June 2017

Synthesis of heteroaromatic ruthenium dyes for use as electron reservoirs in dye-sensitized solar cells

Andrew David Basner
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

Part of the Physical Sciences and Mathematics Commons

Recommended Citation
https://surface.syr.edu/etd/738

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.
Abstract

Increasing the usable portion of solar spectrum is a key factor in increasing the efficiency of modern solar cells. The near-IR region of the solar spectrum is often underutilized as a means of energy production, as the photons in this region do not contain enough energy to promote electrons to the conducting band of common semiconductors used in photovoltaics. To help achieve this goal, the creation of an electron reservoir was attempted. The electron reservoir would be a holding place for an electron that is excited by a sub-bandgap photon until another photon excites it to the conduction band.

The first chapter of this dissertation describes the basics of dye-sensitized solar cell technology and the requirements and characteristics of an electron reservoir. It also discusses characteristics that molecules would need to have in order to act as electron reservoirs. The electron reservoirs envisioned consist of multi-metal complexes with at least three metal centers and the presence of a near-IR absorption in the mixed-valence state.

The second chapter describes the synthesis of a number mono- and diruthenium of building blocks that were used to create larger triruthenium molecules. Most notable of these was bis(4,4’-dicarboxy-2,2’-bipyridine)(2,2’-bipyrimidine)ruthenium(II) hexafluorophosphate. The two 4,4’-dicarboxy-2,2’-bipyridine ligands allow strong attachment of the complex to TiO₂ and the 2,2’-bipyrimidine ligand allows for additional ruthenium centers to be attached.

The third chapter describes the creation of a series of triruthenium complexes. Initially, an unsuccessful combinatorial synthesis was attempted using TiO₂ as a stationary phase. Afterwards, a series of triruthenium complexes were made using the mono- and diruthenium building blocks previously made. None of the complexes synthesized had a near-IR absorption in their mixed-valence state.
The fourth chapter describes the synthesis of a cyclometalated diruthenium complex made using 2,3,5,6-tetra-(2-pyridyl)pyridine as a bridging ligand. A strong mixed-valence near-IR absorbance was seen at 1370 nm.

The fifth chapter describes the fabrication of dye-sensitized solar cells and the photovoltaic results obtained using the dyes from chapters two through four. The solar cells tested had efficiencies of 0.3% to 0.7%. However, no current was generated from photons in the near-IR region.
Synthesis of heteroaromatic ruthenium dyes for use as electron reservoirs in dye-sensitized solar cells

by

Andrew D. Basner

B.S., Indiana University-Purdue University of Indianapolis, 2007

Dissertation
Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry.

Syracuse University
May 2017
ACKNOWLEDGEMENTS

I would like to thank everyone who has helped me throughout my years at Syracuse University. First and foremost, I would like to thank Dr. Sponsler for being my research advisor. His guidance and wisdom has helped me out immensely. Without him, I would not be here today.

I would also like to thank my lab member and friends who have helped me over the years. Thank you to Amanda Lashua who I had numerous discussions and long evenings with. Thank you to Chris Petrelli and Casey Simons, who helped me stay sane while I was in graduate school. Without our hundreds of long nights playing Settlers and Infiltration, I would have gone insane.

I would also like to thank Dr. Luk and Timothy LaBreche. Their support and guidance during the I-Corps program was invaluable. I would also like to thank Dr. Totah, Dr. Kallmerten, and Dr. Spencer for being on my committee.

Finally, I would like to thank my Family for their love and support throughout the years and for always pushing me to try and achieve great things.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Title Page</td>
<td>iii</td>
</tr>
<tr>
<td>Copyright notice</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Schemes</td>
<td>xix</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xx</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xxi</td>
</tr>
<tr>
<td>List of Compounds</td>
<td>xxii</td>
</tr>
<tr>
<td>1 Introduction to solar energy, dye-sensitized solar cells, and electronic reservoirs</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Current industry standards and types of solar cells</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1 Shockley-Queisser limit of solar cells</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Dye-sensitized solar cells</td>
<td>7</td>
</tr>
<tr>
<td>1.3.1 Advantages of dye-sensitized solar cells</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2 Disadvantages of dye-sensitized solar cells</td>
<td>11</td>
</tr>
<tr>
<td>1.4 Third generation solar cells</td>
<td>12</td>
</tr>
<tr>
<td>1.4.1 Multi-junction solar cells</td>
<td>13</td>
</tr>
<tr>
<td>1.4.2 Hot carrier solar cells</td>
<td>14</td>
</tr>
<tr>
<td>1.4.3 Multiple exciton per photon solar cells</td>
<td>15</td>
</tr>
</tbody>
</table>
1.4.4 Multiband solar cells

1.5 Reservoir Model

1.6 Mixed-valence complexes and systems
 1.6.1 Proposed mechanism for a triruthenium electron reservoir

2 Synthesis and characterization of mono and diruthenium polypyridine complexes for
 use in dye-sensitized solar cell
 2.1 Introduction
 2.1.1 Bridging ligands
 2.1.1.1 TPPZ
 2.1.1.2 BIM
 2.1.1.3 BPM
 2.1.2 Terminal ligands
 2.2 Target complexes
 2.2.1 Building blocks needed to make bis-TPPZ bridged complexes
 2.2.2 Building blocks needed to make bis-BIM bridged complexes
 2.2.3 Building blocks needed to make bis-BPM bridged complexes
 2.2.4 Building blocks needed to make BPM and TPPZ bridged complexes
 2.3 Experimental Data
 2.3.1 Synthesis of 4,4’-dihydroxy-2,2’-bipyridine, DHBPY
 2.3.2 Synthesis of tris(4,4’-dihydroxy-2,2’-bpyridine)ruthenium(II) chloride, 1
 2.3.3 Synthesis of 2,2’-dicarboxy-4,4’-bpyridine, DCBPY
2.3.4 Synthesis of bis(4,4’-dicarboxy-2,2’-bipyridine)dichlororuthenium(II), 2
2.3.5 Synthesis of 4,4’-dicarboethoxy-2,2’-bipyridine, DEBPY 44
2.3.6 Synthesis of bis(4,4’-dicarboethoxy-2,2’-bipyridine)dichlororuthenium(II), 3
2.3.7 Synthesis of tetrachloro(2,2’-bipyridine)ruthenium(IV), 4
2.3.8 Synthesis of bis(2,2’-biimidazole)(2,2’-bipyridine)ruthenium(II) hexafluorophosphate, 5
2.3.9 Synthesis of (2,2’-bipyridine)bis(2,2’bipyrimidine)ruthenium(II) hexafluorophosphate, 6
2.3.10 Synthesis of (2,2’-biimidazole)bis(2,2’-bipyridine)ruthenium(II) hexafluorophosphate, 7
2.3.11 Synthesis of bis(2,2’-bipyridine)(2,2’-bipyrimidine)ruthenium(II) hexafluorophosphate, 8
2.3.12 Synthesis of 2,2’-biimidazole, BIM-H₂ 49
2.3.13 Synthesis of dichlorobis(2,2’-bipyridine)ruthenium(II), 9
2.3.14 Synthesis of bis(4,4’-dicarboxy-2,2’-bipyridine)(2,2’-bipyrimidine)ruthenium(II) hexafluorophosphate, 10
2.3.15 Synthesis of bis(4,4’-dicarboxy-2,2’-bipyridine)diisothiocyanateruthenium(II), N₃ 52
2.3.16 Synthesis of bis(bis(2,2’-bipyridine)ruthenium(II))-µ-(2,2’-biimidazole) hexafluorophosphate, 11
53
2.3.17 Synthesis of bis(bis(2,2’-bipyridine)ruthenium(II))-µ-(2,2’-bipyrimidine) hexafluorophosphate, 12
2.3.18 Synthesis of (4,4’-dihydroxy-2,2’-bipyrimidine)bis(2,2’-bipyridine)ruthenium(II) hexafluorophosphate, 13
2.3.19 Synthesis of bis(2,3,5,6-tetra-(2-pyridyl)pyrazine)ruthenium(II) hexafluorophosphate 14
2.3.20 Synthesis of bis(trichlororuthenium(III))-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine), 15
2.3.21 Synthesis of tetrabutylammonium bis(trichlororuthenium(III))-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine), 16
2.3.22 Synthesis of bis(triisothiocyanateruthenium(III))-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine), 17

2.4 Results and Discussion
2.5 Conclusions

3 Synthesis and characterization of triruthenium complexes and testing combinatorial synthesis on TiO₂

3.1 Introduction
3.1.1 Triruthenium target molecules

3.2 Experimental
3.2.1 Synthesis of bis(2,2’-bipyridine)ruthenium(II)-µ-(2,2’-bipyrimidine)chlororuthenium(III)-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine)trichlororuthenium(III) hexafluorophosphate, 18
3.2.2 Synthesis of bis(2,2’-bipyridine)ruthenium(II)-µ-(2,2’-bipyrimidine)chlororuthenium(III)-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine)chboro(4,4’-dihydroxy-2,2’-bipyridine)ruthenium(III) hexafluorophosphate, 19

3.2.3 Synthesis of bis(2,2’-bipyridine)ruthenium(II)-µ-(2,2’-bipyrimidine)chlororuthenium(III)-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine)chloro(4,4’-dicarboethoxy-2,2’-bipyridine)ruthenium(III) hexafluorophosphate, 20

3.2.4 Synthesis of bis(4,4’-dicarboxy-2,2’-bipyridine)ruthenium(II)-µ-(2,2’-bipyrimidine)isothiocyanateruthenium(III)-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine)triisothiocyanateruthenium(III) hexafluorophosphate, 21

3.2.5 Synthesis of bis(trichlororuthenium(III)-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine))ruthenium(II) hexafluorophosphate, 22

3.2.6 Synthesis of bis(bis(2,2’-bipyridine)ruthenium(II)-µ-(2,2’-bipyrimidine))(2,2’-bipyridine)ruthenium(II) hexafluorophosphate, 23

3.2.7 Synthesis of bis(bis(4,4’-dicarboethoxy-2,2’-bipyridine)ruthenium(II)-µ-(2,2’-bipyrimidine))(2,2’-bipyridine)ruthenium(II) hexafluorophosphate, 24

3.2.8 Synthesis of [bis(bis(2,2’-bipyridine)ruthenium(II)-µ-(2,2’-biimidazole))(2,2’-bipyridine)ruthenium(II) hexafluorophosphate, 25
3.2.9 Synthesis of [bis(bis(4,4’-dicarboethoxy-2,2’-bipyridine)ruthenium(II)-\(\mu\)-(2,2’-biimidazole))(2,2’-bipyridine)ruthenium(II)] hexafluorophosphate, \textbf{26} 93

3.3 Results and Discussion 94

3.3.1 Combinatorial synthesis of triruthenium complexes on TiO\(_2\). 94

3.3.2 Solution phase synthesis of triruthenium complexes 100

3.3.3 Elemental analysis of triruthenium complexes 104

3.3.4 UV-Vis and ceric ammonium nitrate oxidation spectral data 105

3.4 Conclusion 113

4 Synthesis and characterization of an asymmetric cyclometalated diruthenium complex 114

4.1 Introduction 115

4.2 Experimental 118

4.2.1 Synthesis of 2,6-diamino-3,5-dibromopyridine, \textbf{27} 118

4.2.2 Synthesis of 2,3,5,6-tetrabromopyrididine, \textbf{28} 119

4.2.3 Synthesis of 2,3,5,6–tetra-(2-pyridyl)pyridine, TPPY 120

4.2.4 Synthesis of trichloro-2,2’;6’;2”-terpyridineruthenium, \textbf{29} 121

4.2.5 Synthesis of bis(2,2’;6’;2”-terpyridineruthenium)-\(\mu\)-2,3,5,6-tetra-(2-pyridyl)pyridine, \textbf{30} 122

4.3 Results and Discussion 123

4.3.1 Ceric ammonium nitrate oxidation 126

4.3.2 Electrochemical studies 128

4.4 Conclusions 130
The fabrication and testing of dye-sensitized solar cells using mono-, di-, and triruthenium polypyridine complexes as dyes.

5.1 Introduction

5.2 Experimental

5.2.1 TiO$_2$ electrode preparation method

5.2.2 Electrolyte for the solar cell

5.2.3 Counter electrode for solar cell

5.2.4 Assembly and testing of Solar Cells

5.3 Results and Discussion

5.3.1 Solar cell data of standards N3 and Black Dye

5.3.2 Solar cell data of TPPZ bridged and bis-TPPZ bridged complexes

5.3.3 Solar cell data of BIM bridged and bis-BIM bridged complexes

5.3.4 Solar cell data of BPM bridged and bis-BPM bridged complexes

5.3.5 Solar cell data of mixed bridged complexes

5.3.6 Solar cell data of TPY capped TPPZ and TPPY bridged complexes

5.3.7 Summary of current density and power plots

5.3.8 Solar cell data using filters to block light above 1200 nm.

5.4 Conclusions

6 Appendix

6.1 Chapter 2 spectra

6.1.1 1H NMR of 4

6.1.2 1H NMR of 1

6.1.3 1H NMR of N3
6.1.4 1H NMR of 10
6.1.5 1H NMR of 5
6.1.6 1H NMR of 6
6.1.7 1H NMR of 7
6.1.8 1H NMR of 8
6.1.9 1H NMR of 11
6.1.10 1H NMR of 12
6.1.11 1H-1H COSY of 12
6.1.12 1H NMR of 13

6.2 Chapter 3 spectra
6.2.1 1H NMR of 18
6.2.2 1H NMR of 19
6.2.3 1H NMR of 20
6.2.4 1H NMR of 23
6.2.5 1H NMR of 24
6.2.6 1H NMR of 25
6.2.7 1H NMR of 26

6.3 Chapter 4 spectra
6.3.1 1H NMR of 28
6.3.2 13C NMR of 28
6.3.3 1H NMR of TPPY
6.3.4 13C NMR of TPPY
6.3.5 1H-1H COSY of TPPY
6.3.6 \(^1\)H NMR of 30

6.3.7 \(^1\)H-\(^1\)H COSY of 30

6.4 Crystallography files

6.4.1 Crystal data and structure refinement for TPPY

7 Bibliography

7.1 Chapter 1 References

7.2 Chapter 2 References

7.3 Chapter 3 References

7.4 Chapter 4 References

7.5 Chapter 5 References

Vita

LIST OF FIGURES

1-1 A comparison of the available energy per year of renewable resources to the total available energy of non-renewable sources. 3

1-2 Number of journal articles on solar energy per year. Data obtained by searching SciFinder with search term Solar Energy, and refining by year and limiting the search to journal articles, produced on Feb 24, 2014. 4

1-3 The basic operating principles of a dye-sensitized solar cell. 8

1-4 A trimeric ruthenium dye used in the first successful dye-sensitized solar cell, N3, and Black Dye. 9

1-5 This figure illustrates some interesting applications of dye-sensitized solar cells. The top left picture is a fan powered by a dye-sensitized solar cell, the top right picture
displays several dye-sensitized solar cells in the shapes of leaves. These leaves power
the butterflies shown in the bottom picture.

1-6 A solar energy spectrum.

1-7 A simple illustration of a multi-junction solar cell.

1-8 A sample illustration of a multiband gap solar cell.

1-9 The left figure illustrates a normal dye-sensitized solar cell and the figure on the right
illustrates a simple approach to an electron reservoir.

1-10 The Creutz-Taube ion.

1-11 Proposed mechanism for a triruthenium electron reservoir.

1-12 Electron transfer time frames in dye-sensitized solar cells.

2-1 Generic triruthenium structure.

2-2 Bridging ligands TPPZ, BIM, and BPM.

2-3 Imidazole, BIM dianion, and BIM dication.

2-4 Terminal ligands BPY and TPY.

2-5 Attaching ligand DHBPY.

2-6 Illustration of triruthenium complex using two TPPZ bridges.

2-7 Illustration of complex using two BIM bridges.

2-8 Illustration of triruthenium complex using two BPM bridges.

2-9 Illustration of triruthenium complex using one TPPZ bridge and one BPM bridge.

2-10 Bis-TPPZ ion, [(TPPZ)₂Ru]²⁺.

2-11 Potential triruthenium complexes that could be made with [(TPPZ)₂Ru]²⁺.

2-12 Bis-BIM ion, [BIM₂RuBPY]²⁺.

2-13 Potential triruthenium complexes that could be made with [BIM₂RuBPY]²⁺.
2-14 Bis-BPM ion, [BPM$_2$RuBPY]$^{2+}$.

2-15 Potential triruthenium complexes that could be made with [BPM$_2$RuBPY]$^{2+}$.

2-16 Two building blocks, [BPy$_2$RuBPM]$^{2+}$ and 15 needed to make mixed bridge triruthenium complexes.

2-17 Potential mixed bridge triruthenium complexes.

2-18 Building block with bis-DCBPY attaching groups, [(DCBPY)$_2$Ru(BPM)]$^{2+}$.

2-19 Potential mixed bridge triruthenium complex made with [(DCBPY)$_2$Ru(BPM)]$^{2+}$.

2-20 Illustration of hydrogen interactions in 2.

2-21 Illustration of a deprotonated 10 with tetrabutylammonium ion counter ions.

2-22 COSY analysis of BPM ligand in 10.

2-23 COSY analysis of DCBPY ligand in 10.

3-1 Water exchange rate constants (k) and mean lifetime (τ) in the first coordination sphere of metal ions at 25 °C.

3-2 A triruthenium macrocycle made via dynamic combinatorial chemistry.

3-3 Generic diagram of a combinatorial chemistry procedure on TiO$_2$.

3-4 Potential triruthenium targets with a TPPZ and BPM bridge and the attaching ligand closer to the TPPZ bridge.

3-5 Potential triruthenium targets with a TPPZ and BPM bridge and the attaching ligands closer to the BPM bridge.

3-6 Potential triruthenium targets with two BIM bridges.

3-7 Potential triruthenium targets with two BPM bridges.

3-8 Potential triruthenium targets with two TPPZ bridges.

3-9 The UV-Vis spectra of the reactants and products involved in the synthesis of 18.
3-10 The UV-Vis spectra of 18, 19, and 20.
3-11 Solid state UV-Vis of the first attempt at combinatorial synthesis of 19 on TiO₂.
3-12 Solid state UV-Vis of the second attempt at combinatorial synthesis of 19 on TiO₂.
3-13 CAN titration of 11.
3-14 CAN titration of 25.
3-16 CAN titration of 12.
3-17 CAN titration of 23.
3-18 CAN titration of 24.
3-19 CAN titration of 16.
3-20 CAN titration of 22.
3-21 CAN titration of 19.
3-22 CAN titration of 20.
3-23 CAN titration of 21.
4-1 A cyclometalated version of N3, bis(4,4’-dicarboxy-2,2’-bipyridine)-2-(2,4-difluorophenyl)pyridine ruthenium (II).
4-2 Counterclockwise from top left, TPPZ, TPB, TPY-TBY, and TPY-TPY.
4-3 2,3,5,6-tetra-(2-pyridyl)pyridine, TPPY.
4-4 Crystal structure of TPPY.
4-5 CAN oxidation of 30, 0 to 1 eq.
4-6 CAN oxidation of 30, 1 to 3 eq.
4-7 CV scan of 30 from -2.5 V to 2.5 V, scan rate of 0.1 V/s, and performed vs Ag/AgCl.
4-8 CV scan of 30 from 0-1.5 V.
5-1 Sample I^V and Power Curve. 133
5-2 Sample dark current plot. 135
5-3 Current density and power plots for N3. 140
5-4 Dark current and dark current log plot for N3. 140
5-5 Current density and power plots for Black Dye. 141
5-6 Dark current and dark current log plot for Black Dye. 141
5-7 An example of increasing series resistance. 143
5-8 An example of increasing parallel (shunt) resistance. 144
5-9 Current density and power plots for 15. 145
5-10 Current density and power plots for 17. 146
5-11 Current density and power plots for 22. 146
5-12 Current density and power plots for 11. 148
5-13 Current density and power plots for 25. 148
5-14 Current density and power plots for 26. 149
5-15 Current density and power plots for 12. 150
5-16 Current density and power plots for 23. 151
5-17 Current density and power plots for 24. 151
5-18 Current density and power plots for 19. 153
5-19 Current density and power plots for 20. 153
5-20 Current density and power plots for 21. 154
5-21 Current density and power plots for $([(TPY)Ru(TPPZ)](PF_6)_4)$. 155
5-22 Current density and power plots for 30. 156
5-23 Dendrimer ruthenium complexes, with either a carbomethoxy or carboxy attaching ligand.

5-24 Bis-bipyridine complexes with efficiencies of 0.009, 0.033, and 0.051%.

5-25 A cyclometalated diruthenium complex with an efficiency of 1.13%.

5-26 Absorption pattern of light filters.

5-27 Current density and power plots for 30 with filters

LIST OF SCHEMES

2-1 Synthesis of 1. 60
2-2 Synthesis of (DHBPY)$_2$OsCl$_2$. 61
2-3 Synthesis of 2. 62
2-4 Synthesis of 3. 63
2-5 Synthesis of 4. 64
2-6 Synthesis of BIM-H$_2$. 65
2-7 Synthesis of 9. 65
2-8 Synthesis of 10. 66
2-9 Synthesis of N3. 70
2-10 Synthesis of 4. 70
2-11 Synthesis of 6. 71
2-12 Synthesis of 7. 72
2-13 Synthesis of 8. 72
2-14 Synthesis of 11. 73
2-15 Synthesis of 12. 73
2-16 Synthesis of 13. 74
2-17 Synthesis of 14. 75
2-18 Synthesis of 15, 16, and 17. 76
3-1 Synthesis of 18. 94
3-2 Synthesis of 19 and 20. 95
3-3 Synthesis of 21. 101
3-4 Synthesis of 22. 102
3-5 Synthesis of 23 and 24. 103
3-6 Synthesis of 25 and 26. 104
4-1 Synthesis of TPPY. 123
4-2 Synthesis of 30. 125

LIST OF TABLES

3-1 Elemental analysis of triruthenium complexes. 105
5-1 Solar data for N3 and Black Dye. 139
5-2 Solar data for the TPPZ bridged and bis-TPPZ bridged compounds. 145
5-3 Solar cell data for the BIM bridged and bis-BIM bridged compounds. 147
5-4 Solar cell data for the BPM bridged and bis-BPM bridged compounds. 150
5-5 Solar cell data for the mixed TPPZ and BPM bridged compounds. 152
5-6 Solar cell data for the TPY capped TPPZ and TPPY bridged complexes. 155
5-7 Comparison of current with and without light filter. 160
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPY</td>
<td>2,2’-bipyridine</td>
</tr>
<tr>
<td>BPM</td>
<td>2,2’-bipyrimidine</td>
</tr>
<tr>
<td>BPM</td>
<td>2,2’-bipyrimidine dication</td>
</tr>
<tr>
<td>BIM</td>
<td>2,2’-biimidazole dianion</td>
</tr>
<tr>
<td>BIM-H₂</td>
<td>2,2’-biimidazole</td>
</tr>
<tr>
<td>TPY</td>
<td>2,2’:6’,2”-terpyridine</td>
</tr>
<tr>
<td>TPPZ</td>
<td>2,3,5,6-tetra-(2-pyridyl)pyrazine</td>
</tr>
<tr>
<td>TPPY</td>
<td>2,3,5,6-tetra-(2-pyridyl)pyridine</td>
</tr>
<tr>
<td>TPB</td>
<td>2,3,5,6-tetra-(2-pyridyl)benzene</td>
</tr>
<tr>
<td>TPY-TPY</td>
<td>6’,6”-di(2-pyridyl)-2,2’:4’,4”:2”’,2”’-quaterpyridine</td>
</tr>
<tr>
<td>TPY-TBY</td>
<td>4’-(3,5-dipyridylphenyl)-2,2’:6’,2”-terpyridine</td>
</tr>
<tr>
<td>DHBPY</td>
<td>4,4’-dihydroxy-2,2’-bipyridine</td>
</tr>
<tr>
<td>DCBPy</td>
<td>4,4’-dicarboxy-2,2’-bipyridine</td>
</tr>
<tr>
<td>DEBPY</td>
<td>4,4’-dicarboxethoxy-2,2’-bipyridine</td>
</tr>
<tr>
<td>TBA</td>
<td>tetrabutylammonium</td>
</tr>
<tr>
<td>TCO</td>
<td>transparent conducting oxide</td>
</tr>
<tr>
<td>ITO</td>
<td>indium tin oxide</td>
</tr>
<tr>
<td>FTO</td>
<td>fluorine doped tin oxide</td>
</tr>
<tr>
<td>MLCT</td>
<td>metal-to-ligand charge transfer</td>
</tr>
<tr>
<td>MMCT</td>
<td>metal-to-metal charge transfer</td>
</tr>
<tr>
<td>DSSC</td>
<td>dye-sensitized solar cells</td>
</tr>
<tr>
<td>N3</td>
<td>cis-bis(isothiocyanate)-bis(2,2’-bipyridyl-4,4’-dicarboxyruthenium(II)</td>
</tr>
</tbody>
</table>
Black Dye tris(isothiocyanate)-4,4’,4”-tricarboxy-2,2’:6’,2”-terpyridineruthenium(III)
NIR near-IR
CAN ceric ammonium nitrate
CV cyclic voltammetry
V_{oc} open-circuit voltage
I_{sc} short-circuit current
P_{max} max Power
V_{max} max voltage
I_{max} max current
FF Fill factor
η Efficiency
J_{sc} short-circuit current density
J_{max} max current density
IF ideality factor
DCS dark current saturation

LIST OF COMPOUNDS

1 tris(4,4’-dihydroxy-2,2’-bypridine)ruthenium(II) chloride
2 bis(4,4’-dicarboxy-2,2’-bipyridine)dichlororuthenium(II)
3 bis(4,4’-dicarboethoxy-2,2’-bipyridine)dichlororuthenium(II)
4 tetrachloro(2,2’-bipyridine)ruthenium(IV)
5 bis(2,2’-biimidazole)(2,2’-bipridine)ruthenium(II) hexafluorophosphate
6 (2,2’-bipyridine)bis(2,2’bipyrimidine)ruthenium(II) hexafluorophosphate
7. (2,2’-biimidazole)bis(2,2’-bipyridine)ruthenium(II) hexafluorophosphate
8. bis(2,2’-bipyridine)(2,2’-bipyrimidine)ruthenium(II) hexafluorophosphate
9. dichlorobis(2,2’-bipyridine)ruthenium(II)
10. bis(4,4’-dicarboxy-2,2’-bipyridine)(2,2’-bipyrimidine)ruthenium(II) hexafluorophosphate
11. bis(bis(2,2’-bipyridine)ruthenium(II))-µ-(2,2’-biimidazole) hexafluorophosphate
12. bis(bis(2,2’-bipyridine)ruthenium(II))-µ-(2,2’-bipyrimidine) hexafluorophosphate
13. (4,4’-dihydroxy-2,2’-bipyrimidine)bis(2,2’-bipyridine) ruthenium(II)
 hexafluorophosphate
14. bis(2,3,5,6-tetra-(2-pyridyl)pyrazine)ruthenium(II) hexafluorophosphate
15. bis(trichlororuthenium(III))-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine)
16. tetrabutylammonium bis(trichlororuthenium(III))-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine)
17. bis(triisothiocyanateruthenium(III))-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine)
18. bis(2,2’-bipyridine)ruthenium(II)-µ-(2,2’-bipyrimidine)chlororuthenium(III)-µ-(2,3,5,6-
 tetra-(2-pyridyl)pyrazine)trichlororuthenium(III) hexafluorophosphate
19. bis(2,2’-bipyridine)ruthenium(II)-µ-(2,2’-bipyrimidine)chlororuthenium(III)-µ-(2,3,5,6-
 tetra-(2-pyridyl)pyrazine)chloro(4,4’-dihydroxy-2,2’-bipyridine)ruthenium(III)
 hexafluorophosphate
20. bis(2,2’-bipyridine)ruthenium(II)-µ-(2,2’-bipyrimidine)chlororuthenium(III)-µ-(2,3,5,6-
 tetra-(2-pyridyl)pyrazine)chloro(4,4’-dicarboxethoxy-2,2’-bipyridine)ruthenium(III)
 hexafluorophosphate
21. bis(4,4’-dicarboxy-2,2’-bipyridine)ruthenium(II)-µ-(2,2’-
 bipyrimidine)isothiocyanateruthenium(III)-µ-(2,3,5,6-tetra-(2-
 pyridyl)pyrazine)triisothiocyanateruthenium(III) hexafluorophosphate

xxiii
22 \(\text{bis(trichlororuthenium(III))-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine))ruthenium(II)}\) hexafluorophosphate

23 \(\text{bis(bis(2,2'-bipyridine)ruthenium(II)-µ-(2,2'-bipyrimidine))(2,2'-bipyridine)ruthenium(II) hexafluorophosphate}\)

24 \(\text{bis(bis(4,4'-dicarboethoxy-2,2'-bipyridine)ruthenium(II)-µ-(2,2'-bipyrimidine))(2,2'-bipyridine)ruthenium(II) hexafluorophosphate}\)

25 \(\text{bis(bis(2,2'-bipyridine)ruthenium(II)-µ-(2,2'-biimidazole))(2,2'-bipyridine)ruthenium(II) hexafluorophosphate}\)

26 \(\text{bis(bis(4,4'-dicarboethoxy-2,2'-bipyridine)ruthenium(II)-µ-(2,2'-biimidazole))(2,2'-bipyridine)ruthenium(II) hexafluorophosphate}\)

27 2,6-diamino-3,5-dibromopyridine

28 2,3,5,6-tetrabromopyridine

29 trichloro-2,2';6',2''-terpyridineruthenium

30 \(\text{bis(2,2';6',2''-terpyridineruthenium)-µ-2,3,5,6-tetra-(2-pyridyl)pyridine}\)
Chapter 1

Introduction to solar energy, dye-sensitized solar cells, and electronic reservoirs.
1.1 Introduction

The demand for renewable energy has increased dramatically in recent years. It is estimated that around 19% of final energy consumption in 2011 was a result of renewable energy sources, with around 26% of that energy coming from photovoltaics, often referred to as solar cells.\(^1\) From 2010 to 2012, the global energy coming from solar cells increased from 40 GW to 100 GW.\(^1\) One of the reasons for the interest in solar energy is that solar energy offers the greatest possible total energy coming from renewable energy. In Figure 1-1, a graphical representation of the maximum possible energy available in a variety of renewable sources is listed in TW/year and this is compared with the total remaining TW of energy from non-renewable sources.\(^1,2\) The abundance of potential solar energy is one of the driving forces for solar cell research. It is estimated that if only 0.4% of the solid land area of Earth's land was covered by solar cells it would be enough to meet current global energy demands.\(^3\)
Because of the importance of solar energy research in meeting future energy demands, research on solar cell fabrication and development has also increased dramatically. The number of annual publications on solar energy has steadily increased since 1993 as seen in Figure 1-2. During this time, the overall price of solar energy has decreased, with the price of solar energy dropping from $76.67/watt in 1977 to $0.74/watt in 2013.4
1.2 Current industry standards and types of solar cells

Currently in the market, 90% of solar cells are crystalline silicon based. The large abundance of silicon in the Earth’s crust as well as the overall efficiency of silicon photovoltaics help make crystalline silicon solar cells the industry standard. While they are effective as solar cells, single crystal solar cells have maximum efficiency of 25% (14% for commercial units), which lies quite far below the theoretical maximum of around 33% for single junction, single band gap solar cells. Section 1.2.1 gives a more detailed treatment of the Shockley-Queisser limit. Current efforts to improve the efficiency or cost of the solar cells include reducing the amount of semiconductor used, using less expensive semiconductors, improving manufacturing conditions, increasing photon flux, and extending the usable band gap.
Making cells thinner, without having a dramatic effect on efficiency, would reduce the cost/energy output ratio. To this end, thin film solar cell technology has been an extensively studied field. Thin films have been made from a variety of materials including amorphous silica (a-Si), copper indium gallium diselenide (Cu(InGa)Se₂, CIGS), cadmium telluride (CdTe), and dye-sensitized solar cells. These solar cells are considered 2nd generation solar cells, with 1st generation cells being those made of crystalline silicon.

It is also possible to use less expensive or less pure semiconductors, which lowers the overall cost of the cell at the expense of efficiency. Multicrystalline solar cells currently have a lower maximum efficiency (20% maximum, 12% commercial) and only a slightly lower cost/power output ratio. Dye-sensitized solar cells also fall under this category, as the TiO₂ semiconductor traditionally used is significantly cheaper than silicon.

Efforts towards increasing efficiency and simplicity of the manufacturing process also play a vital role. Reducing the number of quality control rejected cells as well as reduction of overall waste can help lower the overall cost of solar energy.

Research is also being performed to investigate ways to increase solar flux on a cell. This is done by a solar concentrator, which focuses light into an area occupied by a solar cell. While these have been effective in increasing solar efficiency, they add to the complexity to the system.
1.2.1 Shockley-Queisser limit of solar cells.

In 1961, William Shockley and Hans Queisser published a paper on the theoretical limits of solar energy conversion for silicon solar cells with a band gap of 1.1 eV. The Shockley-Queisser limit, as it has become to be known thereafter, deals with several assumptions that govern the overall limit of the efficiency. The assumptions are as follows:

1. There is one p-n junction per cell.
2. There is only one semiconductor present.
3. The sunlight is not concentrated, or at one sun.
4. For photons with energy in excess of the band gap the excess energy is lost as heat.
5. Photons with energy below the band gap are not strong enough to produce photocurrent.
6. Electron hole recombination is an inevitability.
7. Blackbody radiation of the cell will cause inevitable efficiency loss.
8. Each photon can only excite one electron.

For silicon solar cells with a band gap of 1.1 eV, energy losses due to the fourth assumption account for around 33% energy loss. Photons below the band gap of 1.1 eV account for another 19% loss of efficiency. Combined, this accounts for around 52% loss of efficiency due to photon wavelength issues. Blackbody radiation let off by the cell at operating temperatures accounts for another 7% loss of efficiency. Electron-hole recombination accounts for another 10-11% loss of efficiency as well. Shockley and Queisser had an initial efficiency limit around 30% listed for silicon cells with a band gap of 1.1 eV and predicted that maximum efficiencies could be achieved with cells with band gaps around 1.1-1.5 eV, with a predicted maximum efficiency around 33.7% for a solar cell with a band gap of around 1.4 eV. Their
analysis showed that silicon has nearly the optimum band gap for a single-semiconductor solar cell. The Shockley-Queisser limit has since served as an efficiency benchmark for single-semiconductor solar cells and has inspired several strategies to overcome the limitations of these cells. Some of these strategies will be discussed in section 1.4.

1.3 Dye-sensitized solar cells

Dye-sensitized solar cells are photovoltaic cells that use a wide band gap semiconductor to produce photocurrent. A simple illustration of this process is seen in Figure 1-3. While titanium dioxide, TiO$_2$, is typically the semiconductor of choice, zinc oxide, ZnO, and tin oxide, SnO$_2$, are often used as well. All semiconductors have a band gap, which is the difference between the ground or valence state for all of the electrons, and the conduction band, where electrons are free of their outer most orbital and are allowed to flow freely. TiO$_2$ has a band gap of 3.2 eV, which is quite large and only capable of directly harvesting high-energy photons for use as electricity. In order to utilize a larger portion of the solar spectrum in dye-sensitized solar cells, a dye is attached to the semiconductor. The ground state for the dye falls in between the valence band and the conduction band of the semiconductor. When a photon hits the dye, an electron is excited in the dye and is then injected into the conduction band of the semiconductor. This effectively lowers the band gap by increasing the ground state of the electron that is injected into the conduction band. This electron would then flow through an external circuit and back to a counter electrode. The semiconductor is attached to a piece of glass with a transparent conducting oxide (TCO) layer. This TCO layer is typically either indium tin oxide (ITO) or fluorine doped tin oxide (FTO). The counter electrode is also a TCO layered piece of glass with
a layer of platinum deposited on it. An electrolyte solution, consisting of mainly I$_2$/I$_3^-$ in acetonitrile, reduces the dye back to its ground state.

Figure 1-3: The basic operating principles of a dye-sensitized solar cell.

In 1991, O’Regan and Grätzel reported the first instance of an efficient dye-sensitized solar cell using the ruthenium dyes in Figure 1-4.14,15 Efficiencies of 7.1-7.9% were reported. Not long after, a cell was made with the now industry standard, N3, giving an efficiency of 10.4%.16 A few years following this, another cell using another current industry standard dye, **Black Dye**, reported an efficiency of 10.4%.17 This maximum was maintained until it was broken by Grätzel in 2013 when he obtained an efficiency of 15% using a perovskite-sensitized solar cell. In these cells, a PbI$_2$ solution was coated onto the TiO$_2$ followed by addition of CH$_3$NH$_3$I which resulted in a TiO$_2$ layer coated with CH$_3$NH$_3$PbI$_3$. The electrolyte was also
replaced with a solid electrolyte system of \(2,2',7,7'-\text{tetrakis}(N,N\text{-di-p-methoxyphenylamine})\)-9,9′-spirobifluorene.\(^{20}\)

Figure 1-4: A trimeric ruthenium dye used in the first successful dye-sensitized solar cell, **N3**, and **Black Dye**.

1.3.1 Advantages of dye-sensitized solar cells

Dye sensitized solar cells offer many advantages over traditional silicon based solar cells. The materials used in the construction of the cell are significantly cheaper than those in silicon solar cells. While the ruthenium is more expensive, very low quantities are needed. Another large part of the lower cost comes from the ease of assembly of these types solar cells. In fact, there are several kits anyone can buy to build their own and these have often been employed as laboratory exercises for high school or entry level college courses. Dye-sensitized solar cells can be made largely transparent and exhibit a wide variety of colors depending on the choice of dye, and these have seen interesting applications in building materials and colored glass. Figure 1.5 shows a few examples of interesting dye-sensitized solar cell applications.\(^{18}\) Flexible TiO\(_2\) coated polymers and metal foil substrates have also been employed to make flexible solar panels, a technology unavailable to other types of solar cells.\(^{19}\)
Figure 1-5: This figure illustrates some interesting applications of dye-sensitized solar cells.

The top left picture is a fan powered by a dye-sensitized solar cell, the top right picture displays several dye-sensitized solar cells in the shapes of leaves. These leaves power the butterflies shown in the bottom picture.
Disadvantages of dye-sensitized solar cells

One major disadvantage of dye-sensitized solar cells includes lower overall efficiency. Until recently, the max efficiency of a cell made using N3 was 10.4% until, Grätzel broke this barrier with the perovskite based dye-sensitized solar cell with an efficiency of 15%. These values are still far below those of traditional silicon solar cells however. There are also some issues with dye stability, which also limit overall efficiency. The isothiocyanate ligand tends to be somewhat labile and can cause problems with dye degradation. The liquid electrolyte solution also limits the range of usable temperatures. Although estimates place the overall operating time of a well made cell around 10000 h, the large scale commercialization of dye-sensitized solar cells will require much better long term stability of the dye and electrolyte solution.

Similar to silicon cells, one disadvantage of dye-sensitized solar cells is the overall wavelength range of absorption. While the best dyes absorb most available sunlight in the visible region, they no longer function in converting photons to current around the 800 nm mark. One study suggests that extending efficient photocurrent production to 920 nm would increase the efficiency from 11% to 14.2%. This cutoff is largely controlled by the energy gap between the TiO$_2$ conduction band and the ground state energy level of the dye. Ruthenium dyes have been extremely successful because the energy of the metal-to-ligand charge transfer (MLCT) absorption falls in the visible region of the spectrum. Once an electron is excited to the ligand, it is easily transferred to the conduction band of the TiO$_2$. Lower energy photons are not energetic enough to excite this transition and are therefore unable to convert sunlight to electricity in the current model of dye-sensitized solar cells. In Figure 1-6, a solar spectrum is presented.
Shockley-Queisser assumptions, it was estimated that 19% of the sun's energy is below the 1.1 eV threshold, which is a wavelength around 1127 nm.

Figure 1-6: A solar energy spectrum.²³

1.4 Third generation solar cells

Third generation solar cells are devices which find ways to utilize a larger portion of the electromagnetic spectrum for conversion of sunlight to electricity, effectively overcoming the Shockley-Queisser limit.²⁴,²⁵ Estimates suggest these solar cells have a theoretical maximum of around 93.3% efficiency if entropy loss could be reduced to near zero. There are several types of solar cells that fall under the category of third generation solar cells. These include tandem cells, hot carrier cells, multiple exciton per photon cells, and multiband cells.
1.4.1 Multi-junction solar cells

Multi-junction cells function by using multiple solar cells containing different band gaps. These are often stacked in order of decreasing band gap as seen in Figure 1-7. Photons that do not contain enough energy to bridge the band gap of the first cell pass through and hit another solar cell containing a semiconductor with a lower band gap. This can be repeated several times. Three-cell systems became commercially available in the late 1990s, were used as high performance cells for spacecraft, and employed high-efficiency III–V solar cells using gallium arsenide, gallium indium phosphide, and germanium. Lower cost thin-films have also been used as part of multi-junction solar cells for terrestrial applications using amorphous Si:Ge:H alloys as well as crystalline silicon. Multi-junction CdS quantum dot cells have also been reported. Estimates place the theoretical maximum efficiency of these cells at around 86.8% with the current maximum of 38.8% belonging to a GaAs/InP bonded cell.
1.4.2 Hot carrier solar cells

When the absorption of a photon with more energy than required by a solar cell occurs, an electron is excited to an energy level either higher than that of the conduction band or at the upper end of it. The electron quickly relaxes to the bottom of the conduction band and the excess energy is converted to thermal energy through lattice vibrations. Hot carrier solar cells seek to extract these hot electrons in the cell before they thermalize with the lattice.29, 30 As the relaxation time of hot electrons to the lower edge of the conduction band is on the order of
picoseconds, this process must occur quickly. One idea suggested to approach this problem is to create a bottleneck for phonon relaxation, allowing phonons time to give their energy back to electrons. Another common approach is to incorporate wide band gap semiconductors with narrow conduction and valence bands and to use very selective energy contacts to extract these cells. Research is largely theoretical and in the very early proof-of-concepts stages currently. Hot carrier cells discard one of the Shockley-Queisser assumptions, that excited electrons are at the lattice temperature. As a result, it is predicted that efficiencies of around 68% are possible with hot carrier cells.

1.4.3 Multiple exciton per photon solar cells

High-energy photons could be used to improve solar cell performance by creating two or more electron-hole pairs per incident photon. If a high-energy photon creates an electron-hole pair with enough energy, the excess energy can be given to the lattice and create a second electron-hole pair in the process. This would require a photon with energy at least twice that of the band gap. If a photon were three times the band gap, there would be the potential for formation of three electron-hole pairs. Experimentally, the measured increases in efficiencies due to this effect have been small. The competing processes of recombination and lattice vibrational relaxation are too efficient.

This approach discards another of the Shockley-Queisser assumptions, that a photon can only pump one electron. It is estimated that a multiple exciton cell with a band gap of 0.048 eV could have a maximum efficiency of 85.9%. A cell with a band gap of 0.76 eV could have a maximum efficiency of 43.6%.
1.4.4 Multiband solar cells

Multiband solar cells are solar cells that contain an energy state lying in-between the conduction and valence band to which a photon with an energy below the band gap can excite an electron. After absorption of a second photon, the electron would then be excited into the conduction band. This was initially suggested by using a host silicon semiconductor containing defects or impurities that cause intermediate bands to be present.35 It was initially thought that the presence of defects would enhance recombination, negating any benefits gained.36 It appeared that minor improvements could be made after additional analysis by Keeves, Green37 and Würfel.38 More recent theoretical work and calculations suggested very clear improvements could be achieved if cells could operate with little recombination.39
This approach disregards the Shockley-Queisser assumption that photons below the band gap are not absorbed. Based on calculations performed for silicon based solar cells with an impurity band 0.7 eV above the valence band of a cell with a 1.9 eV band gap, such a cell could have a maximum efficiency of 63.7%. The best multiband cell made to date is an erbium doped crystalline silicon solar cell which achieved an efficiency of 3.40% at a wavelength of 1523 nm. A multilayer DSSC made with a ytterbium and erbium doped LaF$_3$-TiO$_2$ composite attached to the back of a TiO$_2$ DSSC had an efficiency of 0.002% at 980 nm and another reported 0.2 mA/cm2 at of current at 980 nm and the efficiency was not reported.

1.5 Reservoir model for multiband dye sensitized solar cell

This dissertation proposes an electron reservoir to act as a holding place for an electron that is excited by a sub-band-gap photon. This is different from an impurity band silicon solar cell in that the intermediate holding place is located externally to the semiconductor material.
Dye-sensitized solar cells are often considered to be third generation solar cells in addition to second generation. The dye acts as the intermediate band in-between the valence and conduction band of the TiO$_2$ semiconductor. In many ways, the reservoir model is similar to the functioning of a dye-sensitized solar cell. In a dye-sensitized solar cell, the dye is the intermediate level and an electron from the dye goes through the circuit and is returned to the dye. If instead the dye were acting as a reservoir, an electron would be excited to the dye from either the TiO$_2$ or the dye itself, and then again to the conduction band, eventually returning to the semiconductor.

It is envisioned that a reservoir can be used to create an energy level between that of the dye and the conduction band of the TiO$_2$. An example is seen in Figure 1-9. The reservoir would be a holding place for an electron from the dye that is excited by a sub-band-gap photon until another sub-band-gap photon excited it again to the conduction band.

There are two different ways an electron reservoir can be envisioned while being incorporated into a dye-sensitized solar cell. It is possible that an external molecule or system can act as the reservoir, or there is the possibility of the dye acting as both the dye and reservoir itself. The first situation, where an external molecule acts as the reservoir, would look similar to the right diagram in Figure 1-9. The second situation, where the dye and reservoir act as one, would look similar to the left diagram in Figure 1-9, with the exception being that the dye is also the reservoir. One of the largest problems to overcome in either case is recombination of the excited electron with the electron hole before absorption of the second photon. In order to do this, intensity of light must be increased or the lifetime of the excited state must be extended. This will be discussed more in section 1.6.1. In this dissertation, it is proposed that a mixed-valence triruthenium complex can be used which acts as both a dye and an electron reservoir.
1.6 Mixed-valence complexes and systems

Mixed-valence compounds have been studied intensely due to their importance in understanding electron transfer processes. Multi-metal complexes exhibiting this intermetallic electronic coupling in mixed-valence states have been the subject of numerous reviews and they have seen a variety of uses in molecular electronics, bioinorganic chemistry, solar energy, and aerospace technology. The study of the Creutz-Taube ion...
has led to continued research in compounds that exhibit similar properties over the past forty-five years.61, 62, 63, 64, 65

Figure 1-10: The Creutz-Taube ion.

Mixed-valence compounds can be classified into three different Robin-Day classifications based on the work by M. B. Robin and P. Day.66 In Class I systems, the unpaired electron is localized on one of the metals in the compound. In Class II systems, the electron is localized, but with sufficient interaction between metal centers that the electron can be transferred from one site to another. In Class III systems, there is complete delocalization of the unpaired electron within the molecule. Robin-Day Class II compounds have characteristically strong near-IR metal-to-metal charge transfer (MMCT) peaks in their mixed valence states. The Creutz-Taube ion, a Class II molecule, exhibits a near-IR peak at 1570 nm.61 Because of the strong near-IR peak seen in these mixed-valence complexes, it is believed a mixed-valence triruthenium complex could produce photocurrent from light in the near-IR through the reservoir mechanism.
1.6.1 Proposed mechanism for a triruthenium electron reservoir

A proposed mechanism for a triruthenium electron reservoir is seen in Figure 1-11. An ideal triruthenium system would be in the mixed-valence state of II-III-III, or state A. Upon initial absorption of a near-IR photon, an MMCT absorption would take the dye to state B, III-II-III. There are several options at this point. Another near-IR photon could be absorbed creating state C, III-III-II, which should be energetic enough to inject an electron into the conduction band, creating state D, III-III-III. The oxidized dye would then be reduced by the electrolyte, taking it back to state A. Another option entails reduction of state B by the electrolyte to make state E, II-II-III. Subsequent absorption of a near-IR photon and an MMCT would take the dye to state F, II-III-II. Injection of the electron to the semiconductor would take the dye back to state A. There would also be the potential of reduction of state C by the electrolyte to make state F.
Figure 1-11: Proposed mechanism for a triruthenium electron reservoir.

For this strategy to work, it would require a minimum of three ruthenium atoms in order to maintain a mixed valence state for both absorption steps. There also needs to be good coupling between the metal centers to have sufficient delocalization to give strong MMCT bands while maintaining localization of the charge centers. As with other intermediate band cells, limiting recombination will also be a major factor in successful operation of the reservoir. It is thus important that the lifetime of the intermediate states are long enough to allow absorption of a second photon before relaxation back to the ground state.

Figure 1-12 displays electron transfer times for various electron transfer process in a dye-sensitized solar cell.3, 67 The relaxation time of an excited state electron in a DSSC made with N3 is roughly 10^{-8} s while the electrolyte reduction time is on the order of 10^6 to 10^8 s. These two
are typically not competing processes because the injection of an electron into the conduction band from the excited dye is on the order 10^{-10} to 10^{-12} s. Electrolyte reduction of the dye is faster than recombination by a factor of two, which creates a system where electrolyte reduction is largely diffusion controlled, although recombination can be a competing factor. The timeframe of MMCT excitation can vary depending on the metals and ligands involved but it is typically around the nanosecond to picosecond timeframe. For example, the excited state lifetime for a Co(II)-Fe(III) excited state of a Co(III)-Fe(II) cyano bridged compound is 0.8 ps.68 Photon flux varies depending on the wavelength and intensity of light.69 A photon of 1000 nm has a photon flux of approximately 0.06 photons per cm$^{-2}$s$^{-1}$ which means that a molecule with an estimated size of 1 nm2, a rough estimate for the size of a dye, will have an estimated photon flux of 6×10^{12} photons per s$^{-1}$. In 1 picosecond, approximately 6 photons will strike an area of 1 nm2. Based on this, it is likely a second photon would strike before relaxation of a MMCT excited state would occur. The relaxation time of a MMCT is faster than a MLCT by a factor of two to four, which means MMCT relaxation can compete with injection to TiO$_2$ and this will likely be another major challenge in designing an electron reservoir.
Figure 1-12: Electron transfer time frames in dye-sensitized solar cells.
Chapter 2

Synthesis and characterization of mono and diruthenium polypyridine complexes

for use in dye-sensitized solar cells
2.1 Introduction

There are several requirements that must be met to have a proper working dye for dye-sensitized solar cells. The dye must not only have intense light absorption in the visible region but must also absorb over a wide range of the solar spectrum. In addition to light absorption, the compound must be stable in at least two oxidation states. The excited states must also have a long enough lifetime to transfer the excited electron to the semiconductor. Metal complexes made with polypyridine, porphyrin, and phthalocyanine systems have been shown to demonstrate all of these properties. The delocalized π system of polypyridines have worked well due to their ability to complex to a variety of metals, while at the same time they are soluble in a number of solvents. Ruthenium polypyridine complexes exhibit many low energy electronically excited states, which arise from π-π* transitions of the polypyridine system, d-d* metal transitions, and d-π* MLCT transitions. These transitions conveniently cover a large range of the visible light spectrum. By modifying the anchoring group of the polypyridine systems, the d-π* MLCT transitions can be tuned to easily change the absorption characteristics of complex.

Polypyridine systems were chosen for the present work, since some of best dyes for dye-sensitized solar cells contain polypyridine systems. It would therefore make incorporation of multi-metal complexes into existing systems more straightforward. While developing target molecules, the plan was to not only take advantage of the proven properties of the ruthenium polypyridine systems already in use but also capitalize on the electron reservoir properties that mixed valence ruthenium complexes may have.

A generic scheme for a triruthenium complex is seen in Figure 2-1. The ligands fill two key roles in such a complex, bridging ligands and terminal ligands. A ligand that is capable of strong binding to TiO₂ is also needed. These attaching ligands are also terminal ligands here.
The key factors governing the MMCT of a multi-metal complex is the choice of the bridging and terminal ligands. By varying the bridging and terminal ligands, it would be possible to fine-tune the electronic properties of the molecules. The two bridging ligands could either be identical, making a more symmetrical molecule, or different, helping promote asymmetric electron flow.

Figure 2-1: Generic triruthenium structure.

![Generic triruthenium structure](image)

2.1.1 Bridging Ligands

In a recent review on polynuclear transition metal complexes, well over a hundred types of bridging ligands and complexes were categorized. From this list, several potential bridging ligands were chosen. The bridging ligands selected were 2,3,5,6-tetra-(2-pyridyl)pyrazine (TPPZ), 2,2’-biimidazole (BIM), and 2,2’-bipyrimidine (BPM).

Figure 2-2: Bridging ligands TPPZ, BIM, and BPM.

![Bridging ligands TPPZ, BIM, and BPM](image)
2.1.1.1 TPPZ

Bimetallic complexes containing TPPZ have received quite a bit of attention due to their similarities to the Creutz-Taube ion as seen in Figure 1-10.3, 4, 5, 6, 7, 8, 9 The TPPZ ligand has similar spacing and coupling interactions between metal centers in bimetallic complexes while also containing a bis-tridentate coordination, providing much greater stability than seen in the Creutz-Taube ion.6, 7 Complexes containing TPPZ as the bridging ligand tend to exhibit metal-to-metal charge transfer peaks in the near-IR when in the mixed valence state.7, 8 In the mixed-valence state of the complex Cl\textsubscript{3}RuII(TPPZ)RuIICl\textsubscript{3}, a NIR absorption band appears at 1785 nm.8

2.1.1.2 BIM

Imidazole is an aromatic molecule that is aromatic when both protonated and deprotonated. When deprotonated, imidazole is a symmetrical anion and while protonated, the imidazolium cation can act as an electron acceptor.10 The corresponding biimidazole functions in the same manner while at the same time it is capable of being a bidentate ligand.10, 11 The dianion of biimidazole, BIM, has been used as a bridging ligand in a number of diruthenium complexes.12, 13, 14 One of the reasons for the interest in this bridging ligand was the relatively low oxidation potential of the diruthenium species using BIM as a bridging ligand. The first oxidation potential for the diruthenium species using BPY as the terminal ligands, [(BPY\textsubscript{2}Ru)\textsubscript{2}BIM]2+, was 0.75 eV vs SCE. This would allow a complex made with BIM as a bridging ligand to easily get into a mixed-valence state. The complex [RuIII(BIM-RuII(BPY)\textsubscript{2})\textsubscript{3}]3+ showed a mixed-valence absorption at 833 nm.10 Although this wavelength is slightly lower than
desired, if the absorption was wide enough it would still prove valuable. Also, the differences in our target molecules may produce more advantageous values.

Figure 2-3: Imidazole, BIM dianion, and BIM dication.

![Imidazole, BIM dianion, and BIM dication.](image)

2.1.1.3 BPM

The last bridging ligand initially chosen was BPM. BPM has been used in many multi-metal ruthenium complexes. BPM provides a meta connection between the two ruthenium centers and when BPM was used as a bridging ligand in dendrimer complexes in solar applications, it was shown to prevent backflow of electrons, promoting net electron flow towards the semiconductor. It was envisioned that using a molecule with BPM would help prevent electron back transfer to the ruthenium furthest away from the TiO$_2$. The mixed valence complex $\text{[(BPY)$_2$Ru}^{\text{II}}\text{(BPM)Ru}^{\text{III}}\text{(NH}_3\text{)$_4$](PF}_6\text{)}$ does not show a NIR absorption but it is possible replacing the ammonia ligands could change that.

2.1.2 Terminal ligands

In the scheme in Figure 2-1, terminal ligands fill the role of both facilitating transfer of the electron from the electrolyte back to the ruthenium center and transferring excited state electrons to the semiconductor. Many complexes have been made using simple polypyridyl ligands, such as 2,2’-bipyridine (BPY) and 2,2’:6’,2”-terpyridine (TPY), as terminal ligands. When the terminal ligands are more π acidic than σ donor ligands such as halogens, monodentate
amines, or thiocyanates, such as in BPY and TPY, the MMCT peaks are typically at longer wavelengths. There have been several examples of polypyridyl ligands used as terminal ligands in dye-sensitized solar cells. While dyes made with polypyridyl terminal ligands are not as efficient as those made with σ donor terminal ligands, they do offer greater molar absorptivity.

Figure 2-4: Terminal ligands BPY and TPY.

When σ donor ligands such as halogens, monodentate amines, or thiocyanates are used, the MMCT peaks are typically at shorter wavelengths. Higher efficiencies are seen when σ donor ligands are used in dye-sensitized solar cells. When the success N3 was first reported, using isothiocyanate over other halides showed a clear advantage in voltage and current output. By using isothiocyanate instead of chloride, the open circuit voltage increased by 0.5 V and the short circuit current increased by 5 mA. Evidence suggests there is a bonding interaction between the I of the electrolyte and the sulfur of the isothiocyanate. This suggests that using isothiocyanates as terminal ligands would be a good choice.

Strong attachment of the dye to the TiO₂ is important. Among the types of functional groups that have been used to attach dye molecules to TiO₂, phosphonates, carboxylates, silyls, amides, sulfides, and alcohols have all been used successfully. The two best dyes made to date, N3 and Black Dye, both use polypyridine systems with carboxylic acid anchoring groups. The
ligand 4,4’-dicarboxy-2,2’-bipyrididine used in N3 would be a good choice as an attaching ligand for these complexes. It was also thought that a ligand containing hydroxyl groups would be capable of providing good binding to TiO$_2$. The ligand 4,4’-dihydroxy-2,2’-bipyrididine was chosen as an attaching ligand because the phenoxy groups have been shown to be good anchoring groups and exhibit good binding to TiO$_2$. Also, the phenoxy group would be an electron-donating group, in contrast to the electron-withdrawing group of carboxylic acid, providing some design control in terms of redox potentials and electron energies.24

Figure 2-5: Attaching ligand DHBPY.

2.2 Target Complexes

The bridging ligands chosen offer several different ways to make triruthenium complexes. One way is by using two TPPZ ligands as seen in Figure 2-6. In this example, the terminal ligands could either be TPY, halogens, or isothiocyanates.
Figure 2-6: Illustration of triruthenium complex using two TPPZ bridges.

Alternatively, two BIM or two BPM bridges could be used as seen in Figure 2-7 and 2-8 respectively. In either of these, the terminal ligands could be BPY, DHBPY, or a polypyridyl carboxylic acid such as DCBPY. In the complexes of Figures 2-6, 2-7, and 2-8, introduction of end-to-end asymmetry depends on the terminal ligands.

Figure 2-7: Illustration of triruthenium complex using two BIM bridges.
Figure 2-8: Illustration of triruthenium complex using two BPM bridges.

Using two different bridging ligands would allow easier synthesis of an asymmetric complex. For example, one side of the complex could be bridged by a TPPY ligand while the other side could be bridged by a BPM ligand as seen in Figure 2-9. Here, the terminal ligands could be changed depending on the asymmetry desired in the molecule.

Figure 2-9: Illustration of triruthenium complex using one TPPZ bridge and one BPM bridge.
These potential triruthenium complexes were broken down into several smaller building blocks. By combining these building blocks, different triruthenium complexes could be made. Initially, it was thought that once several these smaller building blocks were made, mixing and matching these building blocks would allow a wide variety of complexes to be made. Also, it was thought that a combinatorial approach to building these complexes could be performed by building complexes directly onto the TiO$_2$. Building complexes directly onto the TiO$_2$ would help greatly in the building of asymmetric complexes. If the combinatorial method were unsuccessful, a traditional solution based chemistry approach would be used to combine the building blocks.

2.2.1 Building blocks needed to make bis-TPPZ bridged complexes

To make a bis-TPPZ complex (Figure 2-6), a natural starting point would be the monoruthenium building block [(TPPZ)$_2$Ru]$^{2+}$ (Figure 2-10). TPPZ is commercially available and synthesis of the monoruthenium building block has already been reported in a number of publications.3,6 This complex is typically reported as a hexafluorophosphate salt.3 Adding monoruthenium fragments to each side of this building block would provide triruthenium complexes like those seen in Figure 2-11. The terminal ligands could be σ donor ligands like isothiocyanate or polypyridyl ligands like TPY.
Figure 2-10: Bis-TPPZ ion, [(TPPZ)₂Ru]²⁺.

Figure 2-11: Potential triruthenium complexes that could be made with [(TPPZ)₂Ru]²⁺.
2.2.2 Building blocks needed to make bis-BIM bridged complexes

A bis-BIM bridged complex (Figure 2-7) could be made by starting with a bis-BIM monoruthenium building block, \([(BIM)_2RuBPY]^{2+}\) (Figure 2-12), most likely as a hexafluorophosphate salt. A number of monoruthenium building blocks, such as \((DHBPY)_2RuCl_2\), \((BPY)_2RuCl_2\), \((DCBPY)_2RuCl_2\) or \(\text{bis}(4,4'\text{-dicarboethoxy-2,2'}\text{-bipyridine})\text{dichlororuthenium(II)}\) \((\text{DEBPY})_2RuCl_2\), could be added to this to create triruthenium complexes (Figure 2-13).

Figure 2-12: Bis-BIM ion, \([(BIM)_2RuBPY]^{2+}\).

Figure 2-13: Potential triruthenium complexes that could be made with \([(BIM)_2RuBPY]^{2+}\).
2.2.3 Building blocks needed to make bis-BPM bridged complexes

A strategy similar to the one for the bis-BIM bridged complexes could be applied for the double BPM-bridged complexes (Figure 2-8) as well. A bis-BPM monoruthenium center, [(BPM)$_2$RuBPY]$^{2+}$ (Figure 2-13), could be made analogous to [(BIM)$_2$RuBPY]$^{2+}$. The building blocks (DHBPY)$_2$RuCl$_2$, (BPY)$_2$RuCl$_2$, (DCBPY)$_2$RuCl$_2$, or (DEBPY)$_2$RuCl$_2$, could also be added to this center building block to make triruthenium complexes (Figure 2-14). These would also most likely be hexafluorophosphate salts.

Figure 2-14: Bis-BPM ion, [(BPM)$_2$RuBPY]$^{2+}$.
Figure 2-15: Potential triruthenium complexes that could be made with \([(BPM)_2RuBPY)^{2+}\].

2.2.4 Building blocks needed to make a BPM and TPPZ bridged complex

Complexes made with mixed bridges are a bit more complicated. A different route could be taken depending on the directionality of the complex. A complex with TPPZ closer to the \(\text{TiO}_2\) could be made by adding a bis-BPY ruthenium complex with a single BPM, \([(\text{BPY})_2\text{Ru}(\text{BPM})]^{2+}\), to a diruthenium bridged TPPZ complex, \((\text{TPPZ})(\text{RuCl}_3)_2\) as seen in Figure 2-15. Adding an additional attaching ligand to the other end of the TPPZ bridged complex would result in a mixed-bridge triruthenium complex with the TPPZ bridge closer to the titanium (Figure 2-16).
Figure 2-16: Two building blocks, $[(\text{BPY})_2\text{RuBPM}]^{2+}$ and 15, needed to make mixed bridge triruthenium complexes.

![Figure 2-16](image)

Figure 2-17: Potential mixed bridge triruthenium complexes.

![Figure 2-17](image)

Alternatively, a bis-attaching ligand complex such $[(\text{DCBPY})_2\text{Ru(BPM)}]^{2+}$ (Figure 2-17) could be added to $\text{Cl}_3\text{Ru(TPPZ)}\text{RuCl}_3$ to make a triruthenium complex with the BPM bridge closer to the TiO$_2$ (Figure 2-18). In a complex such as this, the chlorines could be left in place or they could be replaced with isothiocyanate or TPY.
Figure 2-18: Building block with bis-DCBPY attaching groups, \([(DCBPY)\textsubscript{2}Ru(BPM)]^{2+}\).

Figure 2-19: Potential mixed bridge tri ruthenium complex made with \([(DCBPY)\textsubscript{2}Ru(BPM)]^{2+}\).

The remainder of this chapter describes the synthesis and characterization of a wide variety of these building blocks. Testing their ability to make triruthenium complexes along with attempting combinatorial synthesis of the triruthenium building blocks will be presented in Chapter 3.
2.3 Experimental Data

All reactions were carried out under an atmosphere of dry nitrogen or in a glovebox unless otherwise noted. All NMR spectra were run using a 300 or 400 MHz Bruker NMR. All UV/Vis measurements were performed on a Perkin Elmer Lambda 950 UV/Vis spectrometer. All IR measurements were taken on a Thermo Nicolet IR200 FT-IR.

2.3.1 Synthesis of 4,4’-dihydroxy-2,2’-bipyridine, DHBPY

DHBPY was prepared using a modified literature procedure.$^{25, 26}$ 4,4’-Dimethoxy-2,2’-bipyridine (0.261 g, 1.21 mmol) was added to glacial acetic acid (12 mL). Excess hydrobromic acid (2 mL, 48%) was added and the reaction mixture was heated under reflux for 18 h. The solvent was removed in vacuo and a small portion of DI water (10 mL) was added to the white/pink solid to dissolve it. The pH was adjusted to 7 by slow addition of a 0.1 M NaOH solution to make a white precipitate that was collected by vacuum filtration. The solid was placed on a high vacuum line overnight. The white precipitate was then recrystallized in boiling H$_2$O and collected by vacuum filtration. A total of 0.177 g was collected for a yield of 77.7%. The 1H NMR agrees with the literature spectrum. 1H NMR (300 MHz, DMSO-d$_6$) δ 10.90 (s, 2H), 8.50 (d, J = 6.0 Hz, 2H), 7.93 (d, J = 2.0 Hz, 2H), 7.04 (dd, J = 6.0 Hz, 2.0 Hz, 2H).
2.3.2 Synthesis of tris(4,4’-dihydroxy-2,2’-bypridine)ruthenium(II) chloride, 1

This complex was formed trying to make the bis-4,4’-dihydroxy-2,2’-bypridine product DHBPY$_2$RuCl$_2$. A typical example is as follows. DHBPY (0.224 g, 1.04 mmol) and RuCl$_3$ (0.102 g, 0.493 mmol) were added to 25 mL DMF and the reaction was refluxed for 8 h under nitrogen. After removing most of solvent in vacuo, acetone was added to precipitate an orange product, which was collected by vacuum filtration. A total of 0.222 g was collected for a yield of 39.1%. 1H NMR (300 MHz, DMSO-d$_6$): δ 8.15 (d, $J = 6.0$ Hz, 6H), 7.21 (s, 6H), 6.85 (br. s, 6H), 4.05 (s, 6H) (the presence of three aromatic peaks instead of six suggested that the tris complex was formed instead of the bis product); IR (cm$^{-1}$): 3568 (br), 3429, 3054, 2918, 1701, 1655, 1637, 1608, 1545, 1438, 1405, 1377, 1313, 1260, 1228, 1126, 1017, 898, 809, 768, 768, 718, 662.
2.3.3 Synthesis of 2,2’-dicarboxy-4,4’-bypridine, DCBPY

![DCBPY structure](image)

This compound was synthesized per a literature procedure.\(^{27}\) The total mass collected was 0.590 g for a yield of 60.1%. The \(^1\)H NMR agrees with the literature spectrum. \(^1\)H NMR (300 MHz, DMSO-d\(_6\)): \(\delta\) 8.91 (d, \(J = 4.8\) Hz, 2H), 8.84, (s, 2H), 7.91 (d, \(J = 4.8\) Hz, 2H).

2.3.4 Synthesis of bis(4,4’-dicarboxy-2,2’-bipyridine)dichlororuthenium(II), 2

![bis(4,4’-dicarboxy-2,2’-bipyridine)dichlororuthenium(II) structure](image)

This compound was synthesized per a literature procedure.\(^{28}\) A total of 0.102 g was collected for a yield of 27.4% yield. The \(^1\)H NMR agrees with the literature spectrum.\(^{28}\) \(^1\)H NMR (300 MHz, DMSO-d\(_6\)): \(\delta\) 9.86 (d, \(J = 8.0\) Hz, 2H), 9.13 (d, \(J = 8.0\) Hz, 2H), 8.95 (s, 2H), 8.81 (s, 2H), 8.12 (d, \(J = 5.0\) Hz, 2H), 7.93 (d, \(J = 5.0\) Hz, 2H).
2.3.5 Synthesis of 4,4’-dicarboethoxy-2,2’-bipyridine, DEBPY

This compound was synthesized per a literature procedure.29,30,31 The total mass collected was 0.789 g for a yield of 55.2%. The \(^1\)H NMR agrees with the literature spectrum. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 8.97 \text{ (s, 1H)}, 8.89 \text{ (d, } J = 8.0 \text{ Hz, 1H)}, 7.92 \text{ (d, } J = 8.0 \text{ Hz, 1H}).

2.3.6 Synthesis of dichlorobis(4,4’-dicarboethoxy-2,2’-bipyridine)ruthenium(II), 3

This compound was synthesized with a modified version of a literature procedure.29 To RuCl\(_3\) (0.180 g, 0.866 mmol) in 50 mL of ethanol was added DEBPY (0.524 g, 1.75 mmol) and the reaction was refluxed for 72 h under nitrogen. After removing most of the solvent in vacuo, acetone was added to precipitate a purple product. A total of 0.320 g was collected for a 47.7%. The \(^1\)H NMR agrees with the literature spectrum.28 \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta 10.10 \text{ (d, } J = 5.8 \text{ Hz, 2H)}, 9.12 \text{ (s, 2H)}, 8.94 \text{ (s, 2H)}, 8.26 \text{ (d, } J = 5.3 \text{ Hz, 2H)}, 7.76 \text{ (d, } J = 5.9 \text{ Hz, 2H)}, 7.49 \text{ (d, } J = 5.6 \text{ Hz, 2H)}, 4.52 \text{ (q, } J = 6.8 \text{ Hz, 4H)}, 4.36 \text{ (q, } J = 7.0 \text{ Hz, 4H)}, 1.45 \text{ (t, } J = 7.0 \text{ Hz, 6H)}, 1.31 \text{ (t, } J = 7.0 \text{ Hz, 6H}).
2.3.7 Synthesis of tetrachloro(2,2'-bipyridine)ruthenium(IV), 4

![Diagram of tetrachloro(2,2'-bipyridine)ruthenium(IV)](image)

This compound was synthesized per a literature procedure.\(^{32}\) A total of 0.473 g was collected for a yield of 49%. No NMR or characterization was given in the literature, but the appearance of the black solid matched the description given. The NMR shows the expected BPY peaks, which are slightly shifted downfield because of binding to Ru. \(^1\)H NMR (300 MHz, DMSO-d\(_6\)): \(\delta 8.83\) (d, \(J = 7.6\) Hz, 2H), 8.58 (d, \(J = 7.8\) Hz, 2H), 8.27 (t, \(J = 7.5\) Hz, 2H), 7.75 (t, \(J = 7.7\) Hz, 2H).

2.3.8 Synthesis of bis(2,2'-biimidazole)(2,2'-bipridine)ruthenium(II) hexafluorophosphate, 5

![Diagram of bis(2,2'-biimidazole)(2,2'-bipridine)ruthenium(II) hexafluorophosphate](image)

This compound was synthesized with a modified version of a literature procedure.\(^{12}\) To 100 mL ethylene glycol was added 4 (0.671 g, 1.68 mmol). This was heated at 150 °C for 1 h under nitrogen and then biimidazole (0.574 g, 4.27 mmol) was added. The mixture was heated
for 24 h at 150 °C under nitrogen. After cooling, excess NH₄PF₆ was added and the solution was stirred for another 1 h. A red precipitate (1.14 g) was collected by vacuum filtration for a yield of 77.3%. NMR data was not presented in the literature. ¹H NMR (300 MHz, acetone-d₆): δ 13.12 (s, 4H), 8.57 (d, J = 7.8 Hz, 2H), 8.13 (d, J = 4.2 Hz, 2H), 7.91 (t, J = 8.1 Hz, 2H), 7.39 (t, J = 6.6 Hz, 2H), 7.36 (s, 2H), 7.28 (s, 2H), 6.58 (s, 2H) 6.45 (s, 2H).

2.3.9 Synthesis of (2,2'-bipyridine)bis(2,2’bipyrimidine)ruthenium(II) hexafluorophosphate, 6

To a solution BPM (0.086 g, 0.540 mmol) in 100 mL of EtOH:H₂O (1:1) was added 4 (0.111 g, 0.279 mmol) and the solution was heated at reflux for 8 h under nitrogen. After cooling, 10 mL of a saturated solution of KPF₆ in H₂O was added and the solution was stirred for 12 h. A brown precipitate was collected by vacuum filtration. A total of 0.653 g was collected giving a 44.3% yield. This was rinsed 3 times with 10 mL of acetone and 3 times with 10 mL of ether. NMR data was not presented in the literature. ¹H NMR (300 MHz, acetone-d₆): δ 9.21 (m, 4H), 8.81 (d, J = 8.4 Hz, 2H), 8.71 (dd, J = 5.7 Hz, 1.8 Hz, 2H), 8.45 (dd, J = 5.7 Hz, 1.8 Hz, 2H), 8.25 (m, 4H), 7.73 (m, 4H), 7.60 (t, J = 8.4 Hz, 2H).
2.3.10 Synthesis of (2,2’-biimidazole)bis(2,2’-bipyridine)ruthenium(II) hexafluorophosphate, 7

To a solution of 4 (0.384 g, 0.793 mmol) in 100 mL H₂O:EtOH (1:1) was added BIM (0.106 g, 0.793 mmol). This was refluxed for 8 h. After cooling, 3 mL of a saturated NH₄PF₆ solution was added. A red precipitate was collected by vacuum filtration. A total of 0.441 g was collected for a yield of 63.3%. ¹H NMR (400 MHz, acetone-d₆): δ 8.76 (m, 4H), 8.68 (d, \(J = 1.4 \) Hz, 2H), 8.15 (m, 8H), 7.64 (td, \(J = 5.6 \) Hz, 1.3 Hz, 2H), 7.52 (td, \(J = 5.7 \) Hz, 1.3 Hz, 4H).
2.3.11 Synthesis of bis(2,2'-bipyridine)(2,2'-bipyrimidine)ruthenium(II) hexafluorophosphate, 8

This compound was synthesized with a modified version of a literature procedure.16 To a solution of BPM (0.0855 g, 0.540 mmol) in 100 mL of EtOH:H\textsubscript{2}O (1:1) was added 4 (0.265 g, 0.548 mmol) and the solution was heated at reflux for 24 h under nitrogen. After cooling, 5 mL of a saturated solution of NH\textsubscript{4}PF\textsubscript{6} in H\textsubscript{2}O was added and the solution was stirred for 12 h. A brown precipitate was collected by vacuum filtration. The brown precipitate was dissolved in acetone and filtered. Most of the acetone was removed by vacuum and then a brown solid was re-precipitated by slow addition of ether. This brown solid was collected by vacuum filtration and rinsed with ether. A total of 0.350 g was collected for a yield of 86.1\%. 1H NMR (300 MHz, acetonitrile-d\textsubscript{3}): δ 9.09 (dd, $J = 4.8$, 2.4 Hz, 2H), 8.50 (dd, $J = 7.5$, 1.5 Hz, 4H), 8.07 (m, 6H), 7.87 (qd, $J = 7.5$, 1.5, 2H), 7.69 ($J = 7.5$, 1.5, 2H) 7.51 (t, $J = 5.0$ Hz, 2H), 7.42 (m, 4H).
2.3.12 Synthesis of 2,2'-biimidazole, BIM-H$_2$

![2,2'-biimidazole structure]

This compound was synthesized with a modified version of a literature procedure and a typical reaction follows.33 Glyoxal (113 mL, 2.47 mol) was cooled to 0 °C under nitrogen. To this was added excess NH$_4$OH (200 mL) dropwise. The mixture slowly turned yellow and was stirred for 18 h at room temperature. A grey solid was collected by vacuum filtration. This solid was dissolved in 1 M HCl and the solution was heated at 100 °C for 15 min. After cooling, the solution was neutralized with aqueous K$_2$CO$_3$. A white precipitate was collected by vacuum filtration. A total of 19.0 g was collected for yield of 17.2%, based on glyoxal. The 1H NMR agrees with the literature. 1H NMR (300 MHz, DMSO-d$_6$): δ 12.64 (s, 2H), 7.06 (s, 4H).
2.3.13 Synthesis of dichlorobis(2,2'-bipyridine)ruthenium(II), 9

This compound was synthesized with a modified version of a literature procedure.34,35,36 Dimethylformamide (15 mL) was placed in a round bottom flask and was purged with nitrogen for 15 min. Ruthenium chloride hydrate (0.215 g, 1.04 mmol), bipyridine (0.320 g, 2.05 mmol), and lithium chloride (0.465 g, 11.0 mmol) were added to the flask. The solution was heated under reflux for 6 h while under nitrogen. After cooling to room temperature, the mixture was poured into 100 mL reagent grade acetone and placed into a refrigerator overnight for 12 h at 5°C. A greenish black ppt. was seen the following morning. This was collected by vacuum filtration and rinsed with three 10 mL portions of DI water, followed by washing with three 10 mL portions of diethyl ether. This was carried on without further purification and 0.276 g was collected for a yield of 55.6%. The 1H NMR agreed with the literature spectrum. 1H NMR (300 MHz, DMSO-d_6): δ 9.96 (d, $J = 4.8$ Hz, 2H), 8.63 (d, $J = 8.0$ Hz, 2H), 8.47 (d, $J = 8.0$ Hz, 2H), 8.06 (t, $J = 6.6$ Hz, 2H), 7.76 (t, $J = 6.0$ Hz, 2H), 7.67 (t, $J = 7.5$ Hz, 2H), 7.51 (d, $J = 6$ Hz, 2H), 7.09 (t, $J = 6.0$ Hz, 2H).
2.3.14 Synthesis of bis(4,4'-dicarboxy-2,2'-bipyridine)(2,2'-bipyrimidine)ruthenium(II) hexafluorophosphate, 10

To a solution of 2 (0.531 g, 0.804 mmol) in EtOH/H₂O (1:1, 150 mL) was added 6 eq of NaOH. To this was added BPM (0.129 g, 0.815 mmol). The reaction was stirred under nitrogen for 24 h at reflux. After cooling, the solution was acidified with 1 M HCl until the pH reached 4 and then 10 mL of saturated NH₄PF₆ was added. A red solid was collected and a column was performed on silica gel using H₂O as the eluent. A red band eluted and 0.611 g was collected for a yield of 57.2%. ¹H NMR (300 MHz, D₂O): δ 9.08 (d, J = 3 Hz, 2H), 8.90 (d, J = 3.9 Hz, 4H), 8.17 (dd, J = 5.7 Hz, 1.5 Hz, 2H), 8.03 (d, J = 6 Hz, 2H), 7.86 (d, J = 5.7 Hz, 2H), 7.74 (d, J = 4.2 Hz, 2H), 7.70 (d, J = 4.5 Hz, 2H), 7.59 (t, J = 5.1 Hz, 2H). IR (cm⁻¹): 3127 (br), 3030, 1995, 1721, 1636, 1578, 1554, 1406, 1315, 1229, 1138, 1023, 841, 767, 748, 665, 557, 495.
2.3.15 Synthesis of bis(4,4'-dicarboxy-2,2'-bipyridine)diisothiocyanateruthenium(II), N3

The synthesis of N3 began by dissolving 2 (0.1108 g, 0.1668 mmol) in 30 mL of DMF. To this solution was added 0.1 M aqueous NaOH (10 mL) to deprotonate the carboxy groups. Potassium thiocyanate (0.2294 g, 2.361 mmol) was separately dissolved in 2 mL of DI H2O and added to the above solution. This was heated to reflux for 6 h under N2. Once cooled, the solvent was removed in vacuo and the residual solid was dissolved in DI H2O and filtered through a sintered funnel to remove any undissolved particles. The pH of the filtrate was adjusted to 3 by adding 0.1 M sulfuric acid and the solution was placed in the refrigerator for 12 h. A dark purple solid was then collected by vacuum filtration and washed with 3 portions of 10 mL acetone and 3 portions of 10 mL diethyl ether. A total of 74.7 mg was collected for a yield of 63.1%. 1H NMR (300 MHz, DMSO-d6): δ 9.43 (d, J = 5.7 Hz, 2H), 9.19 (s, 2H), 9.02 (s, 2H), 8.38 (d, J = 5.7 Hz, 2H), 7.79 (d, J = 6.0 Hz, 2H), 7.59 (d, J = 6.6 Hz, 2H).
2.3.16 Synthesis of bis(bis(2,2’-bipyridine)ruthenium(II))-µ-(2,2’-biimidazole) hexafluorophosphate, 11

This compound was synthesized with a modified version of a literature procedure. To a solution of 7 (0.100 g, 0.207 mmol) in DI H₂O, was added aqueous 1.0 M NaOH until the solution turned from orange to purple, indicating the biimidazole ligand was deprotonated. Afterwards, solid 9 (0.172 g, 0.207 mmol) was added and the solution was heated at reflux for 72 h. After cooling, 2 mL of a saturated aqueous NH₄PF₆ solution was added to make the red hexafluorophosphate salt precipitate. This was collected by vacuum filtration and rinsed with 3 portions of 10 mL of ether. A total of 0.246 g was collected for a yield of 94.9%. ¹H NMR (400 MHz, acetone-d₆) δ 8.75 (d, J = 6.1 Hz, 2H), 8.68 (m, 6H), 8.30 (d, J = 4.9 Hz, 2H) 8.11 (td, J = 7.8 Hz, 1.3 Hz, 2H), 8.04 (td, J = 7.8 Hz, 1.2 Hz, 2H) 7.95 (m, 4H), 7.88 (d, J = 5.6 Hz, 2H), 7.80 (t, J = 5.6 Hz, 2H), 7.74 (m, 4H), 7.37 (m, 6H) 6.00 (d, J = 8.2 Hz, 4H).
2.3.17 Synthesis of bis(bis(2,2’-bipyridine)ruthenium(II))-µ-(2,2’-bipyrimidine) hexafluorophosphate, 12

This compound was synthesized with a modified version of a literature procedure.37 To a solution of 8 (0.158 g, 0.183 mmol) in 100 mL of EtOH:H\textsubscript{2}O (1:1) was added 9 (0.08 g, 0.184 mmol). This was heated under reflux for 18 h and the solution turned from an orange/red color to a green color, similar to what was described in the literature. After cooling, 3 mL of a saturated KPF\textsubscript{6} solution was added to make a dark brown precipitate. This was placed in the refrigerator for 24 h and then the brown product was collected by vacuum filtration. A total of 0.228 g was collected for a yield of 79.4%. 1H NMR (300 MHz, acetone-d\textsubscript{6}): \(\delta\) 8.82 (d, \(J = 8.4\) Hz, 8H), 8.60 (d, \(J = 7.2\) Hz, 4H), 8.58 (d, \(J = 6.0\) Hz, 4H), 8.30 (m, 8H), 8.04 (d, \(J = 5.7\) Hz, 4H) 7.83 (t, \(J = 6.3\) Hz, 4H) 7.72 (t, \(J = 5.7\) Hz, 2H), 7.61 (t, \(J = 5.7\) Hz, 4H).
2.3.18 Synthesis of (4,4′-dihydroxy-2,2′-bipyrimidine)bis(2,2′-bipyridine) ruthenium(II) hexafluorophosphate, 13

This complex was prepared by dissolving 9 (0.2186 g, 0.4512 mmol) in EtOH (12 mL). To this, DHBPY (0.0916 g, 0.487 mmol) was added and the solution was refluxed for 6 h. The solution was initially a dark purple and turned orange over the course of the reaction. Once cooled, an aqueous solution of NH₄PF₆ was added and an orange precipitate was formed. The precipitate was collected by vacuum filtration and rinsed with diethyl ether. A total of 0.228 g was collected for a yield of 56.6%. ¹H NMR (300 MHz, acetone-d₆): δ 8.79 (d, J = 6.0 Hz, 2H), 8.76 (d, J = 6.0Hz, 2H), 8.16 (m, 6H), 8.05 (s, 2H), 8.01 (d, J = 6.0 Hz, 2H), 7.60 (t, J = 6.0 Hz, 4H), 7.52 (t, J=6 Hz, 2H), 6.99 (dd, J = 6 Hz, 1 Hz, 2H), 3.55 (s, 2H).
2.3.19 Synthesis of bis(2,3,5,6-tetra-(2-pyridyl)pyrazine)ruthenium(II) hexafluorophosphate, 14

This compound was synthesized per a literature procedure. A total of 0.142 g of product was collected for a yield of 43.3%. The 1H NMR agrees with the literature spectrum. 1H NMR (300 MHz, acetone-d_6): δ 8.81 (dd, J=5, 4H), 8.58 (dd, J=8, 4H), 8.35 (dd, J=8, 4H), 8.12 (dd, J=7.5, 4H), 7.89 (dd, J=7, 8H), 7.80 (dd, J=8, 4H), 7.41 (dd, J=7, 4H), IR (cm$^{-1}$): 3030, 1677, 1587, 1567, 1520, 1471, 1401, 838, 788, 753, 669, 556, 551.
2.3.20 Synthesis of bis(trichlororuthenium(III))-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine), 15

This compound was synthesized per a literature procedure. A total of 0.389 g was collected for a yield of 95.6%. The 1H NMR had a very low signal to noise ratio and was not very clear due to the product being paramagnetic. There were broad, very low intensity multiplets downfield of where normal TPPZ peaks would occur. 1H NMR (300 MHz, DMSO-d$_6$): It is believed that the paramagnetic Ru(III) caused significant line broadening, and a very low signal to noise ratio was seen; UV (EtOH) λ_{max} 255, 300, 390, 650 nm; IR (cm$^{-1}$): 3068, 1592, 1518, 1464, 1423, 1297.
2.3.21 Synthesis of tetrabutylammonium bid(trichlororuthenium(III))-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine), 16

This compound was synthesized per a literature procedure.\(^8\) A total of 0.511 g was collected for a yield of 90.2%. The \(^1\)H NMR had a very low signal to noise ratio and was not very clear due to the product being paramagnetic. There were broad, very low intensity multiplets downfield of where normal TPPZ peaks would occur. \(^1\)H NMR (300 MHz, DMSO-\(d_6\)): It is believed that the paramagnetic Ru(III) caused significant line broadening, and a very low signal to noise ratio was seen; UV (EtOH) \(\lambda_{\text{max}}\) 476, 644, 1706 nm.
2.3.22 Synthesis of bis(triiso(thiocyanate)ruthenium(III))-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine), 17

To a solution of 15 (0.104 g, 0.130 mmol) in 100 ml DI water was added AgOTf (0.280 g, 1.09 mmol). This was stirred for 5 h at 70 °C under nitrogen and the solution turned from green to a royal blue and a white precipitate formed. The white precipitate, AgCl, was filtered by vacuum filtration and the blue solution was returned to a round bottom flask. To this solution was added KSCN (0.129 g, 1.34 mmol) and the reaction was stirred under nitrogen at 70 °C for 5 h. The solution turned from blue/black to a dark green solution. After cooling, a green precipitate was collected by vacuum filtration. Column chromatography was performed on aluminum oxide using acetone to elute a green band which was 17. A total of 0.501 g was collected for a yield of 98.1%. ¹H NMR (300 MHz, acetone-d₆): δ 9.19 (m, 4H), 8.90 (m, 4H), 8.06 (m, 8H); IR (cm⁻¹): 3050, 2360 (bound NCS), 1699, 1652, 1592, 1457, 1417, 1350, 1247, 1187, 1060, 1010, 794, 775, 749, 692, 581, 555.
2.4 Results and Discussion

Synthesis of the building blocks began with the hydrolysis of 4,4’-dimethoxy-2,2’-bipyridine with glacial acetic acid and 48% HBr, and this is seen in Scheme 2-1. DHBPY was obtained in a 77.7% yield. The 1H NMR showed two doublets, which were the two hydrogens between the N and the OH group. Meta coupling was seen between both hydrogens ortho to the OH and the OH signal was seen at 10.90 ppm.

Several attempts were made towards the synthesis of (DHBPY)$_2$RuCl$_2$ but were largely met with failure. When DHBPY was treated with 0.5 eq of RuCl$_3$, a bright orange product was obtained. 1H NMR analysis showed three distinct peaks while a bis-DHBPY product would be expected to have 6 peaks. This indicated either a mono-DHBPY substituted product or a tris-DHBPY substituted product, I, was being formed. Most tris-bipyridine complexes tend to have an orange/red color and the compound formed was similar in color, suggesting that the tris product was being formed. In contrast, most complexes with the general formula L$_2$RuCl$_2$ (L = a bipyridyl ligand) tend to have a dark purple color. The mono BPY complex, 4, was a dark black color, with an appearance similar to ruthenium chloride.

Scheme 2-1: Synthesis of 1.

![Scheme 2-1: Synthesis of 1.](image)
A variety of conditions were tried to see if (DHBPY)$_2$RuCl$_2$ could be made. Reactions times of 8 h, 24 h, and 48 h were tested in addition to many different solvent systems including DMF, EtOH, EtOH/H$_2$O, and DMF/H$_2$O, all with similar results. A patent was released in 1992 describing a way to make a similar complex using osmium instead of ruthenium. The method used in the patent is outlined in Scheme 2-2. Attempting to do the analogous procedure with RuCl$_3$ instead of K$_2$OsCl$_6$ was unsuccessful. According to the patent, the osmium product was precipitated from the solution by addition of acetone after the reaction was complete. The ruthenium products were soluble in both acetone and ethylene glycol. Tris-BPY complexes tend to be soluble in acetone, which is probably the cause of this phenomenon. The reaction was tried at reaction times of 8 hr, 24 hr, and 48 hr. In all cases, the 1H NMR again showed 3 peaks in the aromatic region as well as the hydrogens on the methoxy carbon that were not hydrolyzed.

Scheme 2-2: Synthesis of (DHBPY)$_2$OsCl$_2$.

At the Fall 2012 ACS National meeting, a conversation was had with Dr. Jared Paul from the Paul group at Villanova University. He recently reported on the structural and electronic properties of 1 and [(DHBPY)Ru(BPY)$_2$]Cl$_2$. When asked about the bis-DHBPY product, he mentioned that he too was unable to make it and that it was unclear why it would not form.

Oxidation of 4,4’-dimethyl-2,2’-bipyridine gave DCBPY in 60.1% yield and refluxing DCBPY with sodium dichromate in sulfuric acid produced 2 in 27.6% yield, as shown in
Scheme 2-3. The 1H NMR agrees with the literature spectrum, although the carboxylic acid hydrogen was not observed, likely due to some residual water in the DMSO solvent. The same splitting pattern was seen was in DHBPY, although slightly downfield due to the electron withdrawing carboxylic acid group. The 1H NMR of 2 had six peaks, including four doublets and two singlets which is what was expected (two doublets and one singlet per pyridine ring of DCBPY). One of the pyridine rings on each DCBPY is oriented in-plane cis to the other DCBPY while the other pyridine ring is oriented in-plane cis to chlorine. While both rings are technically always cis to both a chlorine and DCBPY, "in-plane cis" specifically refers to the ligand cis while being in plane with the aromatic ring. Figure 2-16 illustrates this better. It is likely the pyridine ring in-plane-cis to the other DCBPY is experiencing a shielding effect due to magnetic anisotropy in the face of the aromatic ring, causing the double from the hydrogen ortho to the nitrogen to be further upfield than the other peaks.

Scheme 2-3: Synthesis of 2.

![Scheme 2-3](image)
Figure 2-20: Illustration of hydrogen interactions in 2.

Esterification of DCBPY with ethanol and sulfuric acid proceeded with 60.1% yield. Formation of 3 was achieved with 47.8% yield. These are seen in Scheme 2-4. Six peaks were seen in the aromatic region as with 2, and the 1H NMR of 3 also displayed two ethyl peaks. Similar to 2, the peaks on one ring of DEBPY are further upfield, presumably due to magnetic anisotropy, as in 2.

Scheme 2-4: Synthesis of 3.
Formation of 4 was achieved in 49% yield and is seen in Scheme 2-5. After adding all the reagents, the mixture was stirred open to air and was then capped and allowed to sit for 3 weeks. According to the literature, the reaction is complete after 1 week, but yields increased from roughly 50% to around 90% by letting it sit for up to 3 weeks.32 No additional yield was noticed by waiting additional time however. While originally reported as a Ru(IV) species, a more recent paper suggests it is actually a Ru(III) negatively charged species with a counter ion of (BPY+H).42 Using 4 to make the bis-BIM and bis-BPM products 5 and 6 always resulted in the formation of a portion of the mono-BIM and mono-BPM products 7 and 8, suggesting that it is the product formed was the Ru(III) species and that the extra BPY from Ru(III) is being used to make the mono products.

Scheme 2-5: Synthesis of 4.

Formation of BIM-H\textsubscript{2} by condensation of glyoxal with NH\textsubscript{4}OH was achieved in 17.9% yield and is seen in Scheme 2-6. Two peaks are seen in the 1H NMR, one for the NH hydrogen and one for the electronically equivalent C–H hydrogens. In the literature procedure, a solution of the product was filtered through activated carbon. Instead, the product was dissolved by
addition of aqueous NaOH, filtered, and then precipitated by addition of HCl. The product was then collected by vacuum filtration.

Scheme 2-6: Synthesis of BIM-H$_2$.

The synthesis of 9 is seen in Scheme 2-7 and proceeded in 53.6% yield. The 1H NMR had eight distinct peaks, four doublets four triplets. Similar to the analysis of the peaks in 2 (Figure 2-20), placement of one pyridine ring in-plane cis to chlorine and one in-plane cis to the other bipyridine ring likely causes a shielding difference in each pyridine ring.

Scheme 2-7: Synthesis of 9.

The synthesis of 10 is seen in Scheme 2-8. After deprotonating 2, BPM was added and the solution was refluxed for 24 h, followed by acidification and precipitation with hexafluorophosphate.
The first time the synthesis was attempted, the solution was left basic instead of acidifying. Tetrabutylammonium hexafluorophosphate was added in an attempt to make the tetrabutylammonium salts of the carboxylic acids. At first it was thought that the tetrabutylammonium ions would form an ion pair with the deprotonated carboxylate groups, and the hexafluorophosphate ions would balance the charge on the ruthenium which would be in the +2 oxidation state. However, it would also be possible to have two or three of the carboxylate groups in an ion pair with tetrabutylammonium and the other two or one remaining with a negative charge to counter the charge on the ruthenium center forming a zwitterion. Mass spectrometry was performed using MALDI and a peak was seen at m/z=748. The isotopic distribution matched the predicted distribution and the mass corresponds to a complex with three tetrabutylammonium ions and one sodium ion with an overall charge of +2. Figure 2-17 displays this complex. However, it was easier to acidify the complex, eliminating any uncertainty as to the number of tetrabutylammonium ions. In subsequent trials, this was performed.
Figure 2-21: Illustration of a deprotonated 10 with tetrabutylammonium ion counter ions.

All peaks were identified and assigned using 1H-1H COSY in D$_2$O and the COSY analysis is seen in Figure 2-18 and Figure 2-19. The IR also showed stretching for the carboxylic acid functional groups as well. The shift at 9.08 ppm correlates to the shift at 7.59 ppm, which in turn correlates to the shift at 8.17 ppm. This was determined to be the 3 hydrogens on the BPM ring. C$_2$ symmetry in the molecules makes the two rings of BPM equivalent. The peak at 9.08 ppm is most likely the hydrogen that is para to the ruthenium. This hydrogen would be less shielded than the ortho hydrogen facing towards the DCBPY rings, which is at 8.17 ppm. The triplet at 7.59 ppm would be the hydrogen in between these two. This is seen in Figure 2-18. The peak at 8.98 ppm is not correlated to any others, which indicates it is the hydrogen ortho to both the carboxylic group on DCBPY and the carbon-carbon bridge between the rings. The doublet at 8.03 ppm is coupled to the doublet at 7.74 ppm and the doublet at 7.86 ppm is coupled to the doublet at 7.70 ppm. This is illustrated in Figure 2-19. The peaks at 8.03 ppm and 7.86 ppm correspond the hydrogens on DCBPY that are ortho to the nitrogen, since hydrogens ortho to nitrogen usually occur further downfield. The peaks at 7.74 ppm and 7.70 ppm correspond to the peaks ortho to the carboxylic acid and meta to the nitrogen. This is
seen in Figure 2-19. It was not determined which set of peaks is on the ring that is in-plane cis to the BPM and which is in-plane cis to the other DCBPY.

Figure 2-22: COSY analysis of BPM ligand in 10.
The synthesis of N3 was achieved by refluxing 2 with KSCN in DMF and is seen in Scheme 2-9. During the initial synthesis of N3, Grätzel determined that the thiocyanate is bound to the ruthenium through N as opposed to S. The authors noted that peaks appear in the IR at 2126 and 2093 cm\(^{-1}\), characteristic of cis isothiocyanates. The IR obtained experimentally displayed these peaks as well. Grätzel reported that the IR also showed a peak corresponding to C=S bending at 770 cm\(^{-1}\). He noted that this peak would not be present if the SCN was bound through the sulfur, and would instead show a weak peak near 700 cm\(^{-1}\). The IR of N3 obtained experimentally had a peak at 775 cm\(^{-1}\), corresponding to C=S bending and an N bound isothiocyanate.
Compound 5 was obtained in 77.3% yield by heating BIM and 4 in ethylene glycol at 150 °C for 24 h as seen in Scheme 2-10. The product was a bright orange and could be deprotonated with NaOH or NaOEt changing the color to purple. In the 1H NMR, four bipyridine peaks were seen, two doublets and two triplets. An additional four singlets were observed for the four hydrogens of the bimidazoles upfield from the pyridine peaks at 7.36, 7.28, 6.58, and 6.45 ppm. The NH peak appeared at 13.12 and showed integration of four hydrogens. The four peaks from the bipyridine, a doublet, triplet, triplet, and doublet at 8.57, 8.13, 7.91, and 7.39 respectively, showed an integration of two hydrogens each.
Compound 6 was made by refluxing 4 with BPM in ethanol/water (1:1) and was obtained in 44.3% yield. The 1H NMR was integrated to twenty hydrogens as would be expected, eight hydrogens from the BPY ligand and twelve hydrogens from the BPM. The peaks from the BPM ligand were integrated into four doublets and two triplets, with each peak integrating to two hydrogens. The BPY ligand followed the two doublet, two triplet pattern, with each peak integrating to two.

Compound 7 was made by adding BIM-H$_2$ to 9 and refluxing in ethanol for 3 h. A yield of 63.3% was obtained. 1H NMR in acetone-d$_6$ showed five peaks present. Three of those are from the bipyridine ligand at 8.76, 8.15, and 7.52 ppm. While normally four peaks would be expected, in this compound two peaks overlap at 8.15 ppm. The other two peaks are from the imidazole, at 7.64 and 8.68 ppm. NH peaks were not observed in the NMR.
Scheme 2-12: Synthesis of 7.

![Scheme 2-12: Synthesis of 7.](image)

Compound 8 was made in a manner similar to 7, although a longer reaction time was needed. This reaction is seen in Scheme 2-13. The 1H NMR showed total integration of 22 hydrogens, with eight peaks for the bipyridine ring and three for the bipyrimidine, as expected.

![Scheme 2-13: Synthesis of 8.](image)

Synthesis of the diruthenium 11 and 12 were similar to each other and are shown in Schemes 2-14 and 2-15. NaOH was needed to deprotonate the NH groups on 7 before the reaction. These were both refluxed until a color change occurred in the solution. Compound 11 product was a dark red color while compound 12 was a green/brown color. The appearance of both BIM and BPM complexes match the color of the complexes seen in the literature.12,37 The
1H NMR of the 11 displayed 36 hydrogens relative to the lowest integration peaks of 2H, which is consistent with symmetry along the Ru–Ru axis. There would be four diasteromers in all diruthenium complexes, which were not possible to separate. They hydrogens are expected to be chemically equivalent however. The 1H NMR of 12 displayed 38 hydrogens relative to 2H signals, which is consistent with symmetry along the Ru-Ru axis.

Scheme 2-14: Synthesis of 11.

Scheme 2-15: Synthesis of 12.
In order to test the ability of DHBPY to bind to the TiO$_2$ layer, 13 was synthesized as seen in Scheme 2-16 and was obtained in 56.6% yield. A 0.2 mM solution of 13 in acetonitrile was prepared and a TiO$_2$ electrode was soaked in the solution for 24 hours.1 The solution, which was a dark orange/red color, left the TiO$_2$ layer an intensely colored orange after washing with ethanol and acetone, indicating that the complex was tightly bound.

Scheme 2-16: Synthesis of 13.

![Scheme 2-16: Synthesis of 13.](image)

Synthesis of 14 was achieved by refluxing TPPZ with RuCl$_3$ for two days as seen in Scheme 2-17.3 A 43.3% yield was obtained and the product was a red/orange color.

1 TiO$_2$ electrode preparation is reported in Chapter 5.
Scheme 2-17: Synthesis of 14.

TPPZ was also used as a bridging ligand to build a number of diruthenium products. Refluxing TPPZ in ethanol with two equivalents of RuCl₃ gave the diruthenium product 15. This could be reduced from the Ru^{III}/Ru^{III} system to the Ru^{III}/Ru^{II} system, 16, by refluxing with tetrabutylammonium chloride, lithium chloride and acetone.⁸ The excess lithium chloride is used as a reducing agent. Alternatively, silver trifluoromethanesulfonate could be added to precipitate silver chloride making (TfO)₃Ru(TPPZ)Ru(OTf)₃, followed by addition of KSCN to make 17. During the synthesis of N3, it was determined that the thiocyanate is bound to the ruthenium through the N bond as opposed to the S bond. While Grätzel reported two IR peaks for the cis product, 2126 and 2093 cm⁻¹, in Black Dye where three isothiocyanates are present, only one peak is seen at 2106 cm⁻¹.⁴⁴ The IR spectrum of 17 displayed a single peak at 2093 cm⁻¹. The IR spectrum of 17 also had a peak at 775 cm⁻¹, corresponding to C=S bending and a nitrogen bound isothiocyanate as in N3.
Scheme 2-18: Synthesis of 15, 16, and 17.

2.5 Conclusions

A wide variety of mono- and disubstituted complexes were prepared. Two new complexes were prepared, 10 which contains two DCBPY groups and a BPM which is capable of further metal addition, and 17. The solar cell capability of these two complexes are reported in Chapter 5. 1H NMR data for a number of mono- and diruthenium products were also obtained where none was available in the previous literature. Chapter 3 describes the attempts to combine these building blocks into triruthenium complexes along with a study on their ability to form mixed-valence compounds.
Chapter 3

Synthesis and characterization of triruthenium complexes and testing combinatorial synthesis on TiO$_2$
3.1 Introduction

In the previous chapter, the synthesis of a variety of mono- and diruthenium complexes was described. This chapter describes the attempts to combine these building blocks into triruthenium complexes for use as electron reservoirs.

Combinatorial chemistry has made it possible to make a large number of compounds, or libraries, out a large number of smaller different but similar molecules.\(^1\) This makes it possible to make several large but different molecules, such as peptides or proteins, very rapidly. When performing reversible reactions under thermodynamic control, such as those often employed in coordination chemistry, the process is called dynamic combinatorial chemistry, DCC.

Dynamic combinatorial chemistry has been used to make a wide variety of metal-ligand libraries.\(^2\) Metal-ligands interactions in DCC require the ligand substitution to be fast, which often depends on factors such as the metal, charge, steric, and electronic properties of the ligands. Labile ligands tend to work best in DCC. The kinetics of this exchange depends on the ligand-field stabilization energy, the Jahn-Teller distortion, and ligand characteristics.\(^2\) Figure 3-1 lists the water exchange rate constants \((k)\) and mean lifetime \((\tau)\) in the first coordination sphere of metal ions at 25 °C.\(^2\) At first glance, Ru\(^{III}\) and Ru\(^{II}\) species appear on the slower end of the water exchange process. Ruthenium complexes have been made via dynamic combinatorial chemistry previously, incorporating Ru-porphyrin complexes\(^3,4\) as well as triruthenium macrocycles such as the complex in Figure 3-2.\(^5\) Iron tripeptide-bipyridine complexes have been made using dynamic combinatorial chemistry\(^6\) but the ruthenium-bipyridine complexes to date have not had the favorable equilibrium required for dynamic combinatorial chemistry\(^7,8\) and rubipyridine complexes have been largely inert.\(^2\) A combinatorial chemistry synthesis on titanium dioxide could not be found.
Figure 3-1: Water exchange rate constants (k) and mean lifetime (τ) in the first coordination sphere of metal ions at 25 °C.5

<table>
<thead>
<tr>
<th>Ion</th>
<th>k_{H_2O} (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$^+$</td>
<td>10$^{-10}$</td>
</tr>
<tr>
<td>Li$^+$</td>
<td>10$^{-5}$</td>
</tr>
<tr>
<td>K$^+$</td>
<td>103</td>
</tr>
<tr>
<td>Cs$^+$</td>
<td>106</td>
</tr>
<tr>
<td>Be$^{2+}$</td>
<td>104</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>104</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>104</td>
</tr>
<tr>
<td>Sr$^{2+}$</td>
<td>104</td>
</tr>
<tr>
<td>Ba$^{2+}$</td>
<td>104</td>
</tr>
<tr>
<td>Ir$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>Rh$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>Cr$^{3+}$ Ru$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>Al$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>Ga$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>Ti$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>In$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>Yb$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>Ho$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>Ir$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>Rh$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>Cr$^{3+}$ Ru$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>Al$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>Ga$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>Ti$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>In$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>Yb$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>Ho$^{3+}$</td>
<td>103</td>
</tr>
<tr>
<td>Pt$^{2+}$</td>
<td>105</td>
</tr>
<tr>
<td>Pd$^{2+}$</td>
<td>105</td>
</tr>
<tr>
<td>Cd$^{2+}$</td>
<td>105</td>
</tr>
<tr>
<td>Cu$^{2+}$</td>
<td>105</td>
</tr>
<tr>
<td>Ni$^{2+}$</td>
<td>105</td>
</tr>
<tr>
<td>Co$^{2+}$</td>
<td>105</td>
</tr>
<tr>
<td>Mn$^{2+}$</td>
<td>105</td>
</tr>
</tbody>
</table>

Figure 3-2: A triruthenium macrocycle made via dynamic combinatorial chemistry.
This chapter describes an attempt to use combinatorial chemistry to combine the building blocks made in Chapter 2 directly onto a titanium dioxide coated piece of glass as an attaching point. In the event that this was unsuccessful, traditional solution phase chemistry would be attempted to combine these building blocks. The ability to synthesize multi-metal complexes directly on the TiO₂ would speed up synthesis of the triruthenium molecules and also aid in the isolating and purifying of the complexes. It would also help building asymmetric molecules.

Figure 3-3: Generic diagram of a combinatorial chemistry procedure on TiO₂.
3.1.1 Triruthenium target molecules

In Chapter 2, a number of triruthenium frameworks were presented with different bridging ligands between the ruthenium centers. Figures 3-5 and 3-6 display target molecules containing the mixed BPM and TPPZ bridge system. Depending on where the attaching ligand is attached, the TPPZ bridge can be in closer proximity to the TiO$_2$ layer, as in Figure 3-4, or BPM can be in closer proximity to the TiO$_2$ as in Figure 3-5. The molecule in 3-4 can be made via combing an attaching ligand, 15 and 8. The attaching ligand can be either DHBPY or DCBPY. The chlorines of 15 could eventually be replaced with NCS as in N3 and Black Dye.

Figure 3-4: Potential triruthenium targets with a TPPZ and BPM bridge and the attaching ligand closer to the TPPZ bridge.

![Potential triruthenium target with a TPPZ and BPM bridge](image)

The complexes in Figure 3-5 could be made by combining 10 or (DHBPY)$_2$RuCl$_2$, and 15. As before, the attaching ligands might be DHBPY or DCBPY. The chlorines could also be replaced with NCS.

Figure 3-6 displays the target complexes with two BIM bridges. In this example, one side would have attaching ligands DHCBPY or DHBPY and the other side would have BPY...
ligands attached. These complexes could be made by joining the building blocks
(DHBPY)$_2$RuCl$_2$ or 2 with 5, and 9.

Figure 3-5: Potential triruthenium targets with a TPPZ and BPM bridge and the attaching
ligands closer to the BPM bridge.

Figure 3-6: Potential triruthenium targets with two BIM bridges.
Figure 3-7 displays the target complexes with two BPM Bridges. As in the double BIM bridged complexes, the attaching ligands would be DHCBPY or DHBPY. These could be made by combing the building blocks \((\text{DHBPY})_2\text{RuCl}_2\) or \(\text{RuCl}_2\) with \(\text{6}\), and \(\text{9}\). A double TPPZ bridge like the one seen in Figure 3-8 could be made with the building blocks DHBPY or DCBPY with \(\text{14}\) and two additions of \(\text{RuCl}_3\).

Figure 3-7: Potential triruthenium targets with two BPM bridges.

Figure 3-8: Potential triruthenium targets with two TPPZ bridges.
The remainder of this chapter describes the attempts to creating tri-ruthenium complexes via combinatorial synthesis on TiO$_2$ and solution phase synthesis of a number of tri-ruthenium complexes.

3.2 Experimental

All reactions were carried out under an atmosphere of dry nitrogen or in a glovebox unless otherwise noted. All NMR spectra were run using a 300 or 400 MHz Bruker NMR. All UV/Vis measurements were performed on a Perkin Elmer Lambda 950 UV/Vis spectrometer. All IR measurements were taken on a Thermo Nicolet IR200 FT-IR.
3.2.1 Synthesis of bis(2,2’-bipyridine)ruthenium(II)-µ-(2,2’-bipyrimidine)chlororuthenium(III)-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine)trichlororuthenium(III) hexafluorophosphate, 18

To a mixture of EtOH/H₂O (50 mL, 2:1), 8 (0.200 g, 0.232 mmol) and 15 (0.181 g, 0.244 mmol) were added. The mixture was refluxed for 6 h. After cooling to room temperature, the EtOH was removed in vacuo and a saturated aqueous solution of NH₄PF₆ (10 mL) was added to create a dark green/black ppt. The solid was collected by vacuum filtration and rinsed with three portions of 10 mL of diethyl ether. A total of 0.331 g was collected for a yield of 66%. The solid was placed on a high vacuum line for 12 h. ¹H NMR (300 MHz, acetone-d₃): δ 9.30-7.00 (m, broad) It is believed that the paramagnetic Ru(III) caused significant line broadening; UV (EtOH) λₘₐₓ 245, 290, 399, 610 nm.
3.2.2 Synthesis of bis(2,2’-bipyridine)ruthenium(II)-µ-(2,2’-
bipyrimidine)chlororuthenium(III)-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine)chloro(4,4’-
dihydroxy-2,2’-bipyridine)ruthenium(III) hexafluorophosphate, 19

To a mixture of EtOH/H$_2$O (25 mL, 2:1), 18 (0.163 g, 0.0695 mmol) and DHBPY (0.0188 g, 0.0793 mmol) were added. The mixture was heated under reflux for 6 h. The EtOH was removed in vacuo, and a saturated aqueous solution of NH$_4$PF$_6$ (10 mL) was added to create a dark green/dark black ppt. The solid was collected by vacuum filtration and rinsed with three portions of 10 mL of diethyl ether. A total of 0.126 g was collected for a yield of 79%. The solid was placed on a high vacuum line for 12 h. 1H NMR (300 MHz, acetonitrile-d$_3$): δ 9.30-7.00 (m, broad), 5.85 (t, J = 45 Hz) It is believed that the paramagnetic Ru(III) caused significant line broadening as it had an appearance of a very broad triplet spanning 2 ppm. It was nearly identical to 18 except for the appearance of a new triplet at 5.85 ppm with a J value of around 45 Hz (which appears to be from the OH groups on DHBPY) which has been significantly broadened due to the Ru (III); UV (EtOH) λ_{max} 245, 290, 399, 610 nm.
3.2.3 Synthesis of bis(2,2'-bipyridine)ruthenium(II)-µ-(2,2'-bipyrimidine)chlororuthenium(III)-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine)chloro(4,4'-dicarboxy-2,2'-bipyridine)ruthenium(III) hexafluorophosphate, 20

To a mixture of EtOH/H$_2$O (25 mL, 2:1), 18 (0.154 g, 0.0695 mmol) and DCBPY (0.0174 g, 0.0794 mmol) were added. The mixture was heated under reflux for 6 h. The EtOH was removed in vacuo and a saturated aqueous solution of NH$_4$PF$_6$ (10 mL) was added to create a dark black ppt. The solid was collected by vacuum filtration and rinsed with three portions of 10 mL of diethyl ether. A total of 0.0785 g was collected for a yield of 75%. The solid was placed on a high vacuum line for 12 h. 1H NMR (300 MHz, acetonitrile-d$_3$): δ 9.30-7.00 (m, broad) It is believed that the paramagnetic Ru(III) caused significant line broadening as it had an appearance of a very broad triplet spanning 2 ppm; UV (EtOH) λ_{max} 205, 249, 295, 390, 605 nm.
3.2.4 Synthesis of bis(4,4'-dicarboxy-2,2'-bipyridine)ruthenium(II)-µ-(2,2'-bipyrimidine)isothiocyanateruthenium(III)-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine)triisothiocyanateruthenium(III) hexafluorophosphate, 21

To a solution of 15 (0.152 g, 0.189 mmol) in H₂O (100 mL) was added AgOTf (0.533 g, 2.07 mmol). The mixture was stirred at 70 °C for 5 h. The blue solution was then filtered to remove the excess AgCl. To this solution was added 10 (0.254 g, 0.191 mmol) and 0.1 M NaOH until the pH reached 10. The mixture was heated at 70 °C for 72 h. During this time, the solution changed from blue to a dark red/purple color. After 72 h, KSCN (0.425 g, 4.37 mmol) was added and the solution was stirred for another 24 h. After this 24 h, 1 M HCl was added until the pH reached 4 and then excess NH₄PF₆ was added. After cooling, dark red/purple solid was collected by vacuum filtration and this was rinsed with 3 portions of 10 mL of ether. A total of 0.274 g was collected for a yield of 67%. The ¹H NMR was not very clear due to the product being paramagnetic and no peaks were seen. IR (cm⁻¹): 3030, 2107, 1888, 1591, 1419, 1352, 1191, 775; UV (EtOH) λmax 446, 605 nm.
3.2.5 Synthesis of bis(trichlororuthenium(III)-µ-(2,3,5,6-tetra-(2-pyridyl)pyrazine))ruthenium(II) hexafluorophosphate, 22

To a solution of acetone/EtOH (1:1, 100 mL) was added 14 (0.2663 g, 0.2195 mmol) and RuCl$_3$ (0.1493 g, 0.7198 mmol). This was refluxed for 48 h under nitrogen. After cooling, a blue precipitate was found in the flask. This was collected by vacuum filtration and rinsed with 3 portions of 10 mL of ether. A total of 0.300 g was collected for a yield of 87%. The 1H NMR was not very clear due to the product being paramagnetic and no peaks were seen. IR (cm$^{-1}$): 3339, 3025, 1593, 1415, 1357, 1298, 1245, 1188, 1158, 1101, 778; UV (EtOH) λ_{max} 473, 599, 668 nm.
3.2.6 Synthesis of bis(bis(2,2’-bipyridine)ruthenium(II)-μ-(2,2’-bipyrimidine))(2,2’-bipyridine)ruthenium(II) hexafluorophosphate, 23

To a solution of acetone/EtOH (1:1, 50 mL) was added 6 (0.153 g, 0.177 mmol) and 9 (0.200 g, 0.412 mmol) and the mixture was then heated under reflux for 72 h. Column chromatography was performed on alumina using an eluent mixture of 100:10:1 CHCl$_3$:MeOH:NH$_3$. After collecting the product, 10 mL of a saturated NH$_4$PF$_6$ solution was added to precipitate an olive green/black solid and this was collected by vacuum filtration. This solid was dissolved in acetone and then re-precipitated by addition of ether. The olive green/black solid was again collected by vacuum filtration and rinsed with 3 portions of 10 mL ether. A yield of 43% was obtained.1H NMR (300 MHz, acetone-d$_6$): δ 8.57 (m), 8.07 (m), 7.31 (m); IR (cm$^{-1}$): 3110, 3090, 2958, 2929, 2859, 1727, 1604, 1466, 1448, 1422, 1404, 1272, 1123, 1072, 839, 768, 728, 557; UV (EtOH) λ_{max} 495, 575, 675 nm.
3.2.7 Synthesis of bis(bis(4,4’-dicarboxy-2,2’-bipyridine)ruthenium(II)-µ-(2,2’-bipyrimidine))(2,2’-bipyridine)ruthenium(II) hexafluorophosphate, 24

To a solution of acetone/EtOH (1:1, 50 mL) was added 6 (0.0520 g, 0.0602 mmol). To this was added 3 (0.0765 g, 0.122 mmol) and the mixture was then heated under reflux for 72 h. Column chromatography was performed on alumina using an eluent mixture of 100:10:1 CHCl₃:MeOH:NH₃. After collecting the product, 10 mL of a saturated NH₄PF₆ solution was added to precipitate an olive green/black solid and this was collected by vacuum filtration. This solid was dissolved in acetone and then re-precipitated by addition of ether. The olive green/black solid was again collected by vacuum filtration and rinsed with 3 portions of 10 mL ether. A total of 0.117 g was collected for a yield of 68%. ¹H NMR (300 MHz, acetone-d₆): 9.23 (m, 6H), 8.83 (d, J = 8.0, 6H), 8.73 (dd, J = 8.0, 2.0, 2H), 8.47 (m, 4H), 8.23 (m, 12H), 8.0 (m, 2H), 7.77 (m, 6H), 7.62 (m, 6H), 4.48 (m, 16H), 1.75 (m, 24H); IR (cm⁻¹): 3080, 2950, 2850, 1720, 1611, 1550, 1406, 1230, 1129, 1019, 898, 840, 768, 768, 719, 675, 557, 496; UV (EtOH) λ_max 563 nm.
3.2.8 Synthesis of bis(bis(2,2'-bipyridine)ruthenium(II)-µ-(2,2'-biimidazole))(2,2'-bipyridine)ruthenium(II) hexafluorophosphate, 25

To a solution of acetone/EtOH (1:1, 50 mL) was added 5 (0.136 g, 0.1670 mmol) and NaOH (0.0432 g, 1.08 mmol). This was stirred at room temperature for 10 min. To this was added 9 (0.182 g, 0.376 mmol) and the mixture was then heated under reflux for 72 h. Column chromatography was performed on alumina using an eluent mixture of 100:10:1 CHCl₃:MeOH:NH₃. After collecting the product, 10 mL of a saturated NH₄PF₆ solution was added to precipitate a red/purple solid and this was collected by vacuum filtration. This solid was dissolved in acetone and then re-precipitated by addition of ether. The red/purple solid was again collected by vacuum filtration and rinsed with 3 portions of 10 mL ether. A total of 0.192 g was collected for a yield of 70%. ¹H NMR (300 MHz, acetone-d₆): δ 8.58 (m), 8.05 (m), 7.39 (m); IR (cm⁻¹): 3114, 3090, 1602, 1465, 1445, 1420, 840, 761, 728, 657, 559; UV (EtOH) λmax 465, 510 nm.
3.2.9 Synthesis of bis(bis(4,4’-dicarboethoxy-2,2’-bipyridine)ruthenium(II)-μ-(2,2’-biimidazole))(2,2’-bipyridine)ruthenium(II) hexafluorophosphate, 26

To a solution of acetone/EtOH (1:1, 50 mL) was added 5 (0.0533 g, 0.0654 mmol) and NaOH (0.0160 g, 0.401 mmol). This was stirred at room temperature for 10 min. To this was added 23 (0.100 g, 0.129 mmol) and the mixture was then heated under reflux for 72 h. Column chromatography was performed on alumina using an eluent mixture of 100:10:1 CHCl₃:MeOH:NH₃. After collecting the product, 10 mL of a saturated NH₄PF₆ solution was added to precipitate a red/purple solid and this was collected by vacuum filtration. This solid was dissolved in acetone and then re-precipitated by addition of ether. The red/purple solid was again collected by vacuum filtration and rinsed with 3 portions of 10 mL ether. A total of 0.132 g was collected for a yield of 71%. ¹H NMR (300 MHz, DMSO-d₆): δ 9.30-6.70 (m, 40 H), 4.47 (m, 16H), 1.43 (m, 24H); IR (cm⁻¹):3384 (br), 3030, 1716, 1603, 1541, 1405, 1363, 1313, 1260, 1231, 842, 766; UV (EtOH) λ_max 465, 505 nm.
3.3 Results and Discussion

3.3.1 Combinatorial synthesis of triruthenium complexes on TiO\(_2\):

To see if triruthenium complexes could be made via combinatorial synthesis on TiO\(_2\), synthesis of 19 and 20 on TiO\(_2\) was attempted. Both of these began with solution phase synthesis which began with the creation of a common building block 18. This is outlined in Scheme 3-1. After 18 was made, either DCBPY or DHBPY to a solution 18 to create the respective triruthenium complexes. This is outline in Scheme 3-2. Both compounds were a dark green/black color.

Scheme 3-1: Synthesis of 18.
Scheme 3-2: Synthesis of 19 and 20.

Monitoring the by 1H NMR was difficult, as there was paramagnetic ruthenium (III) in both the reactants and products. Also, triruthenium complexes tend to have very low solubility in most solvents, which results in a low signal to noise ratio. 13C NMR was also performed on each sample, but in most cases, no peaks appeared after eight hours of scanning. It is likely the low concentrations and low signal to noise ratio are the cause. This was also true for the remaining triruthenium complexes in this chapter.

UV-Vis was used to monitor the reaction, since solid state UV-Vis can be used to monitor the progress of the combinatorial synthesis on the TiO$_2$. The UV-Vis spectrum of the starting materials and products of the 18 synthesis is seen in Figure 3-9. The peaks at 399 and 610 nm were roughly the same as those in 15, except the 399 peak was red shifted around 30 nm and the 610 nm peak was blue shifted by about the same amount. These peaks are from the π orbital absorptions of TPPZ and the MLCT absorptions respectively. Replacing two of the
chlorine ligands with 8 would likely decrease the electron density on one of the rutheniums attached to the TPPZ, likely causing these changes.

Figure 3-9: The UV-Vis spectra of the reactants and products involved in the synthesis of 18.

The UV-Vis spectra of 19 and 20 are seen in Figure 3-10. The only major difference between the two is the presence of a peak at 235 nm in 20. Electron withdrawing groups, like the carboxylic acid group on DCBPY, are known the cause red shifts in aromatic rings. In all three complexes, there is a shoulder at roughly 675 nm. This is a common feature in triruthenium complexes and it is attributed to a higher population of singlet-triplet transitions, which are seen when the number of metal centers is greater than two.⁹
Figure 3-10: The UV-Vis spectra of 18, 19, and 20.

Combinatorial synthesis of 19 began by adding DHBPY to the TiO$_2$, followed by 15, and finally 8. This was initially performed using the same conditions as the solution phase synthesis, EtOH/H$_2$O in a 2:1 ratio. The solid state UV-Vis results are seen in Figure 3-11. There was no presence of the building blocks in the UV-Vis. The TiO$_2$ plate appeared to degrade during the course of the synthesis and no major color changes were seen. It was assumed the boiling solvent was causing the TiO$_2$ to degrade. This was problematic as higher temperatures are needed for the reaction.
In order to get perform the reaction at lower temperature, the chlorines of 15 were replaced with triflates. The combinatorial synthesis of 19 was attempted again at both 20 °C and 50 °C in the exact same manner as before, except (TfO)$_3$Ru(TPPZ)Ru(OTf)$_3$ was used as the second building block. The results were the same as before, the TiO$_2$ appeared to degrade and tiny holes appeared in the TiO$_2$ layer. No noticeable attachment of the building blocks was seen.

The final UV-Vis results of the second combinatorial attempt are seen in Figure 3-12. There was no major difference between the 20 °C and 50 °C trials. There is also no apparent absorption around 600 nm, which typically results from the MLCT transitions in ruthenium polypyridine complexes. A TiO$_2$ electrode was soaked in 19 to use as a frame of reference. The UV-Vis of this electrode, in addition to a solution phase UV-Vis of 19, is included in Figure 3-12. The absorption of the triruthenium complex while on TiO$_2$ is red shifted slighted, which is common for ruthenium complexes on TiO$_2$.10
In section 3.1, it was mentioned that ruthenium-bipyrdine complexes are largely inert and have not been successfully used in dynamic combinatorial chemistry due to their slow ligand substitutions. It is likely the case with these complexes as well, as no evidence of a reaction was seen, even with highly labile triflate groups on the ruthenium centers.
3.3.2 Solution phase synthesis of triruthenium complexes

Since combinatorial synthesis was not working, the targets were modified slightly and solution phase chemistry was attempted on the remaining targets. It was decided to make symmetrical complexes instead of asymmetric complexes at first to see if the proposed bridges would produce a NIR absorption in the mixed valence states. The ancillary ligands do have some effect on where the NIR peak is located, but they tend not to affect whether or not a peak will be seen.11

The mixed bridge 21 was made by refluxing a solution of (TfO)\textsubscript{3}Ru(TPPZ)Ru(OTf)\textsubscript{3} and 10. This is outlined in scheme 3-3. The chlorines of 15 were replaced with triflate groups to facilitate the reaction. Similar to the previous triruthenium complexes, analysis by 1H NMR was not possible, as there was paramagnetic ruthenium (III) in both the reactants and products. The IR spectra of 21 had a shift 2107 cm-1 caused by the isothiocyanate group and a shift at 1888 cm-1 caused by the carboxylic acid group in DCBPY. This complex was a dark green/black color.
Scheme 3-3: Synthesis of 21.

A bis-TPPZ bridged complex, 22, was made by adding RuCl$_3$ to 14. The synthesis is seen in Scheme 3-4. Analysis by 1H NMR was not possible, as there was paramagnetic ruthenium (III) in the products. The UV-Vis spectrum was similar to that of 15, except the TPPZ π absorptions in 22 were more intense. This complex had blue/green color to it, similar to 15.
Scheme 3-4: Synthesis of 22.

Two bis-BPM bridged complexes were made by adding 6 to either 9 or 3 to make 23 and 24 respectively. Both of these complexes were an olive green/black color. The synthesis is seen in Scheme 3-5. The carbonyl of the DEBPY ligands causes an absorption peak to appear at 1720 cm\(^{-1}\) in the IR of 24, which is absent in 23. In many polypyridine multiruthenium complexes, the \(^1\)H NMR gets difficult to analyze once there are three or more ruthenium centers. The same is seen in the \(^1\)H NMR of these two complexes. Because there are eight possible stereoisomers and almost all hydrogens are in the 7-9 ppm range, there were a large number of overlapping peaks and it was not possible to assign all of the hydrogens. In the \(^1\)H NMR of 24, the ethoxy group of DEBPY were present at 4.48 and 1.75 ppm in the appropriate 2:3 ratio.
Two bis-BIM bridged complexes were made in a manner similar to the bis-BPM bridged complexes. 5 to either 9 or 3 made 25 and 26 respectively. The synthesis is seen in Scheme 3-6. While the bis-BPM bridged complexes were an olive green color, these two were dark red/purple. The 1H NMR of these two complexes was similar to those of the bis-BPM bridged complexes. There were a large number of overlapping peaks and it was not possible to assign all of the hydrogens. In the 1H NMR of 26, the carboethoxy group of DEBPY were present at 4.47 and 1.43 ppm in the appropriate 2:3 ratio. A carbonyl peak was seen in the IR of 26 at 1716 cm$^{-1}$.
Scheme 3-6: Synthesis of 25 and 26.

3.3.3 Elemental analysis of triruthenium complexes

An elemental analysis was performed on the eight triruthenium complexes described in this chapter and the results are seen in Table 3-1. Analysis was performed by Intertek Pharmaceuticals in Whitehouse, NJ. In most complexes, the experimental carbon, hydrogen, and nitrogen content was significantly lower than the expected values. During the synthesis of these complexes, excess hexafluorophosphate salt was added to precipitate a product. It is likely a significant amount of excess salt was present in the sample. This would not show up in the 1H NMR or UV-Vis of the complexes. This in turn would cause the experimental values for carbon, hydrogen, and nitrogen to be significantly lower as is seen in the elemental analysis.
Table 3-1: Elemental analysis of triruthenium complexes

<table>
<thead>
<tr>
<th>Complex</th>
<th>Anal. Calcd.</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>C, 33.12; H, 2.26; N, 9.66</td>
<td>C, 23.23; H, 3.44; N, 8.64</td>
</tr>
<tr>
<td>20</td>
<td>C, 33.35; H, 2.26; N, 9.43</td>
<td>C, 9.41; H, 4.32; N, 10.09</td>
</tr>
<tr>
<td>21</td>
<td>C, 33.51; H, 1.78; N, 11.72</td>
<td>C, 29.47; H, 1.41; N, 11.95</td>
</tr>
<tr>
<td>22</td>
<td>C, 36.43; H, 2.04; N, 10.62</td>
<td>C, 36.96; H, 3.02; N, 8.87</td>
</tr>
<tr>
<td>23</td>
<td>C, 34.92; H, 2.31; N, 11.11</td>
<td>C, 0.47; H, <0.10; N, 0.12</td>
</tr>
<tr>
<td>24</td>
<td>C, 37.97; H, 2.97; N, 8.86</td>
<td>C, 7.14; H, 0.46; N, 2.86</td>
</tr>
<tr>
<td>25</td>
<td>C, 45.45; H, 2.95; N, 15.39</td>
<td>C, 37.52; H, 2.84; N, 10.84</td>
</tr>
<tr>
<td>26</td>
<td>C, 46.64; H, 3.64; N, 11.38</td>
<td>C, 30.59; H, 1.22; N, 13.95</td>
</tr>
</tbody>
</table>

3.3.4 UV-Vis and ceric ammonium nitrate oxidation spectral data

In order to see if a NIR peak would appear in the mixed-valence state of the compounds, ceric ammonium nitrate titrations, CAN, were performed. A UV-Vis of each triruthenium sample, and a few diruthenium samples, were taken. After this, a solution of 0.25 equivalents of CAN was added and the UV-Vis was retaken. This was repeated until a total of 2 equivalents of CAN was added to the diruthenium complexes and a total of 3 equivalents of CAN was added to the triruthenium complexes.

The CAN titrations of BIM-bridged complexes 11, 25, and 26 are seen in Figures 3-13, 3-14, and 3-15 respectively. All three complexes exhibit the same general pattern. A MCLT absorbance at roughly 500 nm slowly decreases as more CAN is added. Around 550-600 nm, an inflection point is seen and the absorbance increases as more CAN is added. In 11 the absorbance continues throughout the NIR. In 25, and 26, the increase in absorbance is only seen until roughly 800 nm. As CAN is added, the ruthenium centers are oxidized from Ru(II) to Ru(III). It is likely this is why the MLCT absorbance drops around 500 nm. The increase in absorbance from 600 to 800 nm most likely comes from a mixed-valance MMCT that arises when there is one Ru(II) center and one or more Ru(III) center. Since this does not disappear once 3 equivalents of CAN is added, this might suggest not all of the metals centers are being
oxidized. As mentioned in Chapter 2 of this dissertation, the complex
[Ru
III
(BIM)Ru
II
(BPY)[subscript 2] 3+ showed a mixed-valence absorption at 833 nm.12 The wavelength is a bit higher than the mixed-valence absorbance seen in [((BPY)\textsubscript{2}Ru(BIM))\textsubscript{2}Ru(BPY)](PF\textsubscript{6})\textsubscript{2}, and [([DEBPY)\textsubscript{2}Ru(BIM))\textsubscript{2}Ru(BPY)](PF\textsubscript{6})\textsubscript{2}.

Figure 3-13: CAN titration of 11.
Figure 3-14: CAN titration of 25.

![Graph showing CAN titration of 25.](image)

Figure 3-15: CAN titration of 26.

![Graph showing CAN titration of 26.](image)
The CAN titrations for BPM-bridged 12, 23, and 24 are seen in Figures 3-16, 3-17, and 3-18 respectively. Each complex had a MLCT peak around 650-700 nm and a strong absorption below 450 nm. There is also an absorbance around 1325-1350 nm in each. This is present both at the start and at the completion of the titration. Through the titration, no major changes were seen in the absorption pattern in the bis-BPM bridged complexes. As mentioned in Chapter 2 of this dissertation, the mixed valence complex \([(\text{BPY})_2\text{Ru}^{\text{II}}(\text{BPM})\text{Ru}^{\text{III}}(\text{NH}_3)_4](\text{PF}_6)_5\) did not show a NIR absorption. It is likely CAN is not a strong enough oxidant to oxidize these complexes based on the results of similar TPPZ complexes described in chapter 4 of this dissertation.

Figure 3-16: CAN titration of 12.
Figure 3-17: CAN titration of 23.

![Graph showing CAN titration of 23.](image)

Figure 3-18: CAN titration of 24.

![Graph showing CAN titration of 24.](image)
The CAN titrations for TPPZ-bridged 16 and 22 are seen in Figures 3-19 and 3-20 respectively. A strong peak is seen around 600 nm in both, arising from the ruthenium to TPPZ MLCT. There is a long tail extending to 1300 nm 16. This complex is initially in the Ru (II)/Ru(III) mixed valence state and has no other major peaks in the NIR. In similar complexes, CAN was not a strong enough oxidization agent to oxide some TPPZ bridged ruthenium complexes, so it is likely the tail is a result of the mixed-valence transition in the initial complex which is not being oxidized.13 The MLCT absorbance at 22 decreased as more CAN is added. This is likely the result of the central ruthenium, which was believed to be Ru(II), being oxidized. The initial complex was suspected to be in Ru(III)/Ru(II)/Ru(III) oxidation states. A NIR absorption would be seen before CAN was added if one was present. However, there was none.

Figure 3-19: CAN titration of 16.
The CAN titrations for Ru-BPM-Ru-TPPZ-Ru complexes 19, 20, and 21 are seen in Figures 3-21, 3-22, and 3-23 respectively. All three contain a MLCT absorbance around 600 nm. This is most likely the MLCT absorbance that arises from the Ru-TPPZ transition as it is in the same location in the TPPZ bridged complexes seen in Figures 3-19 and 3-20. There is also an absorbance around 450 nm in each. This is the same location that the BPM and BPY ligands in the BPM bridged complexes in Figures 3-16 through 3-18 were seen. There was a peak that in the BPM bridged complexes around 600 nm that would also overlap with the TPPZ absorbance. In all three of 19, 20, and 21, no NIR absorptions are seen and the absorption of the MLCT peaks drop as more CAN is added. This is likely a result of the ruthenium center around BPM being oxidized.
Figure 3-21: CAN titration of 19.

Figure 3-22: CAN titration of 20.
3.4 Conclusion

A number of triruthenium complexes were made with BPM, BIM, and TPPZ bridged centers. The complexes with two BPM and two TPPZ bridges did not display a NIR absorption in any oxidation state. The mixed bridge systems, with both one TPPZ and one BPM did not display a mixed-valence NIR state either. The two BIM bridged system had a slight mixed-valence absorption around the 700-800 nm mark, but it did not extend deep into the NIR. It was concluded that these bridging systems combined with Ru(II)/Ru(III) metal centers would not serve as good electron reservoirs. The next chapter described the modification of TPPZ to allow more electron density to be placed on the ruthenium centers, allowing the complex to reach a mixed-valence state with more ease. Each of these complexes were used as dyes in a DSSC and the results are described in Chapter 5 of this dissertation.
Chapter 4

Synthesis and characterization of an asymmetric cyclometalated diruthenium complex
4.1 Introduction

Ruthenium complexes containing isothiocyanate have long held an advantage over other types of dyes used in dye-sensitized solar cells.1 However, the isothiocyanate ligand is often a weak point from a chemical stability standpoint.1 The Ru-N bond of a nitrogen bound isothiocyanate is weak compared to multi-chelating polypyridine ligands2,3 At temperatures of 80-100 °C the isothiocyanate ligand can be freed by ligand exchange with 4-tertbutylpyridine, a common component of the electrolyte.3 One option that has recently been explored to avoid use of isothiocyanate is the use of cyclometalated complexes.4 A cyclometalated version of N3, bis(4,4′-dicarboxy-2,2′-bipyridine)-2-(2,4-difluorophenyl)pyridine ruthenium (II) (Figure 4-1) was made using 2-(2,4-difluorophenyl)pyridine in place of the isothiocyanate ligands was one the first cyclometalated complexes reported and it achieved an overall efficiency of 10.1\%.1 A large number of bipyridine derivatives, such as the previously mentioned 2-(2,4-difluorophenyl)pyridine, have been used as bidentate ligands that replace two isothiocyanate ligands.4 A large number of similar terpyridine cyclometalated derivatives have also been used to replace the terminal ligands in complexes such as Black Dye.4
Figure 4-1: A cyclometalated version of N3, bis(4,4′-dicarboxy-2,2′-bipyridine)-2-(2,4-difluorophenyl)pyridine ruthenium (II).

Bimetallic complexes containing the ligand 2,3,5,6-tetra-(2-pyridyl)pyrazine, TPPZ, have received quite a bit of attention due to the similarities to the Creutz-Taube ion. TPPZ has a similar spacing between metal centers in bimetallic complexes while also containing a bis-tridentate coordination, providing much greater stability than seen in the Creutz-Taube ion. Complexes containing the bridging ligand TPPZ tend to exhibit metal-to-metal charge transfer peaks in the near-IR when in the mixed valence state. A variety of similar complexes (Figure 4-2) containing the bridging ligands 6′,6″-di(2-pyridyl)-2,2′;4′,4″:2″″-quaterpyridine, TPY-TPY, 2,3,5,6-tetra-(2-pyridyl)benzene, TPB, and 4’-(3,5-dipyridylphenyl)-2,2′:6′,2″-terpyridine, TPY-TBY, have also been synthesized and exhibit near-IR absorbances in their mixed-valence states. Cyclometalated complexes made from ligands such as TPB and TPY-TBY tend to have much lower oxidation potentials on the metal center that is attached to through the carbon-metal bond compared to the similar metal centers with a nitrogen-metal bond.
In this chapter, the synthesis of 2,3,5,6-tetra-(2-pyridyl)pyridine, TPPY, is described. When used to make a di-metallic complex, this ligand would have similar metal-to-metal distances as the Creutz-Taube ion, TPPZ, and TPB. However, a di-metallic complex made with TPPY would be asymmetric, similar to TPY-TBY and would contain a single carbon-metal bond, lowering the oxidation potential on one of the metal centers. The asymmetry in the molecule, potential mixed-valence absorbances, and similarities to other polypyridine ruthenium complexes would make it a good candidate as a bridging ligand for the electron reservoir strategy.
Figure 4-3: 2,3,5,6-tetra-(2-pyridyl)pyridine, TPPY.

4.2 Experimental

All reactions were carried out under an atmosphere of dry nitrogen or in a glovebox unless otherwise noted. All NMR spectra were run using a 300 or 400 MHz Bruker NMR. All UV/Vis measurements were performed on a Perkin Elmer Lambda 950 UV/Vis spectrometer. All IR measurements were taken on a Thermo Nicolet IR200 FT-IR.

4.2.1 Synthesis of 2,6-diamino-3,5-dibromopyridine, 27

This reaction was performed according to a modified version of a literature procedure.13 In a round bottom flask, 2,6-diaminopyridine (4.034 g, 36.97 mmol) was dissolved in 10 mL H\textsubscript{2}O. Hydrobromic acid (9.0 mL, 48 %) was added followed by slow addition of H\textsubscript{2}O\textsubscript{2} (7.0 mL, 30 %) over a 1 h period. The solution was then cooled in an ice bath and a 300-watt
incandescent light bulb was placed in close proximity. After 1 h, an additional 3 mL of HBr and 3 mL of H₂O₂ was added. After another 1 h, 1 M NaOH was added to bring the pH to 8, which caused a white solid to precipitate. The white solid was a mixture of the mono- and dibrominated products. These were separated by column chromatography on silica using an eluent mixture of 100:10:1 CHCl₃:MeOH:NH₃. A yield of 39.2% of 27 was obtained.

27 - ¹H NMR (DMSO-d₆, 300 MHz) δ 7.55 (s, 1H), 5.86 (s, 4H).
2,6-diamino-3-bromopyridine - ¹H NMR (DMSO-d₆, 300 MHz) δ 7.23 (d, 1H, J = 8.4 Hz), 5.65 (d, 1H, J = 8.4 Hz), 5.63 (s, 2H), 5.54 (s, 2H).

4.2.2 – Synthesis of 2,3,5,6-tetrabromopyridine, 28

This reaction was performed according to a modified literature procedure.¹³,¹⁴ In a round bottom flask, 27 (0.507 g, 1.90 mmol) was dissolved in a solution of 10 mL deionized H₂O and HBr (48 %, 1 ml) and cooled with an ice bath. Sodium nitrite (6.485 g, 76.30 mmol) dissolved in 10 ml water was added dropwise over a period of 1 h. A large amount of N₂ gas was given off right away. After 1 h at 0 °C, the reaction was allowed to warm to room temperature for 1 h and then the solution was heated at 50 °C for 8 h after which the solution was neutralized with 1 M NaOH. The aqueous solution was extracted three times with 50 mL CHCl₃. The solvent was vaporized under vacuum and the solid crude product was recrystallized from hexane. The product was obtained as a yellow solid (0.105 g, 0.266 mmol). After column chromatography on silica with CHCl₃ as the eluent, 0.0532 g of a yellow solid was collected for a yield of 7.1%. ¹H NMR (CDCl₃, 300 MHz) δ 8.07 (s); ¹³C NMR (CDCl₃, 300 MHz) δ 145.5, 140.8, 123.2.
4.2.3 – Synthesis of 2,3,5,6-tetra-(2-pyridyl)pyridine, TPPY

In a flame-dried vacuum flask, a solution was prepared by dissolving 28 (0.0501 g, 0.127 mmol) in 10 mL dried toluene. To this was added 2-(tributylstannyl)pyridine (0.464 g, 1.26 mmol), bis(triphenylphosphine)palladium(II) dichloride (0.023 g, 0.0327 mmol) and lithium chloride (0.107 g, 2.52 mmol) under a nitrogen atmosphere. The ratio of 28:2-(tributylstannyl)pyridine:bis(triphenylphosphine)palladium(II) dichloride was 1: 9.9: 0.25. The reaction mixture was stirred under nitrogen and heated to 150 °C. The reaction vessel was sealed with a hand screwed Teflon stopcock and it was allowed to remain at 150 °C for 48 h. After cooling, the solvent was removed by vacuum. A column was performed using CHCl₃:MeOH:NH₄OH(aq) (100:10:1) as the eluent. The product was recrystallized by dissolving the solid in hot ethanol and allowing the solution to cool. The crystals were collected by vacuum filtration and used for X-ray crystallography. A total of 0.0360 g of a white/beige solid was collected for a yield of 73.1%. ¹H NMR (CDCl₃, 300 MHz) δ 8.54 (dd, J = 5.4, 1.8, 2H), 8.23 (m, 3H), 7.86 (d, J = 7.8, 2H), 7.74 (td, J = 7.5, 1.8, 2H), 7.54 (td, J = 7.8, 1.5, 2H), 7.18 (m, 6H); ¹³C NMR (CDCl₃, 300 MHz) δ 157.8, 157.7, 155.1, 149.6, 148.9, 141.9, 136.5, 135.9, 135.4, 125.0, 124.8, 123.0, 122.1. A ¹H-¹H COSY was also performed and is discussed in section 4.3.
4.2.4 Synthesis of trichloro-2,2';6',2''-terpyridineruthenium, 29

This complex was synthesized by following a literature procedure. A total of 0.559 g was collected for a yield of 66%. The 1H NMR had a very low signal to noise ratio and was not very clear due to the product being paramagnetic. There were broad, very low intensity multiplets in the 7-10 ppm range.
4.2.5 Synthesis of bis(2,2’;6’,2”-terpyridineruthenium)-µ-2,3,5,6-tetra-(2-pyridyl)pyridine,

A solution of 29 (0.0853 g, 0.194 mmol) in 50 mL of DI water was prepared in a 50 mL round bottom flask. To this was added AgOTf (0.199 g, 0.776 mmol). This was stirred for 3 h at 50 °C and during this time, the solution changed from a black to a blue/purple color. After cooling, the solution was filtered to remove the solid silver chloride precipitate and the filtrate was collected and the water was evaporated. This left an amorphous purple product in the flask which was (TPY)Ru(OTf)$_3$. TPPY (0.0296 g, 0.764 mmol) in 50 mL of n-BuOH was added and the mixture was refluxed for 72 h. After cooling, the solvent was removed by vacuum. A column was performed using a 90:10 mixture acetonitrile/saturated NaNO$_3$ in H$_2$O on alumina. After collecting the fractions, a purple solid was collected by adding 10 mL of a saturated KPF$_6$ solution to make a purple precipitate. A total of 0.132 g was obtained for a yield of 84%. 1H NMR (acetone-d$_6$, 300 MHz) δ 9.16 (d, $J = 6.0$ Hz, 2H), 9.12 (d, $J = 6.0$ Hz, 2H), 9.10 (d, $J = 6.0$ Hz, 2H), 8.90 (d, $J = 6.0$ Hz, 2H), 8.89 (d, $J = 6.0$ Hz, 2H), 8.84 (d, $J = 6.0$ Hz, 2H), 8.63 (t, $J = 6.0$ Hz, 1H), 8.56 (t, $J = 6.0$ Hz, 1H), 8.14 (td, $J = 6.0$, 1.0 Hz, 2H), 8.08 (d, $J = 3.3$ Hz, 2H), 7.98 (td, $J = 6.0$, 1.0 Hz, 2H), 7.96 (td, $J = 6.0$, 1.0 Hz, 2H), 7.80 (m, 6H), 7.65 (d, $J = 6.0$ Hz,
2H), 7.43 (td, J = 4.3, 1.0 Hz, 2H), 7.34 (td, J = 4.3, 1.0 Hz, 2H), 7.18 (td, J = 4.3, 1.0 Hz, 2H), 7.12 (td, J = 4.3, 1.0 Hz, 2H).

4.3 Results and Discussion

Synthesis of 30 began with the synthesis of the bridging ligand TPPY. The synthetic strategy for TPPY is shown in Scheme 4-1. Bromination of 2,6-diaminopyridine was achieved via radical bromination using HBr and H$_2$O$_2$. The resulting under went a Sandmeyer reaction using NaNO$_2$ and HBr to give the tetrabromo product 28. A Stille coupling of the tetrabromo product with 2-(tributylstannyl)pyridine gave the desired product TPPY.

Scheme 4-1: Synthesis of TPPY.
An X-ray crystal structure of TPPY was obtained, and the structure is shown in Figure 4-4. The rings had a non-planar arrangement in the crystal of TPPY with the nitrogens on the non-central pyridine rings facing towards each other. The C-C-N bond angles, which contain a carbon on the central pyridine and a nitrogen on the outer ring, have approximately 50° bond angles.

Figure 4-4: Crystal structure of TPPY.

The synthesis of the diruthenium product (Scheme 4-2) was performed by first synthesizing 29 then treating it with silver triflate to make (TPY)Ru(OTf)₃. The (TPY)Ru(OTf)₃ was immediately dissolved in n-butanol and added to TPPY. Initially this reaction was performed in refluxing ethanol, but it resulted in a mixture of mono and di metallic products in a roughly 1:1 ratio as determined by ¹H NMR. When same procedure was repeated using refluxing n-BuOH as the solvent, this resulted in almost complete conversion to the diruthenium complex. Following column chromatography on alumina, the desired diruthenium complex, 30, was
obtained as the hexafluorophosphate salt. The 1H NMR of 30 showed a slight excess of the terminal ligands in the mixtures. The singles at 8.63 and 8.56 ppm are from the central hydrogen of the TPY ligands. 1H-1H COSY showed a correlation between these singlets and the doublets at 9.16 and 9.12 ppm. The integrations of these peaks were roughly double of what they should have been. Even though an excess of TPPY was used, it is likely that not all of it reacted and a large portion of the yield is due to excess KPF$_6$ which was used to precipitate the product. The 1H NMR and 1H-1H COSY for 30 can be found in the Appendix, section 6.3.7.

Scheme 4-2: Synthesis of 30.
4.3.1 Ceric ammonium nitrate titration

Unlike the ruthenium complexes discussed in Chapter 3 of this dissertation, oxidation of 30 in acetonitrile with ceric ammonium nitrate, CAN was possible. Complex 30 was oxidized to the Ru (II)/Ru (III) state. The results of the CAN titration are seen in Figure 4-5 and 4-6. As seen in Figure 4-5, addition of CAN to the diruthenium product results in a decrease in the metal-to-ligand charge transfer peaks at 523 nm while a broad metal-to-metal charge transfer peak in the near-IR at 1370 nm arises with an extinction coefficient of 29831 cm$^{-1}$M$^{-1}$.

After 1 eq of CAN is added, no change is seen with increasing equivalents of CAN (Figure 4-6). Normally, it would be expected that the additional CAN would oxidize the Ru(II)/Ru(III) system to Ru(III)/Ru(III), resulting in a loss of the NIR peak with no concurrent rise in the MLCT peak. It likely that the initial oxidation occurs on the ruthenium containing the carbon-ruthenium bond, as seen in similar complexes.4,12 In a similar complex [(TPY)Ru(TPPZ)Ru(TPY)](PF$_6$)$_4$, CAN was not a strong enough oxidant to oxidize the ruthenium atoms. The ruthenium attached to the nitrogen side of TPPY in 30 is in an almost identical environment as [(TPY)Ru(TPPZ)Ru(TPY)](PF$_6$)$_4$ and this interpretation is consistant with the measured redox potentials in section 4.3.2.3
Figure 4-5: CAN oxidation of 30₃, 0 to 1 eq.

![Graph showing CAN oxidation of 30₃, 0 to 1 eq.]

Figure 4-6: CAN oxidation of 30, 1 to 3 eq.

![Graph showing CAN oxidation of 30, 1 to 3 eq.]
4.3.2 Electrochemical studies

A cyclic voltammetry scan was performed on 30 and the results are seen in Figure 4-7. There are several reductions and oxidations below zero volts which are from the polypyridine ligands in the complex. There are two redox couples in the positive portion of the CV scan. These are highlighted in Figure 4-8. The redox couple at 0.58 V was assigned to the ruthenium bound to carbon while the redox couple at 1.14 V is assigned to the nitrogen coordinated ruthenium.

Figure 4-7: CV scan of 30 from -2.5 V to 2.5 V, scan rate of 0.1 V/s, and performed vs Ag/AgCl.
A monoruthenium complex containing, TPB, and a single TPY ancillary ligand,
\[(\text{TPB})\text{Ru}(\text{TPY})]\^+ had a redox couple at 0.60V, which corresponds to the redox couple at 0.58 V in 30.1 The diruthenium complex [(TPY)\text{Ru}(\text{TPPZ})\text{Ru}(\text{TPY})](\text{PF}_6)_4 had an initial redox couple at +1.45 V vs Ag/AgCl. The redox couple at 1.14 V in 30 is 0.33 V lower, but this is likely attributed to greater electron density on the central ring of TPPY being donated to the opposing ruthenium as compared to TPPZ. The higher oxidation potential of the second ruthenium is also likely the reason CAN, which has an oxidation potential of 1.41 V vs Ag/AgCl, would not oxidize the mixed-valence system to the Ru(III)/Ru(III) system as readily.

Figure 4-8: CV scan of 30 from 0-1.5 V.
4.4 Conclusions

In this chapter, the synthesis of 2,3,5,6-tetra-(2-pyridyl)pyridine, TPPY, a ligand capable of asymmetrically binding two ruthenium centers, was performed. This novel ligand was used in the formation of a diruthenium complex, 30, containing TPPY as a bridging ligand. The mixed-valence state of this complex has a strong NIR absorbance at 1370 nm. A triruthenium complex containing TPPY would likely be a good candidate for an electron reservoir complex. The complexes formed would be asymmetric, which could be used to promote directionality in the molecule. It would have strong coupling between the metal centers and a strong NIR absorbance. The lower oxidation potential of the ruthenium attached to the carbon of TPPY would allow the complex to reach its mixed-valence state more readily as well. The diruthenium complex would not be ideal for a reservoir dye because as mentioned in Chapter 1, a three-metal complex would be required, as a mixed-valence state would always need to be present. Photovoltaic performance for this complex is presented in Chapter 5.
Chapter 5

The fabrication and testing of dye-sensitized solar cells using mono-, di-, and triruthenium polypyridine complexes as dyes.
5.1 Introduction

The compounds prepared in the previous chapters were tested for their effectiveness in dye-sensitized solar cells by subjecting them to a variety of techniques. Characterization of solar cells is either done by analyzing the full area of the cell, to determine the effectiveness of the cell as a whole, or by using mapping or imaging techniques to investigate minor defects and imperfections.\(^1\) Because the effectiveness of the dye as a whole is of more concern, all testing performed was done using a full area characterization.

Obtaining an \(IV\) curve (\(I = \) current, \(V = \) voltage) can elucidate the most basic and important solar cell measurements. An \(IV\) curve is obtained by subjecting the cell to varying bias voltages while measuring the corresponding current.\(^2\) When performed under illumination, the \(IV\) curve obtained can give the following information:

1. Open-circuit voltage (\(V_{oc}\)) – The voltage across the terminals of the cell when disconnected from a circuit.
2. Short-circuit current (\(I_{sc}\)) – The current through the cell at 0 V, or when the cell is short-circuited.
3. Max Power (\(P_{max}\)) – Maximum value for \(V \times I\).
4. Max voltage and max current (\(V_{max}, I_{max}\)) – Voltage and current at maximum power.
5. Fill factor (\(FF\)) – The ratio of \(P_{max}\) to \(V_{oc} \times I_{sc}\).
6. Efficiency (\(\eta\)) – Overall percentage of solar energy converted to electricity.
7. Current density (\(J\)) – Current output per area of solar cell, either \(J_{sc}\) or \(J_{max}\), can also be given.\(^2\)

\(^{2}\) 1 cm\(^2\) cells were used, which makes the values for \(I\) in mA = the value of \(J\) in mA/cm\(^2\) for the cells characterized herein.
A sample IV curve is presented in Figure 5-1 illustrating the parameters described above. V_{oc} is found at the point where the applied voltage is equal to the voltage generated by the cell, resulting in a net current of 0 A. The I_{sc} is found at the point when applied voltage is at 0 V. P_{max} can be found by multiplying the current by the corresponding voltage and determining the maximum value. The voltage and current values at P_{max} are V_{max} and I_{max} respectively. The fill factor can be found by finding the ratio of the product of the max voltage and current values to the product of the short-circuit current and open-circuit voltage as seen in Equation 5-1.

Equation 5-1

$$FF = \frac{I_{max} \times V_{max}}{I_{sc} \times V_{oc}}$$

Figure 5-1: Sample IV and Power Curve.
The overall efficiency of the cell is found by dividing P_{max} by the power of the incident light (P_{in}) as seen in Equation 5-2. Efficiency is often presented in terms of open circuit voltage, short circuit current, and fill factor and Equation 5-3 represents this.

Equation 5-2

$$\eta\% = \frac{P_{\text{max}}}{P_{\text{in}}} \times 100\% = \frac{I_{\text{max}} \times V_{\text{max}}}{P_{\text{in}}} \times 100\%$$

Equation 5-3

$$\eta\% = \frac{I_{\text{sc}} \times V_{\text{oc}} \times FF}{P_{\text{in}}} \times 100\%$$

Industry standard solar cell characterization is done with solar simulators with a light intensity of 100 mW/cm2 (1 kW/m2, one-sun illumination). All cells that were studied herein had areas of 1 cm2, and light with power of 100 mW was impinged on the cell for all measurements. This simplifies Equation 5-2 to $\eta\% = P_{\max}$ (Equation 5-4).

Equation 5-4

$$\eta\% = P_{\max}$$

An IV curve can also be obtained in the absence of light. This can give important information about the overall integrity and construction of the solar cell. This can help determine whether performance problems are associated with the dye or with the cell fabrication. A typical dark IV curve looks nearly identical in shape to one obtained in the light,
however there is little to no current through the voltage range up to V_{oc}, as obtained during illuminated scans (Figure 5-2). The little current that is present is called dark current. Most solar cells, including dye-sensitized solar cells, behave like diodes. As a result, the Ideal Diode Law, seen in Equation 5-5, can be applied.\(^2\)

Figure 5-2: Sample dark current plot.

Equation 5-5

$$I = I_0(e^{\frac{qV}{kT}} - 1)$$

Here, I is the net current flowing through the diode, I_0 is the dark saturation current (DCS), or current flowing through the diode in the absence of light, V is the voltage applied
across the terminal, \(q \) is the absolute charge of an electron, \(1.602 \times 10^{-19} \) C, \(k \) is Boltzmann’s constant, \(1.381 \times 10^{-23} \) J/K, and \(T \) is temperature in Kelvin. Because a solar cell is an imperfect diode, an additional term is incorporated, \(n \), called the ideality factor. This is a measurement of the diode-like behavior of the solar cell. The ideality factor is incorporated into the Ideal Diode Law as seen in Equation 5-6.

Equation 5-6

\[
I = I_0 (e^{\frac{qV}{nkT}} - 1)
\]

Taking the natural log of each side of Equation 5-6 (when \(V > 50-100 \) mV, the -1 term can be neglected), Equation 5-7 is then obtained. From this equation, it can be seen that plotting \(\ln(I) \) vs voltage will give a linear graph with a slope equal to \(q/(nkT) \) and an intercept equal to \(\ln (I_0) \). As \(q, k \) and \(T \) are all constants, it is trivial to determine the ideality factor from the slope. An ideality factor close to 1 indicates low resistance in the cell and indicates good solar cell fabrication. A value of 2 or higher usually indicates some type of excessive resistance in the cell.

Equation 5-7

\[
\ln (I) = \ln(I_0) + \frac{qV}{nkT}
\]

Solar cell data for all new complexes is presented in this chapter. All voltage and current measurements will be presented as well as an analysis of cell efficiencies.
5.2 Experimental

The TiO$_2$ layers, electrolyte, counter electrode, and cell construction were prepared using literature procedures using a commercial TiO$_2$ (aeroxide P25, Evonik Degussa),3,4 as described below.

5.2.1 TiO$_2$ electrode preparation method

A solution was prepared by mixing acetylacetone (0.4 mL) and deionized water (4.0 mL). The solution (0.4 mL) was slowly added to the TiO$_2$ powder (1.2 g) and the mixture was ground with a mortar and pestle for 30 min. Deionized water (1.6 mL) was then added dropwise and the mixture was ground until a paste was achieved. A detergent (Triton X-100, 0.2 mL) was added to make the paste easier to spread on the transparent conducting oxide (TCO) glass. Fluorine doped tin oxide (FTO) coated pieces of glass from Pilkington Glass (2.5 cm x 2.5 cm, 12 Ω/cm2) were used as the TCO. Two pieces of Scotch tape were applied parallel on opposite edges, followed by two additional pieces of Scotch tape perpendicular to these two creating a 1 cm \times 1 cm square area surrounded by Scotch tape. A few drops of the TiO$_2$ paste were placed into the well created by the tape, and a glass rod was slid over the tape making a smooth layer, giving a film thickness of equal to the thickness of piece of tape, which is roughly 0.1 mm. After removing the tape, the plates were then heated at 450 °C in a tube furnace for 30 min to sinter the TiO$_2$. After sintering, the TiO$_2$ layered pieces of glass were placed in a freshly prepared 0.2 M solution of TiCl$_4$ in water and were allowed to sit overnight. After rinsing, the electrodes were heated again at 450 °C for 30 min.
5.2.2 Electrolyte for the solar cell

Iodine (0.245 g), lithium iodide (0.129 g), 4-tertbutylpyridine (0.680 g), and 1-methyl-3-propylimidazolium iodide (1.525g) were dissolved in acetonitrile and diluted to 10 mL to create a solution of 0.1 M I₂, 0.1 M LiI, 0.6 M 1-methyl-3-propylimidazolium iodide, and 0.5 M 4-tertbutylpyridine.

5.2.3 Counter electrode for solar cell

To create a thin platinum layer for the counter electrode, 0.21 mL of a solution of H₂PtCl₆ in isopropyl alcohol (0.05 mM) was placed on the conductive side of a 2.5 cm x 2.5 cm FTO plate. The solution covered the entirety of the electrode. The electrode was heated at 450 °C to leave a layer of approximately 0.010 mg of platinum and the electrode had a metallic sheen when completed.

5.2.4 Assembly and testing of Solar Cells

A TiO₂ coated electrode was placed in 5 mL of a 0.2 mM solution of the dye to be tested. This was allowed to soak for 18 h to make sure the dye was firmly bound to the TiO₂. After removing the electrode and rinsing with EtOH until the washes were colorless, the counter electrode was placed on top of the TiO₂ and the two were held together with small binder clips. A few drops of the electrolyte were placed near the edge between the plates and capillary action drew the electrolyte in between the plates. The cell was then attached to a Keithley 2400 source voltmeter via alligator clips. A voltage was applied in a sweep from -1 to 1 V in 0.02 V increments. This was done under both illumination and while in the dark to obtain the light and dark IV curves. Illumination was provided by a Newport solar simulator with a 150 W lamp.
The manufacturer states this provides 100 mW/cm2 of intensity at the cell and it was assumed that the full 100 mW/cm2 was applied. The lamp was 30 cm above the cell and a black curtain surrounded the setup.

5.3 Results and Discussion

5.3.1 Solar cell data of standards N3 and Black Dye

The industry standards, N3 dye and Black Dye, were used to determine the overall quality of the solar cell fabrication. The results for the current density, power, dark current, and \ln(dark current) are seen in Figures 5-3 through 5-6. The results for V_{oc}, J_{sc}, V_{max}, J_{max}, P_{max}, FF, η, ideality factor (IF), and dark current saturation (DCS) are listed in Table 5-1. The overall efficiency obtained using N3 was 1.50% while Black Dye had an efficiency of 2.11%. The literature values for both of these complexes are listed at 10.4%. The open circuit voltages obtained experimentally for Black Dye and N3 were 0.65 V and 0.62 V respectively. These are close to their respective literature values of 0.72 V for Black Dye and 0.73 V for N3. The major difference in performance is due to the current output. The maximum reported current density for both dyes is listed at 20 mA/cm2. The current obtained experimentally, both short-circuit and max, were significantly lower than the literature values resulting in an overall lower power and efficiency.

<table>
<thead>
<tr>
<th>Compound</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm2)</th>
<th>P_{max} (mW)</th>
<th>FF (%)</th>
<th>η (%)</th>
<th>IF</th>
<th>DCS (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N3</td>
<td>0.62</td>
<td>4.81</td>
<td>1.50</td>
<td>51</td>
<td>1.50</td>
<td>3.90</td>
<td>0.00169</td>
</tr>
<tr>
<td>Black Dye</td>
<td>0.65</td>
<td>6.24</td>
<td>2.11</td>
<td>52</td>
<td>2.11</td>
<td>4.28</td>
<td>0.004022</td>
</tr>
</tbody>
</table>
Figure 5-3: Current density and power plots for N3.

![Figure 5-3](image1)

Figure 5-4: Dark current and dark current log plot for N3.

![Figure 5-4](image2)

\[y = 10.002x - 6.3829 \]
Figure 5-5: Current density and power plots for **Black Dye**.

![Current density and power plots for Black Dye.](image)

Figure 5-6: Dark current and dark current log plot for Black Dye.

![Dark current and dark current log plot for Black Dye.](image)
The literature value for the fill factor is around 70% for both standard dyes. Experimentally, 51% and 52% were obtained for N3 and Black Dye. The dark current plot of the two revealed why the fill factor and overall current output was a lot lower than expected. An ideality factor around 4 was obtained for both dyes and this is quite indicative of excessive resistance in the cells.

When cells have a high series resistance, it is usually a problem with resistance of the cell material to current flow, particularly through the contacts. In silicon cells, this is often seen as resistance between the metal contacts and the silicon as well as resistance in the metal contacts of the cell. In dye-sensitized solar cells, resistance of the transparent conducting oxide on the glass plate is often the main cause. In these cells, the series resistance likely comes from the resistance of the fluorine-doped tin oxide plates. The manufacturer’s value for the resistance in the FTO plates used was listed as 12 Ω/cm². The Gratzel group reported that cells made with Black Dye using fluorine-doped tin oxide plates with a resistance of 1.8 Ω/cm² had efficiencies of 10.2%. Since the FTO plates used in these experiments had 6.7 times the resistance of those of the Gratzel group, it is likely the cause of lower efficiencies. The effects of series resistance can be seen in the example data in Figure 5-7. The current output stays steady until reaching higher bias voltage, where a quicker drop in current is then seen.
Figure 5-7: An example of increasing series resistance.

Parallel, or shunt resistance, arises from leakage of current through the cell, or around the cell edges.2,9 Slight defects in the semiconductor can also cause shunt resistance. Instead of following the expect current pathways, alternative routes are taken by the electrons back to the dye.2,9 The effects of parallel resistance can be seen in the example data in Figure 5-8.2 The current slowly drops as bias voltage is increased, but drops normally at higher bias voltages. Figure 5-2 and 5-4 indicate that both parallel resistances are present in the cell.
5.3.2 Solar cell data of TPPZ bridged and bis-TPPZ bridged complexes

The results for V_{oc}, J_{sc}, V_{max}, J_{max}, P_{max}, FF, η, ideality factor (IF), and dark current saturation (DCS) for the TPPZ bridged and bis-TPPZ bridged compounds are listed in Table 5-2. The current density and power plots for these complexes are seen in Figures 5-9 through 5-11. The efficiencies obtained are all less than 0.05% with the diruthenium complex 17 being exceptionally low. The cells experience the same series and parallel resistance seen in the Black Dye and N3 cells. Given that these have no attaching ligands present, it is not surprising current generation is low. While the plates did have the green and green blue hue seen in the complexes, the color was not as intense as the color of the complexes which had attaching ligands.
Table 5-2: Solar data for the TPPZ bridged and bis-TPPZ bridged compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm2)</th>
<th>P_{max} (mW)</th>
<th>FF (%)</th>
<th>η (%)</th>
<th>IF</th>
<th>DCS (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.19</td>
<td>0.38</td>
<td>0.021</td>
<td>29</td>
<td>0.02</td>
<td>12.93</td>
<td>0.086</td>
</tr>
<tr>
<td>17</td>
<td>0.04</td>
<td>0.018</td>
<td>0.00025</td>
<td>34</td>
<td>0.00025</td>
<td>4.78</td>
<td>0.015</td>
</tr>
<tr>
<td>22</td>
<td>0.19</td>
<td>0.29</td>
<td>0.020</td>
<td>36</td>
<td>0.020</td>
<td>2.92</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Figure 5-9: Current density and power plots for 15.
Figure 5-10: Current density and power plots for 17.

Figure 5-11: Current density and power plots for 22.
5.3.3 Solar cell data of BIM bridged and bis-BIM bridged complexes

The solar cell data for the BIM bridged and bis-BIM bridged compounds are listed in Table 5-3. The current density and power plots for these complexes are seen in Figures 5-12 through 5-14. The cells experience the same series and parallel resistance seen in the Black Dye and N3 cells. The complex 26 has the highest efficiency of the three, 0.095%. This is likely due to the DEBPY ligands, as these would be adhered to the titanium dioxide much more strongly than BPY alone. The cell containing DEBPY was also a much more intense orange color. The dark current saturation is also significantly lower in that cell. It is possible that that cell was of much better quality than the others. The low ideality factor also suggests this.

Table 5-3: Solar cell data for the BIM bridged and bis-BIM bridged compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm2)</th>
<th>P_{max} (mW)</th>
<th>FF (%)</th>
<th>η (%)</th>
<th>IF</th>
<th>DCS (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0.20</td>
<td>0.20</td>
<td>0.018</td>
<td>33</td>
<td>0.018</td>
<td>8.44</td>
<td>0.0093</td>
</tr>
<tr>
<td>25</td>
<td>0.20</td>
<td>0.37</td>
<td>0.026</td>
<td>35</td>
<td>0.026</td>
<td>6.47</td>
<td>0.0462</td>
</tr>
<tr>
<td>26</td>
<td>0.27</td>
<td>1.01</td>
<td>0.095</td>
<td>35</td>
<td>0.095</td>
<td>1.11</td>
<td>0.0000081</td>
</tr>
</tbody>
</table>
Figure 5-12: Current density and power plots for 11.

Figure 5-13: Current density and power plots for 25.
Figure 5-14: Current density and power plots for 26.

5.3.4 Solar cell data of BPM bridged and bis-BPM bridged complexes.

The solar cell data for the BPM bridged and bis-BPM bridged compounds are listed in Table 5-4. The current density and power plots for these complexes are seen in Figures 5-15 through 5-17. The cells experience the same series and parallel resistance seen in the Black Dye and N3 cells. The complex 23 has the highest efficiency of the three, 0.14%. It was expected that the complex with the DEBPY ligands would adhere more strongly to the TiO$_2$, providing a much stronger current. It is not entirely clear why this is the case, although it might be attributed to a short-circuit in the cell.10
Table 5-4: Solar cell data for the BPM bridged and bis-BPM bridged compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm2)</th>
<th>P_{max} (mW)</th>
<th>FF (%)</th>
<th>η (%)</th>
<th>IF</th>
<th>DCS (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0.25</td>
<td>0.74</td>
<td>0.072</td>
<td>39</td>
<td>0.072</td>
<td>1.47</td>
<td>0.000090</td>
</tr>
<tr>
<td>23</td>
<td>0.40</td>
<td>0.86</td>
<td>0.14</td>
<td>38</td>
<td>0.14</td>
<td>2.35</td>
<td>0.00064</td>
</tr>
<tr>
<td>24</td>
<td>0.17</td>
<td>0.19</td>
<td>0.010</td>
<td>31</td>
<td>0.010</td>
<td>3.10</td>
<td>0.015</td>
</tr>
</tbody>
</table>

Figure 5-15: Current density and power plots for 12.
Figure 5-16: Current density and power plots for 23.

Figure 5-17: Current density and power plots for 24.
5.3.5 Solar cell data of mixed bridged complexes

The solar cell data for the mixed TPPZ and BPM bridged compounds are listed in Table 5-5. The current density and power plots for these complexes are seen in Figures 5-18 through 5-21. The cells experience the same series and parallel resistance seen in the Black Dye and N3 cells. The bis-DCBPy complex 21, has the highest efficiency of the these at, 0.067%.

<table>
<thead>
<tr>
<th>Compound</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm2)</th>
<th>P_{max} (mW)</th>
<th>FF (%)</th>
<th>η (%)</th>
<th>IF</th>
<th>DCS (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>0.26</td>
<td>0.39</td>
<td>0.036</td>
<td>36</td>
<td>0.036</td>
<td>4.72</td>
<td>0.024</td>
</tr>
<tr>
<td>20</td>
<td>0.22</td>
<td>0.35</td>
<td>0.025</td>
<td>32</td>
<td>0.025</td>
<td>5.22</td>
<td>0.028</td>
</tr>
<tr>
<td>21</td>
<td>0.44</td>
<td>0.39</td>
<td>0.067</td>
<td>39</td>
<td>0.067</td>
<td>7.64</td>
<td>0.014</td>
</tr>
</tbody>
</table>
Figure 5-18: Current density and power plots for 19.

Figure 5-19: Current density and power plots for 20.
Figure 5-20: Current density and power plots for 21.
5.3.6 Solar cell data of TPY capped TPPZ and TPPY bridged complexes.

The solar cell data for the TPY capped TPPZ and TPPY bridged complexes are listed in Table 5-6. The current density and power plots for these complexes are seen in Figures 5-22 through 5-23. The cells experience the same series and parallel resistance seen in the Black Dye and N3 cells. The TPPZ bridged complex, had a slightly higher efficiency of 0.074%.

Table 5-6: Solar cell data for the TPY capped TPPZ and TPPY bridged complexes.

<table>
<thead>
<tr>
<th>Compound</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm2)</th>
<th>P_{max} (mW)</th>
<th>FF (%)</th>
<th>η (%)</th>
<th>IF</th>
<th>DCS (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\text{TPY})\text{Ru}_2(\text{TPPZ})_4$</td>
<td>0.29</td>
<td>0.61</td>
<td>0.074</td>
<td>42</td>
<td>0.074</td>
<td>8.33</td>
<td>0.032</td>
</tr>
<tr>
<td>30</td>
<td>0.30</td>
<td>0.48</td>
<td>0.049</td>
<td>34</td>
<td>0.049</td>
<td>4.74</td>
<td>0.034</td>
</tr>
</tbody>
</table>

Figure 5-21: Current density and power plots for $[(\text{TPY})\text{Ru}_2(\text{TPPZ})](\text{PF}_6)_4$.
Figure 5-22: Current density and power plots for 30.

5.3.7 Summary of current density and power plots

Given that the sheet resistance of the FTO was around 6.7 times more resistance than seen in better performing cells, it is not surprising that all of the efficiencies were low. In general, resistance and current are inversely related as seen in Equation 5-8. If the voltage is considered constant, a 6.7 times decrease in resistance would result in a 6.7 times increase of current. This would in turn cause a 6.7 times increase in efficiency according the equation 5-3. Multiplying the efficiencies of N3 and Black Dye by 6.7 would give efficiencies of 10.1% and 14.1% respectively. The 6.7 times multiplier is not exact, given that Black Dye’s highest reported efficiency is listed as 10.4%.

Equation 5-8

\[V = I\Omega \]
If the 6.7 times multiplier is applied to the efficiencies of all of the multi-metal dye solar cells, which were around 0.05-0.10%, this gives them a range of around 0.3 – 0.7%. The reported efficiency of a solar cell made with the dye [Ru(TPY)$_2$]$^{2+}$ is 0.5%. Larger dendrimer ruthenium complexes, with either a carboxymethoxy or carboxy attaching ligand and a hydrogen as the R group (Figure 5-24), had efficiencies of 0.01% and 0.1% respectively. A series of bis-bipyridine complexes (Figure 5-25) has efficiencies of 0.009, 0.033, and 0.051% from left to right. The cyclometalated diruthenium complex in Figure 5-26 had an efficiency of 1.13%. These dyes are similar in structure to the dyes used in this chapter, and the cells made with these dyes all have efficiencies that are similar to the cells used in this chapter. It appears that larger multiruthenium dyes have lower efficiencies, while having higher molar absorptivity in the visible region. This is seen in all of the complexes present in this dissertation as well.

Figure 5-23: Dendrimer ruthenium complexes, with either a carboxymethoxy or carboxy attaching ligand.
Figure 5-24: Bis-bipyridine complexes with efficiencies of 0.009, 0.033, and 0.051%.

Figure 5-25: A cyclometalated diruthenium complex with an efficiency of 1.13%.

5.3.8 Solar cell data using filters to block light above 1200 nm

In Chapter 4, the NIR absorption of the mixed valance complex generated from 30 was seen. In order to see if this this NIR absorption would be seen in a dye-sensitized solar cell made with 30, two square two by two inch Schott glass light filters were placed in the pathway from the solar illuminator and solar cell. The combined absorption pattern of the filters is seen in Figure 5-27. Almost all visible light is absorbed by the filters up to around 700 nm.
When the cell made 30 was tested with the filters in the pathway of the light, a dramatic drop in output was seen. The results are seen in Table 5-7 and Figure 5-24. The J_{sc} obtained with the filters present was 0.026 mA higher than the dark current seen in the cell without the filter and in the dark. This increase is most likely due to the light in the 700-800 nm range.
Table 5-7: Comparison of current with and without light filter.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(V_{oc}) (V)</th>
<th>(J_{sc}) (mA/cm(^2))</th>
<th>(P_{max}) (mW)</th>
<th>FF (%)</th>
<th>(\eta) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 with a Filter</td>
<td>0.15</td>
<td>0.06</td>
<td>0.0037</td>
<td>41</td>
<td>0.0037</td>
</tr>
<tr>
<td>30 without a Filter</td>
<td>0.30</td>
<td>0.48</td>
<td>0.049</td>
<td>34</td>
<td>0.049</td>
</tr>
</tbody>
</table>

Figure 5-27: Current density and power plots for 30 with filters.
5.4 Conclusions

Solar cells were constructed with the di- and triruthenium dyes that were made in Chapters 2-4. There appears to be some resistance present in the cell, both from the fabrication of the cell and the choice of FTO used. This resistance is causing a drop in the measured efficiency of the cells.

The efficiencies of these cells made in this chapter were around 0.05 - 0.10%, or 0.3 - 0.7% if you take the excess resistance of the FTO into account. These efficiencies are consistent with similar compounds in the literature. No noticeable current is produced when 30 was tested in the absent of light in the visible region, suggesting the NIR absorbance is not a factor in the production of current.
6 Appendix

6.1 Chapter 2 spectra

6.1.1 \(^1\)H NMR of 4
6.1.2 1H NMR of 1
6.1.3 1H NMR of N3
6.1.4 1H NMR of 10
6.1.5 1H NMR of 5
6.1.6 1H NMR of 6
6.1.7 1H NMR of 7

[Diagram of a molecular structure and a spectrum graph]

acetone d6
6.1.8 \(^1\text{H NMR of 8} \)
6.1.9 1H NMR of 11
6.1.10 1H NMR of 12
6.1.11 $^1\text{H}-^1\text{H}$ COSY of 12
6.1.12 1H NMR of 13
6.2 Chapter 3 spectra

6.2.1 1H NMR of 18
6.2.2 1H NMR of 19
6.2.3 1H NMR of 20
6.2.4 1H NMR of 23
6.2.5 1H NMR of 24
6.2.6 1H NMR of 25
6.2.7 1H NMR of 26
6.3 Chapter 4 spectra

6.3.1 1H NMR of 28
6.3.2 13C NMR of 28
6.3.3 1H NMR of TPPY
6.3.4 ^{13}C NMR of TPPY
6.3.5 1H-1H COSY of TPPY
6.3.6 1H NMR of 30
6.3.7 1H-1H COSY of 30
6.4 Crystallography files

6.4.1 Crystal data and structure refinement for 2,3,5,6-tetra-(2-pyridyl)pyridine, TPPY

<table>
<thead>
<tr>
<th>Identification code</th>
<th>TPPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{25}H_{17}N_{5}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>387.45</td>
</tr>
<tr>
<td>Temperature</td>
<td>90(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Tetragonal</td>
</tr>
<tr>
<td>Space group</td>
<td>I 41/a</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 17.229(2) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 17.229(2) Å, β = 90°</td>
</tr>
<tr>
<td></td>
<td>c = 13.1196(16) Å, γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>3894.5(11) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>16</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>2.6432 g/cm³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.099 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1966</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.2 x 0.2 x 0.1 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.951° to 30.247°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-22≤h≤22, -22≤k≤22, -17≤l≤17</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>2644</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>2100</td>
</tr>
</tbody>
</table>
Completeness to theta = 25.242° 99.9%
Absorption corrections Multi-scan
Max. and min. transmission 0.8127 and 0.5871
Refinement method Full-matrix least-squares on F^2
Data / restraints / parameters 2644 / 0 / 140
Goodness-of-fit on F^2 0.991
Final R indices [I>2sigma(I)] 0.0573
R indices (all data) 0.0749
Largest diff. peak and hole 0.429 -0.457 e/Å^3

Atomic Coordinates for TPPY. U(eq) is defined as one third of the trace of the orthogonalized U_ij tensor.

<table>
<thead>
<tr>
<th>Atom</th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
<th>U(eq) (Å^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.15886(10)</td>
<td>0.37307(11)</td>
<td>0.66812(14)</td>
<td>0.0269(4)</td>
</tr>
<tr>
<td>C2</td>
<td>0.20193(11)</td>
<td>0.39993(12)</td>
<td>0.74988(15)</td>
<td>0.0332(4)</td>
</tr>
<tr>
<td>C3</td>
<td>0.16444(11)</td>
<td>0.43539(13)</td>
<td>0.83076(15)</td>
<td>0.0325(4)</td>
</tr>
<tr>
<td>C4</td>
<td>0.08393(10)</td>
<td>0.44369(10)</td>
<td>0.82683(12)</td>
<td>0.0215(3)</td>
</tr>
<tr>
<td>C5</td>
<td>0.04098(9)</td>
<td>0.47601(10)</td>
<td>0.91573(12)</td>
<td>0.0203(3)</td>
</tr>
<tr>
<td>C6</td>
<td>0.05917(9)</td>
<td>0.44637(9)</td>
<td>1.00938(11)</td>
<td>0.0169(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>C7</td>
<td>-0.01886(9)</td>
<td>0.53045(10)</td>
<td>0.90630(12)</td>
<td>0.0199(3)</td>
</tr>
<tr>
<td>C8</td>
<td>-0.08625(15)</td>
<td>0.63706(12)</td>
<td>0.63232(15)</td>
<td>0.0418(6)</td>
</tr>
<tr>
<td>C9</td>
<td>-0.13843(13)</td>
<td>0.59696(15)</td>
<td>0.69237(16)</td>
<td>0.0422(6)</td>
</tr>
<tr>
<td>C11</td>
<td>-0.04125(10)</td>
<td>0.56682(10)</td>
<td>0.80766(12)</td>
<td>0.0215(3)</td>
</tr>
<tr>
<td>C12</td>
<td>0.01372(14)</td>
<td>0.60428(12)</td>
<td>0.75079(15)</td>
<td>0.0268(4)</td>
</tr>
<tr>
<td>C13</td>
<td>-0.00991(14)</td>
<td>0.64015(12)</td>
<td>0.66288(15)</td>
<td>0.0389(5)</td>
</tr>
<tr>
<td>C14</td>
<td>0.07924(10)</td>
<td>0.38482(10)</td>
<td>0.67046(13)</td>
<td>0.0244(4)</td>
</tr>
<tr>
<td>H1</td>
<td>0.1830</td>
<td>0.3475</td>
<td>0.6124</td>
<td>0.032</td>
</tr>
<tr>
<td>H2</td>
<td>-0.1027</td>
<td>0.6619</td>
<td>0.5714</td>
<td>0.050</td>
</tr>
<tr>
<td>H3</td>
<td>0.0268</td>
<td>0.6675</td>
<td>0.6226</td>
<td>0.047</td>
</tr>
<tr>
<td>H6</td>
<td>-0.1910</td>
<td>0.5939</td>
<td>0.6710</td>
<td>0.051</td>
</tr>
<tr>
<td>H7</td>
<td>0.0999</td>
<td>0.4096</td>
<td>1.0158</td>
<td>0.020</td>
</tr>
<tr>
<td>H9</td>
<td>0.0496</td>
<td>0.3673</td>
<td>0.6139</td>
<td>0.029</td>
</tr>
<tr>
<td>H10</td>
<td>0.2568</td>
<td>0.3941</td>
<td>0.7505</td>
<td>0.040</td>
</tr>
<tr>
<td>H11</td>
<td>0.1930</td>
<td>0.4537</td>
<td>0.8879</td>
<td>0.039</td>
</tr>
</tbody>
</table>
H20 0.0427(18) 0.6055(18) 0.763(2) 0.046(10)

N1 -0.11756(10) 0.56171(12) 0.78074(13) 0.0379(4)

N2 0.04137(8) 0.41938(8) 0.74738(11) 0.0215(3)

Bond lengths [Å] for TPPY

C(1)-C(2) 1.384(3)
C(1)-C(14) 1.387(2)
C(1)-H(1) 0.9500
C(2)-C(3) 1.384(3)
C(2)-H(10) 0.9500
C(3)-C(4) 1.396(2)
C(3)-H(11) 0.9500
C(4)-N(2) 1.341(2)
C(4)-C(5) 1.489(2)
C(5)-C(6) 1.367(2)
C(5)-C(7) 1.399(2)
C(6)-C(7) 1.366(2)
C(6)-H(7) 0.9500
C(7)-C(6) 1.366(2)
C(7)-C(11) 1.489(2)
C(8)-C(13) 1.376(3)
C(8)-C(9) 1.381(4)
C(8)-H(2) 0.9500
C(9)-N(1) 1.357(3)
C(9)-H(6) 0.9500
N(1)-C(11) 1.364(2)
C(11)-C(12) 1.368(3)
C(11)-H(20) 1.70(3)
C(12)-C(13) 1.370(3)
C(12)-H(20) 0.52(3)
C(13)-H(3) 0.9500
C(14)-N(2) 1.341(2)
C(14)-H(9) 0.9500

Bond angles [°] for TPPY
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(2)-C(1)-C(14)</td>
<td>117.67(16)</td>
</tr>
<tr>
<td>C(2)-C(1)-H(1)</td>
<td>121.2</td>
</tr>
<tr>
<td>C(14)-C(1)-H(1)</td>
<td>121.2</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)</td>
<td>119.44(17)</td>
</tr>
<tr>
<td>C(1)-C(2)-H(10)</td>
<td>120.3</td>
</tr>
<tr>
<td>C(3)-C(2)-H(10)</td>
<td>120.3</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)</td>
<td>118.73(17)</td>
</tr>
<tr>
<td>C(2)-C(3)-H(11)</td>
<td>120.6</td>
</tr>
<tr>
<td>C(4)-C(3)-H(11)</td>
<td>120.6</td>
</tr>
<tr>
<td>N(2)-C(4)-C(3)</td>
<td>122.69(15)</td>
</tr>
<tr>
<td>N(2)-C(4)-C(5)</td>
<td>116.99(14)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>120.21(15)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(7)</td>
<td>119.92(14)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>116.78(14)</td>
</tr>
<tr>
<td>C(7)-C(5)-C(4)</td>
<td>123.18(14)</td>
</tr>
<tr>
<td>C(7)-C(6)-C(5)</td>
<td>120.15(14)</td>
</tr>
<tr>
<td>C(7)-C(6)-H(7)</td>
<td>119.9</td>
</tr>
<tr>
<td>C(5)-C(6)-H(7)</td>
<td>119.9</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>C(6)-C(7)-C(5)</td>
<td>119.93(15)</td>
</tr>
<tr>
<td>C(6)-C(7)-C(11)</td>
<td>116.69(14)</td>
</tr>
<tr>
<td>C(5)-C(7)-C(11)</td>
<td>123.37(14)</td>
</tr>
<tr>
<td>C(13)-C(8)-C(9)</td>
<td>118.39(18)</td>
</tr>
<tr>
<td>C(13)-C(8)-H(2)</td>
<td>120.8</td>
</tr>
<tr>
<td>C(9)-C(8)-H(2)</td>
<td>120.8</td>
</tr>
<tr>
<td>N(1)-C(9)-C(8)</td>
<td>122.61(19)</td>
</tr>
<tr>
<td>N(1)-C(9)-H(6)</td>
<td>118.7</td>
</tr>
<tr>
<td>C(8)-C(9)-H(6)</td>
<td>118.7</td>
</tr>
<tr>
<td>C(9)-N(1)-C(11)</td>
<td>116.58(19)</td>
</tr>
<tr>
<td>N(1)-C(11)-C(12)</td>
<td>123.83(17)</td>
</tr>
<tr>
<td>N(1)-C(11)-C(7)</td>
<td>116.59(16)</td>
</tr>
<tr>
<td>C(12)-C(11)-C(7)</td>
<td>119.56(16)</td>
</tr>
<tr>
<td>N(1)-C(11)-H(20)</td>
<td>139.2(10)</td>
</tr>
<tr>
<td>C(12)-C(11)-H(20)</td>
<td>15.3(10)</td>
</tr>
<tr>
<td>C(7)-C(11)-H(20)</td>
<td>104.2(10)</td>
</tr>
<tr>
<td>C(11)-C(12)-C(13)</td>
<td>117.8(2)</td>
</tr>
<tr>
<td>C(11)-C(12)-H(20)</td>
<td>121(4)</td>
</tr>
</tbody>
</table>
C(13)-C(12)-H(20) 121(4)
C(8)-C(13)-C(12) 120.8(2)
C(8)-C(13)-H(3) 119.6
C(12)-C(13)-H(3) 119.6
N(2)-C(14)-C(1) 124.23(16)
N(2)-C(14)-H(9) 117.9
C(1)-C(14)-H(9) 117.9
C(14)-N(2)-C(4) 117.22(14)
7 Bibliography

7.1 Chapter 1 References

 (accessed Jan 24, 2014).

2 Perez, R.; Perez, M. A fundamental look at energy reserves for the planet. For publication in
 the IEA/SHC solar update. http://asrc.albany.edu/people/faculty/perez/Kit/pdf/a-fundamental-

3 Luque, Antonio; Hegedus, Steven. *Handbook of Photovoltaics*. 2nd ed.; John Wiley & Sons

4 Cost of Solar is 2-100 times cheaper than you think. http://costofsolar.com/cost-of-solar-is-2-
 100-times-cheaper-than-you-think/ (accessed Jan 24, 2014).

5 Saga, Tatsuo. Advances in crystalline silicon solar cell technology for industrial mass

6 Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables

7 Shockley, W.; Queisser, H. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. *J.

8 Luque, Antonio; Hegedus, Steven. *Handbook of Photovoltaics*. 1st ed.; John Wiley & Sons

9 Gall, S.; Rech, B. Technological status of polycrystalline silicon thin-film solar cells on glass.

7.2 Chapter 2 References

17 Thayumanavan, Sankaran. “Macromolecular Design and Syntheses for renewable Energy Applications.” Colloquium, Syracuse University, **2009**, April 7th.

30 Wolfbauer, G.; Bond, A.M.; MacFarlane, D.R. Electrochemical and Spectroscopic Studies on the Oxidation of the cis-(Et$_2$dcbpy)$_2$RuX$_2$ Series of Photovoltaic Sensitizer Precursor

7.3 Chapter 3 References

7.4 Chapter 4 References

3 Dragonetti, C.; Valore, A.; Colombo, A.; Roberto, D.; Trifiletti, V.; Manfredi, N.; Salamone, M.M.; Ruffo, R.; Abbotto, A. A new thiocyanate-free cyclometallated ruthenium complex for

7.5 Chapter 5 References

VITA

Andrew Basner
1300 Academy Rd
Culver, IN 46511

EDUCATION

PhD, Organometallic Chemistry, Syracuse University
Syracuse, NY, anticipated Spring 2016

Dissertation Title: “Synthesis of Triruthenium Complexes as Electron Reservoirs for use in Dye-Sensitized Solar Cells.”

Advisor: Professor Michael B. Sponsler.

BS, IUPUI (Indiana University-Purdue University of Indianapolis)
Indianapolis, IN, May 2008

Graduated Dec. 2007 (3.61/4.00 GPA) with an A.C.S. certified BS in chemistry with a biological chemistry concentration.

Advisors: Dr. Kyungsoo Oh, Keith Anliker

TEACHING EXPERIENCE

Culver Academies
Senior Instructor, Aug. 2014 - Present

Syracuse University, Syracuse, NY
Adjunct Faculty Member, Aug. 2013-Aug. 2014

SUNY Cortland
Adjunct Lecturer, Jan. 2014 - May 2014

Syracuse University, Syracuse, NY
Graduate Teaching Assistant, Aug. 2008-Aug. 2013
Indiana University-Purdue University of Indianapolis, Indianapolis, IN
Laboratory Instructor and Recitation Leader, 2006-2008
Peer Led Team Learning Workshop Leader, 2005-2007

Undergraduate and Master Students Mentored
Stefan Holler, B.S. (2012) Graz University of Technology, Graz, Austria
Bernhard Müller, B.S. (2011) Graz University of Technology, Graz, Austria.
Chiara Gstrein, M.S. (2011) Graz University of Technology, Graz, Austria
Catherine DeSarle, B.S. (2010) Syracuse University, Syracuse, NY

RESEARCH EXPERIENCE
Graduate Research, Syracuse University, Syracuse, NY, Aug. 2008 – Aug. 2016
Developed new organometallic and inorganic dyes for use in dye-sensitized solar cells.
Synthesized and characterized new ruthenium based catalysts.
Helped develop new hydrogel based sensors for detection of infectious diseases resulting in a NSF I-Corps grant to pursue potential commercialization.

Undergraduate Research, IUPUI, Indianapolis, IN, 2006-2008
Investigated new methods for carbon-carbon bond formation using AIBN radical reactions.
Developed new video based lab tutorial videos for general chemistry students.

AFFILIATIONS
American Chemical Society, 2008-present

GRANTS AND HONORS
NSF I-Corps grant #1242505 IIP Division of Industrial Innovation and Partnerships
PUBLICATIONS AND PATENTS

CONFERENCE AND POSTER PRESENTATIONS

American Chemical Society National Meeting, Indianapolis, IN, September 8th, 2013

Presentation Title – Synthesis and characterization of polyruthenium dyes for solar cells

Presentation Title – Commercializing your research and finding focus for your start-up using the teachings of the NSF I-Corps program

Poster Title – Synthesis and characterization of polyruthenium dyes for solar cells and ruthenium catalysts based on Grubbs’ first and second-generation catalyst

Buffalo Chemistry Graduate Student Symposium, University of Buffalo, Buffalo, NY, May 15th, 2013

Presentation Title - Commercializing Your Research and Finding Focus for your Small Chemical Business

American Chemical Society Northeastern Regional Meeting, Rochester, NY, Sept. 30th, 2012

Presentation Title - The NSF I-Corps Experience – Turning your ideas into a business

Poster Title - Synthesis of Tri-Ruthenium Complexes to Act as Electron Reservoirs for use in Dye-Sensitized Solar Cells

Buffalo Chemistry Graduate Student Symposium, University of Buffalo, Buffalo, NY, May 16th, 2012

Poster Title - Synthesis of Tri-Ruthenium Complexes to Act as Electron Reservoirs for use in Dye-Sensitized Solar Cells