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Abstract 

With the surge of social media on one hand and the ease of obtaining information due to 

cheap sensing devices and open source APIs on the other hand, the amount of data that can be 

processed is as well vastly increasing. In addition, the world of computing has recently been 

witnessing a growing shift towards massively parallel distributed systems due to the increasing 

importance of transforming data into knowledge in today’s data-driven world. At the core of data 

analysis for all sorts of applications lies pattern matching. Therefore, parallelizing pattern 

matching algorithms should be made efficient in order to cater to this ever-increasing abundance 

of data. We propose a method that automatically detects a user’s single threaded function call to 

search for a pattern using Java’s standard regular expression library, and replaces it with our own 

data parallel implementation using Java bytecode injection. Our approach facilitates parallel 

processing on different platforms consisting of shared memory systems (using multithreading 

and NVIDIA GPUs) and distributed systems (using MPI and Hadoop). The major contributions 

of our implementation consist of reducing the execution time while at the same time being 

transparent to the user. In addition to that, and in the same spirit of facilitating high performance 

code parallelization, we present a tool that automatically generates Spark Java code from 

minimal user-supplied inputs. Spark has emerged as the tool of choice for efficient big data 

analysis. However, users still have to learn the complicated Spark API in order to write even a 

simple application. Our tool is easy to use, interactive and offers Spark’s native Java API 

performance. To the best of our knowledge and until the time of this writing, such a tool has not 

been yet implemented. 
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Chapter 1: Introduction 

Traditionally, programs were written to be executed in a serial manner. A problem is broken 

down into a series of instructions which are executed sequentially one after the other. Hence only 

one instruction can execute at a time. These instructions execute on a single processor. Over the 

past twenty years, microprocessor technology has seen significant advances, such as increased 

clock rates, capability of processors to execute multiple instructions in the same cycle, and 

improved average number of cycles per instruction (CPI) [1]. This has led to an increase in the 

peak floating point execution rate (FLOPS).  One of the issues that have arisen because of this 

improvement is the inability of the memory system to supply the processor with enough data at 

the required rate. Interest in parallelism for high performance computing has increased in recent 

years due to the physical constraints that prevent frequency scaling. As power consumption and 

heat generation become more and more of an issue, researchers are focusing on parallel 

computing since it involves using multiple processing elements. In addition to that, parallel 

computing provides increased access to storage units whether memory or disk, has scalable 

performance, and potentially lower costs over high-end processing units.   

1.1 Parallel Computing 

In a nutshell, parallel computing consists of the simultaneous use of several compute 

resources to solve a large problem by dividing it into smaller sub-problems that can be solved at 

the same time. The processing elements usually consist of a single computer with multiple cores, 

several computers connected by a network, specialized hardware for acceleration, or a 

combination of all three.  
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Parallel computing is being used extensively in a wide range of applications. Large scale 

applications in science and engineering rely on large configurations of parallel computers to 

solve and model difficult problems in several areas such as physics, genetics, geology, 

seismology, circuit design, weaponry… Parallel computing is also widely used in industrial and 

commercial applications which require processing large amounts of data. We mention a few 

examples: database or web servers, transaction processing, data mining, financial and economic 

modeling, medical imaging, image processing, applications in graphics and visualization… 

Software developers therefore need to be familiar with a variety of parallel computing 

platforms and technologies to write efficient code capable of harnessing the parallel processing 

power. However, the development of parallel software is tedious, error-prone, time consuming, 

and non-trivial for programmers, especially if the aim is to develop an application that works 

well across several platforms. 

We propose a system that facilitates the parallelization of high performance code. 

1.2 Proposal 

We propose a system that relieves the burden of dealing with parallel programming from the 

application developer. Our system handles both categories of main memory in parallel systems: 

shared-memory and distributed, as shown in Figure 1-1. Shared-memory systems have a uniform 

memory access meaning that each processing element can access memory with equal latency and 

bandwidth. Distributed systems exhibit a non-uniform memory access behavior since memory is 

logically and physically distributed. Parallel techniques that target shared-memory systems 

include multithreading and GPGPU computation. Parallel techniques that target distributed 

systems include message passing and map-reduce.  
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Figure 1-1: Parallel Systems 

Our targets are Java developers. We have chosen Java since is mainly the language of choice 

for high performance applications, and it has gained popularity since its first inception due to 

several performance improvements to the Java Virtual Machine (JVM). Also and even though 

Java provides efficient yet difficult to program support for threads, it lacks complete and 

standardized support for GPUs and message passing. Hence, we saw an area where our 

contributions could be more significant.  

Our central proposition revolves around parallelizing existing sequential Java code without 

having the user incur any extra effort other than using our library in order to obtain faster 

execution times. To validate our work, we have chosen the pattern matching application since 

pattern matching lies at the core of data analysis. However, our approach can be used with other 

applications, as we demonstrated in Chapter 2. We propose a method that detects a user’s 

function call to search for a pattern using Java’s standard regular expression library, and replaces 

it with our own parallel implementation using bytecode injection. Our parallel implementation 

consists of multithreading, using a GPU, and using MPI. We also perform feasibility testing with 

Hadoop.  
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In order to seamlessly parallelize pattern matching, we have used bytecode injection. 

Typically, injection can be done at the source code or at the bytecode level. We have selected the 

latter since the former suffers from the following shortcomings: (i) for the source code level 

injection to work, all the source code must be available which is not always the case, (ii) source 

code level injection is harder for complex transformations, (iii) with source code level, we will 

be manipulating strings, which have no particular meaning, and (iv) we would need a versatile 

parser. On the other hand, if injection is performed at the bytecode level, then (i) there is no need 

to have the actual source code, (ii) we can modify third party, closed-source classes, (iii) runtime 

performance is not affected, and (iv) we do not modify the original source files which is 

appropriate if we need the changes to be applied only for a limited time.  

In addition to what we mentioned, we present a tool that facilitates creating Spark code for 

the user by automatically generating Spark Java code from minimal user-supplied inputs. Spark 

has emerged as the tool of choice for efficient big data analysis. However, users still have to 

learn the complicated Spark API in order to write even a simple application. Code generation for 

parallel programming is a well-studied field that has been recently used to teach undergraduate 

students parallel programming, and is reported to have reduced programming errors [2]. 

1.3 Objectives 

Our system achieves the following objectives: 

- Correctness: Using our method does not change the output of the code. 

- Transparency: The modifications are hidden from the user, as in the user is not required 

to do any source code modifications or implement or learn a new interface or API. 

- Performance: Using our method yields performance gains in terms of execution time. 
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1.4 Development Process 

Our workflow can be summarized by the following steps: 

- Detect and intercept the user’s function call to search for a pattern by running java agent 

to intercept class files. 

- Understand bytecode representations and use ASM to instrument class methods into 

parallelized version. 

- Replace the original function call with our own parallel function (environment-

dependent) that splits the input by injecting bytecode into the user’s code.  

- Return results and control back to the user. 

- Measure performance gain. 

1.5 Outline  

In this work, we present a method that facilitates the parallelization of high performance 

code under both shared-memory and distributed environments. Sequential legacy code written in 

Java is seamlessly mapped into a parallel program. Specifically, we have targeted the pattern 

matching application.  

In addition to facilitating the transformation of existing code into a parallel application, we 

also implement a tool that helps developers write Spark Java code in an attempt to promote 

efficient and easy to implement parallel programming. 

In Chapter 2, we discuss pattern matching in a broader view, and we present our motivation 

behind selecting it as the application to use. We also discuss Java bytecode and explain how we 

used ASM to implement bytecode injection. As well, we present our first approach of facilitating 
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parallelization in a shared-memory environment by using multithreading and we show our 

results.   

In Chapter 3, we present another approach to shared-memory consisting of GPUs. We 

discuss GPGPU in general, CUDA in particular, the previous work done in this area and how it 

is different from what we propose, the challenges we faced, and our implementation and results. 

In Chapter 4, we introduce distributed systems. We discuss MPI as the prominent 

communication technology of choice in the industry. We show how we applied our method using 

MPI and display our results. In addition to that, we introduce Hadoop as an alternative to 

message passing. We do not use Hadoop as a target environment for our method for reasons 

mentioned in the chapter; however we do compare its output to our multithreading results. 

In Chapter 5, we present a tool that helps developers write Spark code that can run on a 

distributed environment. We introduce the Spark ecosystem, show our reasoning and workflow, 

and provide a machine learning plug-in to facilitate generating machine learning algorithms. 

Finally, in Chapter 6 we summarize our work and our findings, and we suggest some 

directions for future work. 
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Chapter 2: Automatic Parallel Matching using Java 

Bytecode Injection 

Shared memory systems describe a computer architecture in which all processors share a 

single view of the memory module and access the same logical memory locations irrespective of 

where the physical memory actually is. Communication (data sharing) in such systems is 

efficient and fast since all the parallel tasks can share the same resources.  In this chapter, we 

discuss implementing pattern matching in a shared memory environment using Java threads. Our 

contribution is summarized as follows: detect a user’s Java call to search for a pattern, instrument 

a parallelized multithreaded pattern matching code, and finally return control back to the 

program. 

2.1 Introduction  

The importance of big data does not simply lie in the amount of data available. It stems from 

what can be done with that data, how to transform data into useful information, whether it be to 

reduce cost, reduce risk, make better calculated decisions, or increase efficiency. Pattern 

matching is the basis for data mining upon which other more complex algorithms are built. 

Pattern matching consists of finding one, or several, occurrences of a pattern within a larger 

dataset. It has been extensively used in several applications from various domains. Some 

applications include citation matching, plagiarism detection, malware detection, virus scanners, 

content monitoring filters, intrusion detection, digital forensics tools, genetics….  

Finding a way to parallelize pattern matching algorithms will result in more efficient usage. 

Parallelizing pattern matching can be done in one of two ways: either rewriting the algorithm to 
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make it inherently parallel or using data parallelism which consists of splitting the input and 

running the same serial algorithm on all parts. We have opted to do the latter since it is typically 

what programmers would try to do. 

Our implementation deals with searching for a pattern within a text using Java’s standard 

regular expression library (regex) and parallelizing it using multiple threads without 

compromising the integrity of the library. We have chosen the standard library, as opposed to 

other implementations, since it is widely and commonly used. Parallelizing it will not change the 

implementation and hence will preserve the integrity and correctness of the original code.  

The rest of the chapter is divided into the following sections. Section two gives a brief 

overview of pattern matching. Section three presents the motivation behind our work. Section 

four consists of a literature review. Section five gives a brief description of Java bytecode and 

the ASM library. Section six discusses the parallel approach in our implementation. Section 

seven displays our working environment and results. Section eight concludes the chapter. 

2.2 Pattern Matching 

Pattern matching can be divided into two basic categories: exact pattern matching and 

regular expression pattern matching. 

Exact pattern matching is more commonly used as string matching, since the pattern is well 

defined and most search applications are text-based. String matching (or string searching) 

algorithms constitute a crucial subclass of text processing since they are widely used in many 

applications pertaining to various domains, such as parsers, spam filters, word processors, search 

engines, digital libraries, natural language processing, and molecular biology [3]. String 

matching consists of finding the first occurrence of a pattern of length m in a text of length n, 
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where typically n >> m. Both pattern and text are composed of a finite alphabet set denoted by Ʃ, 

whose size is denoted by σ. This alphabet set could be for example the modern English alphabet 

(letters a through z), the binary alphabet (0 and 1) or the DNA alphabet (A, C, G, T), depending 

on the application. Although nowadays data is stored in many formats, text remains the main 

form for exchanging information. The main algorithms for exact pattern matching are: brute-

force (BF), Knuth-Morris-Pratt (KMP), Karp-Rabin, Boyer-Moore (BM), and Horspool [4].  

The BF method, also called naïve method for the simplicity of its implementation, is the 

only one among these that does not require a pre-processing phase. The way the BF works is by 

comparing the pattern to every character in the text between 0 and n-m and then by shifting one 

position to the right. The search time complexity is O(nxm). BF is the method used in the Java 

standard String library implementation of the highly used method indexOf. The indexOf 

method returns the location of the first occurrence of the pattern. Therefore, in order to find all 

occurrences of a pattern without inherently changing the underlying implementation, one must 

repeatedly check for each occurrence using a loop. 

The second category of pattern matching is regular expression (regex) pattern matching. The 

difference between this and the exact approach is that regex searches for occurrences of multiple 

patterns in a text. Some applications include natural language processing, scanning for virus 

signatures, accessing information from digital libraries, filtering text, validating data-entry fields, 

and searching for markers in human genome [3]. Regular expression notations specify a set of 

strings and can be very expressive. They can be used in nearly infinite ways and include 

characters, quantifiers, and meta-characters. For example, one can search for words that contain 

2 x’s, or for fields representing a telephone number where the format is ddd-ddd-dddd, d being a 

digit, or for a part of a text not followed by another specific part of text.  
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We focus our research on regular expression pattern matching. According to the article in 

[5], there are two approaches to regular expression matching. The first is a backtracking 

implementation used in several standard languages, such as Perl, Python, Java, PCRE, Ruby, and 

several others. The second, mainly used in implementations of awk and grep, uses finite 

automata.  

A finite automaton is another word for a finite state machine. Switching from a state to 

another depends on the sequence of characters of the string. There is a start state, and a matching 

state. If the matching state is reached, then a match has been found. If the machine ends in a state 

other than the matching state, then a match was not found. 

There are two types of automata: deterministic (DFA) and non-deterministic (NFA). In any 

state in DFAs, each possible input character leads to just one new state. In NFAs, there could be 

multiple choices for the next state. Figure 2-1is an example that shows the difference for the 

pattern a(bb)+a.  

Partial DFA representation Partial NFA representation 

 

 

 

 

Figure 2-1: DFA vs NFA example diagram 

The circles in the diagram represent the states, and the arrows represent the state transitions 

based on the characters. The matching state is denoted by a double circle. The difference 

between DFA and NFA can be shown from the transitions in state four. In the DFA, if an a is 

encountered, we reach the matching state; if a b is encountered, we go back to state three. In 
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contrast, in state three of the NFA, if a b is encountered, there are two possible solutions: either 

go back to state two or proceed to state four. The NFA does not know which decision is the 

correct one since it cannot peek to see the rest of the string. The machine will guess, and hence is 

labeled non-deterministic. To simulate guessing, one can allow the machine to guess one option 

and if that does not work, to try another option by backtracking. This is recursive though and 

might lead to a slow exponential runtime if there are many possible options. A better way would 

be to guess both options simultaneously. In this case, the NFA will be in multiple states at the 

same time, and runtime is linear. 

DFAs are more efficient to execute because they can be in only one state at a time. DFAs are 

also faster than NFAs since there is a state transition for every possible character. This has not 

been shown in the diagram above. However, this also means that they require more memory to 

be stored. In NFAs, the number of states is at most equal to the length of the regular expression. 

An NFA can be converted into an equivalent DFA where each DFA state corresponds to several 

NFA states.  

Java contains a regular expression standard library (java.util.regex). It is mainly composed 

of two classes: a Pattern class and a Matcher class. The Pattern class compiles the pattern, and 

the Matcher class contains the methods needed to perform and analyze the search for that 

pattern
1
.  

                                                 
1 It is also worth mentioning that the String class can also perform regular expression matching. However, it can only match the 

entire text against the pattern, using the text.matches(regex) function. 
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2.3 Motivation 

Most of the times, a standard language implementation is fairly fast, however, there are 

some regular expressions that would make the algorithm run very slow. Most regular expressions 

library implementations (Java’s regex included) use a backtracking algorithm. Given a set of bad 

inputs, albeit simple, such algorithms can take exponential time to execute. The article in [5] 

goes on to show that for a particular regex, and for a 100-character string, trends show that a 

Thompson NFA implementation takes 200 microseconds, while a Perl implementation will take 

over 10
15

 years. This is because standard library implementations support backtracking and back 

references, which makes matching NP hard. To illustrate, we have tested the inputs from [6] on 

our local machine. We used the Java regular expression library with the pattern “(a|aa)*b”, and 

varied the length of the string text. Results are shown in Table 2-1 and Figure 2-2, where N is the 

number of characters of the text. 

Table 2-1: Runtimes of pattern matching backtracking example 

Text N Search time (ms) 

aaaaaaaaaaaaaaaaaaaac 21 10 

aaaaaaaaaaaaaaaaaaaaac 22 30 

aaaaaaaaaaaaaaaaaaaaaac 23 30 

aaaaaaaaaaaaaaaaaaaaaaac 24 50 

aaaaaaaaaaaaaaaaaaaaaaaac 25 90 

aaaaaaaaaaaaaaaaaaaaaaaaac 26 120 

aaaaaaaaaaaaaaaaaaaaaaaaaac 27 200 
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Figure 2-2: Runtime graph of pattern matching backtracking example 

For every character increase in N, the runtime increases exponentially. This happens because 

the whole pattern was not found. However, the first part was found, so the algorithm backtracks 

and tries to match the remaining part. When it does not find it, it goes back one more step to the 

last matched part and tries to match the whole pattern, and so on. Other more realistic similar 

cases can result from spam attacks and cause a denial of service. 

Another reason for the exponential searching is the use of back-references. A back-reference 

matches the string matched by an earlier expression surrounded by parenthesis. For example, the 

regex (romeo|juliet)\1 matches romeoromeo or julietjuliet but not 

romeojuliet or julietromeo. Back-references provide additional power but at a 

potentially much higher cost. 

We believe the reason the standard tools have not considered implementing the more 

efficient finite automaton approach is two-fold. First of all, finite state machines cannot handle 

sub-match extraction that requires recursive backtracking. This means that they cannot 
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distinguish the individual matches made by an expression surrounded by parenthesis for 

example. In the Java regex library, this can be done using matcher.group(). The other 

reason is back-references. Back-references, being an NP-complete problem with no current 

efficient implementation, are not represented in the finite state approach and are not implemented 

in grep for example. However, they are part of the POSIX standard for regular expressions and 

are available in standard tool implementations. 

Since execution time increases exponentially with N, then having a smaller search space will 

immensely decrease runtime. Hence, dividing the string into smaller substrings will improve 

performance. 

2.4 Literature Survey 

We survey some of the work that involves parallelizing pattern matching in both shared and 

distributed environments. The paper in [7] implements parallel string matching with Java multi-

threading with multi core processing, and performs a comparative study on KMP, BM and BF 

string matching algorithms on a gene sequence data set. In [8], the authors focus on detecting 

malware for unstructured data stored in Hadoop Distributed File System (HDFS) by developing 

a map-reduce approach to easily scan for viruses in HDFS in real time. They used Clam AV’s 

virus signature database to perform their experiments.  Their mapper extracts the file type to 

obtain the correct signature and produces a key-value pair, where the key is the signature and the 

values are the lines from the files. The reducers aggregate the lines per key (signature) and do 

pattern matching on the list of values. They used three different algorithms for string matching: 

BM, KMP and RabinKarp. In [9], the authors present a citation matching method and scale it up 

using Hadoop. In [10], the authors present a parallel implementation for string matching using 
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MPI. They partition the string to search into a number of subtexts and have used the brute force 

method for searching. In [11], given a text and a pattern, the authors try to find if the pattern 

occurs in the text using a Hadoop cluster. If it does, they return the starting index. If not, then 

they find the longest prefix, suffix and substring of the pattern in the document and find the 

similarity between documents and the longest common subsequence of all documents. The 

algorithms they used are KMP and cosine similarity. In the blog post [12], the author uses a grep 

script in a Hadoop cluster to search for a string in the WorldCat.org record. In [13], the author 

implements, tests, and tries to optimize the three string matching algorithms (Brute-force, 

QuickSearch, Horspool) using CUDA. The methods applied to the development are: finding 

ways to parallelize the sequential code, minimize data transfer between host and device, coalesce 

global memory as much as possible, and avoid branch divergence within a CUDA warp. The 

paper in [14] implements KMP using a multicore processor and using a GPU. They partition the 

string into the number of processors that they have; however, they do several extra iterations 

after that to account for in-between occurrences. This could have been avoided by doing better 

partitioning. They implement their algorithm using four techniques: serial, multithreaded CPU, 

multicore CPU using OpenCL, and on a GPU using OpenCL. In [15], the authors propose to 

offload the processing of digital forensics tools to a GPU and compare the speedups obtained by 

simple threading schemes appropriate for multicore CPUs. The application they use is file 

carving. For the multicore machines, a thread was spawned for every carving rule (used the BM 

technique). On the GPU, each thread is responsible for searching for approximately 160 bytes of 

the 10 MB block. In [16], the authors implement the BF, KMP, Boyer-Moore-Horspool, and 

Quick-Search string matching algorithms on a GPU and record the performance. The data set 

consisted of three reference sequences: the bacterial genomes of Yersinia pestis, Bacillus 
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anthracis, and a simulated BAC built of the first 200,000 characters of NCBI build 26 of Homo 

sapiens’ chromosome 2. The query pattern was constructed of randomly chosen subsequences 

from each reference sequence. In [17], the authors propose the design, implementation, and 

evaluation of a pattern matching library running on the GPU. The library supports both string 

searching and regular expression matching using CUDA. They chose to implement a GPU-based 

pattern matching library for inspecting network packets in real time and returning any matches 

found back to the application. They have parallelized the DFA based matching process by 

splitting the input data stream into different chunks. Each chunk is scanned independently by a 

different thread using the same automaton that is stored in device memory.  

2.5 Java Bytecode and ASM 

When a Java code is compiled, the javac compiler generates a machine-independent 

intermediate format known as the bytecode. The bytecode is mainly composed of the instruction 

set that describes the program to the Java virtual machine. The JVM processes the bytecode 

instructions from the class files. Primitive types and objects are expressed with the 

representations shown in Table 2-2. These representations are later used in constructing the 

method descriptors such as the examples in Table 2-3 which show the method declarations in a 

Java source file and their bytecode counterparts. 
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Table 2-2: Primitive types and class representations 

Type Representation 

void ‘V’ 

boolean ‘Z’ 

char ‘C’ 

byte ‘B’ 

short ‘S’ 

int ‘I’ 

float ‘F’ 

long ‘J’ 

double ‘D’ 

Class  L<class>; 

 

Table 2-3: Method descriptors 

Method declaration in source file Method descriptor 

void methodName(int i, float f) (IF)V 

int methodName(Object o) (Ljava/lang/Object;)I 

int[] methodName(int i, String s) (ILjava/lang/String;)[I 

 

Bytecode instructions use a stack to exchange the data. The code snippet in Figure 2-3 

shows a basic example of how one would typically implement the pattern matching function in 

Java, and the code in Figure 2-4 shows how ASM (discussed shortly) uses the bytecode 
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instructions to store the objects and then when needed, identify and use them based on their 

locations, as shown in Table 2-4.  

 

Figure 2-3: Pattern matching code snippet 

Table 2-4: Object locations 

Variable Object 

7 pattern 

8 text 

9 p 

10 matcher 
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Figure 2-4: ASM code of Figure 2-3 

ASM [18] is a Java bytecode engineering library. It can be used to analyze and to 

manipulate bytecode by modifying classes. First, a Java agent is created. The agent contains a 

pre-main method that implements a class transformer. The class transformer is composed of a 

class reader and a class writer. The class reader reads the bytecode from the class files in order to 

analyze the classes or the methods using a class visitor. If a class or a method needs to be 

modified, the class visitor performs these modifications. Examples of such modifications include 

printing a method’s description, displaying the different object types in a class… These 

modifications are then stored using the class writer. Bytecode injection consists of manipulating 

the bytecode by inserting constructs that change what a method does. A method visitor scans the 

classes in search of the desired method. It is identified based on its description. The description 

consists of the method return type and the types of its parameter list.  
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The overall process is shown in Figure 2-5. In our implementation, when we encounter the 

particular method that searches for a pattern, we use bytecode injection to replace it with our 

own parallel pattern matching implementation.  

 

Figure 2-5: ASM process 

2.6 Implementation 

Because of the way it is implemented, the regex pattern matching find()function from the 

Java standard library can have an exponential search time based on the pattern and the text to be 

searched. We have devised a method that parallelizes this search without compromising the 

integrity of the library. Another main contribution is that this method is transparent to a user. 

Therefore, a coder does not need to put any extra effort using our method. All that is needed is 

for the user to run his/her code with an extra parameter that invokes our java agent. Our method 

will automatically detect the function to be parallelized and will instrument the parallel version 

of it instead of the user’s function. Control is then returned to the user’s code. All data structures, 
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objects, and primitives will be preserved. The advantage over other work is that users do not 

need to learn any new constructs, they do not need to implement any new interface or API, and 

they do not need to apply any changes to their code. A simple illustration of our process can be 

found in Figure 2-6. When we encounter the particular method that searches for a pattern, we use 

bytecode injection to replace it with our own parallel pattern matching implementation.  

 

Figure 2-6: Process illustration 

Multithreading is the ability of a CPU to execute several threads concurrently within the 

same program. It aims to increase the utilization of the CPU time using parallelism. The concept 

is similar to multitasking, but dealing with applications. A single application can be divided into 

separate operations, where each operation is assigned to a different thread. These threads can run 

in parallel with their own paths of executions but share resources. This sharing of computer and 

data resources is the main challenge of multithreading. Special attention needs to be given to 

threads wanting to read and write the same data simultaneously.  However, the benefits of 
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multithreading are many. Some of them include: more efficient CPU usage, better system 

reliability, better resource utilization, and improved performance on multiprocessor computers. 

Multithreading in Java is essential but not always simple. The Java platform is designed to 

support concurrent implementation. It supports basic concurrency in the language and the class 

libraries. Each application has at least one thread, the main thread, which has the ability to create 

other threads. In this chapter, we use multithreading to implement our parallel approach. 

Originally, we had started off by trying to parallelize the Java Collections library. We 

focused on detecting and implementing the sort (library implementation is a merge sort), the 

replaceAll, the min, and the max functions. We used this as a basis to implement the pattern 

matching, and to prove that our algorithm works for several cases. 

2.6.1 Challenges 

The Java regex library proved to be more challenging than the Collections library, and we 

had to change the way we approached the problem several times in order to bypass both the 

standards privacy and restrictions.  

The regex library contains two main classes: the Pattern class and the Matcher class. The 

Pattern class compiles the pattern, and the Matcher class contains the method find which 

searches for a pattern within the text.  

The first issue we faced was having insufficient variables on the stack. When statement (28) 

from Figure 2-3 statement is executed, and if we look into the bytecode shown in Figure 2-4, 

only the matcher is on the stack. So if we wanted to replace the serial version of find with the 

parallel version, what we have on the stack will not be sufficient information. We will also need 



23 

 

 

to search for the ‘text’, push it on the stack and then pass it to our method. Preloading these 

variables was another issue we faced since it is not feasible without using some sort of dynamic 

parsing or creating an abstract syntax tree (AST). The reason for that is that when the compiler 

generates bytecode, it loads the variables into registers without using their names. Therefore, 

there is no simple way to know where the variable ‘text’ is stored. We could of course look it up 

after it is compiled, but that will remove the generality and the automatic detection property that 

we claim. Another way we thought about was to try and generate the ‘text’ from the matcher, 

since it is inherently used in the matcher class. However, we found that it is private and that we 

were unable to access it. Having all these troubles, we decided to implement the whole regex 

library with all its classes
2
. This would allow us to, first change the private property of ‘text’ to 

public, and second, to directly implement our parallel functions in the new library. Again, we hit 

a wall. We reached a point where we had to import Sun’s security libraries and we had 

absolutely no access to that. Therefore, we decided to write our own wrapper method that runs 

the find method but takes both the text and the pattern as parameters. 

2.6.2 Implementation 

In what follows we discuss how our implementation achieves load balancing, correctness, 

and synchronization.  

The original user code contains a single thread pattern matching search function that 

processes the entire text
3
. In our multithreaded implementation, we use a static mapping 

                                                 
2
 The classes are: ASCII, Matcher, MatchResult, Pattern, PatternSyntaxException, and UnicodeProp 

3
 Instead of using the pattern matching method ‘find’ from the standard library (java.util.regex), we had to write our own based 

on running the ‘find’ method within a loop. This is because ‘find’ will only return the first occurrence of the pattern in the text 

and exit. If we need to locate all the occurrences, we will have to iterate over the whole text. The reason why such a function is 

not found in the standard library is that the library leaves it up to the users to determine what to do with the data they obtain, i.e. 

the locations of the pattern. Users can choose to store these integers in the data structure of their choice. We have chosen to store 
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approach that achieves load balancing. We divide this input text into t semi-equal subtexts, 

where t is the number of threads.  Each thread receives the same amount of data proportional to 

the number of available runtime threads before execution starts.  

Correctness is achieved in the following two ways: (i) After we distribute the data among 

the threads, each thread then implements the same function as the original one on the reduced 

substring. Hence, we did not change the algorithm’s implementation and can be sure of its 

correctness. (ii) However, we also need to account for boundary overlap otherwise strings that 

span over two partitions would be neglected and our output would be incorrect. Figure 2-7 shows 

a case where this might happen. Let us assume that the pattern to search for is ‘went’, which is 

composed of m = 4 characters. In this very simple example, the searched text is composed of n 

= 20 characters, and we are assuming that the system can run t = 2 threads. If we partition 

the text equally, then each subtext will be composed of n/t = 10 characters. The split will be 

where the arrow points to in Figure 2-7. Now when each thread performs the pattern matching on 

its subtext, the pattern will not be found, producing an incorrect output. 

 

Figure 2-7: Partitions with no boundary overlap 

                                                                                                                                                             
the location in a Hashmap that has the pattern as the key. This is to be consistent with Hadoop’s output format discussed in 

chapter 4.  
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Therefore, we need a more aware implementation that takes this issue into consideration. 

Figure 2-8 shows how this can be resolved. The modified partition takes the length of the pattern 

into consideration where each subtext will now be composed of (n/t) + (m – 1) 

characters. Therefore, the partition from the previous example will contain now 13 characters 

and our algorithm will correctly identify the pattern. This division excludes the last partition 

since it is unnecessary and will merely consist of the remaining characters. It is worth 

mentioning that this approach does not violate the load balancing property since typically pattern 

lengths are short, and are considered negligible especially when compared to large bodies of 

texts. 

 

Figure 2-8: Partitions with boundary overlap 

Each thread performs pattern matching independently on its own subtext, eliminating the 

need to access any shared variables. After all the threads complete their jobs, the results are 

synchronized before being aggregated and returned to the user application.  

2.6.3 Working Environment and Benchmark 

Implementation has been done using Java (jdk 8) on Eclipse IDE (Luna - release 4.4.0) and 

ASM v5. Single-threaded and multi-threaded testing was performed on a virtual machine with 

the specifications [19] shown in Table 2-5.  
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Table 2-5: VM specifications 

Model Intel(R) Xeon(R) CPU E5-4650 0 @ 2.70GHz 

Architecture x86_64 

Number of CPU cores 8 (2 logical cores per physical) 

Number of threads 16 

Cache size 20480 KB 

 

As a benchmark, a text file of 142 MB was used. The file consists of concatenating the 11
th

 

edition of the Encyclopedia Britannica downloaded from the project Gutenberg website [20]. 

2.7 Experimental Results and Interpretations 

For the Collections library, testing was done on our local machine. We randomly generated 

a list of various sizes (ranging from 500,000 to 20,000,000 items). We implemented our 

multithreaded version using two and four threads. The max and the min functions attained lower 

performance over the serial implementation when run on smaller list sizes (<10,000,000 items), 

however achieved a performance gain of up to 32% when running on 20,000,000 items. The 

sort and the replaceAll methods showed an improvement when parallelized over all list 

sizes, with the highest improvement reaching 38%. 

We now present the results for the pattern matching application. Table 2-6 shows the results 

for the average runtimes. The columns indicate the number of threads used while the first row is 

the average runtimes in milliseconds and the second row is the percent improvement over the 

single thread implementation. The first column corresponds to the single thread implementation. 

In this implementation, the whole input file is read into a string before the search is performed. 
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The other columns labeled as (t = number) correspond to the multithreaded implementation. We 

have plotted the results in Figure 2-9. Percent improvement is plotted in Figure 2-10 and is 

calculated as such:  

% improvement = ((sequential – multithreaded)/sequential)*100 

Table 2-6: Average runtimes and percent improvement 

 t  = 1 t = 2 t = 4 t = 8 t = 16 t = 32 t = 64 

Average runtime (ms) 73,199 35,366 15,539 9,506 6,501 4,840 4,142 

Percent improvement  51.68 78.77 87.01 91.11 93.38 94.34 

 

 

Figure 2-9: Runtimes vs number of threads 
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Figure 2-10: Percent improvement over single thread 

Since the substring lengths for the multithreaded version are shorter than the original string, 

the multithreaded approach yields much better results than the single thread approach. We can 

observe that this gives an almost logarithmic improvement. When we double the number of 

threads, runtime is observed to be cut in about half. This is until we reach t = 16 threads, which is 

the number of threads supported by the test environment. Beyond 16 threads, the improvement is 

negligible. 

2.8 Conclusion 

In this chapter, we have presented a method that automatically detects a user’s function call 

to search for a pattern using Java’s standard regular expression library and seamlessly replaces it 

with our own parallel implementation. We developed a multithreaded implementation of the 

pattern matching function and have used bytecode injection to run our optimized implementation 

instead of the original function. Our experiments show a significant reduction in execution time, 

and we believe better speedup can be achieved with more powerful machines. 
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Chapter 3: Parallel Pattern Matching on GPUs 

In this chapter, we discuss implementing pattern matching on a GPU. Even though pattern 

matching might not be considered a purely computational problem in the sense that the actual 

matching time might not overcome the overhead of I/O for very simple patterns, we believe that 

it can benefit from parallelization when run on a big dataset and a complex pattern. Therefore, 

we have attempted to implement it on a GPU. Our contribution is summarized as follows: detect 

a user’s Java call to search for a pattern, instrument the pattern matching code to run on a GPU, 

and finally return control back to the program. 

3.1 Introduction 

General purpose computing on graphics processing units, or more commonly referred to as 

GPGPU, is a high performance computing approach that uses graphics processing units (GPUs) 

to perform extensive data operations in parallel, yielding better throughput. Programming GPUs 

is considered quite a challenging task to get right, since first of all it requires a low-level 

language (CUDA or OpenCL) that can interface with the hardware, and second of all, since it is 

very different from parallel programming on the CPU. For example, in Java, one might use 

threads and concurrency (such as thread pool executors or fork-join pools) and then split and 

distribute the work among the threads and/or processors. However with GPUs, one has other 

extra low-level issues to consider such as register mapping, shared memory, memory coalescing, 

and occupancy. So even though GPGPU programming can make computations faster, it is not 

always the case. If the code is not properly written taking into consideration the issues 

mentioned, and if the application is not suited to be run on a GPU, performance might degrade.  

Example applications that usually benefit from a GPU implementation include 3D rendering, 
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image and media applications, signal processing, and other data-parallel tasks that operate on 

large datasets in the fields of physics, computational finance or biology, to name a few. 

Currently, there are two main programming models for GPU acceleration: OpenCL and 

CUDA. OpenCL is an open standard, cross-platform parallel programming model for GPGPU 

computing by the Khronos Group [21]. CUDA on the other hand was developed by NVIDIA and 

contains a more complete set of HPC libraries. We have chosen CUDA for two reasons. First, we 

have more experience writing it, and second, since it is the model of choice used in the pattern 

matching library we have used. 

The rest of the document is organized into the following sections. Section two is an 

introduction to GPUs and to the CUDA programming model. Section three surveys the literature 

with respect to pattern matching implementation performed on a GPU. Section four discusses the 

available solutions to run Java code on a GPU. Section five describes our approach. Section six 

details our implementation. Section seven shows our experimental results, and section eight 

concludes the chapter. 

3.2 Introduction to GPUs 

GPGPU computing has become so popular and prevalent due to GPUs evolving so rapidly 

and efficiently in order to satisfy the increasing market demand for real-time, high-definition 3D 

graphics.  Based on NVIDIA’s definition, GPUs are “highly parallel, multi-threaded, many-core 

processors with tremendous computational horsepower and very high memory bandwidth. [21]”. 
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3.2.1 Difference between CPUs and GPUs 

GPUs are dedicated to parallel compute-intensive applications. This is accomplished by 

having more transistors to process data than to deal with caching and control flow. Hence, more 

ALUs are present. GPUs are considered single-instruction multiple-thread (SIMT) processors. 

The same operation can be executed on each data element. Therefore, there is no need for 

complex flow control. In addition, the memory access latency can be hidden by the computation. 

Table 3-1, based on NVIDIA’s website, summarizes the differences between a GPU and a CPU. 

Table 3-1: Basic differences between a CPU and a GPUS 

CPUs GPUs 

Optimized for low-latency access to cached 

data sets 

Optimized for data-parallel, throughput 

computation 

Control logic for out-of-order, pipelining,  

and speculative execution 

Architecture tolerant of memory latency: memory 

latency is hidden by very fast context switching 

 More transistors dedicated to computation 

 

In spite of the apparent advantages of GPUs, they do come with certain disadvantages. First, 

and in order to obtain speedup, algorithms need to be rewritten taking into account the GPU 

architecture. The challenge is to develop applications that scale parallelism to the many available 

cores. Not all algorithms are suitable to be run on a GPU. We will examine this further in the 

next section. Second, adding GPU hardware might increase power consumption, heat production, 

and cost.  
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3.2.2 CUDA Programming Model 

NVIDIA introduced CUDA in 2006. CUDA is a low-level general purpose parallel 

computing programming model built as an extension of the C language. Developers use a high-

level programming language, such as C or C++ to interact with the CUDA API. Developers run 

their sequential code using C/C++ on the CPU, and call a CUDA kernel to run their parallel 

computation-extensive code on the GPU. After running, the results are returned to the CPU. This 

is called heterogeneous programming.  

Heterogeneous programming involves execution on both the CPU and the GPU. The CPU 

and its memory are referred to as the host, whereas the GPU and its memory are referred to as 

the device. Typically, the following summarizes a sequence of operations: 

- Allocate host input memory 

- Initialize host input data 

- Allocate device input memory 

- Copy host input data to device input 

- Allocate host output memory 

- Allocate device output memory 

- Execute kernel 

- Copy device output data to host output 

- Free memory on device 

3.2.3 CUDA Architecture 

CUDA abstracts three elements: streaming multiprocessors (SMs), barrier synchronization, 

and memory hierarchy. 
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3.2.3.1 Streaming Multiprocessors 

CUDA architecture is built up of a number of multithreaded SMs which perform the actual 

computations. Each SM has cores, control units, schedulers, registers, execution pipeline and 

caches. The more multiprocessors a GPU has, the less the execution time will be. Each SM has 

an underlying logical model composed of grids of blocks, blocks of threads, and threads, as 

shown in Figure 3-1, taken from the NVIDIA website. When a kernel is invoked, the calling 

function has to specify the grid dimensions: the number of blocks in a grid, and the number of 

threads in a block. Based on available execution capacity, these blocks are distributed among the 

SMs. Threads of a thread block execute concurrently on one SM. Multiple blocks can execute 

concurrently on one SM. The dimension constitutes the parallelism, as in each kernel operation is 

executed N times in parallel, where  

N = grid size x block size x number of threads per block 

 

Figure 3-1: Grid of thread blocks, taken from NVIDIA website 
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3.2.3.2 Barrier Synchronization 

Threads in a block execute concurrently in batches of 32, known as threads warps. Threads 

belonging to the same block can synchronize their execution to coordinate memory accesses. 

Developers can specify synchronization points in the code by explicitly calling a function to 

synchronize threads.  This acts as a barrier where all threads in that block must wait before 

proceeding with execution. 

Unlike threads in a block, thread blocks are expected to execute independently. They can be 

executed in any order, in parallel, or in series, and can be scheduled across any number of cores. 

3.2.3.3 Memory Hierarchy 

Following the CUDA abstraction, threads each have their own private per-thread memories, 

threads in a block can also access shared memory, and threads in grids can access global 

memory. Access to shared memory is typically much faster than global memory. That is why 

good CUDA programmers tend to place data in shared memory rather than in global memory. 

However, it is also much smaller. There are also two more memory modules: constant memory 

and texture memory. These are read-only and accessible by all threads. Each memory space is 

optimized for different usage. 

3.2.4 Applications Suited for GPUs 

Not all applications are suited for a GPU implementation. In other words, speedup while 

running on a GPU is not guaranteed. Certain types of problems will actually exhibit a reduction 

in performance if implemented on a GPU. We have mentioned a few of these applications in the 

introduction. Here we mention the properties that algorithms suited for a GPU implementation 
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share: data parallelism and throughput intensive. For problems that satisfy these properties, a 

GPU implementation can offer significantly faster computations.  

3.2.4.1 Data Parallelism  

There is a distinction between problems being task parallel or data parallel. Data parallelism 

involves several threads performing the same operation simultaneously, but on different parts of 

the data. GPUs are good for data parallel problems because they have many cores that can do the 

same operations on different parts of the input data. 

3.2.4.2 Throughput Intensity 

Problems can be either memory bound or compute bound. Memory bound refers to problems 

where I/O operations are predominant. These problems are not suited for GPU implementation 

because it is expensive, in terms of memory cycles, to transfer data back and forth from CPU to 

GPU. On the other hand, problems that are compute bound perform several instructions on a data 

element, hence offsetting the efforts of reading and writing to memory. These problems have a 

high order of complexity and will benefit from a GPU implementation. 

3.3 Literature Survey 

To the date of writing this dissertation, there has not been yet any official library form 

NVIDIA or the OpenCL community to perform pattern matching on GPUs. We believe the 

reason for that is that such a problem, if not used with massively data parallel computation, can 

be considered memory bound and will perhaps not map well to parallelism. However, several 

attempts have been made to efficiently perform pattern matching on a GPU. We differentiate 
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between three categories: commercial unavailable solutions, academic papers, and open source 

projects.  

Commercially, HP [23] and IBM [24] have published presentations and videos on building 

finite automata and matching regexes respectively. However, the details were not exposed. The 

HP presentation simply mentions that they have achieved fast regex parsing; whereas the IBM 

video just reports on throughput, latency, and the effect of the pattern sizes. Their findings show 

that the GPU provides significant throughput boost compared to the CPU, the current GPU regex 

implementation they have is not suitable for latency sensitive applications, and that the problem 

is strongly workload dependent on both the data contents and the patterns. 

The most prevalent work regarding pattern matching on GPUs has been purely academic. 

Our findings show that research in this area has been geared mostly towards network intrusion 

detection systems due to the nature of the problem wherein network packets are scanned against 

several known malicious attack patterns. This constitutes a problem of matching several patterns 

against several files of data, and hence tends well to a GPU implementation.  The work in [25] 

provides a detailed evaluation study of GPU designs on practical datasets and explores 

advantages and limitations of several techniques. It also suggests some schemes to avoid the 

limitations discussed. In [26], the authors propose a hierarchical GPU based approach to 

accelerate regular expression matching and to resolve the problem of state explosion that can 

incur from a DFA implementation. They target network intrusion detection systems. Keeping 

their application in mind, they have reduced regular expressions into two categories: the first 

involves the ‘.*’ wildcard and the second involves patterns with constraint repetitions. They have 

extended their previous PFAC (Parallel Failureless Aho-Corasick) algorithm to implement a 

hierarchical machine, where the master detects the first category and if found, the slave detects 
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the second from the intermediate result of the master. The same authors have expanded on their 

work in [27]. They introduced throughput efficiency techniques that include reducing global 

memory transactions, reducing the latency of the transition table lookup, eliminating output table 

accesses, avoiding bank conflicts, and enhancing communication between the CPU and the GPU. 

In [28], the authors present a ground up parallel NFA-based regular expression engine running 

on a GPU called iNFAnt. The difference between their work and previous implementations is 

that they were among the first to implement an NFA based state automata instead of a DFA one. 

Their work is general and does not only handle specific cases. Since they deal with NFAs that do 

not suffer from state explosion as opposed to DFAs, they were not constrained by the size or 

complexity of the rule sets. The authors in [29] propose a solution that tries to overcome the 

limitations of [28] by implementing a conceptual hybrid of a NFA-DFA implementation. 

However, their implementation could only work for smaller datasets. In [30], the authors propose 

the design, implementation, and evaluation of a pattern matching library running on the GPU. 

The library supports both string searching and regular expression matching using CUDA. They 

chose to implement a GPU-based pattern matching library for inspecting network packets in real 

time and returning any matches found back to the application. They have parallelized the DFA 

based matching process by splitting the input data stream into different chunks. Each chunk is 

scanned independently by a different thread using the same automaton that is stored in device 

memory. They use synthetic network traces and synthetic patterns, in order to control the impact 

of the network packet sizes and the size of the patterns to the overall performance. The content of 

the packets, as well as the patterns, are completely random, following a uniform distribution 

from the ASCII alphabet. Other publications by the same authors [31] detail their 

implementations of creating Gnort, which is the mapping of Snort to the GPU. They do so by 
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processing the DFA on the GPU, while implementing the NFA on the CPU. In [32], the authors 

implemented an XFA data structure on a GPU, and compared the performance of the XFA to a 

DFA. Their design is suited to a specific set of problems that can be broken down into non-

overlapping sub-patterns separated by the ‘.*’ wildcard. In [33], the authors present an 

implementation of the Aho-Corasick algorithm in CUDA, and discuss the various trade-offs and 

design decisions. 

With respect to the open-source projects available that perform pattern matching on GPUs, 

we were able to only find one [34]. Cuda-grep is a CUDA implementation of the NFA automata 

on a GPU. We have decided to use it in our work. We will therefore postpone discussing it to a 

later section in which we provide a detailed analysis of the implementation and limitations. 

3.4 Writing Java for GPUs 

GPUs are programmed using usually either CUDA or OpenCL. These two languages 

support C and C++. However, Java programming is not inherently possible as a directly 

available language to run on GPUs. In the following, we discuss why one might need to program 

GPUs in Java and how it can be done. 

3.4.1 Why Java 

There are several reasons why one might want to run a Java application on a GPU. Java 

developers would rather code in Java than in C/C++. They do not want to worry about pointers, 

destructors, memory models, or allocating and freeing memory [35]. In order to use a GPU, they 

will have to deal with the previously mentioned hassles. Java offers a level of abstracting the low 

level hardware details, and typically developers used to that mode of programming would like to 
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maintain that level. Another reason why developers might want to write Java code running on a 

GPU is to take advantage of the performance benefits of GPUs in their already existing Java 

application. Some areas in a project that require huge computational power could be mapped to a 

GPU to obtain better performance. That can be done without having to rewrite the whole 

application in C or C++, just the relevant code segment. 

3.4.2 Running Java code on a GPU 

Basically, there exist two main ways of running code written in Java on a GPU.  

The first method consists of using one of the available open-source projects that transform 

the Java code into low level code that runs on the GPU. This can be done in one of two ways: 

either use a library that performs the bindings for the users or use a library that hides the low 

level code from the users. This includes code to initialize the device, create data buffers, allocate 

memory on device, send the data to the device, execute the code, and transfer the results back to 

the host. The advantage of this is that we will not need to write any low level code ourselves. 

However, we will need to learn and use a new API. In addition to that, we will be restricted with 

the chosen solution’s hardware and programming requirements. In addition to that, and based on 

our survey, such solutions are not flexible in a sense that in some cases, only primitive datatypes 

are supported.  

The second and basic method consists of implementing native methods in the Java code, and 

running the GPU kernel code from within these C/C++ native methods. The advantage of doing 

so is that it is more flexible with respect to the datatypes that can be used. And since all 

implementation is ‘home-made’, we are not limited to an operating system, a programming 

model, a GPU device or a processor type. However, this requires us to write more complex code 
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consisting of JNI (Java Native Interface) functions and declarations, manually generate the 

object files, and correctly link everything together. 

In what follows we survey the current available solutions, test some of them, and justify our 

method of choice. 

3.4.3 Available Solutions 

Several attempts have been made in order to allow programmers to write Java code that runs 

on GPUs. [21] and [36] have provided a summary of the most popular and widely used libraries. 

[21] also evaluates two representative Java GPGPU projects and draws some comparisons based 

on performance and programming effort. We have added some newer projects to the list and 

have summarized the most popular ones. They can be classified into three main categories based 

on their implementations: 

3.4.3.1 Bytecode Translation and CUDA/OpenCL Code Generation 

- Aparapi [37]: Aparapi is an open-source library by AMD. It translates Java code into 

OpenCL, without requiring users to know or write any OpenCL code. Users override a 

‘kernel’ method which is to be implemented on the GPU, and the bytecode of this method 

is loaded at runtime and translated into OpenCL. If compilation to OpenCL is not 

possible, the code will still be executed in parallel using a thread pool. 

- Rootbeer [38]: Rootbeer is an open source library that converts Java code embedded in a 

‘gpuMethod’ function into CUDA code. Users do not need to know CUDA.  

- java-gpu [39]: Java-gpu is a library that translates annotated Java code into CUDA. 
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3.4.3.2 Java CUDA/OpenCL Binding Libraries 

- JavaCL [40]: JavaCL is an object-oriented OpenCL library that auto generates low level 

Java bindings for OpenCL. 

- Jcuda [41]: Jcuda provides low level one-to-one bindings that map jcuda API function 

calls to CUDA API.  

- Jocl [42]: Jocl provides low level one-to-one bindings that map jocl API function calls to 

OpenCL API. 

3.4.3.3 Language Extensions 

- Ateji – PX [43]: allows parallel constructs, such as OpenMP-style parallel for loops to be 

executed on the GPU using OpenCL. This project is no longer maintained. 

- JCUDA [44]: JCUDA is a library that translates special Java code into CUDA C code. 

- JaMP [45]: JaMP is a Java extension for OpenMP constructs with a CUDA backend. 

There have been other projects such as CUDA4j and Project Sumatra. CUDA4j [46] is an 

IBM product that is heavily endorsed by NVIDIA. It aims to provide Java API to run CUDA 

code on NVIDIA GPUs. Impressive results have been shown, but currently not all features have 

been developed. Project Sumatra [47] started out as an OpenJDK initiative, but it seems that the 

project has been put on hold and development is currently not underway. No other information 

could be found. 

Another categorization similar to that in [21] can be based on whether these approaches 

constitute a user-friendly API or whether the user needs to know CUDA language. They can be 

summarized in Table 3-2. 
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Table 3-2: Categorization of Java GPGPU solutions 

 Java bindings User-friendly 

CUDA JCUDA 

jcuda 

Java-gpu 

Rootbeer 

CUDA4j 

OpenCL jocl Aparapi  

jacc 

 

3.4.4 Evaluation 

After surveying and testing some of these solutions, and while we found them relatively 

easy to use, we have opted to implement the basic approach that is the underlying approach 

beneath most of the previously mentioned techniques. It consists of a JNI implementation, 

coupled with dynamic linked libraries that contain both C/C++ and CUDA object files. We have 

chosen this approach since it provides us with more flexibility specifying and using non-

primitive object types, does not restrict us to certain limitations such as those mentioned in Table 

3-3, and allows us to integrate our bytecode injection library.  
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Table 3-3: Limitations with current solutions 

Most popular 

solutions 

Limitations 

Aparapi - Works with arrays of primitive datatypes only 

Rootbeer - Requires additional build steps 

java-gpu - Code needs to be annotated 

- Only works on for-loops 

- Support has been discontinued 

Jcuda - Kernel function still needs to be written in C 

- Kernel parameters must be arrays of primitive datatypes 

- Becomes complex to program if application is not straight forward 

Jocl - Kernel function still needs to be written in C 

JCUDA - Library not publicly available  

- Outdated, does not support all features provided by newer devices 

Jacc - Complex to write and understand API 

- Not available as an open source project 

Cuda4j - Uses Power processor and IBM Java 

- Currently available in Java 7.1 and Java 8 on POWER 8 Little 

Endian, running Ubuntu 14.10 and CUDA 5.5-54  

- Supported hardware is POWER 8 model 824L with one or two 

Tesla K40m GPUs 

- Not fully developed yet 
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3.5 Mapping Approach 

We describe our workflow in this section. More specifically, we describe the libraries and 

interfaces we used to parallelize the Java code of interest on the GPU, and how the linking 

between the languages was performed. A diagram of our workflow can be found in Figure 3-2.  

 

Figure 3-2: Workflow diagram 

There are some scenarios where writing Java code alone will not meet the needs of an 

application. Developers use the JNI to implement Java native methods that take care of these 

situations. According to [49], some examples include: the Java standard library does not support 

required platform-dependent features, a library written in a different language is already 

available and needs to be used, and a small segment of performance critical code needs to be 

implemented in a lower-level language. The last case is exactly what we are dealing with. We 

want to implement the part of our code that does pattern matching in CUDA, a low level 

language. Therefore, in order to run CUDA kernels from Java, we need to use the Java Native 

Interface library. JNI is a standard programming framework that allows Java code running in a 
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JVM to call and be called by native applications (written in a different language such as C, C++, 

and assembly) that are both operating system and hardware specific. 

Our workflow diagram starts off by detecting the call to perform pattern matching in the 

user code using the ASM library. Once the function is detected, bytecode injection is used to 

replace it with our own implementation. Our file which is still written in Java contains the JNI 

calls that implement the native functions that in turn call the CUDA kernel. We can divide the 

work into three parts: modifications to the Java code, creation of the native code which we have 

written in C, and creation of the CUDA code.  

3.5.1 Modifications to the Java code 

In order to call a native method from Java, that method has to be declared as a native 

method. This is done by preceding the method signature by the native keyword. Now, we are 

able to call this method like any other function. Another thing we’ll have to add is the shared 

library that contains both the C and the CUDA objects. We do this by calling the 

System.loadLibrary method and passing the name of the library (the .dll if in Windows 

or the .so if in Unix). Loading the library maps the implementation of the native method to its 

definition. Now we are ready to compile the Java class. 

Once we have the class compiled, we need to create the header file that will be used in the 

shared library. To do so, we will make use of the ‘javah’ tool. It generates a header file that 

provides the signature for the native methods defined in that class. The name of a native 

language function consists of the prefix Java, the package name, the class name, and the name of 

the Java native method, all separated by an underscore. The method parameters include the 

following: 
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- a JNI environment pointer through which the native code accesses parameters and 

objects passed to it from Java 

- a JNI class object which is similar to this in Java 

- the method parameters and return types. However, these types will no longer be Java 

defined types. For example, an int type will now be mapped to a jint type, and a 

float [] will be of type jfloatArray. This native method signature will be 

used to write the C implementation. 

3.5.2 Writing the C code 

This is the part where we implement our native methods. We have chosen to code in C 

rather than in C++ since we found that it will be easier to integrate with CUDA, but the concept 

is very similar for either. In addition to that, it proved easier in the linking phase. The first thing 

we must do is include the header file we had previously generated. Then, we implement the 

methods in the header file and make sure to preserve the signature descriptions (including the 

JNI environment pointer and the JNI class object). Inside this method we will need to perform 

appropriate conversions and assign pointers to variables depending on the application. We will 

also include a call to a function in the CUDA file that implements a kernel that does pattern 

matching. 

With respect to pattern matching, the Java function takes two parameters: the input text file 

to search within, and the regular expression. These two variables are of type String, which in 

JNI are translated to a jstring type. As mentioned previously, we have used the Cuda-grep 

library. If we ignore the input flags required to run this library, the entry point is a C++ file that 

has as parameters the filename and the pattern, both defined as char * types. In order to map 
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the types correctly, we had to first convert the jstring type using the 

GetStringUTFChars method, which returns a const char* type. After that, we cast the 

const char* to char*. In addition to that, we changed parts of the Cuda-grep C++ code to 

be able to integrate it with our system, and to be able to return the total number of occurrences of 

the pattern, as opposed to just the lines in which the pattern occurs. 

3.5.3 Writing the CUDA code 

This is the .cu file that contains the allocation of inputs in device memory, the allocation of 

the output in both the host and the device memories, transferring the input from host to device, 

performing the computation, copying back the result from device to host, and freeing the 

memories. The computation step is done by invoking a kernel. This is done by calling the kernel 

method, passing the parameters, and specifying the number of threads and the number of thread 

blocks to perform the computations. The kernel definition is identified by the __global__ 

prefix. The kernel contains the code that does the pattern matching. 

We have used the .cu files provided by the Cuda-grep library, slightly adjusting them for our 

needs. 

3.5.4 Putting It All Together 

Once we have the C code and the CUDA code, we will need to create the shared library that 

we load in the Java program. To do so, we will first compile the C code into an object file using 

the ‘gcc’compiler, and the CUDA code into an object file using the ‘nvcc’ compiler. After 

that, we will link both files using ‘gcc’ into a shared library, making sure to include the 

necessary flags and directories. The last step is specifying the location of this shared library in 
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the Java application. We can now run the Java program and the native method will execute on 

the GPU and return the control to the Java application. Moreover, when we run the Java code 

with the –javaagent option, we will be able to automatically detect the pattern matching 

function, and replace it with its GPU counterpart. 

3.6 Performing Pattern Matching on the GPU 

As previously mentioned in the literature survey, CUDA-grep [34] was the only open-source 

implementation of regular expression pattern matching on the GPU that we found. It is based on 

Thompson’s NFA implementation [48]. In what follows, we describe the approach the 

developers used, the issues they had to consider and the limitations they faced. 

3.6.1 The Cuda-grep Library 

The CUDA-grep library was written by two students from Carnegie Mellon. Their 

implementation yields the same results as if running the following from UNIX: egrep -x 

<regex> <filename>. In fact, to validate their results, they compare the outputs of their test 

bench to the output of egrep. If similar, the test passes, otherwise it fails. 

egrep is similar to grep -E, where E denotes the Extended Regular Expression (ERE) as 

opposed to the basic set. The ‘-x’ flag instructs grep to select only those matches that exactly 

match the whole line. Currently, the library does not support all the regexes of egrep. It 

supports the wildcards mentioned in Table 3-4, and based on [50].  
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Table 3-4: Supported wildcards in CUDA-grep 

Supported wildcards Significance 

. Any character except a new line 

+ One or more occurrences 

? Zero or one time 

* Zero or more occurrences 

| Alternate 

(…) Group  

[…] Range, set of characters 

\ Escape character preceding .+*?| 

 

The library supports matching multiple patterns to a list of files. In fact, the developers claim 

that this scenario was the most suited for optimized results versus egrep, as compared to 

searching for one pattern in one file.  

Their algorithm can be summarized in Table 3-5, based on the developers’ documentation. 

Table 3-5: Cuda-grep high level algorithm, taken from developers’ documentation 

Load dataset and regular expressions 

Compute NFA from regular expression 

for all regular expressions 

     for all lines in dataset 

          use NFA to pattern match each line 
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The algorithm starts off by loading the dataset and the regular expressions into memory. The 

files are read, and a table containing the indices of new lines is created. In this way, the whole 

file can be transferred to the GPU at once, without having to perform multiple transfers back and 

forth between CPU and GPU and thus optimizing performance. Similarly for the regular 

expressions, a table is created with indices pointing to each regular expression. In addition to 

that, the regexes are built and parsed in order to constitute the NFA later on.  

The actual lines, patterns, and both tables are copied to the device. Then the matching kernel 

is called. The kernel specifies a fixed number of threads: 512 thread blocks, each containing 160 

threads (5 warps per thread block). The developers have found that this configuration gave them 

optimal results. Also, they have set the cache configuration using 

cudaFuncSetCacheConfig to cudaFuncCachePreferShared. This instructs the 

program on how to dynamically split the GPU on-chip memory between the L1 cache and the 

shared memory on a per-kernel basis, since both memory modules use the same statically 

configured on-chip memory. 

The matching process works as follows: each thread block constructs an NFA from the 

pattern. This is accomplished by checking if the thread id is 0. If so, this is a new block, since 

thread ids are particular to their corresponding blocks. Constructing an NFA constitutes of first 

converting the prefix notation of the built regexes to a postfix notation in order to form the NFA 

states. The threads are then synced. If the thread id is not 0, which means that we have already 

created an NFA for that thread block, the thread uses the NFA to match a different line from the 

input file. If a match is found in a line, the index of that line is set in a new table. This result table 

is then transferred back to the host.  



51 

 

 

To be consistent with the egrep output, the algorithm displays the lines in which a match 

occurred. We have added to that the number of occurrences. 

3.7 Experimental Results and Interpretations 

3.7.1 Different Regular Expression Syntax   

While most tools share common definitions for wildcards, different tools have slightly 

different syntax for regular expressions. Implementations can also have extensions that are not 

supported by other tools. The result is that a regular expression that works for Perl will need to 

be modified before it works for Java for example. The main difference between tools is whether 

or not operators such as *+?.|(){} require a backslash. A backslash is an escape character in 

literal Java strings and in regular expressions. Therefore, the regular expression \\ actually 

matches a \. To represent this as a Java string, it will become four backslashes \\\\ in order to 

match just one. This is different from other tools. Another example is matching a word character. 

In grep for example, the regex \w is used. In Java, this becomes \\w. Another difference is the 

extensions that are supported beyond the basic ones.  

Standard tools such as Java support unanchored matches. A substring of the input that 

matches the regular expression is commonly returned, instead of the whole string. For example, 

if the pattern is Romeo|Juliet and the text is Juliet is the sun, then the match 

returned is Juliet. On the other hand, in grep for example and using the same pattern and 

text, the whole line consisting of Juliet is the sun is returned. This is because the Unix 

search tools return the longest matching substring. In order to get comparable output, one must 

change the pattern to .*(Romeo|Juliet).*. 
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We mention all this because it affects our mapping between Java regex and Cuda-grep that is 

similar to egrep –x. 

3.7.2 Working Environment and Benchmark 

Implementation has been done using Java as a plugin (openjdk7) for NVIDIA’s Nsight 

Eclipse Edition (version 5.5.0), ASM v5 and CUDA 5.5. We also used the javac, gcc, and 

nvcc compilers. Testing was performed on a CPU and a GPU with the specifications shown in 

Table 3-6.  

Table 3-6: CPU and GPU specifications 

 CPU GPU 

Model AMD A6-5400K APU with 

Radeon(tm) HD Graphics 

GeForce GT 640 

Kepler, CUDA capability 3.0 

Number of cores 2 384 (2 MPs, 192 cores/MP) 

Cache size 1024 KB L2: 262144 bytes 

Clock rate CPU: 1400 MHz GPU: 902 MHz 

Memory: 891 MHz 

Memory 8 GB Global: 1024 Mbytes 

Shared per block: 49152 bytes 

Constant: 65536 bytes 

Registers per block: 65536 

Number of threads 2 Maximum per MP: 2048 

Maximum per block: 1024 
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As a benchmark, a text file of 142 MB was used. The file consists of concatenating the 11
th

 

edition of the Encyclopedia Britannica downloaded from the project Gutenberg website [20].  

3.7.3 Results and Interpretations 

As mentioned in the previous section, the results returned from running Cuda-grep (and 

similarly egep –x) and from running Java regex library will be different if the same pattern is 

used. In the first case, the whole line is returned, and in the second, only the matching group is 

returned. In order to overcome this difference and to be able to obtain matching results, we have 

also altered our patterns to return the whole line in which a pattern is found.  

We have performed a few warm-up runs and then averaged the times shown over several 

runs. Table 3-7 shows the execution times of running several patterns on both CPU and GPU. 

The percent improvement is calculated as follows: 

% improvement = ((CPU time – GPU time)/CPU time) x 100 

On average, the percent improvement of running the matching on the GPU is 98.11% faster 

than on the CPU. The data is also plotted in Figure 3-3. 

Table 3-7: Runtimes and percent improvement with GPU 

 Patterns CPU time (ms) GPU time (ms) % improvement 

1  .*romeo.* 78482 1745.6 97.77 

2 .*ROMEO.* 84481.7 1387.1 98.35 

3 .*Romeo.* 75728.4 1386 98.17 

4 .*Juliet.* 74472.6 1378.5 98.15 
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Figure 3-3: Runtimes of CPU vs GPU 

 Cuda-grep is case-sensitive. Therefore, we have performed an additional set of experiments 

to measure how including case sensitivity (and thus rendering the pattern more complex) will 

affect execution. We have compared the results to two Java implementations: the first uses the 

same pattern we used for the GPU (case 1), and the second uses the built-in flag 

(Pattern.CASE_INSENSITIVE) that can be added when compiling a pattern (case 2). Our results 

are summarized in Table 3-8. We have used the following definitions to make the tables more 

compact and clear: 

- Case 1: (.*romeo.*)|(.*ROMEO.*)|(.*Romeo.*) 

- Case 2:  .*romeo.*, Pattern.CASE_INSENSITIVE 

 

Table 3-8: Run times taking into consideration case sensitivity 

CPU time case 1 (ms) CPU time case 2 (ms) GPU time case 1 (ms) 

232,308.2 92,996.6 2,765.3 
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 Note that GPU time with case 2 does not exist. We observe that using the flag in the CPU 

implementation is more efficient than listing the combinations by about 60%. This is because in 

the first case expensive backtracking and grouping were performed. In spite of that, the GPU 

implementation was still able to outdo both as shown in Table 3-9. 

 

Table 3-9: Percent improvements of GPU over cases 1 and 2 

 GPU over case 1 GPU over case 2 

% improvement  98.81 % 97.02% 

 

3.8 Conclusion 

We have presented a tool that detects a user’s function call to search for a pattern and 

seamlessly replaces it with our own parallel GPU-based implementation. We have used bytecode 

injection and JNI to run our optimized code. Our CUDA code is based on the CUDA-grep 

project. Experiments show a reduction in total execution time. As GPUs develop and as newer 

GPUs are able to overcome the overhead imposed by necessary but expensive I/O, we believe 

that there could be more room for optimized performance. 
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Chapter 4: Parallel Pattern Matching using MPI 

As detailed previously, we have chosen to parallelize the pattern matching process. In this 

chapter, we discuss implementing pattern matching on a distributed environment using MPI. 

Parallelism in MPI is explicit. This means that the developer has to correctly identify areas for 

parallelism and to implement parallel algorithms using the MPI libraries. Our approach alleviates 

this burden from the developer since MPI programming is considered quite complex and has a 

high learning curve. Our contribution is summarized as follows: detect a user’s Java call to 

search for a pattern, instrument the pattern matching code to run on a cluster while accounting 

for process communication, and finally return control back to the program. In addition to that, we 

implement another distributed approach using Hadoop’s MapReduce and compare that to the 

multithreading results obtained in a previous chapter. 

4.1 Introduction 

Distributed systems are the other form of parallel systems that we explore. As opposed to 

shared memory systems wherein memory is shared, a distributed system consists of several 

autonomous computational nodes (commonly referred to as a cluster) that each have their own 

local memory module and that communicate with each other using a high speed communications 

network to relay information typically in the form of message passing.  

In order for a distributed system to be reliable, it must be fault-tolerant, highly available, 

recoverable, consistent, scalable, have a predictable performance, and secure [51]. 

The key issue in programming such systems lies in distributing the data over the individual 

distinct processors’ memories. Distributed computing is the field that studies computational 

problems performed on distributed systems. In short, a large complex problem is divided into 
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many smaller sub-problems. These sub-problems are then solved using one or more nodes which 

communicate with other nodes in the cluster. Computational tasks per node can only operate on 

the data local of each node. Hence, if remote data is needed, the task must communicate with 

other remote processors that contain the required data. The results from each processor are then 

reassembled into one solution. 

The underlying network architecture that connects these nodes is out of the scope of our 

research. What we do discuss is the implementation vis a vis a programming perspective; i.e. 

message passing interface and implementations. 

Several message passing libraries had been available prior to 1992. It was difficult for 

programmers to develop portable applications because these implementations varied completely. 

Therefore, an effort began by a small group of researches to establish a standard interface. The 

Message Passing Interface (MPI) version 1.0 was released in 1994. Later versions include MPI-2 

(released in 1996) and MPI-3 (released in 2012). Since its release, MPI has become the industry 

standard for message passing, replacing all previous implementations. This has allowed parallel 

hardware vendors to have a clear set of defined routines that can be easily implemented and has 

made applications portable on several parallel platforms. The MPI standard was incorporated by 

adopting features from systems by IBM, Intel, nCUBE, PVM, Express, P4, and PARMACS [52]. 

Another form of communication used in distributed systems is based on the MapReduce 

model which was first introduced by Google. Instead of using messages to relay data between 

processors, MapReduce is based on reshuffling and duplicating data. MapReduce was developed 

to address the shortcomings of MPI. As mentioned previously, an important factor in distributed 
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systems is reliability. However, MPI is not very reliable. Therefore, MapReduce, and more 

specifically Hadoop, was developed to account for reliability.  

Without going into details of both techniques since they will be covered extensively later on, 

the major differences between MPI and MapReduce can be summarized as follows: 

- Reliability: In MPI, if one node dies, the whole application crashes. In MapReduce, data 

is duplicated as a precautionary measure and if a node is down, the system can adjust and 

re-compute that node’s task. Fault tolerance can also be done in MPI, but it requires more 

effort and time to get it right. 

- Programming efficiency: With MapReduce, setting up applications and getting them 

running in a scalable fashion is faster.   

- Flexibility: MPI is more flexible in the sense that a developer has more control over data 

and data locality. With MapReduce, developers have no control over data locality. Data is 

randomly distributed over the nodes. 

- Performance: MPI is generally more efficient in terms of performance than MapReduce, 

especially if an application does not fit the map-reduce model. 

One can conclude that MPI is favorable for fast, reliable networks; whereas MapReduce is 

favorable for slow unreliable hardware. 

The rest of the document is organized into the following sections. Section two is an 

introduction to MPI and the various available MPI implementations. Section three surveys the 

literature with respect to pattern matching implementation performed using MPI. Section four 

describes our approach and our implementation. Section five shows our experimental results and 
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analysis. Sections six and seven discuss Hadoop as an alternative solution for distributed systems 

and section eight concludes the chapter. 

4.2 Introduction to the Message Passing Interface (MPI) 

MPI is a standardized language-independent specification of what a message passing library 

should be. It attempts to be practical, portable and is supported on virtually all HPC platforms, 

efficient since vendor implementations can exploit native hardware features to optimize 

performance, functional with over 430 different routines in MPI-3, and flexible since a variety of 

both vendor and public domain are available. It defines the syntax and the semantics of a set of 

functions that can be used by applications to exchange messages between processes in C, C++, 

and Fortran. The protocol supports both types of communication: point-to-point and collective. 

Each CPU core gets assigned a process at runtime. Originally, MPI was designed for distributed 

memory architectures, but has been adapted to handle hybrid distributed memory and shared 

memory systems as well and can run on virtually any hardware platform. Different interconnects 

and protocols support has also been developed. 

There are several implementations of the MPI standard, and they differ in which version and 

which features of the standard they support. Open MPI is perhaps the most robust and prevalent 

implementation available, and it is the one we have chosen to use. In what follows, we discuss 

the major architectural concepts and the several implementations available, as well as go into a 

little more detail into Open MPI and why we have selected to use it. 
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4.2.1 MPI Concepts 

In MPI, all the processes that communicate with each other are included within an entity 

called a communicator. Once a communicator has been initialized, functions determining the 

total number of processes, the rank of the calling MPI process, the processor name, the MPI 

version used, elapsed wall clock time, and resolution can be performed. Also, calls to abort and 

finalize are available. The rank is a unique identifier for each process and is used for inter-

process communication identification. 

A typical program starts by initializing the MPI environment, determining the total number 

of processes and the rank of the current process, performing the communications and per process 

computations, and ending by terminating the communicator. A template is shown in Figure 4-1. 

Every process runs the same code. However, some variables locally defined will need to be 

broadcast or sent to the other processes that will need to handle the data. This is confusing for 

some programmers because contrary to common practice, defining and initializing a variable 

might not necessarily mean it is readily available in that process’s local memory.  
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import mpi.*; 

… 

//class definitions 

//variable declarations 

final static int ROOT = 0; 

//sequential code 

… 

//initialize MPI environment 

MPI.Init(args); 

//main functions used in almost all MPI programs 

int myRank = MPI.COMM_WORLD.getRank(); 

int numProcs = MPI.COMM_WORLD.getSize(); 

//code executed on ROOT only 

if(myRank == ROOT){  

    … 

} 

//parallel code executed on each process 

//example: do pattern matching   

… 

//clean up MPI environment 

MPI.Finalize(); 

Figure 4-1: MPI code template 

Message passing is fundamentally based on sending and receiving messages among 

processes. A process sends a message to another process by providing the rank and a tag to 

identify the message. The receiver posts a receive message along with the sender’s rank and 

anticipated tag. Such communication that involves one sender and receiver is referred to as 

point-to-point communication, and can be synchronous or asynchronous. Communication can 

also be one-sided. 
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Another form of communication is collective communication. In collective communication, 

all the processes are required to take part in the process. Examples include broadcast, scatter, 

gather, and reduce operations among many others. Technically these operations could be 

implemented with send/receive variations (which is what typically happens underneath the 

surface). However, they are less cumbersome to write and they use the network in a more 

efficient manner. Collective calls are synchronous calls and an implicit barrier is internally 

implemented. 

Complex parallel programs usually include a mix of point-to-point and collective 

communication and/or I/O where a set of MPI processes access storage subsystems. 

4.2.2 MPI Implementations 

As previously mentioned, MPI is an interface. It is not tied to any hardware or software 

environment and is therefore up to developers to implement for the different architectures. Many 

efficient, well tested, and open-source implementations of MPI exist. They might differ in which 

version and features of the standard that they support, and in how they are compiled and run on 

various platforms. MPI implementations consist of C, C++, and Fortran APIs. Most 

implementations also consist of C#, Java, or Python bindings, or any other language that is able 

to interface with the original libraries. 

MPICH was the initial implementation of MPI-1. IBM also provided its own 

implementation. Another known implementation is Open MPI which was formed by merging 

several other previous versions. Commercial implementations are derived from these initiatives.  
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4.2.2.1 Open MPI 

Open MPI is used by many TOP500 supercomputers. It is an open source implementation of 

MPI that was developed by merging the following previous well-known implementations: FT-

MPI from the University of Tennessee, LA-MPI from the Los Alamos National Laboratory, 

LAM/MPI from Indiana University, and PACX-MPI from the University of Stuttgart [53]. The 

developers intended to use the best features and technologies from these independent projects in 

order to create a better overall open source implementation. Open MPI fully supports MPI-3 

standards, thread safety and concurrency, several operating systems, and provides high 

performance on all platforms. 

4.2.2.2 Java Bindings 

Even though MPI specifications require a C or Fortran interface, the language used to 

implement MPI can be different. Most implementations use C, C++ and assembly to target C, 

C++, and Fortran programmers. However, bindings are available for many other languages such 

as Python and Java among others. Java bindings were developed due to the increasing interest of 

using Java for HPC. MPI can benefit as well due to the widespread use of Java that makes it 

likely to be applied further beyond traditional HPC applications [53]. 

Several implementations have developed Java bindings. We mention a few, while noting 

that we have used the Open MPI implementation in our work. The first attempt called mpiJava is 

from [54]. It comprises a set of JNI wrappers to a local C MPI library. The project suffered from 

limited portability and was not entirely complete. However, it formed the basis for other projects 

to build upon, including the Open MPI binding. MPJ Express [55], MPJava [56], and F-MPJ [57] 

are other projects that have taken a different route. The programmers developed the bindings on 
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a pure Java basis. This is based on Java sockets and specialized I/O interconnects, and requires 

significant coding effort. 

One of the challenging parts of creating Java bindings stems from the language 

characteristic. Java does not support explicit pointers, and it is inefficient in transferring 

multidimensional arrays and complex objects because of how objects are stored and/or copied in 

the address space. Typical workarounds include deserialization and casting. 

As mentioned previously, we have chosen the Java bindings by the Open MPI project that 

supports the complete MPI-3.1 standard minus a few exceptions that were irrelevant to our work. 

The approach is based on JNI and consists of an interface that lies ontop of a C native library 

[58]. The bindings are a 1-to-1 mapping to the MPI C bindings. We discuss further details in 

Section 4 in their relevancy to our implementation decisions. The authors state that MPI Java 

bindings perform well compared to C and Fortran code, stating that over the NAS Parallel 

Benchmarks (NPB), the results were satisfactory and had only a slight overhead. 

4.3 Literature Survey 

In this section, we survey three topics. First, we list some of the previous work that has been 

done for parallelizing pattern matching algorithms using MPI. Second, we explore previous work 

that has attempted to automate MPI code generation. And finally, we discuss some Java 

implementations in high performance computing. 

In [59], the authors use both MPI and OpenMP separately to implement the Naïve, Karp and 

Rabin, Zhu and Takaoka, Baeza-Yates and Regnier, and the Baker and Bird exact two-

dimensional on-line pattern matching algorithms. They concluded that for the same set of 

algorithms and data sets, OpenMP is more efficient since it does not impose any communication 
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costs. However, MPI might be favorable since it is more scalable as opposed to OpenMP which 

is limited by the number of cores on a single processor. In [60], the authors propose four master-

worker models to perform parallel multi-pattern matching on a heterogeneous cluster. They 

further validate their theoretical models by experiments using MPI. In the first model, the 

documents are distributed among the workstations and stored on local disks. Each worker reads 

its subtext from its main memory and executes the searching algorithm.  The master then collects 

the results from each worker. This model has low communication overhead since each worker 

searches its own subtext and there is no communication with other workers or the master. The 

drawback is the possibility of load imbalance. However, this can be eliminated with the use of a 

better partitioning technique. The second model consists of having the entire text reside on the 

master’s local disk. The master sends the chunks of text to the workers that each perform their 

own search. This is a dynamic approach that has low load imbalance but higher inter-workstation 

communication overhead. The third model consists of a dynamic allocation of pointers. The 

whole text is stored on local disks of all the workstations and the master maintains pointers to the 

subtexts and sends these pointers to the workers. This reduces inter-workstation communication 

overhead but requires more space to store all the files on all the workers’ local storage space. The 

fourth and most efficient model in terms of execution time and speedup consists of a hybrid 

implementation of the first model along with an optimal distribution method. 

The tool in [61] automatically generates MPI source code from OpenMP. OpenMP parallel 

loops are detected and are distributed in a master-worker pattern. This is done by manipulating 

the AST, performing loop analysis and workload distribution. Only peer-to-peer send/receive 

protocols are supported. The user code to be transformed has to be originally parallel for the tool 

to detect pragmas. The authors also mention that in order to obtain significant performance gain 
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from MPI over OpenMP, many processes are needed. In [62], the authors deal with a sub-

problem of MPI code generation: generating MPI type-maps from user source code. MPI derived 

datatypes are custom datatypes that are more complex than the primitive datatypes. Users need to 

manually maintain descriptions for their datatypes so that the MPI routines can properly transmit 

them. In [63], the authors propose a framework to generate MPI code that is type safe. The 

motivation behind this work is that the most common MPI programming error consists of 

communication mismatch between senders and receivers. Instead of verifying code correctness, 

the authors automate communication generation based on the user provided sequential code and 

on a supplied interaction protocol. Type safe code reduces lost messages, communication 

deadlocks, and calculation errors. In [64], the authors present a directive-based tool that 

transforms sequential C code to a parallel message passing form. They also introduce a loop 

scheduling method for load balancing. Directives are marked in the C code to indicate and 

enclose which for-loop to parallelize, which block will be initialized for all nodes, and which 

parts to synchronize. The authors take the following assumptions into consideration: loops are 

expressed by for-statements, only outermost loops are parallelized, parallelizable loops do not 

contain pointers, and the boundaries of each loop are considered static and known at compile 

time. The process consists of two passes. The first pass scans the source program to process 

directives, prepare loops, and create a def-use symbol table. In the second pass, the tool 

examines the loops based on the def-use table and generates the MPI code. The experimental 

results show that handwritten optimized codes performed better than codes generated by the 

system, and the authors list some factors that might have led to that. The authors in [65] perform 

event traces by using pattern matching in order to analyze an MPI program. They aim to detect 

groups of communication patterns that may resemble collective operations. Their system informs 
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the user of the potential match, and thus users can replace their point-to-point operations with the 

suggested collective functions in order to obtain better performance. The motivation behind their 

work is that inexperienced users might not know which collective functions already available to 

use instead of non-optimal send/receive would better fit their program behavior.  

The authors of [57] also presented a study [66] of the state of Java for HPC for both shared 

and distributed memory. While their overview was current at the time their work was published, 

it has become incomplete at the time of writing this work. However, we mention their main 

observations: the interest in Java for HPC has led to several projects although still modest; Java 

can achieve almost similar performance to natively compiled languages and can be an alternative 

for HPC programming; the advances of Java communications in a shared memory environment 

can bridge the gap between Java and natively compiled HPC applications. In [67] the authors 

discuss their results in evaluating the performance of a parallel deterministic annealing clustering 

program using both Open MPI with Java bindings and FastMPJ as compared to native Open MPI 

and MPI.NET. They do so by migrating existing C# based code to Java by rewriting the 

algorithms. 

4.4 Implementation 

In this section, we discuss the reasons behind some of our implementation decisions and the 

approaches we took to perform pattern matching using the Open MPI Java bindings. The first 

part explains how we achieved function detection, how we linked the MPI code to the user’s, and 

how we return the MPI results from the distributed environment back to the user main code and 

allow him/her to proceed to seamlessly run his/her code. The second and third parts deal with the 

MPI implementation. Because of some MPI standard restrictions and also because of Java 
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language restrictions, we faced some challenges that would have been otherwise easy to deal 

with in a C environment. We have developed three different approaches to our problem, each 

complete in its own way (as in each solution solves all the anticipated problems) and we compare 

these approaches in terms of efficiency and code complexity.  

4.4.1 Overall Process 

As mentioned in the introduction, the purpose of this chapter is to use MPI to parallelize an 

otherwise sequential user’s function call for pattern matching without the user’s intervention. In 

Chapter 2, we have achieved this for shared memory by using multiple threads. However, with 

distributed memory, our approach has to be slightly different in the sense that our data now 

resides on multiple machines, and these machines will each process part of the data. So far, this 

does not seem like an issue. However, recall that our purpose is to detect pattern matching 

(which would typically be in the middle of the program), replace the sequential implementation 

by a parallel one, and then return control to the original user code that will probably use the 

result of the matching (which will have to be in memory) in some way or another. To integrate 

the MPI implementation, we will need to execute the MPI application externally from Java, read 

the system results, and then parse them and send them back to the Java application. The reason 

for this is that MPI executables cannot be launched without the mpirun command. In addition 

to launching multiple copies of the MPI executable, mpirun also exports special environment 

variables to the launched MPI processes. Therefore, calling mpirun is necessary, and in Open 

MPI there is no way to embed its functionality in the program. It has to be explicitly called. To 

handle this, we have used the Java exec command. This command executes external 

applications from within the Java program. Figure 4-2 shows a code snippet. 
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… 

Runtime rt = Runtime.getRuntime(); 

String cmd = "/usr/local/bin/mpirun -np " + np + " " + hostFile + " java MPI_Matcher "     

                 + textFile + " " + pattern + " |sort"; 

Process pr = rt.exec(cmd);   

BufferedReader input = new BufferedReader(new InputStreamReader(pr.getInputStream())); 

String line=null; 

while((line=input.readLine()) != null) { 

  //parse the output 

 } 

int exitVal = pr.waitFor(); 

System.out.println("Exited with error code "+ exitVal); 

… 

Figure 4-2: Sample exec code 

First, we create a Runtime object and attach it to the system process. In this example, we are 

using the mpirun command. It takes the following arguments that are dynamically set based on 

the user’s input: 

- -np: number of processes to be run 

- -hostfile: contains the names of the parallel machines and how many slots are 

available in each 

- textFile: the text file name to process 

- pattern: the pattern to search for 

The call to exec launches mpirun. But we still need to collect its output. To do so, we use 

a buffered reader to read the input stream, which is then parsed and used (we do not show here 

how). Finally, the waitFor()method will make the current thread wait until mpirun finishes 
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and will return an exit value to the current thread. An exit value of ‘0’ means that the external 

program has executed successfully. Our overall process is shown in Figure 4-3. 

 

Figure 4-3: Overall execution process 

The reason we did not use JNI as we did when parallelizing for GPUs, is that our function 

call is in Java since we are using Open MPI Java bindings. Had we wanted to use a C Open MPI 

library for example, we would have needed to use JNI instead. 

4.4.2 MPI Design Decisions  

Before developing the MPI code and worrying about which communication operations to 

use, there are two key issues to consider: text partitioning, and data distribution.  

According to [68], there are two major steps in designing parallel algorithms: dividing a 

computation into smaller parts, and assigning these parts to different processes for parallel 

execution. Properly selecting methods to handle these issues will reduce the overhead of parallel 

algorithms by decreasing execution time in that it minimizes the time processors are idle due to 

an uneven load distribution. 
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There are two mapping techniques available: static and dynamic mapping. Static mapping is 

generally used in a homogeneous environment where the processes have the same 

characteristics; whereas dynamic mapping is generally used in a heterogeneous environment 

where processes might have different characteristics. In static mapping, each process receives the 

same amount of data proportional to the number of available processes before the execution of 

the algorithm starts. In dynamic mapping, data is divided into more parts than the available 

processes. Each process is assigned a chunk size depending on its capacity, and this is the 

amount of data each process receives during the execution of the algorithm. In [60] this is 

discussed in more detail. In order to achieve a good balanced distribution among heterogeneous 

nodes, the amount of text distributed should be proportional to its processing capability within 

the network. This is given in Equation (1) where Li represents the processing capacity of process 

i, S represents the speed, and p is the total number of processes available. 

𝑳𝒊 =  
𝑺𝒊

∑ 𝑺𝒋
𝒑
𝒋=𝟏

                                                                          (1) 

Thus the amount of data distributed to each process i will be Li x (n + m - 1)
4
. 

In our case, and since we have a homogenous distributed environment as discussed in the 

next section, we use a static approach. Using a dynamic approach would result in the same load 

balance as a static approach, since the Si’s are equal and hence Li would reduce to 1/p. We will 

delay discussing exact data distribution to the next section in which we propose the 

communication operations used since they are dependent. 

The other thing to consider is the data distribution. Several models exist such as the Data-

parallel model, the Task Graph model, the Work Pool model, and the Pipeline Model. In [69], it 

                                                 
4 Recall that (m-1) is the boundary overlap, where m is the pattern size, and n is the length of the text to partition. 
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was concluded that the Master-Worker model was the most appropriate for pattern matching on 

both distributed and shared memory systems. Therefore, we have chosen this model for our 

implementation. It corresponds to the typical master-worker scheme in which a master node 

distributes data to the other worker nodes. Each worker node then processes the data and when 

finished, sends the results to the master node. The individual results are gathered by the master, 

and depending on the required output, a reduction might be performed to present the final overall 

results. 

4.4.3 Open MPI Java Bindings Implementation Approaches  

There are several communication approaches for message passing. In pattern matching, the 

text needs to be partitioned so that processing can occur on the subtexts. These subtexts are what 

needs to be passed among the nodes. We have chosen to implement the following three 

approaches to pass the subtexts and compare their performance: 

- point-to-point communication using send/receive 

- collective communication using scatter 

- minimal communication where whole text is local to all nodes 

We discuss each implementation next. 

4.4.3.1 Point-to-point Communication (Approach 1) 

In this scenario, one of the processes is labeled as root. The text to process is only in local 

storage of the node that contains the root. The root reads the text and processes it. It then divides 

the contents among the other processes which could be on other nodes as well. Therefore, a root 

process performs a send operation sending individual subtexts, and all other processes perform a 
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receive operation receiving the data upon which to perform the matching. Load balancing is 

achieved since the text is partitioned in equal parts. We have chosen to implement a static block 

scheduling approach instead of a cyclic one.  

One of the issues we faced is specific to the Java language, the message passing interface, 

and the Java bindings. To send or receive a message, the following must be provided: 

- an array (or buffer) holding the contents of the message to send or receive 

- the number of elements to send or receive 

- the type of the elements 

- the source/destination process involved 

- the tag identifier of the message 

Here is an example for a simple send and a receive operation.  

MPI.COMM_WORLD.send(subText, count, MPI.CHAR, processID, tag); 

MPI.COMM_WORLD.recv(lsubText, count, MPI.CHAR, ROOT, tag); 

 

To send a text, we will first need to convert it either into an array or into a buffer, because 

the Java bindings can only handle arrays or buffers. According to the documentation [58], it is 

better to use buffers when dealing with large messages due to the way copying and moving data 

is handled internally in the Java bindings implementation. We have actually tested both scenarios 

and when we implemented the array version, our program would hang due to the large message 

size. Hence, in this approach and the next one, we have used char buffers instead of arrays.  

In Java, we have to initialize a buffer with its size before we can use it. This is not a problem 

on the send size, because the root process knows how big each partition is going to be. However, 
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this is not true on the receiving end. Each process needs to know how big its message is going to 

be in order to allocate memory to receive it. One way of doing that is to actually send each 

partition size to the corresponding process using another send operation. However, that would 

incur extra performance penalty due to increased communication.  Another way would be to 

allocate a huge buffer size to handle all possible sizes of messages. However, that would require 

extra unused space. Therefore, we implemented an alternative dynamic approach. Each process 

would first probe the message before it is received in order to dynamically determine its size, 

allocate memory for it, send the size to the receive operation, then receive the message. 

 4.4.3.2 Collective Communication (Approach 2) 

Instead of using send and receive messages, a scatter operation can be performed. Scatter is 

a collective operation that involves a root process sending chunks of data to all processes in a 

communicator including the root itself. Figure 4-4 shows an illustrative example. The 

communicator here has four processes. Process 0 is the root process. Scatter takes an array of 

elements and distributes the elements to all the processes in order of rank. The first element goes 

to process 0, the second to process 1 and so on so forth.  

 

Figure 4-4: Scatter illustrative example 
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A scatter function requires the following parameters: 

- send_data: array that resides on root 

- send_count: how many elements will be sent 

- send_datatype: type of data elements 

- recv_data: receive buffer 

- recv_count: how many elements will be received 

- recv_datatype: type of data elements 

- root process 

If for example, send_count is 5 and send_datatype is MPI_INT, then process 0 will 

get the first 5 elements of the array, process one will get the next five, and so on. Therefore, 

send_count is usually equal to the number of elements in the array divided by the number of 

processes.  

There are three things to note for the scatter operation. First, and similarly to all collective 

communication routines, it does not support derived datatypes. Messages should be of a 

primitive datatype. Hence, we cannot send an array of Java Strings for example. This was not a 

problem for us since we divide the string into characters and send those. Another issue is that 

scatter (and also gather) does not allow for boundary overlap. This is a restriction in the MPI 

standard, and failing to abide by it will result in unpredictable behavior. In pattern matching 

though, we need to send (m -1) overlap characters. The third issue arises when the number of 

elements in an array is not divisible by the number of processes. In that case, a scatterv 

function can be used that in addition to the previously discussed parameters, holds a reference to 

an array that contains the number of elements to send to each process. However, we did not use 
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this functionality. The solution we propose solves both the second and the third issue. Our 

solution performs a pre-processing step on the root process. The root reads the text, and appends 

the (m-1) overlapped characters into their corresponding place, then pads the last partition to fit 

the maximum partition length. What we have now is a new string that when divided equally 

among the number of processes will have the same partition length and the correct characters to 

search. 

4.4.3.3 Local Communication (Approach 3) 

In this scenario, the text to search for patterns within resides in the local storage of all the 

nodes. Hence, there is no need for a root process to partition the text. Instead, each process, 

based on its rank in the communicator, is able to calculate which parts of the text pertain to it and 

perform the matching.  

4.4.3.4 Gathering Results 

The three approaches mentioned earlier discuss how to partition and send the data. Once that 

is accomplished, each process has its part of the data upon which it will search for the pattern. 

The results can then be sent to the root process where they are aggregated using a reduce 

operation that performs similar to the addition reduction shown in Figure 4-5. One thing to note 

here is that since the root will have to wait until all other processes are done with their results, it 

will be dependent on the slowest process. 
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Figure 4-5: Reduce illustrative example 

4.5 Experimental Results and Interpretations 

4.5.1 Working Environment and Benchmark 

Implementation has been done using Java (jdk 8) on Eclipse IDE (Luna - release 4.4.0) and 

ASM v5, Java bindings for Open MPI v2.0.1 which supports MPI-3. 

Testing was performed on two connected virtual machines with the specifications shown in 

Table 4-1.  

Table 4-1: VM specifications 

Model Intel(R) Xeon(R) CPU E5-4650 0 @ 2.70GHz 

Architecture x86_64 

Number of CPU cores 8  

Number of threads 16 

Cache size 20480 KB 

 

As a benchmark, a text file of 142 MB was used. The file consists of concatenating the 11
th

 

edition of the Encyclopedia Britannica downloaded from the project Gutenberg website [20].  
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4.5.2 Results and Interpretations 

In this section, we will present the results from our three approaches and will perform an 

analysis of our findings. We have recorded four cases for each of our approaches, as shown in 

Table 4-2.  

Table 4-2: Test cases process distribution 

 Number of processes on VM1 Number of processes on VM2 

Case 1: local 4 0 

Case 2: local 8 0 

Case 3: distributed 4 4 

Case 4: distributed 8 8 

 

VM1 is the master node, and VM2 is the slave node. In the first two cases, we run the 

program on the master node only in a local manner, over four processes and over eight processes. 

In the last two cases, we run the program over two distributed nodes, once on four processes on 

each node, for a total of eight processes, and once on eight processes on each node, for a total of 

sixteen processes.  

We have performed a few warm-up runs and then averaged the execution times shown over 

several runs. The percent improvement is calculated as follows: 

% improvement = ((sequential time – parallel time)/sequential time) x 100 

Table 4-3 shows the execution times (in seconds) of running several patterns of all three 

approaches (send/receive, collective, and local) for the setup of case 1. It also shows the percent 
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improvement over the sequential program. Table 4-4, Table 4-5, and Table 4-6 show similar data 

for cases 2, 3, and 4 respectively.  

Table 4-3: Case 1 runtimes and percent improvement: VM1: 4 processes - VM2: 0 processes 

 Sequential Approach 1 Approach 2 Approach 3 % 

improvement 

of approach 

1 

% 

improvement 

of approach 

2 

% 

improvement 

of approach 

3 

Pattern 1 41.615 14.458 11.635 11.8 65.25 72.04 71.64 

Pattern 2 33.007 11.296 10.1 10.052 65.77 69.4 69.54 

Pattern 3 118.468 41.903 31.34 30.413 64.62 73.54 74.32 

Average     65.21 % 71.66 % 71.83 % 

 

Table 4-4: Case 2 runtimes and percent improvement: VM1: 8 processes - VM2: 0 processes 

 Sequential Approach 1 Approach 2 Approach 3 % 

improvement 

of approach 

1 

% 

improvement 

of approach 

2 

% 

improvement 

of approach 

3 

Pattern 1 41.615 7.297 7.203 7.385 82.46 82.69 82.25 

Pattern 2 33.007 6.474 6.811 6.696 80.38 79.36 79.71 

Pattern 3 118.468 18.393 17.214 17.365 84.47 85.46 85.34 

Average     82.43 % 82.5 % 82.43 % 

 

 

 

 



80 

 

 

Table 4-5: Case 3 runtimes and percent improvement: VM1: 4 processes - VM2: 4 processes 

 Sequential Approach 1 Approach 2 Approach 3 % 

improvement 

of approach 

1 

% 

improvement 

of approach 

2 

% 

improvement 

of approach 

3 

Pattern 1 41.615 11.639 11.335 11.795 72.02 72.76 71.64 

Pattern 2 33.007 11.076 11.553 11.086 66.44 64.99 66.41 

Pattern 3 118.468 30.922 30.052 29.87 73.89 74.63 74.78 

Average     70.78 % 70.79 % 70.94 % 

 

Table 4-6: Case 4 runtimes and percent improvement: VM1: 8 processes - VM2: 8 processes 

 Sequential Approach 1 Approach 2 Approach 3 % 

improvement 

of approach 

1 

% 

improvement 

of approach 

2 

% 

improvement 

of approach 

3 

Pattern 1 41.615 7.295 7.191 9.35 82.46 82.72 77.53 

Pattern 2 33.007 6.708 7.014 8.872 79.67 78.74 73.11 

Pattern 3 118.468 16.117 15.77 18.964 86.39 86.68 83.99 

Average     82.84 % 82.71 % 78.2 % 

 

As we can see from the previous tables, execution time decreases dramatically using MPI. It 

is worth noting that the three approaches exhibit similar behavior for the same pattern and the 

same case within a maximum of 5% difference. This is because for Approach 3 (where the file is 

stored locally on each node) there is no communication overhead between the nodes. It has been 

shown [64] that using some collective routines, such as scatter, does not necessarily improve 

performance. It can in fact incur an extra overhead compared to multiple send/receive operations 
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implemented with the same number of processes. However, the reason why our Approach 2 

(using scatter) is similar to Approach 1 (using send/receive) is that in Approach 1, there is one 

less process that performs the matching, since the root process is not part of computation. 

We can also observe that results for cases 1 and 3, and results for cases 2 and 4 follow the 

same trend. Consider cases 1 and 3. Case 1 runs on one virtual machine with four processes. 

Case 3 runs on two virtual machines with four processes each, for a total of eight. However, the 

execution times are similar. The reason for this is that execution time is dependent on the slowest 

process. Since case 3 is a distributed environment, the communication overhead incurs extra 

runtime. We have recorded the execution times for case 3 for each process in Table 4-7. As can 

be seen, processes running on the local machine (VM1) are faster than those on the remote node 

(VM2). This excludes the root process (process 0) which has to wait for the slowest process to 

terminate before it can aggregate the results. Similar analysis applies to cases 2 and 4. 

Table 4-7: Execution times for Case 3 for every process 

  VM1 VM2 

  Proc 0 Proc 1 Proc 2 Proc 3 Proc 4 Proc 5 Proc 6 Proc 7 

Approach 

1 

Pattern1 10.963 6.281 6.460 6.459 10.963 10.927 10.909 10.909 

Pattern 2 10.396 5.324 5.451 5.322 10.396 10.169 10.392 10.264 

Pattern 3 30.242 16.439 17.321 17.258 30.242 29.824 29.563 28.563 

Approach 

2 

Pattern1 10.634 6.063 6.382 6.316 10.635 10.594 10.273 9.705 

Pattern 2 10.814 5.287 5.501 5.497 10.814 10.592 10.534 10.235 

Pattern 3 29.249 16.542 15.816 15.742 29.248 28.784 28.564 28.365 

Approach 

3 

Pattern1 10.971 5.517 6.211 6.126 10.971 10.940 10.771 10.771 

Pattern 2 10.273 4.708 4.925 4.749 10.273 10.179 10.114 9.888 

Pattern 3 29.015 16.088 15.622 15.572 29.015 28.991 28.542 28.542 
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We make another observation for Approach 1.  As mentioned, in this approach process 0 

does not take part in the computation. Its sole responsibility is to partition the text, distribute it, 

and collect the results once all the other processes have terminated. Contrary to the other 

approaches, the root does not perform pattern matching. Hence, partitioning the text is done over 

one less process compared to the other approaches. Table 4-8 shows the execution times with 

four, five, eight, and nine processes on one node. We observe that for five and nine processes, 

execution times get closer to those recorded for Approach 2. In Table 4-9 we compare the 

percent improvement after adding the extra process. Running over five processes (only four of 

which take part in computation) performs 20.47% better than running over four processes. And 

running over nine processes (only eight of which take part in computation) performs 7.29% 

better than running over eight processes. 

Table 4-8: Execution times (seconds) for Approach 1 

 

Sequential np = 4 np = 5 np = 8 np = 9 

Pattern 1 41.615 14.458 11.362 7.297 6.748 

Pattern 2 33.007 11.296 9.715 6.474 6.193 

Pattern 3 118.468 41.903 31.001 18.393 16.553 
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Table 4-9: Percent improvement comparison for Approach 1 

 

% 

improvement 

np = 4 over 

sequential 

% 

improvement 

np = 5 over 

sequential 

% 

improvement 

between np = 

4 and np = 5 

% 

improvement 

np = 8 over 

sequential 

% 

improvement 

np = 9 over 

sequential 

% 

improvement 

between np = 

8 and np = 9 

Pattern 1 65.25 72.69 21.41 82.46 83.78 7.52 

Pattern 2 65.77 70.56 13.99 80.38 81.23 4.34 

Pattern 3 64.62 73.83 26.01 84.47 86.02 10.00 

Average 

  

20.47 

  

7.29 

 

We can conclude that all three approaches exhibit similar results. Therefore, selecting which 

approach to use depends on factors other than performance as shown in Table 4-10. If for 

example storage is not ample, then using Approach 3 is not feasible for large files.  

Table 4-10: Advantages and disadvantages of the three approaches 

 Advantages Disadvantages 

Approach 1 Easy to program Root process does not take part in computation 

Approach 2 Simplicity, programmability, 

expressiveness 

File needs to be preprocessed 

Approach 3 No communication overhead File needs to reside on all nodes 
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4.6  Introduction to Hadoop 

Hadoop is an Apache open source framework for reliable, scalable and distributed computing 

of large data sets [70]. It was created by Doug Cutting and Mike Cafarella in 2005. Cutting 

named it Hadoop after his son’s toy elephant.  Written in Java, Hadoop has three main 

objectives:  

- Distributed computing: Hadoop is designed to work in an environment of distributed 

storage and computation of vast amounts of data (multi-terabyte data sets) across large 

clusters of computers.  

- Reliability: Hadoop is designed to handle hardware failure and data congestion in a 

reliable, fault tolerant way. 

- Scalability: Hadoop is designed to scale up from a single server to several thousands of 

servers.  

The Hadoop framework is made up of the following four modules [71]:  

- Hadoop Common: Java libraries and utilities required by the other modules to start 

Hadoop 

- Hadoop Yarn: framework for job scheduling and cluster resource management 

- Hadoop Distributed File System (HDFS) 

- Hadoop MapReduce: parallel processing of large data sets 

Since 2012, Hadoop also refers to the set of software frameworks that can be installed along 

with Hadoop. These include Apache Pig, Apache Hive, Apache HBase and Apache Spark. 
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Hadoop’s main modules are HDFS and MapReduce. Both are similar to Google’s File 

System (GFS) and MapReduce, respectively. 

4.6.1 HDFS  

The Hadoop Distributed File System, as the name suggests, is a distributed file system that 

is highly fault tolerant and is designed to be installed on low cost hardware and to run on large 

clusters. HDFS uses a master/slave architecture. The master consists of a single node, the 

NameNode. The slave(s) consist of DataNode(s). The NameNode manages the file system 

metadata, and the DataNodes store the data. A file in HDFS is split into several blocks which are 

stored in the DataNodes, based on a mapping provided by the NameNode. Like any other file 

system, HDFS has a shell and a list of commands to access and manipulate the file system. 

4.6.2 MapReduce 

MapReduce is the programming module used for processing data in parallel. A MapReduce 

job is divided into two phases. The map phase splits the input data into chunks (depending on the 

input file format specified) and processes these chunks as parallel independent tasks. The input is 

converted into a set of <key, value> output pairs. The framework then sorts these pairs 

based on their key values and sends them as input to the reduce task. The reduce phase 

aggregates the <key, value> pairs based on the reduction function, and produces an output 

consisting of a smaller set of <key, value> pairs. Both the primary input and resulting 

output are stored in the HDFS.  

4.6.3 Procedure 

The MapReduce framework consists of a single master ResourceManager, and several slave 

NodeManagers (per node). An application submits a job to Hadoop, specifying the input/output 
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locations, the map and reduce Java classes in the form of a jar file, and other parameters and 

configurations that might be needed. The Hadoop job client then sends the jar and configurations 

to the ResourceManager. The ResourceManager performs resource management, tracks resource 

consumption and availability, and schedules tasks to the slaves. The slaves execute the tasks and 

provide task-status information periodically to the master. 

4.6.4 Usage and Advantages  

Hadoop is a large scale distributed processing framework that can be used on a single 

machine. However, to obtain the full potential power of Hadoop, it must be scaled to hundreds or 

even thousands of nodes, each containing multiple cores. Hadoop has been demonstrated to work 

on clusters of up to 4000 nodes. The data that Hadoop deals with should also be huge. Hadoop 

was built to process web-scale data ranging from hundreds of gigabytes to terabytes or even 

petabytes [72].  Hadoop is not particularly known for being runtime efficient, yet it is widely 

used by industries and developers across the world. The reason for that is scale. The input data 

set that the HDFS can typically hold will in no way fit in the hard drive of one computer, or in 

the memory of a single machine. In most businesses, there is no choice but to use Hadoop’s 

distributed file system to store and process their data. Another reason for Hadoop’s popularity is 

its efficiency compared to the potential cost it can incur. For example, suppose one owns a 

computer with one thousand CPUs. That would be very expensive to obtain (assuming it exists 

of course), even though it would be fast and very efficient. As opposed to that, consider having 

one thousand single-CPU computers. Hadoop will connect these cheaper machines together to 

form a more cost effective, efficient, and reliable cluster. Other advantages of Hadoop include: 
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- It is open source and compatible on all platforms since it is Java based. And although it is 

implemented in Java, applications can be written in other languages. Hadoop Streaming 

allows developers to create and run jobs with many executables. 

- It has a simplified programming model. Developers can quickly write and test distributed 

systems, since Hadoop automatically distributes the data and work across the nodes. 

- It detects and handles failures without relying on hardware to provide fault tolerance. 

- Nodes can be added dynamically to the cluster without interrupting operation. 

The compute nodes and the storage nodes are the same. MapReduce and HDFS run on the 

same set of nodes, resulting in high data locality that leads to better performance. Data is mostly 

read from the local disk into the CPU. This reduces network bandwidth and prevents 

unnecessary transfers.  Hence, computation is moved to the data, instead of moving the data to 

the computation. 

4.7 Hadoop Comparison 

We decided to investigate how our multithreading approach could compare to a distributed 

approach using Hadoop. Therefore, we implemented a pattern matching application in 

MapReduce. We also used the standard library’s regex package. The mappers process the input 

and search for the pattern. The mapper produces the intermediate output <key, value> pairs. 

The key is a text object consisting of the pattern group and the value is an integer indicating the 

location of that group. These pairs are then passed to the reducer. The reducer aggregates the 

results based on the keys, and outputs another <key, value> pair, where the key is the 

pattern group and the value is a list of locations for that pattern.  
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Splits in Hadoop are of two types: physical and logical. Physical splits are how the HDFS 

chunks the files into blocks and distributes them among the nodes. This is based on a block size 

parameter that can be specified either in the conf files or when the input files are ported to 

HDFS. The logical splits are how the MapReduce splits these chunks to be processed by the 

mappers. This is defined by the specification of the input file format. The mapper in Hadoop 

processes the input file one line at a time, then performs the mapping function, which in our case, 

searches for the pattern location. The reducer then groups the patterns found with their locations 

and writes the result to a file. We have kept the default installation configurations and have 

chosen to use one reducer by setting ‘setNumReduceTasks’ to 1 so that the aggregated result will 

be in one file. The output file thus consists of the different patterns along with their locations in 

the text file.  

The Hadoop library contains a RegexMapper<K> class. The implementation of the map 

function searches for the pattern. Hence, each line is processed separately, and the pattern is 

searched for within that line. We have based our implementation on the RegexMapper class but 

have tweaked it to fit our needs. We have also implemented a reducer class that aggregates the 

multiple patterns found and outputs the patterns with their locations to file. 

Testing on Hadoop was performed on a cluster of five virtual machines with the same 

specifications as those mentioned in Table 4-1. One machine served as the master and slave node 

concurrently, and the other four machines served as slave nodes. 

Execution time using Hadoop is measured from the time the input is read up until the result 

is written to file. The results are recorded in Table 4-11. The first row indicates the average 

runtimes in milliseconds and the second row is the percent improvement over the single thread 
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implementation. The first column corresponds to the single thread implementation. The column 

in the table labeled Hadoop gives the Hadoop runtime and improvement. We obtained an 89% 

reduction in runtime. This is due to the fact that Hadoop reads the input one line at a time and 

performs its map function on each line, which might be shorter than even the substrings in the 

multithreaded option.  

Table 4-11: Average runtimes and percent improvement for Hadoop implementation 

 t  = 1 Hadoop Single lines 

Average runtime (ms) 73,199 7,670 20,880 

Percent improvement  89.52 71.47 

 

In order to better compare, we have devised another approach that consists of the single 

threaded option reading the input from file and searching for the pattern one line at a time. This 

is comparable to the way Hadoop reads input files. The results are in the last column of Table 

4-11. This method performed worse than Hadoop due to the fact that Hadoop has a more 

efficient file system and does reading and writing to files more efficiently. However, this method 

performed better than our single-threaded method of reading the whole input into a string. 

Comparing these two methods in Table 4-12, we see that Hadoop outperforms the single line 

implementation by 63%. 

Table 4-12: Runtime improvements 

 Single Lines Hadoop 

Average runtime (ms) 20,880 7,670 

Percent improvement  63.26 
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However, our multithreaded approach still gave better results. We believe this is because the 

data that we tested is not big enough to compensate for the expensive writes to disk. This led us 

to explore another alternative to MapReduce. Spark is a fast general compute engine that can run 

on top of Yarn and HDFS. In addition to achieving Hadoop’s objectives, Spark is able to evolve 

past these main attributes and solve several of Hadoop’s main issues. The discussion on Spark is 

beyond the scope of this chapter, but will be further discussed in the next one. 

4.8 Conclusion 

We have presented a tool that detects a user’s function call to search for a pattern and 

seamlessly replaces it with our own distributed MPI-based implementation. We have used 

bytecode injection and the Open MPI Java bindings to run our optimized code. We have used 

three different approaches for message passing: point-to-point using multiple sends and receives, 

collective using the MPI scatter routine, and local in which the data resides on all nodes. Our 

experiments show a reduction in total execution time for all three approaches, and we have 

discussed the advantages and disadvantages of selecting one over the other. In addition to that, 

we have explored another form of distributed communication represented by Hadoop. Because 

data exchange using Hadoop is based on the filesystem, we have chosen to compare its 

performance to our multithreaded approach. This allowed us to learn how Hadoop works and 

what its limitations are.  
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Chapter 5: Generating Spark Java Code 

With the growing shift towards massively parallel distributed systems on one hand, and the 

increasing importance of transforming data into knowledge in today’s data-driven world on the 

other, Spark has emerged as the tool of choice for efficient big data analysis. However, users still 

have to learn the complicated Spark API in order to write even a simple application. We present 

a tool that facilitates this job for the user by automatically generating Spark Java code from 

minimal user-supplied inputs. Our tool is easy to use, interactive and offers Spark’s native Java 

API performance.  

5.1 Introduction 

Hadoop is an Apache open source framework for reliable, scalable and distributed 

computing of large data sets and has been around for over 10 years [73]. Written in Java, the 

Hadoop framework is made up of the following four modules: Hadoop Common – the Java 

libraries and utilities required by the other modules to start Hadoop, Hadoop Yarn – the 

framework for job scheduling and cluster resource management, Hadoop Distributed File System 

(HDFS), and Hadoop MapReduce – for parallel processing of large data sets.  

Since 2012, Hadoop also refers to the set of software frameworks that can be installed along 

with Hadoop. These include Apache Spark. Spark is a fast general compute engine that can run 

on top of Yarn and HDFS. It consists of an expressive programming model that is able to support 

a wide range of applications, including among others, machine learning and graph computation. 

In addition to achieving Hadoop’s objectives, consisting of distributed computing, reliability, and 

scalability, Spark is able to evolve past these main attributes and solve several of Hadoop’s main 

issues. The main problem with Hadoop’s MapReduce model is that it is unable to handle 
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iterative and multi-pass algorithms that need to reuse a working set of data across parallel 

operations in an efficient manner. This is because each step consists of either one map phase 

and/or one reduce phase. First of all, this is restrictive in the sense that a program will need to be 

converted into such a pattern to be run. Second, if the user wanted to do something a bit 

complicated, he/she would have to run a series of map-reduce operations, each of which are high 

latency and cannot start until the previous job has finished execution. Third, and most 

importantly, the data between each step needs to be stored in HDFS, before being processed by 

the next step. This is slow because of the replication factor in HDFS and because disk is being 

accessed. For iterative algorithms, such as machine learning algorithms, this incurs a high 

latency. In contrast to Hadoop’s MapReduce model, Spark allows developers to write complex, 

multi-pass algorithms in an efficient manner since it supports in-memory data sharing, hence 

bypassing the expensive need to store to disk at every single map or reduce process. A dataset 

can be stored in memory, and operations being run on that dataset do not need to fetch it from 

disk every time it is called. Spark has been shown to provide a 10 fold faster performance time 

than Hadoop running iterative machine learning jobs [74].   

Given the importance of Spark, we have implemented a tool that helps developers write 

Spark Java code. We have not attempted to implement something similar for Hadoop’s 

MapReduce for the reasons mentioned above. Spark has a Scala API, a python API and a Java 

API. The Java API is the most complex since first, Spark was written in Scala and to use the Java 

API, some wrappers were implemented; and second, because Java is a strongly typed language 

and data types need to be explicitly stated. Our tool consists of a user-friendly, intuitive and 

interactive graphical user interface with error handling capabilities. It supports the creation of 

general purpose Spark code (using the core library) and machine learning Spark code (using the 
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mLlib library). Our tool requires minimal user input and will guide the user throughout the 

programming process. Nevertheless, some basic programming understanding is still required. 

The intended users of our tool include first time Spark users who do not wish to learn the API, 

first time users who would like to learn the API in a simple instructional manner, one-time users 

who need Spark for a single specific application, non-technical users who are not interested in 

learning Spark but require to perform some analysis on big data, and of course professional 

developers who want to quickly prototype a proof of concept.  

The rest of the chapter is divided into six sections. Section two consists of a literature 

review. Sections three and four give a brief description of Spark, of machine learning in general, 

and of Spark’s machine learning library. Section five discusses the work presented. Section six 

describes the graphical user interface proposed. Section seven concludes the chapter. 

5.2 Related Work 

According to [75], automatic programming consists of programming at a higher level of 

abstraction than the one available to the programmer. More specifically, software code 

generation is the process of generating source code based on a predefined model using a tool 

such as an IDE which could use templates or wizards and can accept several different forms of 

user inputs. Several examples are listed, most of which are commercial tools. 

The automatic generation of programs is also discussed in [76]. The user tells the computer 

what to do, and the computer builds a program that does that. The author states that in some 

situations this is easier to do than write the program by hand, and is specifically useful in 

complex domains where human beings find it difficult to write programs. 
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Several tools have been developed that perform software code generation. These tools span 

various programming languages and various domains. We mention a few that deal with parallel 

systems. In [62], the authors introduce TypemapGenerator, a tool that automatically generates 

MPI typemaps from user source code. In [77], the authors have developed STARGATES, a tool 

that automatically generates source code for finite-differencing simulations for the following 

parallel platforms: Message Passing Interface (MPI), Threading Building Blocks (TBB) and 

Compute Unified Device Architecture (CUDA). 

Perhaps the most related tools to our project are Weka and MemSQL. Weka [78] is an open 

source software that contains several machine learning algorithms for data mining tasks. Users 

can either incorporate Weka API into their Java code or can use the graphical user interface tool. 

The tool can perform data pre-processing, classification, regression, clustering, association rules, 

and visualization. Recently, Weka has added support for big data by developing basic distributed 

wrappers and has incorporated that with both Hadoop and Spark. The major disadvantage that 

developers complain about with Weka is that it primarily uses a specific format for an input file 

called Attribute Relation File Format (ARFF). ARFF files contain several information about a 

machine learning problem. Weka uses this format to create its header data. Users will have to 

rewrite their input files to fit this format. The objective of Weka is to offer a solution to writing 

and designing machine learning algorithms, therefore its applications are restricted to that 

domain.  

MemSQL [79] is a database platform for real-time analysis. It is available in a free 

community version. MemSQL Streamliner uses Spark to manage real-time data pipelines. It 

provides a rich graphical user interface for the ETL (Extract, Transform, Load) process. 

However, it is strictly database-oriented. 
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5.3 Spark 

Spark is a parallel open source big data framework. It was originally developed at UC 

Berkeley’s AMPLab in 2009, was open sourced in 2010, and was later licensed as an Apache 

project. Since then, Spark has gained popularity and it has been reported that as of early 2015, 

more than 500 companies are using Spark in production [80].   

The designers of Spark realized the importance of existing applications (such as 

MapReduce) in implementing large scale data intensive applications on commodity clusters. 

However, the prevailing systems were unable to handle the reuse of a working set of data across 

parallel operations. Hence, Spark was developed. Spark can support iterative algorithms (such as 

machine learning algorithms) and still retain the scalability and fault tolerance of MapReduce. In 

addition to that, Spark has been shown to provide a 10 fold faster performance time than Hadoop 

(the prevailing tool at that time) running iterative machine learning jobs [74]. What follows is a 

brief description of Spark. 

5.3.2 Spark Ecosystem 

Spark is made up of the following components/libraries: 

- Spark Core API: This is the underlying execution engine upon which all other 

functionalities are built. It provides distributed task dispatching, scheduling, in-memory 

computing, and basic IO functionalities. 

- Spark MLlib: This library is used to implement machine learning algorithms. It will be 

further discussed in a following section. 
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- Spark Streaming: This library can be used to perform analytics of real time streaming 

data by processing mini-batches of data. 

- Spark SQL: This library provides support for structured and semi-structured data. It 

allows running SQL-like queries on Spark data. 

- Spark GraphX: GraphX is a distributed graph-processing framework.  

5.3.3 Underlying Framework  

Spark requires two main components to run. The first is a cluster manager. Spark can 

support a standalone native Spark cluster, a Hadoop Yarn management system, SIMR (Spark 

Inside MapReduce), or Apache Mesos. The second component is a distributed storage system. 

Spark can run with Hadoop Distributed File System (HDFS), HBase, Hive, MapR File System 

(MapR-FS), Cassandra, Open Stack Swift, Amazon S3, Kudu, or even with a customized system. 

In addition to a cluster, Spark can run on the local filesystem (a single machine) as a pseudo-

distributed local mode. The purpose for this is for development and testing.  

3.4 Spark Building Blocks  

A Spark application consists of a ‘driver program’ that runs a main function and that runs 

the parallel code on a cluster. This is achievable due to an abstraction that Spark developers 

introduced called a distributed resilient dataset (RDD) [81].   

An RDD is a read-only parallel collection of objects that can be partitioned across a cluster, 

and that can be rebuilt and recovered if one of the partitions is lost. There are basically two ways 

of transforming data into an RDD. It can be created either by reading an input file (based on the 

filesystems mentioned in the previous section) and transforming its contents, or by calling a 
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parallelize function on an already existing dataset. RDDs that are to be reused (such as datasets 

used in iterative programming) should be persisted. This means that the RDD will be cached in 

memory. This allows operations working on that dataset to be faster. In addition to that, persisted 

RDDs can be stored in memory only, in memory and on disk (if dataset does not fit in memory, 

store the remaining partition on disk), on disk only, and several other options consisting of 

serialization or of data replication [80].  

Once an RDD is created, there exist two operations that can be performed on it: either a 

transformation, or an action. A transformation creates a new RDD by applying a certain 

operation on the source RDD. For example, a mapToPair transformation creates a new (key, 

value) paired dataset passing each element of the source dataset through a function that generates 

a tuple (Scala representation that is used in the Java implementation) representative of the 

operation. Transformations are defined as ‘lazy’.  This means that the results are not computed 

when a transformation is defined. They are instead ‘remembered’ and will be applied when they 

are actually needed. Unless an action is called upon a dataset, that transformation will not be 

implemented. 

An action is a function that performs a computation on an RDD and returns a value to the 

driver program. They are necessary in that they allow the transformations to actually take place. 

If the application does not contain an action, albeit a dummy one, the transformations will not 

execute. For example, reduce is an action that aggregates the RDD elements into a single 

variable based on an associative reduction function. 
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5.3.5 Usage and Advantages 

Spark is written in Scala and runs on a Java Virtual Machine (JVM). It provides built-in 

APIs in Java, Scala and Python. 

It encompasses the functionalities of several separate tools into one workload system, 

making it easy for the user to manage different systems and to maintain separate tools. It does so 

by extending the MapReduce model to include broader types of computations, such as batch 

applications, iterative algorithms, interactive queries and stream processing.  

The main feature of Spark is fast processing. This is achievable due to the fact that storage 

and processing can be done in-memory. Therefore, performance can be orders of magnitude 

faster than other big data technologies, such as Hadoop, which opts to store all intermediate data 

in disk instead. Spark holds intermediate results in memory rather than writing to disk. This 

reduces the number of expensive read/write operations. This is very useful with iterative 

algorithms, where the same dataset is used multiple times. Spark will attempt to store as much 

data in memory as possible. When data is too large to fit in memory, it will be spilled to disk. 

When this happens, performance can be degraded. 

Other advantages of Spark include: 

- Supporting functions other than simple Map and Reduce 

- Lazy evaluation of big data. This helps with the optimization of the overall data 

processing. 

- Library support for SQL queries, machine learning, streaming, and graph algorithms. 

- Interactive shell for Scala and Python. 
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5.4 Machine Learning 

Recently, and mostly due to the availability of big data based on the increase in social media 

usage and the heavy reliance on web-related applications, machine learning has been driven back 

to the front as a means of understanding all this data and transforming it to knowledge. Another 

contributor to the resurfacing of machine learning is the available processing power, the speed of 

processing and the low-cost of programming units.  

Machine learning is generally divided into two categories: supervised learning and 

unsupervised learning. Supervised learning consists of training the program on a pre-defined set 

of training examples, which then facilitate its ability to predict the outcome when given new 

data. Some example problems are classification and regression. Unsupervised learning consists 

of giving the program a bunch of data wherein the program must find patterns and relationships, 

and group the data accordingly. Some example problems are clustering, dimensionality reduction 

and association rule learning. 

Machine learning algorithms are of an iterative nature and have not been widely 

implemented on big data frameworks (such as Hadoop) previously, since such frameworks were 

unable to efficiently support iterations. However, this has changed with Spark. 

5.4.1 Machine Learning with Spark 

In 2007, [82] published a paper on which machine learning algorithms could be applied to a 

MapReduce framework. Since then developers at Hadoop set forth to try and implement these 

algorithms as a Hadoop based library called Mahout. They were successful in building the 

library; however, had issues with performance. 
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According to Spark developer Zaharia, Spark emerged from observing the problems that 

users had with the MapReduce model and trying to improve it [83]. More specifically, Zaharia 

stated that machine learning algorithms were the main bottleneck with Hadoop. Hadoop users at 

UC Berkeley were running machine learning algorithms on big data, and were unsatisfied with 

the slow runtime results, since their algorithms were performing several iterative scans over their 

data. Hence, Zaharia and his lab mates designed Spark, from what started as a solution to 

machine learning algorithms to covering other use cases beyond machine learning. 

MLlib is Spark’s machine learning library that runs on top of Spark core [80]. MLlib is as 

much as nine times faster than the disk-based Apache Mahout (Hadoop’s machine learning 

library). Even Mahout now has a Spark interface [84]. MLlib consists of learning algorithms and 

utilities, such as classification, regression, clustering, collaborative filtering, dimensionality 

reduction, and optimization primitives. 

5.5 Implementation 

This section will describe our implementation, more specifically, our design, our workflow, 

some of the problems we encountered, how they were solved and our limitations.  

The most widely used example for map-reduce applications, whether it be Hadoop or Spark, 

is the word count example. The user provides a file and the program outputs the distinct number 

of words along with how many times they occur in the file. We will use this example as a basis 

for our discussion.  

In order to use our tool, we only require two things from the user. First, we require the user 

to provide us with an input file that contains the original dataset. As previously mentioned, there 

are two ways in Spark to provide datasets: either loading it from a file, or applying a 
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parallelization transformation on a previously defined dataset. We have chosen the option to load 

the dataset from file for the simple reason that we do not want the user to write code (by 

generating the dataset) and then try to incorporate that with the code that we generate. We 

believe that would be both cluttered and error prone. The second thing we require from the user 

is to provide us with the tokenization granularity for parsing. Parsing is usually considered a 

tedious task; therefore we have chosen to abstract it from the user. Instead, we handle it 

internally ourselves, and the user does not need to know which Spark-specific operations to use. 

These are our only two main requirements. Other than that, the user can use our tool freely.  

To demonstrate our claim, we go back to the word count example. The code in Figure 

5-1shows the loading and parsing code that we generate based on the user providing us with the 

name of the text file, and that parsing granularity is strings separated by spaces. Therefore, the 

parsing (which in this case uses a flatMap transformation, but could use another 

transformation based on granularity) produces a new data set, labeled words, that contains the 

individual words. 

… 

JavaRDD<String> data = jsc.textFile("text.txt"); 

JavaRDD<String> words = data.flatMap( 

 new FlatMapFunction<String, String>() { 

 @Override 

 public Iterable<String> call(String input) { 

  return Arrays.asList(input.split(" ")); 

  }}).cache(); 

Figure 5-1: Loading and parsing code example for word count 
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The next part would be the code that performs the word count. One way to do that is based 

on the Spark documentation implemented as shown in Figure 5-2. The first transformation, 

which is a mapToPair transformation, creates a new dataset that contains a pair of the words 

and assigns a count of one to each. The second transformation is a reduceByKey. It looks for 

distinct keys and adds their values, hence obtaining the word count.  

… 

JavaPairRDD<String, Integer> ones = words.mapToPair( 

 new PairFunction<String, String, Integer>() { 

  @Override 

  public Tuple2<String, Integer> call(String s) { 

   return new Tuple2<String, Integer> (s, 1); 

   }}); 

JavaPairRDD<String, Integer> count = ones.reduceByKey( 

 new Function2<Integer, Integer, Integer>() { 

  @Override 

  public Integer call(Integer i1, Integer i2) {  

   return i1 + i2; 

   }}); 

… 

Figure 5-2: Word count code based on Spark implementation from documentation 

However, this is not the only way to implement word count. Using our tool, we have 

implemented it using two other methods:  the first performs a countByValue action on the 

‘words’ dataset, and the other performs a countByKey action on the ‘ones’ dataset as shown in 

Figure 5-3. This requires minimal user input. It also serves to show that our tool has limited 
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restrictions, and can support different implementations depending on the individual users’ lines 

of thought. 

//Alternative Method 1    

Map<String, Long> count = words.countByValue(); 

//Alternative Method 2    

Map<String, Object> count = ones.countByKey(); 

Figure 5-3: Alternative implementations for word count 

Table 5-1 represents our currently supported operations.  

Table 5-1: Currently supported operations 

 Supported operations 

Transformations  cogroup, distinct, filter, flatMap, groupBy, groupByKey, intersection, 

join, leftOuterJoin, rightOuterJoin, fullOuterJoin, keys, map, 

mapToPair, reduceByKey, sortByKey, subtractByKey, union, values 

Actions collect, collectAsMap, count, countByKey, countByValue, first, 

foreach, id, isEmpty, name, reduce, take, top, saveAsTextFile, 

saveAsSequenceFile, saveAsObjectFile 

 

Basically, our tool works similarly to the Weka interface: the user interface will gather 

information about the operations the user intends to perform and a code generator will create the 

necessary wrapper representations, which will make up the necessary constructs to produce the 

Spark code. Our approach can be divided into two main phases. Phase one consists of our 

internal representation, and translates into phase two which consists of the code generation, as 

shown in Figure 5-4. 
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Figure 5-4: Program phases 

5.5.1 Internal Representation 

There were several issues we needed to deal with in order to generate correct code that 

adhered to the types and dependencies. More specifically, we mention how we handled 

dimensions, types, constructs and parameters. 

5.5.1.1 Dimensions 

Most Spark transformations and actions run on datasets of any type. However, there are a set 

of operations that run on datasets that are of <key, value> pairs, such as for example, 

grouping by a key. These <K, V> pairs are represented using the Scala Tuple2 class and the 

corresponding dataset is represented by the JavaPairRDD class. In our implementation, we had 

to categorize these operations and set the dimensions of their datasets accordingly. A distinction 

is made whether transformations create a pair dataset or operate on one. Some transformations 

can operate on either a pair dataset or a single type dataset. For these operations that do and that 

also happen to require two datasets such as a union operation, we have to make sure that both 

datasets have the same dimension.  
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5.5.1.2 Types 

We had initially used the Spark Java API documentation [85] to obtain the various modifiers 

and return types for the operations. However, we have added on to that based on dataset 

dependencies to obtain the correct specific types. In order to do that, we generate a list of RDDs 

that is populated based on the dependencies created by the transformations. For example, in the 

documentation it states that the return type of a filter transformation is an RDD of any type 

<T>. In our implementation, we take this further into declaring what T actually represents 

(Integer, String, Tuple …) based on the source dataset. So for example, if a filter 

transformation is called on a dataset of type Integer, it will create a new filtered dataset of type 

Integer. For the same filter transformation, if the source dataset is a <K, V> pair, then the 

new dataset will also be a <K, V> pair. This relationship between the input types and the return 

types is different for each transformation and depends on the transformation purpose and 

description. A list of some transformations and their return types based on their source datasets 

can be found in Table 5-2. We also deduce types for actions similarly. The user does not need to 

know what the type of the variable is.  
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Table 5-2: Transformation input and output types 

Transformation Input type Return type 

cogroup dataset1 (K,V) & dataset2 (K,W)  (K, Tuple2<Iterable<V>, 

Iterable<W>>) 

distinct - input_type 

- (K,V)  

- input_type 

- (K,V)  

filter - input_type 

- (K,V)  

- input_type 

- (K,V)  

flatMap any input_type any input_type 

groupBy (K,V) (any input_type, Iterable<K>) 

groupByKey (K,V) (K, <Iterable<V>) 

intersection - input_type 

- dataset1 & dataset2 (K,V)  

- input_type 

- (K,V)  

join dataset1 (K,V) & dataset2 (K,W)  (K, Tuple2<V,W>) 

leftOuterJoin dataset1 (K,V) & dataset2 (K,W)  (K, Tuple2<V, Optional<W>>) 

rightOuterJoin dataset1 (K,V) & dataset2 (K,W)  (K, Tuple2<Optional<V>,W>) 

fullOuterJoin dataset1 (K,V) & dataset2 (K,W)  (K, Tuple2<Optional<V>, 

Optional<W>>) 

keys (K,V) K 

map any input_type any input_type 

mapToPair any input_type any (K,V) pair types 

reduceByKey (K,V)  (K,V)  

sortByKey (K,V) (K,V) 
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subtractByKey dataset1 & dataset2 (K,V)  (K,V)  

union - input_type 

- dataset1 & dataset2 (K,V) 

- input_type 

- (K,V)  

values (K,V) V 

 

5.5.1.3 Constructs 

Most transformations and a few actions require a function that defines what the operation 

should do. For example, to obtain a list of employees with salaries greater than $100,000, one 

might perform a filter transformation on an <employee_id, salary> dataset to 

produce that new dataset. This description is specified in a function that is passed as a parameter 

to the transformation. In this case, the function is a Boolean function, and will return the 

entries where salary >100,000. Several other types of functions are used in Spark, such as 

Function (which takes one input and generates an output), Function2 (which takes two 

inputs instead of one and generates an output), PairFunction (which takes one input and 

generates an output with the types of the keys and values), VoidFunction (which takes one 

input but does not return an output)…  

The creation of these functions is confusing to the user; therefore, we have tried to abstract 

that by inferring and detecting the types from code and variable dependencies whenever possible.  

For example, in the code for the ‘ones’ dataset shown in Figure 5-2, the user does not need to 

know which function to use, how its parameters are described, the types of its input dataset, or 

the call method it overrides. All the user needs to do is supply us with the information in Table 

5-3. 
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Table 5-3: User information needed 

Out Type Operation 

String s 

Integer 1 

 

Another issue we had to handle was that in some cases users might lose track of types 

pertaining to which datasets, and might specify wrong types to transformations or actions whose 

types we are able to either know before-hand or based on the source dataset. Therefore, we 

implemented an error handling mechanism to automatically infer these types when possible and 

present them to the user. For example, the filter transformation requires a Boolean function; 

therefore we preload that value in our code as a precautionary measure and will pass it to the 

function even if the user mistakenly specifies it to be an Integer for example. This is similarly 

done for all the transformations and actions where the inputs to the functions are determined by 

the source dataset or by the operation itself, such as for instance reduce and reduceByKey. 

Another form of error handling that we deal with and is very important for correct program 

execution is making sure that an action is eventually called in the application. As previously 

stated, transformations are lazy and require actions for them to be executed. Thus, if a program 

does not at some point create an action that chains the transformations, then nothing will happen. 

To catch this potential slip, we make sure to implement a ‘collect’ action (which simply fetches 

the RDD as an array to the driver program) in case none is specified by the user.  
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5.5.1.4 Parameters 

Transformations and some actions require input parameters for execution. We mention 

specifically those transformations that operate on two datasets, such as joins, unions, 

intersection…These transformations are different than those that operate on solely one dataset in 

that special care needs to be given to how their types are assigned. For example, to perform a 

join on two datasets, first they both have to be <K, V> pair datasets. In addition to that, both 

datasets should have the same type of key; otherwise a join cannot be performed. 

5.5.2 Code Generation 

Our tool is written in Java and consists of four major classes: SparkRDD, 

SparkTransformation, SparkFunction, and SparkAction. The SparkRDD class creates the base 

RDD objects, which are the datasets. It sets their dimension and their input types. In what 

follows we will use the terms RDD and dataset interchangeably. A SparkTransformation creates 

a SparkRDD object based on a transformation and a source dataset. To achieve this, it 

implements a base class that extends two other template files: one that implements a parsing 

transformation, and one that implements a transformation that requires two input datasets. A 

SparkAction creates a variable that is the result of an operation on a dataset. Some 

transformations and actions require a function as a parameter, and that is represented by the 

SparkFunction class. We show a simplified class diagram in Figure 5-5. 
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Figure 5-5: Spark tool class diagram 

Our workflow consists of a series of operations that are performed based on a user input file 

representing the initial data. The entry point of our tool is the user-supplied data file. A typical 

flow of execution would start off by loading a file from storage (HDFS for e.g.) into the 

application. The data now is represented in a dataset wherein each entry is populated with a 

single line from the data file. The next step consists of parsing the data. Since Spark, similar to 

MapReduce, originally splits the data from a file based on a new line, in most cases, we will 

need to parse the data before using it. Now that the data is parsed, it can be operated on by using 

either transformation calls or action calls. A transformation will require user input to detect 

dependencies, form a function or supply a parameter, and will generate a new dataset that will be 

added to the dataset repository. An action will require user input to detect a source dataset, form 

a function in some cases or supply a parameter, and will generate a variable (if the action does 
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not have a void return type)  that will be added to the variable repository. There is no limit or 

order (except dependency) on creating transformations and actions, though transformations are 

typically chained and actions are called at the end. Our workflow can be summarized in Figure 

5-6. 

 

Figure 5-6: Spark tool workflow 

5.5.3 Machine Learning Specific  

The reason that machine learning cannot be generalized as other map-reduce applications is 

due to the fact that machine learning in Spark uses a specific library (mLlib) with its own set of 

functions and constructs. In some cases it can, but will not be as efficient as using the library, 

and the documentation advises against it.  

5.5.3.1 Classification 

Typically, classification problems follow the following procedure: train - validate - test. The 

training and validating phases are done on labeled data. Usually, training data is split (70% 
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training and 30% validating)
5
. So the user gets to train the data in order to create a model; then 

validates the model using the other part of the labeled data. This is all done before the actual 

testing (where typically labels are unknown). Validation also serves to justify whether the model 

is a good match for the given data set. After generating the model, the testing data is applied to 

obtain the prediction results. 

The generated Spark code will produce the following: 

- Load the training set 

- Parse the data into features and labels 

- Calculate the number of features and labels 

- Split the data into training and validation sets 

- Train the model 

- Predict and validate 

- Calculate prediction accuracy 

- Load the test data 

- Parse the test data 

- Predict the output 

- Return result to user with a percentage accuracy 

Currently, the models in Table 5-4 along with their corresponding default values are 

supported
6
. We have provided most of the classification models that Spark implements and some 

of the regression models. We believe that for beginners to machine learning, this is quite a 

comprehensive list and should cover most of the cases. 

                                                 
5 We have not mentioned cross-validation since Spark’s mLlib does not support it. 
6 The default values are taken from the examples in the Spark documentation.  
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Table 5-4: Supported classification models and their default parameters 

Model Default values 

Naive Bayes lambda = 1.0 

LinearRegressionWithSGD number of iterations = 100 

SVMWithSGD number of iterations = 100 

LogisticRegressionWithLBFGS  

DecisionTree - impurity = "gini" 

- maximum depth = 5 

- maximum number of bins = 32 

RandomForest - impurity = "gini" 

- maximum depth = 5 

- maximum number of bins = 32 

- number of trees = 3 

GradientBoostedTrees - boosting strategy number of iterations = 3 

- boosting strategy maximum tree depth = 5 

 

5.5.3.2 Clustering 

The clustering problem is slightly less complicated to define than the classification problem.  

The generated Spark code will produce the following: 

- Load the training set 

- Parse the data 

- Cluster the data into 'k' classes 
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- Evaluate clustering by computing within set sum of squared errors 

- Return the cluster centers to the user 

Currently, only K-Means is supported. It is however the most popular algorithm supported by 

Spark for clustering. 

5.6 Graphical User Interface 

In order to get the appropriate feedback from the user, and to be able to better display the 

steps needed to generate the Spark code, an interactive graphical interface was developed. The 

tool automatically generates Spark code based on minimal user-input, and can be divided into 

two main parts: a part that generates Spark code for machine learning algorithms, and another 

part that generates Spark code for general purpose applications. The two parts share a common 

functionality, the Spark-specific parameters. This section will first discuss the common 

constructs for both parts, and then delve into the specifics of generating machine learning code 

and generating general purpose code.  

5.6.1 Spark Parameters 

Some Spark parameters will need to be provided by the user. These values are needed in 

order to run the generated code in a Spark environment.  

- Master: This is the master configuration running Spark. If run on a cluster, then master 

is a Spark, Mesos or YARN cluster URL. If run locally, then master can be set to 

local. Additionally, master can be set to local[n] where n is the number of 

threads. 
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- Partition: This is the number of partitions that Spark uses to distribute the dataset. Spark 

will run one task for each partition of the cluster. Typically, the user will want 2-4 

partitions for each CPU in the cluster. Normally, Spark tries to set the number of 

partitions automatically based on the cluster. To apply this default setting in the tool, the 

user can set the value for partition as the default keyword. Otherwise, it can be 

manually set it by specifying the required number of partitions.  

5.6.2 Spark Machine Learning Code Generation 

Our tool explores the problems of classification and clustering. In addition to setting the 

Spark parameters mentioned above, the user will need to specify some application-specific 

variables. A snapshot of the machine learning part of our tool is shown in Figure 5-7. 
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Figure 5-7: Tool snapshot - machine learning 

5.6.2.1 Classification Variables and Models 

In order for the code to be generated correctly, the following variables will need to be 

specified: 

- file path for the training data 

- percentage upon which to split the training and validation data in the input file 

- model type: which classification model to use 
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- class index: location of the label in the file 

- file path for the testing data 

5.6.2.2 Clustering Variables and Models 

The following variables will need to be specified: 

- file path for the training data 

- model type: which clustering model to use 

- k: number of clusters 

- number of iterations to run the algorithm 

5.6.3 Spark General-Purpose Code Generation 

This part of the tool generates general purpose Spark code based on user input and 

interaction. It assumes that the user is familiar with at least some sort of programming language 

and is capable of correctly writing basic code statements. 

The tool can be divided into five main sections, which constitute the design flow: spark 

parameters, file handlers, datasets and variables, operations consisting of transformations and 

actions, and feedback.  A snapshot of the general-purpose part of our tool is shown in Figure 5-8. 

Spark parameters will not be discussed since they are similar to those mentioned in the previous 

section. 
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Figure 5-8: Tool snapshot – general purpose 

5.6.3.1 File Handlers 

The first level of entry to the program is the input file. It contains the original user data that 

requires modification and/or analysis. The user needs to specify the file path and the name of the 

dataset into which to load the data. Clicking on ‘Load’ will create the code to load the data file 

into a newly created dataset that will be displayed to the user in the "Datasets" section. 

The second part consists of parsing the dataset. The user needs to specify the data type, the 

separator characters upon which the data is split, and the name of the dataset to parse the data 
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into. Additionally, the user needs to specify on which dataset to perform the parsing. Typically, it 

is the one loaded from file. The user can just click on its name from the ‘Datasets’ section. After 

clicking on ‘Parse’, the parsing code is generated and the new dataset is added to the list. The 

snapshot from Figure 5-9 shows how the loading and parsing of the word count example from 

Figure 5-1 is constructed. 

 

Figure 5-9: Word count example: loading and parsing 
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5.6.3.2 Datasets and Variables 

This section consists of two lists that are dynamically populated:  

- Datasets: once a new dataset is created, it is added to the list. The user should click on an 

item from the list to specify the source dataset to a transformation or an action. 

Information about that dataset will also be displayed.  

- Variables: once a new variable is created by an action, it is added to a list. 

5.6.3.3 Operations 

This section handles the creation of transformations and actions. It also includes support and 

help for users who are not sure about which transformation or action to use, what parameters are 

required and how to use a certain operation. 

The section starts off asking the user what he/she wants to do. The user can select an 

operation (either a transformation or an action) from a drop-down menu. Once that is selected, 

the user is prompted to select which transformation or which action he/she will want to perform. 

Some instructions as to what parameters this operation needs will be displayed in the 

'Feedback' section. Now the user knows exactly what he/she will need to input. Part of the 

instructions displayed in the 'Feedback' section will ask the user to make sure to select a source 

data set from the 'Dataset' section. Doing so will provide some information about the source 

dataset that the user might find helpful in order to correctly create the operation.  We show this 

in Figure 5-10. 
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Figure 5-10: Example of operations and corresponding feedback 

In addition to that, there is also a 'Help' button. Clicking it will display the definition of a 

transformation or action, some helpful tips and an example of how to use it. 

In the case where a transformation has been selected, a table that the user might need to fill 

in is dynamically generated depending on the selected transformation. In addition to that, there is 

a field to enter the name of the other dataset when the transformation requires two datasets. For 

example, if the user chooses a 'map' transformation and chooses to call the generated dataset 
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'map_out', and has selected the source dataset 'testSet', which is for example of type String, then 

a table is displayed as such: 

In Type In Name Out Type Out Name Operation 

String input    

 

Now assume that the user wants to perform a map that returns the length of a string. Then 

he/she will need to fill out the fields of the table as such: 

In Type In Name Out Type Out Name Operation 

String input Integer len input.length() 

 

This will generate the code in Figure 5-11: 

 

JavaRDD<Integer> map_out = testSet.map(new Function<String, Integer>()             

           @Override 

           public Integer call(String input) { 

                  Integer len = input.length(); 

                  return len; 

           } 

       }); 

Figure 5-11: Map example code 

In case an action is selected, the user must select a variable name for the action; that is, what 

the user wants the operation to be identified as. Some actions require a parameter, and the user is 

instructed to enter a value for that in the 'Feedback' section. Once all inputs are specified, the 

user can click the 'Create' button, and the code will be generated, and the variable name will be 
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added to the list. Other actions (such as reduce) will require a function to be filled in the table. 

Note that some actions (such as saveToFile or foreach) are void, and hence do not return a 

variable. Therefore, no variable name will be displayed in the 'Variable' section if any of these 

actions are chosen. 

Once the user clicks on the 'Create' button, the code for creating a dataset or a variable is 

generated and the new dataset or variable is added to the corresponding list. We show how the 

word count reduceByKey function from Figure 5-2 is constructed in Figure 5-12. 

 

Figure 5-12: Word count example - reduceByKey transformation 
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5.6.3.4 Feedback 

This section serves two purposes. First, it provides instructions to the user. It urges the user 

to specify the correct fields for his/her chosen operation. When the user selects a transformation 

or an action from the drop-down menu, this section will instruct the user as to what else is 

needed as input.  

Second, it provides feedback to the user by displaying what has been created. When a 

transformation is created, the dataset name and types will be displayed to the user. When an 

action is created, the corresponding variable and its type are displayed to the user. 

5.6.3.5 Error Handling 

Our tool provides ways for handling potential compile-time errors that might be generated 

based on bad user input. In addition to the caught pitfalls that we have previously mentioned, we 

account for the following cases.  

One issue that we think might occur is that the user chooses to perform a transformation or 

action that requires a source dataset to consist of <key, value> pairs on a dataset that does 

not represent a pair. Syntactically, that would be correct; however, this will generate an error 

while compiling. Therefore, if this happens, a warning message is given to the user to rectify the 

error. 

Other issues include the user not entering all the appropriate information, and that is handled 

by the interface. 
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5.7 Conclusion 

We have presented a tool that facilitates the generation of Spark code for the core and the 

mLlib libraries by providing a user-friendly, intuitive and interactive graphical user interface. 

While it does not support all the transformations and actions API calls since it is a proof of 

concept and not a commercial tool, we believe it covers most of what we believe are the most 

widely used and needed operations, especially for our intended users. We have extensively tested 

our tool by running the generated code under a Spark environment and have verified the 

correctness of our results. In the future, we hope to include more of the operations that have not 

been yet handled. Also, we hope to add more features for debugging purposes. 
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Chapter 6: Conclusion 

6.1 Summary 

Parallel computing has been used to model many difficult problems in science and 

engineering. Such fields include computer science, mechanical engineering, circuit design, 

geology, seismology, molecular sciences, genetics, physics…As well, several commercial 

applications such as in data mining, web-based services, medical imaging and diagnosis, 

financial and economic modeling, virtual reality, among many others, require processing of large 

amounts of data in a usually complex manner. The development of faster and more efficient 

parallel systems has stemmed from this need to satisfy the ever-increasing and growing body of 

data. In addition to being better suited to model real world systems compared to serial computing 

by being able to solve larger and more complex problems, parallel computing has the following 

advantages: (i) it can save both money and time since tasks will execute faster and concurrently, 

(ii) parallel systems can be built from cheap, commodity hardware, (iii) it can take advantage of 

non-local resources such as the internet or a wide area network. 

Parallelism though comes at a price. It is not trivial to write parallel code. The process is 

tedious, complex, and error prone. Programmers have to worry about the environment, 

communication, concurrency, synchronization and efficiency. It is also somewhat counter 

intuitive to someone who is used to serial programming.   

In this dissertation, we have presented methods to facilitate the parallelization of high 

performance code in order to alleviate the burdens associated with parallel programming. 

Making parallel computing easier is not a new endeavor. Several works have been successful in 

achieving this. However, it has always been left to the users to either locate potential code 
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fragments that could be parallelized, or specify pragmas, or learn new parallel and complicated 

APIs. In contrast, our approach does not require users to perform any of the mentioned tasks. 

Our method automatically detects a user’s single threaded function call to search for a pattern 

using Java’s standard regular expression library, and replaces it with our own data parallel 

implementation using Java bytecode injection. Our approach facilitates parallel processing on 

different platforms consisting of shared memory systems (using multithreading and NVIDIA 

GPUs) and distributed systems (using MPI and Hadoop). Our implementation produces correct 

results, is transparent to users, and reduces execution time. In addition to that, we have presented 

a tool that automatically generates Spark Java code from minimal user-supplied inputs. Using 

our tool, Spark users do not need to learn the complicated Spark API in order to write 

applications. Our tool is easy to use, interactive and offers Spark’s native Java API performance. 

In Chapter 1, we provided a summary on parallel computing, introduced our proposal, and 

stated our objectives and development process. 

In Chapter 2, we further elaborated on the problem by discussing pattern matching and the 

motivation behind choosing it as an application to validate our work. We also discussed Java 

bytecode and how injection can be done using the ASM library. Then, we showed how our 

method works in a multithreaded environment, and reported the results we obtained, which show 

a somewhat logarithmic decrease in execution time with respect to the number of threads. 

In Chapter 3, we discussed how our method works in a GPGPU environment. We surveyed 

the previous work done in this area and showed how JNI was used to offload Java programming 

on NVIDIA GPUs that only support CUDA. We used an external library as opposed to the Java 
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standard library to perform pattern matching on the GPU. Our results show a substantial decrease 

in execution times. 

In Chapter 4, we implemented our method in a distributed environment using MPI. We used 

the Java bindings for the Open MPI implementation. We tested our method on several 

combinations of processes and virtual machines, and as predicted, our results consisted of 

decreased execution times. We also introduced Hadoop since it has been widely used recently in 

big data computing for it provides better storage and data management and computation 

speedups. We compared a Hadoop implementation to our multithreaded approach. However, we 

did not attempt a Hadoop implementation for our system because of the way data is shuffled 

around in HDFS. 

In Chapter 5, we presented a tool that facilitates the generation of Spark Java code for the 

core and the mLlib libraries by providing a user-friendly, intuitive and interactive graphical user 

interface.  

We have proposed a series of methods that can facilitate the parallelization of high 

performance code. We now briefly discuss how these methods compare with respect to each 

other and provide some advantages and disadvantages as to which approach might be of better 

benefit. Intuitively, multithreading might be considered the simplest and less costly approach 

since it does not require any extra hardware. However, to get good timing results, we will need 

high end CPUs that can also run several threads concurrently. Another disadvantage of 

multithreading is the lack of scalability between the memory and the CPU(s) which might result 

in access time degradation and lack of data coherence. In addition to that, parallelism is limited 

by the number of threads and improvement is negligible and could even be degraded beyond 
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that. In contrast, distributed systems can scale endlessly. One can always add a cheap node to the 

existing cluster to expand the span of computation. Communication overhead is considered 

minimal in computation extensive applications. However, there is always the issue of integration 

to be considered. GPUs on the other hand seem to be a middle solution. Currently, one can 

purchase mid-range GPUs for a minimal cost. In addition to that, their massive threading is very 

effective for CPU bound applications. Their disadvantage is that they perform poorly for I/O 

bound applications, and that they are complex to program. 

6.2 Suggestions for Future Work 

When we first started researching ways to facilitate parallelizing existing Java programs that 

perform pattern matching, our aim was quite ambitious. Instead of proposing to end-users several 

shared-memory and distributed methods as we have done, we had originally intended to provide 

a smart system that could probe the computing environment, detect significant parameters, and 

automatically replace the sequential desired Java library with a parallel implementation that 

provides optimal performance. Such a model is a suggestion for future work. The goal would be 

to build a model that is able to select a hardware architecture best suitable, in terms of execution 

time, to run a parallelized version of a selected Java library detected in a user’s code by using 

bytecode manipulation. Based on analyzing performance measurements, input size, number of 

threads and cores, shared memory, number of GPU registers, available hardware, speed and 

bandwidth of the network, among other potential application and system parameters, the model 

will be able to predict which approach will give the best optimization with respect to execution 

time. 
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We have surveyed the literature and similar techniques can be classified into two approaches: 

an empirical approach and an analytical approach. The empirical approach such as that used in 

[86] is based on a training set. However, the application needs to be run at least once to obtain 

predictions. The analytical approach such as that used in [87] is based on statistical analysis. 

However, it imposes some challenges due to out-of-order execution, speculation, and 

prefetching. We provide a quick summary to some of the works in this area. In [86], Qilin is an 

automatic and adaptive technique that maps computations to the available processing elements in 

a heterogeneous environment. It is dynamic in that it can adjust to changes in the runtime 

environment and it focuses on CPU and GPU platforms. Programmers use the Qilin custom API 

to indicate to the complier the section of the code to be parallelized. In [87], the authors propose 

the MATE-CG system which is a map-reduce-like system that aims to accelerate map-reduce 

applications on a heterogeneous cluster. Their framework ports the generalized reduction models 

on hybrid CPU-GPU clusters to parallelize iterative data-intensive applications. They have also 

developed an auto-tuning strategy based on analytical models and offline training to identify the 

best partitioning parameter for heterogeneous execution, and to determine the best CPU/GPU 

chunk sizes that will optimize performance. In [88], the authors propose Merge, a framework 

that can automatically distribute computation across heterogeneous systems. The framework 

consists of a high-level parallel programming language, a predicate-based library system, and a 

compiler and runtime. In [89], the authors propose Dandelion, a model for heterogeneous 

systems where execution can be performed on CPUs, GPUs, and FPGAs. Programmers write 

sequential code in C# or F# (along with LINQ constructs) and the system executes it on the 

available parallel resources. In [90], the authors propose DryadLINQ,  a system that can 
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automatically transform parallel sections of a sequential program written with LINQ constructs 

into a distributed model which is then executed on Dryad (large computing cluster).  
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