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Abstract

Cosmology, together with cosmological and astrophysical observations of

ever increasing precision, represents a unique opportunity to study physics

at energies far beyond the reach of terrestial laboratories. In particular,

observations of the cosmic microwave background radiation supports the

idea for an early phase of accelerated expansion called inflation. While the

simplest inflationary models provide a consistent theoretical framework in

explaining observational data, we are yet to understand the microscopic

details of the inflationary dynamics, the process of how the inflation ends

and how the evolution in the post-inflationary era proceeds. In this dis-

sertation, we will explore observational consequences of well-motivated

scenarios in the early universe both from a top-down and bottom-up

perspective. In particular, motivated by the null results of low energy

searches of supersymmetry at Large Hadron Collider, we will first focus

on the so-called Split Supersymmetry scenarios including a stable dark

matter candidate and study observational signatures/constraints of (on)

these models. Next, we investigate the phenomenology of particle pro-

duction events during inflation focusing on cases that are well motivated

both by UV physics and bottom-up EFT considerations. Considering the

cosmological correlators in the presence of particle production, we explore

the viability of scenarios in light of recent data on the Cosmic Microwave

Background radiation. Finally, we take some small steps towards un-

derstanding the dynamics at the end of inflation from an Effective Field

Theory perspective and discuss a possible observational effects that might

arise in this formalism.
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Chapter 1

Introduction

The pursuit to understand the origin and structure of the universe has been an impor-

tant human endeavor throughout history. For thousands of years, ancient civilizations

have wondered and speculated about the true nature of the “celestial sphere”. The

first radical ideas, that shook the common views about our previliged position in the

Universe, emerged by the invention of the first telescope and led us to the acceptance

of Copernicus’ heliocentric model. It was not until the beginning of the twentieth

century that the technological advances reached to a level to provide evidence for the

existence of galaxies apart from our own. Moreover, some earlier results in this era

suggested that these galaxies are moving away from us [5]. In 1929, Edwin Hubble

gathered further evidence [6] for an expanding Universe and proposed an empirical

formula that establishes a relationship between the recessional velocity v and the

distance d of the galaxies, v = Hd. This is the famous Hubble’s law where H is a

measure for the rate of expansion and known as the Hubble constant. This discov-

ery was one of the corner stones in cosmology as it provided strong evidence for the

dynamical Universe picture.

Over the past few decades, modern cosmology was in a better position to seek an-

swers to the more fundamental questions given the rapid technological progess. The

observational and theoretical advances have improved our understanding regarding
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the composition and evolution of the Universe to a remarkable degree. One of the

most important tools that has contributed significantly to this understanding is the

Cosmic Microwave Background (CMB) radiation. Until its discovery, astronomers

were primarily using light from astrophysical objects to obtain information on the

Universe’s recent past. The discovery by Penzias and Wilson [7] was one of the great

triumphs of modern cosmology in the sense that it opened a new window into the

physical proceses prior to the formation of compact objects. Further investigations

showed that these relic photons follow a blackbody distribution and has a uniform

temperature of Tγ,0 ≈ 2.7K (today), corresponding to the microwave part of the

electromagnetic spectrum. Importantly, this discovery together with the dynami-

cal Universe picture presented by Hubble and our understanding of particle physics

to date, have led us to the Hot Big Bang Model as the right framework to study

cosmology [8, 9].

Due to its central importance in modern cosmology, we therefore intend to present

a short review of the Hot Big Bang model and state some of the conceptual problems

that arise in this standard picture in the following section.

1.1 Hot Big Bang Cosmology

The central premise in modern cosmology is that as we look at the Universe on

large enough scales, it appears to be simpler and more uniform compared to the

small scales. It is clear from the night sky that matter is clumped into stars and

galaxies. However if we focus on sufficiently large scales, the distribution of galaxies

becomes isotropic and homogeneous (See Figure 1.1). Homogeneity and isotropy has

been tested by a variety of observations of the Large Scale Structure (LSS) surveys

[10, 11] but perhaps the most important evidence supporting this claim is the almost

uniform temperature of the CMB originating from different parts of the sky. To first

approximation, we can therefore take the Universe to be isotropic and homegeneous.
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Figure 1.1: Distribution of galaxies found by the 2dF Galaxy Redshift Survey (1998-
2003). The distribution is clumpy on small scales and late times, but becomes more
uniform on large scales and early times.

Due to the high degree of spatial symmetry, the line element describing the universe

takes the simple FLRW form,

ds2 = −dt2 + a2(t)

(
dr2

1−Kr2
+ r2dΩ2

)
, (1.1)

where dΩ2 = (dθ2 + sin2 θdφ2) is the line element on the 2-sphere S2 and K =

{−1, 0, 1} represents negative, zero and positive curvature of constant-time hypersur-

faces, respectively. Note that the symmetries of the Universe allow us to describe

the metric by just a single function of time a(t) and a constant parameter K. The

function a(t) is called the scale factor which parametrizes the size of the spatial slices

at a given moment in time and the Hubble’s “constant” describing the speed of ex-

pansion is given by H(t) = ȧ/a. Here, an expanding universe H(t) > 0 corresponds

to a monotonically increasing scale factor a(t). This line element in (1.1) was inde-

pendently derived by Friedmann [12, 13], Lemâıtre [14], Robertson [15] and Walker
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[16].

The evolution of the universe is governed by the Einstein field equations

Rµν −
1

2
gµνR =

1

M2
pl

Tµν , (1.2)

wherer Rµν is the Ricci tensor build out of the metric field tensor gµν , R ≡ Rµ
µ is the

Ricci scalar and Tµν is the energy-momentum tensor for the matter content of the

universe. Using the metric in (1.1), these field equations determine the evolution of

the scale factor

H2 =
ρ

3M2
pl

− K

a2
, (1.3)

ä

a
= − 1

6M2
pl

(ρ+ 3P ) . (1.4)

In deriving these equations (also known as Friedmann equations) we have used an

energy momentum tensor on the right hand side of the field equations in (1.2) that

has the perfect fluid form consistent with homogeneity and isotropy,

Tµν = (ρ+ P )UµUν + Pgµν . (1.5)

where ρ and P are the energy density and the pressure in the rest frame of the fluid

and Uµ is the relative 4-velocity between the fluid and the observer. The evolution

equation for the energy density driving the expansion of the universe can be derived

by either combining the two equations in (1.3) or from the ν = 0 part of the covariant

conservation of the energy-momentum tensor ∇µT
µ
ν = 0,

∇µT
µ
0 = 0 ⇒ ρ̇+ 3H(ρ+ P ) = 0. (1.6)

For each fluid that contributes to this evolution, the continuity equation in (1.6) can

be imposed independently since we can decompose the energy momentum tensor as
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Tµν =
∑

I T
I
µν , where I labels different fluids. In this sense, the ρ and P in (1.6)

should be understood as the sum of all contributions to the energy density and the

pressure in the universe. For each of these individual components, we can define an

equation of state as

w ≡ PI
ρI
. (1.7)

Now, for a constant equation of state wI , the continuity equation (1.6) can be solved

easily in terms of the scale factor

ρI ∝ a−3(1+wI), (1.8)

and if this form of matter dominates the total energy density of the universe, we can

solve for the time dependence of the scale factor using the first Friedmann equation

in (1.3). In a spatially flat universe k = 0, this gives

a(t) ∝

t
2/3(1+wI) wI 6= 1,

eHt wI = −1

(1.9)

We can classify important sources of energy content by their contribution to the pres-

sure : (i) Ultra-relaticistic gas (radiation) w = 1/3, (ii) Non-relativistic pressureless

dust (matter) w = 0, (iii) Cosmological constant w = −1 with the corresponding

scaling of the energy densities, ρ ∝ a−4 radition, ρ ∝ a−3 matter and ρ ∝ const. for

vacuum energy, respectively. The physical meaning for these scalings can be under-

stood by considering the scaling of the spatial volume in FLRW cosmology, V ∝ a3.

Therefore the energy density of non-relativistic matter is diluted by the same propor-

tion whereas the energy density of radiation picks up one extra factor a−1 due to the

energy loss through the strecthing of their wavelength by expansion.

Let us use subscripts ‘0’ to denote the quantities evaluated today t = t0 and define
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the critical density today in a flat universe by using Friedmann equation (1.3),

ρc,0 = 3H2
0M

2
pl. (1.10)

For each energy component, using the critical energy density, we can define dimension-

less density parameters today ΩI,0 = ρI,0/ρc,0. We can then re-write the Friedmann

equation in terms of the dimensionless density parameters today,

H2(a)

H2
0

= Ωr,0a
−4 + Ωm,0a

−3 + ΩK,0a
−2 + ΩΛ, (1.11)

where we have denoted ΩΛ,0 as the contribution of the cosmological constant and

defined a spatial curvature density parameter, ΩK,0 ≡ −K/(a0H0)2 using the conven-

tional normalization of the scale factor today, a0 = 1.

It is clear from the scalings of different energy content in the expression (1.11) that

through most of the Universe’s history a single component dominates the expansion.

For example, assuming a nearly flat1 universe ΩK,0 � 1, as a → 0 first radiation

starts to dominate, then matter and eventually cosmological constant will take over

the evolution (See Figure 1.2). Another observation that can be made from these

results is that unless the cosmological constant term dominates the energy density in

the beginning, at some initial time, say t = 0, the scale factor vanishes (See e.g. (1.9))

and the energy density (hence the Hubble rate H in (1.11)) becomes infinite. This

implies a cosmological singularity, called the Big Bang, in the finite past. This should

not lead us to an immediate concern because we expect that at these high energies,

we have to replace our EFT (e.g. General Relativity) description with a yet to be

discoverd quantum theory of gravity that comes to the rescue.

In our discussion so far, we have focused on the time evolution of the the universe

in the Big Bang model without mentioning the origin of its “Hotness”. Now consider

a primordial plasma that is made up only of electrons, protons and photons where

1As we will see later, this is actually the case established by various observations.
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Figure 1.2: Evolution of different energy components in the Universe.

photons are assumed to follow a blackbody spectrum. This simply means that the

distribution functions of the photons can be charactarized by only using the tempera-

ture of the spectrum. In an expanding universe, it can be shown that the temperature

Tγ of this spectrum decreases with scale factor as Tγ = Tγ,0 a
−1 which implies that

the average energy of photons are larger as we go back in time. If we go back enough

in time, we will reach an epoch where the average energy of photons is larger than

that of the ionization energy of the Hydrogen atom (proton + electron). Therefore,

prior to this time, neutral Hydrogen atom cannot exist. Moreover, efficient inter-

actions in the plasma, such as Compton scattering between electrons and photons

and Thompson scattering between electrons and protons keep these particles at the

same temperature (i.e. in thermal equilibrium). This is why we call the evolution

described by an FLRW universe, the Hot Big Bang Model. To represent the logic we

presented so far in the actual chronological order: the early universe was made up

of a hot plasma that was opaque as the mean free path of photons was very small.

As the universe expands and cools down, the average energy of photons drops below
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the ioanization energy of Hydrogen and photons decouple from the rest of the plasma

allowing the formation of neutral Hydrogen atoms. This phenomenon is called re-

combination. Due to our assumptions about homogeneity and isotropy, this process

must have occured everywhere in different patches of the universe. The decoupled

photons move freely through space without interactions and should reach us today.

This is why the observation made by Penzias and Wilson in 1965 is an indication of

the Hot Big Bang Model as the correct description of the early universe because it

predicts this “relic” radiation from the early universe.

The physics describing the Hot Big Bang model can be extended to higher tem-

peratures by considering the particle content of Standard Model of particle physics

such as quarks, leptons, gauge bosons, Higgs bosons, as well as Beyond the Standard

Model (BSM) particles. At high enough temperatures, i.e. for T � mi where mi is

the mass of the individual particles, we have a relativistic plasma that is in thermal

equilibrium due to efficient interactions between constituents. Denoting the interac-

tion rate by Γ, we can describe equilibrium in a expanding universe by the condition

Γ > H at some initial temperature Ti. As the universe expands and cools two impor-

tant things can happen: First, interaction rates may drop below the Hubble rate at

some later time, leading to departure from equilibrium. Second, coupling constants

between particles may vary and phase transitions can occur. The former is especially

crucial in obtaining cosmological relic abundances for massive species because if the

universe was in thermal equilibrium in all its history, the abundance of any massive

species would be eventually suppressed by the Boltzmann factor e−mi/T when the

temperature drops below the mass, mi. This would single out radiation (i.e. massless

photons) as the only relic that can reach until today, leading to a truly uninteresting

universe. Below we list some of the important events in the thermal history of the

universe that are essential for understanding the world we see today:

• Electroweak (EW) phase transition. At around T ∼ 100 GeV particles

obtains masses through the Higgs mechanism.
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• QCD phase transition. At high temperatures T � 150 MeV, quarks behave

like free particles, while below T < 150 MeV strong interactions between the

quarks and the gluons become important. Quarks and gluons then form bound

three-quark states called baryons, and quark-antiquark pairs called mesons.

These are the relevant low energy degrees of freedom below the scale of QCD

phase transition.

• Big Bang Nucleosynthesis (BBN). BBN is the process (T ∼ 100 keV)

through which abundance of light elements such as helium, deuterium and

lithium are set and has central importance in modern cosmology [17].

• Recombination. Neutral Hydrogen atoms form through the reaction e− +

p+ → H + γ when the average energy of the photons are low enough that the

reverse reaction is energetically disfavored (T ∼ 0.33− 0.26 eV).

• Photon decoupling. The release of the CMB photons are not simultaneous

with the formation of the first Hydrogen atoms. Before recombination, photons

are tightly coupled to electrons through Thomson scattering, e− + γ → e− + γ.

The free electron density decreases as recombination proceeds everywhere in

the universe such that the Thomson process becomes inefficient and photons

decouple from the rest of the plasma (T ∼ 0.28− 0.23 eV).

1.1.1 Problems of the Hot Big Bang Model

While Hot Big Bang cosmology gained widespread acceptance immediately after the

discovery of the CMB and has since then provided an essentially correct picture of

the cosmological evolution, it suffers several conceptual difficulties, along with the

uncertainties in the initial conditions of the universe.
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Flatness Problem:

Using the time dependent critical energy density ρc = 3H2(t)M2
pl we re-write the

Friedmann equation in (1.3) in terms of a time dependent total density parameter

Ω ≡ ρ/ρc,

Ωtot − 1 =
K2

a2H2
. (1.12)

Note that in an exactly flat universe with k = 0, the total density parameter is

constant and remains to be Ω = 1. The difference of this quantity from unity is a

measure of the spatial curvature and in a universe dominated by conventional matter

sources with equation of state −1/3 < w < −1 scales as, |Ω − 1| ∝ a(1+3w). This

implies that |Ω − 1| should decrease as we go back in time. Recent observations of

the CMB [18] tells us that the spatial curvature is quite small today,

1− Ωtot,0 ≡ ΩK,0 = −0.0005+0.0065
−0.0066, (1.13)

at 95% CL. The smallness of the quantity |Ωtot,0 − 1| today implies that, it must

have been even smaller at earlier times, e.g. |Ωtot,0 − 1| ≤ 10−16 at the time of BBN.

The miniscule value of the curvature ΩK in the past is not an issue in itself, but the

naturalness of this finely tuned initial condition raises an immediate question: What

kind of mechanism can set these initial conditions that appears to be unlikely within

the Hot Big Bang picture ?

Horizon Problem:

The horizon problem can be understood by studying the propagation of light in an

expanding space-time given by the line element (1.1). Due to spatial isotropy we can

always define a coordinate system such that light travels purely in the radial direction

r, where θ = φ = constant. Therefore, in a spatially flat2 space-time, K = 0, the

2In what follows, we will assume flatness K = 0 in light of CMB data.
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evolution of light rays can be described by the two-dimensional line element,

ds2 = −dt2 + a2(t) dr2. (1.14)

Since light rays follow null geodesics, ds2 = 0, incoming and outgoing light rays at a

given point are defined by ∆r = ±∆τ where we have defined the conformal time as

dτ = dt/a(t). The coordinates, r and τ is particularly useful as the light rays can be

described by straight lines with 45o angles in the r − τ plane.

The comoving distance that a light ray can travel from an initial time ti (say Big

Bang) to t is given by the following integral

∆r(t) =

∫ t

ti

dt′

a(t′)
≡ τ − τi, (1.15)

Equation (1.15) sets the maximum comoving distance from which an observer at a

time t will be able to receive light signals since the Big Bang and therefore it is known

as comoving particle horizon. It is the relevant quantity in describing the horizon

problem in Big Bang cosmology. Using d ln a = Hdt, we can re-write equation (1.15)

as

∆r(t) =

∫ a

ai

d ln a′ (a′H ′)−1. (1.16)

In this way, we have related the causal structure of space-time to the evolution of the

comoving Hubble radius, (aH)−1. If the expansion is dominated by a fluid with an

equation of state w, then the comoving Hubble radius is given by

(aH)−1 = H−1
0 a(1+3w)/2. (1.17)

For sources that satisfy the Strong Energy Condition (SEC), ρ+3P = ρ(1+3w) > 0,

e.g. radiation w = 1/3 or pressurless dust, w = 0, from equation (1.17) we conclude

that comoving Hubble radius grows monotonically in time. This implies that the

integral in (1.16) will get most of its contribution at late times and hence will be
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Figure 1.3: Schematic representation of the horizon problem in standard Big Bang
cosmology. Photons that are reaching us from the CMB decoupling surface originates
from causally disconnected parts in the early universe. The same situation applies
to any two points at the CMB surface that are seperated by more than the particle
horizon size, corresponding to more than 1 degree on the sky today.

dominated by the upper limit. Plugging (1.17) inside the integral we have

∆r(t) =
2H−1

0

(1 + 3w)

(
a(1+3w)/2 − a(1+3w)/2

i

)
≡ τ − τi, (1.18)

where we can send τi ∝ a
(1+3w)/2
i to zero by ai → 0 for w ≥ 0. Noting that (aH)−1 =

H−1
0 a(1+3w)/2, the comoving particle horizon at time t is simply given by

∆r(t) =
2

(1 + 3w)
(aH)−1 ≡ τ. (1.19)

This expression tells us that in the standard Big Bang cosmology, the comoving

particle horizon grows proportional to the comoving Hubble radius. Now, consider

two separate points p and p̄ at the time of CMB decoupling and the comoving particle

horizon associated with them, ∆r(trec) = τrec. By definition of the comoving particle
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horizon, if these points are seperated by a comoving length λ > τrec ∼ (aH)−1
rec, then

these points could never have been in causal contact with each other in the past.

In other words, there is no point that lies inside the particle horizons of both p and

p̄. This is illustrated in 1.3. So the question is: If there is not enough time in the

past for these points to send signals to each other, how can the CMB temperature

be so uniform ? The same question applies to any two points at the recombination

surface that are seperated by more than 1o degree in the sky today. How do photons

originating from the CMB decoupling surface know that they should have almost the

same temperature ? This is the horizon problem in standard Big Bang cosmology.

In addition to the issues we have discussed, there are also magnetic monopoles

that can be generated through symmetry breaking processes in the early universe and

the inefficiency of the standard Big Bang evolution in diluting such relics poses an

important problem [19].

The most serious issue among these issues we have presented here is the horizon

problem as other ones can be addressed in other ways. Therefore, in the next section,

we will focus on a possible solution to the horizon problem, which relies on an early

accelerated (ä > 0) phase of expansion known as inflation.

1.1.2 A simple solution to the horizon problem

It is clear from the discussion in the previous section that, at the heart of the horizon

problem resides the smallness of the particle horizon when the CMB radiation re-

leased. Therefore, in the search for a solution, we need to find a mechanism that can

naturally lead to a much larger particle horizon, i.e. ∆r(trec)� λ. This can simply be

done by considering a phase of shrinking (comoving) Hubble radius (aH)−1 prior to

the CMB decoupling such that integral representing the particle horizon takes most of

its contribution from earlier times. Let us look at this argument more closely. First,
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a decreasing comoving Hubble radius implies a perfect fluid with SEC violation,

d

dt
(aH)−1 < 0 ⇒ ä > 0 ⇒ (1 + 3w) < 0. (1.20)

In this case the integral (1.15) describing the particle horizon is dominated by the

lower limit and in the limit ai → 0, the particle horizon in (1.18) becomes infinitely

large,

∆r(t)→∞, for ai → 0. (1.21)

In other words, if we consider a phase of accelerated expansion ä > 0 (or 1+3w < 0),

there is much more conformal time between the singularity and the time of CMB

decoupling as the Big Bang singularity is now pushed back to very large negative

values

τi =
2H−1

0

(1 + 3w)
a

(1+3w)/2
i → −∞, (1.22)

as ai → 0. This means that the photons that are released at the time of the CMB

decoupling have enough time to communicate with each other in the past. This is

how an inflationary early universe adresses the horizon problem.

In the following section, we will briefly review the physics of inflation together with

its observational predictions in the simplest versions of the inflationary paradigm.

1.2 Slow-roll Inflation

We have seen that the shrinking comoving Hubble radius corresponds to an accel-

erated expansion ä > 0 and a universe dominated by a perfect fluid with negative

pressure w < −1/3.

In the context of a microscopic theory, these conditions can be achieved by con-
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sidering a minially coupled scalar field to GR,

S =

∫
d4x
√
−g

{
M2

pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

}
, (1.23)

where gµν is the inverse of the metric gµν , R is the Ricci scalar derived from this

metric and V (φ) is the inflaton potential. The stress-energy tensor for the scalar field

derived from this action is given by

Tµν = ∂µφ∂νφ−
1

2
gµν

{1

2
gρσ∂ρφ∂σφ− V (φ)

}
. (1.24)

If we assume that this energy-momentum tensor is the only source of the Einstein

equations in (1.2), it can lead to a FLRW expansion. We are interested in conditions

that can give rise to an accelerating solution in this framework. Consistent with the

symmetries of FLRW evolution, lets consider the equation of state of homogeneous 3

inflaton φ̄ field,

wφ ≡
Pφ
ρφ

=
˙̄φ2 − 2V (φ̄)
˙̄φ2 + 2V (φ̄)

. (1.25)

This immediately shows that negative pressure leading to ä > 0, e.g. wφ ' −1 <

−1/3, can be achieved if ˙̄φ2 � 2V (φ̄). Inflation will last as long as ρφ + 3Pφ < 0,

i.e. ˙̄φ2 < 2V (φ̄). The exact equation of state with wφ = −1 can be considered as a

limiting case of accelerating expansion solutions. In this case, the scalar field does

not roll, i.e. ˙̄φ = 0 and such a FLRW solution is called de-Sitter space-time. As

we have shown before in section 1.1, this corresponds to a universe dominated by

a cosmological constant where the scale factor takes the exponential form with an

constant Hubble rate (See e.g. equations (1.8) and (1.9)). In order to understand

the departure from a cosmological constant (hence a stationary field configuration

˙̄φ 6= 0), we first note that as long as universe undergoes an accelerated expansion,

3Later on, we will consider departures from exact homogeneity, φ(~x, t) = φ̄(t) + δδφ(~x, t) to
establish observational predictions of inflation.
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the spatial curvature term will diminish quickly and hence we take K = 0 in the first

Friedmann equation in (1.3). Then, using ä/a = Ḣ +H2 in the second line of (1.3),

we have −2ḢM2
pl = ρφ + Pφ. Therefore, we can parametrize inflationary solutions

with a rolling field in the following way

wφ = −1− 2Ḣ

3H2
≡ −1 +

2

3
ε, (1.26)

where we have defined the slow-roll parameter for the Hubble rate as ε ≡ −Ḣ/H2 =

˙̄φ2/2H2M2
pl. It is clear from this expression that an accelerated solution with a rolling

scalar, i.e. −1 < wφ < −1/3, requires

ε = − Ḣ

H2
= −d lnH

dN
< 1. (1.27)

Here, we have defined dN = d ln a = Hdt which measures the number of e-foldings

during the accelerated expansion. CMB data suggests that the universe would have

had undergone at least 60 e-folds of inflation if the horizon problem is to be solved.

In order to achieve this, we therefore require ε to remain small for a sufficiently large

number of e-folds. This can be parametrized by defining a second slow-roll parameter,

η ≡ d ln ε

dN
=

ε̇

εH
. (1.28)

For |η| < 1, fractional change of ε is small per Hubble time and inflation continues

for a sufficiently large amount of time.

The Hubble slow-roll conditions we have described can be related to the micro-

physics of inflationary models through the potential V (φ) and its derivatives. For

this purpose, we need to make use of the slow-roll approximations in the Friedmann
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equation and Klein-Gordon4 equation of the scalar field,

¨̄φ + 3H ˙̄φ+ V ′(φ̄) = 0 → 3Hφ̇ = −V ′, (1.29)

H2 =
1

3M2
pl

(
˙̄φ2

2
+ V (φ̄)

)
→ H2 ' V

3M2
pl

, (1.30)

where we have assumed ε, η � 1. Here, note that η � 1 implies that the dimensionless

acceleration parameter of the scalar field is also small, namely δ ≡ − ¨̄φ/( ˙̄φH)� 1 as

second slow-roll parameter is given by η = −2δ + 2ε by definition.

Using (1.30) in (1.29) provides a relationship between the kinetic energy and the

gradient of the potential

ε =
˙̄φ2

2H2M2
pl

'
M2

pl

2

(
V ′

V

)2

. (1.31)

On the other hand, taking a time derivative of (1.29) and again using (1.30) in the

resulting expression leads to

δ + ε = 2ε− η

2
= M2

pl

V ′′

V
. (1.32)

The form of these expressions suggest that the following potential slow-roll parameters

are convenient in describing inflationary solutions,

εv =
M2

pl

2

(
V ′

V

)2

, |ηv| = M2
pl

|V ′′|
V

, (1.33)

where we require {εv, |ηv|} � 1.

As we have mentioned previously, the number of e-foldings can be considered as a

measure of time during the accelerated expansion. Particularly, it can be thought as

the amount of inflation that has to occur at a given time t before inflation terminates.

4Equation of motion for the scalar field can be derived by using the continuity equation (1.6)
with the energy momentum tensor (1.24).
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Under the slow-roll conditions, it can be written as

N(t) =

∫ aend

a

d ln a =

∫ tend

t

H(t) dt ' 1

M2
pl

∫ φ̄(t)

φ̄end

V ′

V
dφ̄, (1.34)

where we have denoted φ̄end as the value of the field at the end point of infla-

tion defined by εv(φ̄end) = 1. For inflationary models with monomial potential,

e.g. V = λM4−p
pl φp/p, the number of e-folds can be related to the value of the field or

equivalently the value of the slow-roll parameter at a given time,

N(t) ' φ̄2(t)− φ̄2
end

2pM2
pl

' p

4ε(t)
, (1.35)

where we assumed ε ' εv � 1. As typically the value of the field is larger than the

value at the end of inflation, the expression above implies that the value of the field

is large compared to the Planck mass, φ̄(N) 'Mpl

√
2pN , i.e. for 2pN > 1.

1.3 Reheating

Considering the end of inflation, we are challanged by another problem: During infla-

tion, the energy density of the universe would have been dominated by a slowly rolling

scalar field. In this phase, the energy density of the scalar field is almost constant,

whereas, that of any pre-existing standard matter (i.e. radiation, non-relativsitic mat-

ter including your tootbrush) gets diluted by a factor e−60 (also known as zero) by the

exponential expansion. Recall that existence of matter is crucial in understanding the

successes of Hot Big Bang Model through processes such as BBN and CMB decou-

pling. Therefore, we need a way to convert the energy in the scalar field at the end

of inflation to that of normal matter. In particular, nucleosynthesis (See for example

[20]) and evidence for cosmological neutrino background [21] imply that universe was

in thermal equilibrium at MeV temperatures. This implies that universe has to be

filled with relativistic particles some time between the end of inflation and T ∼ MeV.
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This process is called reheating.

Typically reheating proceeds as follows: at the end of inflation the scalar field

starts oscillating around the minimum of its potential. If we approximate the shape

of the potential around the minimum as quadratic, the energy density during this

phase scales as ρ ∝ a−3 and the universe effectively behave as ordinary matter. De-

pending on the couplings between the inflaton and daughter fields, decays of inflaton

might proceed perturbatively [22, 23] or through a very efficient process called pre-

heating (also known as parametric resonance) [24, 25]. Finally, produced particles

should interact and reach thermal equilibrium [26]. The details of reheating are

highly model-dependent, but this series of phases we described ultimately determines

the temperature at which the universe becomes in equilibrium and enters the standard

Hot Big Bang behavior.

The main unattractive features of reheating are its inability to leave direct imprints

on observable scales [27] and its strong model dependence. Though several course

grained features of the reheating phase, such as its equation of state and duration,

can have an indirect effect on inflationary observables [28].

In this thesis, reheating will be one of our main focuses. In the following chapters,

we will study scenarios where reheating dynamics can lead to observable effects when

considered in conjunction with dark matter5 (DM) physics. In the last chapter, we

will also present a framework that may be helpful in reducing the model dependence

in reheating studies. Our main aim in this section was to introduce the importance of

this era in understanding Hot Big Bang evolution. Therefore, we will leave important

details to the relevant chapters as our discussion proceeds.

5An essential component within the standard Hot Big Bang cosmology that we will discuss later
on.
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1.4 Inflation in the CMB sky

So far, we have mainly dealt with background dynamics of inflationary cosmology

and its success in explaning the observed flatness, isotropy and homogeneity of the

universe. However, as first shown by the COBE mission [29], there are small inho-

mogeneities (at the level of δT/Tγ,0 ∼ 10−5) in the CMB temperature. Moreover,

interpreted as density perturbations at later epochs, the time evolution of these inho-

mogeneities in GR lead to the formation of LSS structure we see today (See e.g. Figure

1.1). It was first realized by Chibisov and Mukhanov [30] that quantization of in-

flaton fluctuations can indeed account for small, scale invariant inhomogeneities we

observe on the CMB. This is one of the main attractive features of inflation since the

idea was first introduced; The structure we see today originates from tiny quantum

fluctuations during inflation!

A complete treatment of fluctuations from inflation requires the introduction of

some technical details related to cosmological perturbation theory. We will therefore

digress into these issues first.

1.4.1 Cosmological Perturbations

The main philosophy behind cosmological perturbation theory is to expand all quan-

tities of interest around their homogeneous background values, X(~x, t) = X̄(t) +

δX(~x, t) where X(~x, t) can be the metric and matter fields, X ≡ {gµν , φ, ρ, P}. Since

the fluctuations are small, δX � X̄, dynamics of the space-time, i.e. δgµν can be

accurately described by the linearized Einstein equations,

δGµν = M−2
pl δTµν . (1.36)

The high degree of symmetry of the background allows us to decompose the metric and

stress-energy perturbations into its irreducible parts. At linear order in perturbations
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the decomposition of the metric is given by [31, 32]

δgµν =

 −2Φ a(∂iB + B̂i)

a(∂iB + B̂i) a2(−2Ψδij + 2DijE + 2∂(iÊj) + hij)

 , (1.37)

where Dij ≡ ∂i∂j − 1
3
δij∇2. Here, hatted vectors are divergence free (transverse),

∂iÂi = 0 and hij is transeverse and traceless tensor, ∂ihij = hii = 0. The metric in

(1.37) contains 10 degrees of freedom: 4 scalars {Φ,Ψ, B,E}, 4 vectors {B̂i, Êi} (2

independent component for each vector) and 2 tensors in hij. In single field inflation-

ary models, vector fields are not produced and even if they are produced they decay

away with the expansion. Therefore, from now on we will focus on scalar and tensor

perturbations.

For matter sources that have the perfect fluid form (1.5), perturbations in the

stress-energy tensor are given by

δT µν =

 −δρ a(ρ̄+ P̄ )vi

a−1δij(ρ̄+ P̄ )(vj − ∂jB) δPδij + Πi
j

 , (1.38)

where Πi
j is the traceless anisotropic stress and vi is the spatial component of the

perturbed 4-velocity of the fluid, δUµ = (−Φ, avi). The velocity vi and the anisotropic

stress Πi
j can be further decomposed into their irreducible parts,

vi = ∂iv + v̂i, (1.39)

Πij = DijΠ + ∂(iΠ̂j) + Π̂ij. (1.40)

Given the form of the perturbed stress-tensor, it is also convenient to define the scalar

3-momentum density as (ρ̄+P̄ )av ≡ δq, where we took into account the decomposition

in (1.39).

Gauge Freedom. An important sublety in the study of cosmological perturbations

is that the splitting of quantities into the background and perturbations is not unique
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but depends on the choice of coordinates. This freedom is referred to as a gauge

choice akin to the terminology in particle physics. To illustrate the dependence on

the choice of coordinates, consider an infinitesimal change in the coordinates, xµ →

x̃µ = xµ + ξµ(~x, t) and the inflaton field φ(~x, t) = φ̄(t) + δφ( ~x, t). By definition a

4-scalar, φ has to be invariant under x→ x̃, i.e. φ(x) = φ̃(x̃). Expanding both sides

of this equation, to linear order in ξ, we have the following transformation rule for

the perturbation δφ,

δφ̃ = δφ− ˙̄φ(t)ξ0. (1.41)

Now, even if we have a physical situation where original perturbation of the field van-

ishes δφ = 0, by our coordinate choice, we have introduced a fake perturbation δφ̃ 6= 0.

Similarly, we can remove a real perturbation by choosing ξ0 = δφ/ ˙̄φ, i.e. δφ̃ = 0. In

other words, a perturbation that is present in one coordinate system can be made

to vanish in another; by choosing appropriate coordinates, a perturbation can be

“gauged away”. In order to resolve this ambiguity between real and fake perturba-

tions, we need to consider matter fluctuations, i.e. δφ, δρ, etc. simultaneously with

metric fluctuations. Neglecting the former, or the latter might lead to gauge modes

being treated as physical perturbations and vice versa. When we handle both types

of perturbations, a physical perturbation6 never dissappers from the dynamics, it is

just hidden in a different degree of freedom after we fix the gauge (choose a coordinate

system). In other words, we can trade one for the other using the gauge freedom.

Gauge transformations. Under an infinitesimal coordinate transformations xµ →

xµ + ξµ, perturbations of a rank-n tensor Tµ1...µn around its background value T̄µ1...µN

transform as

δT̃µ1...µn = δTµ1...µn − ξν ∂νT̄µ1...µn − T̄ν...µn ∂µ1ξ
ν − · · · − T̄µ1...ν ∂µnξ

ν . (1.42)

Now we exploit this general fact to derive transformation rules for the scalar7 metric

6See the discussion below on gauge invariant perturbations.
7Note that tensorial part of the any perturbed quantity is by definition gauge invariant, e.g. hij .
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perturbations and the perturbed scalar quantities associated with the stress energy

tensor. For an infinitesimal vector ξµ = (ξ0, εi), further decomposing εi = ∂iε + ε̂i,

scalar metric perturbations transform as

Φ → Φ− ξ̇0(x), B → B +
ξ0(x)

a(t)
− a(t) ε̇(x),

E → E − ε(x), Ψ→ Ψ +H(t) ξ0(x). (1.43)

Similarly, from the transformation law of perturbed stress tensor, we can obtain

δρ → δρ− ˙̄ρ ξ0(x), δP → δP − ˙̄P ξ0,

v → v +
ξ0(x)

a(t)
⇒ δq → δq + (ρ̄+ P̄ ) ξ0(x). (1.44)

By considering the linear combinations of the scalar metric and matter fluctuations,

we can build scalar perturbations that are invariant under gauge transformations.

Gauge invariant perturbations. Two important gauge-invariant variables are called

Bardeen potentials [33],

ΦB ≡ Φ− d

dt
[a2(Ė −B/a)]

ΨB ≡ Ψ + a2H(Ė −B/a) . (1.45)

Another gauge invariant quantity is the curvature perturbation on uniform-density

hypersurfaces [34],

− ζ ≡ Ψ +
H
˙̄ρ
δρ . (1.46)

By definition, ζ can be considered as a measure of the spatial curvature on constant

density hypersurfaces (i.e. δρ = 0), R(3) = ∇2Ψ/a2 where R(3) is the Ricci curvature

scalar of the spatial hypersurfaces. Another useful property of this quantity is; in

a gauge defined by vanishing Ψ = 0, ζ can be directly related to the dimensionless

density perturbation δρ/3(ρ̄ + P̄ ) and hence with temperature fluctuations in the
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CMB. For super-horizon scales (k/aH)→ 0, it coincides (up to a sign) with another

gauge invariant scalar called comoving curvature perturbation

R ≡ Ψ− H

ρ̄+ p̄
δq. (1.47)

R measures spatial curvature on comoving hypersurfaces. Arguably, the most impor-

tant property of ζ andR is that they remain constant outside the horizon for adiabatic

matter perturbations. This can be seen from writing the following expression for the

time evolution of comoving curvature scalar R,

Ṙ ' H

ρ̄+ P̄
δPnad, (1.48)

where

δPnad ≡ δP − P̄

ρ̄
δρ (1.49)

is the gauge invariant non-adiabatic pressure [35]. For example, in single field infla-

tionary models δPnad = 0 and conservation of R is firmly established. However, in

the case of multiple fluids or scalar fields this is not guaranteed. In the following

chapters, we will further discuss this issue in a multi-field inflationary model. For

now we assume that both curvature perturbations are conserved on large scales out-

side the horizon. An immediate consequence of this is that, since inflation can be

characterized by a shrinking comoving Hubble radius (aH)−1, modes with comoving

wavelength k−1 that is smaller than the horizon will eventually cross the horizon,

k = aH and freeze. From this time on, they will remain constant and continue their

super-horizon evolution during the Big Bang phase until they re-enter the horizon

(i.e. at the time of CMB decoupling). This tells us that the initial conditions for

the small temperature fluctuations in the CMB are essentially set at the horizon exit

during inflation, which we denote by k∗ = a(t∗)H(t∗).

We note that for single field slow-roll inflation the definitions of −ζ and R match
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exactly. This can be realized by using δρ = V ′δφ ' −3H ˙̄φδφ and δT i0 = − ˙̄φ∂iδφ =

∂iδq in (1.46) and (1.47),

− ζ ' R = Ψ +
H
˙̄φ
δφ. (1.50)

Gauge Fixing. A common way to deal with gauge freedom is to use it to our

advantage by removing some of the scalar perturbations. For example, we can de-

termine the slicing and threading of space-time by fixing ξ0(x) and ε(x) to set some

perturbations to zero. Here, we mention two important gauges we will make use of

parallel to some of our discussions in this thesis.

Without specifying the sources of the expansion, we can consider the following

set for the scalar perturbations {Φ,Ψ, E,B, δρ, δq}. First by a spatial coordinate

transformation xi → xi + δij∂jε with ε(x) = E(x), we can set E → 0 (See equation

(1.43)). Then by choosing an appropriate slicing, e.g. ξ0 = −aB + a2Ė, we can set

B → 0. The remaining variables in the matter sector, i.e. δρ, δq can be related to Φ

and Ψ by the Einstein constraint equations (See Appendix 1.A). Therefore we are left

with one independent scalar degree of freedom as expected and this set up is called

Newtonian gauge (or longitudinal gauge) where the metric takes the following form

ds2 = −(1 + 2Φ)dt2 + a2(t)(1− 2Ψ)δijdx
idxj . (1.51)

Moreover, if the anisotropic stress vanishes8, we can further simplify the metric by

Φ = Ψ [32]. Note also that in the Newtonian gauge, E = B = 0, gauge invariant

Bardeen potentials coincide with potentials in the Newtonian gauge, ΨB → Ψ, ΦB →

Φ.

In the context of inflation, we can consider the following set of scalar perturba-

tions {Φ,Ψ, E,B, δφ}. By setting E = 0 in the same way we did before, we can now

relate the Φ and B to Ψ and δφ through the energy and momentum constraint equa-

tions, therefore we are left with two independent perturbations where Ψ parametrizes

8Indeed this is the case for perfect fluids including scalar fields
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the curvature perturbation of spatial hypersurfaces and δφ is the fluctuations in the

matter sector;

gij = a2(t)e−2Ψ(x)δij, φ = φ̄(t) + δφ(x) . (1.52)

We can utilize left over time-reparametrization to set the inflaton fluctuations to zero,

δφ → 0 by requiring ξ0 = δφ/ ˙̄φ. Since the scalar momentum density vanishes with

this choice of slicing, δq → δq + (ρ̄ + P̄ )ξ0 = 0, this coordinate choice is called the

comoving gauge. In this gauge we have

gij = a2(t)e−2R(x)δij = a2(t)e2ζ(x)δij, φ = φ̄(t) (1.53)

where R = Ψ + (H/ ˙̄φ)δφ. As we claimed before, a physical perturbation never

dissapears from the dynamics, in the comoving gauge, inflaton fluctuations are hidden

inside the comoving curvature perturbation R.

1.4.2 Contact with Observations

We are now ready to extract predictions from inflation by quantizing the fluctuations

in the theory given by the action (1.23). To properly take into account the metric

fluctuations in the theory, it is convinient to use the metric in the ADM form [36]

where the space-time is sliced into three dimensional hypersurfaces,

ds2 = −N2dt2 + ĝij(dx
i +N idt)(dxj +N jdt) . (1.54)

Here, the lapse function N(x) and the shift function Ni(x) essentially contain the

same information as the metric perturbations Φ and B in (1.85) in the sense that they

are non-dynamical9 variables that can be solved in terms of the dynamical ones and

ĝij is the three-dimensional metric on constant time t hypersurfaces. Using (1.54),

the action (1.23) takes the following form

9This correspondence is also clear by noticing that, Φ and B in the linearized Einstein equations
(1.87),(1.88) appear with at most with single time derivative
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S =
1

2

∫
d4x
√
ĝ

{
M2

pl

[
NR(3) +N−1(EijE

ij − E2)
]

+N−1(φ̇−N i∂iφ)2 −Nĝij∂iφ∂jφ− 2NV

}
, (1.55)

where we have used the following inverse metric components in terms of N,N i and

ĝij g00,

g00 = − 1

N2
, g0i = gi0 =

N i

N2
, gij = ĝij − N iN j

N2
. (1.56)

In (1.55), Eij is related to the extrinsic curvature of the three-dimensional spatial

slices Kij = N−1Eij and is given by

Eij ≡
1

2
( ˙̂gij − ∇̂iNj − ∇̂jNi) , E = Ei

i . (1.57)

To describe the leading action for the perturbations, we fix time and spatial repa-

rameterizations to focus on the comoving gauge for the dynamical fields gij and φ,

δφ = 0 , ĝij = a2[e2ζδij + hij] , ∂ihij = hii = 0 , (1.58)

where we described the curvature perturbation on constant φ surfaces with ζ. As we

have mentioned in the previous section, this gauge choice removes two of five scalar

perturbations in the theory and the remanining two can be eliminated in favor of the

gauge invariant ζ and hij by varying the action (1.55) with respect to lapse and the

shift N,N i and plugging these constraint equations back into the action.

Scalar Power Spectrum (a.k.a scalar 2-pt function). Following the lengthy pro-

cedure we described above leads to the following 2nd order action for the curvature
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perturbation ζ [37]

S(2)
s =

1

2

∫
d4x a3

˙̄φ
2

H2

[
ζ̇2 − a−2(∂iζ)2

]
. (1.59)

Written in this form, the second order action is not suitable for standard canonical

quantization methods in QFT. For this purpose, we introduce the Mukhanov-Sasaki

variable v = zζ with z ≡ a ˙̄φ/H by switching to conformal time dτ = dt/a. This leads

to the following action for v [31]

S(2)
s =

1

2

∫
dτd3x

[
(v′)2 + (∂iv)2 +

z′′

z
v2

]
, (1.60)

which is essentially the action for a free scalar field with a time depedent mass,

m2
eff(τ) = z′′/z. We can now promote the field v to a quantum operator as a super-

position of annihilation and creation operators,

v → v̂ =

∫
d3k

(2π)3

[
vk(τ)âke

ik·x + v∗k(τ)â†ke
−ik·x

]
, (1.61)

where âk and a†k satisfies the algebra [âk, a
†
k] = (2π)3δ(k + k′) and the vacuum is

defined by the standard relation âk|0〉 = 0. This decomposition leads to the following

equation for the mode functions vk(τ),

v′′k +

(
k2 − z′′

z

)
vk = 0 , (1.62)

where the effective mass term to first order in slow-roll parameters is given by

z′′

z
=
ν2
s − 1/4

τ 2
, νs '

3

2
+ 2ε− δ. (1.63)

The solution for (1.62) that reduces the Bunch-Davies vacuum in the −kτ →∞ limit,
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i.e. to vk = 1√
2k
e−ikτ , can be written as

vk(τ) =

√
π

4k
ei(νs+1/2)π/2 (−kτ)1/2H(1)

νs (−kτ). (1.64)

Since we are interested in modes that exit the horizon during inflation, a useful limit

to take in (1.64) is −kτ → 0,

vk(τ) ' ei(νs−1/2)π/2 2νs−3/2 Γ[νs]

Γ[3/2]

(−kτ)1/2−νs
√

2k
, − kτ → 0 . (1.65)

Now, given the fourier decomposition (1.61) of the canonically normalized field v(x),

we are can ready to calculate the 2-point function of curvature perturbation ζ,

〈ζkζk′〉 ≡ (2π)3δ(k + k′)Pζ(τ, k) = (2π)3δ(k + k′)
|vk(τ)|2

z2
, (1.66)

where 〈. . . 〉 denotes vacuum expectation value and the delta function follows from

the fact that background is invariant under spatial translations. Since the modes

freeze after the horizon exit at −kτ = 1, and stay intact through the super-hubble

evolution until horizon re-entry, the 2-point function of ζ is suitable for comparison

with CMB temperature anisotropies. For a reference comoving scale, k∗, that re-

enters the horizon at CMB decoupling, the horizon exit condition at a time τ∗ during

inflation can be written as k∗τ∗ = 1. Using this parametrization and the solution we

found in (1.65), we can finally write the dimensionless power spectrum as

∆2
s(k) =

k3

2π2
Pζ(τ∗, k) =

1

8π2

H2
∗

ε∗M2
pl

(
k

k∗

)ns−1

, (1.67)

where the scalar spectral tilt is given by ns− 1 = 3− 2νs = −4ε∗+ 2δ∗ and ∗ denotes

that relevant quantities are evaluated at horizon crossing during inflation. Since slow-

roll parameters are small, this result implies that inflation predicts an almost scale

invariant (with a slightly red tilt) power spectrum. In other words, in the slow-roll
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inflationary paradigm, the deviation from perfect scale invariance, ns = 1 can be

realized as a departure from a perfect de-Sitter expansion parametrized by ε, δ etc.

In recent years, this prediction has been confirmed by various CMB experiments. At

a pivot scale k∗, the most recent measurements on the CMB anisotropies favors the

following values for the amplitude and spectral index of the power spectrum [38]

ns = 0.9645± 0.0049 (68%CL), (1.68)

As ≡
1

8π2

H2
∗

ε∗M2
pl

= 2.2× 10−9. (1.69)

Note also that the small amplitude of the power-spectrum further justifies our per-

turbation theory approach at linear order.

Tensor Power Spectrum. Using the tensor part of the metric (1.54), the first line

of the action (1.55) leads to the 2nd order action for hij. In conformal time, this

procedure gives [39]

S
(2)
t =

M2
pl

8

∫
dτd3x a2

[
h′ijh

′
ij + ∂khij∂khij

]
. (1.70)

Similar to the scalar case, we decompose the tensor modes in fourier space as

hij =
∑
λ

∫
d3k

(2π)3

[
ελij(k)hλk(τ) b̂λk e

ik·x + h.c

]
, , (1.71)

where the polarization tensors satisfy eii = kiεij = 0, eλije
λ′
ij = 2δλλ

′
and h.c stands for

hermitian conjugate of the preceding expression. Annihilation and creation operators

satisfies the algebra [b̂λk, b̂
λ′†
k ] = (2π)3δ(k + k′)δλλ

′
and the vacuum is defined by

b̂λk|0〉 = 0.

By plugging the decompostion (1.71) into the action (1.70) one can obtain the

equation of motion for the canonically normalized mode functions, vk ≡ aMplh
λ
k(τ)/2,

vλ
′′

k +

(
k2 − a′′

a

)
vλk = 0 . (1.72)
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From the equations of motion above, it is clear that we have just two copies of the

same equation we dealt with in the scalar perturbation case. The only difference is

that the effective mass term is now given by

a′′

a
=
ν2
t − 1/4

τ 2
, νt '

3

2
+ ε . (1.73)

Following the same procedure as before, the 2-pt function for each polarization state

is simply

〈hλkhλ
′

k′〉 = (2π)3δ(k + k′) Pλt (k, τ) = (2π)3δ(k + k′)
2H2

k3M2
pl

(−kτ)3−2νt (1.74)

Summing over both polarizations, the dimensionless tensor power spectrum at horizon

crossing τ∗ = k−1
∗ reads [40],

∆2
t (k) =

k3

2π2

∑
λ

Pλt =
2H2
∗

π2M2
pl

(−kτ∗)nt =
2H2
∗

π2M2
pl

(
k

k∗

)nt
, (1.75)

where nt = 3− 2νt = −2ε∗. This implies that tensors are also scale invariant, thanks

to the appearance of the slow-roll parameter. In anology with scalars we can identify

the amplitute of the tensors as

At =
2H2
∗

π2M2
pl

. (1.76)

Note that the scalar power As has an extra factor of 1/ε∗ compared to tensors at

leading order in slow-roll. This implies that there is more scalar power than tensors

in slow-roll models. For this reason, the tensor amplitude is often normalised with

respect to the measured scalar amplitude by defining the tensor to scalar ratio,

r∗ ≡
∆2
t (k)

∆2
s(k)

∣∣∣∣∣
∗

=
At
As

∣∣∣∣∣
∗

. (1.77)

It is also important to note the consistency condition between tensor to scalar ratio,

r and the tensor tilt, nt = −r∗/8 = 2ε∗. An immediate conclusion that can be made
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from this relation is that if we find a nearly scale invariant spectrum of tensor modes,

|nt| � 1, this would confirm that |Ḣ| � H2 in the early universe and hence would

be strong evidence that inflation took place in the early universe. There is another

important implication of the observation of tensor modes during inflation. Using the

definition (1.77), we can write

H∗
Mpl

= π∆s(k∗)

√
r∗
2
. (1.78)

Substituting the observed power in scalar fluctuations, ∆s(k∗) ' 4.7×10−5, it provides

us a hiearchy between Hubble rate during inflation and the Planck scale,

H∗
Mpl

' 3× 10−5
( r∗

0.1

)1/2

, (1.79)

where we take a fiducial value for r considering the recent constraints from Planck:

r < 0.10 (95% CL) at k∗ = 0.002 Mpc−1. Therefore, detection of the inflationary

tensor modes at the level of r = 0.1 would imply that the Hubble rate H∗ during

inflation was about 10−5Mpl. Another common way of expressing this result is through

the energy scale of inflation,

Einf ≡ (3H∗Mpl)
1/4 ' (V∗)

1/4 ' 8× 10−3
( r∗

0.1

)1/4

Mpl. (1.80)

Notice that the energy scale does not depend strongly on tensor to scalar ratio,

reducing r by four orders of magnitude reduces the energy scale only by one order of

magnitude.

Gravitational waves are robust relics that are essential in our understanding of

the inflationary era. Their detection through the CMB B-mode polarization [41]

would provide strong evidence for inflation and the energy scale at which inflation

takes place. It is therefore important to challange the inflationary paradigm with

future B-mode polarization experiments. In particular, the next generation CMB S4
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experiment [42] will be able put bounds on the level of tensor modes at, r . 10−3,

hence it can significantly impact the way we think about inflationary models.

Non-gaussianities from inflation. So far, we have discussed the lowest order

predictions that arise from quantum fluctuations in a free field theory, e.g. (1.59).

If this was the full theory, fluctuations would be Gaussian and the theory could be

completely described by its 2-pt functions, while all other n-point functions vanish.

However, even in the simplest slow-roll models we are considering here, there are

deviations from perfect Gaussianity [37]. In general, a wealth of information can be

obtained by studying interactions on top of the free theory and we call this information

primordial non-Gaussianity [43, 44].

The primary indicator of non-Gaussianity is the 3-point function (or bispectrum),

〈Ω|ζk1 ζk2 ζk3 |Ω〉 = (2π)3δ(k1 + k2 + k3)Bζ(k1, k2, k3), (1.81)

where |Ω〉 is the vacuum of the interacting theory and the delta-function is due to

the translation invariance of the background. The bispectrum can be factorized as

Bζ(k1, k2, k3) = fNLS(k1, k2, k3) where fNL is the dimensionless non-Gaussianity pa-

rameter and the function S determines the shape of bispectrum associated with tri-

angles of different shapes formed by the wavevectors {k1,k2,k3}. The most recent

Planck analysis [45] has put the following constraints on the amplitudes of the differ-

ent shapes

f local
NL = 2.5± 5.7, f ortho

NL = −34± 33, f equil
NL = −16± 70, 68% CL, (1.82)

where the equilateral shape peaks when k1 = k2 = k3 while the orthogonal shape

peaks for both equilateral and flattened configurations k1 = k2 = k3/2. The local

signal peaks for squeezed triangles, i.e. k1 � k2 ' k3. Particularly, in single field

models of inflation, the bispectrum in the squeezed limit can be shown to lead an
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important consistency relation [37, 46],

f local
NL =

5

12
(ns − 1). (1.83)

This implies that primordial non-Gaussinatiy is expected to be very small in the

canonical single field models. Therefore, observing f local
NL > 1 would rule out all

models of single-field inflation! In light of the constraints from Planck above, this

possibility seems to be constrained significantly.

1.5 ΛCDM model

Before we introduce the standard model of cosmology, we need to talk about the two

main components in the universe: Dark Energy and Dark Matter.

Dark Energy. Dark energy is essentially the energy density of the vacuum itself.

If this vacuum energy arises due to the cosmological constant Λ of general relativity

being nonzero, the energy density is a constant in space and time. We have already

showed this in Section 1.1, where we described the cosmological constant by a perfect

fluid with an equation of state w = −1 and hence ρΛ ∝ constant. Thus, a larger

volume of space will have a larger amount of dark energy. So, as the universe expands,

during very late times one would expect dark energy to dominate over all other forms

of energy (See Figure 1.2).

Dark Matter. The CMB temperature anisotropies on the sky today are a conse-

quence of the evolution of fluctuations from earlier epochs, and hence it is certainly

clear that their distribution depends on a number of factors like the amount of mat-

ter in the universe, the rate at which the universe is expanding, the geometry of the

spatial hypersurfaces, etc. For a given set of initial conditions at some time before

recombination, we can make use of this set of parameters to calculate the distribution

of the anisotropies on the sky today. Conversely, given the observed distribution of

the anisotropies, we can estimate the values of these parameters.
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Following the latter route, if we consider only the particles that we know from the

Standard Model of Particle Physics (e.g. leptons, baryons, gauge bosons), it turns

out that CMB data do not fit the theory for any values of parameters. At this point,

we are left with two options; we either modify General Relativity (GR) or modify

the particle content in the Standard Model of Particle Physics. Given the success of

GR on a wide range of scales, it is acceptable to begin by doing the latter via the

introduction of a new kind of particle. In 1933, Zwicky [47] proposed that the Coma

Cluster had an dark mass density that does not interact with light as a solution to the

observation that the mass of the galaxies that he estimated seemed to be much more

than his calculations for the mass of the luminous matter in the cluster. If we follow

Zwicky’s suggestion, we can propose two types of matter: baryonic matter which are

a part of the Standard Model and dark matter, referring to matter that interacts

very weakly with the Standard Model. Considering the distribution of the CMB

anisotropies today, matter plays two different roles. First, the phenomenon of CMB

decoupling depends on the non-gravitational interaction between photons, electrons

and protons. Second, by having mass, matter influences how the universe evolves, and

hence how photons propagate in and out of the gravitational potential wells created

by matter. It turns out that considering an additional component of dark matter

provides a much better fit of the model to the CMB data. In the context of FLRW

cosmology, dark matter (DM) can be modeled as a perfect fluid, just like baryons are.

Thus, energy density and pressure completely characterize the dark matter fluid. We

can therefore decompose the dimensionless matter density parameter as Ωm = Ωb+Ωc.

The perturbations in the DM fluid also play a crucial role in the structure forma-

tion. As we will see, the CMB data prefers Ωc,0 � Ωb,0 so that at early times (recall

that both fluids energy density scale as a−3, e.g. see (1.11)), the pressureless matter

dominated era is dominated primarily by the DM fluid. On the other hand, before the

time of radiation and matter equality, the universe is dominated by ultra-relativistic

particles which can be considered as a fluid with Pr = 1/3ρr. The pressure density of
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Figure 1.4: The CMB temperature anisotropy power spectrum measured by Planck
satellite [1]. Red lines represent the experimental error bars. The green line represents
the best-fit curve of the ΛCDM model (See Table 1.1).

the background fluid is crucial in understanding the growth of the perturbations in

the DM fluid, in that it suppresses the growth of structures. For example, it is known

that DM perturbations grow only logarithmically with the scale factor, ∝ ln a(t) in a

radiation dominated universe (wr = 1/3), whereas in a DM dominated universe (or

in a fluid with w = 0 in general), it evolves linearly with a(t).

Looking at the structure we see in the sky today, we can obtain important clues

about the properties of DM. The temperature of DM is an important property that

can effect structure formation in the universe. If the dark matter particles have large

temperature, this would mean that they would have large velocity dispersions and

thus large mean free paths. Large velocity dispertions of DM particles would decrease

the ability of the growth of structure on scales smaller than the mean free path of the

particles, simply because clumping of the particles would be inefficient at those scales.

In this case, structure formation should proceed in a “top-down” manner, that is, first
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Parameter Planck
Ωb,0h

2 0.02207± 0.00067
Ωc,0h

2 0.1196± 0.0061
ΩΛ,0 0.683± 0.040
τ 0.097± 0.80
109As 2.23± 0.32
ns 0.962± 0.019

Table 1.1: Parameters of ΛCDM baseline model (at 68 % CL). The first four
parameters describe the composition of the universe, whereas the last two sets the
initial conditions for CMB fluctuations.

structures on the largest scales (such as superclusters) should form first, subsequently

fragmenting into smaller pieces like galaxies. In this case we would expect fluctuations

on small scales would be erased over time. In the case of cold dark matter instead, the

structure formation proceeds in a “bottom-up” manner: first small structures form

and then continue to grow in bigger and bigger-sized objects.

Evidence from the CMB and other experimental probes have shown that structure

formation proceeded in a bottom-up manner. Therefore, there is a big consensus in

the cosmology community that there must be a significant amount of Cold Dark

Matter (CDM).

The ΛCDM model has six free parameters: the physical baryon density, Ωb,0h
2, the

physical density10 of CDM, Ωc,0h
2, the dark energy density ΩΛ,0, the optical depth τ ,

and the scalar amplitude As and the spectral index ns of the primordial scalar power

spectrum with the power-law ansatz,

∆2
s(k) = As

(
k

k∗

)ns−1

. (1.84)

This simple model provides an excellent fit to the CMB data. This can be seen in

Figure 1.4 where we show the CMB temperature fluctuations measured by Planck

10Physical density parameters are obtained by multiplying density parameters, ΩX with the square
of the reduced Hubble constant h ≡ H0/(100 km s−1Mpc−1)
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satellite, and the best-fit curve of the ΛCDM model provided by the best-fit param-

eters [18] in Table 1.1.

1.6 Open Problems and Outline of the Disserta-

tion

Supported by the inflationary paradigm, the ΛCDM model is incredibly successful

in identifying the composition of the Universe and in explaining the observed CMB

temperature anisotropies and LSS data. Despite its success, the standard model of

cosmology on its own can not explain the true micro-physical origin of the different

components (phases) in (of) the Universe. For example, while inflation provides

us with a consistent, testable framework for understanding the origin of structure

in our universe, we are yet to understand details of inflationary dynamics, how it

ends (through reheating) and how the evolution in the post-inflationary era proceeds.

Intriguingly, these stages are host to a number of interesting phenomena, including

the generation of stable relics such as DM [48] and matter/anti-matter asymmetry

[49], that are essential in understanding the world we observe today, as well as for

establishing new physics. From this perspective, it is clear that the issues related to

the standard model of cosmology are firmly interconnected with high energy particle

physics. In this thesis, we therefore aim to investigate this connection further by

focusing on the following topics from a cosmological perspective;

DM and Reheating. Apart from the properties of DM that we have discussed, little

is known about the microphysical nature of DM. As we have discussed briefly, these

properties are enough to explain phenomena such as CMB anisotropies and galaxy

clustering that are essentially separated widely in scales. These lines of evidence for

the existence of CDM is one of the most concrete reasons to believe in Beyond the

Standard Model (BSM) physics. On the other hand, competitive bounds from collider

searches, direct and indirect detection have made the DM puzzle enticing. On the

38



early universe side of this puzzle, BSM approaches can play a key role in the cosmolog-

ical production of DM together with the associated micro-physics. Focusing on BSM

physics within the Split-Supersymmtry (SUSY) framework, in Chapter 2, we will dis-

cuss low temperature reheating scenarios and investigate the correlation between the

reheating temperature, non-thermal production of DM and the uncertainty inherent

in inflationary observables due to post-inflationary evolution. In Chapter 3, we will

study DM production from gravitino decays. Using the constraints from indirect DM

detection together with the requirement of observed cosmological DM abundance, we

will set upper bounds on the reheating temperature. In Chapter 4, we will focus on

the DM perturbations in the low reheating temperature scenarios in order to shed

light on the formation and survival of DM clumps within the Split SUSY framework.

Inflation. Despite the success of the simplest models of inflation in explaining

the CMB data, the fundamental mechanism behind inflation continues to elude us.

A unique experimental window that can help us explore these issues is by looking

at the B-mode polarization pattern that GW’s left on the CMB sky. As we have

discussed in Section 1.4.2, a detection of GW’s of primordial origin would provide

us the energy scale of inflation, revealing a new energy scale of particle physics. In

Chapter 5, considering constraints on the cosmological correlators, we will discuss if

one can alter this connection between the scale of inflation and the detection of tensor

modes in models where non-trivial multi-field dynamics including particle production

events are present.

Reheating. In the presence of couplings to additional fields, the dynamics at the

end of inflation is typically dominated by an explosive particle production process

called (p)reheating. Despite its theoretical appeal, recent studies of (p)reheating rely

on ad-hoc couplings between the relevant fields present. On the other hand, from

the perspective of inflationary dynamics, it is not clear what values these couplings

should take in order to agree with natural realizations of inflation. In the hope of

clarifying these issues, in Chapter 6 we will first study the restrictions of efficient
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particle production on the validity of the EFT of background fields. Later on, we will

extend our analysis by focusing on the EFT of the fluctuations and comment on a

possible enhancement of GW’s during the linear regime of preheating.
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Appendix

1.A Perturbed Einstein Equations

The full metric containing scalar metric perturbations, Φ,Ψ, E,B can be written as

ds2 = −(1 + 2Φ) dt2 + 2a(t)B,i dxidt+ a2(t)[(1− 2Ψ)δij + 2∂i∂jE] dxidxj , (1.85)

where we have absorbed the ∇2Eδij part into the Ψδij part. Metric perturbations are

connected to stress-energy perturbations via linearized Einstein Equations

δGµν = M−2
pl δTµν . (1.86)

Using the scalar part of the perturbed energy momentum tensor (See e.g. (1.38)-

(1.40)) we have the following Einstein constraint equations (or energy and momentum

constraint equations) at linear order,

3H(Ψ̇ +HΦ) +
k2

a2

[
Ψ +H(a2Ė − aB)

]
= − δρ

2M2
pl

Ψ̇ +HΦ = − δq

2M2
pl

. (1.87)
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On the other hand, the Einstein equations also yield two dynamical equations

Ψ̈ + 3HΨ̇ +HΦ̇ + (3H2 + 2Ḣ)Φ =
1

2M2
pl

(
δp− 2

3
k2Π

)
(∂t + 3H)(Ė −B/a) +

Ψ− Φ

a2
=

Π

M2
pl

. (1.88)

Using the definition of the Bardeen potentials in (1.45), the last equation may be

written as

ΨB − ΦB = 8πGa2Π . (1.89)

In the absence of anisotropic stress this implies, ΨB = ΦB.
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Chapter 2

Supersymmetry, Non-thermal Dark

Matter and Precision Cosmology

2.1 Introduction

Cosmological observations allow us to determine the geometry, composition and age

of the universe with great accuracy, and to tightly constrain the primordial pertur-

bation spectrum. Big Bang Nucleosynthesis (BBN) and the recently revealed cosmo-

logical neutrino background imply that the universe was thermalized at MeV scales.

Further, the correlation between temperature and E-mode polarization anisotropies

in the Cosmic Microwave Background (CMB) gives strong evidence that primordial

perturbations were laid down before recombination.

Standard Model physics cannot generate the primordial perturbations, drive baryo-

genesis or supply the dark matter content of the universe. Consequently, key processes

occur at very high energies during the primordial dark ages in which the universe is

dominated by physics beyond the Standard Model. This period is weakly constrained,

given our ignorance of the underlying physics. Crucially, while the neutrino back-

ground and BBN require that the universe was thermalized at MeV scales, it need

not be thermalized at higher energies. The equation of state during the primordial
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dark age determines the expansion rate, and thus the rate at which modes (re)enter

the horizon, modifying the observed power spectrum if the spectral index, ns, is not

strictly scale-invariant [50–58]. This issue has primarily been discussed in the con-

text of inflation, but it arises in any mechanism generating perturbations well beyond

Standard Model scales.

If the primordial universe is thermalized, massive long-lived particles may freeze-

out with a final abundance determined primarily by their mass and annihilation

cross-section [48]. This is the basis of thermal WIMP1 dark matter, which assumes a

weak-scale cross-section, σ and 〈σv〉th ' 10−26 cm3/s, where v is the typical velocity.

Alternatively, nonthermal dark matter is produced via the decay of heavier particles

into a long-lived final state and does not require thermal equilibrium [59–63] (for a

review see [64], and for recent related work [65–67]). Dark matter models are con-

strained by both direct detection experiments and searches for astrophysical signals

generated by their annihilation products. Nonthermal dark matter can have a higher

self interaction cross-section than thermal dark matter so astrophysical signals are

potentially stronger for these scenarios, particularly in indirect experiments such as

FERMI and AMS-2 [68–73].

Simple supersymmetric (SUSY) versions of the Standard Model face considerable

pressure from LHC data, but SUSY remains a candidate symmetry of high energy

physics and SUSY models provide a wide range of dark matter candidates. In the

Minimal SUSY Standard Model (MSSM), LHC data requires large scalar superpartner

masses of 10 TeV or more [74] while the dark matter species can be lighter. This a

situation that naturally leads to nonthermal dark matter production (e.g. [75, 76])

and a similar argument applies to anomaly mediated SUSY breaking [77]. Further,

a primordial nonthermal phase may be generic in SUSY models with a high energy

completion in the presence of gravity [64, 78]. This was seen explicitly in the G2-

MSSM [79], and later generalized to models with strong moduli stabilization [80,

1Weakly Interacting Massive Particles
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81]. In many cases nonthermal dark matter production is naturally favored in these

scenarios.

Given LHC bounds on the SUSY spectrum in the MSSM, cosmological constraints

– while indirect – are key to explorations of the SUSY parameter space at higher ener-

gies. In this paper we explore nonthermal dark matter production in the MSSM, quan-

tifying the extent to which the nonthermal phase changes expectations for inflationary

observables. For nonthermal production, the cross-sections are often larger than typ-

ical for thermal dark matter, increasing the sensitivity of astrophysical searches for

dark matter decay products. In particular, we discuss constraints on the mass of

neutralino dark matter and the allowed contributions to the neutralino mass from

the bino, wino and higgsino.

The paper is organized as follows. In Section 2 we review uncertainties in infla-

tionary observables derived from the unknown post-inflationary equation of state. In

Section 3, we summarize nonthermal dark matter phenomenology and the associated

expansion history. In Section 4, we explore the post-inflationary expansion history

of the universe in an MSSM model with SUSY breaking above the TeV scale, and

show how this is constrained by existing and future constraints from dark matter

experiments. In the final section we conclude.

2.2 CMB Uncertainties from the Post-Inflationary

Expansion

To determine the predictions of a specific inflationary model2 we match the comoving

wavenumber k to the instant it exits the Hubble horizon [50–58]. This occurs when

k = akHk where H and a denote the Hubble parameter and scale factor respectively,

and a subscript k labels values at horizon crossing. We define N , the number of

2We focus on inflation, but our arguments apply to any mechanism which generates perturbations
on super-Hubble scales with a power spectrum whose spectral index in not strictly scale-invariant.
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e-efolds before the end of inflation,

eN(k) ≡ aend

ak
, (2.1)

where aend denotes the scale factor at the end of inflation and rewrite N(k) as

N(k) = ln

(
Hk

Hend

)
− ln

(
k

a0H0

)
+ ln

(
aendHend

a0H0

)
, (2.2)

where (a0H0)−1 is the value of the co-moving Hubble radius today [53]. The first

term in equation (2.2) can be determined for any specific model, while the final

term depends on the post-inflationary expansion history of the universe. We assume

single-field slow-roll inflation for the purposes of illustration and characterize the post-

inflationary expansion by an effective equation of state w. One finds the matching

equation [50]

N(k, w) ' 71.21− ln

(
k

a0H0

)
+

1

4
ln

(
Vk
M4

pl

)
+

1

4
ln

(
Vk
ρend

)
+

1− 3w

12 (1 + w)
ln

(
ρr
ρend

)
,

(2.3)

where ρend is the value of the energy density at the end of inflation, Vk is the inflaton

potential as the kth mode leaves the horizon, and ρr is the energy density at which the

universe is assumed to become thermalized. The first two terms in (2.3) are model

independent. For GUT scale inflation the third term is roughly −10. The fourth

term is typically order unity given that the value of the inflaton potential necessarily

evolves slowly as inflation proceeds. Finally, if the universe thermalizes promptly the

last term is negligible, and we recover the familiar result that 50 . N . 60 for modes

contributing to the CMB.
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If ρ
1/4
end � ρ

1/4
r and w 6= 1/3 then N differs from its benchmark value3 by

∆N =
1− 3w

12(1 + w)
ln

(
ρr
ρend

)
, (2.4)

where ρend = 3Vend/2 for a given potential. If w < 1/3, ∆N is negative, since

ρr < ρend.

The equation of state during the primordial dark age induces uncertainties in

inflationary predictions for the scalar tilt and tensor-to-scalar ratio ns and r. The

uncertainty in ns is clearly associated with the running αs = dns/d ln k and to lowest

order in slow roll [82–84]

∆ns = (ns − 1)

[
− 5

16
r − 3

64

r2

ns − 1

]∣∣∣∣∆N,
∆r = r

[
(ns − 1) +

r

8

]∣∣∣∆N. (2.5)

The resulting fractional uncertainties ∆r/r, ∆ns/|ns− 1| in these observables can be

substantial [51, 53]. In particular, the theoretical uncertainty in ns can be comparable

to the precision with which it is measured by Planck [85]. Our primary focus is the

implications for w and ρr of MSSM scenarios with nonthermal dark matter, which will

lead to tighter predictions for the primordial spectrum of specific inflation models.

2.3 Thermal vs Non-thermal Dark Matter

In the early universe, the density in WIMPs relative to the critical density at freeze-

out is [86]

Ωth
dmh

2 ' 8.63× 10−11

(
mX

g
1/2
∗ 〈σv〉T

)
GeV−2. (2.6)

3In models that make an explicit prediction for ρr we can insert this value into equation (2.3).

If the post-inflationary thermal history is unknown ρ
1/4
r is the energy scale by which thermalization

is required to have occurred [55].
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Figure 2.1: The lefthand timeline represents the thermal history of the early universe
when dark matter is populated in the thermal bath that emerges shortly after after
inflation. The right timeline represents a possible nonthermal history where dark
matter production occurs directly from scalar decay.

where mX is the dark matter particle’s mass, 〈σv〉 is the total thermally averaged

cross-section, g∗ and T are the number of relativistic degrees of freedom and temper-

ature at freeze-out and h is the present Hubble parameter in units of 100 km/s/Mpc.

If the universe is thermalized, freeze-out occurs at Tf ' mX/20 and g∗ ∼ 100, as-

suming the effective number of degrees of freedom is similar to that of the Standard

Model [87]. The abundance simplifies to

Ωth
dmh

2 ' 0.12

(
1.63× 10−26 cm3 s−1

〈σv〉

)
. (2.7)

where we have used GeV−2 · c ' 1.17 × 10−17 cm3/s. WIMPs with typical speeds

(v ' 0.3c) and electroweak cross-sections (≈ 1 pb) yield Ωth
dmh

2 ' 0.12 in agreement

with the data, a coincidence often called the WIMP miracle.

Simple SUSY models with thermal WIMPs are in growing conflict with collider
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data and direct detection experiments [88]. By contrast, nonthermal models posit

that dark matter production occurs at temperatures below standard thermal freeze-

out4 leading to dark matter with novel and unexpected experimental signatures. For

example, if a heavy relic comes to dominate the energy density following inflation and

the dark matter particle is one its decay products, the resulting relic density is still

given by (2.6) but with T = Tr and g∗ = g∗(Tr), the value at the time of reheating

Ωnt
dmh

2 ' 8.60× 10−11

(
mX

g∗(Tr)1/2 〈σv〉 Tr

)
,

' 0.10
( mX

100 GeV

)(10.75

g∗

)1/2(
3× 10−23 cm3 s−1

〈σv〉

)(
10 MeV

Tr

)
(2.8)

The similarity to the thermal freezeout result (2.6) arises because when the WIMPs

are produced from scalar decay they will rapidly annihilate until their number den-

sity reduces to the point where annihilations can no longer occur. This process is

essentially instantaneous (on cosmological time scales) and so this second “freeze-

out” occurs at the reheat temperature Tr (see [64] for a review). Any thermally

produced dark matter is diluted by the increase in entropy during the decay by a

factor of (Tr/Tf )
3. Equation (2.8) demonstrates both the benefits and disadvantages

of nonthermal dark matter. There is no longer a robust relationship between mX

and and freeze-out temperature but there is more flexibility to satisfy the observa-

tional constraint Ωdmh
2 = 0.12, and the possibility of larger annihilation rates. The

extreme case of MeV scale reheating enhances the annihilation rate by three orders

of magnitude, relative to the thermal WIMP case. This would yield larger fluxes in

indirect detection experiments, and modifies design strategies for direct detection and

collider probes. This has led to new model building possibilities for SUSY neutralino

dark matter, many of which are already tightly constrained by PAMELA and FERMI

[69–73].

4If the particles were produced above their freeze-out threshold, they could thermalize via their
mutual interactions.
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There have been several phenomenological studies of nonthermal dark matter over

the years. This option became more attractive when it was realized that in SUSY

based solutions to the hierarchy problem – where gravity is important – the reheat

temperature is not a free parameter, but is fixed by the high energy behavior of the

theory [78, 79]. In combination with tightening collider and dark matter detection

constraints on thermal dark matter there is thus considerable motivation for consid-

ering nonthermal dark matter.

A comparison of the thermal history of the universe for representative thermal and

nonthermal scenarios appears in Figure 1. There are many possible alternatives to a

strictly thermal history, which are generally associated with dark matter production

that occurs at a temperature below that of thermal production, or out of equilibrium.

These can include cosmic histories where there is a second phase of low-scale inflation

(thermal inflation [89]), or if the decay of heavy particles leads to a significant source

of dark matter and entropy production prior to BBN.

2.3.1 Non-thermal DM: A Realization Through Scalar Decay

Many Beyond the Standard Model (BSM) proposals contain scalar degrees of free-

dom beyond the minimal higgs. This is the case in supergravity and string theoretic

approaches to BSM, where the vacuum expectation values of scalar fields determine

the couplings of the low energy theory. However, these fields also lead to the cosmo-

logical moduli problem [90–92] – the fields are displaced from the low-energy minima

in the early universe and undergo coherent oscillations, mimicking a matter domi-

nated epoch5 prior to BBN. The fields typically decay through gravitational strength

couplings, and the universe reheats via the production of relativistic Standard Model

and BSM particles – the lightest of which, if stable, may provide a WIMP candidate.

5This is strictly true only if the mass term in the potential gives the dominant contribution,
otherwise the cosmological scaling of the energy density is determined by the dominant term in the
potential [93].
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For scalars of mass mσ the decay rate typically scales as Γ ∼ m3
σ/M

2
pl and the

corresponding reheat temperature is

Tr '
( mσ

10 TeV

)3/2

MeV. (2.9)

If this temperature is below the thermal freeze-out scale Tf ' mX/20 and the

field dominates the energy density at the time of decay we have a nonthermal dark

matter scenario. Successful BBN and observations of neutrino decoupling require

Tr & 3 MeV [94–97]. For dark matter with a mass not too far above the electroweak

scale, fixing Tr < Tf ∼ mx/20 provides an upper bound

20 TeV . mσ . 104 TeV. (2.10)

To give a specific example6, consider a supersymmetric model with a singlet scalar

field σ with a shift symmetry σ → σ + c where c is a constant, so the potential is

independent of the field, or V (σ) = 0. If this remains a good symmetry until SUSY

breaking and SUSY breaking is mediated by gravitational interactions the resulting

mass is comparable that of the gravitino m3/2. If SUSY addresses the electroweak

hierarchy problem

m3/2 =
Λ2

Mpl

' 0.1− 103 TeV, (2.11)

where Λ is the SUSY breaking scale, the electroweak hierarchy implies Λ ' 1011 −

1012 GeV. Thus, SUSY theories can easily lead to masses in the range given by

equation (2.10). The lower bound of 0.1 TeV is the origin of the term cosmological

moduli problem, as it leads to scalar decay and a reheat temperature in conflict with

the bounds set by BBN and neutrino decoupling. Within the MSSM, such low scales

are already disfavored by LHC data since squarks in this mass range have not been

6The arguments that follow will not rely strongly on the presence of SUSY, and it would seem that
the main ingredients in our argument – the existence of scalars and symmetry breaking associated
with the electroweak scale – could be realized in other approaches to BSM physics.
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detected, pushing up the mass scale of the gravitino.

A shift-symmetric scalar in a fundamental theory – such as supergravity or string

theory – typically has additional geometric factors that lift its mass to larger values.

For Type-IIB flux compactifications the mass is of order mσ ∼ log(Mpl/m3/2)m3/2

[98] if the model accounts for both the electroweak hierarchy and the present-day

vacuum energy. The authors of [78] argued that in supergravity and string frameworks

the mass of a scalar which is stabilized and which meets the above requirements is

typically within the range of equation (2.10), implying a nonthermal history.

In the early universe and during inflation, the shift symmetry is broken by both

the finite energy density of the universe and quantum gravity effects, contributing

a Hubble scale mass and a tower of non-renormalizable operators to the effective

potential,

∆V (σ) = −c1H
2
infσ

2 +
c2

M2
pl

σ6 + . . . , (2.12)

where we expect the couplings c1, c2 ' O(1). During high scale inflation H > mσ

and 〈σ〉 ' Mpl, as opposed to the low-energy minimum 〈σ〉 ' 0 resulting from

SUSY breaking. The displacement from the low energy minima provides the initial

amplitude for the coherently oscillating field σ. The energy density of the coherent

field is

ρσosc(t) =
1

2
m2
σ∆σ2

(
a(tosc)

a(t)

)3

. (2.13)

Coherent oscillations begin as the expansion rate reaches H ' mσ, corresponding to

a temperature

Tosc =

(
π2g∗(Tosc)

90

)−1/4

(mσMpl)
1/2 ' 2.25×1011

(
g∗(Tosc)

200

)−1/4 ( mσ

100 TeV

)1/2

GeV.

(2.14)

The Universe remains effectively matter dominated until the field decays into Stan-

dard Model and SUSY particles when Γσ ' H. For a gravity mediated process, the
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decay rate is

Γσ = c3
m3
σ

M2
pl

, (2.15)

where c3 = 1/(4π) is a typical value. At the time of decay the transfer of energy

from the scalar field to Standard Model and SUSY particles will be instantaneous

compared to the expansion rate and, because the scalar dominates the energy density,

we expect a large yield of dark matter and radiation7. The radiation represents the

relativistic Standard Model particles, whereas the dark matter results from rapid

decays of SUSY particles down to the Lightest SUSY Particle (LSP). Due to the large

production of LSPs, some annihilations take place, and these particles will achieve

kinetic equilibrium quickly by scattering off the relativistic bath of Standard Model

particles.

The reheat temperature of the universe is

Tr =

(
π2g∗
90

)−1/4

(Γσmp)
1/2 ' 20 c

1/2
3

( g∗
10.75

)−1/4 ( mσ

100 TeV

)3/2

MeV. (2.16)

and g∗ ≡ g∗(Tr) = 10.75 if Tr is low. Using this expression and (2.8), we estimate the

relic density in nonthermal dark matter,

Ωnt
dmh

2 ' 8.60× 10−11

(
mX

g
1/2
∗ 〈σv〉 Tr

)
,

' 0.08

(
mX

g
1/4
∗ 〈σv〉 m3/2

σ

)
, (2.17)

which now depends only on the properties of the dark matter (mass and annihilation

rate) and the mass of the decaying scalar resulting from SUSY breaking. As discussed

above, in most models the scalar mass is not a free parameter, but similar to the

gravitino mass m3/2, which is related to the scale of SUSY breaking as Λ2
susy =

7If the decay to SUSY particles was for some reason further suppressed compared to the Standard
Model, amount of dark matter would be set by the corresponding branching ratio and the initial
amount of scalar field condensate. Such a situation is difficult to arrange in practice.
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m3/2Mpl. Thus, the mass of the scalar (and so the relic density of dark matter) is

controlled by the need for SUSY to generate a hierarchy between the electroweak

and Planck scale (i.e. ΛEW ∼ m3/2 � Mpl). With a typical SUSY breaking scale of

Λ = 1011 GeV, corresponding to a gravitino mass of around 4 TeV the resulting relic

density is

Ωnt
dmh

2 ' 0.11
( mX

100 GeV

)(10.75

g∗

)1/4(
3× 10−23cm3s−1

〈σv〉

)(
4 TeV

m3/2

)3/2(
34

k

)3/2

(2.18)

where we have set c3 = 1/(4π), and the ratio between the scalar and gravitino mass

as k = mσ/m3/2 ' log(Mpl/m3/2) – which is only logarithmically sensitive to changes

in the hierarchy. This constant is model dependent and typically between O(1−100).

We have chosen a fiducial value for the annihilation rate that yields roughly the right

amount of dark matter for the hierarchy set by the choice of low-scale SUSY breaking

Λ = 1011 GeV. The cross-section is three orders of magnitude higher than expected

with a thermal history with important experimental consequences, as discussed in

Section 4.

The reheat temperature in this framework is not a free parameter, but a conse-

quence of the hierarchy between the electroweak and Planck scale (determined by

Λ2
susy = m3/2Mpl), which also helps determine the SUSY breaking masses of other

sparticles in the theory. In both supergravity and string motivated approaches, the

key lesson is that the reheat temperature is intimately connected to other aspects of

the theory and not a free and tunable parameter. Given that gravitationally coupled

scalars are generic in high energy completions of the Standard Model and in no sense

exotic, we see that nonthermal histories are a feasible and robust possibility.
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2.3.2 Non-thermal Histories and CMB Observables

For simplicity we assume inflationary (p)reheating was instantaneous (on gravita-

tional time scales) and focus on the oscillations of the scalars, which come to dominate

the energy density, as specified by equation (2.14). Following [50, 51, 53], we make

the substitution ρend → ρσosc = 1
2
m2
σ∆σ2, and use the fact that ρr = (π2/30) g∗(Tr) T

4
r

in equation (2.4) to write the uncertainty in e-folds as

∆N = −0.04 +
1

12
ln

(
g∗(Tr) T

4
r

m2
σ ∆σ2

)
,

= −10.75 +
1

12
ln

[(
g∗(Tr)

10.75

)(
Tr

3 MeV

)4(
100 TeV

mσ

)2(
Mpl

∆σ

)2
]
,(2.19)

where we used w = 0, and the second line expresses the parameters relative to fiducial

values. If scalar decay proceeds via a gravitational strength coupling, equation (2.15)

eliminates the mass dependence in (2.19). With c3 = 1/(4π) we find

∆N = −10.68 +
1

18
ln

[(
g∗(Tr)

10.75

)(
Tr

3 MeV

)4(
Mpl

∆σ

)3
]
. (2.20)

This shift and its effect on physical modes is described qualitatively in Figure 2.2.

We see that ∆N is logarithmically sensitive to changes in parameters, including the

reheat temperature. To generate nonthermal dark matter, the reheat temperature

must typically be below about Tr ' 10 GeV, but above the BBN and neutrino bounds

of about Tr ' 3 MeV. The range of possible temperatures is more than four orders of

magnitude, but (2.20) the corresponding shift in ∆N is−10.68 . ∆N . −8.51. Thus,

for the scenarios considered here we have a relatively robust |∆N | ' 10. Physically,

a more massive field decays earlier while a lighter field decays later, but oscillations

and the corresponding matter dominated phase also begin later as well (as seen from

(2.14)), leading to similar values of ∆N .

The change in inflationary observables is estimated by recalling that for most
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Figure 2.2: Evolution of physical wavelengths as labelled by their inverse wavenumber
k−1
p during inflation (below the x-axis) and during the post-inflationary epoch (above

the x-axis). The solid (blue) line represents the Hubble radius, H−1
r in a Universe

dominated by a radiation fluid w = 1/3, the dashed (red) line is the Hubble radius,
H−1
m in a post-inflationary era dominated by a pressure-less fluid, w = 0. We compare

the evolution of a physical mode k∗ that re-enters at CMB decoupling in the standard
scenario (Radiation → Matter → Dark energy) with a mode k

′
∗ that re-enters at

CMB decoupling in the nonthermal scenario (Matter→ Radiation→ Matter→ Dark
Energy). These modes exit the Hubble radius at different times during inflation,
t∗ and t

′
∗, which translates into a shift in the number of e-folds ∆N = H∆t. The

corresponding shift in the pivot scale or any co-moving mode is given by k′∗ = k∗e
−∆N .
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simple models of inflation, the running of the spectral index αs ≡ dns/d log k is

typically −10−4 & α & −10−3 [53], so ∆ns is between −10−3 and −10−2, relative to

the value seen with instant reheating. The remaining uncertainty in the ns and r is

significantly reduced, since these models predict that the universe is matter dominated

through most of the primordial dark age.

2.4 Constraining Nonthermal Dark Matter

We focus on SUSY neutralinos as the WIMPs, but we expect our conclusions to be

easily extended to other non-SUSY dark matter candidates. The neutralino is an

electrically charge neutral state and linear combination of the superpartners of the

Standard Model B, W 3, and higgses8

χ0 = N10B̃ +N20W̃
3 +N30H̃

0
1 +N40H̃

0
2 , (2.21)

where B̃ and W̃ 3 are the bino and wino, and H̃1,2 are higgsinos. The Ni0’s denote

the amount each component contributes to the neutralino. The neutralino or WIMP

mass is determined by9 diagonalizing a matrix which depends on the masses of the

bino, wino, and higgsino (M1, M2, and µ, respectively), the Weinberg angle θW , and

tan(β) which is the ratio of the vacuum expectation values of the higgs vevs.

When dark matter is composed of thermally produced neutralinos, the neutralino

must be bino-dominated, which causes neutralinos to annihilate less efficiently, gener-

ating the correct relic density of dark matter [99]. However, if the reheat temperature

following scalar decay is below thermal freeze-out, larger annihilation cross-sections

are required. Likewise, because the decaying scalar gets a mass from SUSY breaking

there is a natural relationship between the reheat temperature and the scale of SUSY

breaking, which addresses the hierarchy problem and sets other sparticle masses. The

8The MSSM extension of the Standard Model higgs sector requires two higgs doublets.
9We refer the reader to [99] for more details.
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hierarchy problem requires mσ ∼ m3/2 ∼ TeV, which results in reheat temperatures

below neutralinio freeze-out temperature (Tf ' mX/20), favoring a nonthermal his-

tory. The resulting dark matter density is given by (2.8) as

Ωnt
dmh

2 ' 0.10
( mX

100 GeV

)(10.75

g∗

)1/2(
3× 10−23 cm3 s−1

〈σv〉

)(
10 MeV

Tr

)
,(2.22)

requiring a larger annihilation cross-section. For neutralinos, the larger cross-section

requires a more significant contribution from wino and higgsinos, changing expecta-

tions for colliders, and for direct and indirect detection experiments.

Existing data from these experiments place a lower bound on the reheat tem-

perature. From (2.22), with Planck’s central value Ωdmh
2 ' 0.12 and constraints

from indirect detection on σv and solving for the reheat temperature we arrive at

a minimum value which is typically above the hard lower bound of 3 MeV, further

constraining the equation of state in the primordial dark ages.

2.4.1 Nonthermal Wino-like Neutralinos

The thermally averaged cross-section for the dominantly wino-like neutralino is given

by [77]

〈σv〉 =
g4

2

2πM2
2

(
(1− xW )3/2

(2− xW )2

)
(2.23)

where xW ≡ m2
W/M

2
2 (mW is the mass of the W-boson), g2 ' 0.66 is the SUL(2)

electro-weak gauge coupling (at the weak scale) in the MSSM, M2 is the wino mass,

and we note that the result is independent of the velocity (s-wave channel). From

(2.23), a wino of mass M2 = 100 GeV, the annihilation rate will be around 〈σv〉 =

4.06×10−24 cm3s−1, exceeding the cross-section expected for thermal WIMPs by about

two orders of magnitude. The cosmological constraint (2.22) then requires a reheat

temperature of around 67 MeV. From (2.23) we see that as the wino mass increases,

the corresponding annihilation rate decreases, requiring larger reheat temperatures

via (2.22). At this point it seems that the reheat temperature is a free and tunable
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Figure 2.1: The thermally average annihilation rate 〈σv〉 for a dominantly wino
neutralino to annihilate to a pair of W -bosons, as a function of mass. The Fermi
constraint comes from two years of data from 10 Dwarf spheroidal galaxies [2]. These
results have been obtained using DarkSUSY [3], but the general shape of the curve
is in good agreement with the analytic expression (2.23). For this scan we took the
MSSM parameters to vary over: M2 = 100 GeV to 2 TeV, µ = 100 GeV to 2 TeV,
and tan β = 5 to 50. We applied all LEP2 constraints and color charged particles
were taken to decouple by setting their masses to be above 2 TeV, allowing agreement
with LHC constraints.

parameter. However, additional experimental constraints can be placed on the wino

cross-section through the indirect detection of dark matter.

The wino annihilation rate is s-wave10 so the annihilation rate above remains

relevant for winos in the galaxy today, which are non-relativistic with v ' 10−3c.

Annihilation is dominantly into W-boson pairs, providing a source of anti-protons,

positrons, and gamma rays. Indirect detection measurements constrain the cross-

section, but suffer from a number of astrophysical complications, which includes un-

10We note that annihilations with other light MSSM states (coannihilations) can be crucial when
calculating the relic density [100], and for high mass winos (mX � TeV) Sommerfield enhancement
may also play an important role [101]. However, for the range of masses and temperatures we will
consider (in order to establish a lower bound on the reheat temperature) these effects are negligible.
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Figure 2.2: The thermally average annihilation rate 〈σv〉 for a general neutralino to
annihilate to a pair of W -bosons, with a bino fraction of less than 10%, to realize a
nonthermal history. The constraint from Fermi comes from two years of data from
10 Dwarf spheroidal galaxies [2]. These results have been obtained using DarkSUSY
[3], however the general shape of the upper curve is in good agreement with the
analytic expression (2.23) and the shape of the lower, higgsino curve agrees with the
expectation that 〈σv〉 ∼ 1/µ2. Other parameter choices match those in Figure 2.1.

certainties in the halo profile and propagation models [102]). Therefore, the best

constraints on the wino arguably come from gamma rays as opposed to charged anti-

matter, and we will use bounds from FERMI’s two year data from observations of 10

Dwarf Spheroidal galaxies [2], showing our results for the cross-section in Figure 2.1.

For masses less than roughly 375 GeV the wino annihilation rate is too large, giving

〈σv〉 . 6.13× 10−25 cm3s−1. Using this in the cosmological constraint (2.22) we find

Tr & 696 MeV (where g∗ = 61.75). Finally, the corresponding change in the number

of e-folds from (2.20) is ∆N = −9.37.
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Figure 2.3: The WIMP-nucleon (proton) scattering cross-section as a function of
WIMP mass. For wino-higgsino mixtures we find that most models are excluded by
the Xenon 2011 / 2012 data. For purified WIMPs (dominantly wino or higgsino)
many models escape existing constraints and for models with wino fractions 90% we
must wait until Xenon1T for meaningful constraints to be established. However, for
the dominantly higgsino models many are already disfavored. For this scan we took
the MSSM parameters to vary over: M2 = 100 GeV to 2 TeV, µ = 100 GeV to
2 TeV, and tan β = 5 to 50. We have applied all LEP2 constraints and color charged
particles were taken to decouple by setting their masses to be above 2 TeV – allowing
agreement with LHC constraints.

2.4.2 Neutralino WIMPs: The General Case

Neutralinos can also contain bino and higgsinos in their composition as indicated in

(2.21). We now consider more general neutralinos within the nonthermal framework.

For a large bino contribution to (2.21) the annihilation rate is too small to allow a

nonthermal history. Thus, we restrict the bino fraction to be less than 10% to ensure

that a nonthermal history is realized11. On the other hard, a neutralino with a large

11We refer the reader to [103] for a recent account of the phenomenology of bino-mixed neutralinos
as thermal dark matter and their observational consequences.
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higgsino component is compatible with a nonthermal history. In Figure 2.2 we present

the FERMI constraints on annihilations to W-bosons allowing for this possibility. We

scan the MSSM parameter space using DarkSUSY [3] and present results for around

100, 000 models. We restrict the bino-fraction to be less than 10%, and we take µ and

the wino mass (M2) to range from 100 GeV up to 2 TeV, and tan β between 10− 50.

We reject models that are incompatible with collider data, but properties of neu-

tralino WIMPs are primarily determined by the gaugino masses (M1 and M2), µ and

tan β – see e.g. the recent discussion in [104]. Thus, it is easy to obtain models

consistent with LHC constraints on color charged super-partners. We also require a

126 GeV higgs12. From Figure 2.2, we see that our numeric results agree well with

the analytic expectation that a pure wino annihilation rate should scale as 1/M2
2 (top

curve in Figure 2.2), whereas a pure higgsino would scale as 1/µ2 (bottom curve in

Figure 2.2). Allowing for a higgsino contribution relaxes the bound on the reheat

temperature provided by FERMI – with a pure higgsino being completely uncon-

strained.

We have restricted attention to the W -boson annihilation channel, which is typ-

ically dominant for well-mixed neutralinos, but we find similar constraints for anni-

hilations to other common channels such as bottom quarks. Our key observation is

that indirect detection alone does not put a useful bound on the reheat temperature

when more general neutralinos are considered. However, bounds from direct searches

partially remedy this situation. Recall that a pure wino-like neutralino gives little

direct detection signal, as the WIMP-nucleon interaction is loop suppressed [104] but

for more general neutralinos the situation changes and direct detection experiments

provide meaningful constraints.

Consider the spin independent constraints provided by Xenon100 [106], as well as

future constraints expected from Xenon1T [107]. In Figure 2.3 we use the Xenon 2011

and 2012 null results to constrain the nonthermal neutralino models considered above.

12There are constraints from LHC on light neutralinos, but because we are considering masses
larger than around 100 GeV these constraints are not important here [105].
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Although higgsino mixing relaxed the constraint on the reheat temperature coming

from FERMI, many of these models are then ruled out by Xenon100. As seen in

Figure 2.3, unless the neutralino is purely wino or higgsino, it is typically in tension

with the Xenon100 data. Xenon1T will constrain these models even further, and

would potentially bringing the pure wino into tension if it yields a null result. Thus,

for generically mixed neutralinos, the nonthermal history is in tension with direct

detection data, and for the pure wino the lower bound on the reheat temperature is

696 MeV. The only exception is the pure higgsino, which in the low mass range is

somewhat constrained by direct detection but does allow in some cases for a lower

reheat temperature.

2.5 Conclusion

Current LHC constraints on scalar super-partner masses suggest a new mass scale

m3/2 = Λ2/Mpl around the 10− 100 TeV range. When the MSSM is accompanied by

additional singlets which receive SUSY breaking masses near this scale, this implies a

nonthermal history for the early universe. We have shown that a nonthermal history

modifies the predictions of inflationary models relative to those seen with a thermal

history, and that these changes are comparable to the precision of parameter estimates

made with Planck data.

A caveat to our analysis is provided by the recent work in [104] (see also [100, 108]),

showing that there are certain regions of the neutralino parameter space ‘hidden’ to

direct detection experiments. Although one may expect such points to be atypical, it

has been argued for some time that special relations between parameters (e.g. in the

case of well-tempered neutralinos [100]) may be the only way for SUSY based WIMPs

to survive, given existing collider constraints. We leave a more detailed analysis –

including these subtleties and constraints from spin-dependent interactions – to future

work. In addition, perturbations grow in a matter dominated universe, so density
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inhomogeneities with an initial amplitude of δρ/ρ ∼ 10−5 grow to be of order unity

during the matter dominated phase, a phenomenon also seen in inflationary models

with inefficient reheating [109]. Consequently, there will be large, short wavelength

inhomogeneities in the moduli fields before thermalization, and the impact of this on

their dynamics has not yet been properly explored.

More generally, these preliminary results show that within a complete theory of

particle physics (in this case SUSY), understanding the origin of the present-day

dark matter abundance can constrain the expansion history of the universe during

the primordial dark age, and lead to more precise predictions for the primordial power

spectrum.

Note Added: While this paper was in its final stages we received a draft from

the authors of [110]. In their paper they perform a comprehensive study of the

nonthermal wino, performing a careful analysis which takes into account astrophysical

uncertainties associated with indirect detection and additional data from HESS [111].

In some instances they are able to arrive at more stringent constraints on the wino

self-annihilation cross-section. This should lead to an improvement in the theoretical

priors used for our analysis here and so stronger constraints on inflationary model

building.
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Chapter 3

Split SUSY and the Scale Inflation

3.1 Introduction

Supersymmetry (SUSY) has long been a favorite theoretical framework of physics

beyond the Standard Model (SM). However, given the current null results of all

SUSY searches, if SUSY is realized in Nature, it is unclear at what scale it will

manifest itself. At the moment, theoretical studies of SUSY fall into two broad

catalogues: one direction is to still focus on weak-scale natural SUSY and design

non-trivial structures of flavor and Higgs sectors to evade the direct search constraints

and explain the observed Higgs mass. The other direction is take seriously high-scale

fine-tuned SUSY, in particular, split SUSY, with scalars heavier than gauginos. The

virtues of this approach include simplicity, automatic amelioration of SUSY flavor and

CP problems, preservation of gauge coupling unification and the lightest neutralino

being a dark matter (DM) candidate. The idea of split SUSY, in particular, mini-

split with scalars one-loop factor heavier than gauginos, was actually predicted a

while ago by the simplest version of anomaly mediation [112, 113] (and later by a

wide variety of moduli mediation scenarios [114–119]). Since 2003, split SUSY has

started to be taken as a viable possibility despite the presence of a fine-tuned EWSB

and gained more attention recently given the increasing tension between data and
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naturalness [76, 118–131].

In split SUSY, the high SUSY breaking scale could naturally lead to a heavy un-

stable gravitino. In the mini-split scenario based on anomaly mediation, there is a

loop factor separating the gravitino and gaugino mass scales with gravitino at about

(102−103) TeV and gaugino at the TeV scale. In this scenario, the neutralino DM par-

ticles produced by late-time gravitino decays could not annihilate efficiently and thus

inherit the number density of the gravitinos which adds to its thermal number density.

During the reheating era, the thermal scattering of the SM superpartners contributes

(at least part of) the gravitino primordial relic abundance, which is approximately

proportional to the reheating temperature TR. Consequently the requirement that

the neutralino DM does not overclose the Universe sets an interesting upper bound

on TR as a function of DM mass. This upper bound could be tightened if wino is

(a component of) DM. Indirect detection looking for excesses in the photon con-

tinuum spectrum or a monochromatic photon line sets a strong bound on allowed

wino DM relic abundance for the whole mass range assuming NFW or Einasto DM

profiles [110, 132]. The bound could be relaxed if the Milky Way DM distribution

near the galactic center deviates considerably from the standard DM-only N -body

simulation predications. However, the bound does not necessarily disappear entirely.

For example, even if the Milky Way DM profile has a significant core with a radius

of 1 kpc, light non-thermal wino with mass below 400 GeV as a single-component

DM is excluded [110]. We will present the derivation of the upper bound on TR from

the constraints of the relic abundance of neutralino DM, in particular, wino DM in

Sec. 3.2 and Sec. 3.3.

On the other hand, the discovery of B-mode by the BICEP2 collaboration gives us

some clues of the inflation scale [133]. The observation could be fit by a lensed ΛCDM

plus tensor model with a tensor-to-scalar ratio r = 0.2+0.07
−0.05. Such a large r prefers

large field inflation with a heavy inflaton and very likely a high reheating temperature.

We will present estimates of inflaton mass scale and reheating temperature in Sec. 3.4.
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We find that in the mini-split scenario based on anomaly mediation, TR is bounded

to be at or below 109 − 1010 GeV while the BICEP2 data prefers TR to be around

or above 109 GeV. The BICEP2 result has some tension with the mini-split sce-

nario with a heavy gravitino. In other words, the BICEP2 result favors a splitting

between gravitinos and gauginos larger than the loop factor predicted by anomaly

mediation. Intriguingly, if SUSY breaking is tied up with gravity, e.g., through the

Scherk-Schwarz mechanism, gravitinos could be as heavy as 1013 GeV, which is the

same mass scale of the inflaton inferred from the BICEP2 result while gauginos could

still be light at the TeV scale. The implications for SUSY scales will be discussed in

Sec. 3.5. See Refs. [134–142] for some other recent discussions of implications of the

BICEP2 result for SUSY.

We conclude in Sec. 3.6 and present a discussion of gravitinos from inflaton decays

in the appendix.

3.2 Gravitino and Wino Relic Abundance

In this section, we first review different mechanisms generating the primordial grav-

itino relic abundance in the early Universe. Then we discuss the relic abundance

of wino DM from gravitino decays. Notice that most of the discussions also apply

to other neutralino DM scenarios such as higgsino DM. The main point we want to

emphasize is that: for gravitinos at or below the PeV scale, the neutralino DM relic

abundance has an irreducible non-thermal contribution which scales linearly with the

inflaton reheating temperature TR; in particular, requiring DM relic abundance

not overclose the Universe restricts the reheating temperature to be be-

low (1010 − 109) GeV for DM mass in the range (100 GeV - 1 TeV); for

gravitino much above the PeV scale, the neutralino DM relic abundance is almost

UV insensitive, meaning that it is almost independent of TR.
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3.2.1 Primordial Gravitino Relic Abundance

As a superpartner of the graviton, the gravitino couples to all supermultiplets with

gravitational interaction strength. In an R-parity conserving scenario, an unstable

gravitino always decays to a particle and its superpartner. Decay of a gravitino will

always produce a lightest superparticle (LSP) as all the other produced superparticles

will cascade down to the LSP. The decay width of an unstable gravitino is given by

Γ3/2 ≈ 2.0× 10−23 GeV

(
NG

12

)( m3/2

100 TeV

)3

, (3.1)

where m3/2 is the gravitino mass and NG is the number of degrees of freedom gravitino

decays to. In the split SUSY scenarios with all gauginos lighter than the gravitino

and the squarks heavier than the gravitino, NG = 12.1

There could be several different origins of the primordial gravitino relic abun-

dance, Ω3/2h
2. One comes from scattering processes of MSSM particles in the ther-

mal bath [143–145]. This contribution approximately scales linearly with the inflaton

reheating temperature TR. The higher TR is, the larger the gravitino relic abundance

is. We will use the following approximate formula for the gravitino yield:

Y UV
3/2 ≈

3∑
i=1

yig
2
i (TR) ln

(
ki

gi(TR)

)(
TR

109 GeV

)
, (3.2)

where y1,2,3 = (0.653, 1.604, 4.276) × 10−13, k1,2,3 = 1.266, 1.312, 1.271 and g1,2,3(TR)

are gauge couplings of SM gauge group U(1)Y , SU(2)W , SU(3)c evaluated at TR re-

spectively [143]. The small y’s originate from TR/Mp with Mp the reduced Planck

scale. Compared to the formula given in [143], we neglected a contribution at the

order of (M2
i /m

2
3/2) with Mi the gaugino masses. The yield given in (3.2) leads to a

1The squarks could be lighter than the gravitino in the split SUSY scenarios and then NG is
larger. However, it will not change much our discussions and results.

68



gravitino relic abundance

ΩUV
3/2h

2 ≈ 5.1× 10−2
( m3/2

1 TeV

)( TR
109 GeV

)
, (3.3)

where we evaluated temperature dependent variables in Eq. (3.2) at TR = 109 GeV.

In the numerical evaluation in Sec. 3.3, we include the full temperature dependence.

Another potential important contribution to the gravitino relic abundance comes

from the decays of superpartners that are still in thermal equilibrium with the post-

inflationary thermal bath [146].2 When the temperature of the primordial plasma

drops around the SUSY scalar masses, which we will take to be around the same scale,

decays of the scalars to gravitinos could also generate a potentially non-negligible con-

tribution to the gravitino relic abundance. This is the “freeze-in” mechanism [147].

When the temperature drops below the scalar masses, the number density of SUSY

scalars is suppressed exponentially, e−ms/T and freeze-in stops. The freeze-in con-

tribution is independent of the UV physics, particularly the reheating temperature

TR [148]. The gravitino yield from freeze-in is

Y FI
3/2 '

405

4π4

√
5

2

Mp

g
3/2
∗

∑
i

gi
Γi
m2
i

,

≈ 1.6× 10−16

(
200

g∗

)3/2(
100 TeV

m3/2

)2∑
i

gi

( mi

1000 TeV

)3

, (3.4)

where we approximated g∗(mi) ' gS∗(mi) and Γi = (1/48π)(m5
i /(m

2
3/2M

2
p )) as the

partial decay width of scalar i to the gravitino. Here, gi denotes degrees of freedom

of SUSY scalar i with mass mi. The yield in Eq. (3.4) leads to a gravitino relic

abundance

ΩFI
3/2h

2 ≈ 1.1× 10−2

(
100 TeV

m3/2

)∑
i

gi

( mi

1000 TeV

)3

. (3.5)

It is clear that the gravitino relic abundance Ω3/2h
2 from the freeze-in contribution

2This contribution exists only when ms > m3/2, where ms denotes the SUSY scalar mass.
Besides, the thermal equilibrium requires reheating temperature to be TR > ms.
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is highly sensitive to the scalar superpartner masses mi as it scales as ∼ m3
i .

The total gravitino abundance is just a sum of the thermal scattering (Eq. (3.3))

and freeze-in (Eq. (3.5)) contributions

Ω3/2h
2 = ΩUV

3/2h
2 + ΩFI

3/2h
2. (3.6)

Before ending this section, we want to mention that there could be other model-

dependent sources of primordial gravitino relic abundance. For example, decay of

inflaton itself could also produce a sizable gravitino relic abundance. The contribution

to gravitino relic abundance from inflaton decays depends on the structure of the

dynamical SUSY breaking sector and could be problematic [149, 150]. However, as

discussed in [151, 152], gravitino production from inflaton decay can be suppressed if

there exists a hierarchy between the mass scales of the inflaton and the field whose F -

term VEV breaks SUSY spontaneously. In the discussions below, we will not include

this model dependent contribution. We refer the reader to the Appendix 3.A for more

details of gravitinos from inflaton decays.

3.2.2 Wino Relic Abundance from Gravitino Decays

In this section, we will specify the neutralino DM to be wino yet the discussions hold

for other neutralino DM such as higgsino DM. We will also focus on gravitino with

mass above 10 TeV so that its lifetime is shorter than a second and its decays do not

spoil the successful Big Bang Nucleosynthesis [153].

The relic abundance of wino DM is a sum of the thermal contribution and the

non-thermal contribution from gravitino decays. The non-thermal contribution could

be computed numerically by solving the Boltzmann equations Eq. (2.1) - (2.3) in

Ref [101]. The primordial gravitino relic abundance in Eq. (3.2) and (3.4) discussed in

the previous section is an input to the Boltzmann equations. In solving the Boltzmann
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equations, we took g∗(T ) and g∗,s(T ) from a table in the DarkSUSY code [3].3 As the

Sommerfeld effect becomes important for heavy winos [101, 154, 155], we computed

the temperature-dependent value of 〈σeffv〉 from a preliminary version 1.1 of the

DarkSE code [156], taking into account not only the Sommerfeld effect but also co-

annihilation among different wino species.4 As an input to this code, we have used the

two-loop splitting between the neutral and charged winos from Ref. [157]. For wino

masses of about a TeV and temperatures around a GeV, the Sommerfeld enhancement

can be as large as 3 in 〈σeffv〉.

The non-thermal contribution to wino relic abundance from gravitino decays

changes parametrically when the gravitino mass m3/2 increases. For large gravitino

mass, the wino LSP produced from the gravitino decays can annihilate effectively due

to the high temperature of the plasma at the time of gravitino decay. More specifi-

cally, we find that DM annihilation is efficient for m3/2 & 104 TeV. This can be seen

by estimating the “decay temperature” as in [101]

T3/2 ≡
(

10

g∗(T3/2)π2
M2

plΓ
2
3/2

)1/4

≈ 2.2 GeV

(
75.75

g∗(T3/2)

)1/4
√
NG

12

( m3/2

104 TeV

)3/2

(3.7)

At such high temperature, winos produced from the gravitino decays annihilate

rapidly, reducing the number density nW̃ down to a critical value nc,W̃ ' 3H/ 〈σeffv〉 |T=T3/2

at which winos can no longer annihilate. This critical value nc,W̃ behaves as an at-

tractor in determining relic abundance of wino LSP, making it independent of the

primordial gravitino relic abundance. In this case, the wino relic abundance is given

as

Ω
(a)

W̃
h2 ≈

3mW̃H

〈σeffv〉 s

(
h2

ρc,0/s0

)
, (3.8)

≈ 0.12

(
75.75

g∗(T3/2)

)1/4 ( mW̃

1 TeV

)(1.2× 10−7 GeV−2

〈σeffv〉 (T3/2)

)( m3/2

104TeV

)−3/2

3We keep factors involving ∂ log g∗(s)(T )/∂ log T in the Boltzmann equation for ρrad.
4This version was kindly provided by Andrzej Hryczuk to JF in a previous project.
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where we used Hubble parameter H(T ) = (π2g∗(T )/90)1/2 T 2/Mp, entropy density

s(T ) = (2π2g∗,s(T )/45) T 3. We also assumed g∗ ' gs,∗ for the temperature of interest.

We will present a more precise numerical evaluation in the following section.

For a lighter gravitino within the mass range, 10 TeV < m3/2 < 104 TeV, the

gravitino starts to decay at such a low temperature that the annihilation of wino DM

is ineffective. In this case, almost all the winos produced from gravitino decays survive

and hence, its relic abundance is proportional to the total gravitino abundance.

Ω
(na)

W̃
h2 =

mW̃

m3/2

(
ΩUV

3/2h
2 + ΩFI

3/2h
2
)

(3.9)

≈ 0.12
( mW̃

1 TeV

)[( TR
2× 109 GeV

)
+ 10−3

(
102 TeV

m3/2

)2∑
i

gi

( mi

103 TeV

)3
]
,

where the first(second) term in the square brackets in the second line originates

from decays of gravitino produced by the thermal scattering (freeze-in). We want

to caution the reader that there is no sharp boundary value of m3/2 that separates

the two cases with “effective” and “ineffective” wino annihilations in Eq. (3.8) and

Eq. (3.9). In Sec. 3.3, we will derive more precise bounds by solving the Boltzmann

equations numerically.

From Eq. (3.9), we could see that for gravitino at or below PeV scale as in the mini-

split scenario, to avoid overproduction of DM from gravitino decays, the reheating

temperature has to be below

TR . 2× 109 GeV

(
1 TeV

mW̃

)
, (3.10)

assuming a negligible contribution from freeze-in. This upper bound would only be

pushed even lower if the freeze-in contribution is comparable to or even dominate

over the thermal scattering contribution. Similarly, one could obtain an upper bound
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on the scalar soft mass

ms . 104 TeV
( m3/2

100 TeV

)2/3
(

1 TeV

mW̃

)1/3

. (3.11)

Early discussions of reheating temperature in high-scale SUSY scenario with a decay-

ing gravitino could be found in [80, 158].

3.3 Indirect Detection Constraints

As wino DM has a large annihilation rate, there are strong constraints on its relic

abundance from indirect detection searches looking for its annihilation products [2,

111, 159, 160]. Thus in the wino DM case, one could obtain a stronger upper bound on

the reheating temperature compared to Eq. (3.10) which holds for generic neutralino

DM. In this section, we present a numerical evaluation of the constraints on the

reheating temperature and SUSY scalar mass scale in the scenario with wino as (a

component of) DM.

There are multiple indirect search channels for wino DM [161]. In general DM

indirect detection searches for decay and annihilation products of DM in fluxes of

cosmic rays containing charged particles or photons or neutrinos. We focus on searches

looking for excesses in the photon continuum spectrum of satellite dwarf galaxies [2],

or our galactic center [162] and monochromatic photon line [160, 163].5 A continuum

photon spectrum is generated from either the bremsstrahlung of charged particles or

the hadronic fragmentation of the decay products of W/Z’s in the final state of tree-

level processes χ0χ0 → W+W−/ZZ. The gamma ray lines are generated from DM

annihilation into γγ/γZ. Each photon in the final state carries away energy about

the DM mass.

As demonstrated by Fig. 4 in Ref. [110], the thermal wino relic abundance (com-

puted in [154, 164]) is ruled out by the indirect constraint for mW̃ above 1.5 TeV

5The first paper on the HESS search constraint for wino DM is Ref. [164].
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Figure 3.1: Upper bounds on inflaton reheating temperature TR as a function of wino mass
for m3/2 = 100 TeV (left) and m3/2 = 104 TeV (right). The blue, purple, green curves with
bands around them correspond to constraints from Fermi galactic center continuum, Fermi
line search and HESS line search respectively. The bands are derived by varying parameters
of NFW (Einasto) dark matter profiles in the 2σ range [4]. The burgundy dot-dashed line
corresponds to the upper bound derived from requiring Ω

W̃
h2 = 0.12.

assuming standard cuspy (NFW and Einasto) DM halo profiles. Since the wino relic

abundance is a sum of the thermal contribution and the non-thermal contribution

from gravitino decays, there is room for a non-thermal relic abundance only for wino

with mass below 1.5 TeV.6

We express the constraints on allowed non-thermal ΩW̃h
2 as an upper bound on

the inflaton reheating temperature TR as a function of wino mass for m3/2 = 100 TeV

and 104 TeV in Fig. 3.1. In this figure, we assumed that freeze-in contribution to the

primordial gravitino relic abundance is negligible. As mentioned at the end of last

section, taking into account of the freeze-in contribution will only make the upper

bound stronger.

The left panel of Fig. 3.1 stays almost unmodified for 10 TeV < m3/2 < 104 TeV as

the wino annihilation is ineffective and the relic abundance is independent of m3/2 as

can be seen from the first term in Eq. (3.9). The reheating temperature is bounded

to be below 3 × 109 GeV for the whole wino mass range. For wino mass close to

6There could be different non-thermal scenario such as moduli scenario [77]. The implications of
indirect detection for moduli scenario have been discussed in [110, 165, 166].
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1.5 TeV, the HESS constraint pushes the reheating temperature to be even lower to

about a few times 108 GeV.

In the right panel of Fig. 3.1, the gravitino mass is set to be 104 TeV. In this case,

for light wino with mass below 300 GeV, wino annihilation becomes effective and

its relic abundance is insensitive to the reheating temperature as shown in Eq. (3.8).

Therefore, the upper bound on the inflaton reheating temperature is lifted up entirely.

For heavier wino, the annihilation rate drops with the increasing mass and the wino

relic abundance interpolates between Eq. (3.8) and Eq. (3.9). In the whole wino mass

range, the upper bound on TR is above 109 GeV. For even heavier gravitino, the

bound on TR becomes even weaker.

One could also consider upper bound on the SUSY scalar masses, ms, which is

depicted in Fig. 3.2. In the left panel, we took m3/2 = 100 TeV and TR = 108 GeV

so that the thermal scattering contribution is negligible. Increasing the reheating

temperature will only make the bound even stronger. In this case, indirect detection

constraints restrict the scalar mass to be below (2− 3)× 103 TeV for the whole wino

mass range. In the right panel, we set m3/2 = 104 TeV and TR = 2× 109 GeV. Since

this is the case where wino annihilation becomes more effective, the upper bounds on

the SUSY scalar mass depends less on TR and are reduced significantly compared to

the case with a lighter gravitino. More specifically, for wino above 300 GeV, indirect

detection constraints restrict scalar masses to be below 104−106 TeV. For wino below

300 GeV, the upper bound is almost lifted up entirely.

3.4 Implications of the BICEP2 Result

Recently the BICEP2 collaboration reported a groundbreaking discovery of infla-

tionary gravitational waves in the B-mode power spectrum in the range 30 < l <

150 [133]. The observed B-mode spectrum is well fit by a lensed ΛCDM plus tensor

model with a tensor-to-scalar ratio r = 0.20+0.07
−0.05. Such a large tensor-to-scalar ratio
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Figure 3.2: Upper bounds on scalar mass ms as a function of wino mass for m3/2 =
100 TeV(left) and m3/2 = 104 TeV (right). The blue, purple, green curves with bands
around them correspond to constraints from Fermi galactic center continuum, Fermi line
search and HESS line search respectively. The bands are derived by varying parameters
of NFW (Einasto) dark matter profiles in the 2σ range [4]. The burgundy dot-dashed line
corresponds to the upper bound derived from requiring Ω

W̃
h2 = 0.12.

has a profound implication for the inflation paradigm. Notice that if running of the

spectral index is allowed, the combined Planck and BICEP data could have a different

best fit. In our paper, we will not explore this possibility as we don’t expect r to

change much. We will first review the basics of tensor-to-scalar ratio in the slow-roll

inflation paradigm for completeness in Sec. 3.4.1. Readers who are familiar with this

topic could skip this section. Then we will discuss the implications of BICEP2 result

for the inflation mass scale and reheating temperature in Sec. 3.4.2.

3.4.1 Basics of Tensor-to-Scalar Ratio

We will follow closely Lecture 2 in Ref. [32] in this brief review. In slow-roll inflation

models, the metric perturbation during the inflation period could be decomposed

into scalar and tensor modes, which result in density and gravitational wave fluctu-

ations respectively. Each mode could be characterized by a fluctuation amplitude
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squared [39, 167]

∆2
s(k) =

H4

4π2φ̇2
=

1

12π2M6
p

V 3

V ′2
scalar (3.12)

∆2
t (k) =

2H2

π2M2
p

=
2

3π2

V

M4
p

, tensor (3.13)

where the reduced Planck scale is Mp = 2.4×1018 GeV. It should be understood that

all the physical quantities above are evaluated at horizon crossing k = aH at which

the relevant comoving scales for the CMB exits the Hubble radius. φ̇ is the time

derivative of the inflaton field φ and V
′

is the derivative of the inflaton potential with

respect to φ. In deriving the second expression of the amplitude squared in each line,

we used equation of motion for the inflaton H2 ≈ V/(3M2
p ) and φ̇ ≈ −V ′

/(3H).7

Normalizing the scalar spectrum to the COBE [29] or WMAP [169] anisotropy

measurement gives ∆2
s(k) ≈ 2.2× 10−9. Then one could define tensor-to-scalar ratio

r ≡ ∆2
t (k)/∆2

s(k), which directly measures the inflation energy scale

V ≈ (1.8× 1016 GeV)4
( r

0.1

)
. (3.14)

r also relates directly to the evolution of the inflaton as

r =
8

M2
p

(
dφ

dN

)2

, (3.15)

where differential e-folds dN = Hdt. Then one could write the field displacement

between the time when CMB fluctuations exited the horizon at Ncmb and the end of

7One easy way to understand the appearance of φ̇2 in the scalar perturbation amplitude squared
is through effective field theory (EFT) [168]. The key insight of inflation EFT is that the inflaton
spontaneously breaks time translation invariance and results in a Goldstone mode “eaten” by the
graviton to appear in the scalar modes. Compared to the tensor mode, the kinetic term for the
Goldstone (scalar) mode has an additional factor of Ḣ in the kinetic term, which signals the break
down of EFT in the limit of pure de Sitter space Ḣ = 0. By equation of motion, Ḣ is proportional
to φ̇2 and consequently φ̇2 appear in the denominator of scalar fluctuation amplitude squared.
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inflation at Nend in terms of an integral

∆φ

Mp

=

∫ Ncmb

Nend

dN

√
r

8
. (3.16)

Setting Nend = 0 and given that Ncmb ≈ (40 − 60) and r is approximately constant

during the inflation era, one obtains the famous Lyth bound [170]

∆φ

Mp

≈ 6.7

(
Ncmb

60

)√
r

0.1
. (3.17)

Inspecting Eq. (3.14) and (3.17), one could see immediately that the BICEP2

result points towards a large field displacement of order Planck scale during inflation

or in other words, large field inflation. Existing examples of large-field inflation

include chaotic inflation where a single power term dominates the potential [171, 172]

V (φ) = λpφ
p, (3.18)

and natural inflation with a periodic potential resulting from a shift symmetry the

inflaton enjoys [173]

V (φ) = V0

(
1 + cos

(
φ

f

))
. (3.19)

3.4.2 Implication for Reheating Temperature

Now we want to estimate the inflaton mass scale. We start with a toy model of large

field inflation V = m2
φφ

2. In this model, the scalar fluctuation amplitude squared is

∆2
s(k) =

m2
φ

M2
p

N2
cmb

3π2
, (3.20)
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where Ncmb = φ2
cmb/(4M

2
p ). Given the normalization to the CMB measurement,

∆2
s(k) ≈ 2.2× 10−9, the inflaton mass is

mφ ≈ 1013 GeV

(
60

Ncmb

)2

. (3.21)

One could check in more realistic models such as chaotic inflation and natural inflation

that the inflaton mass scale is around 1013 GeV [134, 174, 175]. One crude estimate

of the inflaton mass in all these large-field inflation model is

m2
φ ∼

V

(∆φ)2
≈
(
2× 1013 GeV

)2
, (3.22)

where we used Eq. (3.14) and (3.17) assuming Ncmb = 60.

After inflation ends, inflaton starts to oscillate around the minimal of the potential.

Its coupling to other particles induce conversion of the inflationary energy into the

SM degrees of freedom. The reheating temperature is then determined by the inflaton

decay width Γφ as

TR =

(
10

g∗(TR)π2

)1/4√
ΓφMp ≈ 0.3

√
ΓφMp, (3.23)

where we took g∗(TR) ≈ 200. The simplest possibility is that inflatons decay through

renormalizable couplings to lighter degrees of freedom. For example, the decay width

is Γφ = y2mφ/(8π) for inflaton coupling to fermions with a Yukawa coupling y. Then

the reheating temperature is

TR ≈ 3× 1011 GeV
( y

10−3

)√ mφ

1013 GeV
. (3.24)

Notice that Yukawa coupling larger than 10−5 only makes sense in supersymmet-

ric scenarios where the one-loop quantum correction does not modify the inflaton

potential much due to a cancelation between fermionic and bosonic contributions.
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If the renormalizable couplings of inflaton to lighter particles are negligible (e.g.,

y < 10−5), it would always decay through Planck-scale suppressed operators. At the

leading order, the inflaton decay width and the corresponding reheating temperature

are

Γφ =
cm3

φ

M2
p

, TR ≈ 5× 109 GeV
√
c
( mφ

1013 GeV

)3/2

, (3.25)

where c is some order one number determined by quantum gravity. From the point

of view of operator analysis, this decay is induced by dimension five operators such

as φFF̃/Mp with F the field strength of SM gauge interaction. In other words, the

BICEP2 results imply a minimal reheating temperature at or above 109 GeV!

One should worry about the caveats of the very simple estimate above. One

question is whether the leading order gravitational couplings through dimension five

operators could be suppressed and the reheating temperature could be even lower.

This could be true if the inflaton is charged under a gauge symmetry (global symmetry

is not respected by quantum gravity) and then dimension five operators are forbidden.

This is an interesting possibility but we will not explore it here further but leave it for

future work. Another concern is that since reheating is a very complicated process (for

a review, see [176]), our simple estimate of a minimal reheating temperature might

be misleading. In particular, there could exist a preheating era in which particles

coupled to the inflaton are resonantly produced by parametric resonance and the

temperature of the plasma could be higher than the reheating temperature. Yet

preheating might make the tension between the upper bound on TR derived in Sec. 3.2

and Sec. 3.3 and the lower bound on TR derived in this section even worse. The

reason is that gravitinos could be over-produced non-thermally during the preheating

era [177–181].8 Nonetheless, it is interesting and important to carry out a thorough

study of preheating/reheating in sound (stringy) inflation models.

8In certain supergravity models, the non-thermal production could be suppressed [182, 183].
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3.5 Implications for SUSY

So far we have demonstrated a (mild) tension between mini-split SUSY with a heavy

unstable gravitino at around the PeV scale and the BICEP2 result. In mini-split

SUSY, the reheating temperature has to be below 109 GeV to avoid overproduction

of DM particles from gravitino decay while the BICEP2 result prefers large-field

inflation with a reheating temperature above 109 GeV. In other words, the BICEP2

results favor a larger splitting between the gravitino and the gauginos than the one-

loop factor if the gauginos are fixed at around the TeV scale. Interestingly, the

requirement that gaugino mass does not exceed the TeV scale constrains

the gravitino mass to be around or below 1013 GeV, which is also the mass

scale of the inflaton implied by BICEP2 ! Below we will review the derivation

of this statement by operator analysis following Refs. [121, 122].

In supergravity, the easiest way to cancel the positive vacuum energy from SUSY

breaking contribution is to have a non-zero VEV of the superpotential. As the super-

potential W carries R-charge 2, its VEV W0 breaks U(1)R symmetry spontaneously.

It also gives a gravitino mass

m3/2 ≈
W0

M2
p

≈ |FX |√
3Mp

, (3.26)

where FX is the F -term VEV of the SUSY breaking spurion X. A non-zero gaugino

mass is generated only when both U(1)R and SUSY are broken. The lowest dimen-

sional operator built out of SUSY breaking spurion X, U(1)R breaking spurion W

and MSSM superfields arise in the Kähler potential

∫
d2θd2θ̄

X†XWWαW
α

M6
∗

, (3.27)

where Wα denotes the MSSM gauge supermultiplet. This operator could be generated

by gravitational loops where M∗ ∼ Mp and gives a minimal contribution to the
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gaugino mass

m1/2 &
|FX |2W0

M6
p

≈
3m3

3/2

M2
p

. (3.28)

Requiring m1/2 at or below TeV leads to m3/2 . 1013 GeV! This large hierarchy

between gravitino and gaugino could be realized in no-scale supergravity which could

arise from the Scherk-Schwarz mechanism [184, 185].

3.6 Conclusions and Outlook

In this paper, we study the implications of DM indirect detection and BICEP2 in the

split SUSY scenario with a heavy unstable gravitino. In the mini-split spectrum with

scalars/gravitinos only one-loop factor above the TeV-scale gauginos, the reheating

temperature has to be low to avoid overproduction of DM particles from gravitino

decays. In particular, we demonstrate that indirect detection requires the reheating

temperature to be below about 109 GeV if the wino is (a component of) DM. On the

other hand, the large tensor-to-scalar ratio observed by BICEP2 favors large-field-

inflation with a reheating temperature around or above 109 GeV. Given this mild

tension and the phenomenological upper bound on the gravitino mass derived by

requiring the gauginos to be at the TeV scale, it is tempting to think more seriously

of the (highly) split SUSY scenario in which inflaton/gravitino are at around 1013 TeV

and gauginos are still at the TeV scale with lightest neutralino being (part of) DM.9

Indeed this picture has recently been discussed in the framework of Intermediate Scale

SUSY [142].

Given the BICEP2 result, it is also interesting to use the scale of inflation to probe

the full range of split SUSY scenarios through observables such as equilateral non-

gaussianity [138]. It will also be of interest to study the implications of the BICEP2

result for baryogenesis. For example, thermal leptogenesis works for a reheating

temperature above 2× 109 GeV [186], which fits well with the BICEP2 result.

9Axion could be the dominant DM component.
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Appendix

3.A Gravitino from Inflaton Decay

In this appendix, we review non-thermal gravitino production from inflaton decays.

In general, decays of inflaton can overproduce gravitinos and subsequent decays can

induce LSP overproduction [149, 150]. Consider the following simple model of SUSY

breaking and inflation [152],

K = |φ|2 + |X|2 + |z|2 − |z|
4

Λ̃2
, (3.29)

W = X

(
g

φn

Mn−2
p

− v2

)
+ µ2z +W0, (3.30)

where z is the SUSY breaking spurion and Λ̃ is the QCD scale of the dynamical SUSY

breaking sector. Here, µ is the SUSY breaking scale related to the F -term VEV of

z through Fz ' −µ2 '
√

3m3/2Mp and W0 is the constant term introduced to cancel

the positive vacuum energy contribution from F-terms.

The scalar potential in supergravity is given by

V = eK/M
2
pl

[
K−1
ij̄

(DiW )(Dj̄W )− 3
|W |2

M2
pl

]
, (3.31)

where Di is the covariant derivative with respect to field i. There is a mass mixing
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between X and z arising from the following terms in the scalar potential above (3.31),

V ⊃
∣∣∣∣Xngφn−1

Mn−2
p

+
φ†W

M2
p

∣∣∣∣2 ≈ mφ〈φ〉µ2

M2
p

Xz† + h.c, (3.32)

where mφ = ng〈φ〉n−1/Mn−2
p .

The operator |z|4/Λ̃ in the Kähler potential induces z decaying into the goldstino

pair (z̃) via

L ⊃
∫
d2θd2θ̄K ∼ −2

F †z

Λ̃2
z†z̃z̃ + h.c, (3.33)

where the decay rate is given by

Γz→z̃z̃ '
1

96π

m5
z

m2
3/2M

2
p

. (3.34)

Since the goldstino is “eaten” by the gravitino via the super-Higgs mechanism, the

decay rate above can be expressed as the decay rate of the inflaton into a pair of

gravitinos via the mass mixing with z:

Γφ→z̃z̃ ∼
(
θ√
2

)2
mφ

mz

Γz→z̃z̃,

∼
(
θ√
2

)2(
mz

mφ

)4 m5
φ

m2
3/2M

2
p

(3.35)

where the mixing angle between inflaton φ and z, θ, is given by
√

3(m3/2〈φ〉)/(mφMp)

for mφ � mz,
√

3(m3/2mφ〈φ〉)/(m2
zMp) for mφ � mz. Therefore, in the case that

mφ � mz, the decay rate (3.35) of inflaton into a pair of gravitino is suppressed by

(mz/mφ)4. If z is only charged under some global symmetry, one could not forbid

operators such as |φ|2z and |φ|2zz in the Kähler potential (3.29). These operators will

always be induced by Planck scale physics as it only respects local symmetries [187].

These operators are dangerous as they would enhance the decay rate of inflaton to

gravitinos by m2
φ/m

2
3/2. Thus in addition to the hierarchy m3/2 � mz � mφ, the

SUSY breaking spurion cannot be a gauge singlet!
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Chapter 4

Non-thermal histories and

Implications for Structure

Formation

4.1 Introduction

Cosmological observations have led to an impressive level of constraint on inflationary

model building. However, the post-inflationary universe prior to Big Bang Nucleosyn-

thesis (BBN) remains elusive. The lack of direct observations at this time is unfor-

tunate, since it is precisely during this epoch that we would hope to probe Beyond

the Standard Model (BSM) physics. Even though direct probes on this cosmic period

are lacking, we can try and establish some aspects of BSM physics by understanding

how new particles and fields may change the expansion history and perhaps alter the

inflationary seeds that led to the growth of structure.

In this paper we investigate non-thermal cosmologies and the effects they can

have on the growth of density perturbations during the cosmic dark ages – the

post-inflationary universe prior to BBN. These non-standard cosmologies (in par-

ticular those associated with high-scale supersymmetry) are motivated by both fun-
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damental theory [64, 78, 79] and experimentally given rising tensions for natural

BSM models [188–192]. Past investigations into the implications of a non-thermal

post-inflationary history on cosmological perturbations have already demonstrated

there can be important consequences for interpreting Cosmic Microwave Background

(CMB) observations and for the restrictions CMB observations place on inflationary

model building [165, 193]. Here we examine in detail the evolution of perturbations

during the non-thermal period and address the question of whether the extra mat-

ter dominated phase predicted by these models can lead to an enhancement in the

growth of structure on small scales. Because sub-Hubble matter perturbations grow

linearly during a matter dominated phase (and only logarithmically during a thermal

/ radiation dominated phase), this suggests a new scale that could prove interesting

for the primordial matter power spectrum. The relevance of this scale for determining

the smallest allowed primordial dark matter (DM) structures depends on the reheat

temperature at the end of the non-thermal phase, as well as on the free streaming

length and kinetic decoupling of the DM. In this paper we address all of these issues

within non-thermal cosmologies and establish in which situations interesting phe-

nomenology may result. In addition to the general consideration, we also investigate

the particular scenario with neutralino DM and heavy moduli in the context of Split

Supersymmetry [76, 120–124, 126, 127].

The paper is organized as follows. In Section 4.2 we present a brief review of

non-thermal cosmologies and establish the background evolution. In Section 4.3 we

present a general discussion of the evolution of cosmological perturbations in these

non-thermal cosmologies. We discuss in detail how the extra matter dominated phase

can alter both sub-Hubble and super-Hubble matter and radiation perturbations dur-

ing this time. We also discuss the different production mechanisms for DM in non-

thermal cosmologies and how this relates to expectations for whether structure should

be enhanced or suppressed. One key result from this section is the emergence of a

new scale associated with the Hubble radius at the end of the non-thermal phase,
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which suggests a new possible minimal scale for the smallest allowed primordial DM

structures. In Section 4.4 we compare this scale with other important effects for re-

moving DM structure on small scales, namely the effects of free streaming and kinetic

decoupling. Within our discussion we also discuss how the scalar decay at the end

of the non-thermal history can lead to a free-streaming effect that must be taken

into account when establishing the relevant scale for the smallest substructures. In

Section 4.5 we consider neutralino DM in the moduli scenario and discuss whether

an enhanced growth of small scale structure is a natural expectation in this scenario.

In Section 4.6 we conclude and relegate more technical details of our analysis to the

appendices.

We note that some of our results have overlap with existing papers found in

the literature. Many of our results in the perturbation analysis have overlap with

that of Erickcek and Sigurdson in [194]. However, we have included the effect of

DM annihilations and considered a broader class of non-thermal cosmologies – as we

discuss in Section 4.2. We will also emphasize that after reheating, the scattering

of DM off radiation could couple DM to radiation and thus wipe out the matter

perturbation growth. In summary, we consider the effect of interactions between DM

particles and between DM and radiation, which are generally non-negligible in well-

motivated particle DM models. We also try to emphasize closely the connection to

the microscopic parameters of the underlying theory, which helps to establish which

parameter regions prove most relevant. For our considerations of SUSY neutralinos

in Section 4.5 we note the work of Arcadi and Ullio in [195] where they considered

strictly wino DM in the context of the G2-MSSM.

4.2 Non-thermal Cosmologies

In this section we begin by reviewing non-thermal cosmologies and their implications

for the primordial DM abundance. We then present the background equations to
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model the non-thermal epoch, to be followed in the next section with a study of the

perturbations.

There are two assumptions leading to a non-thermal history following inflationary

reheating; the existence of shift symmetric scalars (or moduli), and both high and

low energy sources that break that symmetry. The former is a generic expectation

of BSM physics, whereas low-scale symmetry breaking is motivated by the hierarchy

problem and inflation provides a gravity mediated source of breaking at the high

scale1 [64, 78]. Given these assumptions the scalar will typically be displaced from its

low energy minimum and its oscillations can lead to an effectively matter dominated

universe (see e.g. [79] and references within). For moduli with masses around 100 TeV

and which decay through gravitationally suppressed couplings, this will lead to a late

stage of reheating shortly before the time of BBN [79]. Since oscillations begin roughly

when H ∼ mσ ∼ 100 TeV, this implies a long period of matter domination prior to

BBN and a modification to the usually assumed radiation dominated post-inflationary

universe.

Depending on the specifics of the non-thermal history (the exact couplings and

masses of the fields) there are a few possible predictions for the primordial origin of

DM. If the energy density of oscillations remains subdominant compared to radiation,

this can lead to interesting cosmological predictions [193], but the cosmic evolution

will remain thermal. This will not lead to any change in the growth of structure, so for

the remainder of the paper we will assume this is not the case. Moreover, top-down

approaches to model building typically imply that the moduli will come to dominate

the energy density almost immediately following the onset of oscillations [79]. Given

that the moduli dominate at the time of decay, this implies a large generation of

entropy and so any previous DM abundance will be diluted.

1In fact, further motivation is provided by inflation itself, where a shift symmetry for the inflaton
is not enough to obtain adequate inflation, but one must introduce an additional symmetry (such as
SUSY) to protect the flatness of the potential against corrections. In the SUSY case, this leads to
an additional scalar playing the same role as the moduli that we are discussing here (see e.g. [138]).
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This leads to the following possible cases [62]:

• Branching Scenario: In this case the moduli decay into radiation (standard

model particles) and DM particles with no DM annihilations occurring during

the process. The final abundance of DM will then be the (diluted) primordial

amount ∼ Ω
(0)
χ (Tr/Tf )

3 where Tr and Tf are the reheat and freeze-out temper-

atures, respectively (Tr < Tf ), and the decays can lead to a non-thermal source

of DM ΩNT
χ ∼ Bχρσmχ/(mσρc) where Bχ is the branching ratio, ρσ ∼ H2M2

pl

is the energy density of the moduli at decay, ρc ∼ H2
0M

2
pl is the critical density

today, and mχ and mσ are the masses of the DM and the moduli, respectively.

Within this scenario there is the possibility that the branching ratio could be

negligible (Bχ ' 0) and so all of the DM is produced during freeze-out be-

fore decay2. Requiring that the non-thermal production provides all of the DM

today leads to the constraint [62]

Bχ = 6.4× 10−8

(
5 MeV

Tr

)(
10.75

g∗s

)1/3

, (4.1)

which we see is quite suppressed for low reheat temperatures.

• Annihilation Scenario: In this case when the DM is produced from the moduli

decay, the abundance results in enough DM so that rapid self annihilations of

the DM is possible. In this case one typically finds that the abundance of DM

is primarily of non-thermal origin and the amount of DM today is then ΩNT
χ ∼

Ωstd
χ (Tf/Tr). That is, because of the annihilations the abundance is related

to the standard thermal result Ωstd
χ except that the freeze-out temperature is

replaced by the reheating temperature. Requiring that this provides the totality

of DM today forces a relationship between the reheat temperature and DM

annihilation cross-section (see e.g. [110]). For a reheat temperature around

2In this case the freeze-out process can actually occur during the matter dominated phase. This
leads to a slightly more involved calculation (e.g. modified freeze-out temperature) than we have
presented here [62], however the differences will be irrelevant for our analysis in this paper.
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5 MeV this results in an enhanced DM interaction rate 〈σv〉 ∼ 10−23 cm3s−1

implying the possibility of interesting predictions for the indirect detection of

DM [110, 132, 161].

Given these two possible scenarios we next consider the evolution of the cosmo-

logical background. We note that in [194] the authors only considered the ‘branching

scenario’ where DM annihilations are negligible. Here we extend their analysis to

consider both cases, noting that motivation from fundamental theory so far seems to

favor the ‘annihilation scenario’.

4.2.1 Background Evolution

The treatment of the background equations has appeared in many places in the past,

and we find our results to be in close agreement with those of [196]. We are interested

in the background evolution following the end of inflationary reheating, assuming a

high-scale model of inflation with reheating temperatures near the GUT scale. Once

the expansion rate becomes comparable to the moduli mass, coherent oscillations of

the scalar will lead to a matter dominated phase. Within this regime we can describe

the cosmological background as a system of three interacting fluids as

ρ̇σ = −3Hρσ − Γσρσ, (4.2)

ρ̇r = −4Hρr + (1−Bχ)Γσρσ +
〈σv〉
mχ

[
ρ2
χ − ρ2

χ,eq

]
, (4.3)

ρ̇χ = −3Hρχ +BχΓσρσ −
〈σv〉
mχ

[
ρ2
χ − ρ2

χ,eq

]
, (4.4)

where Γσ ∼ (m3
σ/M

2
pl) is the decay rate of the scalar with Mpl = 2.44 × 1018 GeV

the reduced Planck mass, 〈σv〉 is the self annihilation cross section of DM particles

with mass mχ and Bχ is the branching ratio for scalar to decay to DM. We assume all

other decays result in relativistic particles. We will be interested in the non-relativistic

regime of DM where T � mχ and so we can neglect the equilibrium density terms
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ρ2
χ,eq ∼ e−mχ/T in (4.3) and (4.4) . The temperature is related to the radiation energy

density as ρr = (π2 g∗/30) T 4, and we take care to track the non-standard relation

between the temperature and expansion rate during the entropy production within

the matter (moduli) dominated phase [196].

The Hubble and Friedmann equations are

3H2M2
pl =

∑
α

ρα, (4.5)

2ḢM2
pl = −

∑
α

(ρα + pα), (4.6)

where α runs over the values α = {σ, r, χ} for each fluid and dot denotes differentiation

with respect to cosmological time t. Instead of working with time it is convenient

to express the equations in the number of e-folds, Hdt = dN = d(ln a), so that the

dynamical equations (4.2)-(4.4) and (4.6) become

dρσ
dN

= −3ρσ −
Γσ
H
ρσ, (4.7)

dρχ
dN

= −3ρχ +Bχ
Γσ
H
ρσ −

〈σv〉
mχH

ρ2
χ, (4.8)

dρr
dN

= −4ρr + (1−Bχ)
Γσ
H
ρσ +

〈σv〉
mχH

ρ2
χ, (4.9)

dH

dN
= − 1

2HM2
pl

(ρσ + ρχ +
4

3
ρr), (4.10)

subject to the energy constraint (4.5).

We begin studying the behavior of the system well within the matter dominated

phase resulting from the coherent oscillations of the moduli, i.e. t ∼ H−1 � m−1
σ .

Moduli decays into both DM (which is by this time non-relativistic) and radiation do

not significantly reduce the abundance of moduli until the time of decay td ∼ H−1 '

Γ−1
σ , however the decays do affect the scaling behavior as discussed in e.g. [196].

Indeed, we find that prior to reheating the moduli evolve as expected but that the
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DM and radiation scale differently

ρσ(N) ' ρ(0)
σ e−3N , (4.11)

ρχ(N) = ρ(0)
χ e−3N/2, (4.12)

ρr(N) = ρ(0)
r e−3N/2, (4.13)

where we choose initial values so that ρ
(0)
χ , ρ

(0)
r � ρ

(0)
σ and DM will be primarily of non-

thermal origin3. The scaling behavior in (4.12) and (4.13) is similar to the case studied

recently in [194], where the annihilations of DM were not taken into account. However,

(as we have checked numerically) the behavior here is due to a near cancelation

between the decay and annihilation terms on the right hand side of equations (4.8)

and (4.9), which allows the DM density to track quasi-static equilibrium [148, 195]

and so it dilutes more slowly than the standard ∼ 1/a3 as seen in (4.12). This

characterizes the behavior of the system until near H−1 ∼ Γ−1
σ when the decays

become significant enough to reduce the scalar abundance. The evolution during this

time is described well by the sudden decay approximation, and given a large enough

yield of DM rapid annihilations will occur – see [64] for more details.

The dynamics of the entire system is easily solved numerically, and the evolution of

the background energy densities as a fraction of total ρ = ρσ+ρr+ρχ for two different

non-thermal cosmologies is presented in Figure 4.1. For both sets of parameters the

DM and radiation is found to evolve as ∼ e−3N/2 ∼ a−3/2, until the time of reheating

at H−1 ∼ Γ−1
σ . Then, the scalar energy density becomes exponentially suppressed,

ρσ ∼ e−2Γσ/3H(N) and most of the energy density deposited in the coherent scalar

oscillations will be transferred to radiation and DM fluids in a very short time interval

as seen in both figures above. The sudden decay will increase the DM density to a

critical value such that DM annihilations terms in (4.8) will be more important than

the Hubble expansion terms, resulting in rapid annihilations of DM into radiation

3In explicitly constructed models with moduli and TeV scale (gravity or anomaly mediated)
SUSY breaking this is typically found to be the case – see e.g. [79].
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Figure 4.1: Evolution of the logarithm of normalized energy densities (as discussed
in the text), log(ρα/ρ) for two different non-thermal cosmologies. In both figures
we take mχ = 500 GeV, Bχ = 1/3, g∗ = 30, and 〈σv〉 = 3 × 10−8 GeV−2. On
the left we chose an initial dimensionless decay rate Γσ/H0 ' 2 × 10−7 and the
moduli mass mσ = 106 GeV. On the left the universe becomes radiation dominated
at Nrh ' 10.6 and the reheat temperature is Tr ' 707 MeV. Whereas on the right
we have Γσ/H0 = 0.5 × 10−12 and mσ = 105 GeV, with Nrh ' 19 at reheating and
Tr ' 22 MeV.

until these two terms balance each other. On the other hand, DM pair annihilations

do not have an observable effect on the radiation fluid due to the large hierarchy

between the energy densities of these fluids at reheating. Once all the energy in scalar

oscillations is transferred into DM and radiation, all the source terms in background

equations are negligible and the fluids evolve as ρr ∼ e−4N and ρχ ∼ e−3N . Given

both an analytic and numeric description of the system we now turn to a study of

the evolution of cosmological perturbations.

4.3 Cosmological Perturbations

The evolution equations for the scalar perturbations can be derived by perturbing

covariant versions of the background equations presented in Section 4.2 – details

appear in Appendix 4.A. Consistent with our analysis in that section, we will drop

terms the equilibrium terms ρχ,eq in equations (4.16)-(4.18) focusing on the evolution
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after DM has become non-relativistic. We work in longitudinal gauge where the scalar

metric perturbations are

ds2 = − (1 + 2Φ) dt2 + a(t)2 (1− 2Ψ) δijdx
idxj. (4.14)

In the absence of anisotropic stress for the fluid sources we have Φ = Ψ and working

in momentum space (and suppressing the wave number) the time-time component of

the perturbed Einstein equation is

(
k2

3a2H2
+ 1

)
Φ + Φ′ = − 1

6H2M2
pl

∑
α

δρα, (4.15)

where prime denotes derivatives with respect to number of e-folds and δρα is scalar

density perturbation for each fluid. Introducing fractional density perturbations δα ≡

δρα/ρα and re-defining the velocity perturbation for each fluid as θα = a−1∇2vα, the

continuity equations in momentum space are given by

δ′σ +
θσ
aH
− 3Φ′ = −Γσ

H
Φ,

δ′χ +
θχ
aH
− 3Φ′ = Bχ

Γσ
H

(
ρσ
ρχ

)
[δσ − δχ + Φ]− 〈σv〉ρχ

mχH
[δχ + Φ] , (4.16)

δ′r +
4

3

θr
aH
− 4Φ′ = (1−Bχ)

Γσ
H

(
ρσ
ρr

)
[δσ − δr + Φ] +

〈σv〉ρχ
mχH

(
ρχ
ρr

)
[2δχ − δr + Φ] ,

Similarly, the equations for velocity perturbations are

θ′σ + θσ −
k2

aH
Φ = 0,

θ′χ + θχ −
k2

aH
Φ = Bχ

Γσ
H

(
ρσ
ρχ

)
[θσ − θχ] , (4.17)

θ′r −
k2

aH

(
δr
4

+ Φ

)
= (1−Bχ)

Γσ
H

(
ρσ
ρr

)[
3

4
θσ − θr

]
+
〈σv〉ρχ
mχH

(
ρχ
ρr

)[
3

4
θχ − θr

]
.

In deriving the equations in (4.16) and (4.17), we have assumed each fluid has a

definite equation of state with pα = wαρα which also implies δpα = c2
s,αδρα with
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c2
s,χ = c2

s,σ = 0, c2
s,r = 1/3. The set of differential equations in (4.16) and (4.17) can

be closed by using the perturbed Einstein equation (4.15).

4.3.1 Initial Conditions

In order to calculate the evolution of perturbations we need to specify initial condi-

tions. We set these initial conditions are well after the scalar dominated era has begun

and when all modes of interest are super-Hubble, k/aH → 0. Given the multiple fluid

setup and the presence of decays, one concern may be a substantial contribution to

an isocurvature component that could then be in conflict with CMB observations

[197]. However, here we will be interested in the case when the modulus completely

dominates the energy density before decay, and so any existing isocurvature carried

by the moduli will be eliminated as the moduli evolve to dominate – see [193] and

references within. Moreover, any DM or radiation that exists prior to moduli domina-

tion is found to be insignificant compared to that coming from decay, and so this does

not lead to a constraint from observations4. We elaborate on the role of isocurvature

in Appendix B, but given these considerations we are interested in strictly adiabatic

initial conditions for the multi-fluid perturbations so that

δρ
(0)
α

ρ′α
=
δρ

(0)
β

ρ′β
. (4.18)

Using the background fluid equations (4.7)-(4.9) with the ansatz (4.11)-(4.13) and

remembering that during scalar domination Γσ/H � 1, from (4.18) we obtained the

following relation for fluid perturbations

δ(0)
σ = 2δ(0)

χ = 2δ(0)
r . (4.19)

4In fact, it was found in [193] that the interesting case corresponds to when the modulus does
not completely dominate, and even then it was demonstrated that the importance of isocurvature
constraints depends sensitively on the theoretical priors of the model.
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This relation differs from the standard relation (δ
(0)
χ = (3/4)δ

(0)
r ) due to the presence

of decays and entropy production. Taking the super-horizon limit k/aH → 0 of (4.15)

in a scalar dominated universe ρσ � ρr, ρχ, we have

Φ ' − 1

6H2M2
pl

ρσδσ, (4.20)

where we used that the gravitational potential Φ is conserved on super-Hubble scales.

Since ρσ ' 3H2M2
pl during scalar domination (4.20) implies the following initial con-

dition for long wavelength gravitational perturbations δ
(0)
σ = −2Φ0 and it follows from

(4.18) that δ
(0)
χ = δ

(0)
r = −Φ0. Finally, because scalar velocity perturbations quickly

decay outside of the Hubble radius, we will set their initial value to vanish on large

scales when solving the set of equations in (4.17).

4.3.2 Evolution of the Perturbations during Moduli Domi-

nation

In this section, we examine the evolution of the perturbations for modes that enter

the Hubble radius during moduli domination. We note that these modes will be

small compared to the size of the horizon at reheating, k−1 < k−1
rh , and thus it will

be important for determining the growth of structure at that time. Our results for

this part of the analysis are in general agreement with [194], but here we will include

the effect of annihilation terms on the evolution of the perturbations. Moreover, we

emphasize again that our primary interest is in examining the consequences of Split-

SUSY motivated phenomenology. Thus, we have in mind electroweak scale dark

matter ∼ 100 GeV, whereas the moduli masses can be parametrically higher.

Moduli Perturbations

We have seen that moduli domination leads to an effectively matter dominated uni-

verse, and so the gravitational potential Φ will be constant on both super and sub-
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Hubble scales (neglecting the second decaying mode) [198]. Therefore, we can set

Φ = Φ0 during the scalar dominated era for both super and sub-Hubble scales. Using

this, we can rewrite the first line of (4.17) as

θ′σ + θσ =
k2

H0

Φ0e
N/2, (4.21)

where we used H = H0 e
−3N/2 in a matter dominated Universe. This equation can be

solved to give the behavior for all wavelengths, concentrating on the growing mode

we have

θσ(k,N) =
2

3

k2

H0

Φ0e
N/2, (4.22)

which confirms that long wavelength vector modes are unimportant. From (4.22), we

can derive the evolution of the scalar perturbation δσ during the scalar dominated era

subject to the initial condition δ
(0)
σ = −2Φ0. Noting that until the time of reheating

we have Γσ/H � 1 and Φ is constant, we can rewrite the first line of (4.16) as

δ′σ(k,N) ' − θσ
H0

eN/2 (4.23)

and using the result in (4.22), we integrate (4.23) to find

δσ(k,N) ' −2Φ0 −
2

3

k2

H2
0

Φ0e
N , (4.24)

which is again valid on all scales.

Dark Matter and Radiation Perturbations

In the absence of the terms on the right hand side of the fluid perturbation equations

(4.16)-(4.18) the perturbations would just evolve as expected in a matter dominated

universe. However, these additional terms will be important during the period of

scalar domination and solutions for the complete system can be found by noting that

the background dependent quantities on the right hand side of these equations are

97



time independent constants. This can be seen by using the background solutions

(4.11) - (4.13) to determine the coefficients on the right hand side of (4.16) which

scale as

Bχ
Γσ
H

(
ρσ
ρχ

)
−→ Bχ

Γσ
H0

(
ρ

(0)
σ

ρ
(0)
χ

)
≡ A1, (4.25)

〈σv〉
mχH

ρχ −→
〈σv〉
mχH0

ρ(0)
χ ≡ A2. (4.26)

where have used that H = H0 e
−3N/2 during the scalar dominated epoch and A1

and A2 are constants. While for density perturbations of radiation, from (4.17) and

(4.18) we again find that the scaling cancels and the coefficients are determined by

their initial values,

(1−Bχ)
Γσ
H

(
ρσ
ρr

)
−→ (1−Bχ)

Γσ
H0

(
ρ

(0)
σ

ρ
(0)
r

)
≡ A3, (4.27)

〈σv〉
mχH

(
ρχ
ρr

)
ρχ −→

〈σv〉
mχH0

(
ρ

(0)
χ

ρ
(0)
r

)
ρ(0)
χ ≡ A4. (4.28)

Using this information and selecting a range of initial values motivated from SUSY

model building we find that the annihilation and decay terms are of comparable

importance. We can first solve for the DM perturbations. The velocity perturbations

of the DM fluid during scalar domination can be found by using (4.22) in (4.17),

θ′χ + (1 + A1)θχ = (1 +
2A1

3
)
k2

H0

Φ0e
N/2. (4.29)

Integrating (4.29), we find

θχ(k,N) =
2

3

k2

H0

Φ0e
N/2. (4.30)
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Similarly, using (4.24) and (4.30) in (4.16) and remembering that the background

coefficients are constants we have

δ′χ + (A1 + A2)δχ = −(A1 + A2)Φ0 −
2

3
(1 + A1)

k2

H2
0

Φ0e
N . (4.31)

Integrating the above equation gives

δχ(k,N) = −Φ0 −
2

3

(
1 + A1

1 + A1 + A2

)
k2

H2
0

Φ0e
N , (4.32)

which again is valid on both super-Hubble and sub-Hubble scales, and we have used

the initial conditions δ
(0)
σ = 2δ

(0)
χ = −2Φ0.

Given the solutions for the scalar field and DM perturbations we can solve for the

radiation fluid perturbations. Using the solutions (4.22), (4.24), (4.30), and (4.32) in

(4.18) and (4.17) we have

θ′r −
k2

4H0

e
N
2 δr + Aθr =

(
1 +

A

2

)
k2

H0

e
N
2 Φ0, (4.33)

δ′r +
4

3H0

e
N
2 θr + Aδr = −AΦ0 − α

k2

H2
0

eNΦ0, (4.34)

where we defined A ≡ A3 + A4 and

α =
2

3

(
A1A3 + 2A1A4 + A2A3 + 2A4 + A3

1 + A1 + A2

)
, (4.35)

Differentiating (4.34), using (4.33) to eliminate θ′r and (4.34) to eliminate θr in

the result, we have

δ′′r +

(
2A− 1

2

)
δ′r +

(
A2 − A

2
+

k2

3H2
0

eN
)
δr = S(N), (4.36)
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where the source term is given by

S(N) ≡ −
(
A2 − A

2

)
Φ0 −

(
α

2
(2A+ 1) +

2

3
(A+ 2)

)
k2

H2
0

Φ0e
N . (4.37)

In the absence of decays and annihilations (corresponding to A = α = 0 above)

the exact solution to (4.36) can be easily found for all scales

δr = −4Φ0 + 3Φ0 cos

(
2k√
3H0

(eN/2 − 1)

)
. (4.38)

The modes are initial taken to be super-Hubble and have constant amplitude. As

they pass through the Hubble scale, they begin to oscillate with fixed amplitude and

rapidly increasing frequency as can be seen in Figure 4.1. The maximum amplitude

of |δmaxr | = 7Φ0 is reached when the lone source term in (4.37) is in phase with

the oscillations resulting from the homogenous solution. There are two important

differences when the scalar decay and DM annihilations are included (i.e. A 6= 0) as

can be seen from (4.36). Firstly, we see that if A > 1/4 the homogeneous equation

(with S(N) = 0) becomes that of a damped oscillator. This damping is the result of

radiation being pumped into the system from decays of the scalar, as well as from DM

annihilations. The exact amount of damping depends on the relative abundances of

the different fluids, the branching ratios, decay rate, and annihilation rate all given by

(4.27) and (4.28). For typical initial values of radiation and DM, as well as decay rates

and branching ratios as required by a successful SUSY non-thermal DM scenario, we

find that typically A > 1/4 and the oscillations in the scalar dominated phase will

be over damped. A comparison of this situation as compared with the case where

annihilations and decays are absent is presented in Figure 4.1. A second important

effect resulting from decays and annihilations is that this provides additional source

terms in (4.37), which act to boost the amplitude of the density perturbations. As

can be seen from (4.36) and (4.37), unlike the A = 0 case, the first two source

terms in (4.37) will lead to an immediate boost to the perturbation as it enters the
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Figure 4.1: Evolution of the density perturbations in radiation fluid for modes with
k/H0 = 0.1 and for different rates of decay and annihilation. The bottom blue curve
corresponds to the evolution of radiation perturbations in the absence of scalar decay
and annihilation terms in a “matter” dominated Universe, whereas green and red
curves shows the evolution with enhanced decay and annihilations. Particularly, the
values of A and α for the red curve is implied by SUSY model building.

Hubble radius. The enhancement of the amplitude is again controlled by the decay

and annihilation rates given by (4.27) and (4.28). In addition, although these new

source terms with A 6= 0 provide additional enhancement, for typical values of the

parameters the damping overcomes this effect before one oscillation can complete as

can again be seen in Figure 4.1.

Saturation of the radiation density perturbation at late times in the presence of

decays and annihilations (A 6= 0) can be also understood considering the first order

equations (4.33) and (4.34). As we mentioned before, upon horizon entry the radiation

density perturbation gets a kick and grows considerably. From (4.33), this growth

began to contribute as an additional source for the velocity perturbation, causing

a spatial dispersion of the radiation fluid. As the radiation velocity perturbation

grows, this slows down the growth of radiation density perturbation through (4.34).

101



Eventually, the growth in the velocity perturbation will balance the source terms in

(4.34) and saturate the growth in the radiation perturbation, giving that the radiation

density perturbation is constant. For the full solutions of the radiation velocity and

density perturbations during scalar decay we refer the reader to the Appendix C

where we provide exact solutions using Green’s function methods.

To summarize, in this section we have derived the analytic solutions for the DM

and radiation perturbations during the scalar dominated epoch prior to reheating5.

Note that the solutions we found are valid on all scales and the behavior of pertur-

bations in different regimes can be inferred by considering the limits k/aH � 1 or

k/aH � 1. In the next section we consider the evolution of perturbations by focus-

ing on the reheating era during which the decay term for the scalar will significantly

influence the evolution of the cosmological background.

Evolution of Perturbations through Reheating

Thus far we have neglected the effect of decays on the moduli energy density ρσ

and so also the effect on the Hubble expansion. We find that this approximation

will remain valid until a time near td ∼ H−1
d ∼ Γ−1 (or in e-folds 0 < N < Nrh). As

mentioned above, this effective matter dominated phase is what allowed us to simplify

the background dependent source terms in (4.16), (4.17), (4.17) and (4.18) (due to

the scaling in (4.25) – (4.28)). However, as the scalar decays become important the

constant scaling is no longer valid and the evolution of these terms must be considered.

In this regime we perform the analysis numerically with our results appearing in

Figures 3 and 4. We now discuss the behavior of these solutions and their connection

to the perturbation equations.

First we consider the behavior of the radiation perturbations, which is given in

5We have seen that decay of the scalar to radiation and DM is important (e.g. it changes the
scaling of both radiation and DM), however the energy density of the scalar field is only reduced
appreciably near the time of ‘reheating’ trh ∼ H−1 ∼ Γ−1σ as usually assumed in models of instant
reheating.
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Figure 4.2: Evolution of normalized radiation density contrast, |δr|/Φ0, velocity
perturbation θr/(H0Φ0) and gravitational potential Φ/Φ0 for the modes k/H0 =
0.1 (Left), k/H0 = 0.04 (Right). These modes enters the horizon at Nh =
ln (k/H0)−2 ' 4.6 (Left), Nh = ln (k/H0)−2 ' 6.4 (Right). In this non-thermal
cosmology the universe is effectively matter dominated until Nrh ' 10.6 e-foldings af-
ter which the universe becomes radiation dominated. Well after reheating, the density
perturbation oscillates with an amplitudeAδr ' 0.0005Φ0 (Left), Aδr ' 1.7Φ0 (Right).
For these modes, the ratio of the size of the comoving horizon k−1

rh at the time
of reheating to the size k−1 of the fluctuation is given by, k/krh ' 20 (Left) and
k/krh ' 8 (Right).

Figure 4.2. In the figure we show the evolution for two different modes with k/krh = 20

and k/krh = 8, where k−1
rh = 1/(arhHrh) is the size of the comoving horizon at

reheating. As discussed above, the radiation density perturbation gets an initial kick

at Hubble radius crossing and grows considerably until it levels out due to the balance

between the source terms in (4.17) at around N ' 9 e-foldings. For 9 < N < Nrh,

radiation velocity perturbations continue to grow which leads to a dispersion of the

radiation density perturbations through its effect given by (4.17). Equivalently this

can be understood as the importance of the friction term and sources appearing in

(4.36), acting to balance each other. The source terms lead to rapid growth of the

density perturbation, but the friction term eventually saturates this growth depending

on the amount of decay and annihilations.

103



|δχ|/Φo

0 5 10 15

1

10

100

1000

104

N

|δχ|/Φo

0 5 10 15

1

10

100

1000

104

N

Figure 4.3: Evolution of DM density contrast (normalized) in a non-thermal cosmol-
ogy for modes with k/H0 = 0.1 (Left) and k/H0 = 0.04 (Right). As the mode enters
the horizon, it grows linearly with the scale factor eN ∼ a. We see that the solution
(4.32) (red dot-dashed curve) we derived in the previous section is an excellent fit
during the scalar dominated era. After the universe become radiation dominated at
Nrh ' 10.6, the amplitude of the density contrast decreases due to rapid annihilations
of DM particles. For N & 12, the density contrast then begins to grow logarithmically
as expected.

Once moduli decay becomes significant to change the expansion history at td the

moduli density then scales as ρσ ∼ e−2Γσ/3H for N > Nrh ' 10.6, which leads to

quick decay of the moduli in less than a Hubble time. This rapid decay results in a

termination of the source terms in (4.17), while the relativistic conversion of scalar

particles to radiation acts to wipe out the growth prior to decay. Thus, the only

remnant of the moduli epoch is an extra suppression in the amplitude of radiation

perturbations (as a consequence of the decay), which as discussed in [194] could lead to

damping of dark matter perturbations on small scales if dark matter is not kinetically

decoupled [199]. We find that the addition of DM annihilations to radiation does not

change this conclusion. In fact, we saw above that both annihilations and decays

enter (4.36) in a similar way (through the parameter A = A3 + A4, see also (4.27)

and (4.28)). We find that the key effect of adding DM annihilations to the system is

to effectively add an additional source of radiation complementary to that provided

by scalar decay. As can be seen from both Figures 4.2 and 4.1, this increases the
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rate of initial growth and the importance of the friction effect. This addition also

leads to a larger suppression at the time td as the rapid decay of moduli to DM leads

to annihilations in the super-critical case and these annihilations pump additional

radiation into the system acting to further dilute the amplitude of radiation density

perturbations.

We now consider the evolution of DM perturbations. Figure 4.3 shows the evolu-

tion for the DM density perturbations again for two different modes with k/krh = 20

and k/krh = 8. As seen from the figure, the density contrast begins to grow linearly

with the scale factor upon horizon entry until reheating Nrh ' 10.6. The solution

(4.32) we obtained in the previous section is an excellent fit (red-dashed line) to the

numerical solution for typical values of A1 and A2 motivated by SUSY model building.

Briefly after reheating N > Nrh the DM annihilation terms become the main source

in (4.16) and this along with the radiation production from decay leads to a power

loss in DM density contrast. The annihilations happen in much less than a Hubble

time and the resulting density contrast begins to grow logarithmically as expected in

a radiation dominated universe [198]. In the absence of annihilations we find agree-

ment with the analysis in [194], whereas in the case of super-critical non-thermal DM

production – when annihilations are important – we find this acts to further reduce

the strength of the perturbations following reheating.

We conclude this section by noting that the DM perturbations on scales that

enter the Hubble-horizon during the early “matter” dominated epoch can experience

a significant growth. This growth might lead to formation of substructure in the

form of compact mini-halos or other objects [194], which could provide an important

observational prediction of non-thermal cosmologies. To investigate this possibility

one needs to take into account cut-off scales that arise due to kinetic decoupling

and free-streaming of DM candidates. We address these questions in the next two

sections.
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4.4 Determining the Scale of the Smallest Dark

Matter Structures

4.4.1 Free Streaming and Kinetic Decoupling of Dark Matter

In the standard WIMP paradigm, while freeze-out signals the departure from chemical

equilibrium it does not signal the end of WIMP interactions. Scattering processes of

the form χl→ χl (elastic) or χl→ χ′l′ (inelastic) keep WIMPs in kinetic equilibrium

until later times and therefore to lower temperatures [200–202]. Here l and l′ are the

light degrees of freedom in the thermal bath, while χ′ is an unstable state that carries

the same conserved quantum number as χ. As the Universe expands and cools these

scattering processes cease to be in effect and DM particles χ kinetically decouple at

a temperature Tkd when the scattering rate γ of the DM species becomes comparable

to the Hubble expansion rate, γ(Tkd) ' H(Tkd).

The temperature Tkd at kinetic decoupling determines the length scale at which

linear density perturbations of DM get damped, setting the scale of the smallest

structures in the universe. In general, there are two important scales associated with

kinetic decoupling below which the perturbations in the DM get suppressed:

i. The free streaming distance of DM particles after kinetic decoupling, k−1
fs ,

ii. The size of the comoving horizon at kinetic decoupling, k−1
d .

For temperatures T < Tkd, scattering of DM particles from the relativistic plasma

cease to occur and WIMPs can stream from over-dense regions to under-dense regions

freely, causing damping of the perturbations [203–206],

k−1
fs =

∫ t0

tkd

〈v〉
a
dt, (4.39)

where 〈v〉 is the average velocity of DM particles after kinetic decoupling and tkd is

the time of kinetic decoupling. However, kinetic decoupling is not an instantaneous
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process: coupling of the DM fluid to acoustic oscillations in the radiation bath induces

both oscillations and damping of perturbations that crosses the horizon before kinetic

decoupling [199, 203]. This leads to an additional source of damping, as so critical

scale as modes with comoving wavelengths k−1 < k−1
d = (akdHkd)

−1 will be damped

while k−1 > k−1
d = (akdHkd)

−1 continue to grow logarithmically. We emphasize that

this damping due to acoustic oscillations is most important in a universe that is

dominated by the radiation bath.

4.4.2 Determining the Relevant Scale

We now consider the different possible cases for DM kinetic decoupling as compared

to the reheating effects discussed in Section 4.3 and establish the implications for

the formation of primordial substructures. We can capture the enhanced growth

of perturbations discussed in Section 4.3 by introducing a Gaussian cutoff into the

matter power spectrum6:

δχ → exp

[
− k2

2k2
rh

k2
rh

k2
cut

]
δχ(Nrh), (4.40)

where the damping scale is given by k−1
cut = max(k−1

fs , k
−1
d ) – where k−1

fs , k
−1
d are the

free-streaming and kinetic decoupling scales discussed above. This expression implies

that any fluctuation of size k−1 must be larger than both of these scales to form

structure.

DM particles produced from the scalar decays can thermalize with the relativistic

plasma if the scattering rate is larger than the expansion rate γ(Trh) > H(Trh). Here,

we assume that the decay populates DM almost instantaneously as can be verified

from Figure 4.1. In this case, the kinetic decoupling temperature is lower than the

reheat temperature Tkd < Trh and the damping scale is typically given by k−1
cut = k−1

d

as k−1
d > k−1

fs [199]. In this scenario, DM particles will lose their memory to the

6In the simplest case of DM produced from two-body decays, we approximate the damping effects
on the growth of DM perturbations by a Gaussian cut-off (See also [207] ).
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growth (4.32) prior to reheating and will follow the tiny oscillations in the radiation

perturbation after reheating (see figure 4.2). Therefore, the growth during the scalar

dominated era will be erased. This is simply because the size of the horizon at kinetic

decoupling k−1
d is greater than the characteristic scale k−1

rh in non-thermal cosmology.

The hierarchy between these scales combined with the scales of interest during the

scalar dominated epoch, k−1
d > k−1

rh > k−1 directly translate into the suppression of

DM perturbations which can be seen from (4.40) by noting δχ(Nrh) ∼ (k/krh)
2 from

(4.32).

On the other hand, DM picks up a momentum when produced from heavy scalar

decays after reheating and then their free streaming may erase structures on scales

smaller than the free-streaming horizon k−1
fs if they don’t thermalize with radiation

bath. This case corresponds to Tkd > Trh where DM decouples kinetically prior

reheating. In the following, we will derive the free-streaming horizon and discuss in

which cases the free-streaming effect could become important.

We denote the average momentum of DM particles produced from decays by 〈prh〉.

The momentum redshifts as a−1 assuming that there is negligible interaction to change

the momentum, which is true in the case Tkd > Trh:

〈p(t)〉 =
〈prh〉arh
a(t)

. (4.41)

In general, the DM particles produced from decays will have a continuum spectrum

and 〈prh〉 is model dependent. In the simplest case where DM particles all come from

two-body decay σ → χχ, 〈prh〉 =
√(

mσ
2

)2 −m2
χ.

For DM particles produced from scalar decays, the free-streaming horizon in (4.39)
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is an integration from the reheating time trh till now t0

k−1
fs =

∫ t0

trh

〈v〉
a
dt

=

∫ 1

arh

〈 p
E

〉 1

a2H
da =

∫ 1

arh

〈
p√

p2 +m2
χ

〉
1

a2H
da,

=
arh√
ΩRH0

∫ 1

arh

〈
prh√

p2
rha

2
rh +m2

χa
2

〉
1√

1 + a/aeq
da, (4.42)

where in the second line, we changed variable from time to scale factor and used the

kinematic relations v = p/E and E = p2 +m2
χ. In the third line, we used Eq. (4.41).

We also used the facts that the scale factor at matter-radiation equality could be

written as aeq = ΩR/ΩM with ΩR(ΩM) being the current radiation (matter) density

of the Universe and

H(a)

H0

=
√

ΩRa−4 + ΩMa−3 = a−2
√

ΩR

√
1 + a/aeq, (4.43)

where H0 is the current Hubble rate and we neglect the dark energy contribution.

Knowing the momentum distribution of DM after reheating, one could carry out

the integration in Eq. (4.42) either analytically or numerically. Below we will consider

two interesting limits to obtain simple illustrative analytic results. In the case with

〈prh〉 � mχ, where the DM particles produced from decays are non-relativistic, prh ≈

mχvrh with vrh the DM velocity after reheating, Eq. (4.42) is reduced to the result

in [194],

k−1
fs ≈

2〈vrh〉arh√
ΩRH0

(
sinh−1

√
aeq
arh
− sinh−1√aeq

)
. (4.44)

In the case with 〈prh〉 � mχ, where the DM particles produced from decays are

relativistic, the dominating contribution to k−1
fs is the integration over the period
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when DM particles are relativistic,

k−1
fs ≈

1√
ΩRH0

(anr − arh), (4.45)

where we approximated the integrand in Eq. (4.42) to be unity and integrated from

arh till anr when DM is red-shifted and becomes non-relativistic with momentum of

order mχ.

If krh/kfs > 1, the free-streaming of the DM particles will completely erase the

growth of density perturbation in the scalar domination period ( See eq. (4.40)). In

the two limiting cases we considered, the ratio krh/kfs is given by

krh
kfs
≈

 2〈vrh〉
(

sinh−1
√√

2krh
keq
− sinh−1√aeq

)
, 〈prh〉 � mχ

anr
arh
− 1 ≈ 〈prh〉

mχ
, 〈prh〉 � mχ.

(4.46)

In deriving the formulas above, we used krharh = H(arh)a
2
rh = H0

√
ΩR and aeq/arh =

√
2krh/keq. We also chose anr ≡ 〈prh〉arh/mχ. To obtain more accurate numerical

results in a general case, one should use Eq. (4.42). Yet the approximate formulas

already tell us the conditions in which case the free-streaming effect is important. If

there is a large mass splitting between scalar and DM, 〈prh〉 � mχ, then krh � kfs

and the free-streaming effect will definitely wipe out the growth of perturbation in

the scalar domination phase. Only when DM particles produced from decays are

non-relativistic, krh could be smaller than kfs. Since

krh
keq

= 1.2× 106 Trh
1 MeV

(
10.75

g∗,s

)1/3 ( g∗
10.75

)1/2

(4.47)

and sinh−1 x behaves as log x for x � 1, krh/kfs depends weakly on Trh and for

reheating temperatures above 10 MeV, krh/kfs < 1 leads to 〈vrh〉 < 0.06 [194]. This

could only occur in scenarios where the scalar mass is very close to the total mass of

all decays products (a situation not favored by SUSY motivated phenomenology).
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4.5 Neutralino Dark Matter in the Moduli Sce-

nario

In this section we consider SUSY neutralino DM in the Split SUSY / moduli frame-

work, which provides an explicit realization of the non-thermal histories discussed

above. We will be interested in wino or higgsino DM and we begin by summarizing

the picture of kinetic decoupling.

In the moduli scenario, immediately after the moduli decay at about Trh, the

produced DM particles would have a energy distribution which peaks at high energy

and most of them are relativistic. Through scattering with SM particles, e−, νe, νµ, ντ

in the thermal bath, they will deposit energy into radiation. Because the scattering

rate of either wino or higgsino is large enough (compared to Hubble), the DM particles

will thermalize with the radiation quickly. When the temperature decreases and the

DM particles become non-relativistic, the rate of the thermal scattering drops and

eventually the DM particles would be kinetically decoupled from radiation. One key

quantity that will determine whether thermalization happens or not is γ/H where γ is

the scattering rate of DM particles off radiation. In this section, we will demonstrate

thermalization indeed happens for either wino or higgsino DM by computing their

scattering rates γ/H’s.

Light wino DM with mass of about a few hundred GeV fits very nicely into the

moduli scenario [77]. However, indirect detection searching for excesses in the photon

spectrum of our galactic center have already put strong constraints7 on the wino as the

only component of DM [110, 132]. In particular, Trh > 1 GeV in the moduli scenario

even if the wino is only one component of DM [110] 8. The cosmological history

of winos after reheating has already been worked out in detail in Ref. [195]. It is

7Weaker constraints on the reheat temperature were found in [165], but this analysis only took
into account FERMI observations of dwarf spheroidal galaxies. Reach of future dwarf spheroidal
galaxies observations has been studied in [208].

8The constraint could be relaxed if the branching fraction of moduli decaying to winos are sup-
pressed as in the branching scenario [166].
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demonstrated that winos lose energy efficiently after production through the inelastic

process W̃ 0+e± → W̃±+νe and thermalize with the radiation almost instantaneously.

At low temperature Tkd ≈ 10 MeV, the wino DM will kinetically decouple from the

thermal bath. Notice that Tkd is almost independent of the wino mass and is mostly

set by the mass splitting between the charged and neutral components of wino DM,

which is about ∆m ≈ 160 MeV at the two-loop level [157]. This is because at

low temperature, the scattering rate will be suppressed by the Boltzmann factor

exp(−∆m/T ).

Now we turn to the higgsino DM scenario. When DM is mostly higgsinos, or in

other words, µ < M1,M2, unlike the wino case, the tree-level mass splitting is only

suppressed by one power of the larger mass scale M1 or M2,

∆mH̃ ≈ m2
Z

2M1

c2
W (1− sin 2β) +

m2
Z

2M2

s2
W (1 + sin 2β) ≈ 0.5 GeV

4.5 TeV

Ms

, (4.48)

where in the second step, we assume that tan β � 1 and M2 = 2M1 = Ms. Tradi-

tionally one could diagonalize the neutralino/chargino mass matrices and expand the

formulas to obtain the result above. However, this could also be understood easily

from an effective operator analysis. Integrating out a heavy bino or wino at tree-level,

one gets dimension-five operators such as

g′2

M1

H†uH̃uH
†
dH̃d,

g2

M2

H†uσ
aH̃uH

†
dσ

aH̃d (4.49)

where σa with a = 1, 2, 3 are the three SU(2)w generators. g and g′ are the SM

SU(2)w and U(1)B gauge couplings correspondingly. The operators above will lead

to a charged/neutral mass splitting after electroweak symmetry breaking. Notice that

the operators above also lead to an effective coupling between Higgsinos and Z gauge

boson.

In the moduli scenario, the relic abundance of higgsino DM is estimated to be,
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assuming order one branching fraction of moduli decaying to higgsinos,

ΩH̃h
2 = 0.12

〈σv〉th
〈σv〉H̃H̃→ZZ,WW

Tf
Trh

,

Trh ≈ 0.4 GeV
( µ

200 GeV

)3
(

0.12

ΩH̃h
2

)
, (4.50)

where we took 〈σv〉th = 3 × 10−26 cm3/s and the thermal freeze-out temperature

Tf ≈ µ/20. In deriving the second line, we used 〈σv〉H̃H̃→ZZ,WW ≈ g4/(512πµ2)(21 +

3 tan2 θW + 11 tan4 θW ) [100].

The elastic scattering rate of higgsino DM per expansion rate is [209]

γel
H

=
45
√

5

16π9/2

1√
g∗(T )

g4

m4
W

c2
H̃H̃Z

(1− s2
W + 2s4

W )
mpE

2T 3

µ2
, (4.51)

where cH̃H̃Z =
m2
Z

2µ

(
s2
W

M1

+
c2
W

M2

)
cos(2β)

=
∆m

µ

(s2
W + c2

W/r) cos(2β)

(c2
W + s2

W/r) + (s2
W/r − c2

W ) sin(2β)
, (4.52)

where E is the energy of the DM particles, T is the temperature of the radiation bath

and r = M2/M1. One could see that the elastic scattering rate per Hubble scales as

(∆m)2 and increases when ∆m increases. The inelastic scattering of higgsino DM

per Hubble is

γin
H

=
6
√

5

π3/2

1√
g∗(T )

g4

m4
W

mpET
2e−

µ∆m
2ET

(
∆m

µ
+ 6

ET

µ2

)
, (4.53)

where e−
µ∆m
2ET is the Boltzmann factor. Thus inelastic scattering would be more effi-

cient at small ∆m. In Fig. 4.1, we demonstrated the higgsino elastic/inelastic scat-

tering rates per Hubble as a function of the mass splittings for different choices of the

DM energy and thermal bath’s temperature. From Fig. 4.1, the inelastic scattering

rate always dominates over elastic scattering rate at the reheating temperature for the

whole range of mass splitting. It is also much larger than Hubble rate and thus the
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Figure 4.1: Elastic/inelastic scattering rates per Hubble (red/blue curves) as a func-
tion of the mass splittings fixing µ = 200 GeV. Left: energy of DM produced from
decay is fixed to be 2 TeV. Right: energy of DM produced from decays is fixed to be
200 GeV. The solid curves correspond to the temperature of the thermal bath to be
about Trh = 0.4 GeV; the dashed curves correspond to a much lower temperature 5
MeV. The gray dashed lines corresponds to γ/H = 1.

higgsino DM particles would quickly thermalize with the radiation immediately af-

ter reheating. When the temperature drops, γ/H decreases and eventually higgsinos

decouple kinetically.

In summary, we find that for neutralino dark matter with a non-thermal history

that any enhancement of dark matter perturbations arising from the moduli epoch

are washed out by kinetic decoupling effects following reheating.

4.6 Conclusions

In this paper we have investigated the result of a matter (moduli) dominated phase

prior to BBN on the growth of cosmological perturbations. We have seen that matter

and radiation perturbations grow during this epoch, with dark matter perturbations

being enhanced and radiation perturbations first growing and then eventually os-

cillating with an amplitude suppressed relative to the usual thermal case. We saw

that this suppression arises at the peak of scalar decay when most of the radiation is

created by both dark matter annihilations and decays of the moduli. In agreement
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with [194] we find that the matter perturbations remain enhanced following reheating

(with the growth inherited from the growth of scalar fluctuations during moduli dom-

ination), and we showed that this remains true even in the presence of dark matter

annihilations to radiation. Whereas the suppression of the radiation perturbations

can lead to damping of dark matter perturbations on small scales if dark matter is

not kinetically decoupled [199] – again in agreement with [194].

However, we have also seen that for non-thermal models motivated by BSM physics

– such as those motivated by moduli in the presence of SUSY breaking with a split

spectrum – that these effects are lost since the kinetic decoupling temperature of

neutralinos is typically below that of reheating. This is discouraging for establishing

new signatures for the dark ages following inflation, because it means that the matter

power spectrum (and enhanced small scale structure such as compact mini-halos) can

not be used to distinguish a non-thermal history from the standard thermal case.

Moreover, because the effects of the moduli decays to dark matter are local (sub-

horizon) and dark matter is subdominant before, during, and after the decays, we

should not expect any associated CMB signatures (e.g. from dark matter annihila-

tions). That is, as far as observations are concerned, the cosmic dark ages remain

elusive.

There are some exceptions to this conclusion. As discussed in [194], if dark matter

is produced thermally after reheating (and kinetic decoupling and free-streaming ef-

fects are not important) the suppression of the radiation perturbations resulting from

the non-thermal phase can lead to an erasure of dark matter structure (establishing a

cutoff in the matter power spectrum). For typical SUSY WIMP models this seems to

present model building challenges given the need for a large reheat temperature, and

so the matter dominated phase would be short or even comparable to that of a ther-

mal history. Another possibility is if dark matter is produced non-thermally but with

a mass comparable to the moduli mass (so it is not relativistic at production). This

possibility again seems rather exotic from a SUSY model building viewpoint, partic-
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ularly in models with moduli masses associated with PeV-scale symmetry breaking.

Taking a more optimistic view, our results suggest the robustness of typical non-

thermal histories (or early matter dominated phases) prior to BBN and provide fur-

ther evidence that such models offer a realistic alternative to the standard thermal

WIMP paradigm.
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Appendix

4.A Derivation of Perturbation Equations

We take the scalar field, radiation and the DM as perfect fluids with energy-momentum

tensors

T µν = (ρ+ p)uµuν + δµν p, (4.54)

where four-velocities in the rest frame of each fluid is uµ = (1,~0). In this Appendix,

we will work with the background metric gµν = diag(−1, a2, a2, a2) and use cosmic

time t to be proper time. In the reheating model we are considering, there are energy

transfer between different fluids which can be captured in a covariant manner by

writing,

∇µT
µ(α)
ν = Q(α)

ν + Y (α)
ν , (4.55)

where Q
(α)
ν denotes the energy transfer due to scalar decay and Y

(α)
ν stands for the

transfer of energy due to annihilations. Note that the total energy conservation∑
α∇µT

µ(α)
ν = 0 implies the constraint

∑
α

Q(α)
ν + Y (α)

ν = 0. (4.56)
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The covariant form of energy transfer terms on the R.H.S of (4.55) can be written as,

Q(α)
ν = Γ(α)

σ T (σ)
µν u

µ
(σ), (4.57)

Y (α)
ν =

〈σv〉(α)

mχ

[
ρ2
χ − ρ2

χ,eq

]
u(χ)
ν , (4.58)

from which one can easily obtain,

ρ̇α + 3Hρα(1 + wα) = −Γ(α)
σ ρσ +

〈σv〉(α)

mχ

[ρ2
χ − ρ2

χ,eq]. (4.59)

Then, the fluid evolution equations (4.2)-(4.4) can be recast using the following con-

ventions for the decay rate and annihilation cross section between scalar,radiation

and DM fluids: 〈σv〉(σ) = 0, 〈σv〉(χ) = −〈σv〉, 〈σv〉(r) = 〈σv〉 and Γ
(σ)
σ = Γσ, Γ

(χ)
σ =

−BχΓσ, Γ
(r)
σ = −(1−Bχ)Γσ.

We now write the perturbed metric in the longitudinal gauge as

ds2 = − (1 + 2Φ) dt2 + a(t)2 (1− 2Ψ) δijdx
idxj. (4.60)

In the absence of anisotropic stress, from (4.54) we write perturbed energy-momentum

tensor;

δT µ(α)
ν =

 −δρα ρα (1 + wα) ∂ivα

−gijρα (1 + wα) ∂jvα δij c
2
s,αδρα

 , (4.61)

where we have used pα = wαρα, δpα = c2
s,αδρα and vα denotes the longitudinal part

of the spatial velocity perturbation of each fluid, δuj,α = ∂jvα. To first order in scalar
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perturbations, components of energy transfer terms in (4.57) and (4.58) reads

δQ
(α)
0 = Γ(α)

σ [δρσ + ρσΦ] ,

δY
(α)

0 = −〈σv〉
(α)

mχ

(
2ρχδρχ − 2ρχ,eqδρχ,eq + [ρ2

χ − ρ2
χ,eq]Φ

)
,

δQ
(α)
j = −Γ(α)

σ ρσ∂jv(σ), (4.62)

δY
(α)
j =

〈σv〉(α)

mχ

[ρ2
χ − ρ2

χ,eq]∂jv(χ),

where we used the fact that δu0
α = −Φ. Finally, we can obtain evolution equations

for the density and velocity perturbations using perturbed stress-energy conservation

equation (4.55) with (4.62), setting Ψ = Φ in the absence of anisotropic stress. For

temporal components we have,

δ̇α + 3H(c2
s,α − wα)δα + (1 + wα)

(
θα
a
− 3Φ̇

)
= Sδ(δα, δσ, δχ, δχ,eq,Φ),

where the source term on the RHS is given by

Sδ ≡ −Γ(α)
σ

ρσ
ρα

[δσ − δα + Φ] +
〈σv〉(α)

mχρα

(
ρ2
χ[2δχ − δα + Φ]− ρ2

χ,eq[2δχ,eq − δα + Φ]
)
.

Similarly, for spatial components

θ̇α +Hθα +
c2
s,α

1 + wα

∇2δα
a
− 3Hwαθα +

∇2Φ

a
= Sθ(θα, θσ, θχ),

where

Sθ ≡ −Γ(α)
σ

ρσ
ρα

[
θσ

1 + wα
− θα

]
+
〈σv〉(α)

mχρα
[ρ2
χ − ρ2

χ,eq]

(
θχ

1 + wα
− θα

)
. (4.63)

In deriving these equations we have defined δα ≡ δρα/ρα, θα ≡ a−1∇2vα and made

use of the background fluid equations (4.59).
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4.B Adiabatic Initial Conditions

Before we start our discussion on adiabatic initial conditions, we would like to briefly

review isocurvature perturbations and point out the non-existence of isocurvature

modes in our reheating model after the decay of modulus.

On super-horizon scales, one can define a gauge invariant curvature perturbation

for each species α of the universe, which is conserved in the adiabatic limit when the

Hubble expansion is dominated by a single species [34]

ζα = −Ψ−Hδρα
ρ̇α

, (4.64)

from which one can find the total curvature perturbation as a weighted sum of ζα;

ζ =

∑
α(ρα + pα)ζα∑
α(ρα + pα)

. (4.65)

The definition of isocurvature perturbation between two species is given by

Sαβ = 3(ζα − ζβ). (4.66)

During inflation, in the model we are considering, the mass of the modulus at the

high energy minima satisfies,

m2
σ . H2

inf , (4.67)

with an average amplitude of long wavelength fluctuations [210];

δσ ∼ Hinf/2π. (4.68)

The existence of such a mode can lead to isocurvature perturbations: while radia-

tion and matter created from inflationary reheating carries the inflaton’s fluctuation

ζinf , those produced from the moduli decay will inherit δσ. However, if the modulus

dominates the energy density of the universe, all existing isocurvature modes will be
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washed out as shown in [193] recently. Therefore, consistent with CMB anisotropy

probes, we will consider adiabatic perturbations in our reheating model. We will

consider the issue of adiabatic modes in the presence of moduli decay and DM anni-

hilations in some detail below.

In the case of energy transfer between the constituents of the universe, it has

been showed that perturbation equations allow for an adiabatic solution in the long

wavelength limit with
δρα
ρ̇α

=
δρβ
ρ̇β

, (4.69)

if the total intrinsic non-adiabatic energy transfer perturbation of each individual

species δQ
(α)
T = δQ

(α)
0 + δY

(α)
0 vanishes [211]. For the reheating model we consider,

these are given by

δQ
(σ)
T = 0, (4.70)

δQ
(χ)
T = −Bχ

Γσ
3H

ρ̇σSσχ, (4.71)

δQ
(r)
T = −(1−Bχ)

Γσ
3H

ρ̇σSσr −
2〈σv〉(r)

3mχH
ρχρ̇χSχr, (4.72)

where again we set ρχ,eq = 0 in the era we consider the fluid perturbation equations.

Therefore, from (4.70)-(4.72), we see that an adiabatic mode with ζ = constant,

Ψ = constant and Sαβ = 0 [211] exist on large-scales where we ignored the decaying

mode of gravitational potential Ψ.
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4.C Solution for Radiation Density Perturbation

During Scalar Domination

We are interested in finding the solution for the density perturbation during scalar

domination. The equation of motion derived in the text is

δ′′r +

(
2A− 1

2

)
δ′r +

(
A2 − A

2
+

k2

3H2
0

eN
)
δr = S(N), (4.73)

where the source term is given by

S(N) ≡ −
(
A2 − A

2

)
Φ0 −

(
α

2
(2A+ 1) +

2

3
(A+ 2)

)
k2

H2
0

eNΦ0. (4.74)

The homogeneous solution is

δ(h)
r = c1 e

−AN sin

(
2k√
3H0

e
N
2

)
+ c2 e

−AN cos

(
2k√
3H0

e
N
2

)
(4.75)

From this we can construct the Green’s function

G(N, Ñ) =
s1(N)s2(Ñ)− s1(Ñ)s2(N)

s′1(Ñ)s2(Ñ)− s1(Ñ)s′2(Ñ)

=

√
3H0

k
e(A− 1

2
)Ñ−AN sin

[
2k√
3H0

(
e
N
2 − e

Ñ
2

)]
(4.76)

and so the full solution is

δr = δ(h)
r +

∫ N

0

G(N, Ñ)S(Ñ)dÑ, (4.77)

The integral gives a negligible contribution for super-Hubble modes initially, and so

using the initial conditions δr(N = 0) = δ
(0)
r = −Φ0 and δ′r(N = 0) = 0 for k < aH

122



we find c1 =
√

3AH0δ
(0)
r /k and c2 = (1− 2A)δ

(0)
r . The full solution is then

δr = c1e
−AN sin

(
2k√
3H0

e
N
2

)
+ c2 e

−AN cos

(
2k√
3H0

e
N
2

)
+ δ(p)

r , (4.78)

where the particular solution is given by

δ(p)
r =

∫ N

0

G(N, Ñ)S(Ñ)dÑ, (4.79)

=

√
3H0

k
e−ANΦ0

∫ N

0

e(A− 1
2

)Ñ sin

[
2k√
3H0

(
e
N
2 − e

Ñ
2

)](
β1 − β2

k2

H2
0

eÑ
)
dÑ,

and we have defined

β1 =
A

2
− A2,

β2 =

(
1

2
α (2A+ 1) +

2

3
(A+ 2)

)
. (4.80)

Let ω ≡ 2√
3H0

and then (4.80) becomes

δ(p)
r = −

√
3H0

k
e−ANΦ0

∫ N

0

e(A− 1
2

)Ñ sin
[
ωk
(
e
N
2 − e

Ñ
2

)](
β1 − β2

k2

H2
0

eÑ
)
dÑ,

=

√
3H0

k
e−AN cos

(
ωke

N
2

)
Φ0

∫ N

0

e(A− 1
2

)Ñ sin
(
ωke

Ñ
2

)(
β1 − β2

k2

H2
0

eÑ
)
dÑ

−
√

3H0

k
e−AN sin

(
ωke

N
2

)
Φ0

∫ N

0

e(A− 1
2

)Ñ cos
(
ωke

Ñ
2

)(
β1 − β2

k2

H2
0

eÑ
)
dÑ,

We need to solve the integrals

I1 =

∫ N

0

eaÑ sin
(
be

Ñ
2

)
dÑ (4.81)

I2 =

∫ N

0

eaÑ cos
(
be

Ñ
2

)
dÑ (4.82)

(4.83)
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consider the change of variables,

x = be
Ñ
2 , (4.84)

dx =
b

2
e
Ñ
2 dÑ −→ dÑ =

2dx

x
(4.85)

we then have

I1 =

∫ x(N)

x(0)

(x
b

)2a

sinx

(
2dx

x

)
= c

∫ x(N)

x(0)

xm sinx dx, (4.86)

I2 =

∫ x(N)

x(0)

(x
b

)2a

cosx

(
2dx

x

)
= c

∫ x(N)

x(0)

xm cosx dx, (4.87)

where c ≡ 2b−2a and m ≡ 2a− 1. We then have

∫
xm sinx dx = −i

m+1

2
[Γ (m+ 1,−ix)− (−1)mΓ (m+ 1, ix)] (4.88)∫

xm cosx dx = −i
m+1

2
[Γ (m+ 1,−ix) + (−1)mΓ (m+ 1, ix)] (4.89)

where we must have m > 0. It is also useful to note the asymptotic form as x→∞

Γ (m+ 1,±ix) = e∓ixxm(±i)m
(

1− ±im
x

+O
(

1

x2

))
(4.90)

With these solutions we can now solve for the complete solution in (4.78), and this

can then be used to solve for the velocity perturbations. This solution for different

values of the parameters appears in Figure 4.1.
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Chapter 5

Alternative sources of

Gravitational Waves and the Scale

of Inflation

5.1 Introduction

A positive detection of B-mode polarization in the Cosmic Microwave Background

(CMB) – if identified as being of primordial origin – has been argued to provide

smoking gun evidence for the existence of inflation [212]. It has been further argued

that the signal would provide us with the scale at which inflation took place. Given

the current and projected sensitivity of polarization experiments [212], a positive

detection of primordial B-modes would then imply inflation occurred near the GUT

scale, or slightly below. Indeed, if the results from BICEP2 [133] are confirmed, this

would be the first direct evidence for physics beyond the Standard Model at a scale

nearly a billion times that probed at the Large Hadron Collider (LHC).

In this paper we revisit the question; Does a detection of primordial B-modes

necessarily provide us with the scale of inflation? In [213] it was argued that the an-

swer is no. In that paper, the authors considered additional sources of gravity waves
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arising from non-adiabaticity and particle production during inflation and claimed

that in some cases this source of B-modes could exceed those coming from the quan-

tum fluctuations of the quasi-de Sitter background. Related ideas have appeared in

[214–225], although the primary focus of these papers was different. In this paper

we will review both approaches and explicitly demonstrate their relation for the case

of on-shell particle production. In many of these works it was also pointed out that

the same effects leading to a significant level of gravity waves would also lead to a

substantial level of equilateral type non-Gaussianity (NG) – a prediction that was

important for Planck. Utilizing the current Planck data [45] we can now revisit these

models utilizing the constraints on the level of equilateral type NG f equil
NL < −16± 70.

Using this constraint, and demanding successful inflation and self consistent model

building, in this paper we examine these models to see if particle production can lead

to a competitive source for primordial B-modes.

We first consider the case of an inflaton directly coupled to spectator fields. This

captures models with on-shell particle production such as Trapped Inflation and Mod-

uli Trapping [226–228], and we also consider production of pseudo scalar and gauge

fields during inflation [222]. In all of these models we find that the direct coupling

typically leads to a high level of NG, rendering these alternatives for generating pri-

mordial B-modes irrelevant. We next consider the production of spectator fields with

gravitational coupling to the inflaton sector [214, 219]. Because of the suppressed

couplings, in some cases these models can lead to a lower level of NG and an alterna-

tive B-mode source is possible. However, additional constraints from back-reaction

and isocurvature perturbations severely restrict the parameter space. We identify

the most promising case as gauge field production resulting from a tachyonic and

time dependent mass term resulting from the interaction of the gauge field with an

additional spectator scalar field (not the inflaton). Given the elaborate nature of this

model, after constraining the parameter space we turn to the question of UV com-

pleting the model. We construct an inflationary sector utilizing Axion Monodromy,
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and then we realize the additional spectator fields needed within the framework of

O3/O7 orientifold compactifications of Type IIB string theory. We find that a UV

embedding can be realized in the weakly coupled string theory if the compactification

volume is taken parametrically larger than the Planck scale and if the axion decay

constant is sub-Planckian. Our embedding also demonstrates that dangerous sinu-

soidal corrections to the gauge field production models can be suppressed through

the compactification geometry.

The remainder of the paper is as follows. In the next section we review both the

classical and quantum production of gravity waves during inflation. This section is

primarily to establish notation and to address a few subtle points in the literature

regarding the production of gravity waves from on-shell particle production. In Sec-

tion 5.3, we consider the case of particle production of fields directly coupled to the

inflationary sector. In Section 5.4, we consider the gravitationally coupled case. Un-

like the direct coupling case, we find that some of these models do result in B-modes

although the parameter space is severally restricted1. In the remainder of the paper,

we consider the UV completion of these models. First, in Section 5.5 we review the

relevant details of Type IIB orientifold compactifications and their role in Inflation-

ary model building. Then in Section 5.6 we present an explicit model including the

particle production and establish the model building constraints. In the final section

we conclude. In appendix A we list a number of concerns for string model building

with moduli stabilization and their possible resolutions.

1For a recent paper that considered constraints on these models from isocurvature perturbations
see [229].
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5.2 Gravity Waves from Inflation and Particle Pro-

duction

In this section we review the general formalism for establishing the amount of gravity

waves produced during inflation from both quantum fluctuations of the metric and

classical sources from particle production events during inflation. For readers familiar

with these types of calculations this section may be skipped, however it does serve to

set our notation and conventions.

Gravity waves produced during inflation can perturb the homogeneous and isotropic

background metric. These tensor fluctuations are described by the metric

ds2 = a(τ)2[−dτ 2 + (δij + hij)dx
idxj], (5.1)

where Latin indices denote spatial co-ordinates2, hij is the transverse (∂ihij = 0) and

traceless (hii = 0) metric perturbation and we work in conformal time where the scale

factor is a ' −1/(Hτ) for a quasi-dS background.

The mode equation for gravity waves in the cosmological background (working in

Fourier space) is

h̄′′ij +

(
k2 − a′′

a

)
h̄ij =

2

M2
pl

a T TTij , (5.2)

where we introduced canonical modes h̄ij = a(τ)hij and T TTlm is the transverse and

traceless components of the stress energy tensor for any sources which are present.

The transverse, traceless components of the stress tensor can be obtained by intro-

ducing the projector Π lm
ij = P l

i P
m
j − 1

2
PijP

lm where Pij = δij − kikj/k
2 so that

T TTij = Π lm
ij Tlm (cf. [230]).

2We will follow metric signature (−,+,+,+) and work with the reduced Planck mass Mpl =
2.44× 1018 GeV.
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We can formally solve (5.2) to find

h̄ij(k, τ) =
2

M2
pl

∫
dτ ′ Gk(τ, τ

′) a(τ ′) T TTij (k, τ ′), (5.3)

where Gk(τ, τ
′) is the Green function satisfying the source free version of (5.2) with

appropriate boundary conditions. For the quasi-dS background we find

Gk(τ, τ
′) =

k(τ ′ − τ) cos (k(τ ′ − τ))− (1 + k2τ ′τ) sin (k(τ ′ − τ))

k3ττ ′
Θ(τ − τ ′), (5.4)

where Θ(τ − τ ′) = 0 for τ < τ ′ signaling that the source only produces gravity waves

after its creation. This expression along with a source in (5.3) then allows us to find

the resulting gravitational radiation.

5.2.1 Quantum Vacuum Fluctuations and Gravity Waves

For inflationary vacuum fluctuations and in the absence of sources (Tlm = 0) equation

(5.2) can be easily solved (see e.g. [31] or [231]) and one finds that the inflationary

background generates a nearly scale invariant spectrum of gravitation waves. We can

relate the correlation function to the tensor power spectrum for each helicity as,

1

a2
〈h̄sij(k) h̄s

′

ij(k
′)〉 = (2π)3δ(k + k′)δss

′Ph, (5.5)

where s refers to the polarization. The dimensionless tensor power-spectrum resulting

from quantum vacuum fluctuations of the graviton is then

∆2
t (k) = 2 · k

3

2π2
· Ph =

8

M2
pl

(
H

2π

)2

(5.6)

evaluated at k = aH and the tilt of the spectrum is nt = d lnPh/d ln k. In the absence

of any other primordial sources of gravity waves, a measurement of the tensor-to-scalar

ratio (along with existing measurements of the scalar power spectrum) then allow us
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to determine the scale of inflation HI through (5.6). In terms of the scalar power

spectrum ∆2
s we can then define the tensor to scalar ratio

r ≡ ∆2
t

∆2
s

. (5.7)

where near-term and future experiments can be optimistically expected to probe as

low as r ' 10−3 [212]. Using the COBE normalization ∆2
s = 2.2 × 10−9 this can be

re-expressed as a determination of the scale of inflation (cf. [231])

HI ' 3× 10−5
( r

0.1

)1/2

Mpl. (5.8)

Thus, given an observation of r and knowledge that the only source of gravity waves

resulted from primordial vacuum fluctuations, we can determine the scale of inflation

HI ∼ V 1/2/Mpl.

5.2.2 Gravity Waves from Particle Production during Infla-

tion

We will first consider gravity wave sources from scalar field production during inflation

and later generalize this to vector fields. To calculate the effect of the produced

particles on gravity wave production we note that the contribution of the particles to

the spatial part of the stress tensor will be of the form Tij = ∂iχ∂jχ + δij(. . .). This

implies that in Fourier space the transverse, traceless source is the convolution [232]

T TTij (k, τ) = Π lm
ij (k)

∫
d3p

(2π)3/2
pl pm χ(p, τ)χ(k− p, τ). (5.9)
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Using this result, along with (5.3) we can construct the two point, equal time corre-

lator

〈h̄ij h̄∗ij〉 =
4

M4
pl

∫
dτ ′a(τ ′) Gk(τ, τ

′)

∫
dτ ′′a(τ ′′) Gk′(τ, τ

′′)
〈
T TTij (k, τ ′)T TT∗ij (k′, τ ′′)

〉
=

4

M4
pl

∫
dτ ′

Gk(τ, τ
′)

a(τ ′)

∫
dτ ′′

Gk′(τ, τ
′′)

a(τ ′′)
Π lm
ij (k)Π no

ij (k′) (5.10)

×
∫

d3p d3p′

(2π)3
pl pm p′n p

′
o

〈
χ̂(p, τ ′) χ̂(k− p, τ ′)χ̂∗(p′, τ ′′) χ̂∗(k′ − p′, τ ′′)

〉
.

where we have introduced the canonical field χ̂ = a(τ)χ.

As discussed in [232] if we now assume that the fields are well approximated by

statistically homogeneous, random Gaussian fields than the four-point function can

be written in terms of two-point functions by Wick’s theorem3. Using that

〈
χ̂(p, τ ′) χ̂∗(p′, τ ′′)

〉
= f(|p|, τ ′, τ ′′)δ(p− p′), (5.11)

for statistically homogeneous and isotropic fields and keeping only the connected

pieces of the correlator we have

〈
χ̂(p, τ ′) χ̂(k− p, τ ′)χ̂∗(p′, τ ′′) χ̂∗(k′ − p′, τ ′′)

〉
c

=

δ(k− k′)f(p, τ ′, τ ′′)f(k − p, τ ′, τ ′′)
[
δ(p′ − p) + δ(p′ − k + p)

]
Using this result and the property of the projectors that Π lm

ij Π no
ij plpmpnpo =

Πlmnoplpmpnpo = p4 sin4(θ)/2 where θ is the angle between k and p, we can perform

one of the momentum integrals in (5.10) and we find

3The authors of [232] pointed out that this is a good approximation at both the beginning and
end of inflationary preheating and is in good agreement with lattice simulations. Here we consider
these events during inflation and will work within the same approximation. We will see that any
strong coupling of the spectator field χ will tend to generate a large level of non-Gaussianity making
this approximation justified given existing CMB constraints.
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〈h̄ij(k, τ) h̄∗ij(k
′, τ)〉 =

2δ(k + k′)

M4
pl

∫
dτ ′

a2(τ ′)
Gk(τ, τ

′)

∫
dτ ′′

a2(τ ′′)
Gk′(τ, τ

′′)

×
∫

d3p

(2π)3
|p|4 sin4(θ)f(|p|, τ ′, τ ′′)f(|k− p|, τ ′, τ ′′) (5.12)

It remains to determine the functions in the two-point correlator (5.11). We are

interested in cases where quanta of the χ̂ field become excited due to the interaction

with the inflaton and particle production. To calculate this contribution to (5.11) we

will follow the treatment in [25].

The mode equation for the canonical normalized particles χ have generically the

following form,

χ′′k + ω2
k(τ)χk = 0, (5.13)

where we make the change of notation χ̂→ χ. The time dependent frequency is given

by

ω2
k(τ) = k2 + a2m2

eff(τ)− a2∆. (5.14)

where ∆ ∼ a′′/a is typically negligible compared to the effective time-dependent mass

meff . The WKB solution to this equation

χk(τ) =
1√
2ωk

(
αk(τ)e−i

∫ τ ωk(τ̃)dτ̃ + βk(τ)ei
∫ τ ωk(τ̃)dτ̃

)
(5.15)

is valid as long as ω′ < ω2 and all higher order adiabatic invariants remain small.

The condition that initially there are no quanta of the field present requires α = 1

and β = 0, i.e. only positive frequency modes are present. When the adiabatic

conditions fails, particle production results, and the Bogolyubov coefficients above

give the mode mixing that occurs due to the time dependence of the system. The

creation and annihilation operators after production can be expanded in terms of the
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initial creation â†k and annihilation operators âk of the field as

b̂k(τ) = αk(τ)âk + β∗k(τ)â†−k, b̂†k(τ) = αk(τ)âk + β∗k(τ)â†−k, (5.16)

where although âk annihilates the vacuum initially, b̂k does not, and if the system

returns to adiabatic evolution the number density of particles produced is nk ∼ |βk|2.

Proper renormalization requires that one normal orders the correlators with respect

to the b̂k basis and then uses that âk annihilates the vacuum to find the surviving

terms (see e.g. [214, 220]). Expanding the field and performing the normal ordering

we find that the unknown function in (5.11) is

f(p, τ ′, τ ′′) =
1

2
√
ωp(τ ′)ωp(τ ′′)

{
βp(τ

′)β∗p(τ
′′)e−i

∫ τ ′′
τ ′ ωk(τ̃)dτ̃ + β∗p(τ

′)βp(τ
′′)ei

∫ τ ′′
τ ′ ωk(τ̃)dτ̃

+ αp(τ
′)β∗p(τ

′′)e−i
∫ τ ′ ωk(τ̃)dτ̃−i

∫ τ ′′ ωk(τ̃)dτ̃ + c.c (τ ′ → τ ′′)

}
, (5.17)

where we just switched to notation |p| ≡ p. We then use this expression in (5.12) to

find the amount of gravitational radiation. However, as shown in [214] the arguments

of the exponentials above lead to rapidly oscillating phases and don’t give a significant

contribution to the final correlator (5.12). Neglecting the phases, using the result

above in (5.12) and keeping only the leading terms we find

〈h̄ij h̄∗ij〉 =
2δ(k + k′)

M4
pl

∫
dτ ′

a2(τ ′)
Gk(τ, τ

′)

∫
dτ ′′

a2(τ ′′)
Gk′(τ, τ

′′)

×
∫

d3p

(2π)3
p4 sin4(θ)

(
|βp|2(|αp|2 + |βp|2)

2ωp(τ ′)ωp(τ ′′)
+ . . .

)
, (5.18)

where the missing terms are sub-leading and we refer to [214] for a more detailed

discussion. The result (5.18) will allow us in the remainder of the paper to connect

particle production and non-adabaticity during inflation with the generation of grav-
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itational waves. Given the Green function (5.4), we simply calculate the Bogolyubov

coefficients for a given model and this gives us the associated gravity waves produced

via (5.18). Given this contribution to the tensor power spectrum we can then com-

pare to the vacuum source in (5.6) to determine if particle production can lead to a

larger signal.

5.3 Particle Production Mechanisms with Direct

Inflaton Coupling

Any contribution to the production of gravitational waves during inflation, if compet-

itive to vacuum fluctuations, could obstruct the use of observations to determine both

the scale of inflation and whether the waves are of classical or quantum mechanical

origin – with quasi-dS fluctuations exemplifying the latter. In this section we consider

the gravitational waves resulting from the production of fields directly coupled to the

inflaton, and establish constraints for whether such effects can be competitive.

Inflation models in best agreement with existing data are necessarily sensitive to

high energy (UV) physics. Thus, consistent model building requires these models

to be embedded in a UV complete theory, with string theories currently providing

the most developed approach. String theories come with additional fields, strings

and branes, and the importance of these degrees of freedom on the inflation process

has been demonstrated in a number of contexts (see [231] for a review). Among

the anticipated effects, if these states couple to the inflaton during inflation this can

lead to particle production, which in some cases may be expected to generate a large

background of gravitational waves.

Following [233] (see also [213]) our starting point is the action

S =

∫
d4x
√
−g
{

1

2
M2

plR−
1

2
(∂φ)2 − V (φ)

}
+ Sp + Ss + Sint, (5.19)
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where for particle sources we have

Sp = −
∑
p

∫
d4x

∫
dτ δ(4)

(
xµ − xµp(τ)

)
θ(t− tp) m(φ)

√
−gµν(τ)

dxµ

dτ

dxν

dτ
, (5.20)

and the mass m(φ) of the particle depends on the inflaton (and so co-ordinate time

t), tp is the time at which a particle is created, and the argument of the square root is

given by the world line trajectory of the particle and so depends on the proper time

τ . Similarly for string sources one has

Ss = −
∑
s

∫
d4x

∫
d2σ δ(4) (xµ − xµs (σ)) θ(t− ts) T (φ)

√
− det

(
gµν(σ)

dxµ

dσα
dxν

dσβ

)
(5.21)

where the string tension T (φ) can depend on the inflaton and σ = (τ, σ1) are the

induced coordinates on the string world volume and ts is the time of string production.

Sint accounts for any interactions between the inflationary sector and the particles

and strings.

In the rest of the section, we go through several examples of how couplings in

(5.20) can lead to particle and string production during inflation. Our examples

will cover the cases of a scalar and pseudo-scalar inflaton, producing scalar or vector

particles. We will then go on to describe gravity wave production in these models,

and finally constraints from non-Gaussianity and back-reaction.

5.3.1 Scalar Production During Inflation

The time dependent mass and tension appearing in (5.20) and (5.21) can lead to

interesting cosmological implications. In models of moduli trapping [226, 227, 234,

235] the particle production resulting from the scalar’s time dependence was shown

to lead to dynamical stabilization of moduli (massless scalars) that would otherwise

have little or no potential and remain unstablized. When identified as the inflaton,

it was shown in [228, 236] that when accounting for the effects of particle production
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one can obtain slow-roll inflation from potentials that would otherwise not satisfy the

slow-roll conditions. Taking the scalar in (5.20) and (5.21) to be the inflaton we can

capture the dynamics of this production through an effective interaction

Lint = g2(φ− φ0)2χ2. (5.22)

Here φ is the inflaton and χ the spectator field to be produced. Although this in-

teraction is much simpler than what one might expect from (5.20) and (5.21), since

we are treating χ as a simple scalar, it was shown in [233] that this also provides an

adequate description of string and brane production within the low-energy effective

theory.

How generic is such an interaction? Interactions captured by (5.22) generically

occur within the context of string theory and M-theory model building. Common

examples include the presence of new light states (here represented as χ) as the

size of a compact dimension or internal cycle (parametrized by φ) shrink and the

symmetries of the theory become enhanced [227, 234] – i.e. there is an inverse string

Higgs effect. Other examples include when D-branes become coincident, as in models

of brane inflation, and new light states appear4 [226], or near locations in field space

associated with changes in topology [235]. In these and other cases the interaction

is effectively captured by (5.22) where far from the location φ = φ0 the quanta of

χ can be quite heavy and so don’t effect the dynamics. However, as the inflaton φ

approaches φ0 quanta of the χ field can become excited leading to on-shell5 particle

production6.

Given this motivation we are now interested in determining the amount of gravita-

tional waves that could be generated during the creation process, while still allowing

4These new states correspond to open strings stretching between the branes becoming light.
5In this paper we will focus on on-shell production, whereas the interaction (5.22) can also lead

to important off-shell (virtual) effects as discussed first in [237]. Which effect is dominant depends
on whether the theory is in the strong or weak coupling regime as discussed in [226].

6This is analogous to Schwinger pair production in a strong electromagnetic field.
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for successful inflation and being consistent with bound on non-Gaussianity. We first

emphasize that scalar field waves do not produce an appreciable amount of gravi-

tational radiation [232]. Instead, here the expectation of gravity waves comes from

both the creation process and the existence of the particles following creation as

they provide a classical source in (5.3). We emphasize that the created particles are

inhomogenously distributed, on-shell, and are not perturbations7 [232]. Moreover,

the creation process is non-perturbative and cannot be described within standard

methods of linearlized perturbation theory8 [25].

Following the formalism reviewed in Section 2, the interaction (5.22) provides a

time dependent mass in (5.14) where m2
eff(τ) = g2(φ − φ0)2. As discussed there,

particle production occurs when the adiabatic condition fails9, which in this case

implies ω′k/ω
2
k ∼ m′eff/m

2
eff & O(1). As shown in e.g. [226] the production occurs

on time scales small compared to the Hubble time so that gravitation effects are

negligible and if we denote the time of production as τ0 the Bogolyubov coefficients

above for τ > τ0 are

|αk|2 = 1 + exp

(
−π k2

m′eff(τ0)

)
,

|βk|2 = exp

(
−π k2

m′eff(τ0)

)
, (5.23)

where m′eff(τ0) = gφ̄′0 is the time derivative of the effective mass evaluated at the

moment of production and we set a(τ = τ0) = 1. We also note that the coefficients

respect the normalization |αk|2 − |βk|2 = 1 implying that the Bogolyubov transfor-

mation is canonical. The corresponding number density of produced particles is then

7This explains why it is consistent to use the linearized equation for the graviton in (5.3), whereas
we will see that the sources will be quadratic in the created fields.

8It was for many of these reasons that within perturbation theory the production of gravitational
waves would be negligible [223] (see also [232]).

9Within the effective theory, the adiabatic condition can fail either because the particles become
massless or simply because the inflaton undergoes non-adiabatic evolution. In the latter case the
yield of particles depends on the dynamics of the inflaton and the mass scale of the particles to be
produced [238].
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nχ ∼
∫
d3k nk with nk ∼ |βk|2 given by (5.23). The most interesting case will be

when a number of the locations φ = φ
(i)
0 occur, as this will lead to a continuous pro-

duction of gravity waves whereas a single event will lead to an isolated (but perhaps

interesting) signature [213].

The amount of gravitational radiation resulting from both single and multiple

events has been examined taking two different approaches. In [220] the authors (CS)

argued that gravity waves will result from both the production events themselves,

as well as from the existence of χ particles following production – both sources were

found to yield a comparable amount of gravitational radiation. Whereas in [213], the

authors (SSZ) performed estimates adapting the methods of Weinberg [239] to the

time dependent case of interest here and found that the production event along with

gravitational Bremsstrahlung from the inflaton could result in gravity waves. Here

we will qualitatively argue that the two approaches yield similar results, but for the

majority of our calculations we will primarily follow the approach of [220]. The key

will be that in all instances – and independent of the computational method – we

find that if particle production for fields coupled directly to the inflaton is to lead to

an observable gravity wave signal it presents a tension with existing constraints from

Planck on the level of equilateral non-Gaussianity.

To calculate the gravity waves generated from the presence of on-shell χ particles

following production we can use the result for the Bogolyubov coefficients (5.23) and

Green function (5.4) in the correlator (5.18) and we find10

〈hij hij〉 =
δ(k + k′)

2π5k3

(
H

Mpl

)4 ( nχ
H3

)
F (kτ0) (5.24)

with nχ ∼ (m′eff)3/2 = (gφ̄′)3/2 the number density of produced particles in real space

10This result agrees with the correlators in both the adiabatic and non-adiabatic cases studied in
[220].
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and

F (kτ0) ' [kτ0 cos(kτ0)− sin(kτ0)]2

|kτ0|3
× log2

(
n

1/3
χ

H

)
' O(10− 100), (5.25)

the first term results from the two copies of the Green function (5.4) in (5.18) and

peaks around |kτ0| = 2.5 after which it sharply drops off reflecting both the locality of

the production as well as the fact that only gravity waves produced near the horizon

have a chance of contributing significantly to the spectrum11. The second term in

(5.25) is to be evaluated at the time of production and as we will see is typically at

most O(100).

Using the definitions (5.5) and (5.6) the contribution to the tensor power spectrum

from production is then

∆2
t = ∆2

vac

[
1 + 4.8× 10−4

( nχ
H3

)
F (kτ0)

(
H

Mpl

)2
]
, (5.26)

where ∆2
vac = 2H2/(π2M2

pl) is the standard vacuum contribution coming from (5.6).

Before proceeding, let us compare the result (5.24) (and so also (5.26)) with the

estimates found in [213]. From (5.24) we find

h2
cs ∼ h(k)2k3 ∼

( nχ
H3

)( H

Mpl

)4

(5.27)

where hcs is the amplitude in real space and H is the Hubble scale during inflation.

Now let us compare this estimate to the one in [213]. There it was found

h2
ssz ∼

ρGW

ρtot

∼ f
H3

EM3
pl

, (5.28)

11Causality requires gravity wave production to occur on near or sub-Hubble scales and gravity
waves produced on small length scales will undergo significant red-shifting reducing their effects on
observable scales. Thus, production near the Hubble scale will provide the largest contribution to
the tensor spectrum.
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where ρGW/ρtot is the relative energy density in gravity waves, E is the characteristic

energy, and f ∼ Enχ/ρtot is the fraction of waves resulting from the nχ density of

particles. Here the frequency of produced waves was taken as ω ∼ H so no red-shifting

occurred (as we also assumed in (5.27)) and plugging in f we find

h2
ssz ∼ f

H3

EM3
pl

∼

(
E nχ
H2M2

pl

)(
H3

E M3
pl

)
∼
( nχ
H3

)( H

Mpl

)4

∼ h2
cs, (5.29)

and so we see the two approaches agree qualitatively. This result is easily understood

– the production events are independent and so proportional to nχ per Hubble volume

(H3) and the amplitude of each waves is proportional to H2/M2
pl as expected.

We would now like to see if the new contribution in (5.26) can be competitive

with the vacuum contribution ∆2
vac. We define the difference as

∆Pt ≡ (∆2
t −∆2

vac)/∆
2
vac (5.30)

so that ultimately we are interested in whether ∆Pt � 1 is feasible. Given (5.26) we

can already see that a large gravity wave signal is difficult to obtain. In order that the

produced particles nχ don’t ruin inflation we must have at least ρχ = mχnχ � H2M2
pl.

Using this in (5.26) we find

∆Pt ' 10−2

(
H

Mpl

)2 ( nχ
H3

)
� 10−2

(
H

mχ

)
, (5.31)

where we used that F (kτ0) . O(100) and we see that unless the produced scalars

remain far lighter than the Hubble scale a competitive signal is simply not possi-

ble. This requires that the gravity waves are produced at the time the field is light

(mχ � H) and at the time particle production is occurring. But this implies that

the gravity waves will actually be a scale-dependent feature in the spectrum, which is

manifest from the kτ0 dependence in (5.25). Instead we are interested in the continu-

ous generation of gravity waves, which suggests that the multiple production case is
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of more interest.

Requiring the inflaton to copiously and continuously produce particles, while also

providing an adequate number of e-foldings of slow-roll inflation, requires a delicate

approach to model building. However, in models of Trapped Inflation [228] it is pre-

cisely this type of balance (and accounting for the backreaction of produced particles)

that permits slow-roll inflation in the presence of a steep inflationary potential. De-

noting the spacing between the particle production events as ∆ ≡ φi+1−φi, the scalar

power spectrum in this model takes the form [228]

k3

2π2
P trap
ζ =

g7/2Hφ̄′ 1/2

2π2m̃∆
, (5.32)

where m̃2 = 7
2

g5/2

∆ (2π)3 φ̄
′ 3/2.

In addition, the production events generate non-Gaussianity of the equilateral

type, which was estimated in [228] to be

f equil

NL ≈
m̃2

H2
=

7

2

g5/2

(2π)3

φ̄′ 3/2

∆ H2
. (5.33)

Using (5.32) and (5.33) we will be able to place constraints on the level of gravity

waves resulting from particle production events.

As before the largest signal will come from gravity waves produced near the Hubble

scale (more precisely near kτ0 = 2.5) as these modes will suffer less red-shifting before

freeze-out. In addition, as discussed in [228] the production events are independent

and so we can simply add the contributions to the tensor spectrum as

∆P tot
t = Nevents∆Pt, (5.34)

with ∆Pt the contribution from a single event and the number of events within a

Hubble time is roughly Nevents = H−1/∆t = φ̄′/(H∆). Using (5.32) and (5.33) to
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eliminate φ̄′ and ∆ from the tensor spectrum given by (5.26) and (5.34) and we find

∆Pt ' 2.9× 1010 Nevents g
3 |f equil

NL |3/4F (kτ0)

(
H

M2
pl

)2

. (5.35)

Here, F (kτ0) is again given by (5.25) and considering the maximum value at |kτ0| '

2.5, we can parametrize it as

F 1/2(kτ0) ' 4.5 +
2

3
log

[( g

0.01

)( |f equil
NL |
16

)1/4
]
, (5.36)

where we have again used the constraints (5.32) and (5.33). As written, the level

of gravity waves seems to depend sensitively on the model parameters, particularly

the coupling g. However, again using the constraints and noting that the number of

events in (5.35) can also be written as

Nevents = 1.8× 10−3 |f equil
NL |

3/4

g3
' 1.44× 104

(
0.01

g

)3( |f equil
NL |
16

)3/4

, (5.37)

we can reexpress (5.35) as

∆Pt ' 1.2× 10−2

(
F

20

)(
|f equil

NL |
16

)3/2(
H

1012 GeV

)2

, (5.38)

which is only sensitive to the coupling g logarithmically through the dependence in

(5.36). This result tell us that for the fiducial value H = 1012 GeV the tensor vacuum

fluctuations are already larger than particle production contribution hence rules out

particle production as the primary origin. Contribution from particle production

events can be at most made to be at the same order of vacuum fluctuations, e.g

H ' 1013 GeV but the energy scale of inflation (implied by Hubble rate H) in this

case would not be different than what is inferred from vacuum fluctuations (See

equation (5.8)). This can be seen from Figure 5.1 for both single (Nevents = 1) and

multiple production (Nevents � 1) cases. We emphasize that our result (5.38) shows
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|fNL| > 16

Tension with Non-gaussianity

Not Competitive

Nevents> 1 →

7 8 9 10 11 12 13 14
-1
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Figure 5.1: Change in the tensor power spectrum due to particle production ∆Pt (as
defined in the text) vs Hubble rate H during inflation for both the single (Nevents = 1)
and multiple production cases (Nevents > 1). The lightly shaded region (red) repre-
sents a tension with the Planck upperbound on equilateral type non-Gaussianity
(|f equil

NL | < 16), whereas in the dark shaded region particle production is clearly not
competitive with the vacuum contribution. We note that even in cases where the
signal is competitive, this does not necessarily imply a dominant contribution. Thus,
we see that in both cases (single or multiple production) non-Gaussianity puts strong
constraints on the tensor contribution. The multiple production case is rather insen-
sitive to the coupling, but in both cases we have plotted results for g = 10−2 and
|f equil

NL | < 16.

the tension with non-Gaussianity constraints without even invoking model building

constraints within Trapped Inflation. Moreover, as bounds on non-Gaussanity improve

this will strengthen confidence in vacuum fluctuations as the origin of the primordial

tensor spectrum.

5.3.2 Pseudo-scalar Inflaton and Vector Production

A promising candidate for large field inflation is when the inflaton is realized as a

pseudo-Nambu-Goldstone boson (PNGB) associated with the breaking of a global

symmetry at some high scale [173, 240]. As discussed above, the UV sensitivity of

large field inflation emphasizes the importance of realizing models of inflation within
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a high energy framework. Within string theory constructions, PNGB’s naturally

arise from the compactification of higher dimensional gauge fields to four dimensions

[241]. Often the higher dimensional gauge invariance of these fields leads to an an

approximate shift symmetry φ → φ + const. in the 4D low-energy effective theory.

This shift symmetry can be lifted by a number of effects (both tree-level and non-

perturbative) that depend on the details of the compactification [241]. One promising

class of PNGB inflation models are those arising in models of axion monodromy (see

[242] and references within). In these models a large field range for the inflaton is

achieved as branes wrapping the same extra dimensions as the gauge fields lift the shift

symmetry in a controlled way leading to relevant terms in the inflaton potential but

with naturally suppressed coefficients. Other non-perturbative effects can contribute

(such as gauge and brane instantons), but in particular constructions its possible to

arrange for these effects to be parametrically small yielding a viable inflation model.

That is, these string based models realize the idea of natural inflation proposed in

[173, 240] in a technically natural way.

In addition to the inflaton sector, it is natural for PNGB inflatons to couple to 4D

gauge fields. In fact, for any PNGB of inflation it is natural to consider interactions12

of the form

Lint = − 1

4f
φF µνF̃µν , (5.39)

where Fµν = ∂µAν − ∂νAµ is the field strength tensor, F̃ µν ≡ ηµνρσFρσ/(2
√
−g) is its

dual where alternating symbol ηµνρσ is 1 for even permutation of its indices, −1 for

odd permutations, and zero otherwise. The ‘axion’ decay constant is denoted by f .

For an exactly constant field φ this term is a total derivative (i.e. topological), and

so it does not enter the equations of motion. However, during inflation the inflaton

slowly evolves and this interaction leads to an effective tachyonic-like mass term for

12Here we are interested in the case that the inflaton is a pseudo-scalar and so we do not consider
couplings of the type ∼ f(φ)FµνF

µν – see e.g. [215] for these scalar inflaton models. However, we
expect the bounds on the level of gravity waves found in this section and the previous section to be
representative of any inflaton coupled to the fields being produced.
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the gauge field – thus, particle production is possible. We are interested in whether

such a term can lead to significant gravity wave production, while evading the bounds

established for the scalar production case in the last section.

Just as in the scalar case of the previous section, the interaction (5.39) can lead

to particle production13 of gauge fields δA when adiabaticity is violated. Analogous

to (5.13) we have

A′′± + ω2
k(τ)A± = 0 , (5.40)

where ± denotes the transverse polarization. The time dependent frequency of the

field is

ω2
k(τ) = k2 ∓m2(τ, k) , (5.41)

where the tachyonic-like mass term depends on the wave number as

m2(τ, k) =
k ˙̄φ

H|τ |f
,

=
1

2π
√

∆2
s

(
kH

f |τ |

)
' 3.2× 103 k2

(
H

f

)(
1

k|τ |

)
(5.42)

where in the last line we have used the normalization of the scalar power spectrum

∆2
s = 2.2 × 10−9 to eliminate14 ˙̄φ. Assuming ˙̄φ > 0 without loss of generality, it is

easy to see from (5.40),(5.41) and (5.42) that only positive helicity gauge modes A+

are amplified while A− modes stay in the vacuum. For ˙̄φ/(2Hf) ' constant, the

amplification of the positive helicity modes is given by [217, 243]

A+ ∼ e(H/f)/(4
√

∆2
s) for k|τ | <∼ (H/f)/(2π

√
∆2
s) , (5.43)

where the exponential dependence here is consistent with the particle production

coming from a tachyonic instability. The essential physics is that gauge field modes

13See Appendix 5.B for the details of particle production or [216] for a review.
14We note that for comparison with the results in [217, 243], here we have used the COBE

normalization to simplify the ξ ≡ ˙̄φ/(2Hf) parameter of that paper where one would find ξ =
(H/f)/(4π

√
∆2
s).
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with k|τ | <∼ (H/f)/(2π
√

∆2
s) will become violently excited by the interaction as the

tachyonic mass term (5.42) becomes significant in (5.41) in this regime. On the other

hand, this growth saturates deep in the IR k|τ | → 0 (See e.g. equation (5.131)) causing

the “physical” ~E and ~B fields to decay sufficiently far outside the horizon. This can

be seen by the scaling of the physical fields with the expansion, i.e. ~B = (~∇× ~A)/a2

and ~E = − ~A′/a2. Whereas the gravity waves that result from this process will not

decay outside the Hubble radius, but instead become ’frozen-in’ with this process over

time leading to a late time stochastic background of gravity waves. The question is

whether this source is competitive with that of the quasi-dS vacuum fluctuations. To

answer this question, first we need to take into account the constraints arising on

non-Gaussianities and back-reaction produced from the interaction (5.39).

As shown in [217, 243], the NG contribution to cosmological correlators in this

model arises due to the inverse decay processes: δAδA → δφ associated with the

interaction (5.39). This new source of inflaton fluctuations leads to curvature per-

turbations ζ ∼ −(H/φ̇)δφ and non-Gaussianity of the equilateral type. Following

[217] the parameter range of interest implies that the correction to the scalar power

spectrum is negligible and the resulting tensor spectrum in our notation is

∆Pt ' (∆2
s)

3

(
H

Mpl

)2(
f

H

)6

exp

(
H

f
√

∆2
s

)
, (5.44)

Whereas, the equilateral type NG is [217]

|f equil

NL | ' 2.2× 103
(
∆2
s

)11/2
(
f

H

)9

exp

(
3H

2f
√

∆2
s

)
(5.45)

Thus, combining these results and utilizing the Planck result |f equil
NL | < 16 we find a
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bound on the tensor spectrum

∆Pt . 5.5× 103 |f equil

NL |
2/3

(
H

Mpl

)2

,

. 2.3× 10−8

(
|f equil

NL |
16

)2/3(
H

1012 GeV

)2

, (5.46)

and we see it is difficult for this model to account for the gravity wave spectrum while

allowing for a low-scale inflation model.

5.3.3 Summary of Direct Coupling Case

In this section, we have considered particle production resulting from a direct cou-

pling of fields to the inflaton and the resulting production of gravitational waves.

In particular, we were interested in whether the contribution to the tensor power

spectrum from production events could be the leading contribution, since this would

imply that an observation of primordial tensors does not necessarily imply the scale

at which inflation took place.

However, in both the scalar and gauge field cases we have seen that existing

constraints on non-Gaussianity from Planck lead to a tension for model building if

the produced tensor signal is to be competitive with the quasi-dS source. Moreover,

for gauge field production additional constraints from back-reaction make it very

difficult to see how such a source could lead to an alternative origin of gravity waves

for any range of the parameters. For scalar production we saw that multiple events

can improve the situation, however we are left with a small region of the parameter

space near the highest possible inflationary scales. Therefore, even in this special

region, if a substantial signal resulted it would still provide us with information on

the (high) scale at which inflation took place.

Given the direct coupling of the produced fields to the inflaton in these models a

strong level of constraint from non-Gaussianity bounds was anticipated – our results

have quantified this. However, we have also argued that the types of couplings and
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interactions above are generic expectations from the UV perspective, e.g. in the

context of inflationary model building within string theory. One may have asked if

such interactions are around, why have we not seen their gravitational signatures?

Our results imply that these fields can exist and be produced without leading to a

large tensor contribution.

In the next section, we consider gravity wave and particle production in models

that contain fields which are only gravitationally coupled to the inflaton.

5.4 Particle Production Mechanisms with Gravi-

tational Coupling

In this section we would like to explore whether particle production in a hidden

sector which is only gravitationally coupled to the inflaton can lead to a competitive

alternative for generating a primordial tensor spectrum. As in the previous section, we

will again utilize constraints on the back-reaction and on the level of non-Gaussainity

– the latter anticipated to be less stringent since the fields are only gravitationally

coupled.

The system is described by the following action [214, 219]

S =

∫
d4x
√
−g

[
1

2
M2

plR−
1

2
(∂φ)2 − V (φ) + Lhid[∂µχ, χ, F ]

]
, (5.47)

where the field φ is the inflaton and we assume V (φ) can support inflation. Lhid

consists of a pseudoscalar field χ with potential U(χ) during inflation. It is coupled

gravitationally to the inflaton and U(1) gauge field Aµ through an axionic coupling,

Lhid = −1

2
(∂χ)2 − U(χ)− 1

4
FµνF

µν − χ

4f
FµνF̃

µν . (5.48)

The gauge field production is similar to the case in Section 3, except this time the χ

field is responsible for the amplification of the gauge field fluctuations. The tachyonic
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mass term responsible for amplification is now m2(k, τ) = k2 ˙̄χ/(k|τ |Hf) and modes

grow as

A+ ∼ exp[π

√
εχ
2

(
Mpl

f

)
] for k|τ | .

√
2εχ

(
Mpl

f

)
. (5.49)

The parameter εχ is given by εχ = ˙̄χ2/(2H2M2
pl).

Successful model building requires the following conditions:

• The field χ is to be a spectator field implying that

U(χ)� V (φ), ˙̄χ2 � ˙̄φ2. (5.50)

• The energy density of the produced gauge fields must be sub-dominant to the

kinetic energy of χ and this energy should not back-react on the background

evolution of χ. It turns out that the former is a stronger condition than latter

[214, 244]. Therefore we require,

1

2
˙̄χ2 � ρA ≡

1

2
〈 ~E2 + ~B2〉. (5.51)

Using the growing solution of the gauge field mode functions one can show that

this condition gives (See the discussion in Appendix 5.B) [214, 244]

˙̄χ2 � 2.2× 10−3 H4

(
Hf

˙̄χ

)3

exp

(
π ˙̄χ

Hf

)
(5.52)

• Non-Gaussianity constraints from Planck imply |f equil
NL | < 16.

Contrary to the pseudo-scalar inflation case, the inverse decay effects (δAδA → δχ)

associated with the last term in (5.48) do not necessarily produce strong NG cor-

relations. Moreover, as shown in [214, 219, 244] the scalar power spectrum Pζ gets

a negligible contribution from the gauge fields. On the other hand, gravity waves

sourced by vector fields Aµ can dominate over vacuum ones and hence can contribute

significantly to the tensor power spectrum Pt. We will calculate this contribution
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explicitly in Appendix 5.C. The change in the tensor power spectrum is given by

[214, 219, 244]

∆Pt ' 2.8× 10−5

(
H

Mpl

)2(
Hf

˙̄χ

)6

exp

(
2π ˙̄χ

Hf

)
, (5.53)

and the NG is

f equil

NL ' 2.5× 105

(
H

Mpl

)6(
Hf

˙̄χ

)9

exp

(
3π ˙̄χ

Hf

)
. (5.54)

Combining these we find the constraint

∆Pt . 2.2× 105

(
|f equil

NL |
16

)2/3(
1012 GeV

H

)2

, (5.55)

which demonstrates that the tensor signal can be quite large depending on the infla-

tionary scale.

However, we have not yet used the back reaction constraint (5.52). This turns out

to be a much more stringent constraint compared to NG and we find

∆Pt � 5.7× 1014
(εχ
ε

)2
(
H

Mpl

)2

� 102
(εχ
ε

)2
(

H

1012 GeV

)2

, (5.56)

where ε is the usual slow-roll parameter of inflaton and we took a fiducial value for

the ratio εχ/ε that is implied by the condition (5.50). In Figure 5.1, we summarize

the constraints obtained from (5.55) and (5.56). These constraints can also be used

to restrict the axion decay constant f . The requirement of generating a significant

tensor signal implies that the argument of the exponential in (5.49) must satisfy√
εχ
2

(
Mpl

f

)
& 3.5. Using this along with the constraint from (5.50) we have

f

Mpl

� 1.8× 10−2
( ε

0.008

)1/2

, (5.57)
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Figure 5.1: Change in the tensor power spectrum ∆Pt due to (gravitationally cou-
pled) gauge field production as discussed in the text. The red region represents a ten-
sion with the Planck upperbound on equilateral type non-Gaussianity (|f equil

NL | < 16),
whereas in the darkest shaded region gauge field production is not competitive with
the vacuum contribution. The light Blue region corresponds to the constraint coming
from the back reaction of the produced gauge fields on the spectator scalar χ. As
plotted, the above graph is actually conservative as the real constraint requires the
kinetic energy to be much greater than the gauge field energy ˙̄χ2 � 〈 ~E2 + ~B2〉. Given
this caveat, the two white regions represent the available parameter space for the
choices εχ = ε and the more realistic value εχ < ε (εχ < ε < 1 is required for χ to
remain a spectator field.)

where we have chosen a fiducial value for the slow-roll parameter corresponding to

a quadratic potential with N = 60 e-foldings. On the other hand, (5.51) implies

f/Mpl � 8.5× 10−4(ε/0.008)1/2 and so we have

8.5× 10−4
( ε

0.008

)1/2

� f

Mpl

� 1.8× 10−2
( ε

0.008

)1/2

. (5.58)

Thus, we find that this model provides a competitive source of gravity waves for a

narrow region of the parameter space. We now turn to the question of whether such

a model is UV completable.
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5.5 Towards a UV Completion and the Resulting

Constraints from String Theory

We have seen that the most promising case for observable particle production arises

from the gravitationally coupled case. In this section we want to consider the possibil-

ity of UV completing such a model and any additional constraints on model building

that this might imply. In the next few subsections, we gather the tools that will be

required for our analysis.

5.5.1 Axions in Type IIB String Theory

As our starting point we will focus on axions arising from compactifications of Type

IIB string theory. To see how axions arise in the theory, we consider the dimensional

reduction of the theory to four dimensions by starting from the 10D action in the

string frame given by [245]

SIIB10 =
1

(2π)7α′ 4

∫
d10x
√
−G

[
1

g2
s

(
R[G]− 1

2
|H3|2

)
+

1

2
|F3|2

]
+ . . . (5.59)

where GMN is the ten dimensional string frame metric and H3 = dB2 and F3 = dC2

are the NS-NS and RR three-form fluxes, respectively, with B2 and C2 the correspond-

ing gauge potentials and 1/(2πα′) is the string tension. The model independent axion

C0 and dilaton are combined as the axio-dilaton τ = C0 + i/gs where gs = exp(φ0)

is the string coupling and we will take C0 to be fixed and instead concentrate on the

model dependent axions arising from the compactification of the form fields. The ad-

ditional terms represented by dots will be discussed in more detail below and include

higher form fields such as C4 (we will concentrate on C2 axions for now).

The zero modes of B2 and C2 are independent of the co-ordinates of the compact

dimensions and can be integrated over chosen two-cycles of the internal geometry

giving rise to axions in the four dimensional theory. To make this explicit, consider
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compactifying on a Calabi-Yau 3-fold (CY3) and for the form field C2 we make the

ansatz [241]

C2 =
1

2π
cI(x)ωI , (5.60)

where the cI(x) are only functions of the four non-compact space-time dimensions

and I labels the two-cycle. We have introduced the basis forms ωI to describe the

internal geometry and they obey the normalization condition
∫

ΣI
ωJ = (2π)2α′δJI with

the two cycles ΣI giving a basis of the dual homology H2(X,Z). The normalization

factors of 2π are chosen for later convenience. Making a similar ansatz for B2 and

using this in (5.59) we have

S =

∫
d10x

(2π)7α′ 4

√
−G

[
g−2
s

(
R[G]− 1

48π2
GnmGlp∂µbI∂

µbJω
I
nlω

J
mp

)
−

1

48π2
GnmGlp∂µcI∂

µcJω
I
nlω

J
mp

]
, (5.61)

where Greek indices run over the four non-compact dimensions and lower-case latin

indices denote the compact dimensions. At the classical level, the gauge invariance of

the higher dimensional gauge potential implies that the axions can only be derivatively

coupled and so we have a shift-symmetric pseudo-scalar in the low energy theory. This

symmetry can be broken in a number of ways, which we will discuss shortly. Denoting

both types of axions as aI , upon dimensional reduction we find

S4 =

∫
d4x
√
−g
(
M2

pl

2
R[g]− 1

2
γIJ∂µaI∂

µaJ

)
(5.62)

where g is the 4D Einstein frame metric and the 4D reduced Planck mass is

M2
pl =

2V
(2π)7g2

sα
′ , (5.63)

with V = V6/α
′ 3 the string frame volume of CY3. Another common convention is to

instead work with the Einstein frame volume. The 10D string frame is related to the
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Einstein frame by the Weyl rescaling Gstring
MN = exp(φ/2)GEinstein

MN and working in units

of the string length ls = 2π
√
α′ the two volumes are related by VE = (2π)6V/g3/2

s .

For the RR axion the γIJ provide the axion decay constants and depend on the

internal geometry as [241]

γIJRR =
1

6(2π)9α′ 4

∫
ωI ∧ ? ωJ , (5.64)

whereas for the NS axion one gets the same result multiplied by an extra factor of

g−2
s . However, for the remainder of this paper we will restrict our attention to the

RR axion, since (as shown in [246]) the NS axions will suffer an η problem when

moduli stabilization proceeds through non-perturbative effects15. Alternatively, one

could work in perturbative (Large Volume) stabilization scenarios [247].

Once the specifics of the internal geometry are known one can calculate the γIJ

to find the corresponding axion decay constants. This is a non-trivial task, which

requires a full specification of the compactification geometry in a Calabi-Yau manifold.

Mostly, we will be interested in order-of-magnitude estimates of this quantity. This

is the project taken up in [241], where the quantity γIJ was calculated in a variety

of string models assuming compactifications sufficiently symmetric to be amenable to

estimates.

5.5.2 Orientifold Compactification Data and Axion Decay

Constant

In order to proceed with concrete estimates of the axion decay constant and the axion

potential, it is best to locate oneself within a orientifold compactification in which

these quantities can be given in terms of the compactification data.

We will consider an N = 2 IIB compactification on CY3, which has a moduli space

15This is because the NS axion appears explicitly in the Kahler potential and leads to a Hubble
scale mass for the field in the models we will consider. For recent progress on this issue in a different
class of models we refer the reader to [242].
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Mh ×Mv of exactly flat directions. Here, Mh denotes the hypermultiplet moduli

space whileMv is the vector multiplet moduli space. Mh is a quaternionic manifold

whereas Mv is a special Kähler manifold. The dilaton field is a hypermultiplet com-

ponent, implying that the geometry of Mh receives both α′ and gs corrections. The

geometry of Mv, on the other hand, is exact at tree level in both α′ and gs. The

hypermultiplet moduli spaceMh contains a subspaceM0
h which is parameterized by

vacuum expectation values of NS-NS fields, with the RR moduli being set to zero.

At string tree level M0
h has a special Kahler structure that receives nonperturbative

α′ corrections which can be exactly summed using mirror symmetry.

From this N = 2 compactification, we can construct a N = 1 theory by gauging a

discrete symmetry of the form (−1)εFLΩσ where Ω denotes world-sheet parity, FL is

left-moving fermion number and ε takes values 0, 1 depending on the model. Note that

σ : X → X is a holomorphic involution of the Calabi-Yau manifold X which preserves

the holomorphic three-form ΩX up to sign σ∗ΩX = (−1)εΩX . For the purposes of this

paper, we will take ε = 1, which corresponds to theories with O3/O7 planes.

The analysis of [248] tells us that the massless spectrum of N = 1 orientifold com-

pactifications is naturally organized in vector and chiral multiplets. For orientifolds

with O3/O7 planes, there are h2,1
− chiral multiplets which correspond to invariant com-

plex structure deformations of X, h1,1
+ chiral multiplets that correspond to invariant

complexified Kähler deformations of X, and h1,1
− chiral multiplets that parameterize

the expectation values of the two-form fields B2 and C2. Moreover, there is a dilaton-

axion modulus τ . The real Kähler deformations of X pair up with expectation values

of the four-form field C4, giving rise to the h1,1
+ complexified Kähler moduli.

The moduli space of the N = 1 theory is a Kähler manifold. In the limit of

small string coupling and large compactification radius the moduli space is a direct

product of the complex structure moduli, complexified Kähler moduli and a dilaton-

axion factor. The Kähler geometry of the moduli is determined in this regime by

KK reduction of ten dimensional supergravity [248]. For more general values of
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parameters, however, the geometry receives both α′ and gs corrections which does

not preserve the direct product structure. In particular, significant α′ corrections are

expected in nongeometric regions of the Kähler moduli space such as the Landau-

Ginzburg phase [249, 250].

In this paper, we will stay in the geometric phase. The moduli space of the theory

has a direct product structure

M×K (5.65)

where M and K are the complex structure and Kähler moduli space respectively of

the IIB orientifold (X, σ).

To further discuss the geometry of K, it is necessary to introduce certain geometric

data. The Kähler potential is given as KK = −2 lnVE in terms of the dimensionless

volume VE in the Einstein frame. The Kahler form is given by J = vαω
α and the

volume by VE = 1
6

∫
J∧J∧J

(2π
√
α′)6

= 1
6
vIvJvKcIJK , where the triple intersection numbers are

given by

cIJK =
1

(2π
√
α′)6

∫
ωI ∧ ωJ ∧ ωK . (5.66)

The ωI are the basis of the cohomology of H2(X,Z) with normalization
∫

ΣI
ωJ =

(2π)2α′δIJ . The two-cycle volumes vi are functions of the appropriately defined Kähler

coordinates Ti = (3i/2)ρi + (3/4)cijkv
jvk − (3/2)ζi and Gi = (1/2π)(ci − i(bi/gs)).

Here, ζi = −(i/2(τ − τ))cijkG
j(G−G)k and the ci have been defined in (5.60), with

similar expressions for bi.

The axion decay constant can now be extracted in terms of the orientifold data by

noticing that γIJ given in (5.64) is the Kähler metric KGG along the axion direction.

For an axion wrapped on the two-cycle Σ we have [248, 251]

1

l6s

∫
ωI ∧ ? ωJ =

2

3
cαΣΣv

α (5.67)

where vα is the dimensionless volume of the two-cycle in string units, the α index runs

over the number of two-cycles surviving the orientifold projection, Σ is the two-cycle
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wrapped by the axion. Using this and (5.64) the axion decay constants are then

(
fΣ

Mpl

)2

=
gs

8π2

(
cαΣΣv

α

VE

)
(5.68)

As a simple example, if we consider an internal geometry that is highly symmetric

with all two-cycles of equal size Lls then using (5.63) we have (f/Mpl)
2 ∼ gsV−2/3

E .

Thus, we see that requiring the string theory completion of the axion model explicitly

connects the compactification scale VE, the string coupling gs, and the axion decay

constant to the Planck scale. As we will see, theoretical consistency will lead to

requirements such as VE > 1 and gs < 1 (for validity of the geometric regime) leading

to additional constraints on model building.

5.5.3 Stable Five-brane-Anti-brane Systems and Axion Po-

tentials

Given the axion decay constants (5.68), we now turn to the question of their potential

energy. Classically the axions descending from the compactification enjoy a shift

symmetry, however there are a number of ways the symmetry can be broken.

Crucial to our construction will be the presence of either D5 branes or NS5 branes

in the geometry. In this subsection, we discuss various aspects of such geometric

constructions.

The D-brane configuration will consist of a 5-brane wrapping a holomorphic curve

Σ and an anti-5-brane wrapping the image curve Σ′ under the orientifold projection.

We will take Σ and Σ′ to be rigid cycles that do not intersect each other. Under the

orientifold action, the modulus T+ of the even combination Σ+ and the modulus G−

of the odd combination Σ− are projected in. The sizes of the cycles are equal in the

covering space: vΣ = vΣ′ = 1
2
v+, while the odd volume modulus v− is projected out.

By abuse of notation, we will continue to use vΣ to denote the even volume modulus.

In general, one has to be careful about open string fields in the brane / anti-brane
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sector which may destabilize the system. In flat space one would expect the system

to decay and give a supersymmetric configuration of space-filling D3 branes. On a

CY3, the curves Σ and Σ′ can be chosen to be rigid, meaning that the corresponding

wrapped branes have no moduli. For branes that are sufficiently far apart, the open

string spectrum is not expected to contain tachyons. The attractive force will be

weak, resulting in a metastable state which can only decay through tunnelling effects

16.

The situation is best studied by taking a simple potential for the system. We

will be interested in the case where Σ and Σ′ are part of a one parameter family of

holomorphic curves E . The effective dynamics of the brane system can be described

by a single chiral superfield ζ, which corresponds to normal deformations of the brane

wrapping Σ. This can also be identified as the normal deformations of the anti-brane

wrapping Σ′. The effective dynamics of the system can be described by a potential

of the form

V (r) = m(r − r0)2 + c ln

(
r

r0

)
, (5.69)

where r is the distance between the two branes. The first term is a quadratic mass

term corresponding to normal deformations of the brane in the ambient CY3. The

second term is a typical two dimensional brane / anti-brane attractive potential. We

expect m, r0 to be approximately the string scale. Then, if c ∼ 10−2 the attractive

force will be negligible. The well-known logarithmic attractive potential has been

previously pointed out in the case of axion monodromy inflation in [253].

We will not aim for a greater degree of precision than the above arguments, and

assume that there is a region in configuration space where the destabilization is small.

From the perspective of the string landscape, this makes sense; by scanning over

fluxes, one can explore all regions of configuation space, and the vacuum solutions

16There is an added layer of complication for branes with magnetic fluxes. There is a tachyonic
contribution to the mass of the lightest open string modes that is proportional to the supersymmetry
breaking parameter, which is given by the relative phase between the central charges of the D5 and
the induced D3 [252]. However, this tachyonic contribution is usually small. We will explore these
issues soon for the brane construction of the χ sector.
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which are in the regime of instability are discarded.

Branes wrapping the corresponding cycle of the axions can induce monodromies,

which leads to a mechanism realizing theoretically self-consistent, large field, slow-roll

inflation (see [242] and references within). Let us consider the potential generated

by axion monodromy, again focusing on RR axions descending from C2. For these

axions the symmetry can be broken by considering a NS5-brane with two directions

wrapping the two cycle Σ associated with the axion. The resulting potential is given

by the Born-Infeld action [246]

V (ca) =
εwarp

(2π)5g2
sα
′ 2

√
l4 + (2πgsca)2, (5.70)

where εwarp captures the possible effects of warping, l
√
α′ is the size of the two-cycle

and we see for ca � l2/(2πgs) the potential is linear in ca – the shift symmetry has

been broken by the presence of the wrapped brane leading to a linear potential for

the axion.

In addition to the monodromy effect, D-brane and world sheet instantons can

break the shift symmetry of the axion. Such corrections should be generically expected

and imply a contribution to the potential

∆V (χa) =
∑
i

Λ4
i cos(χa/fa), (5.71)

where we introduce the canonically normalized field χa = cafa and we must sum over

all such contributions that give a significant contribution to the potential. These

contributions break the continuous shift symmetries to discrete ones with χa → χa +

2πfa, and such terms can lead to additional important contributions to the potential

and so must be checked against (5.70) and the slow-roll conditions.

We now turn to the question of D3 charge and tadpole cancellation in these
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models. The induced D3 charge on the NS5-brane is given by

ND3,induced =
1

(2π)2α′

∫
Σ

C2 . (5.72)

This quantity turns out to be given by ND3,induced = φ
2πf

, where φ denotes a generic

field that may be the inflaton. Thus, ND3,induced can be quite large in the case when

φ is the inflaton and φ
f
� 1.

Suppressing the energy density of the wrapped brane to match observations will

force us to place the branes in warped throats. Thus, there is a D3 charge contribution

coming from the warping. We will denote the D3 charge of the throat by ND3,throat.

The total D3 charge of the system is then given by

ND3,total = ND3,induced +ND3,throat . (5.73)

This will be cancelled by the orientifold action that wraps an anti-5-brane on the

cycle Σ′ in a throat with anti-D3 charge given by −ND3,throat.

5.6 A String Model of Gauge Field Production

In the last Section, we have gathered all the tools required for our construction. In

this Section, we will give a string construction that realizes the model of gravity wave

production discussed in Section 5.4.

We will begin by sketching how such a setup is achieved within the string com-

pactification and the model building constraints that result. Crucial to gauge field

production (for the purposes of our model, and more generally for realistic reheating

in these classes of models) will be the introduction of magnetized 5-branes in the

CY3 geometry. In the next subsection, we will discuss this topic. We will then de-

scribe the inflaton and spectator field dynamics in terms of UV data, and give the

UV constraints that appear in our construction.
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Figure 5.1: A cartoon of the model for gauge field production from a sector χ that is
gravitationally coupled to the inflaton φ.

Recall from Section 5.4 that we are interested in an inflationary sector that success-

fully provides at least 60 e-folds of inflation, coupled only gravitationally to spectator

fields. The action was

S =

∫
d4x
√
−g

[
1

2
M2

plR−
1

2
(∂φ)2 − V (φ) + Lhid[∂µχ, χ, F ]

]
, (5.74)

Lhid = −1

2
(∂χ)2 − U(χ)− 1

4
FµνF

µν − χ

4f
FµνF̃

µν , (5.75)

where φ was the inflaton and χ and Fµν were spectator fields.

Given both the axion decay constant (5.68) and potential energy (5.70) and en-

suring that the oscillating contribution (5.71) is subdominant, we can construct a

slow-roll inflation model as done in [246, 251].

A sketch of our construction is provided in Figure 5.1. We will be interested in a
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compactification with

h1,1
− ≥ 2 . (5.76)

The inflaton sector is engineered by wrapping an NS5-brane on a cycle Σ1 that

supports the axion φ. Under the orientifold action, an anti-NS5-brane wraps a cycle

Σ′1 for tadpole cancellation.

We note that placing the cycles Σ1 and Σ′1 in warped throats is necessary to

suppress the inflationary potential energy coming from the wrapped NS5-brane and

match the COBE normalization. The curves Σ1 and Σ′1 are thus members of a one

parameter family of holomorphic curves E1 which extends down a warped throat (we

denote this throat by T1).

Similarly, the sector χ responsible for gauge field production is engineered on

cycles Σ2 and Σ′2 that are members of a one-parameter family of holomorphic curves

E2. This family extends down a different warped throat T2, and we assume that E1

and E2 do not intersect. This enables our system to satisfy the requirement that the

two sectors are only gravitationally coupled. One can ask how generic such a set-up

is. Such multi-axion models that are coupled only gravitationally can be generically

anticipated given the large number of two-cycles within a typical CY3 geometry.

Indeed, this fact helps motivate the notion that monodromy inflation could proceed

via two or more axions – an idea first pursued in [254].

We need to couple the χ field to gauge fields in our low energy Lagrangian. Given

a gauge field F on the brane, the desired operator descends from a Chern-Simon’s

term ∫
C2 ∧ F ∧ F (5.77)

upon compactification to 4D [241]. In the context of axion monodromy model building

such a term has already been considered for; gauge field production associated with

the inflaton sector17 [216], as a way to reheat at the end of inflation [255], and as a

17In [216] the authors considered gauge field production in the case where inflaton is coupled
directly to gauge fields, which as discussed in Section 5.3 is in tension with existing bounds on

162



possible constraint from CMB rotation when the axion corresponds to a quintessence

field [256].

We note that phenomenological requirements such as a visible sector with chi-

ral matter (and/or obtaining acceptable reheating into visible sector fields) will in

general require us to turn on fluxes on the branes supporting the inflaton and the

gravitationally coupled field χ. To illustrate this, we consider an example where χ

couples to an appropriately constructed visible sector, and turn on magnetic flux on

the 5-branes wrapping Σ2 and Σ′2. We will prefer to turn on an effective D3-brane

charge p:
1

2π

∫
Σ

F = p− 1 .

It is important to perform a number of checks when introducing brane fluxes into the

system. We now turn to a discussion of the subtleties that arise.

5.6.1 Magnetized 5-Branes in Orientifold Compactifications

Magnetized branes in type IIB have a long history in the context of building semirealis-

tic string vacua with chiral matter. These models are T -dual to models of intersecting

D6-branes in type IIA. Chiral matter is vital in any phenomenological construction

of low-energy physics, as well as any realistic reheating model based on axion mon-

odromy inflation. We refer to [257] for a review of the T -dual intersecting brane

models, and to [258] for the type IIB picture in toroidal models 18.

For our purposes, we will require magnetized 5-branes in CY3, going beyond the

simple toroidal picture. We will mainly follow [252] in our treatment. Although we

will be describing everything in the language of D5-branes, it can be adapted to the

case of NS-branes as well.

Starting with the N = 2 theory, it is clear that the system breaks tree level

non-Gaussianity from Planck.
18We also refer to [259], [260], [261], [262] for a sample of the literature on toroidal magnetized

brane models.
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supersymmetry since the brane and anti-brane preserve different fractions of the bulk

N = 2. The N = 1 supersymmetry preserved is determined by the central charge of

a brane. For the brane and anti-brane, the central charges are respectively

Z+ = ZD5 + pZD3, Z− = −ZD5 + pZD3 . (5.78)

The phases of Z+ and Z− are not aligned for any deformation of the bulk Kahler

structure away from the ZD5 = 0 locus, leading to breaking of brane world-volume

supersymmetry. This breaking can be described by supergravity D-terms at weak

string coupling and in a small neighborhood of the marginal stability locus ZD5 = 0

in the Kahler moduli space 19. The Fayet-Iliopoulos couplings in the low energy gauge

theory have been used to construct de-Sitter vacua in for example [263], where back-

ground fluxes and non-perturbative superpotential contributions fix moduli, followed

by an uplift utilizing D-terms from D7-brane fluxes.

We note that the supersymmetry breaking is best parametrized by the parameter

θ given by the relative phase between the charge Z+ = ZD5 + pZD3 and ZD3

θ =
1

π
(Im lnZ+ − Im lnZD3) . (5.79)

The parameter θ has a minimum at the Landau-Ginzburg point in the non-geometric

phase [252].

In our case, we will not be interested in studying supersymmetry breaking effects.

We will remain strictly in the geometric phase for our model for the gauge field

production mechanism we are interested in. The supersymmetry breaking induced by

the inflaton sector will in any case be more dominant than D-term contributions from

brane flux. However, in a detailed reheating model after the end of inflation based on

this class of models, it would be necessary to take into account any supersymmetry

19For large deformations from the locus of marginal stability, string field theory computations are
required to accurately calculate the brane dynamics.
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breaking effects carefully. It may be useful then to stay near the large complex

structure limit in the complex structure moduli space, and utilize mirror symmetry

to situate the calculations in the supergravity limit of the mirror type IIA. We leave

these considerations for future work.

As noted before, there is a small subtlety in the brane-anti-brane stability issues

we had studied earlier. The dynamics of the brane are encoded by fluctuations of the

embedding map i : Σ ↪→ X, which are described by sections ζ of the normal bundle

NΣ/X of Σ+. As described in (5.69), a stable system can generally be obtained. How-

ever, according to the Π-stability analysis of [252], there is a tachyonic contribution

to the mass of the lightest open string modes between the brane-antibrane pair that is

proportional to θ. Since the curves Σ2 and Σ′2 are isolated, the positive contribution

to the mass of the open strings should be typically much larger than the tachyonic

contribution θ.

We now turn to the issue of moduli stabilization and superpotential terms in

the presence of branes with fluxes. In the bulk CY3, we will be utilizing a usual

background RR flux compactification [264], [265]. However, we now have to take

into account the superpotential contribution from the magnetized brane. Brane-flux

superpotentials have been studied in [266], [267], and in the context of F -theory in

[268]. For D5-branes, we refer to the detailed work of [269] and references therein.

Here, we summarize the essential points that are relevant for us. The main point

is that at the level of the superpotential, one should use a combined brane-RR flux

superpotential given by

W =

∫
X

F3 ∧ Ω +WD5 , (5.80)

where WD5 is in general a function of the deformation moduli ζ, the complex structure

moduli of the CY3, and the brane flux F 20. For our purposes, we will assume

20We note that the superpotential is not generally separable in the form given in (5.80). This
is possible in special cases, for example if X contains a connected family of holomorphic curves
interpolating between Σ and Σ′. For simplicity, we will assume that this is the case, and refer to
[266] for more details.
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that tuning the background RR-fluxes and brane flux appropriately in the combined

superpotential W will stabilize the complex structure moduli.

Before moving on, we mention several other caveats to this analysis. We have

not explicitly discussed the case of turning on flux on the cycles Σ1 supporting the

inflaton, as would ostensibly be required for reheating. It would be interesting to

compute the effect of brane flux on the slow-roll conditions. Moreover, our inflaton

sector is present in a warped throat with background D3 charge. Generally, the

magnetized D5 and background D3 should attract each other and the system should

decay to a state where the D3 has been converted to magnetic flux on the D5. It

would be interesting to compute the relevant stability conditions.

In the next subsection, we discuss the microscopic parameters in the inflaton and χ

sector potentials. We then go on to a discussion of the consistency of the construction.

5.6.2 Microscopic Parameters in the Inflaton and Hidden

Sector

In this subsection, we write down the potential for the inflaton and χ sectors using

the microscopic data we have developed till now.

The action of the inflationary sector is

Sinf =

∫
d4x
√
−g
{

1

2
(∂φ)2 − µ3

φφ

}
+ corrections, (5.81)

where we have labeled the canonical inflaton arising from the RR axion as φ = fφc

with the corresponding decay constant following from (5.68)

(
fφ
Mpl

)2

=
gs

8π2

(
cαΣ1Σ1v

α

VE

)
(5.82)

with the sum running over the remaining two-cycles of the compactification. Express-
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ing (5.70) in terms of the canonical field φ the parameter µ is then

µ3
φ =

ε(warp,φ)

gs(2π
√
α′)4fφ

, (5.83)

As shown in [246] adequate inflation and accounting for the COBE normalization

requires µ ' 6.4× 10−4. Warping in the throat T1 can enable enough suppression of

the inflationary energy to match observations.

Given the inflationary sector, we now turn to the spectator field (χ) responsible

for the gauge field production. Recall from Section 5.4 that we require this field to be

slow-rolling as well. In our construction, we achieve this by introducing an additional

axion wrapped around a cycle Σ2 belonging to the non-intersecting family E2. The

monodromy term, in conjunction with an appropriate choice of the warping in throat

T2, can then be used to ensure that this field is (a) slow-rolling meeting the model

building requirement that εχ � ε� 1 and (b) sub-dominant in energy density to the

inflaton sector 21.

Denoting the warp factor of the spectator by ε(warp,χ), and keeping in mind that

we require ε(warp,χ) � ε(warp,φ), the spectator sector is then specified by the decay

constant (
fχ
Mpl

)2

=
gs

8π2

(
cαΣ2Σ2v

α

VE

)
(5.84)

with the sum running over the remaining two-cycles of the compactification, and the

potential from (5.70) is

µ3
χ =

ε(warp,χ)

gs(2π
√
α′)4fχ

, (5.85)

The low-energy description is completed once the brane flux F is turned on. The

21Strong warping can lead to additional corrections to the monodromy potential [256], as well
as altering expressions like the Planck mass in (5.63). Here we will be interested in mild warping
and work in the approximation utilized in [270], where it was shown that in the region of interest
warping effects can be safely ignored.
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Chern Simon’s term connects χ and F , with an action given by

Sgauge =

∫
d4x
√
−g
[
−1

4
F 2 − 1

4
αbraneχFµνF̃

µν

]
(5.86)

The coupling α is given by

αNS5 =
C0g

2
s

(2π)2fχ
, (5.87)

αD5 =
2πg

1/2
s

vΣ2fχ
, (5.88)

depending on whether we use D5 or NS5 branes.

We note that the coupling matches the notation of [241] up to factors of 2π coming

from how the four dimensional gauge kinetic term is defined.

5.6.3 Consistency Conditions

In this subsection, we will take the most important conditions on the microscopic

data required to build the specific model in Section 5.4. We must ensure that the

low energy constraints outlined in Section 5.4 are satisfied, and also that the string

construction is under control.

The microscopic data that determines the model by fixing the values of the quan-

tities (fφ, fχ, µφ, µχ) in the low-energy Lagrangian is given by

Microscopic data : (cαΣ1Σ1 , cαΣ2Σ2 , ε(warp,φ), ε(warp,χ), v
α, VE ) (5.89)

In the Appendix, we list the possible corrections to slow roll and back-reaction effects

on moduli stabilization, and the methods employed in the literature to build consistent

inflationary models in these scenarios. These conditions are not particularly specific

to the model we are building; rather, they must generally hold in axion monodromy

models in type IIB compactifications. Before we proceed, lacking a full-fledged CY3

168



construction, we will make the simplifying assumption that all intersection numbers

satisfy

cαΣ1Σ1 , cαΣ2Σ2 ∼ O(1) . (5.90)

A statistical analysis following the work of Kreuzer-Skarke is also possible (we refer

to [271] for an accessible recent review).

The first condition we require is that the χ sector energy density is sub-dominant

to the inflaton sector. This can be satisfied by choosing

ε(warp,χ) � ε(warp,φ) (5.91)

The second condition that we found in Section 5.4 is that the axion decay constant

fχ should lie in the range given by (5.58). As it turns out, the condition on the

axion decay constant is intimately connected to the question of keeping α′ corrections

under control, so that we remain in the supergravity regime as outlined in Section

5.5.2. This condition reduces to keeping the volume of the CY3, and in particular,

the volumes of the two-cycles, large enough to remain in the geometric regime.

The issue is not only one of computability in the geometric regime. In princi-

ple, one has to check whether D5 and D3 branes are stable BPS states in the non-

geometric regime. The stability of BPS states in non-compact CY3 has been studied

in [272], [273], [274]. The situation is less clear in compact CY3 manifolds. We will

avoid this problem by remaining close to the large radius limit. This condition can be

placed in a number of ways. For example, following the classic work of [275], the α′

corrections to the volume in the Einstein frame can be obtained in terms of the Hodge

numbers of the CY3, which will translate into a condition on fχ. We will find it more

useful to use the approximation outlined in [251]. Controlling worldsheet instanton

corrections, the limit obtained is

vα >
1

π
√
gs
. (5.92)
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This will give a lower bound on fχ, thus giving us

g
1/4
s

(2π)3/2
√
VE

<
fχ
Mpl

< 1 . (5.93)

We note that there is a constraint on fχ coming from requiring that the induced

D3-brane charge ND3,induced (which depends on fχ through (5.72)) be small enough

to keep our model local and not distort the throat geometry. This is outlined in the

Appendix. However, this condition is milder than (5.93).

To agree with the lower bound in (5.58), we require from (5.93)

VE > 106 · g
1/2
s

(2π)3
. (5.94)

Taking taking gs ∼ 0.1, one obtains VE >∼ 1000. Even without going into the details

of moduli stabilization, it is clear that this is a sensible condition which should be

easy to satisfy in a typical compactification. We thus reach the conclusion that there

is no general obstacle to realizing the model in a string construction.

5.7 Conclusions

In this paper we have considered whether particle production and non-adiabaticity

during inflation can lead to a competitive source of primordial gravity waves during

inflation. In all of the examples we considered, we found that even when these events

lead to a detectable level of B-modes that the scale of inflation must be quite high.

Stated another way, polarization observations would still be teaching us about the

scale of inflation. We identified the most promising case as models where the spectator

fields are gravitationally coupled. We then considered the UV completion of these

models in the context of Type IIB flux compactifications with Axion Monodromy. The

embedding served two purposes. Firstly, although we saw that the range in which the

axion decay constant leads to phenomenologically interesting results is quite narrow,
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there seems to be no obvious obstruction to realizing the setup in string theory.

Indeed, for weakly coupled constructions the primary model building requirements

are mild warping and requiring the overall volume to be about a 1000 times the string

scale – both conditions easily accommodated in typical compactifications. Secondly,

through the UV completion we have argued that it is possible to suppress dangerous

sinusoidal terms that are known to spoil the gauge field production. Although a

more detailed investigation is needed, this provides further support for the gauge

production models that have been considered in the literature. As we note in the

text, these models could also provide an interesting approach to reheating at the end

of inflation in models of Axion Monodromy.

In summary, we find that although there can be competitive sources to the quasi-

deSitter background for the origin of primordial B-modes, it seems challenging to

vastly separate the scale of inflation from that implied by CMB polarization mea-

surements. In other words – yes! – we can really determine the scale of inflation.
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Appendix

5.A ADM formalism

We focus on the action for the matter Lagrangian minimally coupled to Einstein

gravity

S =

∫
d4x
√
−g
[
M2

pl

2
R− 1

2
(∂φ)2 − V (φ)− 1

2
(∂χ)2 − U(χ)− 1

4
F 2 − χ

8f

ηµνρσ√
−g

FµνFρσ

]
.

(5.95)

The analysis we present in this appendix can be directly applied to direct coupling

case we consider in section 5.3.2 by identifying χ→ φ. In order to study cosmological

perturbations, we write the metric in the ADM form,

ds2 = −N2dt2 + ĝij
(
dxi +N idt

) (
dxj +N jdt

)
, (5.96)

where ĝij is the spatial 3-metric defined on constant time surfaces. In this parametriza-

tion, the lapse N and shift vector N i appear as Lagrange multipliers and hence can

be integrated out from the action (5.95). To study the fluctuations around the infla-

172



tionary background we consider the following gauge-fixing conditions

φ(t, ~x) = φ̄(t) + δφ(t, ~x),

χ(t, ~x) = χ̄(t) + δχ(t, ~x),

ĝij = a2(t) [δij + hij] ,

A0 = ∂iAi = 0 (5.97)

where hij is transverse and traceless, i.e. hii = ∂ihij = 0. We can now expand

the action at a desired order to solve for N and N i in terms of δφ, δχ, hij and Ai

perturbatively. Note that by our gauge choice above and due to the fact that gauge

fields do not contribute to the background evolution, solutions to lapse function and

the shift vector can not start linear order in Ai and hij. Therefore schematically we

expect

N = N(δφ, δχ) +O(h2, A2), (5.98)

N i = N i(δφ, δχ) +O(h2, A2). (5.99)

In addition, to obtain the action upto third order in fluctuations δφ, δχ, hij, Ai, it is

enough to solve the lapse and shift to first order in fluctuations [37]. First, we begin

by writing the gravity sector in the ADM form

Sg =
1

2
M2

pl

∫
d4x
√
−g R =

1

2
M2

pl

∫
d4x

√
ĝ N

[
R(3) +

1

N2
(EijEij − Ei

i
2)
]
, (5.100)

where R(3) is the 3 curvature associated with the spatial metric ĝij and Eij is related

to the extrinsic curvature of constant time slices,

Eij ≡ NKij =
1

2
[∂tĝij − ∇̂iNj − ∇̂jNi] , (5.101)

R(3) = ĝik∂lΓ
l
ik − ĝik∂kΓlil + ĝikΓlikΓ

m
lm − ĝikΓmil Γlkm, (5.102)
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with the connection

Γkij =
1

2
ĝkl (∂iĝjl + ∂j ĝil − ∂lĝij) . (5.103)

Here, ∇̂i is the covariant derivative with respect to 3-metric ĝij. Noting our gauge

choice (5.97) for the spatial metric and its inverse ĝij = a−2[δij − hij], up to second

order in fluctuations we have

Sg = M2
pl

∫
d4x a3

[
3H2δN − 3H2δN2 − 2HδN∂iN

i +
1

8

(
ḣijḣij −

∂khij∂khij
a2

)]
.

(5.104)

We can neglect the higher order terms in the gravity sector as they are slow-roll

suppressed compared to the interactions of the form O(hAA) in the matter sector.

Next, we focus on the action in the scalar sector neglecting pseudo-scalar coupling

in (5.95) for now. As both scalar fields couple gravity minimally, their action will

have the same form. Therefore we will refer to both scalar fields collectively using

X = {φ, χ} with potentials VX = {V, U}. Expanding the scalar action up to second

order in fluctuations, we have

SX =

∫
d4x a3

{
1

2

[
δẊ2 − (∂iδX)2

a2

]
− 1

2
V ′′X(X̄)δX2 − ˙̄XδẊδN

+
1

2
˙̄X2δN2 + ˙̄XN i∂iδX − V ′X(X̄)δXδN

}
(5.105)

Considering S =
∑
SX + Sg, one can vary the action with respect to δN and N i to

obtain solutions for lapse and shift in terms of the scalar fields as,

2HM2
pl δN =

∑
˙̄XδX, (5.106)

−2HM2
pl ∂iN

i =
∑

˙̄XδẊ +
∑

V ′X(X̄)δX +
(

6H2M2
pl −

∑
˙̄X2
)
δN.(5.107)

Plugging the constraint equation back in the actions (5.100) and (5.105), we obtain
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the following second order action for scalar fields,

S
(2)
X =

1

2

∫
d4x a3

{[
δẊ2 − (∂iδX)2

a2

]
−m2

XδX
2

}
,

m2
X = V ′′X(X0) +

(
3−

∑ ˙̄X2

2H2M2
pl

)
˙̄X2

M2
pl

+
2 ˙̄XV ′X(X̄)

HM2
pl

. (5.108)

In addition to diagonal mass terms we have mass mixing terms between two sectors at

second order in fluctuations. These mixing terms that are induced by the background

evolution of the fields can be described by the action,

S
(2)
XX′ = −1

2

∫
d4x a3 Ω δXδX ′,

Ω = 2

(
3−

∑ ˙̄X2

2H2M2
pl

)
˙̄X ˙̄X ′

M2
pl

+
2
∑ ˙̄XV ′X(X̄)

HM2
pl

. (5.109)

Here, pairs of the form XX ′ denotes χφ or φχ. Also note that in deriving these

expression we have used the background equations

¨̄X + 3H ˙̄X + V ′X(X̄) = 0, (5.110)

−2ḢM2
pl =

∑
˙̄X2. (5.111)

As far as φ and χ sector concerned, it is not neccessary to consider cubic and higher

order interactions as these interactions will be either slow-roll suppressed through

the derivative of potentials V (n), U (n) with n ≥ 3 or via non-linear mixings with

gravitational fluctuations N and N i (e.g. see (5.106) and (5.107)). Particularly, in

the presence of particle production in the gauge field sector, these interaction will

be overshadowed by direct couplings to gauge fields Ai or by the ones induced by

gravity, i.e. terms of the form O(δgAA). Our aim in the next section is to focus on

these interactions that arise from the last two terms in the action (5.95).
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Gauge Field Sector

We are interested the part of the action (5.95) that includes gauge fields and its

interaction with the spectator sector χ and gravitational fluctuations δN,N i and hij,

S =

∫
d4x
√
−g
[
−1

4
FµνF

µν − χ

8f

ηµνρσ√
−g

FµνFρσ

]
. (5.112)

Keeping in mind the gauge fixing conditions A0 = ∂iAi = 0, hii = 0, we have the

following second order and third order actions

S
(2)
A =

∫
d4x a3

{
1

2a2
ȦiȦi −

1

2a4
∂jAi ∂jAi +

˙̄χ

a3f
εijk ∂jAk Ai

}
, (5.113)

SAAχ =

∫
d4x

{
− δχ

f
εijk Ȧi ∂jAk

}
, (5.114)

SgAA =

∫
d4x a3

{
− δN

2a2
ȦiȦi −

δN

4a4
FijFij −

N i

a2
ȦjFij

}
, (5.115)

ShAA =

∫
d4x a3

{
− 1

2a4
hij

[
a2ȦiȦj + εilm εjnp ∂lAm ∂nAp

]}
(5.116)

Here, through the terms in the third action above, SgAA, more interactions between

scalar sector and gauge fields arise. First two of these interactions are trivial to write

down using (5.106) in (5.115),

SgAA ⊃
∫

d4x a
∑
X

˙̄X

HM2
pl

δX

{
− 1

4
ȦiȦi −

1

8a2
FijFij

}
. (5.117)

The last term in (5.115) requires several integration by parts together with usage of

background equations (5.110). This procedure leads to

SgAA ⊃
∫

d4x a
∑
X

˙̄X

2HM2
pl

δX

{
∂−2∂t∂i

(
ȦjFij

)
+H ∂−2∂i

(
ȦjFij

)}
. (5.118)
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By switching to conformal time dτ = dt/a and using the definitions of Electric and

Magnetic fields Bi = a−2εijk∂jAk, Ei = −a−1Ȧi, we can re-write the interactions in

(5.118), (5.117) and (5.114) in a simpler form

SgAA ⊃ −
∫

d3x dτ
∑
X

˙̄X

2HM2
pl

δX

{
∂−2∂τ

(
a4~∇.( ~E × ~B)

)}
, (5.119)

SgAA ⊃ −
∫

d3x dτ a4
∑
X

˙̄X

2HM2
pl

δX

{
~E2 + ~B2

2

}
, (5.120)

SAAχ =

∫
d3x dτ a4 δχ

f
~E. ~B, (5.121)

which agrees with [217]

5.B Gauge Field Production

Using the gauge field action in Coulomb gauge (5.113), the equation of motion of

gauge fields in conformal time can be written as

A′′i − ~∇2Ai −
a ˙̄χ

f
εijk ∂jAk = 0. (5.122)

Following the standard canonical quantization methods, we can promote the gauge

field to a quantum field Âi with the following decomposition

Âi(τ,x) =

∫
d3k

(2π)3/2
eik·xÂi(τ,k) =

∑
λ=±

∫
d3k

(2π)3/2

[
ελi (k)Aλ(τ, k)âλke

ik·x + h.c.
]
,

(5.123)

where “h.c.” denotes the Hermitian conjugate of the preceding term and the annihi-

lation/creation operators satisfy

[
âλk, â

†λ′
k

]
= δλλ

′
δ(k− k′). (5.124)
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We also note the relations helicity vectors are obeying kiε
±
i = 0, εijk kj ε

±
k = ∓ikε±i ,

ε±i ε
±
i = 0 and ε±i ε

∓
i = 1. Plugging the decomposition in equation (5.123) in (5.122),

we write the equation of motion in Fourier space as

A′′± +

(
k2 ± 2k

˙̄χ

2Hfτ

)
A± = 0, (5.125)

where we took the scale factor as a(τ) ' −(Hτ)−1 ignoring slow-roll corrections arise

in quasi-dS space. For −∞ < τ < 0 and ˙̄χ > 0, positive helicity modes are unstable

and the solution that reduced to adiabatic vacuum at early times, i.e. A+ → 1√
2k
e−ikτ

as −kτ →∞, is given in terms of Coulomb functions

A+(τ, k) ' 1√
2k

[G0(ξ,−kτ) + iF0(ξ,−kτ)] , (5.126)

where ξ ≡ ˙̄χ/2Hf . The approximate equality in (5.126) above is because we have

asuumed that the dimensionless measure of field velocity ξ evolves adiabatically com-

pared to the expansion of space time, i.e. ξ̇/ξH � 1, implying

¨̄χ
˙̄χH
− Ḣ

H2
� 1. (5.127)

Further simplifications on the form of the solution (5.126) arise in the limit where

ξ � −kτ ,

A+ '
√
−τ
2

[
2eπξ π−1/2K1(

√
−8ξkτ) + ie−πξ π1/2I1(

√
−8ξkτ)

]
, (5.128)

where I1 and K1 are modified Bessel functions of first and second kind. Since in-

teresting phenomenology due to gauge field production arise for ξ & O(1), we can

further simplify this solution by taking the large argument limit of Bessel function,
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−8ξkτ � 1,

A+ '
1√
2k

(
−kτ
2ξ

)1/4

eπξ−2
√
−2ξkτ +

i√
2k

(
−kτ
25ξ

)1/4

e−πξ+2
√
−2ξkτ . (5.129)

In order to make these approximations to work simultaneously, it is require that

ξ > 1/4. On the other hand, one can further check that these solutions satisfy the

condition

A′+ =

√
2kξ

τ
A∗+, (5.130)

corolarly with Wronskian condition A+A
′∗
+ − c.c. = i. We also note that the growth

of A+ modes saturates deep in the IR. This can be seen by taking the limit −kτ → 0

in (5.128), leading to

A+ →
eπξ

2
√
πξk
≈ const. (5.131)

We will see this saturation of the particle production from the perspective of energy

density contained in the gauge fields which we now turn in the following section.

Expectation values involving gauge fields

The expressions we are interested in is the energy density contained in gauge fields

ρA and the expectation value of the dot product between Electric and Magnetic field

〈 ~E. ~B〉

ρA ≡
1

2
〈 ~E2 + ~B2〉 =

1

4π2a4

∫
dk
{
k2|A′+|2 + k4|A+|2

}
,

〈 ~E. ~B〉 = − 1

4π2a4

∫
dk k3 d

dτ
|A+|2 (5.132)
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For convinience we can write-down both integrands as quantities defined per loga-

rithmic wave-number by using A+ = (
√

2k)−1Ã(x) where x ≡ −kτ ,

1

H4

dρA
d lnx

=
x4

8π2


∣∣∣∣∣dÃdx

∣∣∣∣∣
2

+ |Ã|2
 , (5.133)

1

H4

〈 ~E. ~B〉
d lnx

=
x4

8π2

d

dx
|Ã|2 (5.134)

Using the approximate solution in (5.128) in the (8ξ)−1 � −kτ � 2ξ regime, we can

evaluate the integrals in (5.132) analytically. Using the growing Real part of the A+,

we can write the energy density as

ρA =
H4 e2πξ

8π2(2ξ)1/2

∫ 2ξ

0

dx x7/2

{
2ξ

x
+ 1

}
e−4
√

2ξx, (5.135)

where we have set the lower bound of the integral to zero as the integrands quickly

vanishes in this limit. Defining a new variable 32ξx = y2, we can re-write the integrals

as

ρA =
H4

ξ3

e2πξ

219π2

{∫ 8ξ

0

dy y6 e−y +
1

26ξ2

∫ 8ξ

0

dy y8 e−y
}
. (5.136)

Upper boundary of these integrals can be also sent to infinity 8ξ →∞ in the ξ & O(1)

regime as the integrand vanishes quickly for large enough x. This gives the result,

ρA =
H4

ξ3
e2πξ Γ(7)

219π2

{
1 +

1

26ξ2

Γ(9)

Γ(7)

}
. (5.137)

In the ξ & O(1) regime, the first term in the curly brackest dominates. Following the

same steps, one can also obtain the result

〈 ~E. ~B〉 = −H
4

ξ4
e2πξ Γ(8)

221π2

{
1− Γ(7)

Γ(8)

}
. (5.138)
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5.C Gravity Waves sourced by Gauge Fields

In real space, the equation of motion for the canonical graviton field h̄ij is given by

h̄′′ij +

(
∇2 − a′′

a

)
h̄ij =

2

M2
pl

a T TTij , (5.139)

where the source term on the RHS can be read from the higher dimensional interaction

Lagrangian given in (5.116). In fourier space, this source term be written as

T TTij (k, τ) =
Π lm
ij

a(τ)2

∫
d3x

(2π)3/2
e−ik·x

[
Â′lÂ

′
m − εlab εmcd ∂aÂb ∂cÂd

]
. (5.140)

Using the gauge field decomposition in (5.123), it can be expressed as a convolution

in momentum space,

T TTij =
Π lm
ij

a(τ)2

∫
d3p

(2π)3/2

[
Â′l(p)Â′m(k− p)− εlab εmcd pa(k − p)cÂb(p)Âd(k− p)

]
.

(5.141)

Now, for each polarization state, hij(k, τ) can be described in terms of polarization

vectors as

h̄ij(k, τ) = Πij,λ(k) h̄λ(k, τ) = ελi (k)ελj (k) h̄λ(k, τ), (5.142)

where we introduced the operator Πij,λ = ελi (k)ελj (k) [219]. Here it should be under-

stood that there is no summation over the index λ. Using this relation, we apply the

projection operator Π∗ij,λ to the both hand sides of (5.3) and note Π∗ij,λ(k)h̄ij(k, τ) =

h̄λ(k, τ), Π∗ij,λ(k)Π lm
ij (k) = Π∗lm,λ(k), to obtain the following formula for h̄λ(k, τ),

h̄λ(k, τ) =
2

M2
pl

∫
dτ ′

Gk(τ, τ
′)

a(τ ′)
Π∗lm,λ(k) (5.143)

×
∫

d3p

(2π)3/2

[
Â′l(p)Â′m(k− p)− εlab εmcd pa(k − p)cÂb(p)Âd(k− p)

]
.

The expression inside the square bracket in the above equation contains both polariza-

tion mode functions as can be seen from the expansion (5.B). However, in the models
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we consider, only the positive helicity modes of the gauge fields are amplified hence

only these modes will enter as a source to the equation (5.143). We are interested in

tensor perturbations at late times −kτ → 0 and we also observe that the dominant

contribution for the τ ′ integral comes from the modes with −kτ ′ . 1/ξ . 1. In

this limit, the greens function (See equation (5.4)) in the above expression becomes

Gk(τ, τ
′) → −τ ′2/3τ . On the other hand, using the solutions for the gauge field

mode functions (5.129) and (5.130), one can realize that the “magnetic” contribution

(second term in the square brackets above (5.143)) can be neglected compared to

the “electric” part in the −kτ ′ . 1 regime. Following these considerations, we can

simplify (5.143) as

h̄λ(k, τ) = −a(τ)
4H2

3M2
pl

ξ1/2e2πξ

21/2

∫ ∞
0

dx x6e−zx

×
∫

d3p

(2π)3/2
|k− p|1/4|p|1/4Π∗lm,λ(k)Ôl(k− p)Ôm(p), (5.144)

where we defined a new integration variable−τ ′ ≡ x2 together with z ≡ 2
√

2ξ(
√
|p|+√

|k− p| ). Note that the operators Ôl(q) = ε+l (~q)[a+
q + a+†

−q]. The integration over

x can be taken easily to give hλ(k, τ) = h̄λ(k, τ)/a as

hλ(k, τ) = − Γ(7)

3× 29(2π)3/2

H2

M2
pl

e2πξ

ξ3
(5.145)

×
∫

d3p
Π∗lm,λ(k)

(
√
|p|+

√
|k− p| )7

|p|1/4 |k− p|1/4Ôl(k− p)Ôm(p),

From (5.145) the sourced two point correlator 〈hλ(k, τ)hλ(k
′, τ)〉 can be calculated

〈hλhλ〉s =
Γ(7)2

9× 217(2π)3

H4

M4
pl

e4πξ

ξ6
δ(k + k′) (5.146)

×
∫

d3p
∣∣ε−λl (k)ε+l (p)

∣∣2 ∣∣ε−λm (k)ε+m(k− p)
∣∣2 |p|1/2|k− p|1/2

(
√
|p|+

√
|k− p| )7

,
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where we used the property ελi (−k) = ε−λi (k) = ελ∗i (k) of the polarization vectors

and applied Wick’s theorem. The expressions with polarization vectors in the second

line of (5.146) can be more explicitly written as

∣∣ε−λi (q1)ε+i (q2)
∣∣2 =

1

4

(
1 + λ

q1q2

|q1||q2|

)2

. (5.147)

Using the expression (5.147) and making a change of variable p/|k| ≡ p∗, the three

dimensional integral can be integrated numerically. The final result for the dimen-

sionless power spectra of the helicity λ = ± components of the sourced graviton can

be written as

k3

2π2
〈h+h+〉s = 8.6× 10−7 1

π2

H4

M4
pl

e4πξ

ξ6
, (5.148)

k3

2π2
〈h−h−〉s = 1.8× 10−9 1

π2

H4

M4
pl

e4πξ

ξ6
. (5.149)

We therefore see that both helicity modes of tensor spectra are scale invariant. The

difference in power of the two spectra is due to violation of parity and originates from

the
∣∣ε−λm (k)ε+m(k− p)

∣∣2 term. This situation can be seen more explicitly in the limit

of small momentum transfer |p| � |k|, as in this case, this term vanishes for λ = −

modes but stays finite for λ = + helicity gravitons.

Finally, taking into account the vacuum fluctuations of the tensors in (5.6), the

total dimensionless tensor power spectrum can be expressed as

∆2
t ' ∆2

vac

[
1 + 4.3× 10−7 H

2

M2
pl

e4πξ

ξ6

]
. (5.150)
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5.D Microscopic Conditions for Slow Roll and Back

Reaction

In this Section, we list the conditions for making sure that the slow roll potential is not

ruined during inflation, or that moduli stabilization is not lost due to back-reaction

effects. We also list the methods in which these issues are solved in the literature.

• Possible Correction: Destabilization of moduli during inflation.

Resolution: For the RR axion the shift in the moduli potential during inflation

was shown to be negligible as long as one requires 1 � v+ � cgs, where v+ is

the two-cycle volume, c is the axion and gs is the string coupling [246].

• Possible Correction: Backreaction of the NS5 brane on the Geometry and

Renormalization of Planck Mass by new light species.

Resolution: Wrapped NS5 on a two-cycle induces an effect D3-brane charge

ND3. To avoid back-reaction we require ND3 � R4
⊥/(4πgsα

′ 2) where R⊥ is the

smallest curvature radius transverse to the brane – this is easily satisfied [246].

• Possible Correction: Moduli Stabilizing Fluxes can generate potential for the

axions.

Resolution: GKP [264] orientifold stabilization in warped Type IIB use imag-

inary self-dual flux, which do not contribute to the axion potential.

• Possible Correction: Inflation could destabilize moduli resulting in run-away

to weak coupling or large-volume (Kallosh-Linde problem [276]).

Resolution: Focusing on the RR axion allows for Vinf < Vmoduli where Vmoduli

sets the height of the barrier for escape. Also, in [246] it was demonstrated that

shifts in the moduli from inflation are also benign – this is not the case for the

NS axion b, which suffers an η problem.
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• Possible Correction: Non-perturbative stabilization of Kahler moduli implies

an η problem for b-type axions since they mix with each other due to the

appearance of b in the Kahler potential.

Resolution: One can focus on c-type axions which do not mix with the volume,

alternatively one could use perturbative methods to stabilized the volume [246].

• Possible Correction: Moduli stabilization and Euclidean D brane instanton

corrections to the Kahler potential.

Resolution: Exponentially suppressed by the size of the two-cycles vα if taken

larger than string scale.

• Possible Correction: Moduli stabilization and Euclidean D brane instanton

corrections to the Super potential.

Resolution: One can focus on stabilization of the volume using gaugino con-

densation on D7 branes. The combined holomorphy of the gauge coupling and

the super potential imply that the instanton corrections are exponentially sup-

pressed by the four-cycle volume.

• Possible Correction: NS5 brane wrapped on a two-cycle induces a tadpole

through an effective D3 brane charge.

Resolution: Introduce D3 on a nearby two-cycle to cancel (where ‘nearby’

means at a distance small compared to the D7 used to stabilize the Volume via

KKLT.
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Chapter 6

Toward an Effective Field Theory

Approach to Reheating

6.1 Introduction

If inflation occurred in the early universe it must have eventually ended resulting

in a hot, thermal universe by the time of Big Bang Nucleosynthesis (BBN). The

process by which the inflaton’s energy is transferred into other particles – which

hopefully, eventually, gave rise to Standard Model particles – is known as inflationary

reheating. Reheating can occur perturbatively [277–279], or non-perturbatively in a

process known as preheating [25, 280, 281] (see [27, 282] for recent reviews).

Existing investigations into reheating have been rather model dependent, often

focusing on constraining the precise regions of the parameter space that lead to suc-

cessful reheating. Analytic methods for exploring the dynamics still rely on the ear-

liest works mentioned above, and the non-linearities and complexity of the reheating

process still require invoking numeric/lattice methods [27, 282–289]. Moreover, the

wealth of cosmological observations from the Cosmic Microwave Background (CMB)

and Large Scale Structure (LSS) relate to the physics of inflation far before reheating,

and so the lack of observational windows on (p)reheating has also made its study far
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less compelling than inflation – with the prediction of gravitational waves providing

a possible exception.

In this paper, we take steps to address the model dependence of (p)reheating

building on motivation from recent works [290–292]. Our approach is to use the

Effective Field Theory (EFT) approach to cosmology, which at this point has been

applied to all cosmic epochs except for (p)reheating. We will first consider the EFT

of the background as developed by Weinberg for inflation in [293] and later adapted

to studies of dark energy in [294]. Ultimately, we will find that this approach is not

completely satisfactory in generalizing studies of reheating. Instead we find that the

different approach of the EFT of cosmological perturbations is more promising.

The EFT of Inflation [168, 295, 296] and generalizations to dark energy [297–302]

and structure formation [303] are based on the idea that there is a physical clock

corresponding to the Goldstone boson that non-linearly realizes the spontaneously

broken time diffeomorphism invariance of the background. In unitary gauge – where

the clock is homogeneous – the matter perturbations are encoded within the metric,

i.e. the would-be Goldstone boson is ‘eaten’ by the metric, since gravity is a gauge

theory. After we establish the limitations of the EFT background approach, we then

present an EFT of reheating using this EFT of perturbations to develop a more robust

approach to studying the end of inflation and reheating.

The rest of the paper is as follows. In Section 6.2, we review some of the impor-

tant issues and constraints surrounding particular examples of (p)reheating models.

In Section 6.3, we consider Weinberg’s approach to the EFT of Inflation, and consider

how inflation might end and (p)reheating would proceed. We find that the pertur-

bative approach to the background presents a substantial challenge to this approach,

along with the usual problem of knowing the complete inflationary potential. This

motivates us to construct an EFT of reheating in Section 6.4 – focusing on the EFT

of the perturbations. We analyze the process of particle production, demonstrate

how our approach connects to existing preheating models, and discuss ways in which
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our EFT can be used to connect to both inflation (and its end) and observations. In

Section 6.5, we conclude and discuss the challenges facing our approach and future

directions.

6.2 Challenges for Inflationary Reheating

Model dependent studies of (p)reheating have raised a number of important questions

and issues. From the perspective of inflationary model building within string theory,

the requirement to isolate the inflationary sector to achieve an adequate duration of

inflation can result in challenges in transferring the energy density to other fields,

and eventually the Standard model sector following inflation [304]. The complexity

of the string landscape and the large number of moduli fields can exacerbate this

problem [305]. In bottom-up approaches, toy models often demonstrate a conflict

between the need for the inflaton to have feeble interactions during inflation (so as

to be consistent with both successful inflation and constraints on non-Gaussianity),

and later having strong enough couplings for the complete decay of the inflaton and

the (eventual) successful reheating of the Standard Model. Perturbative decay can

also present a challenge depending on the effective mass of the decay channels and

the time dependence of the inflaton decay rate [306].

As an example, consider Chaotic inflation with V ∼ m2
φφ

2 and reheating with a

renormalizable coupling to a reheat field, χ. We note that this model is in tension

with existing CMB constraints, but it presents a simple example of the more general

problems one might anticipate with (p)reheating. The Lagrangian we consider is1

L = −1

2
(∂φ)2 − 1

2
m2
φφ

2 − 1

2
(∂χ)2 − U(χ)− g2

2
φ2χ2, (6.1)

where we assume that initially the reheat field is fixed by its U(χ) and remains in

1We work in reduced Planck units mpl = 1/
√

8πG = 2.4× 1018 GeV with ~ = c = 1 and with a
‘mostly plus’ (−,+,+,+) sign convention for the metric. Our conventions for curvature tensors are
those of Weinberg.
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its vacuum during inflation. The mass of the inflaton is fixed by the power spectrum

[38],

∆2
R =

1

96π2

(
mφ

mpl

)2

(4N∗)
2 ≡ 2.2× 10−9 (6.2)

where N∗ is the number of e-folds before the end of inflation and with N∗ = 60 we have

mφ ' 6.4×10−6mpl. The inflaton will begin to oscillate around the minimum of its po-

tential when its mass becomes comparable to the Hubble scale, mφ ≈ H(tosc), with a

profile given by the expression φ0(t) = Φ(t) sin(φt) [25]. The amplitude of the oscilla-

tions, Φ(t), is a monotonic function of cosmic time given by Φ =
√

8/3 (mpl/2πNosc),

where Nosc is the number of oscillations after the end of inflation. Setting Nosc = 1

gives Φ ≈ 0.3mpl, which we take as the initial amplitude of the inflaton oscillations.

If the direct coupling in (6.1) presents the only decay channel for the inflaton

the expansion of the universe will prevent the complete perturbative decay of the

inflaton [25]. This is because the decay rate, Γ, scales as Γ ∝ Φ2 ∼ 1/t2 whereas

the expansion rate during reheating scales as H ∼ 1/t. Instead, in this case decay

must proceed non-perturbatively through preheating [25, 280, 281], where parametric

resonance can lead to enhanced decay of the inflaton condensate. The mode equation

for χ fluctuations resulting from (6.1) in the presence of the oscillating condensate

φ0(t) is

χ̈k +
[
k2 +m2

χ + g2φ2
0

]
χk = 0, (6.3)

where we have neglected the expansion of the universe (a = 1) and note that in-

cluding gravitational effects would act to strengthen the main conclusion below. If

the field begins in its Bunch-Davies vacuum the corresponding WKB solution is

χk ∼ exp(−i
∫
ωk(t

′)dt′), where ωk is time-dependent frequency corresponding to the

terms inside the brackets in (6.3). Particle production occurs if the adiabatic condi-

tions fail corresponding to ω̇k � ω2
k or ω̈k � ω3

k, etc... Thus, a necessary condition

for preheating is
ω̇k
ω2
k

' g2φφ̇(
k2 +m2

χ + g2φ2
)3/2

> 1, (6.4)
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corresponding to the production of modes with their momenta satisfying

k2 .
(
g2φφ̇

)2/3

− g2φ2 −m2
χ. (6.5)

The ratio in (6.4) is maximal when the inflaton is near the bottom of the potential,

where we can approximate φ̇0 ' mφΦ. Broad resonance [25] will assure us that

preheating is successful. This corresponds to a restriction on the range of wave

numbers in the resonance band ∆k � mφ Maximizing the right side of (6.5) with

respect to φ, we find the maximum value of φ2
∗ ' 0.2 φ̇/g corresponding to a maximum

value of resonant momentum k2
∗ = 0.4 gφ̇ − m2

χ. Therefore the condition for broad

resonance ∆k ' k∗ � mφ can be written as a condition on the coupling constant g,

g �
m2
φ +m2

χ

φ̇
'
m2
φ +m2

χ

mφΦ
. (6.6)

Taking Φ ' 0.3mpl and assuming mχ � mφ we find g � 3.8 × 10−5 for efficient

preheating in the broad resonance regime.

On the other hand, we can obtain a lower bound on the strength of the coupling

by requiring the one-loop correction induced by the g2φ2χ2 interaction to not to

spoil the flatness of the potential during inflation. That is, we require δmφ . mφ '

6.4 × 10−6mpl, whereas the loop correction is δm2
φ = (g2Λ2

uv)/(16π2). The cut-off is

expected to be Planckian Λuv ≈ mpl, implying g < 10−5. Clearly, this result implies

that the required value of the coupling, g, to obtain efficient preheating is inconsistent

with having a naturally light inflaton during inflation. In other words, in general it

is expected that heavy χ fields running in the loops induced by the direct coupling

g2φ2χ2 tends to de-stabilize parameters of the inflationary sector if we insist on the

effective particle production at the end of inflation.

We have a good understanding of the limitations to the approximations we have

used above to constrain preheating in chaotic inflation models, especially since these

toy models have been well-studied over the years to establish when they lead to
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successful reheating. At the same time, it is clear that we are seeing tension in

analytic expectations for finding reliable preheating models. It is also clear that

doing a full non-linear analyses for all parameters in all models of preheating is not

an efficient way to do model analysis. Can one always establish a connection between

the parameters during inflation and those same parameters during reheating? What is

the expected mass of the reheat fields during inflation? Can’t the inflaton just decay

through higher dimensional operators present at the time of reheating? These are

some of the questions we hope to address by developing a more systematic approach

to reheating below.

6.3 Reheating in Weinberg’s Covariant formula-

tion of the EFT of Inflation

In this section, we extend Weinberg’s EFT approach to inflation [293] to include the

end of inflation and the beginning of (p)reheating. Focusing on a two-field scalar

field model for simplicity, we present both analytic and numeric results from our

investigation into the background evolution and the resulting particle production.

We find that consistency of the background EFT within this approach limits its

applicability and how well it can be used to successfully describe (p)reheating. This

will motivate us to consider a different approach in Section 6.4.

6.3.1 Construction of the EFT

Following [293] we consider the most general EFT of a scalar field in General Relativity

which can be written as

Linf = −1

2
m2

plR−
1

2
(∂φ)2 − V (φ) +

c1

Λ4
(∂φ)4 , (6.7)
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where Λ is the UV cutoff of the theory, in general c1 = c1(φ) is an arbitrary func-

tion of the scalar, and we have neglected terms involving the Weyl tensor which are

suppressed relative to the leading correction [293]. Assuming that the equations of

motion admit inflationary solutions it was shown in [293] that this is also the most

general EFT for the inflationary background (to be contrasted to the EFT for the

perturbations which we will discuss in Section 6.4).

CMB observations imply that the power spectrum of scalar fluctuations is nearly

scale-invariant, which can be realized through an approximate shift symmetry for

the inflaton. This allows us to approximate c1(φ) as nearly constant during inflation

(its time evolution is slow-roll suppressed). When the EFT expansion is applica-

ble, i.e. Λ > φ̇1/2, self-interactions of the inflaton are small and non-Gaussianity is

negligible [37].

We now introduce an additional scalar that will play the role of the reheat field

after inflation. For simplicity, we will focus on the situation where the reheat field

has an effective mass of at least the Hubble-scale during inflation to avoid considering

multi-field inflation. However, the reheat field’s mass during inflation is an important

consideration which we comment on later. Given these assumptions the starting point

of our analysis is similar in spirit to that of [307], where those authors considered the

EFT of the inflationary background coupled to an additional scalar sector during

inflation. Again working to next-to-leading order in the derivative expansion we can

introduce the Lagrangian for the additional scalar χ,

Lχ = −1

2
(∂χ)2 − U(χ) +

c2

Λ4
(∂χ)4 , (6.8)

where c2 and U(χ) are arbitrary functions of χ, but can not contain the inflaton due

to its approximate shift symmetry2.

Finally, we can introduce the interactions between the two sectors that respect

2The spontaneous or explicit breaking of the shift symmetry at the time of reheating can be
important and creates an additional limitation of this approach.
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the inflaton’s shift symmetry – implying that terms of the form φpχq are forbidden.

At the level of dimension five operators it was shown in [307] that the shift symmetry

can be used to forbid the operators ∂µφ∂
µχ and χ∂µφ∂

µχ. Similar arguments can be

used at the level of dimension six operators and we find the two leading interactions3

Lmix = −c3(∂φ)2χ

Λ
− c4(∂φ)2χ

2

Λ2
+O

(
1

Λ3

)
, (6.9)

where c3 and c4 are expected to be order one constants and positive (for a UV com-

pletable EFT [308] and to avoid pathological instabilities [309]). Given our discussion

and assumptions above, the EFT of Inflation with an additional to-be reheat field is

then given by, L = Linf + Lχ + Lmix. Focusing on the leading interactions we have

L =
1

2
m2

plR−
1

2
f
(χ

Λ

)
(∂φ)2 − 1

2
(∂χ)2 − V (φ)− U(χ), (6.10)

where

f
(χ

Λ

)
= 1 + 2c3

χ

Λ
+ 2c4

χ2

Λ2
. (6.11)

The dynamics of fluctuations that arise from (6.10) have been studied extensively

in the context of inflation. In particular, there can be interesting signatures for

both the power spectrum and higher point correlation functions (e.g. non-gaussianity)

depending on the mass of χ [310], its stabilization [238, 311–315], and whether the χ

and φ sectors are strongly or weakly mixed [316].

In this work we are interested in connecting this system to the end of inflation and

reheating. In particular, we would like to investigate if (p)reheating of the χ sector

can be achieved through the derivative couplings in (6.11) as these are the leading

interactions allowed by the shift symmetry of the inflaton.

We note that (p)reheating with derivative couplings has been considered before.

3We have taken the cutoff of the EFT to be the same for both the inflationary and hidden sector
for simplicity, although this need not be the case. We expect our main conclusions in this section
to be insensitive to this assumption.
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The authors of [317] have studied a particular realization of the EFT we are consid-

ering in this work. In their case the approximate shift symmetry of the EFT resulted

from a specific UV completion motivated by Natural Inflation [240], where the spon-

taneous (and explicit) breaking of a U(1) symmetry of a complex scalar resulted in an

inflaton associated with the pseudo-Nambu-Goldstone Boson (pNGB) and the reheat

field corresponded to the excitation of the radial direction. The UV theory took the

form

L = −(∂µΦ)(∂µΦ∗)− λ(F 2 − Φ∗Φ), (6.12)

where the U(1) symmetry is broken by the vacuum solution 〈|Φ|〉 = F . The inflaton

potential results from the explicit breaking term

V (φ) = µ4

[
1− cos

(
φ

F

)]
. (6.13)

Expanding around the vacuum solution using

Φ = (F + χ) eiφ/F , (6.14)

one can easily see that this particular model can be recast as the EFT of the matter

sector given by the Lagrangian (6.10) with the replacement Λ→ F . We note that in

this particular class of models, adequate inflation unfortunately requires F � mpl,

which seems to be at odds with additional non-perturbative corrections and expecta-

tions from quantum gravity [318, 319]. However, we emphasize that the (bottom-up)

EFT approach we are taking here is more general than this particular class of models.

In particular, we emphasize (see also [307]) that the symmetries resulting in (6.10)

may be the result of a fundamental symmetry of the UV theory (as in the example

of [317]), but they can also be the result of an accidental symmetry in the IR, or the

result of fine-tuning of the effective potential. In this way, the model of [317] provides

a particular UV completion of the more general EFT approach we consider here. This
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is analogous to the way in which EFT methods can capture phenomenology near the

scale of Electroweak symmetry breaking, without one having a precise description of

the UV physics and mechanism responsible for breaking Electroweak symmetry.

In general, the inflaton potential V (φ) in our EFT is arbitrary and does not need

to take the specific form given in (6.13). We also have that the scale Λ can be taken

as Λ < mpl without raising any immediate issues about the consistency of inflation.

We will see the importance of this observation when we consider the dynamics of the

background and fluctuations in the following sections.

6.3.2 Analysis of Reheating in the EFT

To justify using an EFT at the end of inflation, we need to ensure that the model is

self-consistent, i.e. we have to check that there is a consistent background solution

to the equations of motion for the fields,

φ̈+ 3Hφ̇+ ∂χ (ln f) φ̇χ̇+ f−1∂φV = 0, (6.15)

and

χ̈+ 3Hχ̇− 1

2
(∂χf) φ̇2 + ∂χU = 0, (6.16)

and that the background also admits a perturbative description. This procedure

will allow us to study the existence (or non-existence) of resonant phenomena, and

establish when viable preheating occurs.

We begin by studying the behavior of the background fields φ0 and χ0 . These are

described by the following equations of motion,

φ̈0 + 3Hφ̇0 + ∂χ (ln f) φ̇0χ̇0 + f−1∂φV = 0, (6.17)

and

χ̈0 + 3Hχ̇0 −
1

2
(∂χf) φ̇2

0
+ ∂χU = 0. (6.18)
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�̃0(t)
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�̃0/⇤ = 1

H̃(t)

Figure 6.1: This figure gives the evolution of the background fields and Hubble pa-
rameter, where tildes imply we have normalized these quantities by

√
8πmpl, and time

is in units of the inflaton mass. For this realization we take mχ/mφ = 10, mpl/Λ = 14
and initial conditions φ0 = 1.038 mpl, φ̇0 = −0.662 mpl, χ0 = χ̇0 = 0.005 mpl. The
top panel gives the evolution of the inflaton. In the middle panel the solid black curve
is χ̃0(t) and below the dot-dashed blue horizontal line marks the region where the
EFT of the background is valid. The bottom plot gives the Hubble rate where the
red-dashed line represents a strictly matter dominated evolution.
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If we further assume that the zero-mode dominates the energy density (and pressure)

of the universe in the linear regime, then we can write down the evolution equations

for the scale factor,

H2 =
1

3m2
pl

(
1

2
fφ̇2

0
+

1

2
χ̇2

0
+ V (φ0) + U(χ0)

)
, (6.19)

and the Hubble parameter,

Ḣ = − 1

2m2
pl

(
fφ̇2

0
+ χ̇2

0

)
. (6.20)

The first question that we need to address is whether the zero-mode of the reheat

field acquires a significant displacement from zero. Using (6.11), and taking c3 and

c4 to be order-one constants then (6.18) becomes

χ̈0 + 3Hχ̇0 + ∂χU −
φ̇2

0

Λ2
χ0 −

φ̇2
0

Λ
= 0, (6.21)

The last two terms in (6.21) come from the EFT expansion – i.e. we have dropped

terms in the Lagrangian of order ∼ φ̇2
0
χ3

0
/Λ3 and higher. Therefore, if either of these

terms become large (e.g. if χ0/Λ > 1) then the EFT expansion of the background is

not justified. Equation (6.21) is that of a harmonic oscillator with time-dependent

frequency, where the last term resembles an external force, which we also require to

be small compared to the restoring force from the effective potential. Assuming that

U(χ0) ≈ m2
χχ

2
0
/2, which is self consistent with our small-displacement assumption,

we can find the stable minimum of the effective potential,

Ueff = U(χ0)− 1

2
φ̇2

0
f
(χ

Λ

)
. (6.22)

to be

χ0(t) '
φ̇2

0

m2
χΛ

+O

(
φ̇4

0

m4
χΛ2

)
. (6.23)
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The velocity of the inflaton at the end of inflation is roughly φ̇ ∼ mφmpl, which

allows us to write down an approximate condition on the size of χ0 ,

χ0

Λ
< 1 (6.24)

implies that
m2
φ

m2
χ

<

(
Λ

mpl

)2

(6.25)

That is, we find that we are free to lower the cutoff of the EFT below the Planck

scale (Λ � mpl), but at the cost of increasing the mass of the reheat field above

that of the inflaton. The fact that particle production is still possible in the mχ �

mφ regime emphasizes the importance of preheating versus reheating, since in this

situation perturbative decays are kinematically forbidden. It is also interesting that

this condition is independently required so that the reheat field does not interfere with

the the inflationary dynamics prior to reheating (constraints from non-Gaussianity

could also be imposed). That is, even for mφ < mχ ' 3HI such heavy fields can have

a dramatic impact on inflation [238, 310–316]. We also note that the presence of a

discrete Z2 symmetry could be used to forbid the dimension five operator leading to

the tadpole in (6.21), and our stability condition (6.25) would still hold due to the

presence of the dimension six operator.

We have numerically verified the result (6.25) by solving the system (6.17)-(6.19)

for a range of masses, initial conditions, and the cutoff Λ. In Figure 6.1, we plot a

particular realization of a consistent configuration for the background fields together

with the evolution of the cosmological background. In the plot, we take mpl/Λ = 14

and mχ/mφ = 10 consistent with (6.25). We see that the background value χ0 stays

consistent within the EFT regime, while inflaton oscillations proceed as in the case

of a quadratic potential. On the other hand, it can be seen that the expansion of

the universe is slightly faster than H(t) ∝ t−1 initially, and then asymptotes to this

behavior at late times mφt � 1. We conclude this section by emphasizing that in
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order to have a stable, well-behaved background solution within the regime of validity

of the EFT, one requires the condition, (6.25) to be satisfied.

Non-perturbative Dynamics and Limitations of the Background EFT

We now consider whether resonant particle production is possible around the back-

ground we analyzed in the previous section. Expanding both scalar fields to first

order around their background values, φ = φ0 + δφ, χ = χ0 + δχ in the Lagrangian

(6.10), we write the equation of motion for the linearized fluctuations of the reheat

field in Fourier space as

δχ̈k + 3Hδχ̇k +

[(
k

a

)2

+m2
χ −

φ̇2
0

Λ2

]
δχk = 2

φ̇0

Λ

[
1 +

χ0

Λ

]
δφ̇k, (6.26)

where the terms on the right side are due to the mixing with inflaton fluctuations.

These terms can source δχk fluctuations whenever δφ̇k is large. In the initial stage of

(p)reheating the effect of this term will be negligible. Neglecting these terms, we focus

on sub-Hubble scales first neglecting the cosmological expansion (we take a(t) → 1,

H(t)→ 0). In this approximation, (6.26) becomes

δχ̈k +

[
k2 +m2

χ −
φ̇2

0

Λ2

]
δχk = 0, (6.27)

where we define the frequency of the modes as ω2
k(t) = k2 + m2

χ − φ̇2
0
/Λ2. Given a

coherently oscillating inflaton, φ0 = Φ(t) sin(mφt), we can map this mode equation

to the Mathieu equation

δχ′′k + [Ak − 2q cos(2z)] δχk = 0, (6.28)

where we have defined the dimensionless time z = mφt and Ak = (k2 +m2
χ)/m2

φ − 2q

with q = Φ2/4Λ2. Floquet’s theorem [320] states that for a given wave-number, (6.26)
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Figure 6.2: Instability band structure for the model Vtot = 1
2
m2
φφ

2+ 1
2
m2
χχ

2− 1
2
φ̇2

0
f
(
χ
Λ

)
,

where f is given by (6.11). This density plot represents the real part of the scaled
Floquet exponent, Re(µk), where lighter regions represent larger values. The y-axis

is the hierarchy between the Planck mass and the rescaled cut-off of the EFT, Λ̃ =
Λ/
√

8π, while the x-axis corresponds to K =
√
k2 +m2

χ in units of mφ.

has solutions of the form

δχk = eµkzg1(z) + e−µkzg2(z), (6.29)

where g1 and g2 are periodic functions and µk is the Floquet exponent. In general,

the Floquet exponent µk depends on the wave number k, the mass of the reheat field

mχ, and the ratio Φ/Λ. For cases where the real part of the exponent is non-zero, we

have exponentially growing modes of δχk.

The structure of (6.28) tells us that the resonant momenta are grouped into bands

in parameter space. Since k2 > 0, and hence, Ak > −2q, there are also meaningful

statements one can make about the regions of the Mathieu parameter space that are

probed by our reheating models. One interesting case is when some modes satisfy

−2q < Ak < 0; in this case, (6.28) assures us that there’s a time when the mass-

squared of the these modes is negative (analogous to the cases explored in [321]) and
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the Floquet exponent can be very large, µk ' (4/π) q1/2 for q � 1. There’s another

case in which 0 < Ak < 2q, where the mass-squared of some of the δχk modes become

tachyonic for certain time intervals and is also very efficient (analogous to [286].)

On the other hand, Ak is frequently larger than 2q. While these models have

parametric instabilities, the resonance structure requires us to be more careful. For

our purposes here, the consistency of the background EFT requires the mass of the

reheat field to satisfy m2
χ > φ̇2

0
/Λ2, which requires avoiding the regions of the pa-

rameter space that guarantee strong, broad, resonance. While the inflaton undergoes

periodic oscillations this condition implies

m2
χ > m2

φ

Φ2

Λ2
, (6.30)

which is exactly what we have found in equation (6.25) with Φ = mpl. Here, we

have used φ(t) = Φ sin(mφt) considering the maximum value of φ̇2
0
/Λ2. We have also

studied this system numerically, using FloqEx [322], with our results appearing in

Figure 6.2. The figure shows the magnitude of the Floquet exponent as a function of

cutoff and wave number. One can see the broad (and tachyonic) resonance regimes

mostly live outside of those probed by the EFT. We must keep in mind, though, that

these estimates could still produce some particles through parametric resonance, and

should be studied through full lattice methods – we leave this to future work.

Our main conclusion thus far is that if we require the reheat field to respect

the shift symmetry of the inflationary sector (implying adequate inflation consistent

with CMB observations), successful reheating suggests considering an EFT cutoff far

below the Planck scale Λ� mpl. We saw that having such a sub-Planckian cutoff can

quickly lead to the breakdown of the background EFT expansion when we require

efficient reheating in the EFT.

As another example of when the EFT expansion may breakdown, consider the

corrections we have thus far neglected in (6.7). When evaluated on the background
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the operator contains a term

c1

Λ4
(∂φ)4 ⊃ c1

Λ4
φ̇2

0 (∂φ)2 . (6.31)

During inflation this term will be slow-roll suppressed φ̇2
0/Λ

4 ∼ εH2m2
pl/Λ

4 and higher

order terms will be even further suppressed as long as Λ is not far below mpl during

inflation4. However, for smaller values of the cutoff this corresponds to strong coupling

of the background and our EFT approach breaks down – this would also lead to a large

level of non-Gaussianity [316]. Assuming the background remains weakly coupled at

the end of inflation we have

c1

Λ4
φ̇2

0 ∼
m2
φφ

2
e

Λ4
∼
(
mφ

mpl

)2(
φe
mpl

)2 (mpl

Λ

)4

, (6.32)

so for Λ far below the Planck scale the EFT would again fail as this term would

be as important as the kinetic term (and terms even higher in derivatives that we

neglected would also be important). For example, in chaotic inflation where the

inflaton mass is fixed by the COBE normalization this implies Λ & 10−3mpl. We

emphasize that this constraint has nothing to do with requiring adequate inflation

and is an added constraint for the consistency of the derivative expansion of the EFT

during reheating. We now turn to a different EFT approach where the challenges

discussed in this section can be addressed.

6.4 The EFT of (p)Reheating

We have seen that using an EFT approach to the background has limited utility in si-

multaneously describing inflation and reheating. Indeed, in addition to the challenges

discussed at the end of Section 6.3, an additional concern is that there could be terms

4Using the power spectrum normalization one can also show the condition φ̇20/Λ
4 < 1 implies a

lower bound Λ/mp &
√
ε 10−2, where ε = d(H−1)/dt is the slow-roll parameter.
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EFT of Inflation

EFT of 
Reheating

Figure 6.1: Obtaining adequate inflation, ending inflation and then successful reheat-
ing in the EFT requires a complete knowledge of the inflationary potential. This
presents a challenge when using Weinberg’s EFT approach to capture reheating in
many classes of models.

that badly break the shift symmetry at the time of reheating. Such terms could be

small during inflation (suppressed by the breaking scale), but could be important at

the time of reheating. Alternatively, there are many reheating models in which the

shape of the potential during inflation is vastly different than it is during reheating

(and could include additional fields like in hybrid models) and the background EFT

approach requires a knowledge of the complete potential. This is illustrated in Figure

6.1.

In particular, the terms arising from the breaking of the shift symmetry of the

inflaton (which would include thus far forbidden terms of the form giφ
pχq) could

become as important as the other terms we have considered in (6.26). As another

example consider the potential

V =
m2M2

2α

[(
1 +

φ2

M2

)α
− 1

]
. (6.33)

where α < 1. This toy model captures many important inflationary models including

axion monodromy [323]. During the inflationary phase this potential scales as V ∼
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φ2α and is sensitive to the scale M , whereas the behavior during reheating (φ < M)

is independent of M and V ∼ m2φ2. So in our EFT approach expanding the field in

powers of φ/Λ is causing us to miss these types of theories.

In addition, new degrees of freedom could appear at the time of reheating that

were heavy during inflation and could have been integrated out – in other words the

EFT during inflation and the EFT during reheating can correspond to two distinct

EFTs. This is not to say our approach doesn’t capture many models. In particular,

we’ve seen that the model of [317] is captured by our approach, and most chaotic

inflation models would be as well. But even focusing only on the inflationary epoch we

know that Weinberg’s EFT is not capable of capturing a large number of interesting

models. For example, in DBI type models where the background is in some sense

strongly coupled one needs a non-perturbative expression for the background as it

is a resummed expression where each derivative in the derivative expansion must be

kept, e.g. V ∼
√

1− φ̇2/Λ4. Such models are not captured by the Lagrangian of

(6.7). One may also anticipate reheating models where the background of the reheat

field could also exhibit such non-linear behavior and then the derivative expansion of

the Lagrangian (6.8) would be inadequate – as well as the expansion of the mixing

terms stopping at dimension six in (6.9). One final objection is that we have only

concentrated on scalar reheat fields. Reheating to fermions and gauge fields is also

important, and the way in which this proceeds is not only model dependent, but the

spin statistics can also make important differences in the efficiency of reheating [324].

Given these shortcomings of the EFT of the background we now turn to construct

an EFT for reheating along the lines of the EFT of Inflation [168]. As we will

discuss, this approach can overcome many of the obstacles established in this Section.

In the remainder of this section, we first begin by constructing an EFT focusing

on the fluctuations directly at the end of inflation. This theory will share many

similarities with the EFT of multi-field inflation [296, 316]. However there will be

important differences which we will discuss. We then demonstrate how the approach
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can reproduce both the results of self resonant reheating and multi-field reheating.

We also discuss some new models that arise from considering the symmetries of the

EFT.

6.4.1 Construction of the EFT of Fluctuations

The EFT expansion in fluctuations (rather than the background) relies on the fact

that the background expansion of the universe spontaneously breaks time-translation

invariance. Over the history of the universe there have been many different domi-

nant forms of matter and energy, and so many different sources of time-translation

breaking including; inflatons, post-inflation / pre-BBN fields, radiation, dark matter,

and eventually dark energy today. As the universe passed through these phases the

energy density changed its composition many times, but the scale factor continued to

monotonically increase. The EFT approach takes this background evolution as given

a priori (as specified by the background functions a(t), H(t), and Ḣ(t)) and focuses

directly on the most general EFT for the fluctuations around this background.

In taking this approach we give up on realizing explicit models for the background,

and instead focus on implications and observations associated with the fluctuations.

In regards to connecting with observations this approach is adequate5, since physical

observables correspond to fluctuations and not background quantities [326]. The

approach also has the advantage that the underlying physics responsible for driving

the background expansion can be non-perturbative, in the sense that the background

doesn’t need to admit an EFT expansion (as we required in Section 6.3). Instead, this

EFT approach is more general and models are classified by their symmetry breaking

properties and the allowed operators in the Lagrangian correspond to cosmological

perturbations. In many cases the symmetries alone can be used to establish rigid

constraints on the theory of the fluctuations and associated observables. For example,

it is well known that inflation requires that de Sitter symmetry must be non-linearly

5Although the connection to observables is not necessarily always straightforward [325].
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realized and this leads to constraints on inflaton correlation functions. This fact is

manifest in the EFT of Inflation approach using the corresponding Goldstone boson

[326]. This EFT approach has also been shown to be useful when the cosmological

background changes its behavior, e.g. in the EFT of dark energy [298–302], where

one is primarily interested in observations during matter domination, but also must

account for observations during dark energy domination.

The generality of the EFT approach when applied to cosmological backgrounds

was first established in [295], where the authors were investigating violations of the

Null Energy Condition in non-standard cosmologies. In that paper, referencing earlier

work of Weinberg [327], it was pointed out that on long wavelengths there is always

an adiabatic mode corresponding to the Goldstone boson of spontaneously broken

time diffeomorphism invariance. Whenever a decoupling limit exists – in which the

Goldstone decouples from gravity – this broken symmetry is then realized as sponta-

neously broken time translation invariance (the gauge symmetry effectively becomes

a global symmetry). Thus, for any FRW spacetime it is possible to utilize the EFT

approach and it is in this vain that we will construct our EFT for reheating following

the initial ideas presented in [292].

As an example, suitable for studying the dynamics at the end of inflation, we can

consider a decelerated FRW expansion with the background metric

ds2 = −dt2 + a2(t)δijdx
idxj, ä(t) < 0. (6.34)

We can think of this background as generated by the evolution of a set of homoge-

neous scalars6 fields, i.e. {φ0 , χ0 , . . . }. In this work, to study dynamics at the end

of inflation, we may consider only one of the scalars, e.g. the inflaton φ0 , that con-

tributes significantly to the evolution of scale factor, a(t). This FRW evolution has a

preferred time slicing described by the homogeneous scalar which can also be consid-

6In general, we are not restricted to scalar fields, e.g. another example can be a set of perfect
fluids.

206



ered a clock. In order to describe the theory of fluctuations around this background,

we can go to a co-moving frame (unitary gauge) where the vacuum expectation value

of the scalar coincides with this privileged time slicing, corresponding to distinct val-

ues of 〈φ〉 = φ0 . As we have fixed the slicing of space-time, general time diffs7 are no

longer a symmetry and the fluctuations of the scalar are hidden in the metric pertur-

bations, which now describe three degrees of freedom: two transverse for the graviton

and one for the scalar. We can always re-introduce inflaton fluctuations by a common

local shift in time, i.e. t→ t+ π(x). By definition, such a fluctuation corresponds to

an adiabatic fluctuation, proportional to Goldstone mode δφ = φ̇0π associated with

the broken symmetry. In this work, apart from the adiabatic fluctuations, we will

consider an additional degree of freedom X(t, x) = χ0(t)+χ(t, x), which will play the

role of the (p)reheat field. As is standard in the literature we will take this field to be

a subdominant source of background evolution during the first stages of preheating

(i.e. ρφ � ρχ) since before particle creation 〈X〉 ' 0.

The Action in Unitary Gauge

The procedure for constructing the EFT of fluctuations for the inflationary sector cou-

pled to a reheat field at the time of reheating is similar to the case of quasi-single field

inflation considered in [329]. Those authors considered the effects of particle produc-

tion during inflation, whereas here we consider reheating and important differences

will be discussed below. Nevertheless, the action can be constructed analogously and

working in unitary gauge the action for the fluctuations is

S =

∫
d4x
√
−g
[
m2

pl

2
R− f1(t)− f2(t)g00 + F (2)(δg00, χ, δRµνρσ, δKµν ;∇µ; t)

]
,

(6.35)

where f1 and f2 are arbitrary functions of time, F (2) starts quadratic in operators

which must be covariant in spatial indices but not in time, ∇µ is the covariant deriva-

7As we mentioned before our main interest is the global part of time diffs, i.e. time translations.
See [328] for more discussion on this matter.

207



tive, and δRµνρσ and δKµν are the fluctuations in the Riemann tensor and extrinsic

curvature, respectively. Careful readers might wonder why we did not consider sums

of terms that are linear in χ and hence allowed in the unitary gauge,

∫
d4x
√
−g
[
f3(t)χ+ f4(t)∂0χ

]
, (6.36)

where f3 and f4 are generic time dependent functions. We will work out these terms

in Appendix 6.A and show that they can be re-written as second and higher order

in terms of δg00, χ and δKµ
µ by taking into account background equation of motion

for χ. So the second and third terms in the above action are the only ones that

contain linear perturbations. Requiring that terms linear in the fluctuations vanish

(i.e. tadpole cancelation) follows from enforcing the background equations of motion

in an FRW background [168],

3H2m2
pl = f1(t) + f2(t), (6.37)

and

− 2Ḣm2
pl = 2f2(t). (6.38)

As a simple example of tadpole cancelation, consider the end of inflation where the

inflaton begins oscillating with a potential V (φ) and where derivative interactions

and the density of other fields are negligible. In this case the functions in (6.38) are

given by f1 = V (φ0) and f2 = φ̇2
0
/2. However, more generally, f1 and f2 can take any

form as long as the background corresponds to the (p)reheating period, i.e. an FRW

universe with possibly small corrections due to oscillations. For example, we could

have a preheating model corresponding to DBI-like models of inflation where a large

number of derivative self-interactions could play an important role [330]. In that case

the functions f1 and f2 would contain terms with an infinite number of derivatives at

the level of the background. The key is that the behavior of the matter sector will be

208



captured by the functions f1 and f2, and once we cancel the tadpoles, the background

is then given (by the equations of motion) by H(t) and its derivatives. Then, we can

focus on the EFT of the fluctuations about this background – just as in the case of

the EFT of Inflation or DE [168, 298, 299]. Thus, the problem we encountered in the

previous section, where we would need to keep all the terms in the χ/Λ expansion is

not an issue here. Instead, these terms are captured by H and Ḣ and could represent

re-summed, non-perturbative expressions for the background8. Moreover, because

we are not performing a perturbative expansion of the background, we work under

the assumption that we have a complete knowledge of the potential overcoming the

problems associated with Figure 6.1.

The most general action is found by expanding the function F (2) in (6.35) in

terms of fluctuations {δg00, χ, δKµν , δRµνρσ} and their derivatives. We emphasize

that this EFT expansion is one in perturbations and derivatives. During reheating,

the fluctuations are also assumed to be initially small, however significant particle

production can change this (as we will discuss). Whereas the derivative expansion

follows from locality, causality and unitarity in an FRW universe. In the gravity

sector, δg00 is a zero derivative object, whereas δKµν corresponds to one derivative

and δRµνρσ to two, as they contain first and second order derivatives of the metric,

respectively. When we introduce the Goldstone boson in the next section, it will be

clear that terms with δK and δR will include higher derivatives of the Goldstone

boson. Finally, we find it convenient to split the action in (6.35) into three parts

S = Sg + Sχ + Sgχ, (6.39)

where the action Sg contains only terms build out of {δg00, δKµν , δRµνρσ}, Sχ contains

those purely from χ and the action Sgχ is due to mixing between gravity sector and

8The importance of strong coupling and resummation appears in many areas of physics including
QCD and theories of modified gravity. See e.g. [331]. An approach to strong coupling during
preheating, using methods of holography, appeared in [332, 333].
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χ. Following our discussion above, we then have

Sg =

∫
d4x
√
−g
[
m2

pl

2
R−m2

pl

(
3H2(t) + Ḣ(t)

)
+m2

plḢ(t)g00 +
m4

2(t)

2!

(
δg00

)2
+ . . .

]
,

(6.40)

Sχ =

∫
d4x
√
−g
[
−α1(t)

2
gµν∂µχ∂νχ+

α2(t)

2
(∂0χ)2 − α3(t)

2
χ2 + α4(t)χ∂0χ

]
,

(6.41)

Sgχ =

∫
d4x
√
−g
[
β1(t)δg00χ+ β2(t)δg00∂0χ+ β3(t)∂0χ− (β̇3(t) + 3H(t)β3(t))χ

]
,

(6.42)

where g00 = −1 + δg00 and the dots represent terms higher order in fluctuations and

derivatives. Here, {m2(t), αi(t), βi(t)} are thus far arbitrary functions of time that

are permitted in the unitary gauge as time diffs have been spontaneously broken by

the background. We note that the coefficient of the δg00 operator is fixed by the

background, implying that it is universal in the sense that all preheating models

with the same background evolution will have the same coefficient (specified by H(t)

and its derivatives). Whereas, the operator (δg00)
2

is an example of a non-universal

operator, because m2 is not fixed by the symmetries of the FRW background. Instead

its value corresponds to a specific class of models (those with a non-unity sound

speed). Similarly, broken time diffs generally allow for a term proportional to α2 that

leads to non-trivial sound speed cχ = α1/(α1 + α2) in the reheat sector χ. In (6.42),

the functions βi can be seen as a measure of the strength of mixing with gravitational

fluctuations (including one scalar d.o.f). At this stage, the usefulness of this approach

might be in question, given the large number of free parameters. However, as we will

see in the following sections, even though this is the most general theory to quadratic

order, in practice many of the terms in (6.40)-(6.42) are not important for elementary

processes within reheating. Finally, we can further simplify the action by performing

a field re-definition of χ, using that χ = 0 on the background trajectory and using

time reparametrization invariance to set α4 = β3 = 0 in the actions (6.41) and (6.42).

The form of (6.40), (6.41) and (6.42) are not particularly useful in studying the
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dynamics as the scalar fluctuation representing inflaton is not manifest. We can re-

introduce diffeomorphism invariance and the Goldstone mode related to inflaton by

the Stückelberg trick, which will be our main focus in the following section.

Introducing the Goldstone Boson

To introduce the Goldstone boson along with time diffs, we first perform the broken

time diffs t → t + ξ0(t, ~x) in the actions (6.40)-(6.42). Since the cosmological back-

ground (i.e. H, Ḣ) as well as the free functions {αi, βi} depend on cosmic time, t.

The gauge function, ξ0, will appear explicitly in the actions for the perturbations.

We then replace ξ0 → π(t, ~x) everywhere it appears in the action and require that

the Goldstone transforms non-linearly, π → π − ξ0 under diffs. In this way, clearly

full diffeomorphism invariance can be restored in (6.40)-(6.42). In order to find the

explicit form of the actions including the Goldstone π, we need to know the transfor-

mation rule for the remaining operators appearing in (6.40)-(6.42) under t → t + π.

Under the transformation we have

g00 → g00 + 2g0µ∂µπ + gµν∂µπ∂νπ,

gi0 → gi0 + giν∂νπ,

∂0χ → ∂0χ+ gµν∂µχ∂νπ,

f(t) → f(t+ π) (6.43)

Rµνλσ → Rµνλσ (6.44)∫
d4x
√
−g →

∫
d4x
√
−g
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where f(t) represents any time-dependent function appearing in the action. Carrying

out this procedure on the action (6.40) we find

Sg =

∫
d4x
√
−g

[
m2

pl

2
R−m2

pl

(
3H(t+ π)2 + Ḣ(t+ π)

)
+m2

plḢ(t+ π)(g00 + 2g0µ∂µπ + gµν∂µπ∂νπ)

+
m4

2(t+ π)

2!
(δg00 + 2g0µ∂µπ + gµν∂µπ∂νπ)2

]
. (6.45)

We see that this action is invariant under time diffs if we require the Goldstone to

transform as π → π − ξ0(t, ~x), i.e. the symmetry is non-linearly realized [296]. We

also note that requiring the symmetry be realized in the UV has forced relationships

between the various operators (all the terms in parentheses must have the same

coefficients). Following the same steps, (6.41) and (6.42) become

Sχ =

∫
d4x
√
−g
[
−α1(t+ π)

2
gµν∂µχ∂νχ+

α2(t+ π)

2
(∂0χ+ ∂µπ∂

µχ)2

− α3(t+ π)

2
χ2

]
, (6.46)

Sgχ =

∫
d4x
√
−g
[
β1(t+ π)(δg00 + 2∂0π + ∂µπ∂

µπ)χ

+ β2(t+ π)(δg00 + 2∂0π + ∂µπ∂
µπ)(∂0χ+ ∂µπ∂

µχ)
]
. (6.47)

Similar to the discussion above, the non-linearly realized symmetry introduces inter-

actions between χ and the Goldstone, π.

To describe the dynamics at the end of inflation, working with the full action given

by Sg +Sχ+Sgχ in complete generality is a difficult task. First of all, we need to have

some input for the time-dependent functions, i.e. {H(t), αi(t), βi(t)} appearing in the

Lagrangian. However, as we will see, an investigation on the background dynamics

during reheating along with the associated symmetries and scales of interest will allow

us to obtain generic information on the form of these functions. This will be our main
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focus in the next section.

6.4.2 Background Evolution During Reheating and Symme-

tries of the Action

Background Evolution and Symmetries

In parametrizing the background expansion we have assumed a decelerating FRW

universe. A simple example is provided by a perfect fluid with an equation of state

w and with corresponding scale factor a(t) ∝ t2/3(1+w) and expansion rate H(t) =

ȧ/a ∝ t−1 with H−1 setting the cosmic time scale. On the other hand, in studies of

the dynamics at the end of inflation the frequency of inflaton oscillations introduce

another important time scale. For example, if the inflaton oscillates in a power-law

potential, V ∝ φn
0
, the period of oscillations will be 2πω−1 = 4

∫ φi
0

dφ0 (V (φi) −

V (φ0))−1/2, which for general n depends on the initial amplitude, φi [334]. In the

limit that the period of oscillations is much smaller than the expansion time scale,

ω−1 � H−1, coherent scalar field oscillations behave like a perfect fluid with an

average equation of state, 〈w〉a = (n− 2)/n+ 2 [93].

The presence of two different time scales leads to interesting symmetry breaking

patterns within the EFT, and whether a symmetry is realized will depend on the

dynamics under investigation. At high energies (or small wavelengths) the energy

being probed Eprobed exceeds both the oscillation and expansion energy i.e. Eprobed �

ω � H and so the time evolution of the oscillator and the cosmic expansion is

negligible – time-translations are a good symmetry. As we lower the energy scale to

Eprobed . ω we first break time-translation invariance down to a discrete symmetry

t→ t+2πω−1. Then as we further lower the energy to Eprobed . H � ω this discrete

symmetry is further broken by the cosmic expansion. This symmetry breaking reflects

that on large scales (low-energy) we have an expanding universe, but on sub-Hubble

scales the only time dependence results from the oscillating scalar field and the effect
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of the expansion can be ignored. And at even higher energies (smaller distances /

faster time scales) the scalar oscillations would not be probed.

This hierarchy in scales can be captured by parameterizing the background be-

havior by a Hubble rate that is a sum of a monotonically evolving part and a small

rapidly oscillating component,

H(t) = HFRW(t) +Hosc(t)P (ωt), (6.48)

where the first term is adiabatically evolving HFRW(t) ∝ t−1 and monotonically de-

creasing, whereas the second term leads to an oscillatory correction described by a

general periodic function P (ωt) with period T = 2πω−1. In order to ensure an overall

monotonic FRW evolution we take the first term to be dominant, HFRW � Hosc.

This implies our clock is always monotonically increasing – as exemplified by the

monotonic evolution of the scale factor a(t) in an FRW universe. This situation is

to be contrasted with models where the universe itself is oscillating [335], which

can exhibit a number of pathologies [309]. We also note that the time depen-

dence of HFRW and Hosc is slow compared with the time scale of oscillations ω−1,

i.e. ḢFRW/(HFRWω) ∼ Ḣosc/(Hoscω) � 1. This corresponds to our earlier statement

that on short time scales (larger energies) there is an approximate discrete symmetry.

An important question is whether we can generalize the symmetry arguments

above for the time-dependent functions associated with the non-universal operators in

(6.45)-(6.47), i.e. {m2, αi, βi}. On general grounds, in an FRW background described

by (6.48) we expect that the functions m2, αi, βi – which describe the self-couplings,

and couplings/mixings between the Goldstone and the reheat sector χ – to be a generic

function of the Hubble rate in (6.48) and its derivatives. Depending on the couplings

between these sectors this suggests that in general we can write these functions in the

form

Fi(t) = Mp
i (t)P ′(ω′t), (6.49)
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where in general the periodic function P ′ is different from the one in (6.48) as is the

frequency ω′ 6= ω. Here, the index i collectively represents time-dependent functions

{m2, αi, βi} and p denotes the mass dimension of these functions. Suggested by the

symmetry breaking pattern we discussed above, we can similarly take Ṁi/(Miω)� 1.

Symmetries of the Action and Implications

An important consequence of the discrete symmetry of the Goldstone is that non-

derivative interactions can appear in the action. When this is a good symmetry we

can expand the background and non-universal parameters {H, Ḣ,m2, αi, βi} in the

form

Fi(t+ π) = Fi(t) + Ḟi(t)π +
1

2
F̈i(t)π

2 + . . . . (6.50)

This breaking is similar in spirit to the work of [336], where those authors consid-

ered resonant non-Gaussianity induced through small-scale oscillations in H and Ḣ

during single-field inflation. In the two-sector EFT we are considering here we can

extend that study to dynamics that arise in the presence of interactions between the

Goldstone π and reheating χ sectors. Moreover, contrary to the situation during in-

flation, where there is a fixed energy scale corresponding to horizon crossing, [168], to

study dynamics at the end of inflation we are often interested in the dynamics at sub-

Hubble scales. For sub-Hubble scales with Eprobe > ω we expect interactions induced

by expanding the time-dependent functions in (6.50), which parametrize important

contributions to the dynamics. Such interactions can induce large loop corrections

for the parameters of the EFT, and additionally back-reaction effects can become

large and the perturbative expansion of the EFT of fluctuations will fail. In typical

studies of preheating, the importance of such contributions correspond to the end of

‘stage one’, which can be followed by turbulence and chaotic behavior [25]. We leave

an investigation of these stages to future work. In the following, we will focus on the

first stages of preheating and establish how our framework captures existing models.

We will also explore new models and their connection to observations during the first
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stages of preheating.

6.4.3 Capturing Existing Models

Reheating Through Self-Resonance

In this section, we focus on the Goldstone sector in (6.45) to construct models of

reheating through self-resonance. That is, we want to establish how the EFT repro-

duces self-resonant models of reheating where inflaton ‘particles’ (here corresponding

to the Goldstone π ∼ δφ) are created from oscillations of the background conden-

sate φ0(t). We will also consider when gravitational fluctuations can be shown to

decouple. To begin we expand the time-dependent functions in (6.45) and use the

ADM decomposition9 of the metric in spatially flat gauge working to second order in

fluctuations δN,N i and π. We have

Lπc =
1

2

(
π̇2
c − c2

π

(∂iπc)
2

a2

)
− 1

2
m2
π(t)π2

c −
(−2Ḣ)1/2

cπ

(
π̇cδNc −

1

2

(
Ḧ

Ḣ
− 2

ċπ
cπ

)
πcδNc

)
+ (−2Ḣ)1/2cπ

(
3HδNc + ∂iN

i
c

)
πc + . . . (6.51)

where we introduced the canonical fields πc =
√
−2Ḣm2

pl c
−1
π π, δNc = mplδN,N

i
c =

mplN
i, the sound speed of the fluctuations is c2

π = m2
plḢ/(m

2
plḢ−m4

2), and we neglect

terms involving the scalar curvature as they are sub-leading.

An important consequence of the background evolution and time-dependent sound

speed is that it induces a time-dependent mass10 for the Goldstone

m2
π = −3Ḣc2

π −
1

4

(
Ḧ

Ḣ
− 2

ċπ
cπ

)2

− 3H

2

(
Ḧ

Ḣ
− 2

ċπ
cπ

)
− 1

2
∂t

(
Ḧ

Ḣ
− 2

ċπ
cπ

)
, (6.52)

which we note would vanish in a strictly de Sitter limit with constant sound speed (fa-

9Details appear in Appendix A
10This is the mass term in the absence of mixing terms given in the second and third lines of

(6.51).
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miliar from the EFT of Inflation). Resonant effects induced by such time dependence

of cπ is an interesting possibility that we will explore in future work. For simplicity,

here we will focus on the time-dependence of the background and assume that the

time dependence of the sound speed is negligible.

To understand the Goldstone dynamics we first identify the energy scales at which

different phenomena become important. An important scale is the symmetry break-

ing scale below which we are able to focus on the EFT of the perturbations (we can

‘integrate out the background’) and the Goldstone description can be useful. Follow-

ing closely the example of [316], we can identify the Noether current associated with

the broken symmetry by introducing ‘fake’ Lorentz invariance in (6.51) by rescaling

the spatial coordinates

L̃g = −1

2
(∂̃π̃c)

2 + . . . , (6.53)

where x̃ ≡ c−1
π x, L̃g ≡ c3

πLg and π̃c = (−2Ḣm2
plcπ)1/2πc. The Noether current

associated with (6.53) is then J̃µ = −Λ2
sb∂

µπ̃c, and the symmetry breaking scale is

given by11 Λ2
sb = (−2Ḣm2

plcπ)1/2.

For the simplest models, with unity sound speed, we have Λ2
sb = (−2Ḣm2

pl)
1/2,

and this agrees with expectations that the time evolution of the background is re-

sponsible for breaking the time translation symmetry (H(t) is changing in time). In

particular, given the background evolution in (6.48) we are interested in the time

averaged value Λ2
sb ≡ 〈(−2Ḣm2

plcπ)1/2〉T ≈ HFRWmpl c
1/2
π . For energy scales where

E < Λsb the Goldstone description of (6.51) is valid. We emphasize that we are fo-

cusing on fluctuations around a decelerating FRW background, and so the symmetry

breaking scale is more dependent on time12 than the inflationary case i.e. Λ2
sb ∝ t−1.

However, in the presence of resonance and with strong enough couplings to the re-

heating sector to make reheating efficient, it is justified to take a decoupling limit

11We present the scale in terms of energy, but it is important to remember that since Lorentz
invariance is spontaneously broken energy scales do not necessarily coincide with momenta [168].

12This raises the interesting issue of ‘level crossing’, which is ubiquitous when applying EFT to
gravitational systems [337].
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HFRW → 0 and mpl → ∞, such that the combination HFRWmpl remains fixed. In

this case, an evolving symmetry breaking scale is unimportant for the validity of the

Goldstone description – all that is required is a hierarchy of scales Λsb � ω where ω

is the oscillation time scale associated with the background evolution that appeared

in (6.48).

Another important scale in understanding the Goldstone dynamics is the energy

scale where mixing with gravitational fluctuations becomes important (Emix). Con-

sider the frequency of the Goldstone πc in Fourier space and in the absence of mixing

terms

ω2
π =

c2
πk

2

a2
+m2

π(t) + . . . , (6.54)

where dots represent sub-leading contributions of order H2. We emphasize that ωπ is

the frequency of the Goldstone, whereas the inflaton oscillations have a frequency we

continue to denote by ω which is often comparable to the Goldstone mass ω ∼ mπ as

follows from (6.48) and (6.52). Remembering this distinction, we note that contrary

to the inflationary case, we are not interested in the dynamics at a fixed energy

scale, and in general whether mixing with gravity is important will depend on the

scales one is interested in. For example, we can separate the Goldstone modes into

relativistic ω . cπk/a (or equivalently mπ . cπk/a) and non-relativistic ω > (cπk)/a

modes. For relativistic modes, time derivatives scale the same as spatial ones in

(6.51), i.e. π̇2
c ∼ c2

π(∂iπc/a)2 ∼ ω2
ππc. On the other hand, for non-relativistic modes,

spatial derivatives are less important than time derivatives and terms involving the

spatial kinetic terms can be compared with the mixing terms in (6.51). The most

relevant mixing term13 between πc and gravitational fluctuations is given by

Lmix ⊃
(−2Ḣ)1/2

2cπ

Ḧ

Ḣ
πcδNc. (6.55)

13Another equally important term is the one proportional to π̇cδNc. When we solve for δNc in
terms of πc and use this solution in (6.51), we can integrate by parts the time derivative on πc
leading to a term comparable to (6.55).
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Figure 6.2: Relevant energy scales for the preheating models considered in Section
6.4.3. On the left, we have the hierarchy in energy scales associated with the dynamics
of the Goldstone boson with a sound speed cπ following our general discussion of self-
resonant models. The right diagram shows the hierarchy of scales for the example of
canonical two-field preheating models.

From Appendix A, we use the solution δNc ≈ cππc in (6.55) and note that Ḣ ≈ H2,

Ḧ ≈ ωH2 (where we keep the leading terms). This leads to Lmix ≈ ωHπ2
c from

which we can see the energy scale at which mixing with gravity becomes important

is Emix ≈ (ωH)1/2. For relativistic modes, mixing with gravity is always irrelevant as

ω2
π > ω2 � ωH. For non-relativistic modes, we compare the mixing term with the

spatial kinetic term in (6.51). This leads to the conclusion that mixing with gravity

will be important for modes with momenta satisfying the following condition,

k

a
.

√
ωH

cπ
(6.56)

An explicit example: The generic construction above is useful in studying

models of inflaton self-resonance. Consider an example where mixing with gravity at

the end of inflation leads to resonant effects for πc. For this purpose, we consider a

simple limit of the unitary gauge action in (6.40) where m2 = 0, m2
pl(3H

2 + Ḣ) =

V (φ0) = m2
φφ

2
0
/2 , and Ḣm2

pl = −φ̇2
0
/2. These choices correspond to a cosmology

dominated by a single scalar field – the inflaton. In the regime where mφ � H, the
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background condensate oscillates around the minimum of its potential V = m2
φφ

2
0
/2,

and in this case we can solve for the background evolution [338]

H(t) = HFRW(t)− 3HFRW(t)2

4mφ

sin(2mφt) + . . . , (6.57)

where HFRW = 2/(3t) is the Hubble rate in a matter dominated universe with scale

factor a(t) ∝ t2/3 and dots represent terms suppressed by higher powers of Hm/mφ.

This solution has exactly the form proposed in (6.48) with Hosc ≡ −3H2
FRW/4mφ,

ω ≡ 2mφ, and we also have HFRW � mφ.

Given the background evolution in (6.57), we can now consider the dynamics of

πc. To reproduce this class of models we take the cπ → 1 limit, and solve for the

constraints δNc and N i
c. Using our results from Appendix A, along with (6.51) we

have

Lπc = −1

2
(∂πc)

2 − 1

2

(
m2
π(t) +m2

mix(t)
)
π2
c , (6.58)

where the mass mixing induced by δNc and N i
c is

m2
mix = 6Ḣ + 2

Ḧ

H
− 2

Ḣ2

H2
. (6.59)

Using the background evolution given by (6.57) and (6.59) the mode equation for the

re-scaled field variable π̃c = a3/2πc can be written as

¨̃πc +

[
k2

a2
+m2

φ

(
1 + 6

HFRW

mφ

sin(2mφt)

)]
π̃c = 0, (6.60)

where we have dropped additional terms further suppressed by H2
FRW/m

2
φ and m2

π →

V ′′(φ0) = m2
φ which follows from relating derivatives of the potential to the time

derivatives of the Hubble rate given in (6.57) (See Appendix B).

To establish whether self-resonance results in particle production we can recast

(6.60) in the form of a Mathieu equation by re-defining the time variable z = mφt+π/4

with Ak = 1 + k2/(a2m2
φ) and q = 3HFRW/mφ. As the background evolution implies
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the hierarchy HFRW � mφ, this implies modes in equation (6.60) will be in the narrow

resonance regime, q � 1. The first instability corresponds to the condition Ak < 1+q

implying modes with momenta

k

a
<
√

3HFRWmφ (6.61)

will be amplified [25]. This result matches well with our previous estimate on the

momentum scales where mixing with gravitational fluctuations is important in (6.56)

(recalling we have cπ = 1 here).

Such resonant effects due to mixing with gravity have been considered previously

in the literature [109, 339], where those authors studied the growth of the density

perturbations and the onset of non-linear effects arising during oscillations of the

background. Here, we can use the EFT to reproduce their results

δk ≡
δρk
ρ̄(t)

=
δρk

3H2m2
pl

∝
(

k

aHFRW

)2

, for
k

a
<
√

3HFRWmφ, (6.62)

where δρk is defined as

δρk = (−2Ḣ)1/2mpl

[
π̇c −

1

2

(
3 +

Ḧ

Ḣ
− 2

Ḣ

H

)
πc

]
. (6.63)

We now consider how the EFT captures models where the reheat sector results

from the inflaton resonance given by the time-dependent functions in (6.46) and

(6.47). If any of these couplings are stronger than gravitational strength the resonance

in the reheat sector will typically dominate over the gravitationally induced effects

discussed above.

Reheating in a Two-Field Model

In this section, we explicitly demonstrate how the EFT approach reproduces models

of two-field reheating, taking as a concrete example the specific class of models given
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by (6.1). In the early stages of preheating the inflaton will dominate the energy

density. We take the reheat field to be initially in its vacuum14 with χ0 = 0, and we

consider production of χ quanta in the presence of the oscillating inflaton condensate

φ0(t). In the unitary gauge with φ = φ0(t) and χ0 = 0, we have the following matter

Lagrangian

Sm =

∫
d4x
√
−g
[
−1

2
φ̇2

0
g00 − V (φ0)− 1

2
gµν∂µχ∂νχ−

1

2
(U ′′(χ0) + g2φ2

0
)χ2

]
. (6.64)

Using the background equations of motion we can cancel the tadpole terms, m2
pl(3H

2+

Ḣ) = V (φ0) = m2
φφ

2
0
/2 , Ḣm2

pl = −φ̇2
0
/2, and the unitary gauge matter Lagrangian

is then given by

Lm = m2
plḢg

00 −m2
pl(3H

2 + Ḣ)− 1

2
gµν∂µχ∂νχ−

1

2

(
m2
χ + 2

g2m2
pl

m2
φ

(3H2 + Ḣ)

)
χ2,

(6.65)

where we defined U ′′(χ0) ≡ m2
χ. Comparing with the unitary gauge action (6.40)

– (6.42), the matter Lagrangian (6.65) corresponds to the following choice for non-

universal parameters in the EFT framework,

α1 = 1, α3 = m2
χ + 2

g2m2
pl

m2
φ

(3H2 + Ḣ), {m2, α2, α4, β1, β2} = 0. (6.66)

We emphasize that in this model the linear mixing between the χ sector and

gravitational sector (which includes the Goldstone in the unitary gauge) vanishes au-

tomatically since β1, β2 = 0 in (6.42). As before, we can introduce the Goldstone

sector in (6.65) following the transformation15 rules in (6.43). However, in the pres-

ence of strong resonance in the χ sector, i.e. if α̇3/α
2
3 > O(1) during any time in the

linear stage of preheating, Goldstone fluctuations will be negligible compared to the

14We saw in Section 6.3 that it was a challenge for the background EFT model, but this is natural
here as the shift symmetry of the background has been badly broken by the interactions.

15It is important to note that the transformation t → t + π that introduces the Goldstone also
induces non-linear interactions between the Goldstone and reheat sectors – we will elaborate on this
below.
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χ’s that are amplified through the strong resonance. In general, the validity of this

argument relies on the strength of the coupling between the background and the χ

sector through the mass term. For example, in the model we are considering here,

introducing π via t→ t+π (See also (6.43)) will lead to the Goldstone sector we have

discussed in the previous section, where mixing with gravity leads to weak resonance

q ≈ HFRW/mφ � 1 (c.f. (6.60) and the discussion that follows). On the other hand,

the strength of the resonance in the χ sector depends on the ratio gmpl/mφ which can

be quite large unless g � 1. Too see this in detail, it is enough to compare the scales

in our EFT. The strength of the resonance in χ can be read from (6.66) and com-

pared to the strength ≈ mφHFRW of the resonance in the Goldstone sector in equation

(6.60). The following condition is sufficient to neglect the Goldstone dynamics

g2

(
mpl

mφ

)(
Λsb

mφ

)2

> 1. (6.67)

It is clear from this expression that unless the coupling constant is tiny g � 1 we can

neglect the mild amplification of Goldstone due to mixing with gravity.

Another simplification we can make in this case is to consider the decoupling limit

in the EFT where |Ḣ| ≈ H2
FRW → 0 and m2

pl → ∞, while keeping the combinations

Ḣm2
pl and H2m2

pl as constant. In this limit, it is clear that π fluctuations will stay

in their vacuum as the terms leading to narrow resonance vanishes (HFRW → 0). We

also note that the decoupling limit corresponds to taking the rigid space-time limit,

a→ 1 that is commonly discussed in the preheating literature16 [25, 27].

To study particle production, we can focus on the decoupling limit of the La-

grangian (6.65), and consider the mode equation for χ as,

χ̈k + ω2
χ(t)χk = 0 (6.68)

16An additional and important point on the decoupling limit is that in this limit the time-
dependent functions such as α3 we are considering will be purely periodic functions. This can
be seen by using (6.57) in equation (6.66) and taking the decoupling limit. This implies that EFT
should respect an exact discrete symmetry in this limit.
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where the time dependent frequency is given by

ω2
χ = k2 +m2

χ +
g2m2

pl

m2
φ

(3H2 + Ḣ). (6.69)

In the decoupling limit, the time dependent mass induced by the background evolution

stays intact, which is crucial for particle production. As we have mentioned before,

particle production corresponds to the breakdown of the adiabaticity in the frequency,

i.e. |ω̇χ/ω2
χ| > O(1). Using (6.57) and the relations with the potential and Hubble

rate in Appendix B, this condition translates into

K2 . g HFRWmpl ≈ gΛ2
sb, (6.70)

where K =
√
k2 +m2

χ is the rescaled momenta. In the example we are considering,

we see that this condition justifies the use of the EFT formalism as the resonant modes

have a momenta much smaller than the symmetry breaking scale for small enough

coupling, i.e. HFRWmpl ≡ Λ2
sb � gΛ2

sb for g � 1. The structure of the instability

band along with the exponentially growing solutions in the χ sector have been studied

many times in the literature [27]. Here, our main purpose is to show the connection

of the EFT approach to well established two-field reheating models.

Another potential use of EFT formalism is to capture the effects of backreaction.

This can be achieved by realizing that once we introduce the Goldstone mode in the

unitary gauge Lagrangian (6.65) the time dependent mass (and for general models

other time dependent functions) of χ becomes α3(t + π). As α3 is a rapidly varying

function of time in the presence of particle production in the χ sector, this term will

induce higher order interactions between π and χ upon expanding the function,

Lint = −1

2

(
α̇3π +

1

2
α̈3π

2

)
χ2. (6.71)

In particular, in the current example the first term in (6.71) will lead to a tadpole
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term for πc = (−2Ḣ)1/2mplπ. In the Hartree approximation [25] this gives

Lint ⊃ −
1

2

α̇3

(−2Ḣm2
pl)

1/2
〈χ2〉πc, (6.72)

where

〈χ2(t)〉 =
1

2π2

∫ ∞
0

dk k2 |χk(t)|2. (6.73)

The existence of such a tadpole term can be considered as an indication of backreac-

tion effects. For example, as we produce χ particles the coefficient in front of πc will

grow and may eventually disturb the background evolution. In particular they can

increase the frequency of the background oscillations of the condensate [25],

m2
φ → m2

φ +
α̇3

(−2Ḣm2
pl)

1/2
〈χ2〉 (6.74)

In order to understand the onset of the backreaction effects in the presence of particle

production, we can compare the second term in (6.74) with m2
φ. We refer to this time

where the backreaction becomes important as tb and the condition reads

m2
φ =

α̇3(tb)

(−2Ḣ(tb)m2
pl)

1/2
〈χ2(tb)〉 (6.75)

Knowing the solutions for χk, the background evolution (6.57) and the couplings α3

one can calculate tb.

We emphasize that our discussion in this section is not limited to the example

given by (6.66). Using the EFT formalism, we can in principle capture models that

belong to the same “universality class”, i.e. direct coupling models with interactions

including Lm ∝ µφχ2 and non-renormalizable couplings Lm ∝ φnχ2/Mn−2 where

n > 2 and M,µ are energy scales [340].
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6.4.4 A New Class of Reheating Models

In the previous section, we showed how the EFT captures resonance effects in two-

field reheating models. We now reconsider particle production in the presence of a

reduced sound speed for the reheat field, cχ 6= 1. Familiar from the EFT of Inflation

and Dark Energy, there is no symmetry protecting cχ = 1 in the EFT of reheating.

This gives rise to a new class of models for preheating where the produced particles

can have cχ � 1.

We follow our previous discussion in Section 6.4.2 and consider the time-dependent

functions associated with the reheat sector {αi, βi}. The terms proportional to β1

and β2 in (6.47) lead to mixing of χ with both gravity and the Goldstone sector.

We will ignore these terms here, leaving a discussion of them to Appendix A. In the

absence of these mixing terms we focus on the action (6.46). Defining the canonical

field χc = αχ(t)χ where α2
χ(t) = α1(t) + α2(t), we have the following second order

Lagrangian for the canonical reheat field

Lχc =
1

2

[
χ̇2
c − c2

χ(t)
(∂iχc)

2

a2

]
− 1

2
m2
χ(t)χ2

c , (6.76)

where we have defined the sound speed c2
χ = α1/(α1 + α2) and the time-dependent

mass term is

m2
χ(t) =

α3(t)

α2
χ(t)
−
(
α̇χ
αχ

)2

+ 3H

(
α̇χ
αχ

)
+ ∂t

(
α̇χ
αχ

)
. (6.77)

Similar to the Goldstone case in Section 6.4.3, we have a time-dependent mass mχ(t)

induced by the time dependence of the sound speed cχ and α1
17. We will concentrate

on strong resonant effects due to non-adiabaticity in the time-dependent coefficient

α3 and assume that the time variation of αχ is slow compared to α3, so that the

sound speed is nearly constant18 (where α1, α2 ≈ constant). We can then neglect

the last three terms in (6.77) and the mode equation for the re-scaled field variable

17Recall that c2χ = α1/α
2
χ

18Again, we leave the interesting case of strong time dependence of the sound speed to future
work.
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χ̃c = a3/2χc in Fourier space is

¨̃χ
k

c +

[
c2
χ

k2

a2
+ α3 + ∆

]
χ̃kc = 0, (6.78)

where ∆ = −3(3H2 + 2Ḣ)/4 ≈ O(H2) are gravitational terms resulting from the

rescaling χc → χ̃c and we have absorbed the constants α1, α2 into the definition of

α3. Following our discussion in Section 6.4.2, it is convenient to parameterize α3 as

α3 = M2(t)F (ωt), where M(t) is always adiabatic so that Ṁ/M2 � 1 and F is a

periodic function which must violate adiabaticity so that preheating occurs. That

is, at some point adequate particle production requires the so-far arbitrary function

to satisfy Ḟ /F 2 > 1. In many models the periodicity of the function will be set by

the background evolution in (6.48). We focus on the strong resonance regime where

M � H and M/ω � 1 and hence drop O(H2) terms in the frequency ω2
χ,

ω2
χ = c2

χ

k2

a2
+M2F (ωt). (6.79)

The non-adiabaticity in α3 will lead to non-adiabaticity in the frequency ω2
χ, i.e. ω̇χ/ω

2
χ >

O(1). We take this to occur as times tj when ω2
χ is at its minimum19. This suggests

that we can expand the frequency around the times tj as

ω2
χ ' c2

χ

k2

a2
+

1

2
M2ω2(t− tj)2 + . . . (6.80)

where we have used F̈ ≈ ω2F and dots represent higher order terms in the t − tj

expansion. This allows us to re-write the mode equation in a simpler form

¨̃χ
k

c +

[
c2
χ

k2

a2
+
M2ω2

2
(t− tj)2

]
χ̃kc = 0 (6.81)

19Note that here we are focusing on non-tachyonic resonance, for tachyonic resonance this situation
will be different, see e.g. [340].
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and the typical momenta when adiabaticity is violated ω̇χ > ω2
χ corresponds to

k2
∗ ≡

Mω

c2
χ

&
k2

a2
, (6.82)

We see that for cχ < 1, the physical wave numbers inside the resonant regime are

further enhanced (the resonance band is broadened) compared to the standard cases

that have been studied in the literature. It is customary to map the mode equation

(6.81) to a scattering problem described by a Schrödinger equation with a negative

parabolic potential by defining a new time variable τ ≡ cχk∗(t−tj) and a dimensionless

physical momentum κ ≡ k/(ak∗),

d2χ̃kc
dτ 2

+
(
κ2 + τ 2

)
χ̃kc = 0. (6.83)

The solution to the scattering problem and the resulting number density of particles

between scattering events has appeared in the literature many times [25, 176] (See also

[291]). In real space, the growth of the number density of particles can be described

by the following expression [25],

nχ(t) =
1

2πa3

∫
d3k nkχ(t) ∼ k3

∗√
πµmφt

e2µmφt, (6.84)

where (for simplicity) we have assumed that the background is given by the quadratic

potential we considered before, i.e. ω ∼ mφ. Here µ is the maximum value of the

Floquet index at kmax ≈ k∗/2 [25]. It is clear from this expression that there will be

an enhancement in the number of produced particles due to the small sound speed in

the χ sector, k∗ ∝ c−1
χ . This also agrees with our intuition as equation (6.82) tells us

that resonant bands are wider for cχ < 1 and thus the contribution to the integral in

(6.84) over resonant modes will be enhanced by factors of c−1
χ . In the next section we

will consider observational consequences of the EFT of reheating, focusing on this new

class of models with non-standard sound speed. We also discuss additional challenges
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and future directions for the approach.

6.5 Challenges and Outlook

In this paper we have presented an EFT approach to reheating that overcomes the

challenges of the background evolution discussed in Section 6.3 and is adequate to

capture all existing reheating models in the literature. Guided by symmetries, our

approach is also useful for finding new models of reheating, e.g. we found a new class

of models where the reheating sector has cχ 6= 1. However, there are many challenges

remaining for our EFT approach.

One of the more serious concerns is the lack of a direct connection to observations.

This problem is not specific to our approach, with the lack of direct observational

constraints on reheating being an important reason that far less is known about this

epoch than inflation. In our EFT framework, symmetries help to alleviate more of the

theoretical uncertainties associated with reheating than a toy model approach. For

example, the need to non-linearly realize time translations demonstrated that many

of the unknown coefficients are related, and the need to violate non-adiabaticity

(required for particle production) also placed some level of theoretical constraint on

the reheating sector. Nevertheless, we saw in Section 6.4 there are a large number of

free functions that must be further restricted by observations. Unlike the situation for

inflation, where non-Gaussianity and features in the primordial power spectrum are a

rich source of observational constraints, direct observational constraints on reheating

are lacking. One possibility to remedy this is gravitation wave (GW) signatures.

Once particles are produced during reheating20 they can scatter off each other

creating a background of GWs [284, 287]. The scattering leads to a transverse-

20This should not be confused with sourcing a gravity perturbation with a second order scalar
perturbation. Here we are considering on-shell particles that are classically scattering off of each
other and generating a GW spectrum. We refer the reader to [232] for more details.
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traceless source for the gravitons

ḧij + 3Hḣij −
1

a2
∂2hij =

2

m2
pl

T TTij (6.85)

Following the methods of [232] we can then estimate the critical density of gravita-

tional waves today21

Ωgw =
Sk(tf )

a4
J ρJ

(
aJ
arh

)1−3w (
grh

g0

)−1/3

Ωr,0, (6.86)

where subscript “0” denotes a quantity evaluated today, ‘J ’ represents the time

when the universe becomes radiation dominated and ‘rh’ denotes the beginning of

reheating. Here, ω is the average equation of state of the universe between the time

interval tJ < t < trh and gi is the effective relativistic degrees of freedom. Finally, the

source term Sk encodes the predictions for different classes of models in the EFT.

For example, let us consider the new class of models discussed in Section 6.4.4. In

that case the source term Sk is given by

Sk(tf ) =
c4
χ k

3

4π2m2
pl

∫
dp

∫ 1

−1

d(cos θ) p6 sin4 θ ×[ ∣∣∣∣∫ tf

ti

dt cos (kt)χc(p, t)χc(|~k − ~p|, t)
∣∣∣∣2 +

∣∣∣∣∫ tf

ti

dt sin (kt)χc(p, t)χc(|~k − ~p|, t)
∣∣∣∣2
]

(6.87)

where we focus on two-body scattering, θ is the scattering angle, and we assume that

scattering happens at a fast enough rate that we can neglect the Hubble expansion.

To get an order of magnitude estimate we can focus on the low momenta. In this

case, the contribution of the mode functions to time integrals will be maximal for

21For a different approach we refer the reader to [341].
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p∗ =
√
Mω/cχ and defining a dimensionless momentum P = p/p∗ we have

Sj+1
k ∼ 1

c3
χ

(Mω)3/2k3

m2
pl

∫ 1

−1

d(cos θ) sin4 θ

∫
dPP 6 × [Time integrals], (6.88)

where we recall that α3 is parameterized by M and ω as in (6.81), and so the EFT

parameters are determining the strength of the GW signal. Moreover, the gravita-

tional waves will be amplified by a factor of c−3
χ . This scaling may be counter-intuitive

to the reader. The prefactor in (6.87) results from the two-to-two scattering of the

particles as their momenta is now p → cχp. However, the lower sound speed implies

it costs less energy to produce the particles leading to an enhancement of the particle

production rate, and more particles scattering leads to more gravity waves. Thus,

the GW signal is enhanced compared to the cχ = 1 case. Assuming this signal sur-

vives the later stages of reheating the detectability will depend on the peak frequency

[284, 287, 341]

f =

√
Mω

ajρ
1/4
j cχ

4× 1010 Hz, (6.89)

which again depends explicitly on the EFT parameters and the sound speed. We see

that by reducing the sound speed we can increase the frequency in the new class of

reheating models.

GWs provide one way to constrain the EFT parameters. However, we leave a

more complete analysis, which requires following the signal through all the stages of

reheating22, to future work. Primordial Black Hole constraints and the matching of

inflationary perturbations to late time observables lead to additional ways in which

the EFT parameters may be restricted. In regards to the latter, we have stressed that

direct observables correspond to perturbations, however the subtle ways in which we

match inflationary predictions to CMB and LSS observations does depend implicitly

on the background dynamics, particularly through the equation of state. Recently,

22One interesting approach would be to see if we could combine the EFT framework here with
the recent fitting analysis of [342].
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it has been shown that the physics of reheating (including non-linearities and back-

reaction) can have subtle and interesting effects on the equation of state and the

dynamics of thermalization [343]. We hope to return to these issues and interesting

possibilities in future work.

In addition to the challenge to connect with observations, a number of theoretical

issues remain to be addressed. In particular, in this paper we have primarily focused

on connecting the EFT to scalar field driven models of reheating. However, the spec-

tator field χ can be thought of as an additional clock field, which can also represent

reheat fields beyond spin zero. Extending our framework to other spins is an impor-

tant consideration. We have also primarily focused on the first stage of reheating in

the EFT. However, one of the most useful applications of our approach could be to

gain a better understanding of the rescattering and back-reaction effects that happen

following the first stage. These are stages that usually require lattice simulations,

and the Goldstone approach could be a fruitful way to get a better analytical under-

standing. There is also the issue of when the produced particles become significant

enough that they contribute to the energy density. At this point the Goldstone bo-

son (related to the matter sector responsible for time-translations being broken) can

change its nature from inflatons to the reheat field. How this transition proceeds is

important for establishing the connection between the Goldstone and the background

fields. This is similar to the situation in studies of dissipation in the EFT of Inflation

(see e.g. [344]), and we expect many of the techniques there could prove useful for

the case of reheating as well.
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Appendix

6.A Terms proportional to χ in the unitary gauge

action

We make use of the unit 4-vector, nµ = −δ0
µ/
√
−g00 that is orthogonal to constant

time hyper-surfaces Σt and the definition of extrinsic curvature, Kµν = hσµ∇σnν ,

where hσµ ≡ δσµ + nσnµ to tackle the the term that linear in χ. In this appendix, first

we focus on the tadpole terms in χ that are of the following form

∫
d4x
√
−g f4(t) ∂0χ =

∫
d4x
√
−g f2(t)

√
−g00 nµ∇µχ, (6.90)

where we have used gµνnµ ≡ nν = gν0(−g00)−1/2. Making an integration by parts in

the relation (6.90) above and realizing Kµ
µ = ∇µn

µ, we have

−
∫

d4x
√
−g
[
g00ḟ4(t)χ+

f4(t)

2
∂0
(
ln(−g00)

)
+ f4(t)

√
−g00Kµ

µ

]
χ. (6.91)

Now expanding the fluctuations in the metric and trace of the extrinsic curvature as

g00 = −1 + δg00 + . . . and Kµ
µ = K(0) + δK + . . . by noting K(0) = −3H(t) and

including the term
∫

d4x
√
−g f3(t) χ to (6.91) we have

∫
d4x
√
−g
{[
f3(t) + ḟ4(t) + 3H(t)f4(t)

]
χ+O(δg00, δK)χ.

}
(6.92)
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Therefore, imposing the background equation of motion f3(t)+ḟ4(t)+3H(t)f4(t) = 0,

we see that all the other terms are second and higher order in fluctuations as claimed

in the text.

6.B ADM Formalism and Mixing with Gravity

To account for gravitational fluctuations and discuss the regime where they are irrel-

evant to the dynamics of the Goldstone we decompose the metric in the ADM form.

In the spatially flat gauge we have

ds2 = −(N2 −NiN
i)dt2 + 2Nidx

idt+ ĝij dxidxj, (6.93)

where ĝij = a2(δij + hij) is the spatial metric and our gauge choice implies hii =

∂ihij = 0. Inverse metric elements can be written as

g00 = − 1

N2
, g0i = gi0 =

N i

N2
, gij = hij − N iN j

N2
. (6.94)

To find the relevant terms in the gravitational sector, we expand the Einstein

Hilbert term as

Sg ⊃
m2

pl

2

∫
d4x
√
−g R =

m2
pl

2

∫
d4x

√
ĝ
[
NR(3) +

1

N
(EijEij − Ei

i
2)
]
, (6.95)

where R(3) is the three curvature associated with spatial metric ĝij and Eij is related

to the extrinsic curvature of constant time slices through

Eij ≡ NKij =
1

2
[∂tĝij − ∇̂iNj − ∇̂jNi] , (6.96)

where ∇̂i is the covariant derivative with respect to spatial metric ĝij. Using the
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above expressions, we can expand (6.45) up to second order in scalar fluctuations

Lg = −
m2

plḢ

c2
π

(
π̇2 − c2

π

(∂iπ)2

a2

)
− 3m2

plḢ
2π2 +m2

pl(2c
−2
π Ḣπ̇ − 6HḢπ)δN

+ 2m2
plḢN

i∂iπ −m2
pl(3H

2 + c−2
π Ḣ)δN2 − 2m2

plHδN∂iN
i (6.97)

where the speed of sound is defined as c2
π = m2

plḢ/(m
2
plḢ −m4

2). Defining the canon-

ical fields, πc =
√
−2Ḣm2

pl c
−1
π π, δNc = mplδN,N

i
c = mplN

i, one can re-write the

Lagrangian as in (6.51).

Focusing on the Goldstone sector for now, we can solve for the Lagrange multipliers

δN and N i in terms of π. To linear order in π we have,

δN = −Ḣ
H
π, ∂iN

i = c−2
π

Ḣ

H2
∂t (Hπ) . (6.98)

Using the canonical field definitions above we may write

δNc =
(−2Ḣ)1/2

2H
πc, ∂iN

i
c = c−2

π

Ḣ

H2
∂t

(
cπHπc

(−2Ḣ)1/2

)
. (6.99)

Using these solutions for the gravitational fluctuations δNc N
i
c in (6.51) (while taking

the cπ → 1 limit) we recover the result of (6.58).

In the presence of a reheat sector χ, we need to take into account the mixing

between χ and gravitational fluctuations, as well as π − χ mixings. Considering the

mixings at second order we need to take into account the action in (6.47). Expanding

up to second order in δN , N i, π and χ, we have

S
(2)
mix =

∫
d4x a3

[
2β1 (δN − π̇)χ− 2β2 (δN − π̇) χ̇

]
. (6.100)

We note that the action (6.46) does not lead to any second order mixing therefore it

is enough to consider the mixing action above. Combining (6.97) and (6.100) in the
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presence of mixing we have the following solutions for the constraints,

δN = −Ḣ
H
π, ∂iN

i = c−2
π

Ḣ

H2
∂t (Hπ) +

β1

m2
plH

χ− β2

m2
plH

χ̇. (6.101)

We see that inclusion of reheat sector does not change the solution for δN , but we

have additional contributions to N i proportional to the time-dependent parameters

β1, β2 . To illustrate the decoupling of χ, we consider a simple πc sector with cπ = 1

and note that time derivatives of canonically normalized fields χc and πc have the

approximate scalings in the WKB approximation,

π̇c ≈ ωππc ∼ ωπc, χ̇c ≈ ωχχc ∼
√
α3χc ∼Mχc, (6.102)

where we take |α3| = M2 following our discussion in the main text and focused on

the non-relativistic modes for both fields. Following our discussion in section 6.4.2,

we assume that the strength of the couplings β1 and β2 is as strong as the time-

dependent parameter α3 responsible for the resonance. By dimensional analysis, we

therefore take |β1| ∼M3 and |β2| ∼M2. Canonically normalizing the fields as before

we find from (6.100) that for resonant modes mixing between χc and gravitational

fluctuations can be neglected in the following range of momenta

(
M

Λsb

)√
MH <

cχk

a
<
√
Mω. (6.103)

Similarly we have the following range where we can neglect direct mixing between πc

and χc, (
M

Λsb

)√
Mω <

cχk

a
<
√
Mω. (6.104)

Consistency of the EFT picture requires M/Λsb � 1 and we see that within this

regime we can neglect both types of mixing for a wide range of momenta. In particular,

with some mild assumptions, we showed that in the presence of strong resonance, we

can neglect the mixings between πc and χc. This finding is similar in spirit to the
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discussion presented in the recent works [291, 345] where those authors pointed out

that it is technically natural to assume a flat field space metric in the presence of

strong disorder/resonance.

We conclude this appendix by giving the second order action for tensor perturba-

tions and their interaction with πc and χc that we used in the main text. Using the

gravitational part of the action in (6.95) with (6.96) and noting the Ricci curvature

R(3) on spatial hyper-surfaces,

R(3) = ĝik∂lΓ
l
ik − ĝik∂kΓlil + ĝikΓlikΓ

m
lm − ĝikΓmil Γlkm, (6.105)

Γkij =
1

2
ĝkl (∂iĝjl + ∂j ĝil − ∂lĝij) , (6.106)

we have the following second order action for the tensor part of the metric fluctuations

Sg =
m2

pl

8

∫
d4x a3

(
ḣijḣij −

∂khij∂khij
a2

)
. (6.107)

On the other hand, expanding the actions (6.45) and (6.46) we find the following

cubic order interactions between πc and χc

ShXX ⊃
∫

d4x a3

(
c2
χ

2
hij
∂iχc∂jχc

a2
+
c2
π

2
hij
∂iπc∂jπc

a2

)
. (6.108)

6.C Relating Unitary Gauge to the Scalar Poten-

tial

In cosmologies dominated by a scalar field, we can map the time-dependent back-

ground quantities in our Unitary gauge Lagrangian (6.40) to the explicit scalar field

models with a given potential V (φ0). A simple example we provided in the main text

was

V (φ0) = m2
pl(3H

2(t) + Ḣ(t)), − 2Ḣm2
pl = φ̇2

0
(6.109)
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Using dφ0 = φ̇0dt and time derivatives of expressions in (6.109), we can relate the

derivatives of the potential with respect to φ to the time derivatives of the Hubble

rate H(t). Here, we list some of these expressions,

V ′(φ0) =
m2

pl

(−2Ḣ)1/2

(
6HḢ + Ḧ

)
, (6.110)

V ′′(φ0) = −3Ḣ − 1

4

(
Ḧ

Ḣ

)2

− 3H

2

(
Ḧ

Ḣ

)
− 1

2
∂t

(
Ḧ

Ḣ

)
, (6.111)

V ′′′(φ0) =
1

(−2Ḣm2
pl)

1/2

[
−H

(4)

2Ḣ
− 9Ḧ

2
+

Ḧ3

2Ḣ3
− 3H

2
∂t

(
Ḧ

Ḣ

)
+

1

2
∂t

(
Ḧ2

Ḣ2

)]
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