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Abstract

Achieving fusion of deep learning with combinatorial algorithms promises transformative
changes to AI. Creating an impact in a real-world setting requires AI techniques to span
a pipeline from data, to predictive models, to decisions. Aligning these components
together requires careful consideration, as having these components trained separately
does not account for the end goal of the model. This work surveys general frameworks
for melding these components, we focus on the integration of optimization methods with
machine learning architectures. We address some challenges and limitations associated
with these methods and propose a novel approach to address some of the bottlenecks
that arise.
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Chapter 1

Introduction

Constrained optimization (CO) and optimization theory in general have made profound

headway in industrial and societal applications in numerous fields. This includes supply

chain management, energy scheduling, transportation, and finance, just to name a few.

Mathematical optimization is one of the fastest-growing subfields of mathematics due to

its broad range of applications. Optimization can model almost any problem. Take the

following arbitrary business production planning problem: A company produces 50 Liters

of milk a day. With the milk, they can either produce a bucket of vanilla ice cream using

3 liters of milk or a bucket of yogurt using 2 liters of milk. They can sell the bucket of

vanilla for 5andthebucketofyogurtfor3. What is the optimal production decision such

that profit is maximized? At first glance, this problem might look a little complicated,

but this can be easily defined as an optimization problem, a linear program to be specific,

and solved to obtain an optimal answer.

The modern history of CO goes back to the Second World War. Operations research

started out as an initiative to use mathematics and computer science to assist military

planners with decisions. This was also part of a bigger initiative during this time, where

scientific research in general took the forefront of the war. Yuval Noah Harari, in his book

Sapiens, labels this period of time as part of the scientific revolution. He argues that in

the last 500 years, humans have increasingly put their faith in scientific research. During
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this period history witnessed the development of quantum mechanics, a mathematical

framework to explain atomic structures and their properties. This then led to the suc-

cessful development of the atomic bomb. Along with these significant scientific advances

came the overshadowed development of the simplex algorithm. The simplex algorithm was

developed by an American mathematician, George Dantzig, while working at the RAND

Corporation. Dantzig was tasked by the U.S. Air Force to help optimize the use of its

resources. Dantzig realized that this problem can be formulated as a linear programming

problem, which involves maximizing or minimizing a linear function subject to a set of

linear constraints. The development of the simplex algorithm revolutionized the field of

CO, making it possible to solve large-scale linear programming problems with hundreds

or even thousands of variables and constraints. This led to the widespread adoption of

CO techniques in a variety of fields. Following the development of the simplex algorithm

was the development of further CO techniques concerned with nonlinear problems, such

as the gradient descent algorithm.

Given the boom of CO and computers, the usage of solvers became the next logical

step to tackle CO problems. Solvers usually employ various algorithms to explore the

feasible region of the problem and different solvers are designed for different types of

optimization problems. The availability of algorithms to solve CO problems heavily

depends on their form. Some problems can be efficiently and reliably solved, while others

have been proven to have no efficient solutions. Constrained optimization problems are

particularly important in many fields.

Some CO problems are characterized by their discrete state spaces, and their optimal

solutions often involve combinatorial structures, such as selecting subset permutations.

These permutations can represent paths through a network or other discrete structures

that represent a set of optimal decisions. Such problems are notoriously difficult and

often fall into the category of NP-hard problems.

Despite their complexity, many CO problems are routinely solved using a wide spec-

trum of techniques developed by the AI and operational research communities. These
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approaches typically exploit the problem structure to accurately solve the problem within

a reasonable time frame. However, the complexity of CO problems remains a significant

barrier when trying to adopt them in contexts that require repeated decision-making or

in time-sensitive settings where real-time decisions need to be made, such as multi-year

planning studies or expensive simulations.

To address the challenges posed by complex CO problems, machine learning (ML)

methods have emerged as a promising solution, particularly given the existing relation-

ship between these two fields. Since optimization is at the core of ML, most machine

learning algorithms use an optimization model to learn the parameters in the objective

function from available data. In today’s era of vast data, numerical optimization meth-

ods significantly affect the effectiveness and efficiency of machine learning models. As

machine learning has gained prominence in recent years, it has pushed the boundaries of

optimization theory since many machine learning techniques rely on optimization algo-

rithms. For instance, the backpropagation algorithm utilized to train neural networks is

designed to minimize a function, which involves minimizing the difference between the

predicted output and the actual value (i.e., the target). The intersection of ML and CO

has gained traction and become increasingly popular over recent years.

Current research areas in the intersection of CO and ML are categorized into two

main directions: ML-augmented CO and End-to-End CO learning (E2E CO). The former

refers to the use of ML techniques to enhance the performance of traditional optimization

methods, while the latter refers to entire systems that are trained end-to-end, meaning

that the optimization and learning components are integrated into a single system that

is trained jointly.

The focus of this study is on E2E-constrained optimization learning. We will explore

some of the popular techniques in the field and propose a novel approach to attempt to

tackle some of the main challenges. A fundamental problem in computer science and

optimization is the shortest path problem. The problem involves finding the shortest

path between two points in a graph, where the edges of the graph have a weight or cost

associated with them. The shortest path problem has many important applications due
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to the nature of what graphs are able to model. Many real-world scenarios are modeled

as graphs. Formally, a graph G is an ordered pair defined as G = (V,E), where V is a

set of vertices or nodes denoted as {v1, v2, . . . , vn}, and E is a set of edges denoted as

{e1, e2, . . . , en}. Usually, each edge ei has an associated weight or cost w(ei). Important

applications of the shortest path problem include routing, logistics, resource allocation,

circuit design, and navigation. In general, the shortest path problem is important be-

cause it provides a foundation for many optimization and decision-making problems in

various fields. There are well-known techniques for solving the shortest path problem,

including the famous Dijkstra’s, Bellman-Ford, and Floyd-Warshall algorithms. However,

some variations of the shortest path problem, such as the 3D shortest-path problem in a

polyhedral environment, are NP-hard. They suffer the same fate as other combinatorial

NP-hard problems—they are not efficiently solvable. Hence, it is a natural candidate for

this study.

The aim of this study is to address the following questions:

1. Is it possible to solve the shortest path problem using some of the conventional E2E

Learning methods?

2. Can our proposed approach overcome the bottlenecks induced by traditional methods?

3. How well do all these solutions compare with one another?

4



Chapter 2

literature review

2.1 Constrained Optimization

Constrained optimization (CO) problems pose the task of optimizing an objective function

f : Rn → R with respect to some variables z ∈ Rn subject to a set of constraints C on

those variables. The objective function is either a cost function that we need to minimize

or a utility function that we need to maximize:

O = argmin/argmax
z

f(z) subject to z ∈ C

An assignment of z that satisfies C is called a feasible solution; additionally for a

minimization problem, if f(z) ≤ f(w) for all feasible w, it is called an optimal solution

or f(z) ≥ f(w) for a maximization problem. A well-understood class of optimization

problems are convex problems, those in which the constraint set C is a convex set and

the objective f is a convex function. Convex problems are a favorable class of optimization

problems due to them being efficiently solvable with strong theoretical guarantees on the

existence and uniqueness of solutions.

A common constraint set that arises in many problems is of the following form: C =

{z : Az ≤ b}, where A ∈ Rm×n and b ∈ Rm. in this case the set C is convex.
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2.1.1 Convex Optimization Problems

Convex optimization problems are problems where all of the constraints are convex func-

tions, and the objective function is a convex function if minimizing, or a concave function

if maximizing. The key takeaway from having convexity properties is that there can only

be one optimal solution, which is globally optimal. Many classes of convex optimization

problems admit polynomial-time algorithms. On the other hand, nonconvex problems

do not have these nice properties; they may have multiple feasible regions and multiple

locally optimal points within each region. These problems, in general, are NP-hard and

require more sophisticated techniques to solve efficiently.

2.1.1.1 Convex Sets

A set C is convex if the line segment between any two points in C lies entirely within C.

More formally, ∀x1, x2 ∈ C, and ∀θ ∈ [0, 1] the below condition is satisfied [15]

θx1 + (1− θ)x2 ∈ C

Figure 2.1: Example of a convex set (left) and a non-convex set (right)

2.1.1.2 Convex Functions

A function is called convex if the function is defined over a convex domain such that, for

any two disjoint points on the graph, the line segment connecting both these points lies

above the graph, as in figure 2.2 [15].
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Formally, a function f : Rn → R is convex if dom(f) is a convex set and if ∀x, y ∈

dom(f) and,∀θ ∈ [0, 1] the below condition is satisfied

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

Figure 2.2: Convex Function

The convexity of a function is also closely related to the concept of a convex set; a

function f is convex if and only if its epigraph (the set of all points above the function

graph) is a convex set.

The epigraph of a function f : Rn → R can be defined as follows; the set of points

epi(f) = {(x, t)|x ∈ dom(f), t ≥ f(x)}

Figure 2.3: Epigraph of a function f

2.1.2 Linear Programs

If the objective function f is an affine function, the problem is called a linear program

(LP).
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Maximize (or Minimize) f(x) = cTx

Subject to:

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2
...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

x1, x2, . . . , xn ≥ 0

We can view these problems geometrically. An LP is to minimize/maximize a linear

function over a polyhedron. in other terms this means “going as far as possible in the

direction -c or c”, where c is the vector that defines the (linear) objective function.

Figure 2.4: LP optimization example [3]

2.1.3 Quadratic programs

If the optimization includes a quadratic objective function rather than a linear one, the

resulting problem is called a quadratic program (QP).

Maximize (or Minimize) f(x) = xTQx+ cTx

Subject to:

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
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a21x1 + a22x2 + · · ·+ a2nxn ≤ b2
...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

x1, x2, . . . , xn ≥ 0

The geometrical visualization of a QP is to minimize a convex quadratic function over

a polyhedron.

Figure 2.5: QP optimization example [5]

2.1.4 Mixed integer Programs

Some subset of problems require their variables to take integer values. Such problems are

called mixed integer programs (MIP). While LP and QP with convex objectives belong

to the class of convex problems, the introduction of integral constraints on x (x ∈ Nn)

results in a nonconvex set, the feasible set in a MIP consists of distinct, disjoint points

in x ∈ Rn. This produces a much more difficult problem to solve, generally NP-hard.

f(x) = cTx

Subject to:

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2
...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

9



x1, x2, . . . , xn ≥ 0

x1, x2, . . . , xn ∈ Nn

The geometrical visualization of a MIP depends on the type of problem, but we

can have a linear program with integer constraints (such a problem is actually called a

mixed integer linear program, which will be explored further in the next section). Such

optimization problems will look exactly like an LP but the set is a set of disjoint integral

points.

Figure 2.6: MIP optimization example [37]

2.1.5 Mixed Integer linear programs

Mixed integer linear programs (MILP) are a subset of MIPs. MILPs are of particular

interest to us in this work, they are linear programs with integer constraints on x. Both

maxflow and shortest path are modeled as MILP. the general formulation of a MILP can

be found in the MIP section along with its geometrical visualization, please refer to figure

2.6

In general optimization problems are a huge class of mathematical problems inter-

secting all fields of science.
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Figure 2.7: optimization classes

[25]

2.1.6 Optimization solving methods

A well-developed theory exists for solving convex optimization problems. Convex prob-

lems are known to be efficiently solvable and fall in the class of P. Some notable methods

for solving these problems are Augmented Lagrangian methods [26], simplex methods [6],

and interior point methods [29].

2.1.6.1 Branch and Bound

MILPs require a different approach, as they are generally NP-hard problems, and the

above methods do not guarantee solutions. One notable method for MILPs is the branch

and bound framework. Branch and bound combines optimization and searching. Search-

ing is represented by a search tree in which an LP relaxation of the MILP is formed at

11



each node of the search tree and solved using any LP solving method (e.g., simplex). The

branch and bound algorithm starts by solving a relaxed version of the MILP problem to

obtain a lower bound on the optimal solution. The algorithm selects a value that is not

an integer in the solution and branches according to that variable. Branching creates two

sub-problems, one where the selected variable is fixed to its upper bound and the other

fixed to its lower bound. That is, one node will have the following constraint xi ≥ ai,

while the other will have xi < ai, where xi is a variable with fractional value ai. These

problems are recursively solved until all regions of the search space have been explored

or a solution is found.

The following is the skeleton of a generic branch and bound algorithm for minimizing

an objective function f. In order to develop an operational algorithm using the approach

below, we need to specify a bounding function called ’bound’ to calculate the lower limits

of f for the various nodes of our search tree, along with a branching rule. Both of these

specifications are usually problem-specific.

Several different queue data structures can be used here. The FIFO queue-based

implementation will yield a breadth-first search algorithm, while a LIFO-queue (stack)

will yield a depth-first algorithm. A best-first branch and bound algorithm can also be

obtained by using a priority queue. [34]
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Algorithm 1: Generic Branch and Bound

1. Using a heuristic, find a solution xh to the optimization problem. Store its
value, B = f(xh). (If no heuristic is available, set B to infinity.) B will denote
the best solution found so far and will be used as an upper bound on candidate
solutions;
2. Initialize a queue to hold a partial solution with none of the variables of the
problem assigned;
3. while queue is not empty do

Take a node N off the queue;
if N represents a single candidate solution x and f(x) < B then

x is the best solution so far. Record it and set B ← f(x)
else

branch on N to produce new nodes Ni;
for each Ni do

if bound(Ni > B) then
do nothing; since the lower bound is greater than the upper bound
of the problem and will never lead to an optimal solution

else
store Ni on the queue

end

end

end

end

2.1.7 Relaxation of constrained optimization problems

A relaxation is a modeling strategy in mathematical optimization where a difficult prob-

lem is approximated by a slightly easier one. This ”easier” problem usually involves

removing or modifying certain constraints from the original problem. This approxima-

tion is referred to as a relaxation, and solving it provides valuable insights into the original

problem.

For example, consider a situation where we are dealing with a mixed-integer linear

programming (MILP) problem. In this case, we can employ a linear programming relax-

ation to eliminate the integrality constraint, thereby allowing non-integer rational solu-

tions. This transformation converts the problem into a linear program, which is generally

easier to solve compared to the original MILP. Similarly, other types of relaxations can

be applied to complex problems, such as Lagrangian relaxation and Convex Relaxation

these relaxations can also be used to either supplement the branch and bound algorithm

or complement it by using them to obtain bounds when using the branch and bound
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algorithm. There are a lot of relaxation techniques and the choice of which technique

to use depends on the specific problem at hand and the optimization tools at our disposal.

In general two main properties have to hold to provide a valid relaxation

1. The original problems feasible domain is a subset of the relaxed problems feasible

domain.

2. The relaxed problem should provide a bound on the original problem.

2.1.7.1 Lagrangian Relaxation

Lagrangian relaxation involves penalizing violations of inequality constraints using La-

grangian multipliers to penalize violations of these constraints by integrating the con-

straint into the objective function. This means that instead of strictly enforcing the

constraints, the problem is modified to include additional costs for violating them. This

relaxed problem is often easier to solve than the original problem.

Suppose we are given the following problem

max cTx

Subject to:

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2
...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

x ∈ Rn A ∈ Rmxn

We can split the constraints into two parts, the first half of the constraints will look like

the following

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
...

am1
2
x1 + am2

2
x2 + · · ·+ amn

2
xn ≤ bm

2

Label the first half of the constraints as A1x ∈ b1

while the second half of the constraints will be labeled as A2x ∈ b2 and will look like the
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following

am1
2

+1x1 + am2
2

+1x2 + · · ·+ amn
2

+1xn ≤ bm
2
+1

...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

After splitting the constraints the new equivalent problem will look as follows

max cTx

Subject to:

A1x ≤ b1

A2x ≤ b2

We may then introduce one of the constraints into the objective to obtain the following

problem

max cTx+ λT (b2 − A2x)

Subject to:

A1x ≤ b1

λ = (λ1, ..., λm2)

The above relaxed problem solution is a bound on the original problem, for any

positive semi-definite matrix λ̃ the optimal result of the lagrangian relaxation problem

will be no smaller than the optimal result of the original problem. Let x∗ be the optimal

solution to the original problem, and let x̃ be the optimal solution to the relaxation. We

can then say that

cTx∗ ≤ cTx∗ + λ̃T (b2 − A2x
∗) ≤ cT x̃+ λ̃T (b2 − A2λ̃)

The first inequality holds because x∗ is feasible in the original problem and the second

inequality holds because x̃ is the optimal solution to the Lagrangian relaxation [35].

2.1.8 Duality

Duality theory provides a powerful tool for analyzing and solving optimization problems,

particularly when the primal problem is challenging to solve directly. It is important to
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note that the dual problem may not always be easier to solve than the primal; in some

cases, it may even be harder. However, the dual problem can provide valuable information

about the primal problem, such as bounds on the optimal value, identification of near-

optimal solutions, and proofs of optimality. These insights can be helpful in solving the

primal problem or understanding its properties.

Duality offers a deeper understanding of the optimization problem by considering

it from two different perspectives. It allows us to establish connections between the

primal and dual problems, exploit the relationships between their solutions, and derive

meaningful conclusions. While strong duality, where the primal and dual have the same

optimal solutions, is desirable, it is not always guaranteed. Weak duality, on the other

hand, always holds and provides lower and upper bounds on the optimal values of the

primal and dual problems, respectively.

Overall, duality theory is a valuable tool in optimization, providing insights and tech-

niques to tackle challenging problems and gain a better understanding of their properties.

2.1.8.1 Lagrangian Duality

Setting up the dual problem is done as follows, and is referred to as lagrangian duality.

Consider the following optimization problem

O = argmin
y

f(y) subject to : gi(y) ≤ 0 (∀i ∈ [m])

When relaxing the problem using Lagrangian relaxation one can either relax some or all

the problem constraints into the objective function, each constraint will have a Lagrangian

multiplier to penalize any constraint violation.

fλ(y) = f(y) +
m∑
i=1

λigi(y)

The λ terms describe the lagrangian multipliers, λ = (λ1, ..., λm) denotes the vector

of all the multipliers. In this formulation, the constraints g(y) may take up negative
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numbers. This formulation can be augmented to enforce positivity on the constraints as

follows.

fλ(y) = f(y) +
m∑
i=1

λimax(0, gi(y))

After applying the augmented lagrangian the optimization problem becomes.

LRλ = argmin
y

fλ(y)

The above function will satisfy f(LRλ) ≤ f(O), this follows from the fact that the

relaxation of an optimization problem is a lower bound on the original problem. The

Lagrangian dual can then be formulated to obtain the best Lagrangian multipliers and

give us a tighter lower bound.

LD = argmax
λ≥0

f(LRλ)

For various problems, the lagrangian dual provides a good approximation of O

2.2 Deep Learning

Supervised deep learning can be viewed as the task of approximating a non-linear mapping

from a sample of targeted data. In other words, the task can be viewed as approximating

f(x) given a set of data samples x and y. Deep Neural Networks (DNNs) are deep

learning architectures composed of a sequence of layers, each typically taking as inputs

the result of the previous layer. DNNs are conventionally feed-forward neural networks,

where the layers are fully connected and the function connecting the layer is given by

o = π(Wx + b). Where x ∈ Rn is the input vector, o ∈ Rm is the output vector,

W ∈ Rmxn a matrix of weights, and b ∈ Rm a bias vector. The function π(.) is often

non-linear (e.g., ReLu, Sigmoid) [18].

The supervised learning task can be enumerated as follows, consider the dataset X =

{xi, yi}ni=1 consisting of N data points. xi ∈ X being the input vector and yi ∈ Y is

the respective target vector. The goal of the learning task is to learn a model mapping
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Mθ : X → Y , where θ is a vector of real-valued parameters. The quality of this learned

mapping is measured in terms of a non-negative, and differentiable, loss function. L :

Y × Y → R+. The non-negativity and differentiability of the loss function are of great

importance in this work and will be explored further in the coming sections. We can view

the entire learning task as minimizing the empirical risk function (ERM):

min
θ

J(Mθ, X) =
1

n

n∑
i=1

L(Mθ(xi), yi)

.

All methods and techniques used in this work are DNNs whose training conforms to

the objective above. Other notable classes of deep learning methods that have been used

to solve constrained optimization problems are sequence models (e.g., RNNs, LSTMs),

Graph Neural Networks (GNNs), and Reinforcement Learning (RL).

2.3 ML and CO

Current research areas in the synthesis of constrained optimization and machine learning

can be categorized into two main branches: ML-Augmented-CO which focuses on using

ML to aid the performance of CO solvers, and End-to-End CO learning (E2E-COL)

which focuses on integrating combinatorial solver or optimization methods into deep

learning architectures. E2E-COL learning can be further categorized into two branches:

(1) Approaches that develop ML architectures to predict fast, approximate solutions to

predefined CO problems and (2) Approaches that exploit CO solvers as neural network

layers for the purpose of structured logical inference, referred to here as the Predict-and-

Optimize paradigm. The predict and optimize paradigm is what our project is based on

and will be explored further in the coming few sections. Readers can refer to figure 2.8

for a nice visualization of the different research branches in ML and CO [18].
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Figure 2.8: Branches of Machine Learning and Constrained Optimization

2.3.1 ML-augmented CO

ML-augmented CO involves the augmentation of CO solvers, this area draws from both

supervised and reinforcement learning to develop highly optimized and efficient ap-

proaches to various aspects of CO solving. In the context of combinatorial optimization

where branch and bound is the general framework used to solve these problems as it

guarantees optimality. The methods can be classified as (1) Methods that learn to guide

the search decision in branch and bound, and (2) Methods that guide the application or

usage of the primal heuristics within the branch and bound solvers. Some notable tech-

niques in (1) include neural networks that emulate expensive branching rules for MIPs

[20] [16] [14], and learning to cut when using cutting plane methods [30]. On the other

hand, some notable techniques in (2) include predictions of the most effective nodes at

which to apply the primal heuristic [10], and optimal choice of variable partitions in large

neighborhood search (LNS) paradigm, which iteratively chooses a subset of variables to

optimize while leaving the remaining variables fixed [28]. Such ML techniques have also

been applied to continuous CO problems. Some notable mentions include learning active

constraints to reduce problem size before feeding into CO solvers [27] [23], and learning

rules to ignore optimization variables leading to faster solutions [22]. For a thorough and

deep dive into ML-augmented CO, the reader is referred to the following survey [2].
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2.3.2 End-to-End COL: Predicting CO Solutions

As with the traditional approaches to most machine learning paradigms, ML architec-

tures are focused on developing ML architectures to predict fast, approximate solutions

to predefined problems by learning from a given data set. These E2E COL architectures

are no different, we care about approximating fast solutions to CO problems without

the use of CO solvers at the time of inference. These approaches contrast with what we

discussed in the above section, instead of using ML to augment and direct the solver we

take a more traditional ML training approach and encapsulate the solver itself as a black

box i.e a trained neural network, this is done by observing a set of solved instances of

the CO problem at hand. The literature on Predicting CO solutions can be categorized

as 2 methods, the first being learning with constraints, which involves incorporating con-

straints into end-to-end learning for predicting optimal solutions, and learning solutions

on graphs, which involves producing output as combinatorial structures from variable

sized inputs.

2.3.2.1 Learning with Constraints

Consider the following dataset, let X = {xi, yi}ni=1, where xi describe the inputs for a

problem instance, and yi describes a complete solution to the problem P with its respec-

tive input xi. Each sample might specify a different instance of the problem, namely with

a varying objective function, coefficients, and constraints.

A very early approach to the use of predicting CO problem solutions was done by

using Hopfield networks with modified energy functions to solve the traveling salesman

problem (TSP) [17]. The problem by Hopfield and Tank was solved by first consider-

ing an nxn matrix M whose ith row describes the ith city’s location while each column

represents the ordering of the tour. While considering the solution of this TSP by a

Hopfield network, every node in the network corresponds to one element in the matrix.

So for example for a 5-city problem instance, we would have a total of 25 neurons and
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a 5x5 matrix. Energy functions are then used to emulate the objective of the TSP and

use Lagrangian multipliers to penalize constraint violations, satisfying constraints, and

outputting optimized solutions require the energy function to be at a minimum. This

technique eventually fell out of favor due to its weakness in significantly depending on the

initial state of the network. Parallel to Hopfield networks was the use of deformable tem-

plate models such as the development of Elastic Net, and Self Organizing Map. However,

addressing the limitations of these models has been a central focus in subsequent research

[4] [11] [31]. Despite their appealing properties, these neural networks have not yielded

satisfactory results compared to algorithmic methods when carefully benchmarked. This

eventually made way for superior frameworks that exploit Lagrangian duality to guide the

prediction and satisfy the problem constraints. Other end-to-to learning approaches have

demonstrated success by injecting information about constraints from targeted feasible

solutions, one notable method presented in [7] uses an iterative process of using external

solvers to adjust targeted solutions to better align with model predictions, while still

maintaining feasibility, and reducing constraint violations in subsequent iterations, this

method essentially teaches the model how to satisfy constraints by using state-of-the-art

solvers. A decomposition schema is used, alternating master steps, which is in charge

of enforcing the constraints, and learner step, which is where the normal supervised ML

model training takes place.

2.3.2.1.1 Lagrangian dual framework

The Lagrangian dual framework (LDF) [13] is based on integrating the learning task or the

loss function with the augmented Lagrangian to obtain an approximation of the problem,

after which we can compute the Lagrangian dual to compute the optimal Lagrangian

multipliers and obtain an even tighter approximation.

Given a problem defined as

O(d) = argmin
y

f(y, d) subject to gj(y, d) ≤ 0 (∀j ∈ [m])
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with the following set of samples (dataset) D = {(di, yi)}ni=1, parametric model M[w]

with weights w and a loss function L then the learning task can be stated as follows

w∗ = argmin
w

n∑
i=1

L(M [w](di), yi)

subject to gj(M [w](di), di) ≤ 0 (∀j ∈ [m], i ∈ [n]) to obtain

the approximation Ô = M [w∗] of O

attempting to solve this learning task can be quite difficult, not only do we have to find

a set of weights w to minimize our loss function, but the weights need to be chosen

such that constraints are satisfied for all the samples. A naive approach to solving this

problem will result in predictors that significantly violate the constraints, leading to a

useless model because it cannot be used in practice.

To deal with the above challenge the LDF is used, the LDF will exploit the Lagrangian

dual method to solve the problem while satisfying its constraints. The new learning task

will look as follows, given a set of Lagrangian multipliers λ = (λ1, ..., λm) we will have

the following loss function

Lλ(ŷi, yi, di) = L(ŷl, yl) +
m∑
j=1

λjv(gj(ŷi, di))

where the function v(.) encapsulates how you want to deal with negative violations (i.e,

using max(0, g(.))), and where ŷi = M [w](di) is the prediction of the model. Solving the

task then becomes

w∗(λ) = argmin
w

n∑
i=1

Lλ(ŷi, yi, di)

this will produce an approximation Ôλ = M [w∗(λ)] of O. The Lagrangian dual then

computes the optimal multipliers, that is

λ∗ = argmax
λ

min
w

n∑
i=1

Lλ(ŷi, yi, di)
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to obtain the strongest Lagrangian relaxation of O, i.e, Ô∗ = M [w∗(λ∗)] Learning Ô∗

depends on an iterative schema, this schema is summarized in the below algorithm. Given

the input dataset D, the optimizer step α, and a Lagrangian step size sk. The Lagrangian

multipliers are initialized in line 1 and the training is performed for a fixed number of

epochs. At each epoch, k optimizes the model weights

Algorithm 2: LDF for constrained optimization problems

input : D = (di, yi)
n
i=1;

α, s = (so, s1, ...) ;
λ0
j ← 0 ∀j ∈ [m];

for epoch k do
forall (yi, di) ∈ D do

ŷi ←M [w, λk](di);
w ← w − α∇wLλk(ŷi, yi, di);

end

λk+1
j ← λk

j + sk
∑n

i=1 vj(gj(ŷi, di)) ∀j ∈ [m];

end

2.3.2.2 Learning Solution on Graphs

In contrast to the above section where solutions are being learned on unstructured CO

problems, simply by having traces of a solved CO problem a variety of methods learn

to solve CO problems represented on graphs. Deep learning architectures such as trans-

formers [32] and GNNs [21] have proven to be effective tools in addressing these tasks

The authors of this paper [33] proposed a pointer network that utilizes an encoder-

decoder architecture and an attention mechanism to produce permutations over inputs

of variable size. They identified certain constrained optimization (CO) problems as a

suitable application for their architecture and tested it on the Traveling Salesman (TSP),

Delaunay Triangulation, and Convex Hull problem variants. For each problem, the solu-

tion to a given instance can be expressed as a single permutation. The authors developed

a pointer network model to predict near-optimal solutions by learning from previously

solved instances in a supervised manner. The pointer network takes as input the 2D

coordinates of each city that must be visited for the 2D Euclidean TSP, and produces
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a predicted permutation that represents a tour over all cities. The target label is a per-

mutation that represents the pre-computed minimum-length tour over its corresponding

input coordinates. However, this approach can only be applied to problems where the

solutions take the form of a single permutation and all permutations are feasible, mean-

ing that the problem does not feature constraints on which tours are allowed in the TSP.

Another approach was proposed in [24], The authors developed a supervised learning ap-

proach to solve the Quadratic Assignment Problem (QAP) using graph neural networks.

The model was trained on individual instances of the problem and their corresponding

solutions, and it produced approximate permutation matrices as output. The method

was tested on the Traveling Salesman Problem (TSP) and two graph matching prob-

lems (which are instances of the more general QAP). A beam search algorithm was used

to convert the permutation matrices into feasible tours. Although the model achieved

promising accuracy results on small instances, its ability to generalize to larger instances

was not demonstrated. Furthermore, the method itself outputs infeasible graphs, having

to use beam search to satisfy constraints is another weakness. Following this approach

was the use of Graph Convolutional Networks to solve the 2D Euclidean TSP [19]. This

approach uses the same techniques in [24] but instead of using graph neural networks the

more robust Graph Convolutional Networks are used. This approach produces superior

results but also suffers from the same generalization problem.

This work is mainly concerned with supervised learning, but it is important to note

that a lot of research has been done in the area of reinforcement learning for attempting

to solve CO problems. Optimization problems have a native objective function, which

makes it possible in theory to substitute the loss function with the CO objective function.

This objective function will serve as a natural reward function in reinforcement learning.

Interested readers are referred to section 6.2 of the following survey [18] for an extensive

overview of end-to-end RL and for a general overview of all the methods discussed in this

work.
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2.3.3 End-to-End COL: Predict-and-Optimize

An emerging area at the intersection of machine learning (ML) and computational op-

timization (CO) involves merging prediction models (ML) and decision models (CO).

In this approach, decision models are described by optimization problems that are only

partially defined, and their missing parameters are predicted from data. These composite

models use constrained optimization as a neural network layer and are trained end-to-end

based on their decision-making performance. This approach differs from previous efforts,

which focused on solving pre-defined optimization problems more efficiently. Instead, the

aim is to combine predictive and prescriptive techniques to create ML systems that learn

to make decisions based on real-world data. Take the following constrained optimiza-

tion problem, in which the objective function fy and the feasible region Cy depend on a

parameter vector y:

O(y) = argmin
z

fy(z) subject to z ∈ Cy

the learning task here is to use supervised learning to predict the unspecified param-

eter of the CO problem from the empirical data, call this prediction ŷ, such that the

optimal solution O(ŷ) best matches the targeted solution O(y). The empirical data in

this setting belongs to some abstractly defined data set X . This predict-and-optimize

framework aims to improve on the conventional two-stage approach to solving such a

problem. The two-stage approach would first involve training an ML model using some

sort of conventional loss function such as MSE on the targeted labels y to predict ŷ before

solving the associated CO problem. This approach has obvious advantages, in which the

model learning phase is well justified and independent of any secondary task besides best

fitting y to ŷ. In theory, this approach is infallible if we are able to get a perfect model to

make precise predictions. However, when put in practice the two-stage approach is prone

to poor performance in the common setting where the true distribution of the data is

unknown and cannot be fully represented by the model. Prediction errors of y although

low in a good model do not take into account the accuracy of the resulting solution O(y),

resulting in the error propagating into the solution and causing suboptimal models that
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are not good in practice for their intended use cases.

The Predict-and-Optimize framework solves this problem by minimizing the decision

utility of the prediction L(O(ŷ),O(y)), with respect to objective decision values fŷ(O(ŷ)).

This notion of training loss is referred to as regret:

regret(ŷ, y) = fŷ(O(ŷ))− fy(O(y))

using this notion of a loss function the training procedure targets optimal solutions O(y).

One important assumption that goes into this notion is that our CO problem has a unique

solution, this, of course, implies that O(y) is directly determined by y and that no other

solution will output an optimal solution.

Training these end-to-end architectures using the regret function requires access to the

decisions O(y) and O(ŷ), thus this will require the introduction of external CO solvers

into the training loop of our ML model. It is very important to note that combinato-

rial problems are problems with discrete state spaces. This means that the argmin of

a discrete problem is a piecewise constant function, making it very hard to obtain use-

ful gradients for backpropagation. This problem is a central challenge in a lot of the

research in this area and our work directly tries to address this challenge as we will see

in the methodology section. To deal with this we need to find ways of forming useful

approximations to ∂L
∂y
, this term can be approximated directly but a growing body of

work models ∂L
∂y

by breaking it down into ∂O(y)
∂y

and ∂L
∂O , the difficulty will lie in the first

term by having to take derivatives through the argmin function.

One of the earliest pieces of work on this topic was the introduction of differentiable

optimization layers [1], in the paper titled OptNet the authors introduce a network ar-

chitecture that integrates optimization problems in the form of quadratic programs as

individual layers in the larger end-to-end training of a deep neural network. The layers

utilize a quadratic program solver that offers exact gradients for backpropagation. This

made way to the work that was introduced in [9] which proposed a predict-and-optimize
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model, which incorporated QPs (quadratic programs) with stochastic constraints into

the loop. This would help generate precise solutions for inventory and power generator

scheduling problems based on real-world data. Following this work was the introduction

of an alternative framework to predict-and-optimize which focused on linear programming

problems [36]. The technique allows for exact differentiation of a smoothed approxima-

tion of the problem. Although LPs are a special case of QPs the techniques used for

gradient calculation in [1] break down. The new proposed technique addresses this issue

by forming an approximation of the LP objective function, the new objective function is

formed by adding a small quadratic regularization term to turn the objective from this

O(y) = argmin
z

yT z subject to Az ≤ b

into this

O(y) = argmin
z

yT z + ϵ∥z∥ subject to Az ≤ b

this technique is essentially what allows us to train our machine learning model on com-

binatorial decision making problems. This relaxation turns the combinatorial problem

into a continuous one, allowing us to analytically differentiate the optimal solution of the

continuous problem as a function of the model predictions. The approximation of the

desired LP has unique solutions that vary smoothly as a function of their parameters,

allowing for the desired accurate backpropagation. This work demonstrated success on

problems where the cost vector was predicted from a feature set and was shown to out-

perform two-stage models.

[12] extended the work of [36] to integrate MILP within the end-to-end training loop.

The goal is to tackle more complex NP-Hard combinatorial problems with parameters

predicted from data. This is achieved by first reducing the MILP with integer constraints

to a linear programming (LP) problem using cutting planes. In an ideal scenario, the

LP formulation should produce the same optimal solution as its original mixed-integer

form. Exact gradients can then be computed for its smoothed QP. Although the LP

approximation to MILP improves with more solving time, practical concerns arise when
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the MILP problem cannot be solved to completion. One of the main challenges is that

each instance of the NP-Hard problem needs to be solved in every forward pass of the

training loop, which can lead to significant runtime obstacles. Additionally, a drawback

of this approach is that cutting-plane methods are generally considered less efficient than

standard methods such as branch and bound. In light of these drawbacks, superior results

were obtained on portfolio optimization and diverse bipartite matching problems when

compared to LP-relaxation models as in [36]
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Chapter 3

Methodology

we ended our literature review in Chapter 2 by discussing the predict-and-optimize

paradigm and discussing some of the key research points in that area but I would like to

start this section by further fledgling out the topic by first formally defining the problem

we are trying to solve and by then further motivating our work and discussing where it

fits in into the current body of research work.

3.1 Problem Description

We consider a general combinatorial optimization problem of the form

min
x∈X

f(x, y)

where X is a discrete set enumerating the feasible decisions, and X ∈ {0, 1}n, that is

the decision variable x is a binary vector. The objective f depends on a parameter

y ∈ Y . The problem could be easily solved using various methods if the value of y were

completely known. However, in this work, we will focus on the scenario where y is not

known and needs to be estimated from data. This is a common scenario in bipartite

matching, where x denotes whether a pair of nodes are matched and y represents the

reward for matching each pair. Frequently, these rewards are obtained from past data.

The decision maker observes a feature vector θ ∈ Θ which correlates with y, This creates
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a learning challenge that needs to be addressed before any optimization can take place.

We handle this issue by modeling y and θ as being drawn from a joint distribution P ,

following the same approach as in conventional supervised learning. The algorithm will

observe training instances (θ1, y1)...(θn, yn) drawn i.i.d from P . At test time the algorithm

is given a feature vector θ that corresponds to some unobserved y, and the algorithm will

use θ to predict some parameter value ŷ. After which, we will solve the optimization

problem

min
x∈X

f(x, ŷ)

to obtain a decision O(ŷ). The utility of this decision is the objective value that O(ŷ)

obtains with respect to the true but unknown parameter y (i.e, the target), f(O(ŷ), y)

let m : Θ → Y denote the model mapping from the observed feature to the unknown

parameters. The end goal of the data-decision pipeline is to minimize

L(O(m(θ)), y) (3.1)

3.2 Motivation

As we have seen with the proposed methods in our literature review, solving this using

the two-stage approach is not a good way of approaching this problem, instead, the main

research focus for tackling this problem is using the predict-and-optimize paradigm. Al-

most all the proposed methods in the literature approach this problem by first forming

an approximation of the combinatorial optimization problem to allow for useful gradients

for backpropagation [36], the end-to-end pipeline is then constructed with an integrated

CO solver at the end to attain decisions. The predictive model is trained on the decision

quality of its predictions, the forward pass will consist of us first passing a feature vector

θ to obtain a predicted parameter ŷ which is then passed to the solver to obtain O(ŷ).

The backward pass entails calculating the regret and then backpropagating back to the

model, and depending on the methods, gradients can either be estimated or solved ana-

lytically on some approximations of the original problem.
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In this work, we aim to address some weaknesses present in the aforementioned meth-

ods. One of the major challenges is the training time bottleneck caused by the integrated

solver. Additionally, the inference time required by these methods is a more serious issue.

Combinatorial problems are typically NP-hard and even if we apply relaxation techniques,

solving a convex problem will still require a considerable amount of time, especially as we

scale up the problem size. During training, the solver needs to calculate 2 × Batchsize

problems for each forward pass to compute the regret. For each sample in the batch,

we require the prediction decision O(ŷ) and the target decision O(y). However, it is

possible to speed up the training time by computing O(y) beforehand. Inference time

is another significant issue to consider since this type of model may not perform well in

time-sensitive settings due to the need to call the solver to obtain the decision for each

prediction.

3.3 Proposed solution

To tackle the training and inference time bottleneck caused by the CO solver, we propose

a novel approach that replaces the CO solver with a trained blackbox solver, which we

refer to as a proxy. This method involves training a separate model, the proxy, to learn

the mapping between the combinatorial input and output. Our goal in using the proxy

instead of the CO solver is to eliminate the need for the solver during both training and

inference, reducing the computational burden and significantly enhancing the scalability

and efficiency of combinatorial optimization models. This approach involves a pretraining

phase in which the proxy is trained on a diverse set of problems to improve its generaliza-

tion capabilities. Additionally, the proxy can be fine-tuned to specific problem instances,

further enhancing its performance. The use of a proxy has the potential to improve

the performance of combinatorial optimization models while reducing the computational

complexity associated with using a CO solver.

Once the pretraining phase is completed, we will integrate the proxy into an end-to-
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end pipeline to train our predictive model. The pipeline will begin with a neural network

that predicts the missing parameter of our combinatorial optimization problem, denoted

as ŷ. Next, ŷ is passed to the proxy, which produces a decision. Training is then carried

out by minimizing the following loss function

L(ŷ, y) = yTO(ŷ)− yTO(y) (3.2)

where y is the ground-truth solution to the combinatorial optimization problem, and

O(ŷ), O(y) represent the decisions made by the proxy for the predicted and ground-

truth solutions, respectively. This loss function measures the utility of the prediction

against the optimal one. In theory, minimizing this function should result in a predictive

model that produces optimal decisions, and assuming the existence of unique optimal

solutions ŷ should converge to y. By using this pipeline, we can train our model in an

end-to-end manner to target the quality of the decision.

3.4 Shortest Path Problem

Our proposed solution is a versatile framework that is applicable to both Linear Pro-

gramming (LP) and Quadratic Programming (QP). The framework builds on previous

work presented in [36], and in this study, we evaluate its performance on the well-known

shortest path problem. The shortest path problem is an important combinatorial opti-

mization problem that has applications in many fields. The problem is formulated as an

LP with integer constraints (A MILP) and is known to be NP-hard. The LP formulation

of the shortest path is given as follows:
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min
∑
u,v∈A

cuvxuv

s.t
∑

v∈V +(s)

xsv −
∑

v∈V −(s)

xvs = −1

∑
v∈V +(u)

xuv −
∑

v∈V −(u)

xvu = 0 ∀ u ∈ V \{s, t}

∑
v∈V +(t)

xtv −
∑

v∈V −(t)

xvt = 1

xuv ∈ {0, 1}n ∀ (u, v) ∈ A

The graph’s incidence matrix is denoted by A, and the set of vertices is denoted by V .

The cost or weight of the edges is represented by the vector c, the vector x denotes the

permutation of the selected edges. The constraints can be seen as Ax = b and are re-

ferred to as flow constraints, the coefficients aij of A are 1 if the arc j has its head a

node i, -1 if arc j has its tail at node i, and 0 otherwise. The final constraint is an inte-

grality constraint on x, 1 represents choosing an edge in the path, and 0 otherwise. And

the objective function is essentially minimizing the path by deciding which edges to select.

To gain more intuition about this shortest path formulation let us go through a small

example of how this problem gets solved. Take a trivial undirected graph with 3 nodes

and 3 edges, let the vector x = {e1, e2, e3} denote the respective edge selection permu-

tation, and let the vector c = {1, 2, 2} denote the respective weight of each edge. the

problem is to essentially find a binary vector x called the decision, such that the objective

function is minimized while satisfying the problem constraints. The graph of the problem

will look like the following:
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Figure 3.1: trivial graph example

Let’s assume we want to find the shortest path from node 0 to node 2. Then the

optimal decision, in this case, would be x = {0, 1, 0}, with an optimal path cost of 2.

We will use the following notation cTx for the objective function, expanding it out would

give us

1× (0) + 2× (1) + 2× (0) = 2

3.5 Pretraining Phase

The proposed solution has a lot of working parts, the first and arguably the most im-

portant part of this pipeline is constructing the proxy. Previous methods utilized CO

solvers to obtain decisions. These CO solvers are very robust and produce optimal or

near-optimal solutions to the problem at hand, Therefore, to ensure the success of our

proposed solution, it’s essential to develop a sturdy proxy that can effectively replace the

solver. The learning task is to learn a mappingM : Y → X from a vector that represents

the edge weights to a vector that represents the edge decision of the shortest path. We

will need to construct a dataset D = {yi, xi}Ni=1 where the feature vector yi ∈ Y is the

edge weights and xi ∈ X is the decision. Constructing this dataset will require careful

consideration before proceeding as it is a non-trivial task. There are various ways of

obtaining the dataset, and the shortest path can essentially be solved using a Mixed Inte-

ger Linear Programming (MILP) approach through techniques like branch and bound or

constraint programming algorithms. Alternatively, one could use graph representations
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of the problem and solve it using Dijkstra’s or Bellman-Ford algorithms. However all

these approaches encounter the same challenge, the MILP formulation of shortest path

is a piecewise constant function, this means that the gradients will not exist at some

points due to discontinuity, or if they do exist they are zero. In theory, if we are able

to learn a good mapping then the proxy will learn a piecewise constant function which

will result in useless gradients when backpropagating. Of course, in practice we do not

expect to be able to estimate the function exactly, which might result in a function that

allows for useful gradients but such a function may not be well-defined and could lead to

unexpected behavior.

One way to address this issue is to apply the techniques outlined in the literature review.

Specifically, we can approximate the objective function by introducing a quadratic term

to it, as suggested in [36]. This quadratic term will result in an approximation of the

desired LP and allows for precise backpropagation. The resulting objective function will

look as follows

O(y) = argmin
x

yTx+ ϵ∥x∥

We have now defined our new objective function and we will need to construct our dataset.

To do so we will need an LP solver to obtain the decisions, the solver used in this work

is CVXPY [8]. CVXPY is a Python-embedded modeling language designed for convex

optimization problems. It has an inbuilt feature called cvxpy layers, which allows for

easy integration into a neural network.

CVXPY is primarily designed for convex optimization, our approximated shortest path

problem is a mixed-integer program, which poses a challenge for the direct use of CVXPY.

In order to utilize CVXPY, we will need to take an additional preliminary step to convert

our problem from a mixed-integer linear program into a linear program. To obtain a

convex problem, we will relax the integer constraints of our problem. By relaxing the

integer constraints on x and turning the constraint to 0 ≤ x ≤ 1, we create a convex set
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on the constraints. This will transform our optimization problem from its original form

O(y) = argmin
x

yTx+ ϵ∥x∥ (3.3)

s.t Ax = b

x ∈ {0, 1}n

into this following relaxed convex problem

O(y) = argmin
x

yTx+ ϵ∥x∥ (3.4)

s.t Ax = b

x ∈ [0, 1]n

By utilizing equation 3.4, we can acquire the appropriate dataset to train the proxy. It

is worth mentioning that several distinct quadratic terms are available to obtain slightly

varied smoothed objectives, but the basic concept remains the same.

3.6 Defining The Shortest Path Problem for The Decision-

Focused Learning Task

We have established the shortest path linear program and the associated learning task.

The next step is to adjust the shortest path problem to align with the learning task. To

accomplish this, we will need to partially define the shortest path problem, to model it

according to the learning task as in equation 3.1. The absent parameter in our problem

statement are the edge weights of the graph.

The first step will be to define the dataset for the predictive model. Let the dataset

D = {θi, yi} where θ is an abstract feature vector and y is the edge weight vector. The

feature vector θ can be formulated in a number of ways, as mentioned a common way of

formulating θ is by using the historical data, this definition essentially turns D is a time

series dataset.

36



Figure 3.2: E2E framework architecture

The goal of the predictive model will be to learn to produce accurate edge weight

predictions from the feature set, such that predictions produce optimal decisions.

3.6.1 Utility Measurement of The Predictive Model

We have discussed why measuring the utility of predictions is a superior method for

models that demand a decision based on their predictions. This notion of measurement

is known as regret 3.2, to better understand this function and its application in the

architecture, let’s examine an example of a forward pass. Assume we have the same

graph as in figure 3.1. Then the target vector y = {1, 2, 2}, and let the predicted vector

ŷ = {1, 2.5, 1.3}. Looking at this prediction we can see that y and ŷ are not that far off

and using a standard measurement such as MSE will give us L2(y, ŷ) = 0.74

Let us now compute the regret, to do that we will need the decision on each vector. The

target vector is O(y) = {0, 1, 0} and the predicted vector is O(ŷ) = {1, 0, 1}.
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Figure 3.3: graph with true edge weights y (left) graph with predicted edge weights ŷ
(right)

Substituting the value back into the regret function 3.2 will give us

L(ŷ, y) = [ 1 2 2 ]


1

0

1

− [ 1 2 2 ]


0

1

0

 = 1

Regret is not concerned with the prediction itself, it measures suboptimality by measuring

the utility of the prediction against the optimal utility.

3.7 Benchmarks

To evaluate our proposed approach, we must first establish a few baselines. Our initial

benchmark will involve comparing our method directly with the approach described in

[36], which our work seeks to build upon by replacing the CO solver with a proxy. We

of course do not expect to beat the solver pipeline with respect to accuracy as the solver

is always optimal, and expecting to train a perfect proxy is not realistic, nonetheless we

would like to get close while significantly improving the training and inference times of

the pipeline.

Another benchmark that we aim to establish is against the two-stage approach, which

involves training a predictive model using a standard loss function, such as MSE, and

assessing its performance based on the utility of its predictions. These two benchmarks
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will establish a sort of bound on the performance of our model. The two stage approach

will serve as a lower bound as we do not anticipate it to achieve high decision accuracy,

while the solver pipeline will act as an upper bound.

Expected performance in terms of utility of the predictions

Two− Stage ≤ Proxy P ipeline ≤ Solver pipeline
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Chapter 4

Results

The training data for the proxy and the pipeline is generated randomly using a uniform

distribution, Specifically, we generate a random incidence matrix with randomly assigned

edge weights and use 0.75 and 0.25 training test split, respectively.

4.1 Proxy Results

The robustness of the proxy is measured using the following criteria

1. L2 error

2. L1 error

3. Average Violations violations in this sense refer to constraint satisfaction. our

solution will need to satisfy two constraints

- flow violations Ax = b

- decision violation 1 ≥ x ≥ 0

The training was done on a number of models, we utilize two types of training functions

L1 and L2, as they produced the most favorable results. The reported results are obtained

after training and are obtained via the test dataset. Specifically, we report the L1 and

L2 errors along with the average constraint violations. The experiments were conducted

on various problem sizes denoted by A. In all the problems, the smoothing function used
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was ϵ||x||2. The architecture column refers to the respective loss function used during

training along with the two different training techniques. The first approach involves

incorporating a penalty term for constraint violations in the loss function, denoted by

+Pen, while the other approach utilizes the Augmented Lagrangian method by relaxing

flow constraints into the objective, and is referred to as AugmentedLag.

A Architecture L2 L1 V iolations

5× 8

L2 0.0045 0.0457 0.3089
L2+Pen 0.0048 0.0474 0.2979
L2AugmentedLag 0.0049 0.0545 1.7280
L1 0.0022 0.0278 0.3077

20× 30

L2 0.0043 0.0301 1.0603
L2+Pen 0.0044 0.0307 1.0557
L2AugmentedLag 0.0182 0.0924 3.2992
L1 0.0022 0.0184 0.9367

80× 130

L2 0.0001 0.0021 1.5598
L2+Pen 0.00009 0.0020 1.5594
L2AugmentedLag 0.0041 0.0475 8.3101
L1 0.00007 0.0015 1.4091

Table 4.1: Proxy results

4.2 Pipeline Results

The pipeline will require a feature set for edge weight predictions. As discussed in Chapter

3 the typical approach is to use historical data, however, in this work, we generate the

feature set as follows. Let y represent the target data (i.e the true edge weights), and

let A be a random matrix where each element aij is a value between 0 and 1, obtained

from a uniform distribution. The vector y is multiplied by the inverse of A to obtain the

feature vector θ

θ = A−1y

thus the predictive models learning task is to learn a function f(θ) = y. The robustness

of the pipelines are measured using the below criteria

1. L2 weight error The L2 weight error on the weight prediction of the predictive

model
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2. L2 decision error The L2 error of the decision vector obtained from the predictive

model (this is measured using the proxy in the proxy pipeline and the solver in the

solver pipeline and 2stage )

3. Average Violations

4. Inference time Time required to solve all problem instances in the test dataset

(Seconds)

We will integrate the best proxies into the decision-focused pipeline represented by

proxy−decision in the architecture columns, and benchmark it against the solver pipeline

(Solver −Decision) and two-stage approach (2stage).

A Architecture L2weights L2decision V iolations Inf time

5× 8

Solver −Decision 0.031 0.190 0.000 0.331
L2proxy+Pen −Decision 0.079 0.061 1.275 0.003
L1proxy −Decision 0.037 0.107 0.772 0.003
2Stage 0.009 0.106 0.000 0.331

20× 30

Solver −Decision 0.060 0.040 0.000 0.415
L2proxy+Pen −Decision 0.009 0.010 1.663 0.003
L1proxy −Decision 0.009 0.005 1.340 0.003
2Stage 0.007 0.052 0.000 0.390

80× 130

Solver −Decision 0.014 0.002 0.000 0.531
L2proxy+Pen −Decision 0.011 0.003 1.915 0.006
L1proxy −Decision 0.016 0.001 1.728 0.006
2Stage 0.003 0.003 0.000 0.475

Table 4.2: Pipeline results
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Chapter 5

Discussion

It is crucial for the proposed method to utilize a robust proxy instead of the solver, as the

accuracy of the decisions depends on it. The various attempted proxy training methods

are listed in Table 4.1. Convergence was achieved for all measured properties, with train-

ing graphs provided in the appendix. Both L1 and L2 errors were comparatively low, but

employing L1 as the loss function yielded slightly superior results. Despite our efforts, we

encountered difficulty in satisfying constraints; all attempted methods failed to accom-

plish this effectively with the Augmented Lagrangian performing the worst. Satisfying

equality constraints is usually challenging and our case is no different. The constraints

grow with problem size and scaling up made them harder to satisfy. We experimented

with different network architectures and hyperparameters but that did not yield any

substantial improvement with constraint satisfaction, Consequently, we turned to some

methods from the literature in an attempt to improve our results the first method we

tried was Reparametrization. Satisfying constraints would be easy if we had a method to

round the predictions from the proxy, rounding to exact integers would be difficult but

if we could round the prediction to near integer values then we could better satisfy the

constraints. Since rounding functions are usually discontinuous, we had to devise some

approximated differentiable rounding functions. However, each proxy was unique, and

at every stage of training, the predictions were slightly different. As a result, having a

one-size-fits-all rounding function was not feasible, and integrating such a function into
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the training loop resulted in weird behavior. In general, the proxy performed worse when

using these rounding techniques than when not using them at all. Another approach we

attempted was to use Projected gradient descent, which involved projecting the solutions

back into the feasible region. However, this method did not produce satisfactory results

either. The training was very noisy, and it never converged.

In general such a proxy will not perform well due to its loose satisfaction of constraint

as shown in 4.2, the proxy pipeline converges with respect to weight prediction but per-

forms very poorly with respect to constraint satisfaction making it unreliable. Although

our method was able to overcome the runtime issue and achieves a speedup of 110x,

the pipeline itself does not effectively solve the problem. The solutions provided by

the pipeline are infeasible and far from optimal when compared with the benchmarks,

rendering them unsuitable for use.
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Chapter 6

Conclusions and Future Work

Our method has shown great potential in terms of runtime, as it provided a massive

speedup when compared to popular E2E approaches and the typical two-stage approach.

Unfortunately, the quality of the pipeline does not hold up to the benchmarks with respect

to solution quality. Constraint satisfaction is crucial in CO problems, and the pipeline’s

inability to satisfy these constraints is a fundamental issue with the proposed technique.

The main cause of the poor solution quality is the proxy; substituting the solver with

a proxy assumes that we have a robust proxy that can obtain decision vectors of high

quality. To make this approach work, a more sophisticated training procedure for the

proxy is required such that it can obtain solutions with minimal constraint violations.

One possible future approach is to train a proxy using the Lagrangian Dual Framework

(LDF) [13]. This method has demonstrated success across multiple domains in predicting

CO solutions while successfully satisfying constraints. One could also leverage superior

network architectures for such problems and implement a pointer network, as done in

[33], or try to apply the supervised learning approach using GNNS [24] to our problem.

There is plenty of room for improvement, and calling on more sophisticated techniques

will likely help us produce a better working proxy. However, no matter how robust the

proxy is, we cannot expect it to perform as well as a solver. This is a problem because,

no matter how small the error is, the predictive model will eventually try to exploit it

to minimize the regret. This results in a pipeline that produces infeasible solutions for
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problems where feasibility and constraint satisfaction are of utmost importance. This

plug-and-play method for the proxy will likely not work on its own, we will either have to

augment the regret function to force the predictive model to avoid exploiting the small

errors induced by the proxy or move away from the proxy and explore techniques that

may involve integrating a hybrid model into the pipeline such as [20] to get the best of

both worlds.
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Appendix A

A.1 Experimental Data

A.1.1 Solver Decision-Focused Pipeline

(a) regret (b) L1 weight error (c) L2 weight error

Figure A.1: Decision focused learning solver pipeline graph size 20× 30, 7 layer architec-
ture, SGD optimizer, Lr 0.00001

(a) regret (b) L1 weight error (c) L2 weight error

Figure A.2: Decision focused learning solver pipeline graph size 80 × 130, 7 layer archi-
tecture, SGD optimizer, Lr 0.00001
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A.1.2 Two-Stage

(a) loss (b) regret

Figure A.3: graph size 20× 30, 7 layer architecture, SGD optimizer, Lr 0.001

(a) loss (b) regret

Figure A.4: 2stage 80× 130, 7 layer architecture, SGD optimizer, Lr 0.001
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A.1.3 Proxy PreTraining

(a) Loss (b) L1 weight error
(c) average violations per
batch

(d) max violations per batch

Figure A.5: Proxy Training using MSE + violation Penalty, graph size 20 × 30, 7 layer
architecture + batchnorm + dropout, SGD optimizer, Lr 0.0001

(a) Loss (b) L1 weight error
(c) average violations per
batch

(d) max violations per batch

Figure A.6: Proxy Training using L1 loss, graph size 20 × 30, 7 layer architecture +
batchnorm + dropout, SGD optimizer, Lr 0.0001
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(a) Loss (b) L1 weight error
(c) average violations per
batch

(d) max violations per batch

Figure A.7: Proxy Training using MSE + penalty term, graph size 80 × 130, 8 layer
architecture + batchnorm + dropout, SGD optimizer, Lr 0.001

(a) Loss (b) L1 weight error
(c) average violations per
batch

(d) max violations per batch

Figure A.8: Proxy Training using L1 loss, graph size 80 × 130, 8 layer architecture +
batchnorm + dropout, SGD optimizer, Lr 0.001
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A.1.4 Proxy Decision-Focused Pipeline

(a) regret (b) L1 weight error (c) l2 weight error

(d) l2 decision (e) l1 decision (f) avg viol

(g) max viol

Figure A.9: L2+pen Proxy pipeline, graph size 20×30, 7 layer architecture + batchnorm
+ dropout, SGD optimizer, Lr 0.001
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(a) regret (b) L1 weight error (c) l2 weight error

(d) l2 decision (e) l1 decision (f) avg viol

(g) max viol

Figure A.10: L1 Proxy pipeline, graph size 20× 30, 7 layer architecture + batchnorm +
dropout, SGD optimizer, Lr 0.001 (*generated after, not exactly the same as the pipeline
results section*)
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(a) regret (b) L1 weight error (c) l2 weight error

(d) l2 decision (e) l1 decision (f) avg viol

(g) max viol

Figure A.11: L2+pen Proxy pipeline, graph size 80× 130, 9 layer architecture + batch-
norm + dropout, SGD optimizer, Lr 0.001
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(a) regret (b) L1 weight error (c) l2 weight error

(d) l2 decision (e) l1 decision (f) avg viol

(g) max viol

Figure A.12: L1 Proxy pipeline, graph size 80 × 130, 9 layer architecture + batchnorm
+ dropout, SGD optimizer, Lr 0.001
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Appendix B

B.1 Logarithmic Smoothing Term

We attempted to use a different smoothing term. The results of different smoothed

functions can be found in the below tables, as in the results section we train proxies

(using MSE) and integrate the best ones into the pipeline. S1 refers to first smoothing

term ϵ||x||2 and S2 refers to ϵxlog(x). Unfortunately, we found this smoothing to be

insensitive to any substantial improvements. Furthermore, adding this term causes a

singularity in the objective function at its optimal values (i.e, 0). To make this work the

constraints would have to be changed to [ϵ + 0, 1 − ϵ]. Pursuing further tests with this

smoothing term seemed to be a fruitless endeavor. It did show a slight improvement in

some aspects but nothing to suggest that we should move forward with it.

A Architecture L2 L1 V iolations

5× 8

S1 0.0045 0.0457 0.3089
S1+Pen 0.0048 0.0474 0.2979
S1AugmentedLag 0.0049 0.0545 1.7280
S2 0.0038 0.0476 0.2596
S2+Pen 0.0039 0.0482 0.2632
S2AugmentedLag 0.0049 0.0548 1.7183

Table B.1: Proxy results appendix
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A Architecture L2weights L2decision V iolations Inf time

5× 8

S1solver −Decision 0.031 0.190 0.000 0.331
S1proxy+Pen −Decision 0.079 0.061 1.275 0.003
S2solver −Decision 0.032 0.187 0.000 0.600
S2proxypen −Decision 0.052 0.026 1.095 0.006
2Stage 0.009 0.106 0.000 0.331

Table B.2: Pipeline results appendix
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