
Syracuse University Syracuse University

SURFACE SURFACE

Syracuse University Honors Program Capstone
Projects

Syracuse University Honors Program Capstone
Projects

Spring 5-1-2014

Optimum Path Planning for an Impaired Aircraft Optimum Path Planning for an Impaired Aircraft

Suzannah Bailey

Follow this and additional works at: https://surface.syr.edu/honors_capstone

 Part of the Navigation, Guidance, Control and Dynamics Commons

Recommended Citation Recommended Citation
Bailey, Suzannah, "Optimum Path Planning for an Impaired Aircraft" (2014). Syracuse University Honors
Program Capstone Projects. 753.
https://surface.syr.edu/honors_capstone/753

This Honors Capstone Project is brought to you for free and open access by the Syracuse University Honors Program
Capstone Projects at SURFACE. It has been accepted for inclusion in Syracuse University Honors Program Capstone
Projects by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/honors_capstone
https://surface.syr.edu/honors_capstone
https://surface.syr.edu/honors_capstones
https://surface.syr.edu/honors_capstones
https://surface.syr.edu/honors_capstone?utm_source=surface.syr.edu%2Fhonors_capstone%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/226?utm_source=surface.syr.edu%2Fhonors_capstone%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/honors_capstone/753?utm_source=surface.syr.edu%2Fhonors_capstone%2F753&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Optimum Path Planning for an

Impaired Aircraft

A Capstone Project Submitted in Partial Fulfillment of the

Requirements of the Renee Crown University Honors Program at

Syracuse University

Suzannah Bailey

Candidate for BS and BA Degrees

and Renee Crown University Honors

May 2014

Honors Capstone Project in Aerospace Engineering

Capstone Project Advisor:

Professor John F. Dannenhoffer, III

Capstone Project Reader:

Professor Melissa Green

Honors Director:

 Stephen Kuusisto, Director

Date: 23 April 2014

 1

Abstract

 Proportionally speaking, it is safer to travel by plane than any other

form of transportation. However, in some parts of the world such as Africa,

the lack of updated aircraft, instability within the region, and inexperience of

flight crews contribute to a higher rate of aircraft incidents and accidents.

This capstone combines elements from aerospace engineering, as well as

international relations to create a program to mitigate these risks.

 This new algorithm, the Bailey Algorithm, is very different from the

commonly used Dijkstra Algorithm. Unlike Dijkstra, the Bailey Algorithm not

only incorporates the distance traveled between cities, but it also applies

costs at airports visited along the way. To effectively generate the best

possible path, the Bailey Algorithm combines the Dijkstra Algorithm with an

optimization method called Simulated Annealing.

 To show the effectiveness and variety of the Bailey Algorithm, several

scenarios were created, based on real incidents. These scenarios were then

applied in a 600 mi2 area in East Africa. Selecting this region allowed for

variation in topography, and therefore more constraints to be used in

defining scenarios.

To account for a variation of possible impairments, some scenarios

dealt with mechanical malfunctions, such as one where cabin pressurization

becomes a problem, restricting the plane from flying above 5,000 feet. Other

scenarios depend on the way the plane interacts with the environment. For

example, in one scenario, there is a leak of toxic chemicals, which means the

plane cannot fly over National Parks or other protected areas.

 Although this program was only exercised on a small number of

airports in East Africa, the Bailey Algorithm is able to be modified for any

region of airports around the globe. Due to scenarios being created that

involve mechanical malfunctions, environmental impacts, and passenger

health, the Bailey Algorithm has shown that it is applicable in a variety of

situations. In addition, it is easily adaptable to more than the seven scenarios

considered.

 2

Table of Contents

Abstract .. 1

Table of Contents... 2

Executive Summary .. 4

Acknowledgements .. 7

Chapter 1: Background Information .. 8
Introduction and Preliminary Work ... 8
Runways ... 11
Plane Information ... 14
Data Preparation ... 15
Scenarios .. 18

Chapter 2: Existing Path Planning Algorithms.. 26
Introduction .. 26
The A* Algorithm ... 27
The Dijkstra Algorithm ... 29

Chapter 3: The Bailey Algorithm ... 30
Introduction .. 30
Exploring the Bailey Algorithm .. 32

Chapter 4: Demonstration of the Bailey Algorithm 44
Overview .. 44
Scenario 1 ... 45
Scenario 2 ... 49
Scenario 3 ... 52
Scenario 4 ... 55
Scenario 5 ... 59
Scenario 6 ... 62

Chapter 5: Conclusions .. 65
Works for Any Arrangement of Cities .. 66
Simulated Annealing is a Robust Optimization Method 70
Penalty Value is Acceptable ... 73

Chapter 6: Future Work ... 76

Sources Cited and Consulted ... 78

Appendix A—Excel Spreadsheets .. 79
Appendix A1: Runway Information .. 79
Appendix A2: Complete Data .. 80
Appendix A3: Constraints ... 81
Appendix A4: Conclusion Supporting Tables .. 82

Random City Information .. 82
Simulated Annealing Robust Test (Scenario 1) .. 82
Simulated Annealing Robust Test (Scenario 5) .. 83

 3

Appendix B—MATLAB Code .. 84
Appendix B1: The Bailey Algorithm ... 84
Appendix B2: Method Test Code .. 90

 4

Executive Summary

 As an aerospace engineer and international relations dual major, it

was important for me to pick a capstone that combined elements from both

disciplines. Under the advisement and guidance of Prof. John F.

Dannenhoffer, III this was accomplished. This capstone, entitled “Optimal

Path Planning for an Impaired Aircraft,” created a program to generate

emergency action plans that would allow an aircrew to mitigate risks

associated with potential impairments.

 This capstone began in Spring 2013 with the official proposal. The

objective was to create a new path-planning algorithm that, given a specific

scenario, could plot a path to safety. In an effort to make sure the capstone

stayed on track, weekly meetings were held with Dr. Dannenhoffer. Before

each meeting, a summary was sent detailing the work that had been done

since the last meeting. The capstone continued up through the Spring 2014

semester. At this point, it was turned into a presentable paper with the help

of Professor Melissa Green, as the Reader.

This new algorithm, the Bailey Algorithm, is a significant extension of

the commonly used Dijkstra Algorithm. The Dijkstra algorithm is one that is

likely found in a standard GPS unit. It simply finds the shortest path from the

origin to the destination.

Unlike Dijkstra, the Bailey Algorithm not only incorporates the

distance traveled between cities, but it also applies costs at airports visited

along the way. This is revolutionary because this means the Bailey Algorithm

 5

takes into consideration the middle steps taken to get to the destination. To

effectively generate the best possible path, the Bailey Algorithm combines

the Dijkstra Algorithm with an optimization method called Simulated

Annealing. Simulated Annealing is an approach to finding the minimum value

of a given function. Applying it to the Bailey Algorithm, Simulated Annealing

takes the initial and final airports and finds the path that has the lowest cost.

This cost value is a combination of the distance traveled as well as the cost

associated with visiting each city.

 To show the effectiveness and broad applicability of the Bailey

Algorithm, several scenarios were created, based on real incidents. Over a

dozen aircraft incidents and accidents were surveyed to track down common

impairments that could occur. From these, the seven most common were

turned into scenarios. These scenarios were then applied in a 600 mi2 area in

East Africa. Selecting this region allowed for variation in topography, and

therefore more constraints to be used in defining scenarios.

To account for a variation of possible impairments, some scenarios

dealt with mechanical malfunctions, such as one where cabin pressurization

becomes a problem, restricting the plane from flying above 5,000 feet. When

this scenario was run, the Bailey Algorithm successfully generated the

shortest path, while avoiding airports along the way that violated the

elevation constraint.

Another scenario depends on the way the plane interacts with the

environment. For example, in one scenario, there is a leak of toxic chemicals,

 6

which means the plane cannot fly over National Parks or other protected

areas. Once again, the Bailey Algorithm was able to find the optimum path

while respecting the constraints.

A third scenario concerns with an ill passenger. Due to conflicts in the

region, the passenger is unable to fly over the airspace of a specific country.

However, they also need a hospital. The Bailey Algorithm was able to

effectively find a path to take that finds hospitals while also avoiding Uganda,

the forbidden country.

 Although this program was only exercised on a small number of

airports in East Africa, this report will demonstrate that the Bailey Algorithm

is able to be modified for any region of airports around the globe. Due to

scenarios being created that involve mechanical malfunctions, environmental

impacts, and passenger health, the Bailey Algorithm has shown that it is

applicable in a variety of situations. In addition, it is easily adaptable to more

than the seven scenarios considered.

 7

Acknowledgements

My sincerest thanks go out to Professor John F. Dannenhoffer, III.

Without his guidance, support, and patience this project would have never

taken flight. Thank you for knowing when to give me a push in the right

direction, and when to sit back and let me make mistakes. Thank you also to

Professor Melissa Green for taking the time to read my many drafts and

respond to my numerous questions. This capstone reads much better due to

your comments. Finally, thank you to my parents, for trying to understand

what I was doing and constantly offering words of encouragement.

 8

Chapter 1: Background Information

Introduction and Preliminary Work

This Capstone project, entitled “Optimum Path Planning for an

Impaired Aircraft,” encompasses both aerospace engineering and

international relations. The goal was to create a path-planning algorithm that

could take a specific impairment of an aircraft and generate an optimal path

to safety.

In an effort to make the scope of the capstone manageable, airports

needed to be selected in a relatively small region. To include an international

aspect, this region was chosen to be in Africa. To pick a particular part of

Africa, the prevalence of airports and airstrips was considered. In Figure 1,

below, the yellow planes indicate larger airports, defined as having millions

of visitors travelling through annually on major airlines.1 The blue airplanes

represent medium-size airports that have regular regional traffic.2

1 “Airports in Africa.” Megginson Technologies, Ltd. Updated 2009.
2 Ibid.

 9

Figure 1: Airports in Africa

The East Africa region was chosen because it offered variety in terms

of mountains, large bodies of water, forests, and rebel activity. This variety

would allow for very different scenarios to be used by the Bailey Algorithm

to plot a path. Knowing this, the region shown in Figure 2 was selected.3 In

this figure, there are small pink planes as well. These planes represent

airstrips that do not have regular service, the smallest of the three levels

depicted.4 This 620 square mile region included airports in Kenya, Uganda,

Tanzania, Rwanda, Burundi, and the Democratic Republic of Congo.

3 Ibid.
4 Ibid.

 10

Figure 2: East African Airports

 Having established the region and goal of the algorithm, it was time to

research air accidents and incidents. After surveying dozens of incidents, two

main trends became apparent:

• Common Plane: The DC-10 was involved in many air disasters. This

can be attributed to its popularity and long lifespan.

• Common Causes: The three most common issues associated with

disasters were: decompression or loss of pressure due to puncture of

fuselage, loss of engine(s) or engine power, and fuel leaks.

The following sections in this chapter will explore the significance of

runways, the importance of plane selection, the process of preparing the raw

data, and the listing of the scenarios.

 11

Runways

 Before the Bailey Algorithm could be written, certain data needed to

be collected. This included the location, elevation, direction, length, and

surface of all the runways in the region. This information would be crucial

when it came to selecting the “best” runway for an airplane to land safely on.

 In an effort to have a large variety of airports, 30 different runways

were chosen. A sample of the information collected is shown below. A full

copy of the chart can be found in Appendix A.

Table 1: Runway Data

The first column is the airport name, followed by the code used to

address it. The third column is the airport location. The next four columns

are the elevation of the runway. Some of the information provided was in feet

and some was in meters, meaning a conversion was necessary.5 To remain

consistent with typical aerospace units, the units of nautical miles were

chosen. The column after the elevation shows the coordinates of the runway.

The next three columns correspond to the length of the runway, in feet,

nautical miles, and meters. The final columns are the surface and the

orientation of the runway.

In terms of surface, there was a range of options. Some were paved,

some were ice, and some were unpaved. The surface of the runways was

5 “Airports in Kenya.” Air Broker Center International AB. 2009.

 12

necessary to know because it would affect the ground roll distance of the

plane after landing. Based on the runway length, certain runways would not

be possible for the plane to land on because there would not be enough

space.

While recording all this information, the orientation of the runway

was also noted. The orientation corresponds to the numbers printed on the

ends of the runway, as shown in Figure 3:6

Figure 3: Runway Orientation

The numbers shown are the magnetic compass heading of the

runway, ranging from 0 to 360 degrees, divided by 10 and rounded to the

nearest integer. Using this convention, 0 degrees corresponds to due North.

Each runway will have two numbers depending on which side of the runway

the plane is entering or leaving. These numbers will always be 18 off from

6 “Logan Plans to Add 600-Foot Runway Safety Area on Harbor Deck.” Boston

Globe, March 18, 2009.

 13

each other, since they are 180 degrees apart.7 Figure 4, below, shows this

naming convention:8

Figure 4: Runway Orientation

7 John Dannenhoffer, III, “Capstone Meeting: January 23.” (Capstone Meeting,

MAE 499: Honors Capstone Project, Syracuse, NY January 23, 2014).
8 “Model Railroad Layouts: Airport Runways and Accessories.” Bakatronics

LLC, February 15, 2014.

 14

Plane Information

 The Bailey Algorithm is not dependent on one specific plane. Instead,

it uses certain parameters such as the take off distance and cruise altitude to

create viable scenarios. In Chapter 6, more specific aerodynamic

characteristics will be discussed. However, in order for this algorithm to be

as realistic as possible, a specific plane was chosen. This would allow

characteristics of the plane to be used, such as stability, weight, fuel tank

capacity and other variables that impact performance.

 Knowing the region that was chosen, it was assumed that an older,

more reliable and common plane would be more realistic. For this reason,

the Cessna 172/182, Piper Cherokee, and DC-3 were all considered as the

possible plane for the project.

 There is often missionary work in the East African region selected.

Based on research completed, the DC-3 is a plane that is commonly used for

such work. Selecting the DC-3 includes additional benefits for the Bailey

Algorithm as well. In the first place, the DC-3 requires a longer ground roll at

landing than the Cessna or Piper. This will allow a scenario to be created that

uses runway length as a constraint. Secondly, the DC-3 was built with an

unpressurized cabin.9 This allows a scenario to be created that includes an

altitude restriction.

9 “DC-3: The Genesis of a Legend.” DC-3/Dakota Historical Society, Inc. March

26, 2014.

 15

Data Preparation

Before the program can be run, the airport locations, as coordinate

points, are imported from an Excel spreadsheet into MATLAB. The locations

in the Excel sheet were obtained from researching airports and runways in

the East African region. In the Excel sheet, the latitude and longitude were

converted into coordinate points. To do this, the following conversion factors

were used:

• There are approximately 69 miles between each degree of latitude. At

the Equator, which is where most of the airports are located, the

distance between each line of longitude is also 69 miles. As the lines of

longitude approach the poles, the distance between each degree

shrinks to zero.

• There are 60 minutes within each degree. Using the 69 miles as a

base, this means each minute is approximately 1.15 miles apart.

• There are 60 seconds in each minute. Converting this into miles

results in 0.019 miles per second.

Once these values were known, it was easy to convert the latitude and

longitude into coordinate values. The coordinate values of the airports were

found from summing the degrees, minutes, and seconds for each latitude and

longitude measurement. In order to convert into nautical miles, the preferred

unit for aerospace application, the sum was divided by 1.15. For simplicity, it

was determined that the equator and 33° East should be the origin of the

 16

graph. Once this was known, the airports could be graphed. Figure 5 shows

the locations of the airports.

Figure 5: Airport Locations

In addition to graphing the airports, certain features were noted and

graphed as well. In this case, hospitals, Lake Victoria, and Mountains were

the notable features. They can be seen in Figure 6 below:

 17

Figure 6: Notable Features

 Knowing the configuration of airports and points of interest, seven

scenarios were created. They are described in the section below.

 18

Scenarios

1. While flying over an area inhabited by rebel forces, a barrage of

bullets punctured the fuselage. Even thought the DC-3 was

unpressurized, with an operating altitude of 10,000 feet, this caused

some passengers to suffer from hypoxia (insufficient oxygen). In order

to accommodate these passengers, the plane is unable to fly above

5,000 feet.

In this scenario, the penalty would be associated with cities, or nodes,

that have an altitude greater than 5,000 feet. While in reality, planes can fly

unpressurized up to an altitude of 12,500 feet, some individuals start to

experience health problems due to lack of oxygen at altitudes as low as 8,000

feet.

 In this particular case, the region selected is heavily mountainous.

Some of the selected runways are at extreme altitudes that would prevent an

impaired plane from landing, making this scenario realistic.

 When flying, occasionally planes are restricted to specific altitudes.

This scenario could be easily modified to account for that variation as well.

For example, due to government regulations, a plane cannot fly lower than Z

feet. This variability shows the importance of selecting an altitude restriction

as a scenario.

 In the MATLAB code, this scenario uses the X and Y locations of the

airports as well as the elevation of each airport. Since this particular scenario

 19

prohibits the plane from passing an airport that exceeds an elevation of

5,000 feet, it was also important to convert the elevation into nautical miles

to remain consistent. Upon completing this conversion, it was apparent that

the restriction prohibited the path from visiting an airport with an elevation

over 0.82 nautical miles.

2. One of the flight attendants alerts the pilots that there is a passenger

in desperate need of immediate medical attention. She is not sure

what is wrong, but knows that the passenger needs the best medical

facility that can be reached ASAP. In order to help the passenger, the

pilot is given a list of high-level hospitals. S/he must select an airport

close to one of these. However, the passenger is a former rebel, and

therefore not allowed in Ugandan airspace. The pilot must land at the

closest runway without crossing into Uganda.

 This scenario takes two constraints into consideration: location of

hospitals and what country the plane is flying in. Unlike most constraints, the

hospital constraint would provide a reward instead of a penalty. In a scenario

that has a penalty, the Bailey Algorithm adds the penalty to the cost.

However, for this scenario, the reward means the value for the penalty is

instead subtracted, resulting in a lower cost.

 Additionally, there is the cost associated with restricted airspace. Like

the elevation restriction in the previous scenario, there is a cost penalty

 20

associated with visiting a node within this restricted space. Since there are

“no fly zones” set up around the world, this is a viable scenario. By specifying

two constraints, the scenario is slightly more challenging to fulfill. This is a

reflection of the complex problems facing international travel today.

 In this particular scenario, if the airport was not in Uganda AND there

was a hospital close by, then the penalty value was subtracted from the cost.

To indicate whether or not an airport was in Uganda, logical values were

used. When the data was collected, a value of “1” indicated that yes, the

airport was in Uganda. A “0” indicated that it was not. This same convention

was used to identify if there was a hospital nearby.

3. Unfortunately, the tubes containing the hydraulic fluid were not

replaced when they should have been, and they sprung a large leak of

toxic Skydrol hydraulic fluid. Unfortunately, this batch contained

maximum levels of organophosphates, which are, according to the

EPA, “highly acutely toxic to bees, wildlife, and humans.”10 In order to

protect the environment, the plane cannot fly over national parks or

protected areas.

Forests, bodies of water, and national parks are essential for the

survival of many groups of people. Humans need food, water, and shelter to

10 U.S. Department of Health and Human Services, “Toxicological Profile for

Hydraulic Fluids,” September 1997.

 21

survive. However, toxic chemicals used with planes can cause serious

devastation when leaked.

 By leaking the toxic Skydrol fuel, real hydraulic fluid still used today,

airlines can have a devastating effect on the environment, reflecting poorly

on the airlines. Coupling this poor public image with the fines associated with

polluting a national park and the airlines would want to be able to avoid

protected areas. For this scenario, Lake Victoria and National Parks were

chosen as the natural features that were considered “protected areas.”

 Like Scenario 2, this scenario depended on logical values. Airports

located in or very close to National Parks or Lake Victoria were assigned a

value of “1,” in the Excel sheet. At this time, there are specific entry columns

for specific natural features. This would show that the program could avoid

the protected areas.

4. A flock of Goliath Herons sprung up suddenly. The pilot had enough

time to react so that only the port engine was damaged.

Unfortunately, it failed completely. Since the rate of climb for an

aircraft is dependent on the difference between power available and

power required, losing an engine would lower the climbing abilities of

an aircraft, resulting in a lowered Rate of Climb. For simplicity, it is

assumed that the plane can only climb to an airport that is at a

maximum altitude 20% higher than the airport just visited.

 22

 Assuming that the DC-3 was not in the best shape, and therefore the

reported Rate of Climb might no longer be applicable, it was assumed that

the aircraft could only travel to an airport that was at an elevation less than

20% higher than the current airport. For simplicity’s sake, this was

independent of the distance between airports.

 Over 40% of all bird strikes can result in engine damage.11 This can

constrain the ability of a plane to climb. This particular scenario could be

modified for other mechanical problems that would also impact the rate of

climb, such as thrust available or elevator motion.

 Since the important quantity for this scenario is elevation, it was

crucial to input the elevation for each corresponding airport. To calculate the

cost associated with an impaired Rate of Climb, the following equation was

used. If the value returned was greater than 1.2, then the constraint was

violated. In the equation, “i” represents the current airport, and “i+1” is the

next airport in the sequence.

������� �	
����� �� � 1�

������� �	
����� ���

5. Flying over Lake Victoria, the pilot notices she is almost out of fuel.

She remembers asking for 600 gallons of fuel, so she is originally

confused. However, she then remembers that it was a Tanzanian who

refueled the plane. The Tanzanian accidentally did not look at the

11 Roger Nicholson and William Reed, “Strategies for Prevention of Bird-

Strike Events,” Aero Quarterly, Quarter 3: 2011, 19.

 23

units and instead put in 600 liters of fuel (~158 gallons). With no fuel,

the plane is effectively turned into a glider. The pilot knows she has

enough to make it to her destination, but she only wants to fly by

runways of at least 5000 feet, enabling her to land safely at any

airport along her way if necessary.

 Without a consistent international unit system, it is entirely possible

for mistakes of this magnitude to be made. However, just because the plane is

out of fuel does not mean that a crash is inevitable. It is theoretically possible

to glide a plane to a safe landing. To model this, the Bailey Algorithm

assumed a runway length of 5,000 feet was the minimum distance for a safe

landing. When coming in without power, there is no reverse thrust available

to slow the plane. This means a longer runway distance is required.

 Runway length is a serious concern for two reasons. First of all, when

landing, the plane needs enough distance to slow down safely to protect the

passengers. Second, once the plane lands at an airport, it does not sit there

forever, it has to be able to take back off. In order to achieve takeoff, the

plane must generate enough thrust to overcome the weight of the plane. The

thrust is increased as the speed increases. In order for this to happen, the

plane needs a long enough runway to build up enough speed.

 This same scenario could be used when there is a complete loss of

power. The cause for the impairment is not what matters, but how the plane

reacts. As with scenario 1, the runway length was converted into nautical

 24

miles and the imported into the MATLAB code. Unlike scenario 1, where

there was a penalty for going over the constraint, this scenario has a penalty

for going under the constraint. Since the length was chosen to be 5,000 feet,

this translates to 0.82 nautical miles as the minimum runway length

allowable.

6. While flying a special New Year’s flight, a rogue firework exploded

near the rudder of the plane, severing one of the 2 connections.

Shrapnel from the firework got wedged in between the fuselage and

the rudder, locking it into a right turn position, and overriding the

safety mechanisms in place to prevent such a thing from occurring.

With the rudder locked the plane is not capable of making left turns.

 The Bailey algorithm looks at the node being visited and takes the

cross product of the link used to get there and the one leaving. If the cross

product is negative, the turn is considered “left,” and “right” if the cross

product is positive. By using the cross product, it does not matter where the

plane started. Since the cross product will determine direction, it will work

no matter if the plane is going from Airport 5 to Airport 25, or the other way

around.

 Initially, the thought was that links could be designated as either a

“left” or “right” turn. Instead, it was decided that using cross products was

more efficient. In this particular scenario, left turns are prohibited. However,

 25

the program could be easily modified to prevent right turns or all turns, only

favoring straight paths. Furthermore, this scenario counts all left turns as

bad. In future versions, the code could be modified to allow slight turns, to

see how the cost is affected.

7. In a rush to load the plane quickly, the ground crew neglected to

properly tie down the cargo. As a result, during takeoff, items shifted

moving the center of gravity to the aft of the plane, making the center

of gravity aft of the stick-fixed neutral point. This leads to static

instability, with the nose inclined above the fuselage, rotating the

aircraft away from the equilibrium point.

 Unfortunately, this is a serious unrecoverable issue. When the plane is

stable, it has a center of gravity either forward of, or located at the stick fixed

neutral point. However, by neglecting to properly secure cargo, the cargo can

shift, therefore shifting the center of gravity.

 When the center of gravity is behind the stick fixed neutral point, the

plane is statically unstable. This means that the plane becomes too sensitive

to handling by a pilot. Tragically, this scenario often leads to fatal

consequences.

 As this capstone progressed, it was discovered that to account for this

scenario would take more time and resources than were available. For this

reason, this scenario would be one to be considered as future work.

 26

Chapter 2: Existing Path Planning Algorithms

Introduction

 Path planning algorithms are more prevalent than most people would

realize. They exist in mapping software and GPS units, but the concept

behind them exists in many more aspects of life. For example, a first-year

student will “map” out their college courses. Like a GPS unit, this takes into

consideration where you started and where you want to end up. Think of

each required class as a “node.” Once a student completes a class, it is on to

the next one. This is similar to how GPS units and other mapping programs

work.

 How the program determines which “node” to go to on the way to the

final destination is where a specific algorithm is used. In the next sections,

two common mapping algorithms, A* and Dijkstra will be explained. Both of

these algorithms are commonly used for mapping, but both have drawbacks

as well.

 27

The A* Algorithm

 The first mapping algorithm that will be discussed is the A*

(pronounced “A-Star”) algorithm. This algorithm operates in a 2-dimensional

field. The basic idea of the program is that it takes a “start” location and an

“end” location and fills in a grid between the two. The grid essentially

consists of vertices (nodes), including the start and end “node,” that make up

all possible locations for a path to get from the start to the end.

Once the start location is known, the remaining “nodes” on the grid

are split into “possible” or “impossible” nodes. In very simple terms, a node is

“possible” if it is connected to the start node. From the list of “possible”

nodes, the cost is calculated.

The goal of the A* algorithm is to find the path with the lowest cost.

With the A* algorithm, the cost is calculated using a very basic formula: F = G

+ H.12 In this case, the “G” term is the cost associated with moving from the

current node to the next node.13 This can be different based on the specific

movement being made, direction traveled, or any other factor.

The “H” term is what defines the A* algorithm. The “H” term is a value

associated with moving from the current square to the final square.14

Essentially, this value is a guess, since the program does not know what path

will be chosen. The “H” stands for “heuristic.” A heuristic is a method used to

12 Patrick Lester, “A* Pathfinding for Beginners,” Policy Almanac, July 18,

2005.
13 Ibid.
14 Ibid.

 28

improve problem solving, such as finding the best path. The value of the

heuristic can change as the path is developed. For example, if there is a large

blockage between the current node and the final destination, the heuristic

might be very large.

Once the next node is chosen, the process of calculating the cost is

repeated until the path is complete. Since the “G” value tends to remain

constant, the value of the heuristic is the important value in the A* algorithm.

This means that the heuristic can have an impact on what the final path is.

A high heuristic means short computational time, but not necessarily

the shortest path.15 If the heuristic has a value of zero, then the A* algorithm

has essentially become the next algorithm mentioned, the Dijkstra algorithm.

15 Ibid.

 29

The Dijkstra Algorithm

 As mentioned in the previous section, the Dijkstra algorithm is

essentially the A* algorithm with a heuristic value of zero. In other words,

Dijkstra simply looks for the lowest cost to get from one starting point to

another “node.”16

 When Dijkstra starts, it recognizes a start and an end node. Assigning

a value of zero to the current node (starting node), it assigns a value of

infinity to all other nodes. From the starting node, Dijkstra calculates the cost

to each available node as the distance to the next node added to the current

node’s value. If the new value for the unvisited node is less than the current

value of that node, then the value is replaced to the lesser one and that node

becomes the next one in the path. For example, if the start node is 0, and the

distance to the Node 2 is 4, then Node 2 now has a value of 4, not infinity.

 At each node, all possible connection costs are calculated. Once it

calculates the shortest distance to the next node, it accepts the node and

repeats the process.

 This penalty value associated with a node is what sets the “Bailey”

algorithm apart. As will be explained in the next section, this algorithm is

able to assign a penalty function that accounts for the way in which the plane

arrived at the node, something no other path planning algorithm has been

able to do.

16 “Dijkstra’s Shortest Path Algorithm,” Cornell University, accessed April 21,

2014.

 30

Chapter 3: The Bailey Algorithm

Introduction

 The Bailey algorithm is different from any other existing mapping

program. Not only does it look at how one got to a specific node, but it also

looks ahead to see where one is going. This is the biggest difference from the

Dijkstra Algorithm, and what truly sets the Bailey Algorithm apart.

 The Bailey algorithm does incorporate Dijkstra, as a method to

establish an initial cost. Like Dijkstra, initially the cost for each link is

calculated based on the distance between the nodes. However, based on a

certain scenario, a specific penalty is applied to certain nodes, allowing the

Bailey Algorithm to reject certain nodes that are too expensive to visit. By

doing this, the Bailey algorithm finds the best path, not necessarily the

shortest path.

 Another way the Bailey algorithm is different from Dijkstra is that the

Bailey algorithm incorporates Simulated Annealing as the method to

calculate the best path. Simulated Annealing will be explained in the

subsequent sections. Briefly summarized, Simulated Annealing is an

optimization method used to find the “best” possible solution. What makes

the Simulated Annealing program unique is that it allows solutions that

initially do not appear to be the best option to be considered. The Bailey

Algorithm uses a function to evaluate whether the new path is “not too much

 31

worse.” If it fulfills this requirement, then the new path will be accepted as a

possible solution.

 In the rest of this chapter, a flow chart diagram explaining the Bailey

algorithm will be included and explained in detail. A complete copy of the

code is contained in Appendix B1.

Exploring the Bailey Algorithm

The flow chart in Figure 7

purple boxes correspond to built

of the portion of the algorithm that uses Simulated Annealing is marked with

the orange box. The green

the size of the region being used, the location of the airports, and the specific

scenario being run. The red box indicates when the code is considered

complete.

Exploring the Bailey Algorithm

Figure 7: Flow Chart

flow chart in Figure 7 shows how the Bailey Algorithm works. The

purple boxes correspond to built-in MATLAB functions. For clarity, the start

of the portion of the algorithm that uses Simulated Annealing is marked with

the orange box. The green boxes indicate the values that will change based on

the size of the region being used, the location of the airports, and the specific

scenario being run. The red box indicates when the code is considered

32

shows how the Bailey Algorithm works. The

in MATLAB functions. For clarity, the start

of the portion of the algorithm that uses Simulated Annealing is marked with

boxes indicate the values that will change based on

the size of the region being used, the location of the airports, and the specific

scenario being run. The red box indicates when the code is considered

 33

Once the initial data preparation had been completed and the airports

were graphed, it was necessary to connect the airports. The links connecting

the airports are what determine the baseline “cost” to go from one airport to

another.

There are two possible methods for connecting the airport nodes: the

nearest neighbor approach, or using the built-in MATLAB function Delaunay.

The nearest neighbor method is very simple. A radius of R nautical miles is

initially decided upon. Around each node, a circle is drawn corresponding to

this radius. Any other node that falls within that circle is then connected to

the centermost node. This process is repeated for all nodes. An example is

shown below in Figure 8. This is for a radius of R = 100 nmi. Even though the

radius selected was 100 nmi, there are still some airports that are not linked

to any others.

 34

Figure 8: Nearest Neighbor Method

 The Delaunay triangulation is slightly more complicated. All of the

nodes are arranged such that a triangular shape can connect them. However,

the triangle is not arbitrary. Once three nodes have been connected by a

triangle, a circle is drawn around the points such that the three vertices of

the triangle just touch the sides of the circle, making a circumcircle.

Figure 9: Triangle and Circumcircle

 35

 Each triangle is generated in an optimal way so that the minimum

angle is maximized. Not only does this ensure that the triangles are as close

to equilateral as possible, but it also means there are no other points within

each circumcircle, making Delaunay unique.17 Delaunay repeats the iterative

triangle-making process until this condition is fulfilled.

The difference in approach between the two linking methods would

result in different paths being drawn. Using the nearest neighbor method

would require specifying a maximum distance for allowable links. This can

result in many consequences, such as unreachable nodes if the link length is

too short. A radius that is too large will allow all nodes to be linked, making

this algorithm invalid. On the other hand, using the nearest neighbor method

could shorten processing time, which is beneficial to a computer program.

To help determine which method to use, a short program entitled

“Method Test” was written. This code can be found in Appendix B2. The

Method Test code took the airport locations used in this capstone and

calculated the distance to travel along all the links. The results are shown

below in Figure 10.

17 “Delaunay Triangulation.” MathWorks Inc. 2014.

 36

Figure 10: Delaunay Compared to Nearest Neighbor

 In Figure 10, the X-axis represents the distance between the nodes in

nautical miles. The Y-axis represents the total distance traveled between all

of the links, also in nautical miles. The blue line represents the distance

traveled using the nearest neighbor method. Clearly, as the link length

increases, the total distance needed to visit all nodes decreases. The red line

corresponds to the Delaunay triangulation. Since the Delaunay triangulation

is independent of the link length, this value remains constant throughout the

experiment.

 The intersection between the two lines occurs at a total distance of

approximately 1.54 * 105 nmi. When comparing this to the range for the total

 37

distances generated from the nearest neighbor approach, it is clear that

Delaunay is less than 20% from either extreme value. This supported the

decision to use Delaunay.

Upon completion of the Delaunay links, Figure 11 was generated:

Figure 11: Delaunay Paths

 From here, it is now possible for the user to determine which airport

to “start” and “end” from. For this program, the user clicks on the desired

start and end nodes, as seen in Figure 12. The starting airport is designated

with a green dot, and the red dot indicates the final airport. The title of the

graph shows which nodes are the first and final of the path.

 Initially, the cost is calculated as the same cost to run Dijkstra

the distance of each link being traveled. When this occurs, the cost is added

to the title of the graph. For the actual cost to be calculated, the user needs to

identify a particular scenario for the code to run.

scenario, the Bailey Algorithm begins

path cost is generated, the Algorithm applies

penalty remained the same for each scenario. It was based on the average of

the vertical and horizontal

penalty, then the value is added to the cost. However, if the scenario required

a reward, the cost was subtracted from the cost.

Figure 12: Start and End Node

Initially, the cost is calculated as the same cost to run Dijkstra

the distance of each link being traveled. When this occurs, the cost is added

to the title of the graph. For the actual cost to be calculated, the user needs to

identify a particular scenario for the code to run. Once the user identifies the

nario, the Bailey Algorithm begins to process the paths. Each time the

generated, the Algorithm applies a penalty value if necessary. The

penalty remained the same for each scenario. It was based on the average of

the vertical and horizontal spread of the data. If the scenario requires a

penalty, then the value is added to the cost. However, if the scenario required

a reward, the cost was subtracted from the cost.

38

Initially, the cost is calculated as the same cost to run Dijkstra. That is,

the distance of each link being traveled. When this occurs, the cost is added

to the title of the graph. For the actual cost to be calculated, the user needs to

user identifies the

to process the paths. Each time the

a penalty value if necessary. The

penalty remained the same for each scenario. It was based on the average of

If the scenario requires a

penalty, then the value is added to the cost. However, if the scenario required

 39

For this example, Scenario 1, with a penalty for exceeding a certain

elevation, will be shown. Running the same case as the example above, it is

possible to see the initial cost:

Figure 13: Initial Path

 Once the initial cost is known, it is now possible to incorporate the

Simulated Annealing into the code. Simulated Annealing is an optimization

method that is used to the “global minimum of a function.”18 In this case, the

minimum of the function is the path with the lowest cost to go from the

starting city to the ending city. Simulated Annealing was established based

on the metal annealing process.19 In the annealing process, metals are heated

and cooled repeatedly in an effort to make them more ductile, more

homogenous, and more workable. With every heating and cooling cycle, the

18 Jasbir Arora, Introduction to Optimum Design, (Boston: Elsevier, 2012),

630.
19 Ibid.

temperature used to h

Annealing works by establishing an initial

it off slowly. In other words, large changes can be made initially at the high

starting temperature. As the temperature is lowered, sm

accepted. For this example, the initial

the initial temperature is 707.

 The program

Simulated Annealing works is that it randomly selects

each iteration, a random link is randomly bumped either left or right.

14, below, shows a possible perturbation. The green arrows indicate th

is being bumped left and the orange arrows

 Once the segment has been bumped, a new path is created. This can

be seen in Figure 15

temperature used to heat the metal is lowered. Likewise, Simulated

works by establishing an initial “temperature” and then “cooling”

it off slowly. In other words, large changes can be made initially at the high

starting temperature. As the temperature is lowered, smaller changes are

For this example, the initial cost generated by Dijkstra is 707. Thus,

the initial temperature is 707.

The program runs for 1000 tries at this initial temperature.

nnealing works is that it randomly selects a link to perturb.

each iteration, a random link is randomly bumped either left or right.

shows a possible perturbation. The green arrows indicate th

is being bumped left and the orange arrows indicate a bump right.

Figure 14: Path Perturbation

Once the segment has been bumped, a new path is created. This can

Figure 15. In this case, the orange path is the new path.

40

mulated

and then “cooling”

it off slowly. In other words, large changes can be made initially at the high

aller changes are

cost generated by Dijkstra is 707. Thus,

perature. The way

a link to perturb. With

each iteration, a random link is randomly bumped either left or right. Figure

shows a possible perturbation. The green arrows indicate the path

indicate a bump right.

Once the segment has been bumped, a new path is created. This can

. In this case, the orange path is the new path.

After generating the new

recalculate the cost, it is first necessary to know the sum of the link distance.

This provides the baseline cost. Added to this is the penalty value. The

penalty is a functi

any scenario. Throughout this capstone, the penalty value was

based on the spread of the coordinate points. The

between the extremes in both the vertical and horizontal directions, and then

averaged. Once the average was known, it was then divided by

the penalty value.

depends on the specific scenario being called.

penalty each scenario is associated with:

Figure 15: New Path

After generating the new path, the cost is recalculated. In order to

recalculate the cost, it is first necessary to know the sum of the link distance.

This provides the baseline cost. Added to this is the penalty value. The

penalty is a function of area covered by the graph, it will remain constant for

Throughout this capstone, the penalty value was

based on the spread of the coordinate points. The distance was calculated

between the extremes in both the vertical and horizontal directions, and then

Once the average was known, it was then divided by

the penalty value. However, when and how often the penalty is applied

depends on the specific scenario being called. Table 2 briefly describes what

penalty each scenario is associated with:

41

path, the cost is recalculated. In order to

recalculate the cost, it is first necessary to know the sum of the link distance.

This provides the baseline cost. Added to this is the penalty value. The

ll remain constant for

Throughout this capstone, the penalty value was calculated

distance was calculated

between the extremes in both the vertical and horizontal directions, and then

Once the average was known, it was then divided by 5 to provide

However, when and how often the penalty is applied

briefly describes what

 42

Scenario Constraint Penalized

1 Elevation

2 Country Airspace, Hospital Proximity

3 Natural Features

4 Rate of Climb

5 Runway Length

6 Stick Fixed Neutral Point Location

7 Turn Direction

Table 2: Scenarios and Penalties

 Clearly, enacting each scenario between the same initial and final

cities will result in very different paths. Once the new path has been

completely generated, it is time to either accept or reject it.

 Acceptance of the path is done using the “Metrop” function. This

function is based on the one provided in Numerical Recipes in C.20 Essentially,

Metrop looks for a path cost that is “not too much worse” than the previous

path. To determine if this is true, Metrop looks at two possible equations:

�	� ���� �
� ���� � 0

����� ���
� ���� 0 � 1 �

���� !�"#�$%& !�"#�

#%'(%)*#+)%

 In these equations, the “old cost” is the cost from the previous

iteration, and the “new cost” is the cost for the current iteration. The

“temperature” is determined based on the iteration. If the cost difference is

deemed “not too much worse” then the path adjustment is accepted. After

each iteration, the number of acceptances are recorded. At the end of each of

1000 tries worth of temperatures, if there are enough accepted paths then

20 William T. Vetterling et al., Numerical Recipes in C: The Art of Scientific

Computing, (New York: Cambridge University Press, 1992), 351.

 43

the temperature is reduced by 10% and the 1000 tries are repeated for the

new temperature. This process will continue for 100 iterations of

temperature, or until there are no more accepted perturbations, whichever

comes first.

 At the end of the program, the best path will be shown, along with the

cost. Continuing the example from Scenario 1, the following graph represents

the best path to from Airport 5 to Airport 22:

Figure 16: Best Path

 Clearly, the cost has gone down, demonstrating that Simulated

Annealing works. In the next chapter, an example will be done that shows the

program can find an acceptable path, accounting for any penalties that may

occur.

 44

Chapter 4: Demonstration of the Bailey Algorithm

Overview

The Bailey Algorithm inputs the data from Excel into MATLAB so that

it can select the appropriate values for each scenario. In Table 3, an excerpt

from the Excel Sheet, it is clear to see the X and Y location of each airport

with respect to the predetermined origin. The elevation is recorded in

nautical miles. The fourth column uses logical values to designate the

presence of a hospital. A value of zero means there is not a nearby hospital,

and a value of one indicates there is a hospital close to that particular airport.

This same identification convention is used to determine whether a

particular airport is close to a natural feature. The runway length is the sixth

column. For consistency, it is also in terms of nautical miles. The final column

indicates the country the airport is in. To account for Scenario 2, this column

also uses logical values to show whether or not the airport is in Uganda.

Table 3: Constraint Variables and Values

In the following sections, each scenario will be briefly reintroduced,

followed by the specific way the scenario affects the code. A series of graphs

reflecting the path progression the scenario makes will be presented.

 45

Scenario 1

 This scenario describes an elevation constraint. A penalty is assessed

when the plane passes through an airport at an elevation above 5,000 feet. In

this particular Algorithm, mountains that are located between the nodes

were not considered, but they could be added in during future work.

 To show that the Bailey Algorithm is capable of accounting for an

elevation constraint, the user chose the start node as 4 and the final node as

29. These two particular nodes are linked through node 10 and 11, both of

which violate the constraint. By selecting these as an example, it is possible

to see the evolution from a path with violations to one that adapts.

Path Node

Start Node 4

Node of Violation 10, 11

Final Node 29

Table 4: Scenario 1

Once the user identifies the start and final nodes, the Bailey Algorithm

starts running. In Figure 17, the initial path is shown to be: 4-8-9-30-11-29.

For all scenarios, the initial cost is generated using Dijkstra’s Algorithm

within the Bailey Algorithm. However, the Bailey Algorithm generates the

first path. This means that violations can occur. Unfortunately, this violates

the constraint at both Airport 11 and Airport 29. These violations are shown

by the yellow dots.

To be able to show the intermediate steps, a “Pause” command was

inserted when this Scenario was run. By doing this, the Bailey Algorithm

paused after each graph was generated before continuing to run. This

showed each new poss

captured, like the one presented in Figure 18

19-27-24-25-15-

this shows Simulated Annealing’s approach of acc

“too much worse” before moving on.

Figure 17: Scenario 1, Initial Path

To be able to show the intermediate steps, a “Pause” command was

inserted when this Scenario was run. By doing this, the Bailey Algorithm

paused after each graph was generated before continuing to run. This

showed each new possible path slowly enough for the graphic images to be

e the one presented in Figure 18, where the path is 4

-30-29. Clearly, there are still violations occurring. However,

this shows Simulated Annealing’s approach of accepting paths that are not

“too much worse” before moving on.

46

To be able to show the intermediate steps, a “Pause” command was

inserted when this Scenario was run. By doing this, the Bailey Algorithm

paused after each graph was generated before continuing to run. This

ible path slowly enough for the graphic images to be

, where the path is 4-7-5-17-26-

29. Clearly, there are still violations occurring. However,

epting paths that are not

Allowing the code to run to completion

code was considered complete when enough temperature ite

been run to prevent changes in the path.

any constraint violations, but it also has a short distance resulting in a low

cost.

Figure 18: Scenario 1, Intermediate Path

Allowing the code to run to completion settles on the best path.

code was considered complete when enough temperature iterations had

been run to prevent changes in the path. Not only does Figure 19

any constraint violations, but it also has a short distance resulting in a low

47

settles on the best path. The

rations had

Figure 19 not have

any constraint violations, but it also has a short distance resulting in a low

 48

Figure 19: Scenario 1, Final Path

 49

Scenario 2

 In this scenario, there are two constraints: there must be an airport

nearby, and the plane cannot cross through Uganda. Unlike the other

scenarios, this one provides a reward instead of a penalty for passing

through airports that satisfy both constraints. At this time, “no fly zones” that

occurred between airports were not considered, but will be discussed in

Chapter 6.

As with Scenario 1, the user selected the following start and end

nodes, knowing the “Nodes of Violation” were likely to be part of the initial

path.

Path Node

Start Node 16

Nodes of Violation 1, 2, 3, 4, 6, 7

Final Node 9

Table 5: Scenario 2

To demonstrate this scenario, the path was charted from Airport 16 to

Airport 9. Figure 20, below, shows the initial path as well as the airports in

violation. With the initial path, the airports visited are 16-5-3-2-4-7-12-10-6-

9. Of those visited, 3, 2, 4, 7, and 6 are in Uganda. Looking at the cost, as

shown on the top of the graph, shows this was clearly an expensive path to

take. The high expense comes from going through airports in Uganda.

As with Scenario 1,

graphs to appear slowly. Once

become larger than 10, meaning the code had been running for a while, the

following path was generated:

Figure 20: Scenario 2, Initial Path

As with Scenario 1, a pause command was inserted to allow for the

graphs to appear slowly. Once the number of temperature iterations had

become larger than 10, meaning the code had been running for a while, the

following path was generated:

Figure 21: Scenario 2, Intermediate Path

50

a pause command was inserted to allow for the

the number of temperature iterations had

become larger than 10, meaning the code had been running for a while, the

 51

In this solution, there are no airports in Uganda, but, this is a very

expensive path in terms of distance traveled. The path shown is 16-18-20-

12-11-30-15-25-24-23-22-13-29-11-9. As a viewer, it is clear to see that

eliminating the loop would greatly shorten the distance traveled. As the

Bailey Algorithm finished running and the temperature value decreased, the

Algorithm removed the loop. The final path, going from 16-21-18-20-12-11-

9, is shown in Figure 22.

Figure 22: Scenario 2, Final Path

Scenario 3

 In this scenario

wildlife areas. Knowing which nodes would result in a violation, it was

possible for the user to select a start and end node that would make a path

with a high likelihood of containing a node of vi

Path

Start Node

Nodes of Violation

Final Node

 In the initial path, 9

26, there were numerous violations. Some, such as 12, 7 and 18, were due to

close proximity to Lake Victoria. The rest were National Parks.

 As with the previous scenarios, once the temperature had been

changed over 10 iterations,

In this scenario, the plane is penalized for flying over national parks or

Knowing which nodes would result in a violation, it was

possible for the user to select a start and end node that would make a path

with a high likelihood of containing a node of violation:

Path Node

Start Node 9

of Violation 7, 12, 17, 19, 21, 22, 29

Final Node 26

Table 6: Scenario 3

In the initial path, 9-30-15-14-13-29-11-9-6-12-7-4-1-

26, there were numerous violations. Some, such as 12, 7 and 18, were due to

close proximity to Lake Victoria. The rest were National Parks.

Figure 23: Scenario 3, Initial Path

As with the previous scenarios, once the temperature had been

changed over 10 iterations, the Bailey Algorithm found a path that

52

, the plane is penalized for flying over national parks or

Knowing which nodes would result in a violation, it was

possible for the user to select a start and end node that would make a path

Node

7, 12, 17, 19, 21, 22, 29

-3-5-17-18-19-

26, there were numerous violations. Some, such as 12, 7 and 18, were due to

close proximity to Lake Victoria. The rest were National Parks.

As with the previous scenarios, once the temperature had been

Bailey Algorithm found a path that had been

updated to have a shorter distance traveled, but still

violations. Figure 24

of violation coupled with the loop the path takes shows that there are still

improvements that can be made.

following airports: 9

Bailey Algorithm.

 As the Bailey Algorithm finished running, it found

This path, going from 9

It also is the shortest path, in terms of distance traveled.

to have a shorter distance traveled, but still had the same

Figure 24 shows this intermediate solution. The number of nodes

of violation coupled with the loop the path takes shows that there are still

improvements that can be made. The intermediate path contains the

following airports: 9-6-7-5-4-6-12-29-13-14-22-27-19-26, as f

Bailey Algorithm.

Figure 24: Scenario 3, Intermediate Path

As the Bailey Algorithm finished running, it found the “best” solution.

This path, going from 9-30-15-25-24-27-26 does not contain any violations.

s the shortest path, in terms of distance traveled.

53

the same number of

The number of nodes

of violation coupled with the loop the path takes shows that there are still

path contains the

26, as found by the

the “best” solution.

26 does not contain any violations.

 54

Figure 25: Scenario 3, Final Path

 55

Scenario 4

 In this scenario, one of the engines is damaged. This means that the

plane is unable to ascend as quickly as it would normally. For this reason, the

airports between the starting and ending node must not exceed 1.2 times the

altitude of the airport before.

The following path was generated based on the user-defined start and

end node:

Path Node

Start Node 9

Node of Violation LOTS

Final Node 19

Table 7: Scenario 4

Initially, this generated the following path. The links marked with an

“X” are the ones that violate the constraint. For simplicity, a small chart

follows Figure 26 to clearly show which links were violated. The violated

links are highlighted in red. These two graphics reveal that there are four

violations.

Figure 26: Scenario 4, Initial Path

Node Percent Change in Altitude

9-8 1.23

8-4 1.6

4-5 1.15

5-3 0.98

3-2 0.78

2-1 0.84

1-4 1.30

4-7 1.08

7-20 1.00

20-13 1.48

13-14 0.99

14-29 1.11

29-13 0.90

13-22 0.74

22-19 0.91
Table 8: Scenario 4, Initial Links Violated

56

Similarly, there is an improvement between the initial

intermediate path. However, there are still three links that violate the

constraint.

Node

9

30

14

13

12

29

30

28

25

24

23

22

Similarly, there is an improvement between the initial

intermediate path. However, there are still three links that violate the

Figure 27: Scenario 4, Intermediate Path

Node Percent Change in Altitude

9-30 3.40

30-14 0.95

14-13 1.00

13-12 0.67

12-29 1.60

29-30 0.94

30-28 0.71

28-25 0.91

25-24 0.78

24-23 1.55

23-22 0.91

22-19 0.92
Table 9: Scenario 4, Intermediate Links Violated

57

Similarly, there is an improvement between the initial path and the

intermediate path. However, there are still three links that violate the

 At the conclusion of the code, there is still a constraint that is violated.

Even though this is the case, the cost is still extremely low. To fix this, a

stronger penalty could be applied to the violation value.

Node

9

10

12

20

At the conclusion of the code, there is still a constraint that is violated.

Even though this is the case, the cost is still extremely low. To fix this, a

stronger penalty could be applied to the violation value.

Figure 28: Scenario 4, Final Path

Node Percent Change in Altitude

9-10 3.54

10-12 0.63

12-20 0.99

20-19 1.00
Table 10: Scenario 4, Final Links Violated

58

At the conclusion of the code, there is still a constraint that is violated.

Even though this is the case, the cost is still extremely low. To fix this, a

 59

Scenario 5

 In this scenario, the runway length provides the constraint that the

Bailey Algorithm takes into consideration. In particular, the pilot must fly a

route that contains intermediate nodes of at least 5,000 feet in order to land

safely if (s)he cannot make it to the final destination.

The user selected the start and final node. Based on the initial path, it

was apparent there were numerous nodes that violated this constraint along

the path. The following path was chosen to demonstrate the effectiveness of

the code:

Path Node

Start Node 1

Node of Violation 2, 6, 9, 10, 13

Final Node 11

Table 11: Scenario 5

In this case, the initial path was 1-4-8-6-9-11. This caused a violation

of airport 6 and 9, as seen with the yellow dots in Figure 29.

 As with the other scenarios, the path underwent many modifications

and perturbations. Approximately halfway through

iterations, the following path was generated befo

was an improvement over the initial, with only one violation:

Figure 29: Scenario 5, Initial Path

As with the other scenarios, the path underwent many modifications

and perturbations. Approximately halfway through the temperature

, the following path was generated before being rejected.

was an improvement over the initial, with only one violation:

Figure 30: Scenario 5, Intermediate Path

60

As with the other scenarios, the path underwent many modifications

the temperature

re being rejected. This path

 61

 Looking at the final path, we see that the overall cost did not decrease

by very much. This is because to avoid the penalty associated with the city,

the path had to extend a little longer.

Figure 31: Scenario 5, Final Path

Scenario 6

 In this scenario, the plane is impaired in its turning ability. After being

hit by debris, the rudder jammed, causing the plane to be unable to turn left.

 Initially, the path contained numerous left turns, resulting in a very

high initial cost. As with

end nodes, knowing the “Nodes of Violation” were likely to be

initial path.

Path

Start Node

Nodes of Violation

Final Node

 Once the program had been running for a while, the intermediate path

was created. As with some of the other examples, this was an example where

a path was suggested as it was “not too much worse

In this scenario, the plane is impaired in its turning ability. After being

hit by debris, the rudder jammed, causing the plane to be unable to turn left.

Initially, the path contained numerous left turns, resulting in a very

As with Scenario 1, the user selected the following start and

end nodes, knowing the “Nodes of Violation” were likely to be

Path Node

Start Node 5

Nodes of Violation LOTS

Final Node 24

Table 12: Scenario 7

Figure 32: Scenario 7, Initial Path

Once the program had been running for a while, the intermediate path

was created. As with some of the other examples, this was an example where

a path was suggested as it was “not too much worse.” In this example, it is

62

In this scenario, the plane is impaired in its turning ability. After being

hit by debris, the rudder jammed, causing the plane to be unable to turn left.

Initially, the path contained numerous left turns, resulting in a very

Scenario 1, the user selected the following start and

end nodes, knowing the “Nodes of Violation” were likely to be part of the

Node

Once the program had been running for a while, the intermediate path

was created. As with some of the other examples, this was an example where

In this example, it is

clear that the cost is so high due to the high contribution from the penalty

function – it makes up nearly 1/3 of the total cost.

 At the final path, there are still two left turns.

step, they account for approximately

of this code, this could be corrected by

said that, only one of th

left was the result of the turn being made that was almost 360 degrees to the

right, resulting in a slight left.

clear that the cost is so high due to the high contribution from the penalty

it makes up nearly 1/3 of the total cost.

Figure 33: Scenario 7, Intermediate Path

At the final path, there are still two left turns. Like the intermediate

step, they account for approximately of the total cost. In a future version

of this code, this could be corrected by adding a more severe penalty. Having

said that, only one of the turns is an extreme turn. It is possible that the slight

left was the result of the turn being made that was almost 360 degrees to the

ht, resulting in a slight left.

63

clear that the cost is so high due to the high contribution from the penalty

Like the intermediate

In a future version

adding a more severe penalty. Having

possible that the slight

left was the result of the turn being made that was almost 360 degrees to the

Figure 34: Scenario 7, Final Path

64

 65

Chapter 5: Conclusions

 As was explained in earlier sections, the main aspect that

differentiates the Bailey algorithm from all other mapping algorithms is the

ability to assign a penalty value to the intermediate nodes. By incorporating

this penalty, the Bailey algorithm sets itself apart from the shortest path

algorithms. Other algorithms, like those in GPS units, only look ahead. They

do not take into consideration how one got to their current location. Some

GPS units are able to account for traffic that might occur along the way,

showing that there is some existing software similar to the Bailey Algorithm.

 This very fact is what makes the Bailey algorithm matter in real life.

This algorithm allows for paths to be charted that satisfy specific constraints

at all points along the path. For example, if the plane needs a runway of a

certain length in order to land safely, the route it flies should be populated

with airports along the way that it could land at, just in case it cannot make it

to the final destination.

 66

Works for Any Arrangement of Cities

 This program is just a model. It will work for any airplane, almost any

scenario (See Scenario 7), and any collection of cities.

 To show that the code will work for any arrangement of cities, the

random number generator in MATLAB was used, generating X and Y

coordinates for “Airports” as well as a random assortment of elevations. The

resulting graph, including the Delaunay links, is shown in Figure 35:

Figure 35: Random City Arrangement

 These cities were run through Scenario 1, a complete table of values

used is included in Appendix A4. As with the earlier scenarios, an initial path

was generated:

This initial path

As the code runs, it eliminates one of the violations, resulting in the

intermediate graph shown

These cities were run through Scenario 1, a complete table of values

used is included in Appendix A4. As with the earlier scenarios, an initial path

Figure 36: Initial Path

This initial path has two violations: first at node 10 and then node 8.

As the code runs, it eliminates one of the violations, resulting in the

intermediate graph shown in Figure 37, below.

67

These cities were run through Scenario 1, a complete table of values

used is included in Appendix A4. As with the earlier scenarios, an initial path

two violations: first at node 10 and then node 8.

As the code runs, it eliminates one of the violations, resulting in the

 However, there is still the violation. This is corrected by the time the

code finishes. The final path solution is displayed

Figure 37: Intermediate Step

However, there is still the violation. This is corrected by the time the

code finishes. The final path solution is displayed below in Figure 38

Figure 38: Final Path

68

However, there is still the violation. This is corrected by the time the

below in Figure 38:

 69

 This shows that this code is easily adaptable for different city

arrangements. Not only is the origin changed, but the number of cities used is

also different. In addition, the scale being tested is dramatically different.

 70

Simulated Annealing is a Robust Optimization Method

 While this project produces viable results, how can one be sure the

results are consistent? By determining how robust the Simulated Annealing

method is, this question can be answered. If the Simulated Annealing method

is robust, it means that the optimizer is a good one that can stand up to

scrutiny. A weak optimizer will report many different answers for the same

scenario. It is possible for Simulated Annealing to return different values for

different runs. As mentioned earlier, the Annealer randomly perturbs a link

for each iteration. This randomness can result in slightly different costs being

produced for the same start and end node.

 To demonstrate how robust the Simulated Annealer is, the code was

run ten times for Scenario 1, from airport 28 to airport 17. The complete data

table is in Appendix A4. The result is shown in Figure 39. In this image, each

run is graphed against the score it generated. There are two values for the

final cost that were repeated multiple times: 662 and 915. This shows that

the method of simulated annealing can often find the local minimum, but

occasionally struggles to find the global minimum. Since the cost accounts for

the distance traveled as well as the penalty applied at each node, it is possible

for slightly different paths to be generated. Additionally, if a change is not

made initially, the scaling factor that determines what changes are allowed

might be reduced, resulting in a slightly higher cost path.

 Referring to Appendix A4 for the full table, the standard deviation is

revealed to be approximately 121

around 800 nmi, a standard deviation of 121 nmi is only

data spread. Relatively

this shows that the simulated A

Simulated Annealing metho

Furthermore, closely e

local minima that the Simulated Annealer focused on. The value of 662 and

915 both occurred multiple times. This shows that the annealer is settling on

a solution, but has not quite reached it yet. Adjusting th

factor could allow for the annealer to settle on a more consistent number.

 To provide another set of data, Scenario 5 was tested as well. For this

test, the start node was selected t

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

0

C
o

st
 t

o
 T

ra
v

e
l

fr
o

m
 2

8
-1

7
,

S
c

e
n

a
ri

o
 1

How Robust is Simulated Annealing?

Figure 39: Simulated Annealing Robust Test (1/2)

Referring to Appendix A4 for the full table, the standard deviation is

aled to be approximately 121 nmi. Since the average is calculated to be

around 800 nmi, a standard deviation of 121 nmi is only about 15% of

Relatively speaking, this is not too large of a data spread. While

shows that the simulated Annealer is not perfect, it also shows that the

nnealing method is acceptable for the majority of the time.

Furthermore, closely examining Figure 39 reveals that there are two

local minima that the Simulated Annealer focused on. The value of 662 and

915 both occurred multiple times. This shows that the annealer is settling on

a solution, but has not quite reached it yet. Adjusting the temperature scale

factor could allow for the annealer to settle on a more consistent number.

To provide another set of data, Scenario 5 was tested as well. For this

test, the start node was selected to be 17 and the final node was 8

2 4 6 8 10

Run Number

How Robust is Simulated Annealing?

(1/2)

Cost Per Run Average Value

71

Referring to Appendix A4 for the full table, the standard deviation is

Since the average is calculated to be

about 15% of the

not too large of a data spread. While

erfect, it also shows that the

e for the majority of the time.

xamining Figure 39 reveals that there are two

local minima that the Simulated Annealer focused on. The value of 662 and

915 both occurred multiple times. This shows that the annealer is settling on

e temperature scale

factor could allow for the annealer to settle on a more consistent number.

To provide another set of data, Scenario 5 was tested as well. For this

o be 17 and the final node was 8. This

10 12

How Robust is Simulated Annealing?

would force the code to avoid nodes 21 and 6, as they both would violate the

constraint of runway length.

 In this test, the

nmi, again showin

from Scenario 1, the Simulated Annealing optimizer found the same local

minima multiple times. As mentioned previously, the results could be

improved by adjusting the temperature scale factor.

conclusions, it can be assumed that there would be similar r

other scenarios.

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

0

C
o

st
 t

o
 T

ra
v

e
l

fr
o

m
 1

7
-8

,
S

c
e

n
a

ri
o

 5

How Robust is Simulated Annealing? (2/2)

he code to avoid nodes 21 and 6, as they both would violate the

constraint of runway length.

Figure 40: Simulated Annealing Robust Test (2/2)

In this test, the standard deviation was calculated to be about 106

, again showing that the Simulated Annealer is robust. Like the results

from Scenario 1, the Simulated Annealing optimizer found the same local

minima multiple times. As mentioned previously, the results could be

improved by adjusting the temperature scale factor. Based on these two

conclusions, it can be assumed that there would be similar results for the

2 4 6 8

Run Number

How Robust is Simulated Annealing? (2/2)

Cost Per Run Average Value

72

he code to avoid nodes 21 and 6, as they both would violate the

tion was calculated to be about 106

Like the results

from Scenario 1, the Simulated Annealing optimizer found the same local

minima multiple times. As mentioned previously, the results could be

on these two

esults for the

10 12

How Robust is Simulated Annealing? (2/2)

 73

Penalty Value is Acceptable

 When calculating the penalty value, it was important not to hard code

in a value. If a set value was hard coded in, the results would be very different

if all the airports were located between zero and one, compared to ones that

might go from zero to one hundred.

 To calculate the penalty value, the average of the vertical distance and

horizontal distance covered by the data was taken. This number was then

divided by 5, to allow for situations to be “not too much worse.” This resulted

in a penalty value of about 111 for each scenario. This made the penalty

value a function of the data spread, allowing it to be transferred to any set of

data.

 To test the significance of the penalty value, five different values were

chosen. Initially, it was thought that the values tested would go up to ten, but

upon running the code, it became apparent that a value larger than 3 resulted

in the Simulated Annealing deciding all paths were too expensive, making the

first guess always the accepted path.

Penalty Values Tested

0.2

0.5

1

2

3

Table 13: Coefficients of Penalty Values Tested

 The code was run numerous times at each penalty value. The cost

obtained was then averaged out and graphed against the penalty value. To

show the effect of cost, the same two scenarios were run: Scenario 1 from 28

17 and Scenario 5 from 17

value reached a certain point, it

consider. This resulted

one temperature iteration.

0

500

1000

1500

2000

2500

3000

0

C
o

st

Scenario 1 Penalty Evaluation

show the effect of cost, the same two scenarios were run: Scenario 1 from 28

17 and Scenario 5 from 17-8. It was interesting to note that when the penalty

value reached a certain point, it was too high for the Simulated

consider. This resulted in the Annealing process only being completed for

one temperature iteration.

Figure 41: Penalty Value for Scenario 1

0.5 1 1.5 2 2.5

Penalty

Scenario 1 Penalty Evaluation

74

show the effect of cost, the same two scenarios were run: Scenario 1 from 28-

It was interesting to note that when the penalty

imulated Annealer to

nnealing process only being completed for

3 3.5

Scenario 1 Penalty Evaluation

0

200

400

600

800

1000

1200

1400

1600

1800

0

C
o

st

Scenario 5 Penalty Evaluation

Figure 42: Penalty Value for Scenario 5

0.5 1 1.5 2 2.5

Penalty

Scenario 5 Penalty Evaluation

75

3 3.5

Scenario 5 Penalty Evaluation

 76

Chapter 6: Future Work

 It became apparent that this could be extended much more than the

work that was completed. Alterations and extensions could be made to the

scenarios, more features could be included, and the code could be modified

to be more accommodating.

With regards to specific scenarios, in the future, modifications could

be made to account for Scenario 6, the change in the Stick Fixed Neutral

Point, and center of gravity. When the SFNP shifts, there are serious

consequences. At this point, there is not a qualitative way to account for this

shift, and therefore it is unable to be viable at this time.

A scenario could also be added to account for runway direction for

towered airports. This could provide the plane with a penalty for taking off

and landing a specific way, based on the wind or the direction the plane is

unable to turn. Furthermore, the code could be altered to account for flight

patterns at each airport. This modification could also be adapted to include a

constraint based on runway surface.

In the future, the code could be modified to incorporate aerodynamic

characteristics of a specific plane. For example, a scenario could be added

that would account for a malfunction with the Rate of Climb ability. This

would require knowing the cruise speed for the plane to fly and take into

consideration the distance between nodes.

More features could be added to the data MATLAB inputs. This could

include mountains located in the middle of links, rather than right at an

 77

airport or “no fly zones” that would prohibit flying in a certain area. Similarly,

it could be made so that links are prohibited from crossing over Lake

Victoria. Both of these could be done by dropping the respective links from

Dijkstra, but it would provide more of a challenge, and make the program

more generic, to have MATLAB identify the paths as problematic and remove

them.

Furthermore, the code could be adapted to include a “severity” of the

penalty. For example, turns that only go “a little left” are not penalized as

heavily as sharp, 90 degree left turns. It could also allow for a severity in the

other scenarios as well. Perhaps for Scenario 3, it is worse to fly over Lake

Victoria than it is to fly over a National Park. This could also be applied to the

scenario with hospitals. The closer the airport is to the hospital, the less

severe the penalty is.

The last piece of notable future work would be to apply this code to

completely different scenarios. For example, it could be incorporated into

GPS units for charting the best path home in rush hour traffic, knowing

certain stops have to be made along the way. Similarly, the Bailey Algorithm

could be used for delivery vehicles to find the best way to deliver food or

packages. It could also be used for everyday activities like completing

scavenger hunts, or charting out what classes to take when.

 78

Sources Cited and Consulted

“Airports in Africa.” Megginson Technologies, Ltd. Updated 2009.

http://www.ourairports.com/continents/AF/#lat=6.3152985383300

33,lon=17.578125,zoom=2,type=Map,airport=DGAA,continent=AF.

“Airports in Kenya.” Air Broker Center International AB. Updated 2009.

http://www.aircraft-charter-world.com/airports/africa/kenya.htm.

Arora, Jasbir. Introduction to Optimum Design. Boston: Elsevier, 2012.

Cornell University, “Dijkstra’s Shortest Path Algorithm.” Accessed April 21,

2014.

http://www.cs.cornell.edu/courses/cs312/2002sp/lectures/lec20/le

c20.htm.

Dannenhoffer, III, John. “Capstone Meeting: January, 23.” Capstone Meeting,

MAE 499: Honors Capstone Project from Syracuse University,

Syracuse, NY, January 23, 2014.

“DC-3: The Genesis of a Legend.” DC-3/Dakota Historical Society, Inc.

Accessed March 26, 2014. http://www.dc3history.org/dc3.htm.

“Delaunay Triangulation.” MathWorks Inc. 2014.

http://www.mathworks.com/help/matlab/math/delaunay-

triangulation.html.

Lester, Patrick. “A* Pathfinding for Beginners.” Policy Almanac. July 18, 2005.

http://www.policyalmanac.org/games/aStarTutorial.htm.

“Logan Plans to Add 600-Foot Runway Safety Area on Harbor Deck.” Boston

Globe, March 18, 2009. Accessed February 15, 2014.

http://www.boston.com/news/local/breaking_news/2009/03/logan

_plans_to.html.

“Model Railroad Layouts: Airport Runways and Accessories.” Bakatronics

LLC. Accessed February 15, 2014.

http://www.bakatronics.com/shop/category.aspx?catid=117.

Nicholson, Roger and William Reed, “Strategies for Prevention of Bird-Strike

Events,” Aero Quarterly, Quarter 3: 2011.

U.S. Department of Health and Human Services. “Toxicological Profile for

Hydraulic Fluids.” Accessed April 22, 2014.

http://www.atsdr.cdc.gov/ToxProfiles/tp99.pdf.

Vetterling, William T., William H. Press, Saul A. Teukolsky, and Brian

Flannery. Numerical Recipes in C: The Art of Scientific Computing. New

York: Cambridge University Press, 1992.

Wachman, Monica. “What is the Altitude of a Plane in Flight?” Travel Tips.

Accessed April 21, 2014. http://traveltips.usatoday.com/altitude-

plane-flight-100359.html.

 79

Appendix A—Excel Spreadsheets

Appendix A1: Runway Information

 80

Appendix A2: Complete Data

 81

Appendix A3: Constraints

 82

Appendix A4: Conclusion Supporting Tables

Random City Information

X Y Elevation (nmi)

0.755 0.8745 385.1

0.9927 0.4238 250.2

0.1908 0.0716 527.8

0.72 0.5318 188.9

0.2991 0.6591 620.1

0.265 0.7312 924.7

0.9591 0.3312 67.2

0.4275 0.4538 947

0.5221 0.5568 4.3

0.1406 0.6942 899.2

Simulated Annealing Robust Test (Scenario 1)

RUN COST Mean STDev

1 662.34 813.96 121.86

2 848.78

3 737.55

4 915.38

5 662.34

6 974.54

7 915.38

8 915.38

9 662.34

10 845.54

 83

Simulated Annealing Robust Test (Scenario 5)

RUN COST Mean STDev

1 737.74 715.80 105.61

2 592.21

3 600.86

4 857.90

5 600.86

6 771.60

7 600.86

8 771.60

9 812.17

10 812.17

 84

Appendix B—MATLAB Code

Appendix B1: The Bailey Algorithm

function BumpOut(scenario)
%Feed in airport locations to MATLAB. Points are distance in nmi
%from the origin, located at 33 degrees East (longitude, X) and
the equator (latitude, Y).

clc;
clf;

Data = xlsread('BumpOutData.xls');
AirportDat= [Data(:, :)];
AirportX = AirportDat(:, 1); %Airport X coordinate (nmi)
AirportY = AirportDat(:, 2 %Airport Y coordinate (nmi)

%This variable will be used throughout the code.
num = length(AirportX);

%Establish an annealing schedule
tfactor = 0.9;

%---

figure(1)
hold on
tri = delaunay(AirportX,AirportY);
triplot(tri,AirportX,AirportY);
axis equal
hold off
title('Triplot')

%--
%Combining with Dijkstra

V = [AirportX,AirportY];
I = delaunay(AirportX,AirportY);
J = I(:,[2 3 1]); E = [I(:) J(:)];

E = [E; fliplr(E)];

ibeg = 100;

if (ibeg < 1 || ibeg > length(AirportX))
 fprintf(1, 'Click on Airport to start from\n');
 fprintf(1, 'Click on Airport to end with\n');

 [x, y] = ginput(2);

 xbeg = x(1);
 ybeg = y(1);
 xend = x(2);

 85

 yend = y(2);

 ibeg = 1;
 iend = 1;
 sbeg = (AirportX(ibeg)-xbeg)^2 + (AirportY(ibeg)-ybeg)^2;
 send = (AirportX(iend)-xend)^2 + (AirportY(iend)-yend)^2;
 for i = 2 : length(AirportX)
 stest1 = (AirportX(i)-xbeg)^2 + (AirportY(i)-ybeg)^2;
 stest2 = (AirportX(i)-xend)^2 + (AirportY(i)-yend)^2;
 if (stest1 < sbeg)
 sbeg = stest1;
 ibeg = i;
 end % if
 if (stest2 < send)
 send = stest2;
 iend = i;
 end
 end % for i
end % if

[costs,paths] = dijkstra(V,E,ibeg);

PATHS = paths{iend};
tri = delaunay(AirportX, AirportY);

oldprice = 1000;

CDIJ = 0; %Cost of dijkstra
for i = 1 : length(PATHS)-1
 CDIJ = CDIJ + sqrt(((AirportX(PATHS(i)) -
AirportX(PATHS(i+1))) ^ 2) + ...
 (AirportY(PATHS(i)) - AirportY(PATHS(i+1))) ^ 2);
end

temp = -CDIJ / log(0. %Equation from "metrop" function

for itemp = 1 : 100
 itemp
 nsuccess = 0;
 nfail = 0;

 figure(2)
 triplot(tri, AirportX, AirportY);
 title(sprintf('Travel from Airport %d to Airport %d', ibeg,

 iend))
 axis equal

 hold on
 plot(AirportX(ibeg), AirportY(ibeg), 'g*')
 plot(AirportX(iend), AirportY(iend), 'r*')

 for itry = 1 : 1000

 point = rand(1);
 port = point * num;

 if port >= 0.5
 x1 = AirportX(round(port));
 y1 = AirportY(round(port));

 86

 else
 x1 = AirportX(1);
 y1 = AirportY(1);
 end

 click = rand(1);
 ibest = 0;
 dbest = Inf;

 for i = 1 : length(PATHS)-1
 dtest = sqrt((x1 - (AirportX(PATHS(i)) +

 AirportX(PATHS(i+1)))/2)^2 ...
+(y1 - (AirportY(PATHS(i)) +
 AirportY(PATHS(i+1)))/2)^2);

 if (dtest < dbest)
 ibest = i;
 dbest = dtest;
 end % if
 end % for i

 if (click >= 0.5)
 Links = [I, I(:,1), I(:,2)]; %Bump Right
 else
 Links = [I(:,2), I(:,1), fliplr(I)]; %Bump Left
 end % if

 [NEWPATH, price, okay] = Bump(ibest, Links, PATHS,

AirportDat, oldprice, temp, scenario);
 if okay == 1
 PATHS = NEWPATH;
 oldprice = price;
 else nfail = nfail + 1;
 end % if

 if okay == 1
 nsuccess = nsuccess + 1;
 end % if

 if (nsuccess > 100)
 break
 end % if

 end % for itry

 plot(AirportX(PATHS), AirportY(PATHS), 'r-', 'LineWidth', 4)
 title(sprintf('Cost from Airport %d to Airport %d is %f',

ibeg, iend, price))
 hold off
 pause

 if (nsuccess == 0)
 break
 end % if
 nsuccess
 nfail
 temp = temp * tfactor

end % for itemp

 87

function [NEWPATH, price, okay] = Bump(ibest, Links, PATHS,
AirportDat,...
 oldprice, temp, scenario)

shape = size(Links);

for j = 1:shape(1)
 for jj = 1:3
 jjj = jj + 2;
 if (Links(j, jj) == PATHS(ibest)

&& Links(j,jjj) == PATHS(ibest+1))
 NEWPATH = [PATHS(1:ibest), Links(j,jj+1),

PATHS(ibest+1:end)];
 for ii = length(NEWPATH) - 2 : -1 : 1
 if NEWPATH(ii) == NEWPATH(ii+2)
 if ii+3 <= length(NEWPATH)
 NEWPATH = [NEWPATH(1:ii),

 NEWPATH(ii+3:end)];
 ii = ii - 1;
 else
 NEWPATH = [NEWPATH(1:ii)];
 break
 end %if
 end
 end
 price = costfun(NEWPATH, AirportDat, scenario);
 okay = metrop(price, temp, oldprice);
 return
 end %if
 end %for jj
end %for j

% by default, return input path
NEWPATH = PATHS;

price = costfun(NEWPATH, AirportDat, scenario);
okay = false;

%---

function [cost] = costfun(NEWPATH, AirportDat, scenario)

AirportX = AirportDat(:, 1);
AirportY = AirportDat(:, 2);
AirportE = AirportDat(:, 3); %Airport Elevation (nmi)
AirportH = AirportDat(:, 4); %Hospital Close By (true/false)
AirportN = AirportDat(:, 5); %Lake/Natural Feature
AirportL = AirportDat(:, 6); %Length of Runway (nmi)
AirportU = AirportDat(:, 7); %In Uganda? (true/false)

%Establish an array of coefficients to be used in the "cost"
%function. Order of array is: Right Turn, Left Turn, Elevation,
%Hospital Proximity, Natural Features, Runway Length

cost = 0;

%Establish a baseline value (in this case the average of the
%maximum latitudinal and longitudinal distance). This will be

 88

%used in the penalty function.

MaxY = max(AirportY) + (-1*min(AirportY)); %Maximum Y dist
MaxX = max(AirportX) + (-1*min(AirportX)); %Maximum X dist
AvgD = (MaxY+MaxX) / 2; %Average Dist
Penalty = AvgD * (2/10); %Penalty value

for i = 1:length(NEWPATH) - 1
 cost = cost + sqrt(((AirportX(NEWPATH(i)) –

 AirportX(NEWPATH(i+1))) ^ 2) + ...
(AirportY(NEWPATH(i)) -
 AirportY(NEWPATH(i+1))) ^ 2);

end %for

if scenario == 1 %Penalty for Elevation Constriction
 for i = 2 : length(NEWPATH) - 1
 if AirportE(NEWPATH(i)) > 0.82
 cost = cost + Penalty;
 end %if Elevation
 end %for i

elseif scenario == 2 %Reward for Hospital
 for i = 2 : length(NEWPATH)
 if AirportH(NEWPATH(i)) == 1 && AirportU(NEWPATH(i)) == 0
 cost = cost - Penalty;
 end %if Hospital, no Uganda
 end %for

elseif scenario == 3 %Nat'l Parks Constriction
 for i = 2 : length(NEWPATH) - 1
 if AirportN(NEWPATH(i)) == 1
 cost = cost + Penalty;
 end %if Natural Features
 end %for

elseif scenario == 4 %Climb Constriction
 for i = 1 : length(NEWPATH) - 1
 if 1/((AirportE(NEWPATH(i))) / (AirportE(NEWPATH(i+1))))

>= 1.2
 cost = cost + Penalty;
 end %if climb rate
 end %for

elseif scenario == 5 %Penalty for Runway Length
 for i = 2 : length(NEWPATH) - 1
 if (AirportL(NEWPATH(i))) < 0.82
 cost = cost + Penalty;
 end %if runway length
 end %for

elseif scenario == 6 %Penalty for left turn
 for i = 1 : length(NEWPATH) - 1
 if (AirportX(NEWPATH(i)) * AirportY(NEWPATH(i+1))) -...
 (AirportX(NEWPATH(i+1)) * AirportY(NEWPATH(i))) < 0
 cost = cost + Penalty;
 end %if left turn
 end %for

 89

 cost;
end

%--
function [okay] = metrop(price, temp, oldprice)

pd = price - oldprice;

if pd < 0
 okay = true;
elseif rand(1) < exp(-pd/temp)
 okay = true;
else
 okay = false;
end

 90

Appendix B2: Method Test Code

%Test to see how different Delaunay and Dijkstra are

%Feed in airport locations to MATLAB. Points are distance in nmi
%from the origin, located at 33 degrees East (longitude, X) and
%the equator (latitude, Y).

clc;
clf;
clear;

%Import the data
DataSet = xlsread('Data.xls');

%Set up desired airports
AirportX = DataSet(1:33, 10);
AirportY = DataSet(1:33, 5);

%Create ending point based on number of airports
num = length(AirportX);

%Set up Pairs.
Pairs = [];
a = 1:length(AirportX);
b = 1:length(AirportY);
for i = 1:num
 for j = 1:num
 Pairs = [Pairs; a(i), b(j)];
 end
end

%Create array of airport coordinates
V = [AirportX,AirportY];

%--
%CALCULATE THE COST OF EUCLIDIAN DISTANCE

%Establish starting and ending cities
EStart = Pairs(:,1);
EEnd = Pairs(:,2);

%Calculate the distance in between each city
EE = [];
for j = 1:length(Pairs)
 ee = sqrt((AirportX(EStart(j)) - AirportX(EEnd(j)))^2 + ...
 (AirportY(EStart(j)) - AirportY(EEnd(j)))^2);
 EE = [EE, ee];
end

%Sort lengths so the longest link is at the end
EE = EE';
Ee = [Pairs, EE];
E3 = sortrows(Ee, 3);

%Perform calculation, removing the longest link with each
%iteration
numpairs = (length(Pairs) - 1) /2;

 91

Dst = [];
LLngh = [];
for i = 1:numpairs
 i
 [costs,paths] = dijkstra(V,E3);
 if (max(isinf(costs)) > 0)
 break
 end % if
 Total = sum(costs)/2;
 total = sum(Total');
 Link = E3(end, end);
 LLngh = [LLngh, Link];
 Dst = [Dst, total];
 E3 = E3(1:end-2, :);
end
% end

Dst = Dst';

%--
%CALCULATE THE COST OF DELAUNAY
I = delaunay(AirportX, AirportY);
J = I(:,[2 3 1]); E = [I(:) J(:)];

E = [E; fliplr(E)];

DelDst = [];

[costsD,pathsD] = dijkstra(V,E);
for ii = 1:length(costsD)
 for jj = 1:length(costsD)
 if costsD(ii, jj) == Inf;
 costsD(ii, jj) = 0;
 else
 costsD(ii, jj) == costsD(ii, jj);
 end %if
 DelDst = [DelDst; costsD(ii, jj)];
 end
end

DTotal = sum(DelDst)/2;
Dtotal = sum(DTotal')
% DelDst = [DelDst, Dtotal];
% DelTot = sum(DelDst)/2

hold on
plot(LLngh, Dst)
plot(LLngh, Dtotal*ones(size(LLngh)), '-r')
 xlabel('Link Length')
 ylabel('Total Distance Traveled')
 title('Which is better?')
 legend('Euclidian Distance', 'Delaunay')

	Optimum Path Planning for an Impaired Aircraft
	Recommended Citation

	Microsoft Word - 399102-convertdoc.input.387223.vqG6l.docx

