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Abstract 

The Great Lakes Regions are the largest surface freshwater system on earth containing 20% of the 

global freshwater reserves and supply drinking water to 10% of the United States and 30% of the 

Canadian population. Nearly 25% of Canadian and 7% of American agricultural production are in 

the watershed. Trends and variability in precipitation over the Great Lakes basin has critical global 

and local implications for water resources management, which become especially problematic 

under climate change. Understanding how Great Lakes hydrometeorology will respond to 

anthropogenic climate change is complicated by the climatological complexity of the region. The 

Great Lakes basin spans over 1200 kilometers (about 745.65 mi) and straddles four different 

climate regions in two countries: the Midwestern and Eastern climate regions of the United States, 

and the Northeastern Forest and Laurentian Great Lakes climate regions of Canada. The 

atmospheric dynamics of hydroclimatic circulation vary across the Great Lakes basin. In the 

western Great Lakes, precipitation variability is strongly leveraged by the ENSO oscillation, in the 

eastern Great Lakes, precipitation variability is additionally impacted by circulation anomalies 

associated with the North Atlantic Hadley circulation. These atmospheric features will likely be 

impacted differently by climate change. Projecting pan-Great Lakes hydro-climatological shifts in 

the twenty-first century will require a diagnostic assessment of 1) how numerical climate models 

parameterize relationships between local circulation patterns and precipitation variability and 2) 

how these relationships will likely change under global warming. Currently, there is very little 

agreement in regional 21st century precipitation predictions between CMIP6 ensemble models. In 

this study, we evaluate precipitation simulations from 12 different general circulation models 

participating in CMIP6 that are representative of the full range of variability in numeric 

representation of North American climate. We quantify each model’s accuracy in capturing 



 
 
 

 

historic seasonal wet and dry anomalies in the Great Lakes region. We then evaluate consistency 

between characteristic modes of anomalous hydroclimatic circulation in historical observations 

and model simulations. Based on the physical mechanism by which climate models simulate 

historical anomalous hydroclimatic circulation, and translate these circulation anomalies into 

precipitation anomalies, we identify a subset of 21st century climate model predictions which we 

believe to be most physically plausible. Implications for future hydroclimate are discussed. 
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Section 1: Introduction 

The Laurentian Great Lakes contain 20% of the world’s surface freshwater, making them 

the largest surface freshwater system on earth. The Great Lakes supply drinking water to 8% of 

the United States and 30% of the Canadian population. According to the United States of 

Environmental Protection Agency (EPA), nearly 25% of Canadian agricultural production and 7% 

of American agricultural production occurs in the Great Lakes watershed. The Great Lakes surface 

water system, including the Saint Lawrence River, are essential inland navigation routes for the 

shipping industry. According to the Great Lakes St. Since 1959, over $375 billion in commodities 

have traveled through the Great Lakes seaway on transport to or from the United States and 

Canada. The management of the Great Lakes system involves international coordination between 

the United States and Canada by way of the International Joint Commission, as well as state and 

local governments across eight US states and two Canadian provinces. With so many stakeholders 

involved, and so much at stake, accurate information about current and future hydrologic 

conditions in the Great Lakes basin is essential to the coordination of successful human enterprise 

across North America. 

Seager, Naik, and Vecchi (2010) demonstrate that global warming will modify local 

hydrologic variability both thermodynamically and dynamically, and that the fidelity of 

characterization of both mechanisms must be considered when evaluating the realism of local 

hydrologic predictions under climate change (Seager and Hoerling 2014; Seager et al. 2014). 

Thermodynamically, warmer air temperatures expected under global warming will have higher 

saturation vapor pressures, meaning that the maximum mass of water that can be retained by an 

atmospheric column increases as the temperature of that atmospheric column increases. The 

quantification of this feature comes from the Clausius Clapeyron equation. As average air 
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temperatures increase under climate change, the maximum mass of water that can be in the 

atmosphere will increase as well, by about 7% for every 10C in temperature increase. 

Temperature-modulated increases in saturation vapor pressure will be associated with both an 

increase in precipitation rates (increased in the total mass and intensity of precipitation delivered 

during convection) and evaporation rates (an increase in the humidity gradient between moist 

land surfaces and warm dry air will increase rates of terrestrial drying). Often called “wet gets 

wetter, dry gets drier,” thermodynamic intensification of the hydrologic cycle under global 

warming is expected to increase the net moisture supply in humid climates and increase the net 

aridity in arid climates (K. E. Trenberth 2011). Dynamically, the spatial distribution of humid 

and arid climates is determined by stable patterns in global atmospheric circulation. Atmospheric 

currents route moisture-enriched air from ocean basins over terrestrial landmasses, determining 

the spatial distribution of arid and humid landscapes at the continental scale (Gimeno et al. 

2010). Atmospheric circulation patterns are complex, scale-dependent functions of earth’s axial 

rotation, earth’s orbit around the sun, thermal gradients in the oceans (which are modified by 

oceanic circulation), thermal gradients between land-sea interfaces, diabatic heating/cooling 

associated with internal atmospheric processes, and local landscape forcings such as land cover, 

elevation, and the presence of freshwater bodies. Dynamical shifts in hydroclimatology, that 

occur when increasing air temperatures modify large-scale atmospheric circulation patterns by 

way of modified thermal and osmotic gradients within oceans and across land masses, are 

projected to shift the geographic and seasonal distribution of terrestrial moisture supply. Taken in 

tandem, thermodynamic and dynamic shifts in hydroclimatology are expected to shift both the 

intensity of precipitation and evapotranspiration, and the space-time distribution of humidity and 

aridity across continental landmasses.  
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There is broad consensus on the impact of thermodynamic intensification of the 

hydrologic cycle across different general circulation models. An increase in temperature causes 

the atmosphere to have a greater capacity to hold water vapor, i.e., it increases the specific 

humidity exponentially with temperature. This moisture availability will result in an increase in 

the intensity of precipitation even though the average global precipitation will be constrained by 

the energy availability ( Allen and Ingram 2002). Across all latitude bands the extreme 

precipitation sensitivity to temperature is found to be positive albeit with different magnitude 

(O’Gorman 2015, Pfahl, O’Gorman, and Fischer 2017)  The increase in intensity also can be 

explained by the difference between larger increase in moisture and a relatively smaller increase 

in total precipitation change (K. E. Trenberth 2011;). There is substantial variability in how 

GCMs represent dynamic hydrological shifts, resulting in substantial regional variability 

between model projections. Variability in characterization of regional dynamic hydrologic 

change dominates the total uncertainty in multi-model ensemble forecasts of precipitation under 

climate change (Pfahl, O’Gorman, and Fischer 2017). The accuracy of regional precipitation 

forecasts under different global warming scenarios is therefore dependent on the physical realism 

of how these global models map regional precipitation anomalies to anomalies in global 

hydroclimatic circulation. 

1.1  Dynamic drivers of precipitation variability in the Great Lakes Region 

 

The primary moisture sources for the Great Lakes basin vary spatially and seasonally, with 

the majority of moisture delivered as precipitation to the basin originating from the subpolar 

Pacific Ocean in winter months, and from the subtropical Atlantic and Gulf of Mexico in summer 

months (Carter et al. 2021). The Great Lakes basin spans over 1200 kilometers and straddles four 

https://paperpile.com/c/mStYKP/3yTw+Tv6g+HK01+4Wmu
https://paperpile.com/c/mStYKP/3yTw+Tv6g+HK01+4Wmu
https://paperpile.com/c/mStYKP/3yTw+Tv6g+HK01+4Wmu
https://paperpile.com/c/mStYKP/3yTw+Tv6g+HK01+4Wmu
https://paperpile.com/c/mStYKP/4Wmu
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climate regions in two countries: the Midwestern and Eastern climate regions of the United States, 

and the Northeastern Forest and Laurentian Great Lakes climate regions of Canada. Across the 

Great Lakes basin, the driving hydroclimatic circulation varies spatially. In the western Great 

Lakes, winter precipitation is generally sourced from the subpolar Atlantic by way of the polar Jet 

Stream (Rodionov 1994). The zonal and meridional intensity of the jet stream have strong control 

over precipitation dynamics in the region is strongly leveraged by the El Nino Southern 

Oscillation, with La Nina events associated with enhanced meridional activity in the jet stream and 

strong moist anomalies in the Northern United States and Canada. Under climate change, both El 

Nino and La Nina events are expected to increase in frequency and intensity, with an expected 

westward migration in La Nina-associated wintertime moist anomalies in the upper latitudes of 

North America (Cai et al. 2014). This may be associated with increased interannual variability in 

wintertime precipitation, with a slight decline in the mean precipitation in the Great Lakes region.  

In the eastern Great Lakes, particularly in the warm season, precipitation variability is 

additionally impacted by circulation anomalies associated with the North Atlantic subtropical high 

(NASH, also called the Azores High), which is a seasonally intensifying manifestation of the 

global Hadley circulation (Li et al. 2010). Longitudinal thermal gradients associated with warm-

season land-sea thermal contrasts in the Eastern and Western Atlantic basin cause the NASH to 

migrate westward during spring months, deflecting a current of moist air from the subtropical 

Atlantic into the continental interior, where it is convectively recycled through the eastern upper 

mid-Latitudes during summer months. Westerly anomalies in the NASH are associated with moist 

anomalies in the Southeastern US and Midwestern US. Under climate change, thermodynamically 

enhanced land-sea thermal contrasts are anticipated to be associated with a westward shift in the 
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NASH at peak expansion, suggesting an increase in warm season precipitation sourced from the 

subtropical Atlantic. 

1.2 Historical and future impacts of climate change on Great Lakes 

hydroclimatology 

Understanding how Great Lakes hydrometeorology has and will respond to shifts in 

regional circulation associated with climate change is complicated by the hydroclimatological 

complexity of the region. In the past several decades, the research community has identified 

substantial, complex evidence of hydrologic non-stationarity associated with anthropogenic 

climate change, as well as human development and lake level management. In line with 

expectations for thermodynamic hydrologic intensification under global warming, increases in 

both evapotranspiration and precipitation (Held and Soden 2006) have been observed in the recent 

hydrologic record, leading to increased variability in lake levels across the Great Lakes. 

Current climate models predict an increase in total precipitation but a drier summer in the 

Great Lakes region because of the extension of droughts in south-western USA to more northward 

and eastwards (Richard Peltier et al. 2018). The droughts decrease the surface evaporation in the 

south-west, which decreases the amount of recycled precipitation in the Great Lakes basin. There 

are also differences between how mean precipitation will change and how extreme precipitation 

will be changing. The change in mean precipitation is constrained by radiative cooling 

(Pendergrass and Hartmann 2014) but the main driver of changes in extreme precipitation is 

moisture divergence (Kevin E. Trenberth 1999).  But there is little agreement among the models 

in characterizing the precipitation patterns and seasonality. Models that show a dry/wet bias in 

their historic projections tend to continue these biases in their future projections too (Minallah and 

Steiner 2021b). These uncertainties in projections mainly stem from the lack of lake – atmospheric 



 

 
6 

 

climate process parameterizations in these models. Very few models represent lakes as dynamic 

lakes in their simulations, most models represent lakes as a static water body component of land 

surface or oceans, some of them do not simulate Great Lakes at all. Even the models who simulate 

dynamic lakes do not do a very good job in capturing lake dynamics because of their very coarse 

spatial resolution (Briley et al., 2021). 

1.3 Study Objectives  

Given notable lack of agreements between numerical models in historical and future 

precipitation forecasts for the Great Lakes region, the goal of this analysis is to identify a subset 

of CMIP6 contributing model(s) which provide the most realistic depiction of dynamic drivers of 

Great Lakes historical precipitation variability for operational use. We define the suitability of 

contributing models in two ways: prediction accuracy (how accurate are historical precipitation 

predictions) and mechanistic accuracy (how accurately does the model identify anomalies in 

regional hydroclimatic circulation associated with climate change). To evaluate prediction 

accuracy, we compare historical predictions of five indices of precipitation anomalies with 

observations. To evaluate mechanistic accuracy, we evaluate how well models capture 

characteristic anomalies in hydroclimatic circulation. We conclude with guidance on model 

selection for regional water resources managers, as well as advice for the global modeling 

community on broadly how to increase fidelity of models in this critical freshwater region.  

1.4 Study Area 
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Figure 01: Great Lakes Basin Watershed Region 

Section 2: Methods overview 

2.1 Data: 

2.1.1 Observed Data:  

For historical precipitation we here use CPC Global Unified Gauge Based Analysis of 

Precipitation, a product of CPC Unified Precipitation Project that is underway at NOAA Climate 

Prediction Center (CPC).  This daily dataset is available from 1979-present with a grid resolution 

of 0.50 x0.50 .  This dataset is a gauge adjusted global precipitation dataset (Chen et al. 2008). 
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One challenge in choosing a precipitation dataset was to find a global dataset which covers a 

reasonable number of years. A global gridded dataset or a dataset that covers both Canada and 

contiguous US was needed to avoid any discrepancies in the precipitation data across 

international boundaries in the Great Lakes region. These discrepancies often can be found in 

using gauge precipitation products as the gauges in this area are managed by two different 

organizations.  

2.1.2Coupled Model Intercomparison Project 6 (CMIP6) 

The Coupled Model Intercomparison Project has undergone several phases since its 

inception in early 1990’s. Each phase builds upon the success and limitations of previous phases 

and aims to have a better understanding of the earth’s climate system. The latest phase, CMIP6, 

involves 42 modeling groups from around the world and produced a wealth of outputs that are 

being used to make informed decisions about climate policy and further research in the earth’s 

climate system (Eyring et al., 2016). Many models participating in coupled model intercomparison 

projects (CMIPs) will share common theoretical or empirical assumptions, evolve from common 

code banks, or be developed at individual institutions. These common “genealogies'' between 

models represent potential sources of non-independence in models that can be difficult to assess  

and can bias both projections and estimates of uncertainty when working with ensemble means 

(Steinschneider et al. 2015). To avoid functional redundancy between models, we selected twelve 

models that span the full range of grid resolution, equilibrium climate sensitivity, and regional 

transient climate representation among CMIP6 member models (Mahony et al. 2022; T. Wang et 

al. 2016). The 12 models used in this study is listed in the table below: 

Table 1: Description of 12 CMIP6 models used. 
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Model 

Name 

Institute 

  

Latitude Longitude Names 

Used in 

Paper 

Reference 

ACCESS-

ESM1-5 

Commonwealth 

Scientific & Industrial 

Research Organisation  

1.250 1.8750 access Ziehn et al 

(2019) 

BCC-

CSM2 

Beijing Climate 

Center 

1.250 1.8750 bcc Wu et al (2018) 

CanESM5 Canadian Centre for 

Climate Modelling 

and Analysis 

2.7893270 2.81250 can_esm Swart et 

al(2019) 

CNRM-

ESM2-1 

Centre National de 

Recherches 

Météorologiques 

1.4004370 1.406250 cnrm_esm Seferian(2018) 

EC-Earth3 EC-Earth Consortium 

(EC-Earth) 

0.70166920  0.7031250 ec_earth EC-Earth 

Consortium 

(EC-Earth) 

(2019) 

GFDL-

ESM4 

Geophysical Fluid 

Dynamics 

Laboratory/NOAA 

10 1.250 gfdl Krasting et 

al(2018) 

INM-

CM5-0 

Institute of Numerical 

Mathematics 

1.50 20 inm Volodin et al 

(2019) 

IPSL-

CM6A-LR 

Institut Pierre-Simon 

Laplace  

1.2676060 2.50 ipsl Boucher et 

al(2018) 
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MIROC-

ES2L 

Japan Agency for 

Marine-Earth Science 

and Technology 

2.7893270 2.81250 miroc Hajima et 

al(2019) 

MPI-ESM-

1-2-HAM 

Max-Planck-Institute 

fuer Meteorologie 

1.8646770 1.8750 mpi Neubauer et al 

(2019) 

MRI-

ESM2-0 

Meteorological 

Research Institute  

1.11250 1.11250 mri Youkimoto et 

al(2019) 

2.1.3 Historical CMIP6 simulations: 

Historic (1850-2014) simulations are included in CMIP6 runs to allow comparison of 

tracking of past and future trends and changes in climate against change in external conditions 

independent from model error and bias. Historical simulations run are based on historical data of 

greenhouse gas emissions and concentrations, global gridded land-use forcing data sets, solar 

forcing, stratospheric aerosols (volcanos), Atmospheric Model Intercomparison Project (AMIP),  

sea surface temperatures (SSTs) and sea ice concentrations (SICs) (Eyring et al. 2016). We utilize 

historical precipitation data from all twelve models to assess overall prediction accuracy 

Geopotential height (z) anomalies from the five most accurate models were calculated from 

monthly height data in each model's historical simulation. These z anomalies are used to assess 

mechanistic fidelity when characterizing the hydroclimatic dynamics in the Great Lakes region. 

2.1.4 Geopotential Height Data: 

 
Historical geopotential height (z) data was obtained from the NCAR/NCEP reanalysis 

monthly dataset which has a resolution 2.50 ×2.50. This dataset covers the timeline from 1948 to 

2017(Kalnay et al.1996). The extent was chosen from -7.50  to 900 in latitude and 1820 to 3600 in 



 

 
11 

 

longitude. An average of summer height anomalies was calculated from this dataset. Height 

anomalies from the five chosen models were calculated from monthly height data in each model's 

historical simulation. These height simulations are in the same resolution as their precipitation 

simulations. 

2.2 Historical model accuracy: 

2.2.1 Precipitation data processing: 

Basin wide daily precipitation is extracted for each of the five Great Lakes basins  (Lake 

Huron, Lake Erie, Lake Michigan, Lake Ontario, Lake Superior) from both the historical CPC and 

CMIP6 member datasets. To evaluate bias in the climate models, the yearly total precipitation 

(1979-2014) and monthly average precipitation (1979-2014) are compared to the same values in 

the CPC dataset. The monthly average precipitation was compared using a nonparametric 

Wilcoxon test (alpha = 0.05) (Rey et al., 2011) 

2.2.2 Precipitation Indices 

  Daily precipitation data for each grid point  of the five Great Lakes were processed into 

five precipitation indices to capture dry anomalies (Cumulative Dry Days), moist anomalies 

(Cumulative Wet Days, Total Precipitation) and extreme precipitation anomalies (Extreme 

Precipitation Days,  Maximum Daily Precipitation) (Table 2) (Zhang et al., 2011). All the indices 

were calculated for summer season i.e., June, July, and August. 
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Table 2: List of Precipitation Indices Calculated for both Historical Time Period and Future  

Index Definition Unit 

CDD Cumulative Dry Days Days 

CWD Cumulative Wet Days Days 

EPD Extreme Precipitation Days Days 

TP Total Precipitation  mm/year 

MDP Maximum Daily Precipitation mm/day 

 

2.2.3 Historical Precipitation Performance Metrics  

Dry, moist, and extreme precipitation anomalies are associated with distinct meteorological 

drivers. To evaluate the performance of CMIP6 model datasets, we evaluate how well they perform 

in aggregate in capturing all precipitation anomalies using the inter-annual variability skill score 

(IVSS) (Eqn 1, Srivastave et al,2020).  

                                           𝐼𝑉𝑆𝑆𝑚,𝑖 = 
1 

𝑁
 ∑N

n=1  |
𝐼𝑄𝑅𝑚,𝑛,𝑖 

𝐼𝑄𝑅𝑜,𝑛,𝑖
 −  

𝐼𝑄𝑅𝑜,𝑛,𝑖 

𝐼𝑄𝑅𝑚,𝑛,𝑖
|  .....................................(1) 

Here, IQR is the interquartile range for an index i  at location n, between a modeled dataset m 

and observed dataset o, where N is the total number of grid points in the dataset. A perfectly 

simulated model will have a IVSS value of zero, the larger the IVSS the poorer  the performance 

of the model. To compare the relative performance of the model relative  to other CMIP6 

models,  calculate the normalized interannual variability score (NIVSS, Eqn 2). 

                                                     𝑁𝐼𝑉𝑆𝑆𝑚,𝑖 = 
𝐼𝑉𝑆𝑆𝑚,𝑖     − 𝐼𝑉𝑆𝑆𝑐𝑚𝑖𝑝6,𝑚𝑒𝑑𝑖𝑎𝑛

𝐼𝑉𝑆𝑆𝑐𝑚𝑖𝑝6,𝑚𝑒𝑑𝑖𝑎𝑛
 .......................................(2) 
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Here, (IVSScmip6,med) is the median IVSS of index i across all CMIP6 models. A negative 

NIVSS value indicates that the model is performing better than most of the other models and a 

positive value indicates decreasing skill . This metric  of comparing models based on NIVSS is 

known as evaluating the Model Variability Index (MVI). MVI is the median across all indices of 

a models NIVSS values. Models with a MVI value less than zero are considered the best 

performing models.(Chen, Jiang, and Li 2011; Jiang et al. 2015;Srivastave et al,2020) 

For calculating performance metrics (NIVSS and MVI, Eq 1 and 2), precipitation indices 

were calculated for each grid at original model resolution. For comparison, the observed 

precipitation dataset (CPC) was resampled by nearest neighbor method to each model resolution 

(Table 2). 

 

 

 

2.3 Interpreting future projections in the Great Lakes region: 
 

2.3.1 Future scenarios: 

CMIP6 has a set of eight different emission scenarios representing different potential 

futures called Shared Socio-economic Pathways (SSP). We evaluate precipitation changes in the 

Great Lakes region under two SSPs, SSP3-7.0 and SSP5-8.5. SSP3-7.0  is based on a world where 

countries focus on achieving energy and food security goals at any cost without collaboration. 

Policies are predicted to shift toward national and regional issues in this scenario. The radiative 

forcing in the SSP3-7.0 scenario reaches a level of 7.0 Wm-2 at the end of the 21st century. SSP5-

8.5 is known as the “worst case” scenario as it is based on a world where economic development 

remains entirely dependent on fossil fuels. The radiative forcing reaches a level of 8.5 Wm-2 at 

the end of the 21st century in this scenario (O’Neill et al. 2016). These two scenarios, which are 
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the highest emission scenarios in CMIP6, are used to allow for evaluation of significant response 

signals in the hydrologic cycle. A Mann-Kendall trend test is used to quantify projected changes 

in future (2015-2100) dry, moist, and extreme precipitation indices for the five models selected 

based on historical MVI for both extreme emissions scenarios. 

 

2.3.2 Trend Estimation in Future Precipitation Indices  

Five models based on their MVI values are selected to study further for future precipitation 

characteristics. To track the changes in future precipitation indices, a Mann-Kendall trend test was 

performed. It is a non-parametric test that is used to statistically detect a monotonic trend in a 

variable over time. The non-parametric nature of this test, it doesn’t make any assumption about 

the normal distribution of the data.  The null hypothesis here is there is no monotonic trend present 

and alternative hypothesis a monotonic trend is present. A significance level of 0.05 was utilized 

for this test. During the calculations of trendlines, the average value of an individual model’s 

historical index was used as the y-intercept. Additionally, the slope was determined by regressing 

the anomalies from their mean historic value with the number of years. This was used to infer 

magnitude of projected 21st century changes in precipitation indices. 

 

 

2.4 Circulation pattern analysis 

 

2.4.1 CCA analysis: 

After choosing models based on their MVI, their circulation anomalies were analyzed. We 

perform a canonical correlation analysis (CCA) between 500hPa geopotential heights anomalies 

in summer months and annual summer precipitation anomalies. CCA is a method to find 
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association between two variables by reducing their features and maximizing the linear correlation 

among those two variables. As a first step of this analysis, we perform principal component 

analysis on geopotential height data, this helps to eliminate the non-significant features i.e., 

removes noise from the data. The number of principal components were selected in a way that 

explains at least 70% variance in the data. To reduce the noise in precipitation data we take the 

average anomalies in each lake basin’s area. 

 

Section 3: Results 

3.1 Yearly Total Precipitation 

Figure 02: Yearly Total Precipitation in 12 CMIP6 Models over 1979-2014 
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Figure 2a. Summer Total Precipitation by Basin in Ensemble Mean and Observed Dataset 
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Figure 2b. Cumulative Wet Days by Basin in Ensemble Mean and Observed Dataset 
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Figure 2c. Extreme Precipitation Days by Basin in Ensemble mean and Observed Dataset 

Almost all candidate models show a consistent positive  bias in annual total precipitation 

estimates. GFDL shows the strongest bias, with  44.22% overestimation of annual precipitation, 

followed by the models that show lower percentage of overestimation are BCC (16.82 %), 

CNRM_ESM (21.43%), IPSL (19.93 %), MIROC (18.6 %), and UKESM (18.45 %). When 

looking at the distribution of summer precipitation estimates by basin (Fig 2a ), we see that the 

positive bias in total precipitation grows stronger as we move from west to east across the basin. 

While total precipitation is largely overestimated by the models (Fig 2a), both extreme 

precipitation days and cumulative wet days show comparatively little bias (Fig 2b,Fig 2c), 

suggesting that on average, CMIP6 candidate models are better able to capture climatological 

accuracy in precipitation duration. Strong positive overestimation in maximum daily 

precipitation, with a negative variance bias and strong intermodal agreement, is seen in the 
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estimation of maximum daily precipitation  (Fig S12), suggesting that origin of consistent 

overestimation in total precipitation in this region is not associated with inaccuracy in 

parameterizations related to frequency and duration of precipitation events, but in rainfall 

intensity.  To explain how the biases exist on a seasonal scale, we look at the monthly average 

precipitation in the model simulations. 

3.2 Monthly Average Precipitation 

 

Fig 03: Monthly Average Precipitation in 12 CMIP6 Models and CPC Dataset  
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Nonparametric hypothesis testing is used to evaluate climatological bias in monthly precipitation 

estimates. Little agreement is seen between modeled monthly precipitation and observed monthly 

precipitation. Models that show some agreement tend to do so  in fall or early winter months (MRI, 

ACCESS, MIROC, UKESM, INM, MPI, BCC, CAN_ESM, CNRM_ESM). The only model to 

show significant similarity in summer precipitation was MIROC Consistent with annual 

precipitation,  positive or wet bias is observed in most models, particularly in the spring months. 

In addition to mean bias in monthly precipitation, models show greater interannual variability in 

monthly precipitation than CPC data, suggesting an overestimation of monthly precipitation 

variance. 

3.3 Model selection 

 

Fig 04: A Portrait Diagram of Normalized IVSS over the 1979-2014 Period.  
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Figure 04 shows the NIVSS for all precipitation indices in the  CMIP6 models. A model 

MVI is shown in the top row, which is the median of IVSSs over all indices for that model.  For a 

given index, the NIVSS is calculated by normalizing the respective IVSS with respect to the 

median IVSS over all the CMIP6 models. The median IVSS serves as a threshold value for each 

index. The topmost row is the MVI value, the median of NIVSS all the indices for an individual 

model. It serves as an integrative metric of model performance. A model with a negative MVI 

value is considered to have higher accuracy relative to other models. We get 5 models with a 

negative value, which were chosen for further analysis. They are Ec-earth, MPI, MRI, MIROC 

and ACCESS. These 5 models were used to examine the trends in future precipitation indices.  

In general, the higher performing models overall consistently showed good agreement in inter-

annual measurements of moist anomalies (total precipitation, maximum daily precipitation, and 

cumulative wet days). These models did not necessarily do as well in predicting dry anomalies 

(cumulative dry days). Several models that performed well overall, such as Ec-earth and MPI, 

showed reasonable agreement with cumulative dry days. Similarly, several models with less 

accuracy in predicting moist anomalies (CNRM and Can-ESM) were more effective in predicting 

cumulative dry days. 

3.4 Cumulative Dry Days 

Models with negative MVI values have similar variability as the observed cumulative dry days 

(Fig S1). ACCESS is the one model that has similar means as observed  in all lake basins. In Lake 

Superior  most numbers of models show similar means and least number of models in Lake Huron. 

IPSL overestimates the median precipitation distribution in all the lake basins, but the degree of 

overestimation is higher in Lake Erie and Lake Ontario. INM on the other hand underestimates the 

distribution most also in Lake Erie and Lake Ontario, which indicates that both positive or negative 
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bias could be more prominent in eastern great lake basins (Fig S2). The spread of the distribution 

in general is higher for models than observed cumulative dry days which is opposite of what was 

found while looking at the ensemble mean of all models (Fig S3). 

3.5 Cumulative Wet Days 

Lake Huron has the lowest variability in observed cumulative wet days, even models with negative 

MVI values do not capture it well (Fig S4). For Lake Erie the median value of cumulative wet 

days in the models are either close to the observed value or lower than that. The range of the 

distributions are mostly lower (except in INM)  than observed distributions. Lake Huron has a mix 

of models overestimating (MPI, MRI, INM, CAN_ESM) and underestimating (UKESM,MIROC, 

INM) the median wet days. IPSL and BCC are the two models here that have similar mean 

cumulative wet days as observed. In Lake Michigan, only MRI has a similar mean value as 

observed. Most models present a lower than observed median value in this basin area, so is true 

for the variability. In Lake Ontario, INM is the only model that has a similar mean wet day, all 

models are similar or lower than observed value. For Lake Superior, GFDL and BCC have similar 

mean wet days as observed. Median cumulative dry day values are underestimated in all the models 

except in INM. The variability in wet days has a mix of positive and negative bias in this basin. It 

appears upper western lake basins i.e., Lake Huron and Lake Superior have both high and lows of 

wet day variabilities, which makes it cancel out these biases while calculating ensemble means 

and capture the variability closer to the observed one ( Figure S6).  

3.6 Extreme Precipitation Days 

Almost all models show similar variabilities in Lake Superior as observed, except IPSL, 

which underestimates the variability (Fig S7). A comparable situation is also noticed for Lake 

Michigan. For Lake Huron models with negative (positive) MVI values tend to have lower (higher) 
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than observed variability. Variabilities in Lake Erie and Lake Ontario do not appear to have any 

consistency with their MVI values. While comparing the mean values we see in all basins they 

show a similar mean with the observed data (Fig S8). These similarities may change upon the 

definition used for extreme precipitation. While comparing ensemble mean extreme precipitation 

days an underestimation in variability emerges which gets worse west to eastwards(Fig S9). 

3.7 Maximum Daily Precipitation 

In all lake basins, models overestimate both the median maximum precipitation intensity 

and the variability (Fig S10). This degree of overestimation is higher for eastern Great Lakes basins 

i.e., Lake Erie and Lake Ontario. Models with higher MVI values in Lake Erie and Lake Ontario 

tend to also overestimate variance in these two basins (Fig S11). The highest number of models 

with comparable means  are found in Lake Erie and Ontario, the least is seen in Lake Michigan 

and Lake Superior. These features make the ensemble mean distribution overestimate the 

maximum precipitation in all basins (Fig S12) 

Total Precipitation 

For Lakes Superior, Huron and Michigan, MIROC is the only model with a negative MVI 

value that underestimates the amount of total precipitation (Fig S13). The variability and median 

are also underestimated in this model. In Lake Erie, UKESM and BCC have similar average total 

precipitation. The majority of the models overestimate both the median total precipitation and the 

variability (except UKESM,BCC,IPSL). In Lake Huron, the variability has a positive bias in all 

models, and no model has produces an accurate mean. In Lake Michigan, models have the most 

inconsistencies in their distribution. Though the variabilities in the models have consistent positive 

bias, the median values do not. Models behave in a similar way in Lake Ontario as in Lake Erie, 
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the median estimations are the same for the models in both basins. Overall, a higher median is 

found in the ensemble mean and the variability diminishes as we go to eastward basins. (Figure 

S15). 

3. 6 Future Precipitation 

 
Cumulative Dry Days 

 
Figure 05: Trends in Cumulative Dry Days  
 

Figure 05 shows projected trends in cumulative dry days (CDD)  in two different emission 

scenarios. All five models exhibit an increasing trend in cumulative dry days in all scenarios. MPI 

and EC-earth, which among these five models showed the greatest fidelity in capturing historical 

interannual variability in CDD, both suggest a statistically significant increase in CDD under both 

warming scenarios, with 0.211 (0.149 in SSP5-8.5) and 0.102 (0.224 in SSP5-8.5) additional dry 

days expected per year by the end of the century. While ACCESS showed little skill in capturing 
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historical interannual variability in CDD, it projects increases in CDD that mirror MPI and EC-

earth. Oddly enough, in the MPI model, greater increases in CDD are projected for the SSP3.7 

scenario than the SSP8.5 scenario.  No significant future trends in CDD are observed in MIROC 

and MRI models. Like ACCESS, neither MIROC nor MRI showed skill in capturing historic 

interannual variability in CDD (Fig S3). 

 

Cumulative Wet Days 

 

Figure 06: Trends in Cumulative Wet Days  
 

Figure 06 shows projected trends in cumulative wet days in two different emission 

scenarios. In historical simulations, MRI, MPI, and EC-Earth showed the greatest still in capturing 

interannual variability in CWD, yet there is little consensus between these models on future trends 

in cumulative wet days. MPI predicts strong negative trends in CWD, with a decrease in wet day 
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sequence of about 0.214 (0.197 in SSP5-8.5) days predicted by the end of the century. The 

remaining models predict a slightly negative to neutral trend.  In the SSP3-7.0 scenario, except 

MRI all other models have a decreasing trend in the future. Among these decreasing trends only 

MPI has a significant one. For the SSP5-8.5 scenario, mpi shows a decreasing trend. MRI showing 

an increasing trend compliments their comparably weaker than others positive trend found in the 

cumulative dry days.  

 

Extreme Precipitation Days 

 

Figure 07: Trends in Extreme Precipitation Days  
 

Figure 07 shows projected trends in extreme precipitation days in two different emission 

scenarios. ‘MIROC’ and ‘MPI’ show a significant decreasing trend in both scenarios. Ec-earth has 

a significant decreasing trend in SSP5-8 but not in SSP3-7.0. ‘MRI’ is the only model that exhibits 
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increasing trends ,though only the trend in SSP5-8.5 appears to be significant. It complements the 

case of ‘MRI’ projecting increasing trend in wet days. Trends tend to be more apparent in higher 

emission scenarios, even after their disagreements about the sign of change. 

 

Maximum Daily Precipitation 

 

Figure 08: Trends in Maximum Daily Precipitation  
 

Figure 08 shows projected trends in extreme precipitation days in two different emission 

scenarios. MPI is the only model that exhibits a decrease in maximum daily precipitation in both 

emission scenarios; the decreasing trend only appears significant in the SSP3-7.0 scenario. 

MIROC shows a weaker decreasing trend in the SSP3-7.0 scenario but not in SSP5-8.5. The 

reverse is observed in the case of Ec-earth. None of these trends emerge statistically significant. 

MRI exhibits an increasing trend in both the scenarios but only the trend in SSP5-8.5 is significant. 
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The discrepancies in the sign of changes in maximum precipitation intensity in different emission 

scenarios supports the idea that extreme precipitation intensity may not be dependent on emission 

scenarios (Pendergrass et al. 2015). 

 

Total Precipitation 

 

Figure 09: Trends in Total Precipitation over 2015-2100 

 

Figure 09 shows projected trends in total precipitation days in two different emission 

scenarios. Most models except MRI predict a decrease in total warm season precipitation. For 

MIROC the decrease is significant in both emission  scenarios. ‘Ec-earth’ exhibits a significant 

decrease in SSP5-8.5 but not in SSP3-7.0 ,while the opposite is found for MPI. MRI predicts an 

increase like it did in other wet index functions, but they do not appear statistically significant. 
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Most models showing a decrease in total precipitation lies in line with the projection of a drier 

summer in the midwestern US (Dollan et al. 2022) 

 

 

Circulation Anomalies 
 

 

Figure 10: Circulation anomalies for z500 geo-potential height and averaged  summer  precipitation    

 
Figure 11:  Normalized time components of CCA1 for observed dataset. 
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Figure 11 shows the pattern of the dominant geopotential height and precipitation anomalies from 

CCA of historical meteorological observations (CPC Precipitation and NCAR/NCEP reanalysis). 

The first variant CCA shows a strong ridge above the Great Lakes region. A high-pressure center 

in the western pacific is observed, which normally is seen in a La-Nina pattern. Summertime La-

Nina cycles were observed in 1985, 1988, 1998, 1999, 2000, 2007, 2010 and 2011(NOAA’s 

Climate Prediction Center 2001) From the time series plot of 1st variant of CCA between 

precipitation anomalies and geopotential height anomalies we see these are the years (except 1988 

& 2007 ) where both variables show positive anomalies. The wet anomalies in the southern Great 

Lakes can be explained by this pattern. The precipitation anomalies may not appear much 

prominent because of La-Nina patterns mostly being strong in the winter season. Another high-

pressure center can be seen in the Gulf of Mexico region. Lake Erie is the main driver of 

precipitation anomaly in this pattern.  

 

https://paperpile.com/c/mStYKP/iEX5
https://paperpile.com/c/mStYKP/iEX5
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 Figure 12: Circulation anomalies for z500 geo-potential height field and averaged summer 

precipitation anomalies in each lake basin for 5 selected models based on their MVI. 

 

For most models, the geopotential height anomaly pattern in this isn’t as coherent as seen in the 

observed first variant of height anomalies. The ridges and troughs aren’t clearly understandable 

from the height patterns and there is very little spatial variation. MIROC appears to be the only 

model that shows some spatial variation in their height anomalies; it has a positive anomaly 
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centered in the western pacific as seen in the dominant observed pattern, but it spans through a 

larger area than what we found in the observed pattern. It also doesn’t show any significant wet 

anomalies in the La-Nina years (not shown). The strong ridge seen in the observed pattern in the 

great lakes transboundary is missing in all the model simulations. In terms of the dominant 

precipitation pattern, in the observation wet anomalous condition is found in Lake Michigan and 

Lake Erie and dry anomalous condition is found in Lake Ontario, Lake Superior and Lake Huron. 

MIROC, ACCESS and MPI also have the similar dry anomaly in Lake Superior, but it’s not seen 

in Lake Erie in these models. The wet anomalies do not have any consistency among the models.  

 

Section 4: Discussion 
General circulation models participating in coupled model intercomparison project experiments 

have shown notoriously low fidelity in capturing hydrometeorological and hydroclimatic 

variability in the Midwestern and Northeastern United States (Akinsanola,2020 ; Minallah and 

Steiner, 2021b), particularly during summer months (Peltier et al,2018). This limits effective 

planning for water resources management in the Great Lakes basin, which contains over 25% of 

global freshwater resources. This is particularly true for the management of hydroclimatic 

extremes, such as droughts and floods. This analysis aims to investigate how a wide range of 

models participating in the latest CMIP experiment, CMIP6 perform in capturing several different 

indices of extreme dry, moist, and wet precipitation. 

Uncertainties in CMIP6 model predictions are associated with both internal variability and 

model uncertainty. These model uncertainties, which can be observed as biases in historical 

simulations, will likely be conveyed in future projections (Amal et al, 2022). Almost all candidate 

models show a consistent positive bias (17-44% depending on the model) in annual total 
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precipitation estimates relative to CPC precipitation. The positive bias in total precipitation grows 

stronger as we move from west to east across the basin, which is an important meteorological 

signal for regional planning and management. If we do in fact end up with a climatological increase 

in precipitation that is stronger on the eastern range of the Great Lakes basin, this could be 

associated with increased flood risk on the eastern edge of the basin, which integrates anomalous 

flow across all the upper Great Lakes. While total precipitation is largely overestimated by the 

models (Fig S15), both extreme precipitation days and cumulative wet days show comparatively 

little bias (Fig S9 and Fig S6), suggesting that on average, CMIP6 candidate models are better able 

to capture climatological accuracy in precipitation duration. Strong positive overestimation in 

maximum daily precipitation, with a negative variance bias and strong intermodal agreement, is 

seen in the estimation of maximum daily precipitation  (Fig S9), suggesting that origin of 

consistent overestimation in total precipitation in this region is not associated with inaccuracy in 

parameterizations related to frequency and duration of precipitation events, but in rainfall intensity.   

Individual GCM’s bias towards overestimation of precipitation amount in a yearly scale were 

found in previous literature (Li et al,2014; Lun et al,2021). We found the results of our analysis 

clearly echo modeling uncertainties noted by other researchers analyzing CMIP ensemble 

precipitation predictions in North America. 

Consistent model biases in climatological precipitation show seasonal patterns as well, with weak 

agreement observed between modeled and actual precipitation in fall/winter months for some 

models (MRI,ACCESS ,MIROC,UKESM,INM,MPI,BCC, Can-ESM, CNRM_ESM), and little 

(MRI) to no skill seen in predicting climatological warm season precipitation. The relative 

accuracy of cold season model predictions has been observed in the literature, and is likely 

attributable to the fact that while winter precipitation anomalies largely occur in response to large 
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scale circulation anomalies, particularly ENSO and the PNA, summertime circulation anomalies 

are associated with small scale convective process (Li et al,2010) and lesser-characterized, more 

volatile modes of anomalous large scale circulation, such as dynamics associated with the 

development and decay of the summertime peak of the North Atlantic Subtropical High (Li et 

al,2011, Zorzetto et al, 2021). 

Historic precipitation shows the most inconsistencies in wet indices. Previous literature 

suggests that the overestimation of wet indices may stem from the “drizzle problem” in general 

circulation models, where too much low frequency, high intensity precipitation is simulated 

(Gibson et al. 2019, Dai and Trenberth, 2004). This claim is strongly supported by our analysis, 

which shows strong positive bias in maximum daily precipitation across the Great Lakes basin, 

and a low variance bias in cumulative wet days. As positive moisture anomalies can result from 

either short duration high intensity storms, or long duration low intensity storms, our patterns in 

Maximum Daily Precipitation and Cumulative Wet Days suggest that we are overestimating the 

relative contribution of the former to total precipitation delivery in the region. Models also struggle 

to capture the spatial precipitation variability among each lake basin, which  is more prominent in  

the indices of precipitation intensity. Using the ensemble mean doesn’t resolve these  

inconsistencies. In some indices (EPD) spatial bias is observed from western to eastern lake  

basins. 

The 5th Assessment Report of Intergovernmental Panel on Climate Change (IPCC) uses two 

metrics to identify GCM model performance to global forcings. The Equilibrium Climate 

Sensitivity (ECS), which evaluates the models’ long term rebound to climatological stasis  after 

an instantaneous doubling of atmospheric CO2, and the Transient Climate Response (TCR) 
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evaluates  the models projected equilibrium response to an incremental increase in atmospheric 

CO2  (Tokarska et al. 2020; Nijsse, Cox, and Williamson 2020). The five models identified as 

higher performing in the Great Lakes region all have ECS and TCR values identified in the range 

of “likely warming” by the IPCC, building confidence in our findings. Our work suggests that 

resolution of models may not have much effect on finding statistical similarities in precipitation 

characteristics as it was supposed.  

Evaluating future hydroclimate from the perspective of these climate models indicate that 

we may expect to see a drier summer in the Great  Lakes region, which is consistent with results 

from other studies in Midwestern and Northeastern US (Zhou, Ruby Leung, and Lu 2022; Richard 

Peltier et al. 2018; Akinsanola et al. 2020).  Summertime drying, associated with both a decrease 

in total precipitation and an increase in cumulative dry days, could be associated with ea strong 

ridge over the central United States, which weakens the storm track in the midwestern region and 

causes blocking in the late summer season (Chen et al, 2022).  Less precipitation may also be 

driven by a thermodynamic reduction in atmospheric moisture content in this region in the months 

of July and August (Minallah and Steiner 2021a). Drier summer causes a net decrease in the net 

basin supply (Mailhot et al. 2019). Among our five selected models only one (MRI) predict a 

decrease in the dry index (Cumulative Dry Days). This may be attributable to a very high value of 

△P/△T (percentage of change in precipitation per degree kelvin) in the MRI model relative to other 

ensemble members (Pendergrass et al. 2015).  

Shifts in the seasonal precipitation cycle in the Great Lakes are observed, with an earlier 

onset of spring, and an increase in the relative contribution of total annual precipitation during the 

winter months (Minallah and Steiner 2021b; Labe, Ault, and Zurita-Milla 2016). The reductions 

in cumulative wet days and total precipitation are associated with an increase in maximum one day 
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precipitation Similar trends are also found in Akinsanola et al,(2020) and Dollan et al., (2022). 

This suggest there may be an increase in future likelihood of more severe extreme events, marked 

by precipitation intensity, clearly mirroring the “wet gets wetter”’ characterization of 

thermodynamic intensification of the hydrologic cycle under climate change (Li et al. 2021). This 

pattern was  also found  in CMIP5 higher emission scenarios (Shrestha et al. 2022).  This increase 

in extreme  rainfall  events is expected to  scale with the 7% increase per 0C warming  and be 

originating  from higher altitudes where moisture is more available(d’Orgeville et al, 2014). 

The changes in growing season precipitation will  have an impact on the agriculture  

management practice  and ecology  in this region. It will affect the transport of nutrients in the  

lakes. It can modify the magnitude and timing of nutrient loading and disrupt the balance of the   

lake ecosystem (May et al, 2022). Crop yields for some kind of dominant crops in this region may 

drop, which requires an alternative agricultural plan to adapt with these changes (Liu and Basso 

2020). More frequent extreme events will result in more run-off, which may affect the water 

quality in the lakes. This can also pose a threat to safe drinking water supply (D. Wang et al. 2022). 

The primary mechanism of precipitation delivery in the summertime in the Great Lakes region is 

convective recycling, which is a fairly small-scale processes (Li et al, 2010). General circulation 

models are not able to capture these small-scale processes due to their coarse resolution. Evaluating 

models capability of replicating large scale circulation patterns depend on type of precipitation 

indices being used, it can the explain the extreme events more clearly than for average precipitation 

(Agel and Barlow 2020;  Agel and Barlow 2017; Paxton et al. 2021). For seasonal precipitation 

the signals may be too smoothed out to find any distinct dominant pattern in them. The 

teleconnection patterns are also more evident in winter season in this area, so meteorologic 
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influences on precipitation are more apparent in winter than summer. Future work will analyze  

how summer precipitation in the Great Lakes region can be explained mechanistically from general 

circulation models. 

Section 5: Conclusion 
The goal of this study was to identify which models demonstrate the most physical fidelity in 

capturing circulation anomalies related to seasonally and climatological variability in Great Lakes 

precipitation, so that appropriate models can be selected to promote insightful policy planning to 

mitigate the effects of a changing climate. Relative performance of models against observed  

precipitation was assessed using NOAA  CPC unified gauge adjusted dataset. The quantification 

of model performance was done  by the calculation of Model Variability Index (MVI) which is a 

comparison between IQR ratios. Models selected based on MVI values were used to estimate the 

trends in future precipitation in two different emission scenarios.   

Based on the MVI, five models, ‘Ec-earth’, ‘MRI’, ‘MPI’, ‘ACCESS’, ‘MIROC’ demonstrated 

the least amount of error in capturing the historic variability in Great Lake Regions hydroclimate. 

According to these five models, model performance in mirroring historical observation depends 

on the category of index function, models who have better skill in capturing historic variability 

may still differ in their future projections. An overall drier future with longer dry spell is expected 

from the selected models. 

Climate models are developed to capture complex interactions among different components of the 

earth system. Even though this work attempts to select models based on historical accuracy, these 

metrics may not be enough to cover the full scope of  hydrometeorological accuracy of a climate 

model. Model performance metrics may be biased by the choice of observational dataset, choice 

of precipitation index function, choice of timeline, extent of region for analyzing the large-scale 
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anomalies, the statistical methods used. Inclusion of more models, evaluation for other seasons 

and a more detailed spatial analysis would be necessary to make a conclusive decision about 

selecting climate models which are representative of the Great Lakes region. Despite limitations 

this study provides a guideline to make more meaningful predictions about future  hydroclimate 

in the great lakes basins, which is expected to be useful for a more intricate  analysis in future. 

Section 6: APPENDIX 
 

CDD 

 

 

S1: Box and whisker plot for cumulative dry days aggregated over lake basins 
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S2: Box and whisker plot for cumulative dry days aggregated over lake basins with letters to 
show the significance difference among the means in each lake basin 
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S3: Box and whisker plot for cumulative dry days aggregated over lake basins in ensemble 
mean and observed precipitation data 
 
CWD 
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S4 : Same as S1 but for Cumulative Wet Days. Models in x-axis are arranged from higher to 
lower MVI values 
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S5 : Same as S2 but for Cumulative Wet Days 
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S6: Same as S3 but for Cumulative Wet Days 
 

 
EPD 
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S7: Same as S1 but for Extreme Precipitation Days 
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S8: Same as S2 but for Extreme Precipitation Days 
 

 
S9: Same as S3 but for Extreme Precipitation Days 
 
MDP 
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S10: Same as S1 but for Maximum Daily Precipitation 
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S11: Same as S2 but for Maximum Daily Precipitation 
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S12: Same as S3 but for Maximum Daily Precipitation 
 

 
TP 
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S13: Same as S1 but for Total Precipitation 
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S14: Same as S2 but for Total Precipitation 
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S15: Same as S3 but for Total Precipitation 
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