a6"%
QE*38'327%
a5*5h2'327%
06*10'13°%
00330875
00 18'00°%
a0ta0'a4"s
a3°04'337%
o' nTs
0" 23'08°N
01°05'557N
a3*14'357%
Gt 3rars
00 18'a0°%
O1°16'10°N
J1°15'a1"%
0030837
O 36'657%
(Lol
a0t 18'arN
Wl
L Wl
L Wl
L Wl
L Lt
L Wl
L MU
L Wl
L Wl
L Wi
L Wl
L Wl
L Wl

LI XIIgLErcreeerpeprpreprrrprPrererprPrererPrRrPRRFBRPRERERRPRFERERRERER

314608
31°45'58"E
20°58'48"E
I 1E'I0°E
" 1F1EE
IFIPLIEL
TP
2 EE'IEE
2 EE'IEE
4R
35" BE'IEE
T4ETIEE
35°18'207E
14°43'40"E
L0036
T'4R'5A"E
455"
5E'35"
255"
et e
aresareF .
I LEE
IHAROEE
3148167
IL'EHOEE
T EPIGE
2F08'287°E
IPLEO0E
FEIEO0E
354858
P ras
TEIEE
E'LA'IEE
P08
AR
LI
143826
TE'AEO0E
64220
6°36'58E
LRG0
6'48'277E
35°15'45"
e Ere
r'3a'38"E
TBE'2IE

L)

L)

L)

L)

WU

L)

U

L)

L)

L)

L)

L)

L)

Bettttooodaensst

Faiky
Faiky

133

-207

-414

=

=
LORE =T O = = = = == O T = = = I = R = e =

=

=

=

i3
457
i3
552

036 zm4
108 518
aa5| ziaa
o 1932
108 108
0.57 118
.54 118
EIET
08 xoss
o3a| Fai
o3s| zisa
a57| &rar
16| 4ap
02 554
03 se9a
0.2 4108
02 611
0.2 w102
-1.1 -135.7
05 2293
08| 1687
06 -4
02| -1037
-1.1 -51.91
06| -23r8
o -23x3
08| 2365
06| -1823
0.6 -apsa
02| 4187
02| -35.35
Y
05| 2346
33| -2z
7| -insg

8 G
8| TRA7
A5 2238
47| 4335
-ap| -21.46
10| BRES
a1 803
4 w3
55 4162
47| mm
14| -17a8
Ap| 1862
L) AU
Ap| 1437
L) AU
45| 0855
5| -24.25
U L)
ab | -TEE
L) U
45| -1435
45| -1458
L) AU
A0 F 162

#00.314
£18.542
152800
168.000
S3.54%
103494
103.51%
63T
2654
252287
187.330
58,456
3F.513
-5.165
-84 297
-75.198
-75.215
-75.145

-117.47%
-199.430
-146.661
-216.562

-50.165
-75.925

-20¢.5ak
-202.000
-205.760
-158.525
-352.525
-370.215

-34.132
-18.000
-20.337

-184.5a%

5116
E313%
G5.575

-154.ha4

-3%.611
-18.661
165
-F5.677
.70
-3697%
12,07

-151.231
-144 456

-75.925
-12.436

0.743
-21.083
-5.165
-BE.661
-50.165

-124.7a3
-126.743
-140.000
-144 456G

£135
£135
k)il
EROE
k)il

528
51.7%
621
15.4
14.55
4255

S ELEEEEMNE R R AR IR

0.152
1026
Q836

a5y
0.285
a.304
0323
Q.6ES

B E o E|a|E e E | E e e o B e

-84.95
-B5.22
-1d4.1
-50.03
-151.8
42054
4ZHT3
-3B.43
L
HEI5E

GF2T
WU
5143

-T3.868
-74.108

125273

-43.504

186752

IF.264
3r.ag1
-33.422
-33.405
50,654
156.555
117.555
134,330
pLERFI
120.555
ZiB.BEE
28500
FEURE

£16.558

136,810

-140.471

-23.637

Ak

a4l
1204
1070
1233
1110
1110
1153
1153

53
1850
£150
1157
1707

1630
1624
1431

1147
1158
1153
1138
1265
1387

1145
1750
1104
1265
177

5199

2611
3100
F51
3510
4045
3641
3Ha1
EXLF
aFE2
pa bl
1715
370
50
Rl

5540
532y
4831

ENE]

3F83
ERn
4150
4550
32
EXT
5Fa1
3H37
4150

5830
13341
17058
16763
14115

13127
11582

1130
1300
1700
3144
1850
1800

TH
3H5H

1620
1001
1750

1704
1230

ERpli}
4260
5600
10314
370
6100
E52h

80

Appendix A3: Constraints

X Location Y Location Elevation Hospital MNat'l| Feat. RW I.eru_;th Uganda
-73.B678 200.3139 0.42971577 0 0 0.61058809 1
-74.1078 218.9417 0.5101945 0 0 0.70110e54 1
-125.273 182.8261 0.65025163 0 0 0.921s424 1
-43.5043 168 0.57767229 0 0 1.65746781 1
-166.7522 03,9417 0.66572206 0 0 0.99892453 0

37.2809 103.5122 0.559923214 0 0 0.41556198 1
-33.4217 26774 062243778 1 1 1574948 1
80.65935 252.2974 0.34824916 0 0 1.01540233 1]
156.5948 187.3304 0.28225299 0 0 0.5359837 1]
117.5048 582.4057 0.09892453 0 0 0.78292023]
1343304 37.513 1.160281595 1 0 1.8762006 1]
103.727 -5.1652 0.62474188 0 1 1.78173225]
120.5948 -84.2974 0.5216424 0 0 04443633 1]
2289087 -79.2148 0.91275513 1 0 0.83145311 1]
235.6443 -79.1487 0.B7671233 0 0 222296855 1]

-172.0252 -117.9748 0.B0495589 0 0 1.88962608 1]

-220.8843 -199.425%6 0.42494298 0 1 1.54384257 1]
-4.0583 -146.6600 0.61931078 1 0 1.78189683 0
30,2478 -216.5617 0.6254002 0 1 1.075%674 0
48,1322 -90.1652 0.62260236 0 0 0.B6371059 0
-70.7357 -79.9252 0.61580451 1 1 0.80989326 0

1690991 -202.5452 0.68300285 0 1 0.65820974 0

217.3138 -202 0.74883445 0 0 0.87473738 0

244 4626 -205.76 0.48254563 0 0 1.84384257 0

255 -158.5287 (.6183233 0 0 0.54047744 0
-225 -352.5287 0.94424204 0 0 0.94424804 0

164.59583 -370.2148 0.55857382 0 0 1.10251472 1]

2655287 -34.1322 0.68300235 0 0 0.48600179 1]

185.5048 -18 1.0203898 0 1 0.92272445]

2345948 -20.3965 0.595548557 0 0 0.66654495 1]

81

Appendix A4: Conclusion Supporting Tables

Random City Information

X Y Elevation (nmi)
0.755 0.8745 385.1
0.9927 0.4238 250.2
0.1908 0.0716 527.8

0.72 0.5318 188.9
0.2991 0.6591 620.1
0.265 0.7312 924.7
0.9591 0.3312 67.2
0.4275 0.4538 947
0.5221 0.5568 4.3
0.1406 0.6942 899.2

Simulated Annealing Robust Test (Scenario 1)

RUN

COST

Mean

STDev

O 00 NO Ul & WN -

[EEN
o

662.34
848.78
737.55
915.38
662.34
974.54
915.38
915.38
662.34
845.54

813.96

121.86

82

Simulated Annealing Robust Test (Scenario 5)

RUN

COST

Mean

STDev

O 00 NO ULl b WN B

[EEN
o

737.74
592.21
600.86
857.90
600.86
771.60
600.86
771.60
812.17
812.17

715.80

105.61

83

Appendix B—MATLAB Code

Appendix B1: The Bailey Algorithm

function BumpOut (scenario)
$Feed in airport locations to MATLAB. Points are distance in nmi
$from the origin, located at 33 degrees East (longitude, X) and
the equator (latitude, Y).

clc;

clf;

Data = xlsread('BumpOutData.xls'");

AirportDat= [Data(:, :)1;

AirportX = AirportDat(:, 1); $Airport X coordinate (nmi)
AirportY = AirportDat(:, 2 $Airport Y coordinate (nmi)

%$This variable will be used throughout the code.
num = length (AirportX);

%$Establish an annealing schedule
tfactor = 0.9;

figure (1)

hold on

tri = delaunay (AirportX,AirportY);
triplot (tri,AirportX,AirportY);
axis equal

hold off

title('Triplot")

[

%$Combining with Dijkstra

\% [AirportX,AirportY];
I = delaunay (AirportX,AirportY);
J I(:,[2 3 11); E = [I(:) J(:)1;

E

[E; fliplr(E)];
ibeg = 100;
if (ibeg < 1 || ibeg > length(AirportX))

fprintf (1, 'Click on Airport to start from\n');
fprintf (1, 'Click on Airport to end with\n');

[x, y] = ginput(2);
xbeg = x(1);
ybeg = y(l);
xend = x(2);

84

yend =vy(2);

ibeg = 1;
iend = 1;
sbeg = (AirportX(ibeg)-xbeg)”2 + (AirportY¥Y(ibeqg)-ybeqg)"2;
send = (AirportX(iend)-xend)”"2 + (AirportY¥(iend)-yend)"2;
for i = 2 : length(AirportX)
stestl = (AirportX(i)-xbeg)”"2 + (AirportY(i)-ybeg)"2;
stest2 = (AirportX(i)-xend)”"2 + (AirportY(i)-yend)"2;
if (stestl < sbeq)
sbeg = stestl;
ibeg = i;
end $ if
if (stest2 < send)
send = stest2;
iend = 1i;
end
end $ for i
end $ if
[costs,paths] = dijkstra(V,E, ibeq);
PATHS = paths{iend};
tri = delaunay (AirportX, AirportY);
oldprice = 1000;
CDIJ = 0; %$Cost of dijkstra

for i = 1 : length(PATHS)-1
CDIJ = CDIJ + sqgrt(((AirportX(PATHS(i)) -

AirportX(PATHS (i+1))) ~ 2) +
(AirportY (PATHS (1)) — AirportY(PATHS(i+1))) ~ 2);
end
temp = -CDIJ / log(O0. $Equation from "metrop" function

for itemp = 1 : 100

itemp
nsuccess = 0;
nfail = 0;
figure (2)

triplot (tri, AirportX, AirportY);

title(sprintf ('Travel from Airport %d to Airport %d', ibeg,
iend))

axis equal

hold on
plot (AirportX(ibeg), Airport¥(ibeg), 'g*'")
plot (AirportX(iend), AirportY¥Y(iend), 'r*'")

for itry = 1 : 1000

point rand(1l);
port = point * num;

if port >= 0.5
x1 = AirportX(round (port));
vyl AirportY (round (port));

85

end

else
x1
vyl

end

rand
0;
Inf;

click =
ibest
dbest

for 1 =1
dtest

if (dtes
ibes
dbes
end $ if
end $ for i
if (click
Links
else
Links
if

o
°

end

[NEWPATH, pr

if okay == 1
PATHS
oldprice

else nfail

end $ 1if

if okay ==1
nsuccess
end $ 1if
if (nsuccess
break
end $ 1if
end % for itry

plot (AirportX (PA

title(sprintf ('C
ib

hold off

pause

if (nsuccess ==

break

end $ 1if

nsuccess

nfail

temp

* tf

temp

[)

% for itemp

AirportX(1l);
AirportY (1) ;

(1)

length (PATHS) -1

sgqrt ((x1 - (AirportX
AirportX (PATHS

+(yl - (AirportY
AirportY (PATHS

dbest)

i;

dtest;

PATH
i+1)
PATH
i+1)

A

—~ e~~~

S(i)) +
))/2)"2
S(i)) +
))/2)72)
t
t

t

:,2)]; %Bump Right

fliplr(I)]; %Bump Left

ice, = Links,

temp,

okay] Bump (ibest,
AirportDat, oldprice,

PATHS,
scenario);

NEWPATH;
price;
nfail + 1;

nsuccess + 1;

> 100)

'LineWidth',
%$d is %f',

THS), AirportY(PATHS), 'r-', 4)

ost from Airport %d to Airport
eg, iend, price))

0)

actor

86

function [NEWPATH, price, okay] = Bump(ibest, Links, PATHS,
AirportDat, ...
oldprice, temp, scenario)

shape = size(Links);

for j = 1l:shape (1)
for 7 = 1:3
jij = 33 + 25
if (Links(j, jj) == PATHS (ibest)
&& Links(j,jjj) == PATHS (ibest+1))
NEWPATH = [PATHS(l:ibest), Links(j,jj+1),
PATHS (ibest+1l:end)];
for ii = length(NEWPATH) - 2 : -1 : 1
if NEWPATH (ii) == NEWPATH(ii+2)
if ii+3 <= length (NEWPATH)
NEWPATH = [NEWPATH(1l:ii),
NEWPATH (1ii+3:end)];

ii = ii - 1;
else
NEWPATH = [NEWPATH(1:ii)];
break
end $if
end
end
price = costfun (NEWPATH, AirportDat, scenario);
okay = metrop(price, temp, oldprice);
return
end $if

end $for jj
end %for j

% by default, return input path
NEWPATH = PATHS;

price = costfun (NEWPATH, AirportDat, scenario);
okay = false;
function [cost] = costfun(NEWPATH, AirportDat, scenario)

AirportX = AirportDat (
AirportY¥ = AirportDat (
AirportE = AirportDat (
AirportH = AirportDat (:
(
(
(

~.

o~

$Airport Elevation (nmi)
%$Hospital Close By (true/false)
%$Lake/Natural Feature

%$Length of Runway (nmi)

$In Uganda? (true/false)

AirportN = AirportDat
AirportL = AirportDat
AirportU = AirportDat

~.

~.

O U W
~e ~

N N N O~ N

~.

%$Establish an array of coefficients to be used in the "cost"
$function. Order of array is: Right Turn, Left Turn, Elevation,
%$Hospital Proximity, Natural Features, Runway Length

cost = 0;

$Establish a baseline value (in this case the average of the
$maximum latitudinal and longitudinal distance). This will be

87

$used in the penalty function.

MaxY = max (AirportY) + (-1*min (AirportY)); $Maximum Y dist
MaxX = max (AirportX) + (-1*min (AirportX)); $Maximum X dist
AvgD = (MaxY+MaxX) / 2; $Average Dist
Penalty = AvgD * (2/10); $Penalty value
for i = 1l:length(NEWPATH) - 1
cost = cost + sgrt(((AirportX (NEWPATH(i)) -
AirportX (NEWPATH (i+1))) ~ 2) +
(AirportY (NEWPATH (1)) -
AirportY (NEWPATH (i+1))) ~ 2);
end S$for
if scenario == 1 $Penalty for Elevation Constriction
for i = 2 : length(NEWPATH) - 1
if AirportE(NEWPATH(i)) > 0.82
cost = cost + Penalty;
end %$if Elevation
end S$for 1
elseif scenario == $Reward for Hospital
for i = 2 : length(NEWPATH)
if AirportH(NEWPATH(i)) == 1 && AirportU(NEWPATH(i)) == O
cost = cost - Penalty;

end %if Hospital, no Uganda
end $for

elseif scenario == $Nat'l Parks Constriction
for i = 2 : length(NEWPATH) - 1
if AirportN(NEWPATH(i)) == 1
cost = cost + Penalty;

end $if Natural Features
end S$for

elseif scenario == 4 %$Climb Constriction
for i = 1 : length(NEWPATH) - 1
if 1/ ((AirportE(NEWPATH(i))) / (AirportE (NEWPATH(i+1))))
>= 1.2
cost = cost + Penalty;

end %$if climb rate
end $for

elseif scenario == $Penalty for Runway Length
for i = 2 : length(NEWPATH) - 1
if (AirportL (NEWPATH(i))) < 0.82
cost = cost + Penalty;

end %if runway length
end %for

elseif scenario == $Penalty for left turn
for i = 1 : length(NEWPATH) - 1
if (AirportX (NEWPATH (1)) * AlrportY (NEWPATH(i+1))) —...
(AirportX (NEWPATH (i+1)) * AirportY (NEWPATH(i))) < O
cost = cost + Penalty;

end %$if left turn
end S$for

88

cost;

end

function [okay] = metrop(price, temp,
pd = price - oldprice;

if pd < 0

okay = true;

elseif rand(1l) < exp(-pd/temp)
okay = true;

else
okay = false;

end

oldprice)

89

Appendix B2: Method Test Code

$Test to see how different Delaunay and Dijkstra are

%$Feed in airport locations to MATLAB. Points are distance in nmi
$from the origin, located at 33 degrees East (longitude, X) and
%$the equator (latitude, Y).

clc;
clf;
clear;

$Import the data
DataSet = xlsread('Data.xls');

$Set up desired airports
AirportX = DataSet(1:33, 10);
AirportY = DataSet(1:33, 5);

$Create ending point based on number of airports
num = length (AirportX);

%$Set up Pairs.
Pairs = [1;
a = l:length(AirportX);
b l:length(AirportY);
for 1 = 1:num
for j = l:num
Pairs = [Pairs; a(i), b(3j)]1;
end
end

%Create array of airport coordinates
V = [AirportX,AirportY];

$CALCULATE THE COST OF EUCLIDIAN DISTANCE

$Establish starting and ending cities
EStart = Pairs(:,1);
EEnd Pairs(:,2);

%$Calculate the distance in between each city

EE = [];
for j = 1l:length(Pairs)
ee = sqgrt((AirportX(EStart(j)) - AirportX(EEnd(3j)))"2 +
(AirportY (EStart (j)) - AirportY(EEnd(3j)))"2);
EE = [EE, ee];
end

%$Sort lengths so the longest link is at the end

EE = EE';
Ee = [Pairs, EE];
E3 = sortrows(Ee, 3);

$Perform calculation, removing the longest link with each
%iteration
numpairs = (length(Pairs) - 1) /2;

90

Dst 1;

[

LLngh = [];

for i = l:numpairs

i
[costs,paths] = dijkstra(V,E3);
if (max(isinf (costs)) > 0)
break

end $ if
Total = sum(costs)/2;
total = sum(Total');
Link = E3(end, end);
LLngh = [LLngh, Link];
Dst = [Dst, totall;
E3 = E3(l:end-2, :);

end

% end

%$CALCULATE THE COST OF DELAUNAY
I = delaunay(AirportX, AirportY);
J =1I(:,[231]); E = [I(:) J(:)];

E

[E; fliplr(E)];
DelDst = [];
[costsD,pathsD] = dijkstra(V,E);

for ii = l:length(costsD)
for jj = l:length(costsD)

if costsD(ii, jj) == Inf;
costsD(ii, jj) = 0;
else
costsD(ii, jj) == costsD(ii, Fj);
end %$if
DelDst = [DelDst; costsD(ii, j3j)1;

DTotal = sum(DelDst)/2;
Dtotal = sum(DTotal')

% DelDst = [DelDst, Dtotall;
% DelTot = sum(DelDst) /2

hold on

plot (LLngh, Dst)

plot (LLngh, Dtotal*ones(size(LLngh)), '-r'")
xlabel ('Link Length'")
ylabel ('Total Distance Traveled')
title('Which is better?'")
legend('Euclidian Distance', 'Delaunay')

91

	Optimum Path Planning for an Impaired Aircraft
	Recommended Citation

	Microsoft Word - 399102-convertdoc.input.387223.vqG6l.docx

