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Abstract

Recent years have witnessed a significant growth in wireless communication and net-

working due to the exponential growth in mobile applications and smart devices,

fueling unprecedented increase in both mobile data traffic and energy demand. A-

mong such data traffic, real-time data transmissions in wireless systems require certain

quality of service (QoS) constraints e.g., in terms of delay, buffer overflow or pack-

et drop/loss probabilities, so that acceptable performance levels can be guaranteed

for the end-users, especially in delay sensitive scenarios, such as live video trans-

mission, interactive video (e.g., teleconferencing), and mobile online gaming. With

this motivation, statistical queuing constraints are considered in this thesis, imposed

as limitations on the decay rate of buffer overflow probabilities. In particular, the

throughput and energy efficiency of different types of wireless network models are

analyzed under QoS constraints, and optimal resource allocation algorithms are pro-

posed to maximize the throughput or minimize the delay.

In the first part of the thesis, the throughput and energy efficiency analysis for

hybrid automatic repeat request (HARQ) protocols are conducted under QoS con-

straints. Approximations are employed for small QoS exponent values in order to

obtain closed-form expressions for the throughput and energy efficiency metrics. Al-

so, the impact of random arrivals, deadline constraints, outage probability and QoS

constraints are studied. For the same system setting, the throughput of HARQ system

is also analyzed using a recurrence approach, which provides more accurate results for

any value of the QoS exponent. Similarly, random arrival models and deadline con-

straints are considered, and these results are further extended to the finite-blocklength

coding regime.



Next, cooperative relay networks are considered under QoS constraints. Specifical-

ly, the throughput performance in the two-hop relay channel, two-way relay channel,

and multi-source multi-destination relay networks is analyzed. Finite-blocklength

codes are considered for the two-hop relay channel, and optimization over the er-

ror probabilities is investigated. For the multi-source multi-destination relay network

model, the throughput for both cases of with and without CSI at the transmitter sides

is studied. When there is perfect CSI at the transmitter, transmission rates can be

varied according to instantaneous channel conditions. When CSI is not available at

the transmitter side, transmissions are performed at fixed rates, and decoding failures

lead to retransmission requests via an ARQ protocol.

Following the analysis of cooperative networks, the performance of both half-

duplex and full-duplex operations is studied for the two-way multiple input multi-

ple output (MIMO) system under QoS constraints. In full-duplex mode, the self-

interference inflicted on the reception of a user due to simultaneous transmissions

from the same user is taken into account. In this setting, the system throughput

is formulated by considering the sum of the effective capacities of the users in both

half-duplex and full-duplex modes. The low signal to noise ratio (SNR) regime is con-

sidered and the optimal transmission/power-allocation strategies are characterized by

identifying the optimal input covariance matrices.

Next, mode selection and resource allocation for device-to-device (D2D) cellular

networks are studied. As the starting point, transmission mode selection and resource

allocation are analyzed for a time-division multiplexed (TDM) cellular network with

one cellular user, one base station, and a pair of D2D users under rate and QoS

constraints. For a more complicated setting with multiple cellular and D2D users,

two joint mode selection and resource allocation algorithms are proposed. In the

first algorithm, the channel allocation problem is formulated as a maximum-weight

matching problem, which can be solved by employing the Hungarian algorithm. In



the second algorithm, the problem is divided into three subproblems, namely user

partition, power allocation and channel assignment, and a novel three-step method is

proposed by combining the algorithms designed for the three subproblems.

In the final part of the thesis, resource allocation algorithms are investigated

for content delivery over wireless networks. Three different systems are considered.

Initially, a caching algorithm is designed, which minimizes the average delay of a

single-cell network. The proposed algorithm is applicable in settings with very general

popularity models, with no assumptions on how file popularity varies among different

users, and this algorithm is further extended to a more general setting, in which the

system parameters and the distributions of channel fading change over time. Next, for

D2D cellular networks operating under deadline constraints, a scheduling algorithm is

designed, which manages mode selection, channel allocation and power maximization

with acceptable complexity. This proposed scheduling algorithm is designed based on

the convex delay cost method for a D2D cellular network with deadline constraints

in an OFDMA setting. Power optimization algorithms are proposed for all possible

modes, based on our utility definition. Finally, a two-step intercell interference (ICI)-

aware scheduling algorithm is proposed for cloud radio access networks (C-RANs),

which performs user grouping and resource allocation with the goal of minimizing

delay violation probability. A novel user grouping algorithm is developed for the user

grouping step, which controls the interference among the users in the same group,

and the channel assignment problem is formulated as a maximum-weight matching

problem in the second step, which can be solved using standard algorithms in graph

theory.
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Chapter 1

Introduction

1.1 Quality of Service (QoS) Requirements

Recent years have witnessed significant growth in wireless communication and net-

working due to the exponential growth in mobile applications and smart devices, fu-

eling unprecedented increase in both mobile data traffic and energy demand. Among

such data traffic, real-time data transmissions in wireless systems require certain QoS

constraints e.g., in terms of delay, buffer overflow or packet drop/loss probabilities,

so that acceptable performance levels can be guaranteed for the end-users, especially

in delay sensitive scenarios, such as live video transmission, interactive video (e.g.,

teleconferencing), and mobile online gaming. With this motivation, we consider sta-

tistical queuing constraints in this thesis, imposed as limitations on the decay rate

of buffer overflow probabilities. In [1], effective bandwidth was introduced as a mea-

sure of the system throughput under such statistical queuing or QoS constraints.

More specifically, effective bandwidth has been defined as the minimum constant

transmission rate required to support time-varying arrivals while the buffer overflow

probability decays exponentially with increasing overflow threshold. In [2], effective

bandwidths of departure processes with time-varying service rates were investigated,
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and the theory of effective bandwidth was employed to analyze the performance of

high speed networks in [3]. Later, effective capacity was defined in [4] as a dual con-

cept to characterize the maximum constant arrival rates that can be supported by

time-varying wireless transmission rates again under statistical queuing constraints.

1.2 Literature Review

1.2.1 Throughput and Energy Efficiency of Hybrid Automat-

ic Repeat Request (HARQ) Protocols under QoS Con-

straints

In wireless communications, higher throughput and better energy efficiency are two

key considerations and have become critical performance metrics due to the exponen-

tial growth in mobile applications and smart devices, fueling unprecedented increase

in both mobile data traffic and energy demand. More specifically, with this growth

coupled with the availability of only limited battery power for mobile devices, rising

energy costs and growing concerns on environmental impact, the analysis of the ener-

gy efficiency and green operation in wireless systems have become increasingly more

important in recent years. At the same time, throughput and energy efficiency are not

the only considerations. In a wireless propagation environment in which noise, fading,

path loss, multipath propagation and Doppler frequency shift are being experienced,

reliability is equally important with strong implications on energy efficiency.

Due to the challenges in wireless systems, many advanced techniques have been

developed to address these concerns, and automatic repeat request (ARQ) and for-

ward error correction (FEC) are two types of widely used schemes applied in order

to ensure reliable delivery of data in such challenging wireless channel conditions.

While ARQ facilitates the retransmission of erroneously received data packets with
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feedback from the receiver to the transmitter, FEC schemes enable the correction

of transmission errors without retransmission by adding redundancy to the data. In

order to provide better error correction performance and lower implementation cost,

ARQ and FEC schemes are combined to develop hybrid ARQ (HARQ) [5].

HARQ protocols have the ability to increase the probability of successful transmis-

sion and adapt the transmission rate to time-varying channel conditions with limited

channel side information (CSI) at the transmitter [6]. In HARQ with chase com-

bining (HARQ-CC) and HARQ with incremental redundancy (HARQ-IR) schemes,

the corrupted packets are not deleted but rather stored and combined in the nex-

t transmission period. In particular, better adaptation to channel conditions and

higher throughput can be achieved by employing HARQ-IR. A detailed study on the

performance of HARQ-CC and HARQ-IR protocols was provided in [7], in which the

throughput was characterized following an outage probability analysis. The through-

put of HARQ protocols was studied from an information-theoretic perspective and it

was shown that the throughput of HARQ-IR could approach the ergodic capacity for

large transmission rates with only limited CSI. More recently, performance of HARQ

in Rayleigh block fading channels was investigated via a mutual information-based

analysis in [8], and long-term average rates achieved with HARQ were characterized

under constraints on the outage probability and the maximum number of HARQ

rounds. A similar throughput analysis of HARQ schemes subject to an outage con-

straint was also conducted in [9]. And in [10], the tradeoff between energy efficiency

and transmission delay in wireless multiuser systems employing HARQ-IR was s-

tudied. The energy efficiency of HARQ protocols has been addressed recently. For

instance, the energy efficiency of HARQ-CC and HARQ-IR schemes for delay insen-

sitive systems was studied in [11], and the energy efficiency achievable by HARQ

schemes with optimized code rate is studied in [12].

In the presence of QoS constraints, it is critical to evaluate the performance of
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HARQ schemes since they involve retransmissions. With this motivation, the authors

in [13] analyzed the impact of different power allocation schemes on energy per bit

and effective transmission delay of HARQ-IR in a multiuser downlink channel. More-

over, the recent work in [14] mainly focused on the performance comparison between

adaptive modulation and coding (AMC) and HARQ-IR in terms of energy efficiency

under QoS constraints. More recently, the authors of [15] characterized the effective

capacity of retransmission schemes through a recurrence relation approach.

1.2.2 Throughput of Cooperative Relay Networks under QoS

Constraints

In recent years, the traffic load of wireless networks has grown significantly, primar-

ily due to the exponential increase in multimedia traffic driven by applications on

smart mobile devices. Many wireless communication schemes have been proposed to

boost the transmission speed, reduce latency, enhance reliability and improve ener-

gy efficiency. One such strategy is cooperative relaying, which can greatly enhance

the performance for long distance transmissions among users and improve resource

efficiency.

Two-hop relay channel is a basic cooperative relay network structures. Several

studies have applied the effective capacity analysis to two-hop wireless relay chan-

nels. In [16], the power allocation policies in relay networks under QoS constraints

were analyzed. However, no buffer constraints were imposed at the relay node in this

work. In [17], the effective capacity of two-hop relay channel was investigated under

queueing constraints at both the source and relay nodes. In [16] and [17], it was as-

sumed that the instantaneous transmission rates were given by the Shannon capacity

achieved with channel codes with blocklengths growing without bound. In [18] and

[19], the coding rate expressions in finite blocklength regimes were studied. This has

led to interest in the analysis of performance attained with finite blocklength codes.
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For instance, the effective capacity of single-hop channels was characterized in [20]

under finite blocklength assumption. Recently, performance of relaying in the finite

blocklength regime was studied in [21] and [22] without considering any queueing

constraints.

Multiple-access relay channel is a more general model, in which multiple users

transmit to a destination node with the help of a single relay node. The throughput

of multiple-access relay networks have been analyzed by several studies. In [23], the

achievable rates of Gaussian orthogonal multi-access relay channels were investigated,

which were also proved to have a max-flow min-cut interpretation. The throughput

region of the same system model was also given in [24] with superposition block

Markov encoding and multiple access encoding. Further analysis was also provided

in [25], in which the optimal resource allocation strategy was studied to achieve the

maximum sum rate. In [26], the system throughput region of a generalized multi-

ple access relay network, which includes multiple transmitters, multiple relays, and

a single destination, was studied. In all cases, with the help of relay nodes, the

channel conditions effectively improve for long distance wireless communication, and

performance enhancements are realized.

A further generalization of multiple-access relay channels is to introduce multiple

destination nodes. These models are referred to as multi-source multi-destination

relay networks. Multi-source multi-destination relay network model can be seen as a

combination of multiple-access, broadcast, and two-hop relay channels, and it can be

used to address scenarios in which multiple pairs of users simultaneously communicate

with the help of a relay node. A basic practical example of these models is cellular

operation in which multiple mobile users within a cell communicate with each other

through a base station, which essentially acts as a relay unit between the source and

destination nodes1. Such networks have been analyzed in several recent studies. In

1Moreover, in LTE-Advanced cellular standards, relaying and coordinated multi point (CoMP)
operation are introduced to provide enhanced coverage and capacity at cell edges, and multi-user
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[27], the throughput of the amplify-and-forward multi-source multi-destination relay

network was studied, when the relay was equipped with multiple antennas. Based on

this work, the same authors studied the impact of imperfect CSI in [28], and proposed

an antenna selection algorithm to improve the performance. In [29], the joint power

optimization was investigated for the multi-source multi-destination relay network,

and in [30], network coding was applied to this type of network, and the system

performance was evaluated.

Recently, effective capacity analysis has been applied to multiuser and coopera-

tive relay systems. For cooperative relay systems, the authors in [16] studied efficient

resource allocation strategies over wireless relay channels under statistical QoS con-

straints by employing effective capacity as the throughput metric. However, in this

work, either no buffer was needed at the relay if amplify-and-forward (AF) strategy

was employed or no relay buffer constraints were imposed when decode-and-forward

(DF) was used. In [31], queueing analysis was conducted for a butterfly network

when the arrivals were modeled as a two-state Markov-modulated fluid process, and

network coding or classical routing was performed by the intermediate relay node.

In this study, all links were assumed to be time-invariant. Therefore, static rather

than fading channels were considered. For multi-user systems, in [32], the effective

capacity region of the multiple-access fading channel under queueing constraints was

analyzed, and this result was extended to characterize the throughput region of the

multiple-access channel with Markov arrivals in [33]. The effective capacity region

of the fading broadcast channel and optimal power allocation policies were studied

in [34]. These multi-user studies addressed single-hop channels and did not consider

cooperative schemes.

relay models can be realized in these operation modes as well.
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1.2.3 Throughput and Mode Selection in Two-way Multiple-

Input Multiple-Output (MIMO) Systems under Queu-

ing Constraints

Recently, full-duplex two-way communication has attracted much attention due to

its potential to significantly improve the spectrum efficiency by allowing two users to

communicate simultaneously over a single channel. A survey of the key concepts, chal-

lenges and opportunities in full-duplex wireless communications was provided in [35].

In particular, self-interference cancelation is a critical concern in full-duplex wireless

systems, which has been addressed by several recent studies. For instance, in [36],

multiple schemes in full-duplex MIMO relays have been studied for loopback self-

interference cancelation, including natural isolation, time-domain cancelation, and

spatial suppression. It is important to note that self-interference cancelation is gen-

erally imperfect and the residual interference is considered to be proportional to the

transmitted signal of the same node. In addition to self-interference management,

there are numerous works analyzing the performance in full-duplex two-way channel-

s in various settings. Among different models, two-way MIMO systems have been

highlighted as they can further boost the system throughput by employing multiple

antennas for transmitting and receiving. In [37], the influence of spatial fading cor-

relation was investigated in two-way MIMO systems, and strategies were proposed

to reduce the sensitivity to spatial fading correlation. In [38], the impact of chan-

nel estimation error was studied for full-duplex two-way networks, and closed-form

expressions were derived for the ergodic capacity. Also, Effective capacity has been

studied extensively for various different wireless channel models in order to deter-

mine the system throughput under such statistical queuing constraints. For instance,

in [39], the effective capacity of a one-directional point-to-point MIMO systems was

investigated.

7



1.2.4 Mode Selection and Resource Allocation for Device-to-

Device (D2D) Cellular Networks

The concept of D2D communication underlaid with cellular networks has attracted

much interest recently. D2D communication enables users to communicate directly

without going through the base station, and reuse the same spectral resources with

cellular users. In [40], the advantages of D2D communications were studied, and it

was shown that it could greatly enhance the spectral efficiency and lower the latency.

A comprehensive overview was provided in [41], where different modeling assumptions

and key considerations in D2D communications were detailed.

Mode selection and resource allocation are two key problems in D2D communi-

cation, which has attracted much interest. In mode selection, each D2D user has

to decide whether to transmit directly using a dedicated spectrum or by sharing the

spectrum with cellular users in the D2D mode, or transmit in the same way as cellular

users via a D2D two-hop channel through the base station in the cellular mode (which

is essentially a non-D2D mode). In resource allocation, the system has to assign a

channel resource to each user, and users have to optimize their transmission pow-

er. The resource allocation problem in D2D cellular networks is rather complicated

because D2D users can reuse (i.e., share) the same channel resources with cellular

users and inflict interference to them. Due to this reusing mechanism, the number of

possible solutions for channel assignment increases exponentially with the number of

D2D users, and the power optimization problem becomes high-dimensional and non-

convex. Therefore, the analysis becomes even more complicated when mode selection

and resource allocation problems are considered jointly for improved performance.

In the literature, many studies have been conducted to address the mode selection

and resource allocation problems for D2D cellular networks. In the literature, many

studies have been conducted to address the mode selection and resource allocation

problems for D2D cellular networks. For instance, the authors of [42] considered
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the mode selection problem in a cell with one D2D pair and one cellular user. The

channel allocation problem was solved using the Hungarian algorithm in [43], just

for the uplink reuse mode. Later in [44], the resource allocation in the D2D cellular

network was investigated, for the uplink and downlink reuse mode, and in [45], a

resource allocation strategy was proposed, which also included the D2D dedicated

mode. More recently, the joint mode selection and resource allocation in a general

cellular network with multiple D2D pairs were addressed in [46]. In order to reduce

the complexity in analysis, most of these studies were based on the instantaneous

channel conditions. In such cases, the system may have to perform the mode selection

and resource allocation very frequently, resulting in high computational load and

significant cost.

In order to achieve improved results with lower time consumption, several al-

gorithms were proposed via game-theoretic approaches. For example, the resource

allocation problem was considered in [47] via the reverse iterative combinatorial auc-

tion game, and the authors of [48] solved a similar problem using the coalitional game

theory. Besides the game-theoretic techniques, vertex coloring is another method that

can efficiently divide D2D users into groups in which interference constraints are sat-

isfied. In [49], vertex coloring algorithm was used to group D2D users with the goal

of avoiding interference. A similar approach was used in [49] and [50] to maximize

the instantaneous sum rate while satisfying the instantaneous signal to interference

plus noise ratio (SINR) constraints, and a frequency band assignment process was

also included after dividing D2D users into groups in [51].

1.2.5 Delay-Aware Scheduling Algorithms for Content De-

livery over Wireless Networks

Scheduling is one of the key design considerations in cellular networks. Scheduling

algorithms allocate limited channel resources to large amount of users, while also
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guaranteeing the performance requirements of the system. For delay sensitive appli-

cations, packet delay is an important criterion of the performance. Numerous studies

have been conducted to design and analyze delay optimal scheduling algorithms. A

series of works considered this problem from the perspective of minimizing the queue

length at transmitters. In [52], the MaxWeight rule was proposed, and the through-

put optimality was shown for MaxWeight type algorithms. These type of algorithms

stabilize the queueing system, and minimize the queue length. However, small queue

length can not always guarantee good delay performance.

The second line of work considered minimizing the decay rate of the delay vio-

lation probability as the scale of the system (which is the numbers of the users and

available channels) increases. In [53], the Delay Weighted Matching (DWM) algo-

rithm was proposed, which can provide good delay performance. In order to reduce

the complexity of the DWM algorithm, the authors of [54] proposed a hybrid algo-

rithm that reduced the asymptotic complexity of the scheduling algorithm. Although

this approach guarantees good delay performance, the asymptotic analysis of these

algorithms are complicated, making them difficult to be extended for a more general

system setting. In [53] and [54], only downlink transmission with binary rate was

considered.

Yet another line of studies considered constructing convex delay costs. In [55] and

[56], convex delay cost approach was proposed and developed to deal with systems

operating under deadline constraints. This type of algorithm minimizes the delay

violation probability under heavy traffic assumption.

1.2.6 Wireless D2D Caching Networks

Recently, many studies have been conducted to analyze caching strategies in wireless

networks in order to satisfy the throughput, energy efficiency and latency require-

ments in next-generation 5G wireless systems. By storing parts of the popular files
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at the base station and users’ devices, network traffic load can be managed/balanced

effectively, and traffic delay can be greatly reduced. It has been pointed out that 60%

of the content is cacheable in the network traffic [57], which can be transmitted and

stored close to the users before receiving the requests. A brief overview of wireless

caching was provided in [58], which introduced the key notions, challenges, and re-

search topics in this area. In order to improve the performance effectively, the system

needs to estimate and track the popularity of those cacheable contents, and predict

the popularity variations, helping to guarantee that the most popular contents are

cached and the outdated contents are removed. In [59], popularity matrix estimation

algorithms were studied for wireless networks with proactive caching.

Multiple caching strategies have been investigated in the literature, which improve

the performance in different ways. When contents are cached at the base stations, the

energy consumption, traffic load and delay of the backhaul can be reduced [60], and

the base stations in different cells can cooperate to improve the spectral efficiency

gain [61]. When contents are cached at the users’ devices, the base station can

combine different files together and multicast to multiple users, and the users can

decode their desired files using their cached files. A content distribution algorithm

for this approach was given in [62], and the analysis of the coded multicasting gain

was provided in [63].

In the literature, several studies have been performed to combine content caching

with D2D wireless networks. In such cases a user can receive from its neighbors

if these have cached the requested content. An overview on wireless D2D caching

networks was provided in [64], in which the key results for different D2D caching

strategies were presented. To design caching policies for the wireless D2D network,

the authors of [65] proposed a caching policy that maximizes the probability that

requests can be served via D2D communications. For a similar system setting, a

caching policy that maximizes the average number of active D2D links was obtained
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in [66]. Most of these works were based on stochastic geometry models, in which

nodes/users were distributed randomly. However, these types of models mainly focus

on the path loss, and do not fully address the effects of channel fading. Without the

characterization of the channel fading, an accurate analysis on the throughput and

delay is not viable. Moreover, many works only tackle a simple case in which users

have identical popularity vectors.

1.2.7 Intercell Interference (ICI) Control in Cloud Radio Ac-

cess Network (C-RAN)

In order to satisfy the growing demands and provide the required QoS guarantees and

high reliability in next-generation 5G wireless systems, several advanced techniques

have been proposed, and C-RAN is one novel mobile network architecture that im-

proves the performance of cellular networks. By centralizing the baseband processing

resources of multiple cells in a virtualized baseband unit (BBU) pool, C-RAN can

achieve cooperative processing among different cells and utilize the BBUs more effi-

ciently [67] [68]. Remote radio heads (RRHs) and BBU are separated geographically

and connected via optical fibers in the C-RAN architecture. BBU pool is shared

between cells as a virtualized cluster which operates baseband processing. Compared

with the conventional architectures in which BBUs of different cells are not shared,

C-RAN can achieve information exchange and cooperative processing between cells

more easily with low latency, and it has high adaptability to nonuniform traffic. A

comprehensive survey on C-RAN and its implementation is provided in [69].

For most orthogonal frequency division multiple access (OFDMA)-based cellular

networks, ICI is a significant interference source because of the frequency reuse a-

mong multiple neighbouring cells. Many advanced methods have been studied to

control ICI. For instance, the soft frequency reuse (SFR) scheme is proposed in [70]

and [71], in which cell edge users transmit with high power in non-overlapping cell
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edge bands allocated to adjacent cells, and center users use the cell center bands with

limited transmission power. The authors in [72] further compared the performance of

SFR with partial frequency reuse scheme. In these conventional ICI control schemes,

cooperation between neighbouring cells are not considered, which limits their perfor-

mances. In C-RAN, cooperative processing among the cells sharing the same BBU

pool becomes easier and more efficient, which helps to improve ICI control. In [73],

a resource allocation and RRH association algorithm was proposed for ICI coordi-

nation in a long term evolution (LTE) heterogeneous network setting with C-RAN

architecture. However, optimization over multiple cells greatly increases the com-

plexity, which causes problems in delay sensitive applications. In addition, packet

delay is an important performance criterion for delay sensitive applications such as

live video streaming and online gaming. In most of the related studies considering

ICI control, the objectives are interference minimization, SINR maximization and

throughput maximization, and hence delay minimization is not addressed.

1.3 Outline and Main Contributions

In Chapter 2, we provide a detailed review on the formulation of our statistical queuing

constraints, and describe the methods to characterize the throughput under queuing

constraints for different channel and arrival models. More specifically, both single-hop

and two-hop channels are considered with constant-rate arrivals at the source nodes,

and random arrival models are considered for the single-hop channel.

In Chapter 3, we conduct the throughput and energy efficiency analysis for HARQ

protocols under QoS constraints. Approximations are employed for small QoS expo-

nent values in order to obtain closed-form expressions for the throughput and energy

efficiency metrics.
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• In Section 3.1, the throughput of HARQ-IR with fixed transmission rate is s-

tudied in the presence of queuing constraints imposed as limitations on buffer

overflow probabilities. In particular, tools from the theory of renewal process-

es and stochastic network calculus are employed to characterize the maximum

arrival rates that can be supported by the wireless channel when HARQ-IR is

adopted. Effective capacity formulation is employed as the throughput metric

and a closed-form expression for the effective capacity of HARQ-IR is deter-

mined for small values of the QoS exponent. The impact of the fixed transmis-

sion rate, queuing constraints, and hard deadline limitations on the throughput

is investigated and comparisons with regular ARQ operation are provided.

• In Section 3.2, energy efficiency of HARQ schemes with statistical queuing con-

straints is studied for both constant-rate and random Markov arrivals by char-

acterizing the minimum energy per bit and wideband slope. In particular, two

queuing models are considered. Specifically, when outage occurs, the transmit-

ter keeps the packet, lowers its priority, and attempts to retransmit it later

in the first queue model while the packet is discarded and removed from the

buffer in the second queue model. For both models, energy efficiency is inves-

tigated when outage constraints, statistical queuing constraints and deadline

constraints are imposed. The deadline constraint provides a limitation on the

number of retransmissions or equivalently the number of HARQ rounds. Under

these assumptions, closed-form expressions are obtained for the energy efficien-

cy metrics of HARQ-CC, and comparisons among different arrival models are

made. For instance, it is shown that stricter queuing constraints and more

bursty sources degrade the energy efficiency by lowering the wideband slope.

In Chapter 4, we conduct throughput analysis for HARQ protocols under QoS
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constraints via the recurrence approach proposed in [15]. Also, deadline and outage

constraints, random arrival models and finite blocklength codes are considered.

• In Section 4.1, we characterize the throughput of HARQ-CC for three typical

Markov sources in the presence of statistical queuing constraints while satis-

fying a target outage probability. In most of the related works investigating

the throughput of HARQ schemes under statistical queuing constraints, the

occurrence of packet drops from the buffer due to deadline violation have gen-

erally not been explicitly addressed. From the perspective of the buffer, packets

dropped/discarded from the buffer should contribute to the departure rate in

the queuing analysis. However, when characterizing the throughput, the dis-

carded packets should not be taken into account, since the receiver does not

receive them. In this section, the impact of such packet drops is explicitly con-

sidered. Also, we identify the impact of source randomness on the throughput

of HARQ-CC systems under statistical QoS constraints.

• In Section 4.2, we study the throughput of HARQ-IR with finite-blocklength

codes, deadline limits, and statistical queuing constraints by employing the

notions of effective capacity and effective bandwidth from stochastic network

calculus. Two different arrival models, namely the constant-rate and ON-OFF

discrete time Markov arrivals, are studied, and throughput characterizations

are obtained for both arrival models. In prior works focusing on HARQ under

queuing constraints, it was assumed that the instantaneous transmission rates

were given by the Shannon capacity achieved with channel codes with block-

lengths growing without bound. However, it is practically more appealing to

address the performance with finite-blocklength codes and more explicitly take

into account decoding error probabilities in the analysis of HARQ especially

in the presence of deadline and queuing constraints. With this motivation, we

leverage recent advances in the characterization of coding rates in the finite
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blocklength regime [18], [19], and study the throughput of HARQ-IR schemes

achieved with finite-blocklength codes subject to statistical queuing constraints

at the transmitter buffer.

In Chapter 5, the throughput of three cooperative relay network models are stud-

ied under QoS constraints.

• In Section 5.1, we characterize the throughput of the two-hop relay channel in

the finite blocklength regime when statistical queueing constraints are imposed

at both the source and relay. We first identify the throughput by determin-

ing the effective capacity of the two-hop relay system in the finite blocklength

regime, and then establish several key properties of the throughput in terms

of the target error rates. Based on these properties, we develop an efficient

search algorithm to solve the throughput maximization problem and obtain the

corresponding optimal parameter values.

• In Section 5.2, we extend the effective capacity analysis of one-directional two-

hop relay channel to a two-way relay channel setting. More specifically, we study

the throughput of two-way relay channels in the presence of queueing constraints

at both the source nodes and the relay node. Note that the two-way relay model

has significant differences from that of the one-way relay considered in [17]. We

consider half-duplex, decode-and-forward relaying. In this setting, our main

goal is to identify the pair of maximum arrival rates at the sources while the

statistical queuing constraints at the source nodes and relay are satisfied.

• In Section 5.3, the throughput of relay networks with multiple source-destination

pairs under queuing constraints has been investigated for both variable-rate and

fixed-rate schemes. When CSI is available at the transmitter side, transmitter-
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s can adapt their transmission rates according to the channel conditions, and

achieve the instantaneous channel capacities. In this case, the departure rates

at each node have been characterized for different system parameters, which

control the power allocation, time allocation and decoding order. In the oth-

er case of no CSI at the transmitters, a simple ARQ protocol with fixed rate

transmission is used to provide reliable communication. Under this ARQ as-

sumption, the instantaneous departure rates at each node can be modeled as

an ON-OFF process, and the probabilities of ON and OFF states are identified.

With the characterization of the arrival and departure rates at each buffer, sta-

bility conditions are identified and effective capacity analysis is conducted for

both cases to determine the system throughput under statistical queuing con-

straints. In addition, for the variable-rate scheme, the concavity of the sum rate

is shown for certain parameters, helping to improve the efficiency of parameter

optimization.

In Chapter 6, we extend the analysis conducted in [39] to two-way MIMO sys-

tems. We consider both half-duplex and full-duplex operations. In half-duplex mode,

we can have time-division multiplexing or frequency-division multiplexing, which are

essentially equivalent in terms of their performances. In full-duplex mode, we take

into account the self-interference inflicted on the reception of a user due to simulta-

neous transmissions from the same user. In this setting, we initially formulate the

system throughput by considering the sum of the effective capacities of the users in

both half-duplex and full-duplex modes. Subsequently, we consider the low signal to

noise ratio (SNR) regime and characterize the optimal transmission/power-allocation

strategies by identifying the optimal input covariance matrices. Finally, via numerical

results, we address mode selection by determining which mode yields higher through-
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put under different SNR levels and distances. For fair comparison, we assume that

the number of transmitting and receiving antennas are the same at each node in both

half-duplex and full-duplex modes.

In Chapter 7, we study the mode selection and resource allocation algorithms for

D2D cellular networks.

• In Section 7.1, transmission mode selection and resource allocation in a time-

division multiplexed (TDM) cellular network with one cellular user, one base

station, and a pair of D2D users is investigated under rate and queuing con-

straints. Using tools from stochastic network calculus, the system throughput

under statistical queuing constraints is formulated, efficient resource allocation

algorithms for all possible modes are proposed, and the influence of the po-

sitions of each node and the queuing constraints is analyzed. Scenarios and

conditions for different modes to be optimal in the sense of maximizing the

sum-throughput are identified.

• In Section 7.2, we propose a novel channel matching algorithm for joint mode s-

election and channel allocation with the goal of maximizing the system through-

put under statistical queuing constraints. Seven possible modes are considered,

namely the D2D cellular mode, D2D dedicated mode, uplink dedicated mode,

downlink dedicated mode, uplink reuse mode, downlink reuse mode, and D2D

reuse mode. Using tools from stochastic network calculus, the throughput is

characterized by determining the effective capacity. We formulate the chan-

nel allocation problem as a maximum-weight matching problem, which can be

solved by employing the Hungarian algorithm.

• In Section 7.3, we propose a novel joint mode selection and channel resource

allocation algorithm via the vertex coloring approach. In our analysis, we divide
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the problem into three subproblems, namely user partition, power allocation and

channel assignment. Different from prior works, the power allocation, mode s-

election and channel assignment are considered after grouping D2D users via

vertex coloring. Algorithms are designed for each subproblem, and we propose a

novel three-step joint mode selection and resource allocation method by combin-

ing these algorithms designed for the three subproblems. We also incorporate

the adaptation of the interference constraints in the grouping step when the

given interference constraints are relatively loose, and fairness among the users

in the same group is considered in the power allocation step.

In Chapter 8, we investigate resource allocation algorithms for content delivery

over wireless networks.

• In Section 8.1, we design a caching algorithm that minimizes the average delay

of a single-cell cellular networks. We first provide a characterization of the

average delay for both cellular and D2D modes, and then we propose a very

efficient and robust algorithm to solve the delay minimization problem. Our

algorithm is applicable in settings with very general popularity models, with no

assumptions on how file popularity varies among different users, and we further

extend our algorithm to a more general setting, in which the system parameters

and the distributions of channel fading change over time.

• In Section 8.2, we propose, for D2D cellular networks operating under dead-

line constraints, a scheduling algorithm that manages mode selection, channel

allocation and power maximization with acceptable complexity. Our schedul-

ing algorithm is designed based on the convex delay cost method for a D2D

cellular network with deadline constraints in an OFDMA setting. All seven
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possible modes are included into our scheduling decisions, namely the D2D cel-

lular mode, D2D dedicated mode, uplink dedicated mode, downlink dedicated

mode, uplink reuse mode, downlink reuse mode, and D2D reuse mode. Pow-

er optimization algorithms are proposed for all possible modes, based on our

utility definition.

• In Section 8.3, we propose a two-step ICI-aware scheduling algorithm for C-

RAN, which performs user grouping and resource allocation with the goal of

minimizing delay violation probability. A novel user grouping algorithm is de-

veloped for the user grouping step, which controls the interference among the

users in the same group, and we formulate the channel assignment problem in

the second step as a maximum-weight matching problem, which can be solved

using standard algorithms in graph theory. The performance of our algorithm

is verified via simulations, and we compare our algorithm with a conventional

SFR algorithm. Also, the influence of the system parameters is investigated

with the help of numerical results.
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Chapter 2

Preliminaries of Statistical

Queuing Constraints

2.1 Statistical Queuing Constraints

In this thesis, the statistical queuing constraints require the buffer overflow probability

to decay exponentially fast, i.e.,[4] [74]

Pr{Q ≥ q} ≈ ςe−θq, (2.1)

for sufficiently large q, where Q is the stationary queue length, q is the overflow

threshold, ς = Pr{Q > 0} is the probability of non-empty buffer, and the non-

negative scalar θ is called the QoS exponent. More rigorously, QoS exponent θ is

defined as [1] 1

θ = lim
q→∞

− log Pr{Q ≥ q}
q

. (2.2)

1Throughout the text, logarithm expressed without a base, i.e., log(·), refers to the natural
logarithm loge(·).
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Note that θ is a factor that controls the exponential decay rate of the buffer overflow

probability. From (2.1), we notice that higher values of θ indicate stricter limitations

on the buffer overflow probability, leading to more stringent QoS constraints whereas

lower values of θ represent looser QoS requirements. Conversely, for a given buffer

threshold q and overflow probability limit Pr{Q ≥ q} = δ, the desired value of θ can

be determined as

θ = −1

q
log δ +

1

q
log ς. (2.3)

As q →∞, the term 1
q
log ς in (2.3) vanishes, which leads to (2.2).

2.2 Throughput of Single-hop Channels under S-

tatistical Queuing Constraints

At the buffer, the arrival rates ai (bits/block) and the departure rates ci (bits/block)

form the arrival and departure processes, respectively, where i is the time index.

According to the effective bandwidth and effective capacity formulations provided in

[1] and [4], respectively, in the presence of queuing constraints with QoS exponent θ,

the arrival process and departure process at the buffer should satisfy

Λa(θ) + Λc(−θ) = 0, (2.4)

where Λp(θ) = limt→∞
1
t
loge E{eθ

∑t
i=1 pi} is the asymptotic logarithmic moment

generating function (LMGF) of the random process pi.
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2.2.1 Effective Capacity

When the arrival rate is constant i.e., ai = a for all i, it can be easily seen that

Λa(θ) = aθ. (2.5)

Then, from (2.4), we have

a = −1

θ
Λc(−θ). (2.6)

Indeed, the right-hand side of (2.6) is defined as the effective capacity of the wireless

link [4]

CE(θ, SNR) = −1

θ
Λc(−θ), (2.7)

characterizing the maximum constant arrival rate that can be supported by the time-

varying wireless transmission rates while satisfying the statistical queuing constraint

in (2.1). Therefore, under the constant-rate arrival assumption, the maximum average

arrival rate is given by the effective capacity:

ravg(θ, SNR) = E{ai} = a = CE(θ, SNR) = −1

θ
Λc(−θ). (2.8)

2.2.2 Average Arrival Rates of Random Arrival Sources un-

der Statistical Queuing Constraints

In effective capacity analysis, constant-rate arrivals are often assumed at the trans-

mitter. On the other hand, randomly time-varying arrivals are frequent in real ap-

plications. For instance, the data traffic can be regarded as an ON-OFF process in

voice communications (e.g., in VoIP) and variable bit-rate video traffic is statistical-
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ly characterized as autoregressive, Markovian, or Markov-modulated processes [75].

With this motivation, the authors in [76] studied the impact of source burstiness on

the energy efficiency under statistical queuing constraints, and they further developed

energy-efficient power control policies in [77] considering Markov arrivals.

When the arrival rate is not constant, the computation of the system throughput

is more complicated. In general, we need to formulate the LMGF of the arrival process

as a function of the average arrival rate, and obtain the throughput by solving (2.4).

In this thesis, three random arrival sources are considered, which are the ON-OFF

discrete Markov and Markov fluid sources, and ON-OFF Markov modulated Poisson

sources (MMPS), in Chapters 3 and 4. After characterizing their LMGF of the

arrival process, the average arrival rates can be obtained as functions of the effective

capacities by solving (2.4).

2.2.2.1 Average Arrival Rates of ON-OFF Discrete-Time Markov Source

under Statistical Queuing Constraints

ON-OFF discrete-time Markov source only has two states, namely, ON and OFF

states. We define state 1 as the OFF state, in which the source keeps silent. When

the source is in ON state, or equivalently state 2, the arrival rate is ai = r. The state

transition probability matrix of this Markov source can be written as

G =

 p11 p12

p21 p22

 , (2.9)

where p11 and p22 denote the probabilities that the source remains in the same state

(OFF and ON states, respectively) in the next time block, and p12 and p21 are the

probabilities that source will transition to a different state in the next time block.

Using the properties of Markov processes, we can express the probability of the ON
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state as

PON =
1− p11

2− p11 − p22
. (2.10)

Then, the average arrival rate of this ON-OFF Markov source is

ravg = rPON = r
1− p11

2− p11 − p22
. (2.11)

From [78], the LMGFs of this arrival process is given by

Λa(θ) = loge

(
p11 + p22e

rθ +
√
(p11 + p22erθ)2 − 4(p11 + p22 − 1)erθ

2

)
. (2.12)

Plugging the characterizations in (2.12) and (2.7) into (2.4), we obtain the arrival

rate in the ON state as

r =
1

θ
log

(
e2θCE − p11e

θCE

1− p11 − p22 + p22eθCE

)
. (2.13)

Further inserting this result into (2.11), we find the maximum average arrival rate as

ravg =
PON

θ
log

(
e2θCE − p11e

θCE

1− p11 − p22 + p22eθCE

)
, (2.14)

where PON is given in (2.10).

2.2.2.2 Average Arrival Rates of ON-OFF Fluid Markov Source under

Statistical Queuing Constraints

Different from the discrete-time Markov source whose state does not change in a

given time block and state transitions occur in discrete time steps, fluid Markov

source may stay in a state over a continuous duration of time. In other words, the

source can change its state at any time. Here, the definitions of ON and OFF states

are the same as for the ON-OFF discrete-time source. The generating matrix of this
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continuous-time Markov process is given by

G =

 −α α

β −β

 , (2.15)

and the ON state probability is

PON =
α

α + β
. (2.16)

In this case, the average arrival rate is

ravg = rPON = r
α

α + β
. (2.17)

Using a similar approach as for the discrete-time Markov source, we can find the

maximum average arrival rate for the ON-OFF fluid Markov source, under statistical

queuing constraints. From [79], the LMGF of the arrival process of the ON-OFF

Markov fluid source is given by

Λa(θ) =
1

2

(
θr − α− β +

√
(θr − α− β)2 + 4αθr

)
. (2.18)

Plugging (2.18) into (2.4), we can find that

r = CE
θCE + α + β

θCE + α
. (2.19)

Inserting this result into (2.17), we determine the maximum average arrival rate as

ravg = PONCE
θCE + α + β

θCE + α
, (2.20)

where PON is given in (2.16).
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2.2.2.3 Average Arrival Rates of ON-OFF MMPS under Statistical Queu-

ing Constraints

The arrival rates of ON-OFF MMPS models are described as a Poisson process with

intensity ρ in the ON state while there is no arrival in the OFF state. State transi-

tions are governed by a continuous-time Markov chain as in the Markov fluid model.

However, compared to the ON-OFF Markov fluid source analyzed in Section 2.2.2.2,

MMPS can be seen to have a higher degree of burstiness since its arrival rate, rather

than being a constant, is random in the ON state. Here, the expressions of the gen-

erating matrix and ON state probability are the same as in Section 2.2.2.2. In this

case, the average arrival rate is

ravg = ρPON = ρ
α

α + β
. (2.21)

From [79], the LMGF of the arrival process of the ON-OFF MMPS is given by

Λa(θ) =
1

2

[
(eθ − 1)ρ− (α + β)

]
+

1

2

√
[(eθ − 1)ρ− (α + β)]2 + 4αρ(eθ − 1). (2.22)

Plugging (2.22) into (2.4), we can find

ρ =
θ [θCE + α+ β]

(eθ − 1) [θCE + α]
CE. (2.23)

Inserting (2.23) into (2.21), we find the maximum average arrival rate as

ravg = PONCE,Q1

θ

eθ − 1

θCE,Q1 + α + β

θCE,Q1 + α
, (2.24)

where PON is given in (2.16).
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2.3 Throughput of Two-hop Channels under Sta-

tistical Queuing Constraints

In a two-hop channel, source node S sends information to the receiver D with the help

of the intermediate relay node R, and there is no direct link between S and D (which,

for instance, holds, if these nodes are sufficiently far apart in distance). The system

model of two-hop relay channels is shown in Figure 5.1 in Section 5.1. Both the source

and the intermediate relay nodes operate under statistical queuing constraints with

QoS exponents θ1 and θ2, resectively. In such cases, we assume a constant arrival

rate at the source node, and we characterize the maximum constant arrival rate at

the source node that can be supported by the two-hop link under queuing constraints

as the throughput. From the theory of effective bandwidth and effective capacity [1],

[2], [4], the queuing constraint can be satisfied at the source node when the constant

arrival rate R satisfies

R = −ΛS,R(−θ̃)
θ̃

(2.25)

for some θ̃ ≥ θ1, where ΛS,R is the LMGF of the service (or equivalently transmission)

rate at the source. The above arrival rate formulation considers only the queuing

constraints at the source node. However, we need to address the constraints at the

relay buffer as well. It was shown in [2] that the queuing constraint can be satisfied

at the relay if we have

ΛR(θ̂) + ΛR,D(−θ̂) = 0 (2.26)
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for some θ̂ ≥ θ2. Above, ΛR,D is the LMGF of the service rate at relay. In (2.26), ΛR

is the LGMF of the arrival process to R and is formulated as [2, equation (18)]

ΛR(θ) =

 Rθ, 0 ≤ θ ≤ θ̃

Rθ̃ + ΛS,R(θ − θ̃), θ > θ̃ .
(2.27)

Hence, in order to satisfy the queuing constraints at both the source and relay nodes,

the arrival rate R should satisfy (2.25) and (2.26) simultaneously, which implies that

R should be the minimum of the rates obtained from (2.25) and (2.26).
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Chapter 3

Throughput and Energy Efficiency

of Hybrid-ARQ under Statistical

Queuing Constraints with Low

QoS Exponents

HARQ is a high performance communication protocol, leading to effective use of

the wireless channel and the resources with only limited feedback about the CSI to

the transmitter. In this chapter, we analyze the throughput and energy efficiency of

HARQ protocols in the presence of statistical queuing requirements when the QoS

exponent θ is sufficiently small via Taylor expansion.

In Section 3.1, the throughput of HARQ with fixed transmission rate is studied.

In particular, tools from the theory of renewal processes and stochastic network cal-

culus are employed to characterize the maximum arrival rates that can be supported

by the wireless channel when HARQ is adopted. Effective capacity is employed as the

throughput metric and a closed-form expression for the effective capacity of HARQ

is determined for small values of the QoS exponent. The impact of the fixed trans-
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mission rate, queuing constraints, and hard deadline limitations on the throughput is

investigated.

In Section 3.2, the energy efficiency of the HARQ chase combining scheme un-

der outage, deadline, and statistical queuing constraints in the low-power and low-θ

regimes is studied for both constant-rate and random Markov arrivals by character-

izing the minimum energy per bit and wideband slope. In particular, two queuing

models are considered. Specifically, when outage occurs, the transmitter keeps the

packet, lowers its priority, and attempts to retransmit it later in the first queue model

while the packet is discarded and removed from the buffer in the second queue model.

For both models, energy efficiency is investigated when outage constraints, statistical

queuing constraints and deadline constraints are imposed. The deadline constraint

provides a limitation on the number of retransmissions or equivalently the number

of HARQ rounds. Under these assumptions, closed-form expressions are obtained for

the minimum energy per bit and wideband slope for HARQ-CC, and comparison-

s among different arrival models are made. For instance, it is shown that stricter

queuing constraints and more bursty sources degrade the energy efficiency by low-

ering the wideband slope. In the numerical results, analytical characterizations are

verified through simulations. Moreover, the impact of source variations/burstiness,

deadline constraints, outage probability, queuing constraints on the energy efficiency

is analyzed.
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Figure 3.1: System Model

3.1 Throughput of HARQ under Statistical Queu-

ing Constraints

3.1.1 System Model

3.1.1.1 Fading Channel

We consider a point-to-point wireless link shown in Fig. 3.1 and assume that block

fading is experienced in the channel. More specifically, in each block duration of

Ts seconds, fading is assumed to stay fixed and then change independently in the

subsequent block. We assume that transmissions occur in blocks and one fading block

is our basic time unit throughout the paper. In each block duration, transmitter sends

l symbols to the receiver. In the ith block, the transmitter sends the l-dimensional

signal vector xi with average energy E{∥xi∥2} = lE , and the received discrete time

signal can be expressed as

yi = hixi + ni i = 1, 2, . . . (3.1)

where hi is the channel fading coefficient in this time block, and ni denotes the noise

vector with i.i.d. complex, circularly-symmetric Gaussian components with zero-

mean and variance N0. Then, the instantaneous capacity in each fading block can be

expressed as

Ci = TsB log2(1 + SNRzi) bits/block (3.2)
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where B is the system bandwidth, Ts is the block duration, SNR = E{∥x∥2}
E{∥n∥2} = lE

lN0
= E

N0

represents the transmitted average signal-to-noise ratio, and zi = |hi|2 denotes the

magnitude-square of the fading coefficient.

3.1.1.2 HARQ-IR with Fixed-Rate Transmissions

We assume that the transmitter sends information at the constant rate of R bit-

s/block1 and a Type-II HARQ-IR protocol is employed for reliable reception. In this

scheme, the messages at the transmitter are encoded according to a certain codebook

and the codewords are divided into a number of subblocks of the same length. During

each fading block, only one subblock is sent to the receiver. At the receiver side, the

transmitted message is decoded according to the current received subblock combined

with the previously received subblocks related to the current transmitted message.

In this case, information accumulates at the receiver side. According to information-

theoretical results [80], the receiver can decode the transmitted message at the end

of the N th subblock without error only if R satisfies

R < TsB
N∑
i=1

log2(1 + SNRzi). (3.3)

Hence, with the above characterization, we consider the maximum achievable rates of

HARQ with an information-theoretic perspective as in [80]. Indeed, a coding strategy

for HARQ-IR is described in detail in [80] for messages to be decoded successfully

when (3.3) is satisfied. Hence, if (3.3) is satisfied, the receiver gets R bits of infor-

mation, an ACK feedback signal is sent, and the first subblock of a new message is

transmitted in the next interval. We assume that the decoder at the receiver has the

ability to detect transmission errors reliably. Therefore, if R does not satisfy (3.3),

1More accurately, we assume that the transmitter, after each successful transmission, attempts
to send R bits within the next transmission duration. If the transmitted codeword is successfully
decoded in the first fading block, the received data rate is R bits/block. If successful decoding occurs
at the end of N th fading block, the received data rate is R/N bits/block.
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receiver detects the error and sends NACK feedback to the transmitter, triggering the

transmission of the next subblock of the same message in the subsequent transmission

interval.

We define the random transmission time T of a message as

T = min

{
N : R < TsB

N∑
i=1

log2(1 + SNRzi)

}
. (3.4)

Hence, T denotes the number of block-fading channel uses needed to successfully

send a message. In our HARQ-IR model, if a renewal event occurs when the receiver

decodes the transmitted message correctly. Therefore, T describes the interarrival

time (in terms of number of fading blocks) between consequent renewal events.

It is shown in [80] that the throughput of this HARQ-IR scheme is given by

γ =
R

E{T}
=

R

µ1

(3.5)

where µ1 denotes the expected value of T . Additionally, it is proven in [80] that as

R→∞, the throughput approaches the ergodic capacity, i.e.,

lim
R→∞

γ = E{TsB log2(1 + SNRzi)} = E{Ci}. (3.6)

3.1.2 Effective Capacity of the HARQ-IR Scheme

We assume that the transmitter operates under queuing constraints imposed as lim-

itations on the buffer overflow probability, which is introduced in Chapter 2. In [81]

the notion of effective capacity was proposed to analyse the system throughput un-

der such constraints, which provides the maximum constant arrival rates that can be

supported while satisfying (2.1) in Chapter 2. From (2.8) in Chapter 2, the maxi-

mum arrival rate or equivalently the effective capacity under this queuing constraint

is given by
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Ce = − lim
t→∞

1

θt
loge E{e−θSt} (3.7)

= − lim
t→∞

1

θt
loge E{e−θRNt} (3.8)

where St =
∑i=t

i=1 s[i] is the time-accumulated service process representing the total

number of bits sent until time t. In our system setting, if we denote the number of

successful message transmissions until time t by Nt, then St = RNt. Note that Nt

is the number of renewals made by time t and hence {Nt} can be regarded as the

renewal counting process with i.i.d. interarrival intervals. More explicitly, we can

define Nt as

Nt = max

{
k :

k∑
j=1

Tj < t

}
(3.9)

where {Tj} is the i.i.d. sequence of durations of successful transmissions of consecutive

messages. Note that Tj is the number of fading blocks needed to successfully decode

the jth message. Renewals occur when the receiver decodes a packet successfully and

Nt is number of renewal events (or equivalently the number of instances R bits of

information has been successfully received) up until time t.

Using the properties of renewal processes, we obtain the following closed-form

expression of the effective capacity for small θ values in terms of the statistical averages

of the random transmission time T .

Theorem 1 For the HARQ-IR scheme with fixed rate transmissions, the effective ca-

pacity in (3.8) has the following first order expansion with respect to the QoS exponent

θ around θ = 0:

Ce =
R

µ1

− R2σ2

2µ3
1

θ + o(θ), (3.10)
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where R is the fixed transmission rate, µ1 and σ2 are the mean and variance of the

random transmission time T , and θ is the QoS exponent. Note that µ1 and σ2 are

also functions of R. Finally, o(θ) represents the terms that vanish faster than θ as

θ → 0, i.e., limθ→0
o(θ)
θ

= 0.

Proof : See Appendix A.1.

To calculate effective capacity, we need the mean and variance of the transmission

time. For the HARQ-IR scheme, the distribution of T is not available in closed-form

and hence we resort to Monte-Carlo simulations to obtain µ1 and σ2.

Remark 1 We note that if no queuing constraints are imposed and hence θ = 0, the

effective capacity expression in (3.10) specializes to Ce =
R
µ1

and therefore we recover

the throughput formulation obtained in [80]. Additionally, we notice in (3.10) that

since R ≥ 0, µ1 ≥ 0, and σ2 ≥ 0, the introduction of the queuing constraints even

with small QoS exponent θ leads to a loss in the throughput, which was quantified by

the term −R2σ2

2µ3
1
θ. Finally, another observation is that while depending only on µ1

when θ = 0, the throughput starts also depending on the variance, σ2, of the random

transmission time in the presence of queuing requirements. Indeed, the larger the

variance, the smaller the throughput becomes in the regime of small θ.

Remark 2 By the Central Limit Theorem for renewal counting processes [82], if the

inter-renewal intervals have finite variance σ2, then we have the following convergence

in distribution
Nt − t

µ1

σµ
− 3

2
1 t1/2

−→ N (0, 1) as t→∞. (3.11)

Hence, the distribution of Nt tends to a Gaussian distribution with mean t
µ1

and

variance σ2t
µ3
1
for large t. Now, if we approximate the distribution of Nt as

fNt(x) ≈
1√
2π σ2t

µ3
1

exp

−
(
x− t

µ

)2
σ2t
µ3
1

 for large t, (3.12)
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then plugging the parameters into the moment generating function of Gaussian dis-

tribution, we can obtain

E{e−θRNt} ≈ exp

(
−R

µ
θt+

R2σ2

2µ3
1

θ2t

)
(3.13)

which implies that

Ce = − lim
t→∞

1

θt
loge E{e−θRNt} ≈ R

µ1

− R2σ2

2µ3
1

θ. (3.14)

Remark 3 Theorem 1 can also be applied to Type-II HARQ-CC protocol. In HARQ-

CC protocol, the transmitter just sends the same coded data in each retransmission,

and the receiver uses maximum-ratio combining for decoding. Therefore, the packet

can be decoded within N fading blocks only if R satisfies

R ≤ TsB log2

(
1 +

N∑
i=1

SNRzi

)
. (3.15)

Since the number of successful message transmissions, Nt, can still be regarded as

a renewal counting process, and all moments of the transmission time T are also finite

in Chase Combining, the characterization in (3.10) applies to this type of HARQ as

well.

3.1.2.1 Hard Deadline Constraints

Heretofore, we have not considered any restrictions on the random transmission time

T . Hence, the number of block-fading channel uses needed to successfully send a

message can be arbitrarily large especially if the transmission rate R is also large.

Indeed, as will be evidenced in the numerical results, throughput improves as R

increases but this comes at the cost of increased transmission time. On the other

hand, practical systems can require hard deadline constraints for the messages and it
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is of interest to have bounds on T . For instance, we can impose

T ≤ Tu, (3.16)

and hence limit the number of HARQ rounds to send a message by Tu. More specifi-

cally, if R > TsB
∑Tu

i=1 log2(1+SNRzi) and hence the message is not correctly decoded

at the end of the T th
u transmission, the transmitter initiates the transmission of the

new message. Detailed discussions about dealing with outage events is provided in

Section 3.2. Here we consider a case, in which the transmitted packet is not removed

from the buffer when an outage happens. The transmitter reduces its priority, and

starts transmitting the packet with the highest priority in the next time block. This

scenario corresponds to the queue model I with deadline constraints in Section 3.2.

Under this situation, the system has to operate under queuing constraint and deadline

constraint.

We can easily see that the characterization in Theorem 1 applies in the presence of

hard-deadline constraints as well, once we adopt the following approach. We define T̂

as the total duration of time that has taken to successfully send one message, including

the periods of failed transmissions due to imposing the upper bound Tu. In this case,

the count starts from 0 after a successful decoding, and transmission time T̂ increases

until the next successful decoding. Again, the renewal events happen only when the

receiver can decode the packet successfully. Now, the probability that T̂ = n + kTu,

i.e., the probability that the transmission of first k messages have ended in failure

due to the deadline constraint and (k+1)th message is successfully transmitted after

n ≤ Tu HARQ transmissions, can be expressed as

Pr{T̂ = n+ kTu} = (Pr{T > Tu})k Pr{T = n} for n = 1, 2, . . . , Tu and k = 0, 1, 2, . . .

(3.17)
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where T is as defined in (3.4). Under the upper bound constraint Tu, the new inter-

renewal time between successful message transmissions is T̂ . Hence, only the sta-

tistical description of inter-renewal time changes and the throughput formulation in

(3.10) still applies but now with µ1 = E{T̂} and σ2 = var(T̂ ).

Note that the inter-renewal time T̂ can grow very fast on average with increas-

ing rate R. This is due to the fact that the likelihood to complete the message

transmission within Tu intervals becomes small for large R. Hence, many message

transmissions can fail before a successful transmission. More specifically, as R in-

creases, Pr{T > Tu} grows, increasing the probability of large values of T̂ and also

increasing µ1 = E{T̂}. This growth is faster than what would be experienced in the

absence of hard-deadline constraints and it can lower the throughput significantly if

R is larger than a threshold.

3.1.3 Numerical Results

In this subsection, we provide our numerical results. In particular, we focus on the

relationship between the transmission rate R and our throughput metric Ce. In our

results, we both compute the first-order expansion of the effective capacity given

in (3.10) and also simulate the HARQ-IR transmissions and estimate the effective

capacity by computing − 1
θt
loge E{e−θRNt} for large t. More specifically, E{e−θRNt},

the expected value and variance of the transmission time are determined via Monte-

Carlo simulations. In the numerical analysis, we assume the fading coefficient hi has

a circularly symmetric complex Gaussian distribution with zero mean and variance

1. Hence, we consider a Rayleigh fading environment.

In Fig. 3.2, we plot the effective capacity Ce as a function of the transmission

rate R for Type-I HARQ, HARQ Chase Combining and HARQ-IR schemes. The

throughput curves of HARQ-IR and HARQ Chase Combining are plotted both by

computing the first-order expansion in (3.10) and also via simulation. We immediately
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notice that for both HARQ-IR and HARQ Chase Combining, the effective capacity

approximation provided by the first-order expansion is very close to that obtained by

simulation for θ = 0.01. Hence, as predicted in Section 3.1.2, first-order expansion

gives an accurate characterization of the throughput of HARQ-IR and HARQ Chase

Combining. In the figure, we further observe that HARQ-IR significantly outperforms

Type-I HARQ and HARQ Chase Combining. Throughput of Type-I HARQ initially

increases and reaches its peak value at an optimal value R∗ beyond which it starts to

diminish. Hence, in Type-I HARQ, rates higher than the optimal R∗ are leading to a

large number of retransmissions and resulting in lower throughput. Similar behavior is

shown by HARQ Chase Combining. On the other hand, the throughput of HARQ-IR

interestingly improves with increasing R and approaches

Ce,perfect CSI = −
1

θ
loge E{e−θC}

= −1

θ
loge E{e−θTsB log2(1+SNRz)} (3.18)

which is the effective capacity of a system in which the transmitter knows the chan-

nel fading coefficients perfectly and transmits the data at the time-varying rate of

B log2(1 + SNRz) in each block. Note that this observation can be seen as the ex-

tension of (3.6) to the case with queuing constraints. Furthermore, it can be easily

verified that the first-order expansion of Ce,perfect CSI is given by

Ce,perfect CSI = E{TsB log2(1 + SNRz)} − var(TsB log2(1 + SNRz))
θ

2
+ o(θ) (3.19)

where var(TsB log2(1+SNRz)) denotes the variance of TsB log2(1+SNRz). Comparing

this expansion with (3.10) and noting the limiting result in (3.6) and the observation

in Fig. 3.2, we expect that R2σ2

µ3
1

approaches var(TsB log2(1 + SNRz)) as R increases,

which is verified numerically in Fig. 3.3.

The improvement in the throughput of HARQ-IR with increasing R comes at the
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cost of increased transmission time. This is demonstrated in Fig. 3.4 which shows

that both the mean µ1 = E{T} and the variance σ2 = var(T ) of the random transmis-

sion time T increases with increasing R. Two curves in Fig. 3.4 are obtained using

simulation results. It is interesting to note that this increased transmission time in

HARQ-IR does not have detrimental impact on the throughput under queuing con-

straints, which is a testament to the efficient utilization of the channel and resources

by HARQ-IR. Indeed, it takes more time to send the data but proportionally a large

amount of data is sent successfully with HARQ-IR over this extended period of time.

Another observation in Fig. 3.4 is at the other end of the line. As R diminishes, µ1

and σ2 approach 1 and 0, respectively. This implies from (3.10) that Ce ≈ R for very

small R, explaining the linear growth of the effective capacity curve of HARQ-IR for

small R values in Fig. 3.2.

In Fig. 3.5, we plot the effective capacity vs. R curve for different values of the

QoS exponent θ. We see that larger θ values (and hence stricter queuing constraints)

expectedly lead to lower throughput. Equivalently, as θ increases, the same effective

capacity is achieved by transmitting at higher rates R and hence by potentially ex-
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periencing larger transmission time as depicted in Fig. 3.6. We note in Fig. 3.6 that

especially for high effective capacities, when θ is increased, the same effective capacity

is achieved at smaller values of 1
µ1

= 1
E{T} .

Finally, we address the impact of hard-deadline constraints in Fig. 3.7. We plot

Ce vs. R curves for different values of the upper bound Tu on the transmission time T

(or equivalently the number of HARQ rounds). Again, the expected value and vari-

ance of the transmission time are obtained via simulation, and effective capacities are

calculated using our first-order approximation. We readily observe that when hard

deadline constraints are imposed, there exists an optimal transmission rate R∗(Tu)

at which the throughput is maximized and beyond which the throughput starts di-

minishing. The optimal R∗(Tu) and the achieved maximum throughput get larger for

larger Tu while the throughput monotonically increases with increasing R when no

deadline constraints are imposed, i.e., when Tu =∞.
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3.2 Energy Efficiency of Hybrid-ARQ under Sta-

tistical Queuing Constraints

3.2.1 System Model and Preliminaries

In this subsection, we introduce our system model, preliminaries on the HARQ-CC

scheme, and energy efficiency metrics in the low-SNR regime. First, we describe our

system and channel model. In order to enhance the reliability, the system employs

HARQ-CC scheme with fixed transmission rate. A brief introduction on HARQ-CC

is provided following the introduction on the system model. A detailed discussion

regarding dealing with outage events is given in Section 3.2.1.3. Finally, we introduce

the two energy efficiency metrics, namely minimum energy per bit and wideband

slope, in the low-SNR regime.

3.2.1.1 System Model

In this section, as depicted in Fig. 3.1, the same point-to-point wireless communica-

tion system is considered, in which data packets arriving from the source are initially

stored in a buffer at the transmitter before being sent over a fading channel to a re-

ceiver. We assume a block flat-fading model in which the fading coefficients stay the

same within one block, but change independently across blocks. Each fading block is

assumed to have a duration of l symbols. Throughout this section, we use subscript

i as the discrete time index. The received signal in the ith block can be written as

yi = hixi + ni i = 1, 2, . . . (3.20)

Above, xi and yi are the transmitted and received signal vectors of length l, re-

spectively, and hi denotes the channel fading coefficient in the ith block. Also, ni

represents the noise vector with i.i.d. circularly-symmetric, zero-mean Gaussian com-
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ponents, each with variance N0
2. Then, the instantaneous capacity (bits/symbol) in

the ith block is given by

Ci = log2(1 + SNRzi), (3.21)

where zi = |hi|2 is the magnitude-square of the fading coefficient, SNR = E
N0

denotes

the signal-to-noise ratio, and E = 1
l
E{∥xi∥2} is the average energy per transmitted

symbol.

3.2.1.2 HARQ-CC

To guarantee the reliability of the system, we assume that the system employs HARQ-

CC scheme with fixed transmission rate R (bits/symbol), and the size of each packet is

fixed at lR bits, where l is the number of symbols in each fading block. If the receiver

decodes the received packet correctly, it sends an ACK feedback to the transmitter

through an error-free feedback link, and a new packet will be sent in the next time

block. If the receiver cannot decode the packet, a retransmission request is sent

through the feedback link, and another codeword block of the same packet will be

sent in the next time block. For simplicity, we assume an ideal ARQ protocol in our

analysis, in which the transmitter gets the feedback immediately at the end of each

time block without any delay.

In this section, deadline constraint is incorporated to control the average packet

delay. More specifically, the deadline constraint limits the the maximum number of

successive retransmission attempts of a packet (or equivalently the number of HARQ

rounds for a packet). We define the HARQ period as the duration of successive time

blocks used to transmit a single packet. Then, the deadline constraint limits the

2Our model considers block fading with independent fading coefficients across different blocks and
also a white noise process. In practical scenarios in which fading is correlated, our model assumptions
will be applicable if frame-level interleaving and deinterleaving are performed at the transmitter and
receiver, respectively, potentially introducing more delay compared with symbol-level interleaving.
Also, if non-white noise is experienced, a whitening filter can be employed at the receiver.
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maximum duration of HARQ periods. In this section, we assume that the deadline

constraint is M time blocks, and the packets that cannot be received correctly by the

receiver in the first HARQ period become outdated or their transmission priority is

lowered. Therefore, the retransmission of a packet continues until the receiver gets

the packet without error or if the limit on the number of retransmissions is reached,

and then the transmitter starts with another packet in the next HARQ period. The

receiver starts combining the received signal from the beginning in each HARQ period.

Whether the previous packet (which has experienced deadline violation) is kept in

the buffer for transmission later or is discarded from the buffer depends on the queue

models described in the next subsection.

In the HARQ-CC scheme, the same coded data is transmitted in each retransmis-

sion. The receiver employs maximum-ratio combining and decodes the data packet

error-free after the N th round only if R satisfies [7]

R ≤ log2

(
1 + SNR

N∑
i=1

zi

)
. (3.22)

Outage happens when a packet cannot be received correctly within one HARQ

period, and we denote the value of outage probability by ε. More specifically, the

outage probability is expressed as

Pr

{
log2

(
1 + SNR

M∑
i=1

zi

)
< R

}
= ε. (3.23)

Although the transmitter always sends information at a fixed rate, HARQ-CC has

the ability to adapt the average transmission rate to the channel conditions without

requiring perfect CSI at the transmitter. According to (3.22), if the data packet is

successfully decoded in the N th round, the average transmission rate is bounded as

1
N
log2

(
1 + SNR

∑N−1
i=1 zi

)
< R

N
≤ 1

N
log2

(
1 + SNR

∑N
i=1 zi

)
. For instance, when the

channel conditions are favorable, the transmission of a single packet can be completed
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Figure 3.8: Structure of a packet transmission period in queue model I

within a few blocks, resulting in a relatively large average transmission rate, and vice

versa if the channel conditions are poor. In [7], a detailed discussion about the

throughput of different types of HARQ is provided.

3.2.1.3 Queue Models

As we have mentioned in Section 3.2.1.1, the transmitter is equipped with a buffer

that is used to store the packets before transmission to the receiver. In this section,

we consider two typical queue models.

1. Queue Model I: Packets are removed from the buffer only when they are

received by the receiver correctly. If a packet is not received by the receiver

correctly within M successive time blocks, the transmitter reduces its priority,

and starts transmitting the packet with the highest priority in the next time

block.

2. Queue Model II: Packets are removed from the buffer when they are received

by the receiver correctly or if the duration of its HARQ period reaches the upper

limit M .

In queue model I, there is no limitation on the overall number of time blocks used

for a packet, and no packet is discarded. Instead, the packets are sorted according to
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their priorities3, and the transmitter transmits the packet with the highest priority

in each HARQ period. The priority can be determined by the urgency of the data

packet, and the priority level of a packet is reduced every time the deadline constraint

is violated during its transmission. Once the priority of a packet is reduced, it can

be transmitted again when it has the highest priority in the queue. In other words, a

packet can occupy multiple HARQ periods in this model. In this case, the meaning

of the deadline constraint is to control the average packet delay4. By reducing the

priority of an outdated packet, the packets waiting behind this outdated packet can

have smaller packet delay.

We define the packet transmission period as the duration of successive time blocks

until one packet is removed from the buffer (either due to successful transmission, or

for instance, in queue model II, due to deadline violation), and denote the packet

transmission period by T .

When a successful transmission of the packet occurs, we define V as the number

of time blocks used to successfully transmit the packet within the last HARQ period.

In queue model I, if there are multiple HARQ periods, transmission in the last HARQ

period of a packet transmission period is successful, and all other HARQ periods in

the same packet period have ended up with outages. Therefore, the duration of the

final HARQ period in a packet transmission period can be represented by V , and we

can have the relationship T = kM+V , where k represents the number of failed HARQ

periods or equivalently the number of outage events within the packet transmission

period. Fig. 3.8 shows an example of a packet transmission period with T = 8, k = 2,

M = 3, and V = 2 in queue model I. A detailed discussion about the distributions of

T and V is provided in Section 3.2.2.

3The packets with the same priority level are sorted according to their arrival order.
4In this section, packet delay is defined as the duration a packet waits starting from its entrance

to the buffer until its successful transmission.
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Queue model I is suitable for applications, in which the receiver insists on getting

every data packet it requests from the transmitter. For instance, in a cache-aided

system, the receiver updates its cached data using the outdated data packets for

future use [83].

In the second queue model, a packet transmission period only contains one HARQ

period, and we have T ≤M . Hence, there is always a departure from the buffer within

one HARQ period due to either successful transmission or packet drop because of

deadline violation. Queue model II is suitable for applications, in which outdated

data is useless, such as live video transmission.

In the buffer analysis, the instantaneous departure rate takes only two values.

The departure rate is ci = R (bits/symbol) when a packet is removed from the queue

in the ith time block, otherwise ci = 0. More specifically, in queue model I, ci = R

when a packet is received by the receiver correctly; in queue model II, ci = R when

a packet is received by the receiver correctly or a packet is discarded because of the

deadline constraint.

For the queue model I, the throughput is characterized by the maximum average

arrival rate ravg that can be supported under queuing constraints, described by (2.1)

in Chapter 2. For the queue model II, the throughput is given by the maximum

average arrival rate ravg multiplied by (1− ε), because only (1− ε) of the packets are

received by the receiver, and ε of the packets are discarded on average due to deadline

violations.

3.2.1.4 Energy Efficiency Metrics

As mentioned in the previous subsection, the system throughput is characterized by

the average arrival rate ravg and (1−ε)ravg in the queue models I and II, respectively.
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Moreover, we choose energy per bit5, defined as SNR over the throughput rTH , i.e.,

Eb

N0

=
SNR

rTH

=


SNR

ravg(θ,SNR)
in queue model I

SNR
(1−ε)ravg(θ,SNR)

in queue model II

, (3.24)

as the metric for energy efficiency under statistical QoS constraints. For a given

throughput requirement, the system with smaller energy per bit has better energy

efficiency.

In this section, we focus on the low-SNR regime, in which the throughput rTH can

be approximated as a linear function of the bit energy in dB scale [84]:

rTH =
S0

10 log10 2

(
Eb

N0 dB

− Eb

N0min,dB

)
+ o

(
Eb

N0

− Eb

N0min

)
, (3.25)

where Eb

N0 dB
= 10 log10

Eb

N0
, Eb

N0min,dB
is the minimum energy per bit in dB scale, which is

achieved as SNR and throughput approach 0 in our system setting, and S0

10 log10 2
is the

slope of the throughput curve at Eb

N0min
. Because of the linear behavior of the through-

put curve in the low-SNR regime, energy efficiency can be described by the minimum

energy per bit and wideband slope, and we have the following characterizations:

1. The system with smaller Eb

N0min
has better energy efficiency for sufficiently small

SNR.

2. Among the systems with the same Eb

N0min
, the system with higher S0 value has

better energy efficiency in the low-SNR regime, because higher slope provides

higher throughput increment as Eb

N0
increases, or equivalently the same through-

put is achieved at a smaller value of Eb

N0
.

Therefore, the minimum energy per bit Eb

N0min
and wideband slope S0 are the key

5In the literature, Eb

N0
is also referred to as the signal-to-noise ratio per bit. In this section, we

denote signal-to-noise ratio per symbol as SNR, and throughput is in bits/symbol. Therefore, SNR
divided by the throughput provides the SNR per bit. In (3.24), we also assume that the circuit
power consumption is negligible and the transmission power is the dominant factor.
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metrics of energy efficiency in the low-SNR regime.

In queue model I, the minimum energy per bit is obtained from [84]

Eb

N0 min

= lim
SNR→0

SNR

ravg(θ, SNR)
=

1

ṙavg(θ, 0)
(3.26)

where ṙavg(θ, 0) denotes the first derivative of the system throughput ravg(θ, SNR) with

respect to SNR at zero SNR. The wideband slope S0 is given by

S0 =
−2(ṙavg(θ, 0))2

r̈avg(θ, 0)
loge 2. (3.27)

Above, r̈avg(θ, 0) denotes the second derivative of ravg(θ, SNR)6 with respect to SNR

at zero SNR.

Correspondingly, the minimum energy per bit and wideband slope in queue model

II are given by

Eb

N0 min

=
1

(1− ε)ṙavg(θ, 0)
(3.28)

and

S0 = (1− ε)
−2(ṙavg(θ, 0))2

r̈avg(θ, 0)
loge 2, (3.29)

respectively.

3.2.2 Energy Efficiency of HARQ-CC scheme with Fixed Out-

age Probability

In this subsection, we study the energy efficiency of HARQ-CC scheme with fixed

outage probability. Initially, we consider constant-rate arrivals, characterize through-

put by employing the effective capacity formulation, and derive the minimum energy

6In the remainder of this section, especially when θ is fixed and derivatives with respect to SNR

are considered, we generally express average arrival rate and effective capacity only as a function of
SNR explicitly as ravg(SNR) and CE(SNR), respectively, and suppress θ in order to avoid cumbersome
expressions.
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per bit and wideband slope. Subsequently, we incorporate random arrival models

by considering discrete-time Markov, Markov fluid, and Markov modulated Poisson

sources and determine the system throughput and analyze the energy efficiency again

by determining the minimum energy per bit and wideband slope. Based on these

results, a comparison of the energy efficiency with different arrival models is given in

the next subsection.

3.2.2.1 Statistical Distribution of T

Before obtaining the minimum energy per bit and wideband slope expressions for

HARQ-CC, we first characterize the system throughput of HARQ-CC scheme subject

to an outage constraint. Recall that an outage event happens if the receiver does not

correctly decode the message within an HARQ period with a maximum duration

of M time blocks. The formulation of the outage probability is given in (3.23).

Correspondingly, the transmission rate that guarantees an outage probability of ϵ

can be expressed as [9]

R = log2
(
1 + F−1

M (ε)SNR
)

(3.30)

for both queue model I and II, where F−1
M is the inverse cumulative distribution func-

tion (CDF) of
∑M

i=1 zi. Specifically, for Rayleigh fading, 2
E{z}

∑M
i=1 zi follows a chi-

square distribution with 2M degrees of freedom; for Nakagami-m fading,
∑M

i=1 zi fol-

lows a Gamma distribution with shape parameter Mm and scale parameter E{z}/m.

Hence, using the above rate expression and the formulation (3.10) in Section 3.1,

we can express, for small θ, the throughput of the HARQ-CC scheme subject to an

outage constraint ϵ as

ravg(SNR) =
log2(1 + F−1

M (ε) SNR)

µ
−
[
log2(1 + F−1

M (ε) SNR)
]2
σ2θ

2µ3
, (3.31)

for both queue model I and II. The only difference between the average arrival rates
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in these two queue models lies in the expressions of µ and σ2. In order to obtain the

expressions of µ and σ2, we first find the probability mass function (pmf) of T , which

represents the duration of a packet period. Recall that in Section 3.2.1.3, we denote

the duration of the last HARQ period in a packet transmission period by V , and we

have characterized the relationship T = kM + V in queue model I. We denote the

values of the random variables T and V by t and v, respectively. In the rest of this

section, we use subscript Q1 and Q2 to distinguish the notations (T , µ, σ, CE,
Eb

N0min

and S0) for queue models I and II, respectively.

Queue model I:

The probability that the transmission of the first k packets have ended in failure due

to the the deadline constraint M , and the (k+1)th packet is successfully transmitted

after v ≤M time blocks is given as follows:

Pr{TQ1 = kM + v} = εk Pr{V = v} (3.32)

where ε is the outage probability. According to the condition given in (3.22), Pr{V =

v} for v ≤M can be expressed as

Pr{V = v} = Pr{V ≤ v} − Pr{V ≤ v − 1} (3.33)

= Pr

{
log2

(
1 + SNR

v∑
i=1

zi

)
> R

}
−Pr

{
log2

(
1 + SNR

v−1∑
i=1

zi

)
> R

}
(3.34)

= Pr

{
v∑

i=1

zi>F−1
M (ε)

}
−Pr

{
v−1∑
i=1

zi>F−1
M (ε)

}
(3.35)

= Fv−1

(
F−1
M (ε)

)
− Fv

(
F−1
M (ε)

)
(3.36)

where Fv is the CDF of
∑v

i=1 zi. Now, (3.32) can be expressed as

Pr{TQ1 = kM + v} = εk
(
Fv−1

(
F−1
M (ε)

)
− Fv

(
F−1
M (ε)

))
. (3.37)
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Queue model II:

Recall that the value of TQ2 cannot exceedM in queue model II. TQ2 < M corresponds

to successful transmission, and TQ2 = M corresponds to either successful transmission

using M time blocks or an outage event due to deadline violation, which leads to

packet being removed from the buffer and discarded. Therefore, we can express the

pmf of TQ2 as

Pr{TQ2 = t} =


Pr{V = t} = Ft−1

(
F−1
M (ε)

)
− Ft

(
F−1
M (ε)

)
, t < M

Pr{V = M}+ ε = FM−1

(
F−1
M (ε)

)
, t = M

(3.38)

where V has the same pmf as in queue model I. Recall that V is defined only for

successful transmission, and thus V = M in (3.38) represents that the packet is

received successfully using M time blocks.

Theorem 2 For queue model I, the expected value and variance of T are given by

µQ1 =
1

1− ε

M∑
v=1

v Pr{V = v}+ Mε

1− ε
(3.39)

σ2
Q1 =

1

1− ε

M∑
v=1

v2 Pr{V = v}+ 2Mε

(1− ε)2

M∑
v=1

v Pr{V = v}

+
M2ε(1 + ε)

(1− ε)2
− µ2

Q1, (3.40)

respectively. And for queue model II, the expected value and variance of T are given

by

µQ2 =
M∑
t=1

t Pr{V = t}+Mε, (3.41)

σ2
Q2 =

M∑
t=1

t2 Pr{V = t}+M2ε− µ2
Q2, (3.42)

respectively. In the above expressions, the pmf of random variable V is given by (3.36)
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for both queue models I and II.

Proof : See Appendix A.2.

3.2.2.2 Energy Efficiency of HARQ-CC with Constant-Rate Arrivals

Note that the expressions of µ and σ2 do not depend on SNR in both queue models

I and II. In the following result, we characterize the energy efficiency in the low SNR

regime for small θ.

Theorem 3 For small QoS exponent θ, the minimum energy per bit and wideband

slope of the HARQ-CC scheme with the outage constraint ϵ are given, respectively, by

Eb

N0 min Q1

=
µQ1 loge 2

F−1
M (ε)

, (3.43)

S0 Q1 =
2µQ1 loge 2

σ2
Q1θ + µ2

Q1 loge 2
, (3.44)

for queue model I, where µQ1 and σ2
Q1 are given by (3.39) and (3.40), respectively. For

queue model II, the minimum energy per bit and wideband slope are given, respectively,

by

Eb

N0 min Q2

=
µQ2 loge 2

(1− ε)F−1
M (ε)

, (3.45)

S0 Q2 = (1− ε)
2µQ2 loge 2

σ2
Q2θ + µ2

Q2 loge 2
, (3.46)

respectively, where µQ2 and σ2
Q2 are given by (3.41) and (3.42).

Proof : See Appendix A.3.

We immediately notice that for both queue models I and II, the minimum energy

per bit Eb

N0min
does not depend on the QoS exponent θ, and hence is not affected by

the presence of QoS constraints. On the other hand, via µ and F−1
M (ε), Eb

N0min
is a

function of the deadline constraint M and the outage limit ϵ. This dependence will
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be explored in the numerical results. We further notice that the wideband slope S0

diminishes with increasing θ. Hence, stricter QoS constraints lead to smaller slopes,

increasing the energy per bit requirements at the same throughput level.

Proposition 1 For the same SNR, θ and channel fading, queue models I and II lead

to the same minimum energy per bit. On the other hand, the system operating with

queue model II achieves a higher wideband slope.

Proof : See Appendix A.4.

A detailed discussion of the characterization in Proposition 1 is provided in the

numerical results.

3.2.2.3 Energy Efficiency of HARQ-CC with ON-OFF Discrete-TimeMarkov

Source

As mentioned in Section 2.2.2, when the arrival rate ai is not constant, the computa-

tion of the throughput is more involved. Generally, we need to express the LMGFs

of the random arrival processes and random departure processes (or equivalently ran-

dom wireless transmissions), and then solve (2.4) in order to determine the maximum

average arrival rate ravg that can be supported by the wireless transmissions under

statistical queuing constraints. In these cases, derivation of the minimum bit energy

and wideband slope only involves the first and second order derivatives of ravg eval-

uated at SNR = 0, which can be obtained easily by taking the derivatives of both

sides of (2.4) and letting SNR→ 0. In this subsection, we analyze the energy efficien-

cy of HARQ-CC with fixed outage probability when we have ON-OFF discrete-time

Markov sources.

A detailed study about the throughput of the ON-OFF discrete-time Markov

source under statistical queuing constraints is provided in Section 2.2.2.1. Since the

departure and arrival processes at the transmitter are independent, for both queue
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models I and II, the expressions of µ and σ2 in (3.39), (3.40), (3.41) and (3.42) are

still valid.

Theorem 4 For small QoS exponent θ and ON-OFF discrete-time Markov source,

the minimum energy per bit and wideband slope of the HARQ-CC scheme with the

outage constraint ϵ are given, respectively, by

Eb

N0 min Q1

=
µQ1 loge 2

F−1
M (ε)

, (3.47)

S0 Q1 =
2 loge 2

σ2
Q1θ+µ2

Q1 loge 2

µQ1
+ θζ

(3.48)

for queue model I, where µQ1 and σ2
Q1 are given by (3.39) and (3.40), respectively,

and ζ is defined as

ζ =
(1− p22)(p11 + p22)

(1− p11)(2− p11 − p22)
. (3.49)

For queue model II, the minimum energy per bit and wideband slope are given by

Eb

N0 min Q2

=
µQ2 loge 2

(1− ε)F−1
M (ε)

, (3.50)

S0 Q2 =
2(1− ε) loge 2

σ2
Q2θ+µ2

Q2 loge 2

µQ2
+ θζ

, (3.51)

respectively, where µQ2 and σ2
Q2 are given by (3.41) and (3.42).

Proof : See Appendix A.5.

3.2.2.4 Energy Efficiency of HARQ-CC with ON-OFF Fluid Markov Source

In this subsection, we consider the ON-OFF fluid Markov sources, which is studied

in detail in Section 2.2.2.2. Using a similar approach as for the discrete-time Markov

source, we can find the minimum energy per bit and wideband slope for the ON-OFF

fluid Markov source as in the following result.
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Theorem 5 For small QoS exponent θ and ON-OFF fluid Markov source, the min-

imum energy per bit and wideband slope of the HARQ-CC scheme with the outage

constraint ϵ are given, respectively, by

Eb

N0min Q1

=
µQ1 loge 2

F−1
M (ε)

, (3.52)

S0 Q1 =
2 loge 2

σ2
Q1θ+µ2

Q1 loge 2

µQ1
+ 2θβ

α(α+β)

(3.53)

for queue model I, where µQ1 and σ2
Q1 are given by (3.39) and (3.40), respectively. For

queue model II, the minimum energy per bit and wideband slope are given, respectively,

by

Eb

N0min Q2

=
µQ2 loge 2

(1− ε)F−1
M (ε)

, (3.54)

S0 Q2 =
2(1− ε) loge 2

σ2
Q2θ+µ2

Q2 loge 2

µQ2
+ 2θβ

α(α+β)

(3.55)

respectively, where µQ2 and σ2
Q2 are given by (3.41) and (3.42).

Proof : See Appendix A.6.

3.2.2.5 Energy Efficiency of HARQ-CC with ON-OFF MMPS

In this subsection, we investigate the energy efficiency of ON-OFF MMPS models.

The throughput of MMPS is investigated in Section 2.2.2.3, and the following result

identifies the the minimum energy per bit and wideband slope for the ON-OFFMMPS

models.

Theorem 6 For small QoS exponent θ and ON-OFF MMPS, the minimum energy

per bit and wideband slope of the HARQ-CC scheme with the outage constraint ϵ are
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given, respectively, by

Eb

N0min Q1

=
eθ − 1

θ

µQ1 loge 2

F−1
M (ε)

, (3.56)

S0 Q1 =
θ

eθ − 1

2 loge 2
σ2
Q1θ+µ2

Q1 loge 2

µQ1
+ 2θβ

α(α+β)

(3.57)

for queue model I, where µ and σ2 are given by (3.39) and (A.37), respectively. For

queue model II, the minimum energy per bit and wideband slope are given, respectively,

by

Eb

N0min Q2

=
eθ − 1

θ

µQ2 loge 2

(1− ε)F−1
M (ε)

, (3.58)

S0 Q2 =
θ

eθ − 1

2(1− ε) loge 2
σ2
Q2θ+µ2

Q2 loge 2

µQ2
+ 2θβ

α(α+β)

(3.59)

respectively, where µQ2 and σ2
Q2 are given by (3.41) and (3.42).

Proof : See Appendix A.7.

A comparison of the results in Theorems 3–6 is provided in the following subsec-

tion.

3.2.3 Comparison of the Energy Efficiency for Different Ar-

rival Models

In this subsection, we compare the results obtained in the previous subsection for

constant-rate arrivals, ON-OFF discrete-time and fluid Markov sources, and ON-

OFF MMPS. In the first part below, we compare the results between constant-rate

arrivals and ON-OFF discrete-time Markov sources. In the second part, we provide a

comparison among constant-rate arrivals, ON-OFF fluid Markov sources and MMPS.

Our analysis shows that source burstiness makes it difficult to satisfy the queuing

constraint, which leads to degraded energy efficiency. The key parameters that have
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significant impact on the energy efficiency of these random arrival models are the QoS

exponent θ, ON state probability PON and the state transition parameters p21 and β.

3.2.3.1 Comparison Between Constant Arrival and ON-OFF Discrete-

Time Markov Source

The results on the minimum energy per bit and wideband slope for constant-rate

arrivals and ON-OFF discrete-time Markov sources are given in Theorems 3 and

4, respectively. Since the results for queue model II are very similar to the results

for queue model I with the only difference being the additional factor (1 − ε), the

discussion in this subsection is applicable to both queue models.

We first observe that source randomness does not have any influence on the min-

imum energy per bit, and the results of minimum energy per bit shown in Theorem

4 are the same as in the case of constant-rate arrivals. On the other hand, source

burstiness has an impact on the wideband slope. Compared with the case of constant-

rate arrivals, there is an additional term θζ in the denominator, and this additional

term is only related to the arrival process. Since both of p11 and p22 are between

0 and 1, it is easy to verify that θζ ≥ 0, which means that random arrivals always

degrade the wideband slope and make the system less energy-efficient compared with

constant-rate arrivals.

For the ON-OFF discrete-time Markov source, source burstiness is described by

PON and p21. PON represents the probability that the source is in ON state, and

p21 denotes the probability that the source transitions from ON state to the OFF

state. When PON = 1, ON-OFF discrete-time Markov source becomes a constant-

rate source, and p11 = 0, p22 = 1. Under this situation, we have ζ = 0, and the results

in Theorem 4 specialize to those obtained in the case of the constant-rate arrivals.
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For any PON in the open interval (0, 1), we can rewrite the expression of ζ as

ζ =
(1− PON)(1− p21 − 2PON)

p21PON

, (3.60)

by applying the facts p22 = 1 − p21, p12 = p21PON

1−PON
and p11 = 1 − p12 = 1−(1+p21)PON

1−PON

to (3.49). It can be easily verified that ζ is an decreasing function of both PON and

p21, which means that higher PON and p21 values improve the energy efficiency by

increasing the wideband slope.

Also, we notice that when θ = 0, the additional term is zero, and the parameters

of the arrival process do not have any influence on the energy efficiency. When

θ becomes larger, the influence of source burstiness becomes more significant. An

intuitive description for this is provided in the numerical results subsection.

3.2.3.2 Comparison Among Constant Arrivals, ON-OFF Fluid Markov

Source and MMPS

The results on the minimum energy per bit and wideband slope for constant-rate

arrivals, ON-OFF fluid Markov sources and MMPS are given in Theorems 3, 5 and

6, respectively. Similarly as in the previous subsection, our following remarks are

applicable to both queue models.

From the comparison between Theorems 3 and 5, we notice that burstiness/randomness

of the ON-OFF fluid Markov sources does not affect the minimum energy per bit,

and it only results in the addition of the positive term 2θβ
α(α+β)

in the denominator of

the wideband slope expressions in (3.53) and (3.55). Therefore, constant-rate arrival

sources have better energy efficiency, compared with ON-OFF fluid Markov sources.

Similar to ON-OFF discrete-time Markov sources, the burstiness of the ON-OFF fluid

Markov sources is described by PON and β. When PON = 1, arrival rates become

constant, and this additional term vanishes. For any PON in the open interval (0, 1),
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we can rewrite the expression of the additional term as

2θβ

α(α+ β)
= 2θ

(1− PON)
2

PONβ
, (3.61)

by applying α = PONβ
1−PON

. It can be easily verified that this additional term is an

decreasing function of both PON and β, which means that higher PON and β values

improve the energy efficiency by increasing the wideband slope.

As in the case of ON-OFF discrete-time Markov sources, we notice that as θ

increases, the effect of source burstiness becomes more pronounced, while the param-

eters of the arrival process do not have any influence on the energy efficiency when

θ = 0.

When comparing the results of Theorems 5 and 6, we assume that these two

kinds of Markovian sources share the same α and β values. From the comparison,

we notice that Poisson arrival model only leads to an additional factor of θ
eθ−1

in the

expressions of the minimum energy per bit and wideband slope. Therefore, β has the

same impact as in the case of ON-OFF fluid Markov sources. For θ ≥ 0, we have

θ
eθ−1
≤ 1, resulting in a larger minimum energy per bit and smaller wideband slope for

the ON-OFF MMPS compared to those for the ON-OFF Markov fluid source. Since

the factor θ
eθ−1

is a decreasing function of θ, the performance gap grows further as the

queuing constraint gets stricter. Moreover, as a stark contrast to the observations in

Sections 3.2.2.3 and 3.2.2.4, the minimum energy per bit depends on θ when ON-OFF

MMPS arrival model is considered.

Therefore, we can conclude that among these three arrival models, highest energy

efficiency is achieved in the case of constant-rate arrivals while ON-OFF MMPS leads

to the worst levels of energy efficiency.
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Figure 3.9: Logarithmic buffer overflow probability vs. buffer overflow threshold.

3.2.4 Numerical Results

In this subsection, we present numerical results to illustrate the energy efficiency of

HARQ-CC in the presence of QoS constraints. In the first part, numerical results

for the constant-rate arrival model are provided to demonstrate the influence of the

deadline constraint M and outage probability ε. In the second part, we concentrate

on the impact of random arrivals and source burstiness. Via Monte Carlo simulation,

we verify the analytical results provided in our theorems. A comparison between

queue models I and II is also provided in the first subsection, verifying Proposition 1.

3.2.4.1 Constant-Rate Arrival Models

In this part, we analyze the energy efficiency of the HARQ-CC scheme with fixed

transmission rate and constant arrival rate, and we assume Rayleigh fading channel

with exponentially distributed fading power having a mean value of E{z} = 1 within

this subsection.

First, we have performed Monte Carlo simulations to verify that the constant ar-

rival rate, or equivalently the effective capacity, given by (3.10) in Section 3.1 satisfies
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Figure 3.10: Throughput vs. energy per bit Eb

N0
.

the statistical queuing constraint in both queue models I and II7. In Fig. 3.9, we set

the queuing constraint as θ = 0.1, choose the outage probability as ε = 0.1, and we

plot the logarithmic buffer overflow probabilities log Pr{Q ≥ q} as functions of the

buffer overflow threshold q for both queue models I and II. For each queue model, we

have repeated the simulations 100 times, in each of which the simulation is conducted

over 1× 107 time blocks. In the simulation, the values of µQ1 and σ2
Q1 are computed

using (3.39) and (3.40), respectively, and µQ2 and σ2
Q2 are computed using (3.41) and

(3.42), respectively. From Fig. 3.9, we observe that the logarithmic buffer overflow

probabilities decrease linearly even starting from relatively small q values, agreeing

with the characterizations in (2.1) and (2.2) 8. We have estimated the slopes via

linear regression, and the estimated slopes for queue models I and II are −0.096 and

7In queue model I, when a deadline violation occurs and the packet is not successfully sent within
an HARQ period of M time blocks, we keep the packet in the buffer, clear the accumulated signal at
the receiver, and initiate the transmission anew in the next HARQ period. Under these assumptions,
since the sole goal of the simulations is to keep track of the queue length, there is no distinction
regarding whether a new packet is transmitted in the next HARQ period or the same packet is
repeated. On the other hand, in queue model II, we discard the outdated packet from the buffer
after violating the deadline constraint, and start transmitting a new packet.

8Note that if (2.1) holds, then log(Pr{Q ≥ q}) ≈ −θq + log ς and hence the logarithmic overflow
probability decays linearly with slope −θ as threshold q increases.
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−0.103 respectively, which are indeed very close to the desired value −0.1.

In Fig. 3.10, we plot the throughput, which is CE(θ, SNR) for queue model I, and

(1 − ε)CE(θ, SNR) for queue model II, as a function of the energy per bit Eb

N0
, under

two different outage constraints ϵ and deadline constraints M . The results in Fig.

3.10 are also validated via Monte Carlo simulations using (2.8). To determine the

LMGF of the departure process, we have conducted simulations over 1 × 104 time

blocks and repeated this for 1× 104 times. We notice that analytical and simulation

results agree perfectly for both queue models I and II. Note that the throughput for

both queue models cannot exceed E{log2(1 + SNRz)}, which is the Shannon capacity

achieved in the absence of queuing constraints. Since this throughput upper bound

is an increasing concave function of SNR, the minimum energy per bit is achieved as

SNR approaches 0, i.e., limSNR→0
SNR

E{log2(1+SNRz)} = loge 2
E{z} . Since we set E{z} = 1, the

minimum energy per bit cannot be smaller than loge 2, which is equal to −1.59 dB.

Comparing the curves of these two queue models, we find that queue model II

has better energy efficiency. According to our results in Proposition 1, queue model

I and II should achieve the same minimum energy per bit, while queue model II

achieves a higher wideband slope in the constant-rate arrival model. In order to

verify Proposition 1, we have computed the Eb

N0min
and S0 for both queue models I

and II in Figs. 3.11 and 3.12.

All Eb

N0min
and S0 values in Figs. 3.11 and 3.12 are verified via simulations. For

each pair of Eb

N0min
and S0, we have obtained 50 points of the throughput curves

(throughput vs. Eb

N0 dB
) in the low-SNR regime (SNR ≤ −33 dB) from simulations,

and estimated Eb

N0min
and S0 via linear regression according to (3.25). The maximum

errors of Eb

N0min
and S0 are 0.0007% and 0.3%, respectively. From Figs. 3.11 and

3.12, we observe that queue model I and II have the same minimum energy per bit,

and the wideband slopes of queue model II are slightly greater than the wideband

slopes of queue model I. This observation agrees with Proposition 1, and an intuitive
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Figure 3.11: Minimum energy per bit Eb
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and wideband slope S0 vs. outage prob-

ability ϵ.
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explanation is given as follows for the minimum energy per bit.

The throughput of queue model I and II are given by rTH Q1 = R/µQ1 and rTH Q2 =

(1 − ε)R/µQ2, respectively, when θ = 0. From (A.46) in Appendix A.4, we have

rTH Q1 = rTH Q2, which means that the throughput curves of these two queue models

are exactly the same. This implies that Eb

N0min Q1
= Eb

N0min Q2
and S0 Q1 = S0 Q2, when

θ = 0. Since minimum energy per bit does not depend on the queuing constraints,

Eb

N0min Q1
= Eb

N0min Q2
is valid for any θ value.

In Fig. 3.11, we display the minimum energy per bit Eb

N0min
and wideband slope

S0 as functions of the outage probability constraint ϵ for two different values of the

deadline constraint M . It is observed from the figure that the minimum energy per

bit first decreases with increasing ϵ and then starts increasing after a certain threshold

point. When the outage probability is small, the fixed transmission rate R is small,

which leads to small departure rates for both queue models I and II. On the other

hand, when the outage probability is large, the average transmission rate is small for

both queue models I and II, because the transmitter wastes a whole HARQ period

when an outage happens. Also, we observe that the wideband slope always decreases

with increasing ϵ.

In Fig. 3.12, the minimum energy per bit and wideband slope are plotted as

functions of the deadline constraint M for both queue models I and II. It is seen that

both the minimum energy per bit and wideband slope decrease with increasing M .

Hence, by reducing the minimum energy per bit, relaxed deadline constraints lead to

improvements in energy efficiency in the vicinity of Eb

N0min
.

3.2.4.2 Random Arrival Models

In this part, we investigate the impact of source randomness/burstiness on the energy

efficiency. Within this subsection, we assume a Nakagami-m fading channel with

m = 2, and E{z} = 1. Unless mentioned explicitly, QoS exponent is set to θ = 0.1.
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the ON-OFF discrete-time Markov source.

For all fixed outage probability results, we fix ε = 0.1. In Fig. 3.13, we provide the

results of buffer simulations for the ON-OFF discrete-time Markov source, similarly

as depicted in Fig. 3.9. The arrival rates in the ON state are given by (2.13) in

Section 2.2.2.1 for both queue models. We set p11 = 0.4, p22 = 0.7, and θ = 0.1 for

both queue models. All other parameters are the same as in Fig. 3.9. The estimated

slopes of queue models I and II are −0.096 and −0.102, respectively, which are again

very close to the desired value −0.1. As we have mentioned in Section 3.2.3, since

source burstiness has similar impacts on queue models I and II, we only consider

queue model I in the following discussion on the impacts of source burstiness.

Figs. 3.14 and 3.15 demonstrate the influence of source burstiness considering

both ON-OFF discrete-time Markov and Markov fluid sources for queue model I. For

the ON-OFF discrete-time Markov source, the source burstiness is described by PON

and p21, and the source burstiness is described by PON and β for the ON-OFF Markov

fluid source. As discussed in Section 3.2.3, larger PON , p21 and β values improve the

energy efficiency for both queue models I and II. In Fig. 3.14, when fix p21 = 0.3,

the slopes of the throughput curves increase as PON increases from 0.1 to 0.75. Also,
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for ON-OFF discrete-time Markov

source with fixed outage probability ε = 0.1.
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when PON = 0.3 is fixed, the wideband slope increases as p21 increases from 0.1 to

0.9. Since source burstiness does not affect the minimum energy per bit for both ON-

OFF discrete-time Markov and Markov fluid sources, we observe that the throughput

curves in Fig. 3.14 converge to the same minimum energy per bit. Similarly in Fig.

3.15, for the ON-OFF Markov fluid source, we can observe that larger PON and β

values increase the slope of the throughput curve, and all throughput curves in Fig.

3.15 again approach the same minimum energy per bit.

When the average arrival rate is fixed, the arrival rate in the ON state increases

as PON decreases because ravg = rPON , and large arrival rates make it difficult to

satisfy the queuing constraint. Hence, larger PON improves the energy efficiency

for both ON-OFF discrete-time Markov and Markov fluid sources. When PON is

fixed, higher p21 and β values make the source transition between two states more

frequently. For the same PON , more frequent state transitions make the queuing

constraints to be satisfied more easily, because the change from ON state to OFF

state gives the source the chance to clear its buffer. As we have mentioned in Section
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3.2.3 that as θ increases, the influence of source burstiness becomes more significant,

and the parameters of the arrival process do not have any influence on the energy

efficiency when θ = 0, for both ON-OFF discrete-time Markov and Markov fluid

sources. Therefore, larger PON , p21 and β values improve the energy efficiency by

helping the system to satisfy queuing constraints more effectively, and this impact

becomes more striking when the queuing constraints become stricter. If the system

is not restricted by the queuing constraint, then the source burstiness does not affect

the energy efficiency for the ON-OFF discrete-time Markov and Markov fluid sources.

Finally, in Fig. 3.16, we compare the performances of ON-OFF Markov fluid

source and MMPS for queue model I. As mentioned in Section 3.2.3, compared to the

the minimum energy per bit and wideband slope of the ON-OFF Markov fluid source,

the corresponding results for MMPS are scaled by the factor eθ−1
θ

and its reciprocal,

respectively. When θ is close to 0, both eθ−1
θ

and its reciprocal approach 1. For this

reason, the throughput curves of ON-OFF Markov fluid source and MMPS stay very

close to each other in both figures when θ = 0.001. As θ increases, the factor eθ−1
θ

grows, which leads to larger gap between the throughput curves of these two types

of Markov sources. For instance, we can easily observe from Fig. 3.16 that there is

a 0.44 dB difference between the corresponding minimum energy per bit values when

θ = 0.2.
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Chapter 4

Throughput of Hybrid-ARQ under

Statistical Queuing Constraints

Using Recurrence Approach

In this chapter, throughput of HARQ under statistical queuing constraints is studied

via recurrence approach. Compared with the low-θ approximation used in Chapter

3, recurrence approach is more accurate for any QoS exponent value. However, it

is difficult to obtain closed-form expression via recurrence approach. Therefore, we

cannot conduct a similar energy efficiency analysis as we have done in Section 3.2.

In Section 4.1, throughput of HARQ-CC schemes is studied in the presence of

Markovian data arrivals and statistical queuing constraints. In particular, two queu-

ing models are considered. Specifically, when outage occurs, the transmitter keeps

the packet, lowers its priority, and attempts to retransmit it later in the first queue

model while the packet is discarded and removed from the buffer in the second queue

model. The throughput is investigated when outage constraints, statistical queuing

constraints and deadline constraints are imposed. The deadline constraint provides a

limitation on the number of retransmissions. Under these assumptions, throughput
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characterizations are obtained for HARQ-CC scheme with three types of Markovian

sources, namely the ON-OFF discrete-time and fluid Markov sources and MMPS.

In Section 4.2, throughput of HARQ-IR schemes with finite blocklength codes

is studied for both constant-rate and ON-OFF discrete-time Markov arrivals under

statistical queuing constraints and deadline limits. After analyzing the decoding

error probability and outage probability, the distribution of transmission period is

characterized, and the throughput expressions are obtained for both arrival models.

The analytical results are verified via Monte Carlo simulations.

4.1 Throughput of Hybrid-ARQ Chase Combining

with ON-OFF Markov Arrivals under Statis-

tical Queuing Constraints

In this section, we study the throughput of HARQ-CC protocol under both statistical

queuing constraints and deadline constraints. The system model is the same with

in Section 3.2, and the discussions about HARQ-CC scheme, deadline constraints,

outage probability, two queue models and the throughput metrics in Section 3.2.1 are

valid in this section as well. Different from the analysis in Section 3.2, we characterize

the throughput via a recurrence approach, which provides sufficiently accurate results

for any QoS exponent value.

4.1.1 Throughput of HARQ-CC Scheme with Queuing Con-

straints

In this subsection, we study the throughput of HARQ-CC scheme under queuing

constraints. Initially, we consider constant-rate arrivals, characterize throughput by

employing the effective capacity formulation. Subsequently, we incorporate random
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arrival models by considering three types of Markovian sources and determine the

system throughput using the results obtained in the constant-rate arrival model.

4.1.1.1 Throughput of HARQ-CC Scheme with Constant-rate Arrivals

Recall that an outage event happens if the receiver does not correctly decode the

message within an HARQ period with a maximum duration of M time blocks. The

formulation of the outage probability is given in (3.23). Correspondingly, the trans-

mission rate that guarantees an outage probability of ϵ can be expressed as [9]

R = log2
(
1 + F−1

M (ε)SNR
)

(4.1)

for both queue models I and II, where F−1
M is the inverse cumulative distribution

function (CDF) of
∑M

i=1 zi.

In this section, we define Pt,v,Qj
as the probability that the duration of an HARQ

period is t, and the number of packets removed from the queue in this HARQ period

is v, for queue model j. From the discussion in Section 3.2.1.2, we have 1 ≤ t ≤ M ,

and v only takes two values, 1 or 0.

In queue model I, v = 0 when outage occurs. In such cases, we have t = M ,

because outage happens only after the transmitter’s unsuccessful M transmission

attempts. Pt,1,Q1 is the probability that a transmission period ends up with success

in the tth time block. From the above discussion, we have

Pt,0,Q1 =


0 t < M

ε t = M

(4.2)
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and

Pt,1,Q1=Pr

{
log2

(
1+SNR

t∑
i=1

zi

)
>R

}
−Pr

{
log2

(
1+SNR

t−1∑
i=1

zi

)
>R

}
(4.3)

=Pr

{
t∑

i=1

zi > F−1
M (ε)

}
− Pr

{
t−1∑
i=1

zi > F−1
M (ε)

}
(4.4)

=Ft−1

(
F−1
M (ε)

)
− Ft

(
F−1
M (ε)

)
(4.5)

where Ft is the CDF of
∑t

i=1 zi. In (4.3), we use the fact that the probability that the

receiver decodes the packet successfully in the tth time block is equal to the probability

that the receiver decodes the packet within t time blocks minus the probability that

the receiver decodes the packet within t− 1 time blocks.

In queue model II, v can only be 1, because a packet definitely leaves the queue

at the end of each HARQ period due to either successful transmission or packet drop.

Similar to the discussion in queue model I, t < M only corresponds to successful

transmission, and t = M corresponds to two cases, in which the receiver gets the

packet in the M th time block, or an outage happens and the packet is dropped.

Therefore, we have

Pt,1,Q2 =


Ft−1

(
F−1
M (ε)

)
− Ft

(
F−1
M (ε)

)
t < M

FM−1

(
F−1
M (ε)

)
t = M.

(4.6)

For the case of t = M , we use the fact the Pt,1,Q2 = FM−1

(
F−1
M (ε)

)
−FM

(
F−1
M (ε)

)
+ε,

and FM

(
F−1
M (ε)

)
= ε.

Proposition 2 The throughput of HARQ-CC scheme with fixed outage probability ε,
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deadline constraint M , and constant-rate arrivals is given by

rth =


CE,Q1 for queue model I

(1− ε)CE,Q2 for queue model II,

(4.7)

where the effective capacity for queue model j is given by

CE,Qj
= −1

θ
log
(
max{|λ1,Qj

|, · · · , |λM,Qj
|}
)
. (4.8)

{λ1,Qj
, · · · , λM,Qj

} are the eigenvalues of the matrix AQj
expressed as

AQj
=



a1,Qj
a2,Qj

· · · aM−1,Qj
aM,Qj

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0


(4.9)

where

ak,Qj
=



[
Fk−1

(
F−1
M (ε)

)
− Fk

(
F−1
M (ε)

) ]
e−θR 1 ≤ k ≤M − 1[

FM−1

(
F−1
M (ε)

)
− ε
]
e−θR + ε k = M and j = 1

FM−1

(
F−1
M (ε)

)
e−θR k = M and j = 2.

(4.10)

Proposition 2 can be directly obtained by inserting our characterization of Pt,v,Qj

into Theorem 1 in [15]. Since the authors of [15] did not consider packet drop, we need

to redefine the variable ν in [15] as the number of packets leaving the queue in a trans-

mission period, in order to apply their theorem to our queue models. In the Section

4.1.2, simulation results are provided to verify our effective capacity characterization.
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4.1.1.2 Throughput of HARQ-CC with ON-OFF Discrete-Time Markov

Source

Since the departure and arrival processes at the transmitter are independent, for both

queue models I and II, the effective capacity characterizations in Proposition 2 are

still valid.

Theorem 7 For the ON-OFF discrete-time Markov source with fixed outage proba-

bility ε and deadline constraint M , the throughput in queue model I is given by

rth =
PON

θ
log

(
e2θCE,Q1 − p11e

θCE,Q1

1− p11 − p22 + p22e
θCE,Q1

)
, (4.11)

and the throughput in queue model II is given by

rth = (1− ε)
PON

θ
log

(
e2θCE,Q2 − p11e

θCE,Q2

1− p11 − p22 + p22e
θCE,Q2

)
, (4.12)

where the effective capacities CE,Q1 and CE,Q2 are given in (4.8).

According to our discussion in Section 3.2.1.3, the throughput of queue model I is

given by ravg, and the throughput of queue model II is given by (1− ε)ravg. With the

result in (2.14), we readily obtain the throughput expressions given in Theorem 7.

4.1.1.3 Throughput of HARQ-CC with ON-OFF Fluid Markov Source

Theorem 8 For ON-OFF fluid Markov source with fixed outage probability ε and

deadline constraint M , the throughput in queue model I is given by

rth = PONCE,Q1

θCE,Q1 + α + β

θCE,Q1 + α
, (4.13)
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and the throughput in queue model II is given by

rth = (1− ε)PONCE,Q2

θCE,Q2 + α+ β

θCE,Q2 + α
, (4.14)

where the effective capacities CE,Q1 and CE,Q2 are given in (4.8).

The throughput expressions in Theorem 8 can be determined directly using the

maximum average arrival rate given in (2.20).

4.1.1.4 Throughput of HARQ-CC with ON-OFF MMPS

Theorem 9 For ON-OFF MMPS with fixed outage probability ε and deadline con-

straint M , the throughput in queue model I is given by

rth = PONCE,Q1

θ

eθ − 1

θCE,Q1 + α + β

θCE,Q1 + α
, (4.15)

and the throughput in queue model II is given by

rth = (1− ε)PONCE,Q2

θ

eθ − 1

θCE,Q2 + α + β

θCE,Q2 + α
, (4.16)

where the effective capacities CE,Q1 and CE,Q2 are given in (4.8).

The throughput expressions in Theorem 9 can be obtained directly using the

maximum average arrival rate given in (2.24).

4.1.2 Numerical Results

In this subsection, we further investigate the throughput of HARQ-CC with ON-OFF

Markov arrivals in the presence of QoS constraints. Throughout this subsection, we

assume Rayleigh fading channel with exponentially distributed fading power having

a mean value of E{z} = 1.

82



0 1 2 3 4 5 6 7 8

q

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

lo
g 

P
r{

Q
>

q}

Constant arrival, queue model I
Constant arrival, queue model II
Markov source, queue model I
Markov source, queue model II

Figure 4.1: Logarithmic buffer overflow probability vs. buffer overflow threshold.

First, we present Monte Carlo simulation results to verify the characterizations

in Proposition 2 and Theorem 7. In Fig. 4.1, we set the queuing constraint as

θ = 0.2, choose the outage probability as ε = 0.1, and we plot the logarithmic buffer

overflow probabilities log Pr{Q ≥ q} as functions of the buffer overflow threshold q

for both queue models with constant-rate arrivals and ON-OFF discrete-time Markov

arrivals. For each curve, we repeat the simulations for 100 times, and in each time the

simulation is conducted over 1×107 time blocks. For the constant-rate arrival model,

the arrival rates are given by CE,Q1 and CE,Q2 described in (4.8), for queue models I

and II, respectively. For the ON-OFF discrete-time Markov arrivals, we set p11 = 0.4,

p22 = 0.7, and the arrival rates in the ON state are given by (2.13) for both queue

models. From Fig. 4.1, we observe that the logarithmic buffer overflow probabilities

decrease linearly even starting from relatively small q values, which agrees with the

characterizations in (2.1) and (2.2)1. We estimate the slopes via linear regression. The

estimated slopes of these four curves are −0.2005 (constant arrival for queue model

I), −0.2006 (constant arrival for queue model II), −0.2005 (Markov source for queue

model I), and −0.1995 (Markov source for queue model II), and the maximum slope

1Note that if (2.1) holds, we have log Pr{Q ≥ q} ≈ −θq + log ς
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Figure 4.2: Throughput vs. deadline constraint M .

error of these four curves is 0.3%, which is very small, demonstrating the accurateness

of the throughput characterizations.

In Fig. 4.2, we set the outage probability as ε = 0.05, and plot the throughput

under constant-rate arrivals as a function of the deadline constraint M . We can

observe that there exists an optimal M that maximizes the throughput. When M

is small, the deadline constraint is strict and the transmitter has to reduce the fixed

rate R to satisfy the target outage probability. As M increases, the transmission

rate R increases, and the throughput is improved. After the throughput reaches its

maximum value, further increase in M results in reduced throughput. For large M

and fixed outage probability, the system wastes more time when outage happens,

which is not favorable in the presence of the queuing constraint. Also, we find that

as θ increases, the throughput becomes smaller in order to satisfy a stricter queuing

constraint.

In Fig. 4.3, we set the deadline constraint as M = 3, and plot the throughput

under constant-rate arrivals as a function of the outage probability ε. Similarly, we

can observe that there exists an optimal ε that maximizes the throughput, and the

explanation is similar to the influence of M in Fig. 4.2. When we compare the
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Figure 4.3: Throughput vs. outage probability ε.

throughputs of queue models I and II under constant-rate arrivals in Figs. 4.2 and

4.3, we observe that queue model II always has higher throughput than queue model I.

When there is no queuing constraint, the throughput of queue model I is rth = ravg =

(1−ε)R
E{T} , and the throughput of queue model II is rth = (1−ε)ravg = (1−ε) R

E{T} [7] [15],

where T is the duration of a transmission period. Therefore, these two queue models

have the same throughput in the absence of queuing constraints. When the queuing

constraint is imposed, queue model II has an advantage. Moreover, the throughput

gap between these two queue models increases when we increase θ from 0.1 to 1.

In Figs. 4.4 and 4.5, we fix M = 10, ε = 0.01 and θ = 0.1 to investigate the impact

of source randomness on the throughput. Since source randomness has similar impact

on queue models I and II, we only consider queue model I in the following discussion

about the influence of source randomness. In Fig. 4.4, we plot the throughput as

a function of PON for the ON-OFF discrete-time Markov source. We can observe

that the throughput is an increasing function of PON . As PON decreases, the ar-

rival rate in ON state r needs to increase with a certain rate in order to keep ravg

non-decreasing. However, with the same departure process, it is difficult to satis-

fy the queuing constraints and keep the throughput non-decreasing simultaneously.
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Figure 4.4: Throughput vs. PON for the ON-OFF discrete-time Markov source.
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Therefore, the throughput decreases as PON decreases. Similar explanation can be

applied to the ON-OFF Markov fluid source and MMPS in Fig. 4.5. As PON → 1,

the ON-OFF discrete-time and fluid Markov sources become constant-rate arrival

sources, which implies that constant-rate arrivals have higher throughput. We also

observe in Fig. 4.4 that higher p21 values improve the throughput. For the same

PON , higher p21 values make the source transitions from the ON state to the OFF

state to occur more frequently, giving a better chance for the transmitter to shorten

its queue length. Similarly, in Fig. 4.5, higher β values improve the throughput for

both ON-OFF Markov fluid source and MMPS.

Finally, in Fig. 4.5, we find that the ON-OFF Markov fluid source has higher

throughput than MMPS. Comparing the results in Theorems 8 and 9, we note that

there is an additional factor θ
eθ−1

in the throughput expression of MMPS. It is s-

traightforward to show that limθ→0
θ

eθ−1
= 1, and θ

eθ−1
is an decreasing function of

θ. These properties indicate that the throughput of MMPS improves as θ decreases,

and it has the same throughput as the ON-OFF Markov fluid source when there is

no queuing constraint.

4.2 Throughput of HARQ-IR with Finite Block-

length Codes and QoS Constraints

4.2.1 System Model and Preliminaries

As depicted in Fig. 3.1, the same point-to-point wireless communication system is

considered in this section. It is assumed that arriving data packets are initially stored

in a buffer at the transmitter, which operates under queuing constraints, before being

sent to the receiver. Also, we assume a block flat-fading channel in which the fading

coefficients stay constant within one block, but change independently across blocks.
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Each fading block is assumed to have a duration of l symbols. We use subscript i as

the index of the fading block. Under these assumptions, the received signal in the ith

block can be written as

yi = hixi + ni i = 1, 2, . . . (4.17)

Above, xi and yi are the transmitted and received signal vectors, respectively, and hi

denotes the channel fading coefficient. The average transmission energy per symbol

of the transmitted signal xi is given by E = E{∥xi∥2}/l. Also, ni represents the noise

vector with i.i.d. circularly-symmetric, zero-mean Gaussian components, each with

variance N0. Therefore, we can denote the signal-to-noise ratio at the transmitter as

SNR = E
N0

.

4.2.1.1 HARQ-IR and Deadline Constraints

It is assumed that the system employs HARQ-IR scheme to guarantee the reliability

of transmissions. The transmission rate is fixed at lR (bits/block) at the transmitter,

where l is the number of symbols in each fading block, or equivalently the blocklength

of each codeword, and R is the fixed rate in bits/symbol. Each packet is encoded

into M codeword blocks (where M also represents the deadline constraint introduced

below), and each block has a length of l symbols. In each time block, transmitter

sends one codeword block to the receiver. If the receiver decodes the received packet

correctly, it sends an ACK feedback to the transmitter through an error-free feedback

link, and a new packet is sent in the next time block. If the receiver cannot decode

the packet, a retransmission request is sent through the feedback link, and another

codeword block of the same packet is sent in the next time block [5]. For simplicity,

we assume an ideal ARQ protocol in our analysis, in which the transmitter gets the

feedback immediately at the end of each time block without any delay.
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Deadline constraint limits the maximum duration of a transmission period as M

time blocks. We assume that an HARQ period lasts until either the receiver gets

the packet without error or if the limit on the duration of the transmission period is

reached, and then the transmitter starts with another packet in the next transmission

period. An outage happens when the receiver does not receive the packet within one

transmission period, or equivalentlyM decoding errors occur successively for a packet.

The outdated packet is discarded in such a case. The duration of an HARQ period

is denoted by the random variable T , where 1 ≤ T ≤M , and the outage probability

(or equivalently deadline violation probability) is represented by ε.

In the HARQ-IR scheme, additional information is sent in each retransmission

and the receiver combines all received code blocks in the same transmission period to

decode the transmitted packets. Detailed introduction about HARQ-IR is provided

in Section 3.1.

Under the constant-rate arrival assumption, the throughput (in bits/symbol) is

given by (1− ε) times the effective capacity (normalized by the blocklength l):

rth = (1− ε)CE(θ, SNR)/l = −1− ε

lθ
Λc(−θ). (4.18)

When the arrival rate is not constant, we need to formulate the LMGF of the arrival

process as a function of the average arrival rate, and obtain the throughput by solving

(2.4).

4.2.2 Throughput of HARQ-IR with Queuing Constraints

and Finite Blocklength Codes

In this subsection, we study the throughput of HARQ-IR scheme with statistical queu-

ing constraints, finite blocklength codes, and deadline limits. Initially, we consider

constant-rate arrivals, and characterize the throughput by employing the effective
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capacity formulation. Subsequently, we incorporate random arrival models by con-

sidering ON-OFF discrete-time Markov sources and determine the system throughput

using the characterizations obtained in the constant-rate arrival model.

4.2.2.1 Outage Probability for HARQ-IR at Finite Blocklengths

As noted before, with HARQ-IR, the received information is accumulated at the

receiver. At the end of the mth trial in a transmission period, the receiver combines

the m received codeword blocks to decode the packet, which is equivalent to decoding

a codeword with m subblocks and each subblock has a length of l symbols from

the perspective of achievable rate. According to the results in [85], the relationship

between the fixed transmission rate and error probability is given by

R =
m∑
i=1

log2 (1 + SNRzi)−

√√√√ m∑
i=1

(SNRzi + 2)SNRzi
l(SNRzi + 1)2

Q−1(ν) log2 e+
log(ml)

l
+

o(1)

l

(4.19)

for the mth trial, where l is the blocklength, Q−1(·) represents the inverse Q-function,

ν is the decoding error probability, and zi = |hi|2 is the magnitude-square of the

fading coefficient. From (4.19), we can express the decoding error probability for the

mth trial or attempt of packet transmission as

νm = Q

∑m
i=1 log2 (1 + SNRzi) +

log(ml)
l
−R

log2 e
√∑m

i=1
(2+SNRzi)SNRzi

l(SNRzi+1)2

 (4.20)

for given channel fading z = (z1, · · · , zm). Therefore, we can obtain the probability

mass function (pmf) of T , which represents the duration of a transmission period, as
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expressed in (4.21)

Pr{T = t} =


1− Ez {ν1} for t = 1

Pr{T ≤ t} − Pr{T ≤ t− 1} = Ez {νt−1} − Ez {νt} for 2 ≤ t ≤M − 1

Ez {νM−1} for t = M

(4.21)

One assumption we have is that if the receiver cannot decode the packet correctly

using allm received codeword blocks in themth trial, then it cannot decode the packet

in the previous m − 1 trials. This is due to the fact that it is more difficult to have

correct decoding with less information, and the receiver uses less codeword blocks in

previous trials. Therefore, the probability that the receiver decodes a packet within

t trials is given by

Pr{T ≤ t} = 1− Ez {νt} . (4.22)

In (4.21), for 2 ≤ t ≤ M − 1, T = t indicates that only the tth trial has been

successful, and the first t − 1 trials of packet transmission has ended up with error.

Having T = M indicates that the first M − 1 trials have failed, and the result of the

last attempt does not have any influence on the pmf, because the deadline constraint

forces the transmission to cease after M trials. Recall that an outage (or deadline

violation) event happens if the receiver experiences M decoding errors successively in

a transmission period. The outage probability can be expressed as

ε = Ez {νM} . (4.23)

In Fig. 4.6, we set the blocklength as l = 100 and SNR as 0 dB, and plot the

outage probabilities as functions of the fixed transmission rate R for different deadline
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Figure 4.6: Outage probability vs. R

constraintsM . As R increases, the decoding error probability ν increases, which leads

to an increased outage probability. We also note that as M increases, the deadline

constraints become looser, and we can expect lower outage probabilities. Finally, the

fixed transmission rate R can be numerically determined using (4.23) and (4.20) once

a target outage probability ε and deadline limit M are specified.

4.2.2.2 Throughput of HARQ-IR with Constant-rate Arrivals

Proposition 3 The throughput of HARQ-IR scheme (in bits/symbol) with fixed trans-

mission rate R (bits/symbol), deadline constraint M , QoS exponent θ, and constant-

rate arrivals is given by

rth = (1− ε)CE/l (4.24)

where the effective capacity CE (in bits/block) is given by

CE = −1

θ
log (max{|λ1|, · · · , |λM |}) . (4.25)
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Above, {λ1, · · · , λM} are the eigenvalues of the matrix A given in (4.26)

A =



Pr{T = 1}e−θlR Pr{T = 2}e−θlR · · · Pr{T = M − 1}e−θlR Pr{T = M}e−θlR

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0


(4.26)

Proposition 3 can be shown by applying Theorem 1 in [15] to our model. Since

the authors in [15] did not consider packet drop, we need to redefine the variable ν

in [15] as the number of packets leaving the queue in a transmission period, which is

always equal to 1 in our model due to the packet drop mechanism. In the Section

4.2.3, simulation results are provided to verify our effective capacity characterization.

4.2.2.3 Throughput of HARQ-IR with ON-OFF Discrete-Time Markov

Source

Since the departure and arrival processes at the transmitter are independent, the

effective capacity characterization in Proposition 3 is still valid.

Theorem 10 For the ON-OFF discrete-time Markov source with fixed transmission

rate R (bits/symbol), deadline constraint M , and QoS exponent θ, the throughput (in

bits/symbol) is given by

rth =
1− ε

l

PON

θ
log

(
e2θCE − p11e

θCE

1− p11 − p22 + p22eθCE

)
, (4.27)

where the effective capacity CE is given in (4.25).

Similar to the discussion in Section 4.1.1.2, the throughput is given by (1− ε)ravg.

Using the maximum average arrival rate given in (2.14), we readily obtain the through-
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put expressions given in Theorem 10.

From (4.27), it is very easy to show that the throughput of HARQ-IR with ON-

OFF discrete time Markov sources is an increasing function of the effective capacity

CE by checking the first order derivative of rth with respect to CE. Therefore, the

transmission parameters, such as R and ε, that maximize the throughput for the

constant-rate arrival models also maximize the throughput for the ON-OFF discrete

time Markov arrival model.

The influence of the source burstiness was discussed in [86], in which it was shown

that source burstiness degrades the energy efficiency under queuing constraints. Sim-

ilar analysis can be applied to our scenario. The source is less bursty if it stays in

the ON state for a longer period, resulting in smaller instantaneous arrival rates r

for fixed average arrival rate ravg. In other words, for different sources with the same

ravg, the one with less burstiness or equivalently smaller instantaneous arrival rate r

is more favorable in terms of satisfying the queuing constraints.

4.2.3 Numerical Results

In this subsection, we further investigate the throughput of HARQ-IR with finite

blocklength codes in the presence of deadline and QoS constraints. Throughout this

subsection, we assume Rayleigh fading channel with exponentially distributed fading

power having a mean value of E{z} = 1, and SNR is set as 0 dB. We first verify our

characterizations in Proposition 3 and Theorem 10 via Monte Carlo simulations. The

logarithmic buffer overflow probabilities log Pr{Q ≥ q} are plotted as functions of the

buffer overflow threshold q for both constant-rate arrivals and ON-OFF discrete-time

Markov arrivals in Fig. 4.7. For both arrival models, we set the QoS exponent as

θ = 0.01, deadline constraint M = 5, fixed transmission rate R = 3 (bits/symbol),

and blocklength l = 100. For each curve, we repeat the simulations 2000 times, and in

each time the simulation is conducted over 1×105 time blocks. For the constant-rate
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Figure 4.7: Logarithmic overflow probability vs. buffer overflow threshold.

arrival model, the arrival rate is given by the effective capacity in (4.25). For the

ON-OFF discrete-time Markov arrivals, we set p11 = 0.3, p22 = 0.7, and the arrival

rates in the ON state are given by lr (bits/block) in (2.13). It is observed in Fig.

4.7 that the logarithmic buffer overflow probabilities decrease almost linearly when

q is sufficiently large, which agrees with the characterizations in (2.1) and (2.2)2.

When q > 1100, we estimate the slopes of these two curves via linear regression, and

the estimated slopes are −0.0099 and −0.0100 for the constant-rate and ON-OFF

Markov arrival models, respectively. The slope errors are smaller than 1%, which is

very small, demonstrating the accurateness of the throughput characterizations.

In Fig. 4.8, we plot the throughput as a function of the fixed transmission rate

R for different deadline constraints with constant arrival sources, and QoS exponent

θ = 0.1. As shown in Fig. 4.8, there exists a unique optimal R value that maximizes

the throughput. When R is small, the departure rate is also small, which limits the

throughput. When R is too large, the outage probability ε is large, and most of the

packets violate the deadline constraint and are discarded. Also, as M increases, the

deadline constraints become looser, and we can achieve a higher maximum throughput

2Note that if (2.1) holds, we have log Pr{Q ≥ q} ≈ −θq + log ς
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Figure 4.8: Throughput vs. fixed transmission rate R.

as seen in Fig. 4.8. Similar results were observed in [87] for small θ values without

considering finite blocklength effects. In [87], it has been shown that the throughput of

HARQ-IR is an increasing function of the fixed transmission rate R without deadline

constraints. Therefore, we can have higher R values and low outage probabilities

when M is large, which improves the maximum throughput.

Fig. 4.9 shows the influence of the finite blocklength l for constant arrival models

with QoS exponent θ = 0.1. In order to apply the approximation in (4.19), the

blocklength l needs to be sufficiently large. In such a case, the throughput decreases

as the block length l increases, because large l corresponds to slow fading3, which is

not favorable for delay sensitive systems with queueing constraints. In slow fading

cases, strong attenuation would last for a longer time, leading to buffer overflows.

Therefore, larger l value is expected to have a stronger impact on the throughput

when the system has stricter queueing constraints. Indeed, this is observed in Fig. 4.9

where we see that the throughput curves associated with larger values of θ (indicating

stricter queuing constraints) decrease faster with increasing l.

3This is by our block-fading assumption in which each fading block consists of l symbols.
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Figure 4.9: Throughput vs. blocklength l.
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Chapter 5

Throughput of Cooperative Relay

Networks under Statistical

Queuing Constraints

In this chapter, we investigate the throughput of cooperative relay networks un-

der statistical queuing constraints. Three types of cooperative relay networks are

considered, namely two-hop relay channel, two-way relay channel and multi-source

multi-destination relay network.

In Section 5.1, throughput of two-hop wireless relay channels is studied in the finite

blocklength regime. Half-duplex relay operation, in which the source node initially

sends information to the intermediate relay node and the relay node subsequently

forwards the messages to the destination, is considered. It is assumed that all mes-

sages are stored in buffers before being sent through the channel, and both the source

node and the relay operate under statistical queueing constraints. After characteriz-

ing the transmission rates in the finite blocklength regime, the system throughput is

formulated via queueing analysis. Subsequently, several properties of the throughput

function in terms of system parameters are identified, and an efficient algorithm is
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proposed to maximize the throughput. Interplay between throughput, queueing con-

straints, relay location, time allocation, and code blocklength is investigated through

numerical results.

In Section 5.2, throughput of two-way relaying under buffer constraints is studied.

In the two-way relay system, source nodes initially send their messages to the relay

in the multiple-access phase. Relay decodes and stores the messages from different

sources in different buffers and subsequently broadcasts a superimposed signal. It is

assumed that both source nodes and the relay operate in the presence of statistical

queueing constraints. Under these assumptions, arrival rates that can be supported in

this system are investigated through the LMGFs of the arrival and service processes.

In particular, after identifying the service rates in the multiple-access and broadcast

phases and addressing the stability conditions, characterizations of the maximum

arrival rates are provided in terms of system resource allocation parameters, signal-

to-noise ratios, and quality-of-service exponents. Impact of different parameters on

the performance is investigated through numerical results.

In Section 5.3, the throughput of relay networks with multiple source-destination

pairs under queueing constraints has been investigated for both variable-rate and

fixed-rate schemes. When CSI is available at the transmitter side, transmitters can

adapt their transmission rates according to the channel conditions, and achieve the

instantaneous channel capacities. In this case, the departure rates at each node

have been characterized for different system parameters, which control the power

allocation, time allocation and decoding order. In the other case of no CSI at the

transmitters, a simple ARQ protocol with fixed rate transmission is used to provide

reliable communication. Under this ARQ assumption, the instantaneous departure

rates at each node can be modeled as an ON-OFF process, and the probabilities of ON

and OFF states are identified. With the characterization of the arrival and departure

rates at each buffer, stability conditions are identified and effective capacity analysis
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Figure 5.1: The two-hop relay system with buffer constraints.

is conducted for both cases to determine the system throughput under statistical

queueing constraints. In addition, for the variable-rate scheme, the concavity of

the sum rate is shown for certain parameters, helping to improve the efficiency of

parameter optimization.

5.1 Throughput of Two-HopWireless Channels with

Queuing Constraints and Finite Blocklength

Codes

5.1.1 System Model and Preliminaries

5.1.1.1 System Model

The two-hop relay channel is shown in Fig. 5.1. In this model, source node S sends

information to the receiver D with the help of the intermediate relay node R. We

assume that there is no direct link between S and D (which, for instance, holds,

if these nodes are sufficiently far apart in distance). All data packets are stored

in buffers before being transmitted through wireless channels. Data arriving to the

source node S is initially buffered before transmission to the relay. Similarly, the

relay, upon receiving the signal from the source node and decoding the message,

places the decoded data from the source in its own buffer before forwarding it to
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the destination D. Both the source and the intermediate relay nodes operate under

statistical queuing constraints. More specifically, buffer violation probabilities are

constrained to decay exponentially for large buffer thresholds. Detailed discussion on

the queuing constraints is provided in Chapter 2.

Since we consider half-duplex relay operation, reception and transmission at the

relay occur in non-overlapping intervals. We introduce the parameter τ ∈ (0, 1) as

the fraction of time allocated to the initial phase, in which only the S − R link is

active. Then, the fraction of time allocated to the second phase is 1 − τ , in which

only the R −D link is active. Next, we express the discrete-time input and output

relationships in both phases. In the initial phase, the signal Yr received at the relay

can be expressed as

Yr[i] = h1[i]X[i] + nr[i] (5.1)

whereX denotes the signal transmitted from the source node, h1 represents the fading

coefficient of the S−R link, and nr is the Gaussian noise at the relay. In the second

phase, the received signal Y at receiver D is given by

Y [i] = h2[i]Xr[i] + nD[i] (5.2)

where Xr denotes the signal sent from the relay node, h2 represents the fading co-

efficient of the R − D link, and nD is the Gaussian noise at the receiver D. The

inputs are subject to individual average energy constraints E{|X|2} ≤ P̄s/B and

E{|Xr|2} ≤ P̄r/B, where B is the bandwidth in the system. We assume that

the fading coefficients hj, j = {1, 2} are jointly stationary and ergodic discrete-

time processes, and we denote the magnitude-square of the fading coefficients by

zj[i] = |hj[i]|2. Above, in the channel input-output relationships, the noise compo-

nents are all zero-mean, circularly symmetric, complex Gaussian random variables
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with variance E{|nk[i]|2} = Nk for k = {r,D}, and all noise samples are assumed to

form an i.i.d. sequence. We denote the signal-to-noise ratios at the source and relay

by SNRs =
P̄s

NrB
and SNRr =

P̄r

NDB
, respectively.

5.1.1.2 Coding Rate in Finite Blocklength Regimes

In this section, we investigate the throughput achieved with finite blocklength coding.

In the complex Gaussian noise channel with channel gain z, the coding rate (in bits

per channel use) is approximated by [18] [19]

r = log2 (1 + SNRz)−

√
1

m

(
1− 1

(SNRz + 1)2

)
Q−1(ϵ) log2 e+

logm

m
+

O(1)

m
(5.3)

where m represents the coding blocklength, ϵ ∈ (0, 1) denotes the error probability,

Q−1(·) is the inverse Gaussian Q-function, and O(1) denotes a constant term1. Hence,

the approximation becomes more accurate as m increases. Also, the coding rate is

an monotonic increasing function of the target error probability ϵ. Moreover, as the

blocklength m grows without bound, the coding rate becomes r = log2 (1 + SNRz),

which is the Shannon capacity.

For our half-duplex two-hop relay system, every time block is divided into two

for the two transmission phases. Therefore, the coding blocklength of the source and

relay are given by τm and (1 − τ)m, respectively. From (5.3), we can characterize

the coding rates of the source and relay nodes as

r1 = log2 (1 + SNRsz1) +
log(τm)

τm
−

√
1

τm

(
1− 1

(SNRsz1 + 1)2

)
Q−1(ϵ1) log2 e (5.4)

1Therefore, the term O(1)
m vanishes fast with increasing blocklength m and is neglected in the

remainder of the formulations and analysis
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and

r2 = log2 (1 + SNRrz2) +

log

(
(1− τ)m

)
(1− τ)m

−

√
1

(1− τ)m

(
1− 1

(SNRrz2 + 1)2

)
Q−1(ϵ2) log2 e

(5.5)

respectively, where ϵ1 and ϵ2 are the target error probabilities of the S−R and R−D

transmissions, respectively.

5.1.2 Throughput of Two-hop Relay Channels With Finite

Blocklength Codes

In this subsection, we characterize the system throughput for the two-hop relay system

operating under queuing constraints in the finite blocklength regime. In order to apply

the effective capacity analysis, we have to guarantee that the stability conditions

are satisfied, which require that the average arrival rate is smaller than the average

departure rate at both the source and relay nodes. At the source node, the stability

condition is guaranteed by (2.25) due to the fact that the constant arrival rate given

by (2.25) is always smaller than the average transmission rate between the source and

relay2. At the relay node, the stability condition is expressed as

(1− ϵ1)τE{r1} ≤ (1− ϵ2)(1− τ)E{r2} (5.6)

where r1 and r2 are given by (5.4) and (5.5), respectively.

In [17], the throughput of the two-hop relay channel is studied for both half- and

full-duplex scenarios without considering finite blocklength restrictions. Hence, in-

stantaneous transmission rates were given by the Shannon capacities in [17]. Through

2It can be shown that the right-hand-side of (2.25) increases with decreasing θ̃ and converges to
the average departure rate as θ̃ approaches zero [17].
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a similar analysis, we can extend this result to the finite blocklength regime.

Theorem 11 For the half-duplex two-hop relay system with finite code blocklength

m, the maximum arrival rate (in bits per channel use) at the source node is given by

R =


min

{
− 1

mθ1
logEz1{ϵ1 + (1− ϵ1)e

−τθ1mr1},− 1
mθ2

logE{ϵ2 + (1− ϵ2)e
−(1−τ)θ2mr2}

}
θ2 ≤ θ1

min
{
− 1

mθ1

(
logE{ϵ2 + (1− ϵ2)e

−(1−τ)θ2mr2}+ logE{ϵ1 + (1− ϵ1)e
τ(θ2−θ1)mr1}

)
,

− 1
mθ1

logEz1{ϵ1 + (1− ϵ1)e
−τθ1mr1}

}
θ2 > θ1

(5.7)

when the stability condition (5.6) is satisfied.

Proof : See Appendix A.8.

5.1.3 Throughput Optimization for Two-hop Relay Systems

In this subsection, we investigate the throughput maximization problem for our two-

hop relay system. We assume that both the source and relay nodes transmit at their

maximum power level, the blocklength m is given, and the system maximizes its

throughput by choosing the optimal τ , ϵ1 and ϵ2. This optimization problem can be

formulated as

Maximizeτ,ϵ1,ϵ2 R

Subject to (1− ϵ1)τE{r1} ≤ (1− ϵ2)(1− τ)E{r2} (5.8)

0 < τ < 1 (5.9)

0 < ϵ1 < 1 (5.10)

0 < ϵ2 < 1 (5.11)
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Compared to the rate optimization in the absence of finite blocklength code restric-

tions, our optimization problem has more complicated rate expressions and higher

dimensionality. Moreover, since the stability region described by (5.8) is not convex,

and the objective function R given in (5.7) is not a convex function of the target error

probabilities, this optimization problem is in general non-convex. In this setting, we

initially establish several key properties of the throughput R and determine the opti-

mal error probabilities ϵ1 and ϵ2 under certain conditions. Subsequently, we propose

an algorithm that can efficiently solve the optimization problem.

Theorem 12 For a given τ value, the error probability that maximizes − 1
θ1
ΛS,R(−θ1)

is given by the solution of

1 = E
{
− (1− ϵ1)θ1

log 2

√
τm(1− 1

(1 + SNRsz1)2
)× Q̇−1(ϵ1)e

−τθ1mr1 + e−τθ1mr1

}
,

(5.12)

and the error probability that maximizes − 1
θ2
ΛR,D(−θ2) is given by the solution of

1 =E
{
− (1− ϵ2)θ2

log 2

√
(1− τ)m(1− 1

(1 + SNRrz2)2
)× Q̇−1(ϵ2)e

−(1−τ)θ2mr2 + e−(1−τ)θ2mr2

}
.

(5.13)

Proof 1 It was shown in [20] that the unique optimal error probability that maximizes

−1
θ
Λ(−θ) in a single-hop model is obtained by solving

∂

∂ϵ
Λ(−θ) = 0. (5.14)

This property can be directly applied to our half-duplex two-hop system. After taking

the derivatives of ΛS,R(−θ1) and ΛR,D(−θ2) with respect to ϵ1 and ϵ2 respectively, and

plugging them into (5.14), we obtain (5.12) and (5.13).
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Theorem 13 For a given τ value, assume that ϵ∗1 and ϵ∗2 are the solutions of (5.12)

and (5.13), respectively. Then, the throughput given in (5.7) is maximized at (ϵ∗1, ϵ
∗
2)

when θ1 ≥ θ2.

Proof 2 When θ1 ≥ θ2, we have

R = min
{
− 1

θ1
ΛS,R(−θ1),−

1

θ2
ΛR,D(−θ2)

}
. (5.15)

Since ϵ∗1 and ϵ∗2 maximize − 1
θ1
ΛS,R(−θ1) and − 1

θ2
ΛR,D(−θ2), respectively, Theorem

13 follows immediately.

Theorem 14 For a given τ value, assume that ϵ∗2 is the solution of (5.13), and ϵ̃1 is

the optimal probability that maximizes

R̂ = min
{
− 1

θ1
ΛS,R(−θ1),−

1

θ1

(
ΛR,D(−θ2)

∣∣∣∣
ϵ2=ϵ∗2

+ ΛS,R(θ2 − θ1)

)}
. (5.16)

Then, the throughput given in (5.7) is maximized at (ϵ̃1, ϵ
∗
2) when θ1 < θ2.

Proof 3 When θ1 < θ2, we have

R = min
{
− 1

θ1
ΛS,R(−θ1),−

1

θ1

(
ΛR,D(−θ2) + ΛS,R(θ2 − θ1)

)}
. (5.17)

It can be readily shown that the throughput is a non-decreasing function of −ΛR,D(−θ2),

and −ΛR,D(−θ2) achieves its maximum value at ϵ2 = ϵ∗2. Therefore, the throughput

achieves its maximum value when we choose ϵ2 = ϵ∗2 and the characterization in the

theorem follows.

If − 1
θ1
ΛS,R(−θ1) is always smaller than − 1

θ1

(
ΛR,D(−θ2)

∣∣∣∣
ϵ2=ϵ∗2

+ ΛS,R(θ2 − θ1)

)
,

then apparently ϵ̃1 = ϵ∗1, where ϵ∗1 is the solutions of (5.12). Otherwise, we need to

search for the ϵ̃1 that maximizes R̂.
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The results in Theorems 13 and 14 do not incorporate the stability condition.

The following result gives a characterization when the optimal error probability pair

determined by Theorem 13 does not satisfy the stability condition.

Theorem 15 For a given τ value, if the error probability pair found using Theorem

13 does not satisfy the stability condition, in the case of θ1 ≥ θ2, then the optimal

error probability pair, satisfying the stability condition, lies on the boundary of the

stability region, described by

(1− ϵ1)τE{r1} = (1− ϵ2)(1− τ)E{r2}. (5.18)

Proof : See Appendix A.9.

Using the above characterizations, we can optimize the throughput efficiently. We

search for the optimal τ value in the region (0, 1) with the following steps. For a

given τ value, we first check whether the error probabilities given by Theorems 13

and 14 satisfy the stability condition. If satisfied, then we only have to perform a

one-dimensional optimization over τ ∈ (0, 1). If not, we determine the optimal error

probability pair on the boundary of the stability region in the case of θ1 ≥ θ2, or

search in the entire bounded stability region in the case of θ1 < θ2.

5.1.4 Numerical Results

In this subsection, we provide our numerical results. We consider a simple scenario

in which all three nodes are placed on a straight line. The distance between S and D

has been normalized to 1, and d ∈ (0, 1) represents the distance between the source

node and relay, which is shown in Fig. 5.1. We assume Rayleigh fading with path

loss E{z1} = d−4 and E{z2} = (1 − d)−4. Unless specified otherwise, we assume

SNRs = SNRr = 6dB, and blocklength is m = 150.

In Figs. 5.2 and 5.3, we plot the maximum throughput R and the optimal time
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Figure 5.2: The maximum throughput vs. relay location parameter.

allocation parameter τ as functions of the distance parameter d for three different

queuing constraint settings, respectively. When the source and relay nodes have the

same QoS exponent value, the optimal location of the relay node is the midpoint

between S and D to balance the channel conditions in the S −R and R −D links.

When the source node has a stricter queuing constraint, the relay moves closer to

S to enhance the departure rate of the source node. Similarly, when the relay node

has a larger QoS exponent value, the optimal location of the relay is closer to D to

improve the channel conditions in the R − D link. From (5.7) we know that the

link with stricter queuing constraint and smaller departure rate has more influence

on the throughput, so the optimal location of the relay is chosen with the goal of

improving the link experiencing stricter queuing constraints. Similar mechanisms can

be observed in Fig. 5.3. Comparing two dashed lines in Fig. 5.3, we find that the

system allocates more time to the link with a more stringent queuing constraint.

When θ1 = θ2, the system allocates more time to the link with the worse channel

condition. Note that these results are obtained with the optimal values of ϵ1 and ϵ2.

In Fig. 5.4, we place the relay at the midpoint and plot the maximum through-
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Figure 5.3: The optimal τ vs. relay location parameter.
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Figure 5.4: The maximum throughput vs. blocklength m.

put as a function of the blocklength m. When m is small, increasing m improves

the performance because it increases the departure rates. When m grows beyond

a threshold, the throughput starts decreasing, because large m corresponds to slow

fading, which is not favorable for delay sensitive systems with queuing constraints. In

slow fading cases, strong attenuation would last for a longer time, leading to buffer

overflows. Therefore, large m value has a stronger influence on the throughput when
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Figure 5.5: The two-way relay system with buffer constraints.

the system has stricter queuing constraints.

5.2 Throughput of Two-Way Relay Systems under

Queueing Constraints

5.2.1 System Model

The two-way relay communication link is depicted in Fig. 5.5. In this model, sources

S1 and S2 wish to exchange information with each other with the help of the inter-

mediate relay node R. We assume that there is no direct link between S1 and S2

(which, for instance, holds, if these nodes are sufficiently far apart in distance). Data

arriving to sources S1 and S2 is initially buffered before transmission to the relay.

Similarly, the relay, upon receiving the superimposed signals from the source nodes

in the multiple-access phase and decoding the messages, places the decoded data from

the sources in two different buffers before broadcasting the superimposed messages

back to the source nodes. Both the source and the intermediate relay nodes operate

under queuing limitations given in (2.1). The QoS exponents at the source nodes are

denoted by θsj for j = 1, 2. Similarly, the QoS exponents for the two buffers at the
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relay are θr,sj with j = 1, 2. In this section, we assume that the same asymptotic QoS

constraints are imposed at the relay buffers, i.e., θr,s1 = θr,s2 = θr. However, we also

note that different QoS exponents at the relay buffers can easily be accommodated

in the analysis as well.

Since we consider half-duplex relay operation, reception and transmission at the

relay occur in non-overlapping intervals. Next, we express the discrete-time input and

output relationships in both multiple-access and broadcast phases. In the multiple-

access phase, the signal Yr received at the relay can be expressed as

Yr[i] = g1[i]X1[i] + g2[i]X2[i] + nr[i] (5.19)

where Xj for j = 1, 2 denotes the signal transmitted from source node Sj, and gj is

the fading coefficient between the nodes Sj and R. The decoded information from

each source is stored in a separate buffer at the relay. In the broadcast phase, the

signal Yj received at source node Sj is given by

Yj[i] = gj[i]Xr[i] + nj[i], j = 1, 2 (5.20)

where Xr represents the signal sent from the relay node. The inputs are subject to

individual average energy constraints E{|Xj|2} ≤ P̄j/B for j = 1, 2 and E{|Xr|2} ≤

P̄r/B, where B is the bandwidth in the system. Assuming that the symbol rate is B

complex symbols per second, we can easily see that the symbol energy constraint of

P̄k/B for k = 1, 2, r implies that the nodes have a power constraint of P̄k. We assume

that the fading coefficients gj, j = {1, 2} are jointly stationary and ergodic discrete-

time processes, and we denote the magnitude-square of the fading coefficients by

zj[i] = |gj[i]|2. Above, in the channel input-output relationships, the noise component

nk[i] are zero-mean, circularly symmetric, complex Gaussian random variables with

variance E{|nk[i]|2} = Nk for k = {1, 2, r}. The additive Gaussian noise samples
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{nj[i]} are assumed to form an i.i.d. sequence. We denote the signal-to-noise ratios

as SNRk =
P̄k

NkB
where k = 1, 2, r.

Finally, we introduce two system parameters: We assume that the fraction of time

allocated to the multiple-access phase, in which source nodes transmit to the relay,

is τ ∈ (0, 1). Hence, broadcast phase occurs in the remaining fraction (1− τ) of the

time. In the broadcast phase, fraction of power allocated to data transmission to

node S1 is denoted by ρ ∈ (0, 1). Therefore, data intended for S2 is sent using (1− ρ)

fraction of the relay power.

5.2.2 Throughput in Two-Way Relay Systems

5.2.2.1 Instantaneous Transmission Rates

We initially describe the instantaneous transmission or equivalently service rates at

the source and relay nodes. Let us first consider the multiple-access phase in which

S1 and S2 simultaneously transmit to the relay. Assume that the decoding order is

fixed at the relay and is, for instance, given by {1, 2}, i.e., the information sent from

user 1 is decoded first. Then, the maximum instantaneous achievable transmission

rates at S1 and S2 are given, respectively, by

Rs1,r = B log2

(
1 +

SNR1z1
1 + SNR2z2

)
,

Rs2,r = B log2 (1 + SNR2z2) .

(5.21)

If, on the other hand, the decoding order is {2, 1}, we have

Rs1,r = B log2 (1 + SNR1z1) ,

Rs2,r = B log2

(
1 +

SNR2z2
1 + SNR1z1

)
.

(5.22)

In the broadcast phase, we assume that the relay transmits the superimposition
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of the signals intended for the source nodes, i.e., we have

Xr = Xr,s1 +Xr,s2 (5.23)

with energies E{|Xr,s1 |2} ≤ ρP̄r/B and E{|Xr|2} ≤ (1− ρ)P̄r/B. Above, Xr,sj is the

signal intended for Sj. We assume that source nodes know the channel gains and

their own signals forwarded from the relay, i.e., S1 knows Xr,s2 and S2 knows Xr,s1 .

Equipped with such knowledge, source nodes can eliminate the self-interference terms

in the received signals in the broadcast phase and obtain

Y̆j[i] = gj[i]Xr,sj [i] + nj[i], j = 1, 2. (5.24)

With these assumptions, the instantaneous service rates for the two buffers at the

relay become

Rr,s1 = B log2 (1 + ρSNRrz1)

Rr,s2 = B log2 (1 + (1− ρ)SNRrz2) .

(5.25)

5.2.2.2 Stability Conditions

In this subsection, we discuss the conditions required to ensure stability in the relay

buffers, which experience random arrivals and random departures. In particular, we

investigate the conditions imposed on the parameters τ and ρ. As mentioned in

Section 5.1.2, the stability condition is guaranteed by (2.25) at the source node.

Assume, without loss of generality, that the relay employs the decoding order

{1, 2}. For the stability of the relay buffer storing data intended for S2, average

arrival rate should be smaller than the average departure rate, i.e., we need to satisfy

τE {Rs1,r} ≤ (1− τ)E {Rr,s2} , (5.26)
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that is,

τE
{
B log2

(
1 +

SNR1z1
1 + SNR2z2

)}
≤ (1− τ)E {B log2 (1 + (1− ρ)SNRrz2)} . (5.27)

Similarly, for the stability of the relay buffer storing data intended for S1, we should

have

τE {B log2 (1 + SNR2z2)} ≤ (1− τ)E {B log2 (1 + ρSNRrz1)} . (5.28)

Hence, we need to identify (τ, ρ) pairs satisfying both (5.27) and (5.28). Note that as

ρ increases, the right-hand-side (RHS) of (5.27) decreases, and hence τ must decrease

to compensate the loss incurred by ρ. Indeed, when ρ = 1, we should have τ = 0. On

the other hand, when ρ = 0, we have

τ ≤ E{log2(1 + SNRrz2)}

E
{
log2

(
1 + SNR1z1

1+SNR2z2

)}
+ E{log2(1 + SNRrz2)}

. (5.29)

At the same time, the RHS of (5.28) increases with increasing ρ, so τ must increase

to satisfy (5.28). When ρ = 0, we need to set τ = 0. When ρ = 1, we have

τ ≤ E{log2(1 + SNRrz1)}
E{log2 (1 + SNR2z2)}+ E{log2(1 + SNRrz1)}

. (5.30)

From the above observations, we conclude that if we plot the maximum value of

τ as a function of ρ, the τ(ρ) curve, which satisfies (5.27), is a decreasing curve with

end point at τ(1) = 0. The τ(ρ) curve, which satisfies (5.28), is an increasing curve,

starting at τ(0) = 0. Therefore, there exists a crossing point of the two curves, where

both (5.27) and (5.28) are satisfied. Let (ρ∗1, τ
∗
1 ) represent the intersection point. Now,

the maximum value of τ , for which the queues are stable, is given by τ ∗1 .

Finally, note that a similar discussion follows if the decoding order is {2, 1}.
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5.2.2.3 Throughput Region under Statistical QoS Constraints

Denote the region of (τ, ρ) pairs, for which the buffers are stable, by W1. It is clear

from the descriptions in the previous subsection that W1 is well-defined and non-

empty. The following definition characterizes the throughput region in two-way relay

channels in the presence of statistical queuing constraints both at the source nodes

and the relay.

In order to simplify the analysis, we henceforth consider block-fading channels

in which the fading stays constant over a certain duration and then changes inde-

pendently. Under block-fading assumption, asymptotic LMGF expressions of service

processes simplify to

ΛC(θ) = lim
n→∞

logE{eθ
∑n

i=1 c[i]}
n

= logE{eθc[i]}. (5.31)

Following the analysis given in Section 2.3, the maximum arrival rates for given

(τ, ρ) ∈ W1 can be expressed as

R1 =


min

{
− 1

θs1
logEz1{e−τθs1Rs1,r},− 1

θr
logE{e−(1−τ)θrRr,s2}

}
θr ≤ θs1

min
{
− 1

θs1
logEz1{e−τθs1Rs1,r},

− 1
θs1

(
logE{e−(1−τ)θrRr,s2}+ logE{eτ(θr−θs1 )Rs1,r}

)}
θr > θs1

(5.32)

and

R2 =


min

{
− 1

θs2
logEz2{e−τθs2Rs2,r},− 1

θr
logE{e−(1−τ)θrRr,s1}

}
θr ≤ θs2

min
{
− 1

θs2
logEz2{e−τθs2Rs2,r},

− 1
θs2

(
logE{e−(1−τ)θrRr,s2}+ logE{eτ(θr−θ2)RS2,r}

)}
θr > θs2 .

(5.33)

The arrival rates in (5.32) and (5.33) can further be optimized over all (τ, ρ) ∈ W1 as
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Figure 5.6: Maximum arrival rates R1 and R2 vs. d.

will be done in the numerical results below.

5.2.3 Numerical Results

In this subsection, we provide numerical results. We consider a simple scenario in

which the sources and relay are located on a straight line. The distance between the

two sources S1 and S2 has been normalized to 1, and d ∈ (0, 1) is the distance between

S1 and the relay R. Therefore, distance between S2 and R is (1 − d). We assume

that the fading magnitude-squares z1 and z2 are independent exponential random

variables with means E{z1} = 1
dα

and E{z2} = 1
(1−d)α

. We set the path-loss exponent

to α = 4. Unless specified otherwise, we assume θs1 = θs2 = θr,s1 = θr,s2 = θ and the

decoding order at the relay is {1, 2}.

In Fig. 5.6, we plot the maximum arrival rates R1 and R2 at S1 and S2, re-

spectively, as a function of the distance d for two different QoS exponents when

SNR1 = SNR2 = SNRr = 2. Fig. 5.7 provides the corresponding optimal (τ ∗, ρ∗) values

as a function of d. We notice that if the relay is very close to one of the sources,

the fraction of time allocated to the multiple-access phase, τ , diminishes due to the

fact that downlink channel between the relay and the far-away source node becomes
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Figure 5.7: Optimal power fraction ρ∗ and time fraction τ ∗ vs. d.

the bottleneck in the information exchange and more time needs to be allocated to

relay broadcasting to avoid buffer overflows and/or instability. As a result, we see

in Fig. 5.6 that both R1 and R2 start diminishing as d approaches 0 or 1. Another

observation is that as d increases from 0.1 to 0.5, the relay approaches S2 and hence

the channel between S2 and R improves, leading to larger values of R2. Therefore,

higher arrival rates can be supported at S2. Interestingly, we notice in Fig. 5.7 that

ρ approaches to 1 in this case, meaning that the relay allocates more energy to for-

warding data to S1, which is basically needed to support the higher arrival rates at

S2. Finally, we note in Fig. 5.6 that arrival rates are smaller under more stringent

queueing constraints, i.e., when θ is increased from 0.005 to 0.2. On the other hand,

(τ ∗, ρ∗) remain rather robust as seen in Fig. 5.7.

In the following numerical results, we set d = 0.38. In Fig. 5.8, we plot maximum

arrival rate R1 as a function SNR parameters. Expectedly, as SNR1 and/or SNRr

increases, transmission/service rates from S1 and R increase and higher arrival rates

at S1 can be supported. Fig. 5.9 plots R1 now as a function of SNRr and SNR2,

the signal-to-noise ratio of source S2’s transmissions. Note that since decoding order

of {1, 2} is considered, transmissions from S1 experience interference proportional to
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SNR2 as seen in the expression of Rs1,r in (5.21). Therefore, due to this coupling in

the multiple-access phase, we see in Fig. 5.9 that R1 diminishes with increasing SNR2.

As before, increasing SNRr improves R1.

In Fig. 5.10, we plot R2 as a function of the QoS exponents. Note that the higher

the QoS exponents, the more stringent the buffer constraints are. Therefore, as

demonstrated in the figure, increasing QoS exponents results in reduced arrival rates.

Sources basically admit lower-rate arrivals to satisfy more strict buffer constraints.

Until now, we have fixed the decoding order at {1, 2} at the relay in the multiple-

access phase. In general, varying the decoding order can enlarge the region of arrival

rates. In Fig. 5.11, we plot the throughput region, i.e., region of arrival rates (R1,R2),

achieved by time-sharing between decoding orders {1, 2} and {2, 1}. The boundary

of the region is determined by optimizing the resource allocation parameters (τ, ρ).

This figure is obtained when SNRr = 4, SNR1 = SNR2 = 2, θ = 0.005, and d = 0.5,

hence the relay is midway between the sources.
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Figure 5.12: The relay network system with buffer constraints.

5.3 Throughput of Multi-Source Multi-Destination

Relay Networks with Queuing Constraints

5.3.1 System Model

In this section, we consider a multi-source multi-destination relay network model with

two pairs of sources and destinations, as depicted in Fig. 5.12. In this system, two

sources S1 and S2 send information to their corresponding destinations D1 and D2
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with the help of an intermediate relay node, and there is no direct link between the

source nodes and their destinations. This assumption is accurate if the source and

destination nodes are sufficiently far apart in distance. We assume that Dj only

needs the packets coming from source Sj, where j = 1, 2. Each source node has a

buffer, keeping the packets to be transmitted to the relay node. The arrival rates at

source nodes S1 and S2 are assumed to be constant, and are denoted as R1 and R2

respectively. At the relay node, there are two buffers3, one for keeping the decoded

information coming from source S1, and the other for the decoded data of S2.

In our setup, relay node performs decode-and-forward relaying and works in half-

duplex mode, and hence it cannot transmit and receive at the same time. The entire

transmission process can be divided into two phases, namely multiple-access phase

and broadcast phase. In the multiple-access phase, both S1 and S2 transmit to the

relay node simultaneously through a multiple-access channel. Relay node attempts to

decode their messages by using certain decoding orders, and the decoded information

bits are stored in their corresponding buffers at the relay. We assume that if fixed-

rate transmissions are employed, transmission fails if the rate is greater than the

instantaneous capacity of the link for a given decoding strategy at the relay4.

The received discrete-time signal at the relay node can be expressed as

Yr[i] = g1[i]X1[i] + g2[i]X2[i] + nr[i], (5.34)

where Xj for j = 1, 2 represents the transmitted signal from source node Sj, gj is

the fading coefficient of the Sj −R link, and nr is the additive Gaussian noise at the

relay.

3In practice, only one physical buffer is sufficient at the relay node to store the received packets
from S1 and S2. In the analysis, we essentially decompose this physical buffer into two equivalent
virtual buffers, in each of which data for only one destination is stored and first-in first-out policy
is employed.

4It is assumed that errors are detected reliably at the receivers, and when the system employs
ARQ protocol, ACK and retransmission request (RQ) packets are assumed to be received with no
errors.
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In the broadcast phase, relay node forwards information bits to their destinations

through a broadcast channel. The received signal at Dj is

Yj[i] = hj[i]Xr[i] + nj[i], j = 1, 2 (5.35)

where Xr stands for the transmitted signal from R5, nj is the additive Gaussian noise

at Dj, and hj represents the channel fading coefficient of the R−Dj link. Magnitude-

squares of the fading coefficients in both phases are denoted by zj[i] = |gj[i]|2 and

ωj[i] = |hj[i]|2, for j = 1, 2. In our analysis, we consider block fading and assume

that fading coefficients stay constant in one time block, and change independently

from block to block. While our analysis is general and applicable to any fading

distribution with finite variances, we assume Rayleigh fading in all channels in our

numerical analysis.

The transmitted signals are subject to energy constraints given by E{|Xj|2} ≤

P̄j/B for j = 1, 2 and E{|Xr|2} ≤ P̄r/B, where B is the system bandwidth and P̄k for

k = 1, 2, r is the transmit power constraint for the corresponding node. The additive

noise terms nk[i] for k = 1, 2, r are independent, zero-mean, circularly symmetric,

complex Gaussian random variables with variances E{|nk[i]|2} = N0. Then, signal-

to-noise ratios are defined as

SNRk =
P̄k

N0B
(5.36)

where k = 1, 2, r.

Finally, there are three important system parameters: τ , ρ and δ. τ ∈ (0, 1)

denotes the fraction of time allocated to the multiple-access phase, and hence the

fraction of time allocated to the broadcast phase is 1 − τ . ρ ∈ (0, 1) represents the

fraction of power allocated by the relay to the transmission of the message intended

for D1, and therefore the fraction of power allocated to the transmission to D2 is

5The signal transmitted from the relay can be written as Xr = Xr1 + Xr2, and hence is a
combination of Xr1 and Xr2, which are the signals intended for D1 and D2, respectively.

122



1 − ρ. In the multiple-access phase, relay node decodes the received signal using

different decoding orders, and the fraction of time allocated to decoding order {1, 2}

and {2, 1} at the relay node are denoted by δ and 1−δ, respectively. This time sharing

strategy between different decoding orders is used only for the case of variable-rate

transmissions, performed when CSI is available at all transmitters. For fixed-rate

transmission schemes, decoding order is part of the decoding strategy, which is fixed

for each node.

In this section, system throughput is characterized by the pair of maximum con-

stant arrival rates R1 and R2 that can be supported by the relay network with two

pairs of source-destination nodes in the presence of statistical queuing constraints.

Detailed discussion about the arrival rates for two-hop channels in the presence of

statistical queuing constraints is given in Chapter 2.

Finally, we provide a list of notations together with their descriptions in Table

5.1.

5.3.2 Throughput of the Two-Source Two-Destination Relay

Network With Variable Transmission Rates

In this subsection, we study the throughput of the two-source two-destination relay

network with variable-rate transmissions. Under the assumption that CSI is available

at each transmitter, transmitters adapt their transmission rate to the instantaneous

channel conditions, and the departure rates at each buffer are given by the corre-

sponding instantaneous channel capacities. To perform an effective capacity analysis

at each node with a buffer, we have to first identify the instantaneous transmission

rates as functions of the fading coefficients.
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Table 5.1: Table of notations for Section 5.3

Notation Definition

Yj Received signal at relay R (for j = r) or destination Dj (for j = 1, 2).
Xj Transmitted signal from relay R (for j = r) or source Sj (for j = 1, 2).
gj Fading coefficient of the Sj −R link.
zj Magnitude-square of the fading coefficient gj.
hj Fading coefficient of the R−Dj link.
ωj Magnitude-square of the fading coefficient hj.
nj Additive Gaussian noise at the relay R( for j = r) or destination Dj (for

j = 1, 2) with variance N0.
SNRj Signal-to-noise ratio of relay R (for j = r) or source Sj (for j = 1, 2).
θj QoS exponent associated with the buffer constraint at relay R (for j = r)

or source Sj (for j = 1, 2).
Λ(θ) LMGF of a departure or arrival process as a function of the QoS exponent

θ.
τ The fraction of time allocated to the multiple-access phase.
ρ The fraction of power allocated by the relay to the transmission of the

message intended for D1.
δ The fraction of time allocated to decoding order {1, 2} at relay R.
Rj The maximum constant arrival rate at source Sj that can be supported

under queuing constraints.
RA,B The instantaneous channel capacity of link A−B.
rA,B The fixed transmission rate of link A−B in the fixed rate scheme.
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5.3.2.1 Instantaneous Transmission Rates in Multiple User Relay Net-

works

We initially describe the instantaneous transmission rates of four links. Let us first

consider the multiple-access phase in which links S1 − R and S2 − R are active

simultaneously. When the decoding order at the relay is given by {1, 2}, i.e., the

information sent from node S1 is decoded first, and the information sent from node S2

is decoded after interference cancelation, then the maximum instantaneous achievable

rates at S1 and S2 are given, respectively, by [32]


RS1,R{1,2} = B log2

(
1 + SNR1z1

1+SNR2z2

)
,

RS2,R{1,2} = B log2 (1 + SNR2z2) .

(5.37)

If the decoding order at the relay node is {2, 1}, then we have


RS1,R{2,1} = B log2 (1 + SNR1z1) ,

RS2,R{2,1} = B log2

(
1 + SNR2z2

1+SNR1z1

)
.

(5.38)

If we perform time-sharing between two decoding orders with parameter δ, then the

rates of links S1−R and S2−R are characterized by (5.37) in δ fraction of the time,

and the rates are characterized by (5.38) rest of the time. Overall, the transmission

rates between the source nodes and the relay node can be expressed as

RSj ,R = δRSj ,R{1,2} + (1− δ)RSj ,R{2,1}, (5.39)

for j = 1, 2.

In the broadcast phase, relay node forwards packets to their corresponding desti-

nations. In this phase, only links R−D1 and R−D2 are active. When the channel

conditions are available at the relay node and destinations, the decoding order are
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decided by the relationship between ω1 and ω2, and the instantaneous transmission

rates are given by [88] [34]


RR,D1 = B log2

(
1 + ρSNRrω1

1+(1−ρ)SNRrω11{ω1<ω2}

)
,

RR,D2 = B log2

(
1 + (1−ρ)SNRrω2

1+ρSNRrω21{ω2<ω1}

) (5.40)

where 1{•} is indicator function.

5.3.2.2 Stability Conditions

With the expressions of the instantaneous rates for both the multiple-access channel

and broadcast channel described above, we can characterize the stability region in

the ρ− τ − δ space. Stability at the source buffers is ensured by requiring the arrival

rates to satisfy (2.25), which actually leads to compliance with the stricter condition

that the tail distribution of the buffer length decays exponentially fast. The stability

conditions at the relay node requires the average arrival rate to be less than or equal to

the average departure rate at each buffer in the relay. Hence, the stability conditions

can be formulated as
τ
(
δE{RS1,R{1,2}}+ (1− δ)E{RS1,R{2,1}}

)
≤ (1− τ)E{RR,D1},

τ
(
δE{RS2,R{1,2}}+ (1− δ)E{RS2,R{2,1}}

)
≤ (1− τ)E{RR,D2}.

(5.41)

Plugging (5.37), (5.38), and (5.40) into (5.41), we obtain
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

(1− τ)E
{
B log2

(
1 + ρSNRrω1

1+(1−ρ)SNRrω11{ω1<ω2}

)}
≥

τ

(
δE{B log2

(
1 + SNR1z1

1+SNR2z2

)
}+ (1− δ)E{B log2 (1 + SNR1z1)}

)
,

(1− τ)E
{
B log2

(
1 + (1−ρ)SNRrω2

1+ρSNRrω21{ω2<ω1}

)}
≥

τ

(
δE{B log2 (1 + SNR2z2)}+ (1− δ)E{B log2

(
1 + SNR2z2

1+SNR1z1

)
}
)
.

(5.42)

All feasible (ρ,τ ,δ)-tuples satisfying the inequalities in (5.42) form the stability

region in the ρ− τ − δ space. Hence, we formally define the the stability region Ξ in

the ρ− τ − δ space as

Ξ = {(ρ, τ, δ)|ρ, τ, and δ that satisfy (5.42)} . (5.43)

For a certain time sharing scheme at the relay node with fixed δ, since τ is the

time fraction allocated to the multiple-access phase, lower τ value is more likely to

satisfy the stability condition, and the two inequalities in (5.42) provide two upper

bounds on τ as functions of ρ. The power allocation parameter ρ has a different

influence on these two phases. With more power allocated to transmission to Di in

the broadcast phase, the corresponding buffer in the relay can support a higher τ

value while satisfying the stability constraint.

5.3.2.3 Throughput Region under Statistical Queuing Constraints

As noted before, for a certain parameter setting, the system throughput is defined

as the pair of constant arrival rates R1 and R2, which can be supported by two-hop

links S1−D1 and S2−D2, respectively, under queuing constraints. Since stability is

a prerequisite for effective capacity analysis, our system throughput is only defined

with parameter values included in the stability region. For those parameter settings
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outside the stability region, at least one of the queuing constraints cannot be satisfied,

and the system throughput is set to zero. Using the results in the previous subsection,

to comply with queuing constraints at all nodes, Rj for j = 1, 2 has to satisfy (2.25)

and (2.26) simultaneously, which leads to the following characterization of the system

throughput.

Theorem 16 For any parameter setting {τ, ρ, δ} that satisfies the stability condition-

s, the maximum constant arrival rate Rj, which can be supported at source node Sj

for j = 1, 2 in the presence of all queuing constraints, is given by

Rj =


min

{
− 1

θj
log(E{e−θjτRSj ,R}),− 1

θr
log(E{e−θr(1−τ)RR,Dj })

}
θr ≤ θj

min

{
− 1

θj
log(E{e−θjτRSj ,R}),− 1

θj

(
log(E{e−θr(1−τ)RR,Dj }) + log(E{e(θr−θj)τRSj ,R})

)}
θr > θj,

(5.44)

Proof 4 See Appendix A.10.

Following this characterization, some properties of the system throughput are shown

in the next subsection.

5.3.2.4 Properties of the System Throughput under Queuing Constraints

In the previous subsection, we have characterized the throughput of the two-source

two-destination relay network. Based on (5.44), we next analyze the behavior of the

throughput in the parameter space, and establish several convexity properties, which

can lead to simplifications in parameter optimization.

Theorem 17 In the stability region, for a given τ − ρ pair, the maximum arrival

rates R1, R2 and the sum rate R1 + R2 are concave over the time sharing parameter

δ between different decoding orders at the relay.
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Proof : See Appendix A.11.

Theorem 17 indicates that there exists a globally optimal time sharing parameter

for the two possible decoding orders at the relay, which can be determined via convex

optimization methods. Similarly, the system throughput functions are also concave

functions of τ , which is the parameter for time allocation between the multiple-access

and broadcast phases.

Theorem 18 In the stability region, for given power allocation parameter ρ and time-

sharing parameter δ, the maximum arrival rates R1, R2 and the sum rate R1+R2 are

concave over the time allocation parameter τ .

Proof : See Appendix A.12.

Using these results, we can maximize the system throughput over δ and τ under

stability constraints by employing efficient convex optimization methods.

5.3.2.5 Throughput of Multi-Source Multi-Destination Networks

Our analysis in this subsection has primarily considered a two-source two-destination

relay network. However, using similar techniques and approach, we can extend the

analysis to multi-source multi-destination networks. For instance, let us consider

a multiple-user model in which N sources send information to their corresponding

destinations with the help of a relay node. The magnitude-squares of the fading

coefficients of links Sj −R and R−Dj are represented by zj and ωj, respectively.

Compared with the two-user model, adding more users only increases the di-

mension of the parameter space while the analytical methods and results essentially

remain the same. In this multi-user setting, system parameters ρ = (ρ1, ρ2, · · · , ρN)

and δ = (δ1, δ2, · · · , δN !) become vectors, while the time allocation parameter τ is

still a scalar.

In the multiple-access phase, we denote the kth decoding order at the relay as

πk = {k1, k2, · · · , kN}, which is a permutation of {1, 2, · · · , N}. With this decoding
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order, the instantaneous rate of the Ski −R link is characterized by

RSki
,R,πk

= B log2

(
1 +

SNRkizki

1 +
∑N

j=i+1 SNRkjzkj

)
. (5.45)

Given a time sharing vector δ = (δ1, δ2, · · · , δN !), the rate of the Sj −R link is given

by

RSj ,R =
N !∑
k=1

δkRSj ,R,πk
, (5.46)

for j = 1, 2, · · · , N . For the broadcast channel, the instantaneous rate is given by

RR,Dj
= B log2

(
1 +

ρjSNRrωj

1 +
∑N

l=1,l ̸=j ρlSNRrωj1{ωj < ωl}

)
, (5.47)

for j = 1, 2, · · · , N . Similarly, the stability region in the parameter space is defined

as

Ξ =

{
(τ,ρ1, · · · , ρN , δ1, · · · , δN !)|τ,ρ and δ that satisfy τE{RSj ,R} ≤ (1− τ)E{RR,Dj

},

N∑
i=1

ρi = 1 and
N !∑
i=1

δi = 1, for all j = 1, 2, · · · , N
}
. (5.48)

In this multiple-user setting, the dimension of the parameter space becomes much

higher than that in the two-user model. For a set of parameters that guarantee the sta-

bility conditions, the throughput of the Sj−Dj link under queuing constraints satisfies

(2.25) and (2.26) simultaneously, and hence is given by (5.44), for j = 1, 2, · · · , N ,

with the instantaneous rate expressions provided above.
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5.3.2.6 Numerical Results

In this subsection, numerical results are provided to further analyze the throughput

of the two-source two-destination relay network with variable transmission rates. Our

numerical results are based on (5.44).

In order to verify our analysis, we have conducted Monte Carlo simulations in

which we have generated arrivals to the buffer at constant rates determined by our

theoretical characterization in (5.44) and also generated random (Rayleigh) fading

coefficients to simulate the wireless channel and random transmission rates. We have

tracked the buffer occupancy and overflows for different threshold levels. We plot

the simulated logarithmic buffer overflow probabilities as functions of the overflow

threshold qmax in Figs. 5.13 and 5.14. In each simulation, we generate 5 × 107 time

blocks to estimate the buffer overflow probability, and repeat each simulation 1000

times to evaluate the averages. We set the queuing constraints as θ1 = θ2 = θr = 0.1,

and the constant arrival rates at nodes S1 and S2 are determined from (5.44). In

both figures, E{zj} = E{ωj} = 1, τ = ρ = δ = 0.5, SNR1 = SNR2 = 10dB. In

Fig. 5.13, we set SNRr = 30dB. Note that log Pr{Q ≥ qmax} ≈ log γ − θqmax, the

slope of the logarithmic overflow probability is expected to be proportional to −θ.

Although large qmax is required, our simulation results show that log Pr{Q ≥ qmax}

can be approximated as a linear function of qmax starting from relatively small qmax.

In Fig. 5.13, the slopes of the logarithmic overflow probabilities at buffers in S1

and S2 are −0.100 and −0.099, respectively. This implies that simulation results

demonstrate perfect agreement with the analysis and the arrival rates given by (5.44)

fit the queuing constraints at S1 and S2 exactly. We also observe that the logarithmic

overflow probabilities of the two relay buffers decay faster with steeper slopes than our

requirement of θr = 0.1. In this specific example, due to relay having a relatively large

transmit power, the system performance is mainly decided by the multiple-access

phase, which is the bottleneck of the system. Although the relay can potentially
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Figure 5.13: Logarithmic buffer overflow probability vs. buffer overflow threshold.

support higher R1 and R2, this is not allowed by the multiple-access phase. As we

reduce the transmission power of the relay node, the system bottleneck shifts to

the broadcast phase and the situation is reversed. In Fig. 5.14, we reduce SNRr

to 27.5dB. Now, the arrival rates given by (5.44) fit the queuing constraints at the

relay exactly, and the corresponding slopes for the two relay buffers are −0.098 and

−0.097, respectively. On the other hand, the decays of the overflow probabilities at the

source nodes are faster, meaning that sources can potentially support higher arrival

rates but this leads to the violation of the overflow constraints at the relay buffers

and is therefore not allowed. Overall, these simulation results, while confirming the

analysis, also interestingly unveil the critical interactions between the queues and

buffer constraints.

For the rest numerical results in this subsection, we consider Rayleigh fading

and we set SNR1 = SNR2 = 3 dB and SNRr = 6 dB. Fig. 5.15 shows the influence

of the position of the relay node for different θ values. We assume a symmetric

model, in which θ1 = θ2 = θr, and DistS1,R = DistS2,R and DistR,D1 = DistR,D2 ,

where DistA,B stands for the distance between A and B. The overall distance D =
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Figure 5.14: Logarithmic buffer overflow probability vs. buffer overflow threshold.

DistS1,R + DistR,D1 = DistS2,R + DistR,D2 = 2, and the position parameter d =

DistS1,R

D
=

DistS2,R

D
. Obviously, d ∈ [0, 1], and the smaller value of d indicates that

relay is closer to the source. Path loss as a function of distance is incorporated into the

statistics of fading powers, and hence, we have E{zj} = ( 1
D d

)4 and E{ωj} = ( 1
D(1−d)

)4

for j = 1, 2. In the figure, we see that the maximum sum rate R1 + R2 is achieved

when d is close to 0.5, which means that it is better to place the relay in the middle

between the source and destination in this symmetric setting. When the relay is close

to the source nodes, the channels between the relay and destinations deteriorate and

the overall throughput is limited by the broadcast links. Similarly, the multiple-access

links become the bottleneck when d is close to 1. Also, we observe that the system

throughput decreases when θ increases due to tighter queuing constraints. This occurs

because when θ is small, the effective capacity is closer to the Shannon capacity, and

as θ increases, effective capacity diminishes and approaches the zero-outage capacity

(which is, for instance, zero in Rayleigh fading).

In Fig. 5.16, we consider an asymmetric scenario in terms of QoS exponents,

and again plot sum rate vs. relay location parameter d. We fix ρ = δ = 0.5 and
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Figure 5.15: The sum rate vs. relay location parameter.
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Figure 5.16: The sum rate vs. relay location parameter.
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determine the optimal value of τ for each given d. When θr = 5, θ1 = θ2 = 0.1, the

maximum sum rate is achieved at d = 0.58. In this case, relay should be placed closer

to the destinations to support more stringent queuing constraints at the relay. On

the other hand, when θ1 = θ2 = 5, θr = 0.1, the optimal position for the relay is at

d = 0.41. Hence, the relay needs to be closer to the source nodes to support their

stricter queuing constraints. These observations indicate the sensitivity of optimal

relay placement to different QoS requirements.

Figs. 5.17 and 5.18 demonstrate the concavity6 of the sum rate with respect to τ

and δ, respectively, when the parameter values are in the stability region. In these two

figures, θ1 = θ2 = θr = 1, and E{zj} = E{ωj} = 1. In Fig. 5.17, the sum rate curves

first increase with τ , and then decrease very fast after reaching the maximum sum

rate. As τ exceeds a threshold, the sum rates drop to 0, because stability conditions

are violated beyond this threshold. In Fig. 5.18, the sum rate curves are concave

with respect to the decoding parameter δ, and the optimal δ values which maximize

the sum rate are all close to 0.5. In this case, relay allocates time to two decoding

orders equally. However, note that these results are again for a symmetric scenario

in which all QoS exponents are the same. In Fig. 5.19, we address a heterogeneous

setting in terms of QoS exponents. For instance, when θ1 = θr = 1 and θ2 = 0.1,

the optimal value of δ is 1. Hence, sum rate is maximized when the decoding order

at the relay is always fixed as {1, 2}, i.e., relay initially decodes data arriving from

source S1 in the presence of interfering signal of S2. The underlying reason for this

result is the following. Source S1 operates under stricter QoS constraints with respect

to S2 and consequently can support smaller arrival rates and needs, in turn, smaller

transmission rates which can be sustained even in the presence of interference. If the

roles are switched (i.e., if we have θ2 = θr = 1 and θ1 = 0.1), then the optimal value

of δ is zero. If the QoS exponents are more comparable (e.g., θ1 = 1 and θ2 = 0.5 or

6These concavity results can simplify the search for the optimal parameter setting with the use
of convex optimization tools.
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Figure 5.17: The sum rate vs. time allocation parameter τ .

θ1 = 0.5 and θ2 = 1), we notice that optimal values of δ start to slightly deviate from

the two extremes of 0 and 1.

Fig. 5.20 shows the throughput regions of the two-source two-destination relay

network under different queuing constraints. The boundary of the throughput re-

gion is obtained by searching over the three-dimensional parameter space. When R1

achieves its maximum value, δ is close to 0, and ρ is slightly greater than 0.5, because

decoding order {2, 1} and more power in the R −D1 link can help S1 −D1 link to

support higher arrival rates. Similar results are also obtained for the maximum value

of the arrival rate R2.

5.3.3 Throughput of the Two-Source Two-Destination Relay

Network With Fixed Transmission Rates

In practice, CSI may not be available at the transmitters. In such cases, the in-

stantaneous departure rates from each buffer will be different. In this subsection,

we investigate the system throughput when the transmitters do not have CSI and
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transmit at fixed rates. We further assume that an ARQ protocol is employed and

retransmissions are requested in case of communication failures. [89]

In the ARQ protocol, if the receiver decodes the packet, an ACK feedback is sent

to the transmitter, otherwise the receiver asks for the retransmission of the same

packet until the receiver gets the packet correctly. Here, the feedback signals are

assumed to be transmitted without error and delay. In other words, the transmitter

gets the error free feedback signal immediately after it completes the transmission

of the corresponding packet. In this model, ARQ scheme guarantees the reliability,

and the packets are kept in the buffer until the receiver decodes it correctly. With

this ARQ assumption, the instantaneous departure rate at a buffer is equal to the

fixed transmission rate if the receiver decodes the packet correctly, and it is 0 if the

transmission fails.

In order to determine the asymptotic LMGFs ΛSj ,R, ΛR and ΛR,Dj
, we have to

first identify the success and failure probabilities of these fixed-rate transmissions.

138



5.3.3.1 State Probabilities in the Multiple Access Phase

As noted before, source node Sj transmits in the multiple-access phase with fixed

rate rSj ,R for j = 1, 2. In the broadcast phase, relay node transmits to destination Dj

with fixed rate rR,Dj
, for j = 1, 2. Since all transmitters are using the ARQ protocol,

all links can be regarded to be in either ON or OFF state at a given time. The link is

in the ON state if the fixed transmission rate is less than the instantaneous channel

capacity, and the receiver can decode the packet correctly. Otherwise, failure occurs

and the link is in the OFF state in which the transmission rate is effectively zero.

In the multiple-access phase, the channel capacity is related to the decoding s-

trategy of the relay, which is described as follows:

1. Relay tries to decode the first packet while treating the interference as noise.

Without loss of generality, we assume that the relay always starts with the

packets sent by S1.

(a) If the receiver decodes the packet correctly, then it moves to the interfer-

ence cancelation step (i.e., Step 2 below).

(b) If the receiver cannot decode the packet from S1, it tries to decode the

packet from S2.

(c) If the receiver decodes it correctly, then it moves to the interference cance-

lation step. Otherwise, it asks retransmission from both transmitters, and

decoding process ends.

2. The receiver performs interference cancelation by subtracting the decoded mes-

sage from the received signal.

3. The receiver attempts to decode the remaining packet after interference can-

celation. If it cannot decode the packet, retransmission is required from the

corresponding transmitter.
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Later in our analysis, we show that it does not make any difference if the relay starts

with the packets sent by S2. In the multiple-access phase, according to the states of

the links S1 −R and S2 −R, we identify four possible cases:

Case 1: In this case, the relay node cannot decode any of the received messages.

Relay node attempts to decode the message from S1 first, while treating the signal

from S2 as noise. Following unsuccessful decoding, relay tries to decode the message

from S2 while treating the interference as noise, and cannot succeed either. Hence,

we in this scenario have


rS1,R > τB log2

(
1 + SNR1z1

1+SNR2z2

)
rS2,R > τB log2

(
1 + SNR2z2

1+SNR1z1

) . (5.49)

(5.49) can be transformed into the following bounds on fading magnitude-squares z1

and z2:



z1 >
1

SNR1

(
SNR2z2/

(
2

rS2,R
τB − 1

)
− 1
)

z1 <
1

SNR1

(
2

rS1,R
τB − 1

)
(1 + SNR2z2)

z2 > 0

z2 < −
(
2

rS2,R
τB − 1

)
2

rS1,R
τB

/{
SNR2

[(
2

rS1,R
τB − 1

)(
2

rS2,R
τB − 1

)
− 1
]}

,

if
(
2

rS1,R
τB − 1

)(
2

rS2,R
τB − 1

)
< 1.

(5.50)

(5.50) defines a region on the first quadrant of (z1, z2) plane, which we denote by Ψ1.

Therefore, the probability of Case 1 is given by
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PM,1 =

∫∫
Ψ1

pz1,z2(z1, z2)dz1dz2, (5.51)

where pz1,z2(z1, z2) is the joint probability density function (pdf) of z1 and z2. For

instance, if we consider independent Rayleigh fading, then joint pdf is given by

pz1,z2(z1, z2) =
1

z1 z2
exp

(
−z1
z1
− z2

z2

)
, (5.52)

where zj represents the expected value of zj for j = 1, 2.

In this case, since the relay can decode none of them, switching the decoding order

will not make a difference.

Case 2: In this case, the relay can decode the message from S1 in the presence

of interference from S2, but the message from S2 cannot be decoded successfully even

after interference cancelation. This scenario can be expressed by the following two

inequalities:


rS1,R ≤ τB log2

(
1 + SNR1z1

1+SNR2z2

)
rS2,R > τB log2 (1 + SNR2z2)

, (5.53)

which can further be expressed as


z1 ≥

(
2

rS1,R
τB − 1

)
(1 + SNR2z2)/SNR1

z2 <
(
2

rS2,R
τB − 1

)
/SNR2

. (5.54)

(5.54) defines the region Ψ2 on the first quadrant of (z1, z2) plane, and the probability

of Case 2 is given by
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PM,2 =

∫∫
Ψ2

pz1,z2(z1, z2)dz1dz2. (5.55)

Notice that since the relay cannot decode the message from S2 even after interference

cancelation, changing the decoding order would not help.

Case 3: This is the symmetric version of Case 2 with the roles of S1 and S2 in-

terchanged. Hence, the relay can decode the message from S2 with interference, but

not the message from S1. The probability of this case is given by

PM,3 =

∫∫
Ψ3

pz1,z2(z1, z2)dz1dz2, (5.56)

where Ψ3 is the region in the first quadrant of (z1, z2) plane described by


z2 ≥

(
2

rS2,R
τB − 1

)
(1 + SNR1z1)/SNR2

z1 <
(
2

rS1,R
τB − 1

)
/SNR1.

(5.57)

Case 4: In this case, the relay can decode both messages from two source nodes.

Although the description of this case is more involved, we can fortunately express the

probability of this case as

PM,4 = 1−
3∑

i=1

PM,i. (5.58)

Note now that the ON state probability of the Sj −R link is given by

Pj = PM,j+1 + PM,4 for j = 1, 2. (5.59)
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5.3.3.2 State Probabilities in Broadcast Phase

In the broadcast phase, the decoding strategy of the destination node Dj for j = 1, 2

is described as follows:

1. Dj attempts to decode its own packet first while treating the interference as

noise.

(a) If the receiver decodes correctly, then the decoding process ends.

(b) If the receiver cannot decode its own packet first, it tries to decode the

packet intended for the other destination first.

(c) If the receiver decodes the other packet correctly, then it moves to the

interference cancelation step. Otherwise, it asks for a retransmission from

the relay node, and decoding process ceases.

2. The receiver performs interference cancelation by subtracting the decoded mes-

sage from the received signal.

3. The receiver tries to decode its own packet after interference cancelation. If it

still cannot decode the packet, retransmission is required from the relay.

There are two possibilities for link R−D1 being in the ON state. D1 may decode

its message while treating interference as noise, or it may decode the message for

D2 first, and then decode its own message after interference cancelation. These are

described by the following conditions:
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rR,D1 ≤ (1− τ)B log2

(
1 +

SNRrρω1

1 + SNRr(1− ρ)ω1

)
(5.60)

or
rR,D1 > (1− τ)B log2

(
1 + SNRrρω1

1+SNRr(1−ρ)ω1

)
rR,D1 ≤ (1− τ)B log2(1 + SNRrρω1)

rR,D2 ≤ (1− τ)B log2

(
1 + SNRr(1−ρ)ω1

1+SNRrρω1

) (5.61)

where ω1 = |h1|2. We first define

a1 =
(
2

rR,D1
(1−τ)B − 1

)/{
SNRr

[
1− (1− ρ)2

rR,D1
(1−τ)B

]}
(5.62)

a2 =
(
2

rR,D1
(1−τ)B − 1

)
/(SNRrρ) (5.63)

a3 =
(
2

rR,D2
(1−τ)B − 1

)/{
SNRr

[
1− ρ2

rR,D2
(1−τ)B

]}
. (5.64)

Using the conditions in (5.60) and (5.61), we can express the ON probability of

the R−D1 link as

P3 =


0, a1 < 0 and a3 < 0∫∞
a1

pω1(ω1)dω1, (a1 > 0 and a3 < 0) or (a3 > a1 > 0)∫∞
max{a2,a3} pω1(ω1)dω1, otherwise,

(5.65)

where, for instance, in Rayleigh fading, pω1(ω1) =
1
ω1

exp(−ω1/ω1) is the pdf of ω1,

and ω1 is the expected value of ω1. A similar analysis can be applied to obtain the

ON state probability of the link R−D2 as
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P4 =


0, b1 < 0 and b3 < 0∫∞
b1

pω2(ω2)dω2, (b1 > 0 and b3 < 0) or (b3 > b1 > 0)∫∞
max{b2,b3} pω2(ω2)dω2, otherwise,

(5.66)

where, for instance, if again Rayleigh fading is considered, pω2(ω2) =
1
ω2

exp(−ω2/ω2)

is the pdf of ω2, ω2 is the expected value of ω2, and parameters bj for j = 1, 2, 3 are

defined as

b1 =
(
2

rR,D2
(1−τ)B − 1

)/{
SNRr

[
1− ρ2

rR,D2
(1−τ)B

]}
(5.67)

b2 =
(
2

rR,D2
(1−τ)B − 1

)
/(SNRr(1− ρ)) (5.68)

b3 =
(
2

rR,D1
(1−τ)B − 1

)/{
SNRr

[
1− (1− ρ)2

rR,D1
(1−τ)B

]}
. (5.69)

From the view of ARQ, outage happens when the receiver cannot decode the received

signal, thus 1 − Pj can be regarded as outage probabilities of their corresponding

links.

5.3.3.3 Stability Conditions

Similar to the variable-rate case, stability at the source buffers is ensured by requiring

the arrival rates to satisfy (2.25). The stability at the relay buffer requires the average

arrival rate to be smaller than the average departure rate. This can be ensured by

choosing the parameters (ρ, τ) accordingly. Now, our parameter space is just a two

dimensional plane, and we can describe the feasible set of (ρ, τ) for stability as

Ξ = {(ρ, τ)|rS1,RP1 ≤ rR,D1P3 and rS2,RP2 ≤ rR,D2P4} . (5.70)
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It can be easily seen that both average arrival rates rS1,RP1 and rS2,RP2 are monotonic

increasing functions of τ , because allocating more time to the multiple-access phase

is beneficial to links S1−R and S2−R. For the same reason, average departure rates

rR,D1P3 and rR,D2P4 are decreasing functions of τ . Therefore, for given ρ, conditions

in (5.70) provide two upper bound curves on τ . Then, feasible set for stability is the

region under these two upper bounds on the (ρ, τ) plane.

5.3.3.4 Throughput Region under Statistical Queuing Constraints

Similar to the variable-rate case, the system throughput is only defined for the feasible

parameter setting, which guarantees the stability. For those parameter values outside

the stability region, the system throughput is set to 0. For a given feasible (ρ, τ)

pair and given fixed transmission rates, we next formulate the maximum constant

arrival rates R1 and R2 at the source nodes under statistical queuing constraints

parameterized by QoS exponents θ1, θ2 and θr. For the described ON-OFF link model

with independent fading coefficients, the asymptotic LMGFs can be simplified as

ΛSj ,R(θ) = log
(
eθrSj ,RPj + eθ0(1− Pj)

)
(5.71)

= log
(
eθrSj ,RPj + 1− Pj

)
(5.72)

ΛR,Dj
(θ) = log

(
eθrR,DjPj+2 + eθ0(1− Pj+2)

)
(5.73)

= log
(
eθrR,DjPj+2 + 1− Pj+2

)
j = 1, 2, (5.74)

noting that the transmission rates are either equal to the fixed rates rSj ,R from the

sources and rR,Dj
from the relay if transmissions are successful and the corresponding

links are in the ON state with probabilities Pj and Pj+2 for j = 1, 2, and are zero in

case of failures. Recall that in order to satisfy the queuing constraints at both the

sources and the relay, the arrival rates at the two source nodes should satisfy (2.25)

and (2.26) simultaneously. Then, using (5.72) and (5.74) and considering (2.25) and

146



(2.26), we can characterize the maximum constant arrival rates as

R1 =



min
{
− 1

θ1
log
(
e−θ1rS1,RP1 + 1− P1

)
,

− 1
θr
log
(
e−θrrR,D1P3 + 1− P3

)}
θr ≤ θ1

min
{
− 1

θ1
log
(
e−θ1rS1,RP1 + 1− P1

)
,

− 1
θ1

(
log
(
e−θrrR,D1P3 + 1− P3

)
+ log

(
e(θr−θ1)rS1,RP1 + 1− P1

) )}
θr > θ1

(5.75)

R2 =



min
{
− 1

θ2
log
(
e−θ2rS2,RP2 + 1− P2

)
,

− 1
θr
log
(
e−θrrR,D2P4 + 1− P4

)}
θr ≤ θ2

min
{
− 1

θ2
log
(
e−θ2rS2,RP2 + 1− P2

)
,

− 1
θ2

(
log
(
e−θrrR,D2P4 + 1− P4

)
+ log

(
e(θr−θ2)rS2,RP2 + 1− P2

) )}
θr > θ2.

(5.76)

Searching over the stability region Ξ, the arrival rates R1, R2 and their sum rate can

be further optimized over ρ and τ , which will be numerically evaluated in the next

subsection.

5.3.3.5 Numerical Results

In this subsection, numerical results for the two-source two-destination relay network

with fixed transmission rates are provided. First, we verify our analysis through

Monte Carlo simulations. In each simulation, we generate 2 × 107 time blocks to

estimate the buffer overflow probability, and repeat each simulation 500 times to

evaluate the averages. We set the queuing constraints as θ1 = θ2 = θr = 0.1, and the

constant arrival rates at nodes S1 and S2 are chosen according to (5.75) and (5.76),

respectively. We further assume that rS1,R = rS2,R = rR,D1 = rR,D2 = 0.3 bit/s,

z1 = z2 = ω1 = ω2 = 2, SNR1 = 6.02 dB, SNR2 = 4.77 dB, SNRr = 7.78 dB, τ = 0.39,
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ρ = 0.7. We plot the logarithmic buffer overflow probabilities as functions of the

overflow thresholds in Fig. 5.21. In this specific example, the system throughput is

mainly decided by the multiple-access channel, and the overflow probabilities at the

buffers of the two source nodes almost exactly meet the queuing constraints. The

simulated slopes of the logarithmic overflow probabilities at S1 and S2 are −0.099

and −0.101, respectively. The overflow probabilities at the relay buffers diminish

with steeper slopes than required and hence satisfy even stricter queuing constraints.

Among the two relay buffers, we note that the overflow probability in the buffer

keeping the data from S1 decays much more faster. This is because we set ρ = 0.7,

meaning that the R−D1 link gets more power than the R−D2 link.

Fig. 5.22 demonstrates the case in which the performance bottleneck is in the

broadcast phase. In Fig. 5.22, we again set the queuing constraints as θ1 = θ2 =

θr = 0.1. Other system parameters are given as rS1,R = rS2,R = 0.3000 bit/s,

rR,D1 = rR,D2 = 0.7673bit/s, z1 = z2 = ω1 = ω2 = 2, SNR1 = 4.77dB, SNR2 = 4.77dB,

SNRr = 10dB, τ = 0.45, ρ = 0.65. In this case, the overflow probabilities at the buffers

of the two source nodes decrease faster than the imposed queuing constraints, and the

overflow probabilities at the two relay buffers almost exactly meet the QoS require-

ments. Specifically, the simulated slopes of the logarithmic overflow probabilities at

the two relay buffers are −0.100 and −0.098, respectively.

The rest numerical results are obtained for the following parameter values: rS1,R =

rS2,R = rR,D1 = rR,D2 = 0.3 bit/s, z1 = z2 = ω1 = ω2 = 2, SNR1 = 6.02 dB,

SNR2 = 4.77dB, SNRr = 7.78dB, θ1 = θ2 = 1 and θr = 3. Fig. 5.23 shows the influence

of the power allocation parameter ρ on the successful transmission probabilities P3

and P4 in the broadcast phase. We observe that as ρ increases from 0 to 0.5 and hence

a larger fraction of the power is allocated to the transmission of the message to D1, P3

grows dramatically while P4 diminishes by a relatively small amount. This indicates

that the sum arrival rate increases initially with increasing ρ. We also notice that both
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Figure 5.21: Logarithmic buffer overflow probability vs. buffer overflow threshold.
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Figure 5.23: ON state probabilities in the broadcast phase vs. ρ with τ = 0.4.

P3 and P4 decrease slightly at around ρ = 0.5 due to the increased interference caused

by the joint transmission of messages at similar power levels in the broadcast phase.

Similarly, the boundary of region of feasible (ρ, τ) pairs for stability at the relay buffer

shown in Fig. 5.24 has a local minimum τ value at ρ close to 0.5. Additionally, we

see in the figure that the boundary, which essentially bounds τ from above, can be

regarded as the intersection of two upper bounds on τ as discussed in Section 5.3.3.3.

Fig. 5.25 shows the arrival rate R1 as a function of (ρ, τ). Outside the feasible

region, rate is set to zero. We note that as τ increases, R1 initially increases and then

decreases within the feasible region. From (5.75), we know that R1 is characterized

as the point-wise minimum of two functions, one being an increasing function of τ ,

while the other being a decreasing function. Therefore, there exists an optimal τ that

maximizes R1 for given ρ. We also observe that the maximum of R1 over all (ρ, τ) is

achieved when τ = 0.39 and ρ = 0.7. Note that with this relatively large ρ value, the

S1−R−D1 link can in general support higher arrival rates because the relay allocates

more power for the transmission of the message coming from S1. Similar numerical

results can be obtained for R2. Expectedly, R2 has higher values when ρ < 0.5.
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Finally, we consider the maximum sum arrival rate. Fig. 5.26 plots the maximum

sum arrival rate max{R1+R2} as a function of ρ. As ρ approaches 0, the performance

of the S1−R−D1 link is limited by the low transmission power of the relay, leading

to the adoption of a very small τ value as seen in Fig. 5.24. Small value of τ lowers

the throughput of the S2 − R − D2 link as well. Hence R2 is also small. Similar

concerns arise as ρ approaches 1. Hence, allocating the power almost exclusively for

the transmission of one message is not an efficient strategy in terms of maximizing

the sum rate. Indeed, the sum arrival rate is maximized when ρ = 0.64. However, it

is interesting to note that equal allocation (i.e., having ρ = 0.5) is not the optimal

strategy either, because the sum rate has a local minimum point around ρ = 0.5 again

as a reflection of increased interference.
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Chapter 6

Throughput and Mode Selection in

Two-way MIMO Systems under

Queuing Constraints

In this chapter, the throughput of and mode selection between half-duplex and full-

duplex modes are studied in two-way MIMO systems operating under statistical queu-

ing constraints. In particular, the effective capacity of these systems is determined in

order to identify the throughput under constraints on the buffer overflow probabili-

ty. In the low SNR regime, the optimal input covariance matrices that achieve the

minimum energy per bit of the system are investigated. Full-duplex mode is found

to have better performance at low SNRs and short distances, while half-duplex mode

outperforms full-duplex operation at high SNR levels and long distances.

6.1 System Model

We consider a two-way MIMO system shown in Fig. 6.1, in which two users A and

B want to exchange information with each other. Both of them are equipped with

multiple antennas. NA and NB are the numbers of antennas at users A and B,
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Figure 6.1: System model for two-way MIMO channel

respectively. We assume a discrete-time system model with block flat-fading. In each

time block, the fading coefficients stay fixed, and change independently across blocks.

Also, we assume that there is a buffer at each node to store the arriving pack-

ets, and these two users have to satisfy the statistical queuing constraints described

in Chapter 2. Packets will be cleared from the buffer only after the corresponding

receiver successfully decodes them. Perfect CSI is assumed to be available at both

nodes, so that transmitters can adapt their transmission rates to the channel condi-

tions. In this section, we investigate the system throughput in both half-duplex and

full-duplex modes.

6.1.1 Half-Duplex Mode

In the half-duplex mode, we consider both time division multiplexing (TDM) and

frequency division multiplexing (FDM). In both cases, there is no self interference,

and the input-output relationships are given by

ȳA = HBAxB + n̄A (6.1)

ȳB = HABxA + n̄B, (6.2)
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where xj, ȳj and n̄j are the received signal vector, transmitted signal vector and Gaus-

sian noise vector of node j, for j = A,B, and HAB and HBA are the channel matrices

for the links A−B and B−A, respectively, whose components are the channel fading

coefficients between the corresponding transmitting and receiving antenna pairs. The

average energy of the transmitted signal is E{||xj||2} = Pj

Bj
, where Bj is the bandwidth

allocated to the jth link. The noise vectors are assumed to be zero-mean Gaussian

random vectors with covariance matrices given by E{n̄jn̄
†
j} = σ2

nI. At this point, we

can define the system SNR for link A−B as SNRA = E{||xA||2}
E{||n̄B ||2} = PA

NBBAσ2
n
. Similarly,

we have SNRB = PB

NABBσ2
n
. In the special case of Rayleigh fading, the components of

the channel fading matrices are assumed to follow zero-mean circularly symmetric

Gaussian distribution with variance σ2
h, which we denote by CN (0, σ2

h). Note that n̄B

and xB are NB × 1 dimensional vectors, n̄A and xA are NA × 1 dimensional vectors,

HAB is an NB×NA dimensional matrix, and HBA is an NA×NB dimensional matrix.

In the half-duplex TDM mode, two users cannot transmit and receive at the

same time. In this case, we denote the fraction of time allocated to link A − B

as τ , where τ ∈ [0, 1]. Therefore, the fraction of time allocated to link B − A is

1 − τ . In the half-duple FDM mode, the system divides the frequency band into

two subbands. We denote the fraction of bandwidth allocated to link A − B as ρ.

Hence, the bandwidth allocated to the transmission of node A is BA = ρB, where

B = BA + BB is the total bandwidth of the system, and BB = (1 − ρ)B is the

bandwidth allocated to the transmission of node B. Since the numbers of antennas

are fixed at A and B for all transmission modes, including the full-duplex mode, each

antenna should transmit and receive at the same time in half-duplex FDM mode

and full-duplex mode to achieve the best performance. For half-duplex FDM mode,

self-interference is negligible since transmitting and receiving are being performed in

different frequency bands. Self-interference cancellation in full-duplex mode will be

discussed in the next subsection.
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6.1.2 Full-Duplex Mode

In the full-duplex mode, two nodes A and B transmit and receive at the same time

using a common frequency band, and there is self-interference which originates from

the transmitting antennas at the same node. The discrete-time input-output rela-

tionships in the full-duplex mode can be expressed as

ȳA = HBAxB + γAHAAxA + n̄A (6.3)

ȳB = HABxA + γBHBBxB + n̄B (6.4)

where γj and Hjj represent the self-interference cancelation parameter and self-

interference channel matrix, respectively for node j, where j = A,B. The rest of

the notation has the same description and SNRj is defined in the same way as in half-

duplex mode. The self-interference components, γjHjjxj, do not necessarily follow a

Gaussian distribution. However, since Gaussian distribution leads to lower bounds

on the channel capacities, we consider these components as zero-mean circularly-

symmetrical complex Gaussian distributed, leading to a worst-case analysis.

To have a fair comparison of the full-duplex and half-duplex modes, we assume

that the same number of antennas are employed at both nodes for transmission and

reception in both modes. This requires each antenna to transmit and receive simul-

taneously in full-duplex mode. Feasibility of this was demonstrated by a practical

design that has been proposed in [90], guaranteeing over 40 dB channel isolation be-

tween the transmitter and receiver circuity. With this assumption, we have two types

of self-interference. The first type occurs between two antennas at the same node.

For this type, interference signals are received from the transmitting antennas, and

the channel fading coefficients are described by the off-diagonal components of HAA

and HBB, which are assumed to have zero-mean and variance σ2
s1. At the receiver

side, self-interference cancellation is described and quantified with the parameter γj
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at node j. From (6.3) and (6.4), we note that γ = 1 represents no self-interference

cancelation scheme, while γ = 0 represents perfect cancelation. The second type of

self-interference occurs on a single antenna, and the main component of the interfer-

ence comes from its own transmitting circuit. By applying the techniques in [90], this

self-interference can be controlled by introducing isolation between the transmitting

and receiving circuity sharing the same antenna. If we denote the cancelation param-

eter of this type of self-interference by βj at node j, then the diagonal components of

Hjj can be assumed to have zero-mean and variance (σs2βj/γj)
2 to satisfy (6.3) and

(6.4).

6.2 Throughput for Two-way MIMO systems

In this section, we formulate the system throughput under queuing constraints for

both half-duplex and full-duplex modes. Apparently, the covariance matrices of the

transmitted signals have significant influence on the system throughput. We define

the normalized input covariance matrix of xj as

Kxj
=

E{xjx
†
j}

Pj/Bj

, for j = A, B. (6.5)

Throughout this section, we mainly discuss the effective capacity for given input

covariance matrices. The maximum throughput can be obtained through optimization

over KxA
and KxB

pairs.

6.2.1 System Throughput for Half-Duplex TDM Mode

The transmission in the half-duplex TDM two-way MIMO systems can be divided into

two phases. In the first phase, nodeA sends information to node B, and node B keeps

silent. This phase occupies τ fraction of the time. In this phase, the instantaneous
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rate of user A can be expressed as

rA = B log2 det

[
I+

PA

Bσ2
n

HABKxA
H†

AB

]
(6.6)

= B log2 det
[
I+NBSNRAHABKxA

H†
AB

]
, (6.7)

for given KxA
. In the next phase, users A and B exchange their roles, and only node

B transmits. This phase occupies 1 − τ fraction of the time, and the instantaneous

rate of user B is given by

rB = B log2 det

[
I+

PB

Bσ2
n

HBAKxB
H†

BA

]
(6.8)

= B log2 det
[
I+NASNRBHBAKxB

H†
BA

]
, (6.9)

for given KxB
. By plugging (6.7) and (6.9) into (2.7), the effective capacities of links

A−B and B−A are given by

CA =− 1

θA
loge

(
E
{
e−τθArA

})
, and (6.10)

CB =− 1

θB
loge

(
E
{
e−(1−τ)θBrB

})
, (6.11)

respectively, given the covariance matrices KxA
and KxB

.

Theorem 19 For given input covariance matrices, the sum throughput CA + CB is

a concave function of the time-fraction parameter τ .

Proof 5 By taking the second derivative of CA with respect to τ , we get

∂2CA

∂τ 2
= − θA

(E {e−τθArA})2

{
E
{
e−τθArA

}
E
{
r2Ae

−τθArA
}
−
(
E
{
rAe

−τθArA
})2}

.

(6.12)
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Applying Cauchy-Schwarz inequality, we have

E
{
e−τθArA

}
E
{
r2Ae

−τθArA
}
≥
(
E
{
rAe

−τθArA
})2

. (6.13)

From (6.13) which implies that the second derivative in (6.12) is non-positive, we

determine that the effective capacity of the A − B link is a concave function of τ .

Similarly, we can prove that CB is also a concave function of τ , leading to the desired

result that the sum throughput CA + CB is concave.

With this characterization, the optimal τ value which maximizes the sum throughput

can be obtained via convex optimization algorithms.

6.2.2 System Throughput for Half-Duplex FDM Mode

In the half-duplex FDM mode, both users can transmit and receive simultaneously,

using different frequency bands. The instantaneous transmission rates of users A and

B are given by

rA = ρB log2 det

[
I+

PA

ρBσ2
n

HABKxA
H†

AB

]
(6.14)

= ρB log2 det
[
I+NBSNRAHABKxA

H†
AB

]
, (6.15)

and

rB = (1− ρ)B log2 det

[
I+

PB

(1− ρ)Bσ2
n

HBAKxB
H†

BA

]
= (1− ρ)B log2 det

[
I+NASNRBHBAKxB

H†
BA

]
, (6.16)

respectively.

Comparing (6.15) and (6.16) with (6.7) and (6.9), we have the following observa-

tion.
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Remark 1 For a half-duplex FDM two-way MIMO system with system parameter ρ,

there exists a half-duplex TDM system with parameter τ = ρ, which can achieve the

same system throughput with the same average power consumption.

We use subscripts TDM and FDM to distinguish the corresponding quantities. For

user A, we set SNRA,TDM = SNRA,FDM. Since we have τ = ρ, by comparing (6.7) and

(6.15), apparently we should have rA,TDM = rA,FDM, which also implies that we have

CA,TDM = CA,FDM. From SNRA,TDM = SNRA,FDM, we can get PA,TDM = PA,FDM/ρ.

Then, the average power of TDM system can be expressed as

PA,TDM = τPA,TDM =
τ

ρ
PA,FDM = PA,FDM = PA,FDM.

Now, we have shown that for user A, we can achieve the same throughput using

the same average power in both TDM and FDM systems, when we set SNRA,TDM =

SNRA,FDM and τ = ρ. Similarly, we can show the same result for user B, when we set

SNRB,TDM = SNRB,FDM and τ = ρ.

Therefore, TDM and FDM systems have the same performance, and we can only

address one of them in the half-duplex mode. Hence, we subsequently consider the

TDM system to represent the performance of the half-duplex mode.

6.2.3 System Throughput for Full-Duplex Mode

In full-duplex mode, since the two users transmit and receive simultaneously in the

same frequency band, we have additional self-interference terms as seen in (6.3) and

(6.4). As mentioned in Section 6.1.2, there are two types of self-interference, experi-

enced due to transmissions from the other antennas at the same node and from the

transmitting circuitry of the same antenna, respectively. These interference terms

are characterized by the off-diagonal and diagonal elements of the self-interference

channel matrices, respectively.
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We define the overall interference covariance matrix Kzj as

Kzj =

(
γj
σn

)2

HjjE{xjx
†
j}H

†
jj +

1

σ2
n

E{n̄jn̄
†
j} (6.17)

=Njγ
2
j SNRjHjjKxj

H†
jj + I, (6.18)

for j = A,B. Then, the instantaneous transmission rates forA and B can be written,

respectively, as

rA = B log2 det
[
I+NBSNRAHABKxA

H†
ABK

−1
zB

]
, (6.19)

and

rB = B log2 det
[
I+NASNRBHBAKxB

H†
BAK

−1
zA

]
, (6.20)

where KzA and KzB are given by (6.18). Inserting (6.19) and (6.20) into (2.7), the

effective capacities of the A−B and B−A links are given by

CA =− 1

θA
loge

(
E
{
e−θArA

})
, and (6.21)

CB =− 1

θB
loge

(
E
{
e−θBrB

})
, (6.22)

respectively.

6.3 Mode Selection

In this subsection, we investigate the mode selection protocol in two-way MIMO

systems with the goal of maximizing the sum throughput Csum = CA + CB. At

the beginning of the transmission, two users evaluate the sum throughput of half-

duplex and full-duplex modes, and choose the one with the higher sum throughput.
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In Section 6.2, we have mentioned that the throughput depends on the input signal

covariance matrices, KxA
and KxB

. In general, it is not easy to determine the optimal

covariance matrices that maximize the sum throughput, but we can identify them in

the low-SNR regime.

6.3.1 Mode Selection in the Low-SNR Regime

In the low-SNR regime, minimum energy per bit is a widely used performance metric

[84], which characterizes the minimum energy required to send one bit of information

reliably. In our system setting, the minimum energy per bit is achieved when SNR

approaches zero, and is given by

Eb

N0min

= lim
SNR→0

SNR

CE(SNR)
=

1

ĊE(0)
, (6.23)

where ĊE(0) denotes the first derivative of the the effective capacity function CE(SNR)

with respect to SNR at SNR = 0. Now, our purpose is to find the optimal covariance

matrices that achieves the smallest Eb

N0min
for both half-duplex and full-duplex modes.

Remark 2 In the low-SNR regime, for half-duplex two-way MIMO systems, the op-

timal input covariance matrices that achieve the smallest Eb

N0min
are given by

KxA
= uAu

†
A and Kx,B = uBu

†
B (6.24)

where uA is the eigenvector corresponding to the maximum eigenvalue of H†
ABHAB,

and uB is the eigenvector corresponding to the maximum eigenvalue of H†
BAHBA.

It has been proved in [39] that the optimal input covariance matrix that minimize

the minimum energy per bit for a point to point MIMO channel is

Kx = uu†, (6.25)
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where u is the eigenvector corresponding to the maximum eigenvalue ofH†H, andH is

the channel fading matrix. For our half-duplex two-way MIMO systems, transmissions

over A − B and B − A links are separated, and minimizing the overall bit energy

is equivalent to minimizing the individual bit energies of users A and B. Applying

(6.25) to links A−B and B−A, we immediately have the observation in Remark 2.

In full-duplex mode, transmission over these two links are now interacting due to

self-interference. In this case, we can identify the optimal solution, which minimizes

the bit energies separately for users A and B, via an iterative procedure. First, we

have the following characterization.

Theorem 20 In the low-SNR regime for full-duplex two-way MIMO systems, for

given KxB
, the optimal input covariance matrix KxA

that achieves the smallest Eb

N0min

of user A is

KxA
= ΨAΨ

†
A, (6.26)

whereΨA is the eigenvector corresponding to the maximum eigenvalue of H†
ABK

−1
zBHAB.

Similarly for user B, for given KxA
, the optimal KxB

is

KxB
= ΨBΨ

†
B, (6.27)

whereΨB is the eigenvector corresponding to the maximum eigenvalue of H†
BAK

−1
zAHBA.

Proof : See Appendix A.13.

Using Theorem 20, we can determine the optimal covariance matrices through an

iterative process. Initially, we set KxA
= 1

NA
I and KxB

= 1
NB

I. In each iteration,

we update KxA
and KxB

using (6.26) and (6.27), until convergence or the number of

iterations reaches a limit.
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Figure 6.2: Sum throughput vs. SNR

Fig. 6.2 shows the low SNR performance for half-duplex and full-duplex modes

with different input covariance matrices. For all numerical results in the paper, we

assume Rayleigh fading. All fading coefficients between the corresponding transmit-

ting and receiving antenna pairs follow zero-mean circularly symmetrical complex

Gaussian distribution. In this figure, we set SNRA = SNRB = SNR, NA = NB = 3,

θA = θB = 1, γA = γB = 0.1, σn = 0.33, σh = 0.7, σs1 = 10, σs2βA = σs2βB = 0.05.

For the curves with no covariance matrix optimization, we set KxA
= 1

NA
I and

KxB
= 1

NB
I. Fig. 6.2 shows that full-duplex mode has better performance at low

SNR values, if self-interference is under control, because it allows two users to utilize

the channel simultaneously. For both half-duplex and full-duplex modes, the sum

throughput with optimized covariance matrices are greater. This is due to the facts

that the direction with the best channel gain is selected and the influence of self-

interference is reduced. Since the covariance matrix optimization is done for low SNR

levels, when we have relatively higher SNR values, the advantage of the optimization

is diminished in the half-duplex case.

Additionally, in our numerical analysis, we have observed that our iterative algo-

rithm converges 99.47% of the time, and the average number of iterations needed to
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achieve convergence is 13.77, when we set the criterion as tr(eAe
†
A)+tr(eBe

†
B) ≤ 10−10,

where ej = Ki
xj
−Ki−1

xj
and Ki

xj
is the covariance matrix after the ith iteration, for

j = A,B.

6.3.2 Mode Selection in the High-SNR Regime

Apparently, the sum throughput of the half-duplex mode grows without bound when

both SNRA and SNRB are increased. However, the situation is different for the full-

duplex mode.

Proposition 4 In the high-SNR regime, when the power ratio PA/PB is kept fixed,

the sum throughput approaches a constant, which only depends on the power ratio.

Proof 6 If we keep PA

PB
= η constant, plugging (6.18) into (6.19), the instantaneous

rate for the A−B link as SNRA →∞ becomes

lim
SNRA→∞

rA = lim
SNRA→∞

B log2 det
[
I+NBSNRAHABKxA

H†
ABK

−1
zB

]
= lim
SNRA→∞

B log2 det

[
I+

η

γ2
B

HABKxA
H†

AB(HBBKxB
H†

BB)
−1

]
= B log2 det

[
I+

η

γ2
B

HABKxA
H†

AB(HBBKxB
H†

BB)
−1

]
,

which approaches a constant for large SNRA and SNRB values. A similar result can

be found for rB under the high SNR assumption. Then the sum throughput CA + CB

approaches a constant that only depends on η.

Proposition 4 implies at high SNRs that half-duplex mode has better performance

than the full-duplex mode. When the transmission power increases, self-interference

also increases proportionally, and becomes difficult to control. Or equivalently, when

the noise power vanishes, the system will primarily be self-interference limited. In this

case, the advantage of half-duplex operation, which avoids self-interference, becomes
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Figure 6.3: Sum throughput vs. SNR

significantly beneficial. Fig. 6.3 shows the sum throughput of the full-duplex mode

with different self-interference cancelation parameters and of the half-duplex mode

over a relative wide SNR range. We set γA = γB = γ, KxA
= 1

NA
I, KxB

= 1
NB

I, and

all other parameter settings are the same as in Fig. 6.2. Although full-duplex mode

has better performance at low SNRs, half-duplex operation starts outperforming when

the SNR level is sufficiently high, and the gap increases as SNR increases. When γ

decreases, we have better self-interference cancelation in the full-duplex mode, and

the performance improves. If we have perfect interference cancelation, full-duplex

performance should always be better than that of the half-duplex mode.

6.3.3 Mode Selection at Different Transmission Distances

In addition to the SNR level, the transmission distance also has an impact on mode

selection. The distance between the two users affects the distribution of HAB and

HBA. Assuming that the transmission distance is d, we set σ2
h = 1

d4
. In Fig. 6.4, we

plot the sum throughput of half-duplex and full-duplex modes as a function of d for

different queuing constraints. We set θA = θB = θ, γA = γB = 0.8, SNRA = SNRB = 7,

and other parameter settings are the same as in Fig 6.2. When the distance is
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Figure 6.4: Sum throughput vs. transmission distance

small, full-duplex mode has better performance. As the distance increases, channel

conditions become worse, and the received signal power diminishes, but the self-

interference is still unchanged. As a result, the SINR in full-duplex mode decreases

very fast, and the performance drops below that of half-duplex mode. Therefore,

self-interference control is a critical problem in the full-duplex mode in long-distance

transmissions. Also, Fig. 6.4 shows that increasing the values of the QoS exponent θ

lowers the system throughput.
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Chapter 7

Mode Selection and Resource

Allocation Algorithms for D2D

Cellular Networks

In this chapter, we study the mode selection and resource allocation algorithms for

D2D cellular networks. D2D communication underlaid with cellular networks is a new

paradigm, proposed to enhance the performance of cellular networks. By allowing a

pair of D2D users to communicate directly and share the same spectral resources with

the cellular users, D2D communication can achieve higher spectral efficiency, improve

the energy efficiency, and lower the traffic delay.

In Section 7.1, transmission mode selection and resource allocation in a TDM

cellular network with one cellular user, one base station, and a pair of D2D user-

s is investigated under rate and queueing constraints. In particular, four possible

modes are considered, namely the cellular mode, dedicated mode, uplink reuse mode,

and downlink reuse mode. Using tools from stochastic network calculus, the system

throughput under statistical queueing constraints is formulated, efficient resource al-

location algorithms for all possible modes are proposed, and the influence of the
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positions of each node and the queueing constraints is analyzed via numerical results.

Scenarios and conditions for different modes to be optimal in the sense of maximizing

the sum-throughput are identified.

In Section 7.2, we propose a novel channel matching algorithm for joint mode

selection and channel allocation with the goal of maximizing the system throughput

under statistical queueing constraints. Seven possible modes are considered, namely

the D2D cellular mode, D2D dedicated mode, uplink dedicated mode, downlink ded-

icated mode, uplink reuse mode, downlink reuse mode, and D2D reuse mode. The

throughput is characterized by determining the effective capacity. We formulate the

channel allocation problem as a maximum-weight matching problem, which can be

solved by employing the Hungarian algorithm. Via simulation results, we verify the

performance improvements achieved by our proposed matching algorithm.

In Section 7.3, we propose a novel joint mode selection and channel resource

allocation algorithm via the vertex coloring approach. We decompose the problem

into three subproblems and design algorithms for each of them. In the first step,

we divide the users into groups using a vertex coloring algorithm. In the second

step, we solve the power optimization problem using the interior-point method for

each group and conduct mode selection between the cellular mode and D2D mode

for D2D users, and we assign channel resources to these groups in the final step.

Numerical results show that our algorithm achieves higher sum rate and serves more

users with relatively small time consumption compared with other algorithms. Also,

the influence of system parameters and the tradeoff between sum rate and the number

of served users are studied through simulation results.
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Figure 7.1: System model with queuing constraints (Dashed lines represent interfer-
ence only links.)

7.1 Mode Selection of Device-to-Device Commu-

nication in Cellular Networks under Statistical

Queuing Constraints

7.1.1 System Model

As mentioned above, we study mode selection and resource allocation in a cellular

network with D2D users with the goal of maximizing the overall sum rate of the

network under queuing constraints. For simplicity, we consider a typical model shown

in Fig. 7.1, in which there is only one cellular user (CU), one base station (BS),

and one pair of D2D users denoted by D1 and D2, respectively. We assume the

transmission between D2D users is one-way, and D1 is the transmitter and D2 is

the receiver. Therefore, there are overall three transmitters in this network, namely

BS, CU and D1, and their maximum transmission powers are denoted by Pb, Pc

and Pdmax. There are three main communication links corresponding to the three

transmitters. In the uplink, the cellular user CU sends information to the base

170



station; in the downlink, the base station sends information to the cellular user; and

in the D2D link, D1 transmits to D2. Before the transmitters send their packets

to the corresponding receivers, the packets are stored in buffers. All transmitters

are operating under statistical queuing constraints imposed as limitations on buffer

overflow probabilities.

We consider a block-fading model. The fading coefficients and their magnitude-

squares in different communication and interference links are represented by hi and

zi = |hi|2, respectively, as depicted in Fig. 7.1 for i = 1, 2, · · · , 7. The overall

bandwidth of this system is B, and the time in each transmission period is divided

into several phases and allocated to different links. The fractions of time allocated

to each link are given by the elements of the time allocation vector τ . For different

modes, the dimension of τ is different. In this section, we consider four modes for

this network, namely the cellular mode, the dedicated mode, the uplink reuse mode,

and the downlink reuse mode.

Cellular Mode: In this mode, the transmission is divided into 4 phases. In

the first phase, only the uplink is active, in which CU sends information to BS;

in the second phase, only the downlink is active, in which BS sends information to

CU; in the third phase, D1 sends information to the base station (only D1 − BS

link is active), and the base station decodes and forwards the information to D2 in

the last phase (only BS −D2 link is active). In the cellular mode, the base station

works as a relay node between D1 and D2, and hence these two D2D users essentially

communicate just like the cellular users. We denote the fractions of time allocated to

the cellular uplink and downlink as τ1 and τ2, respectively, and we denote the overall

fraction of time allocated to the two D2D links as τ3. The time allocation between

the two D2D links is discussed in Section 7.1.2.1. Now, we have ∥τ∥1 =
∑3

j=1 τj = 1.

For simplicity, we assume that there are two separate buffers at the base station. One

buffer is for the packets that will be sent to CU, and the other one stores the packets
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that has arrived from D1 and will be sent to D2. These two buffers operate under

different queuing constraints. Since there is only one pair of transmitter and receiver

being active in each phase, there is no interference in the cellular mode. In each time

block, the received signal at each receiver has the form

y = hix+ ni, (7.1)

where x is the transmitted signal, hi is the corresponding channel fading coefficient,

and ni is the additive noise component. At different receiver nodes, the noise terms

are assumed to be independent, zero-mean, circularly symmetric, complex Gaussian

random variables with variances E{|ni|2} = σ2
0.

Dedicated Mode: In this mode, the transmission is divided into three phases,

which are the uplink phase, downlink phase and D2D phase, and the fractions of

time allocated to each phase are given by τ = (τ1, τ2, τ3). Compared to the cellular

mode, the only difference is that D1 sends information directly to D2 without the

participation of the base station in the third phase. Similar to the cellular mode,

there is no interference, and the received signals have the form in (7.1).

Reuse Modes: In the uplink and downlink reuse modes, the D2D link reuses the

channel resource with uplink and downlink, respectively. Therefore, the transmission

is divided into two phases in these two modes. In the uplink reuse mode, the first

phase is allocated to the downlink, and the second phase is allocated to the uplink

and D2D link. Since D1 and CU transmit in the second phase simultaneously, D2

and BS experience interference. In the uplink channel, the received signals follow the

form

y = hix+ hinterxinter + ni, (7.2)

where x is the desired signal, hi is the fading coefficient of the channel between this
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receiver and its corresponding transmitter, xinter is the interference signal, hinter is the

fading coefficient of the interfering link, and ni is the Gaussian noise. Since there is no

interference in the downlink phase, the received signal at CU node follows the form

in (7.1). In the downlink reuse mode, the first phase is allocated to the uplink, and

the second phase is allocated to the downlink and D2D link. Similarly, the received

signals at D2 and CU follow (7.2) in the downlink reuse mode, and the received signal

at the base station in the uplink channel follows (7.1).

In order to guarantee certain performance levels, we impose throughput/rate con-

straints for all users in all 4 modes. The minimum throughput required in the uplink,

downlink and D2D link are denoted by RCmin, RBmin and RDmin, respectively. If one

of the rate constraints cannot be satisfied, then the corresponding mode is not used.

7.1.2 Throughput of Cellular Network with D2D Users

In the previous subsection, we introduce the formulation of the system throughput

under queuing constraints. In order to determine the effective capacities, we have

to characterize the instantaneous transmission rates of each communication link. In

this subsection, we formulate the overall system throughput of the cellular network in

each mode, under given resource allocation strategies, and efficient resource allocation

algorithms are provided in Section 7.1.3.

7.1.2.1 Throughput in the Cellular Mode

In the cellular mode, CU−BS, BS−CU, D1 −BS and BS−D2 links are active.

The fractions of time allocated to CU−BS, BS−CU and D1 −BS−D2 links are

given by τ1, τ2 and τ3, respectively. In this mode, all transmitters transmit with their

maximum power since there is no interference. The instantaneous transmission rate
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of the uplink channel is

rC,B = B log2

(
1 +

Pc

Bσ2
0

z1

)
. (7.3)

Plugging (7.3) into (2.7), we obtain the effective capacity of the CU−BS link as

RC = − 1

θC
logE

{
e−τ1θCrC,B

}
. (7.4)

For the downlink channel, the instantaneous rate is

rB,C = B log2

(
1 +

Pb

Bσ2
0

z4

)
, (7.5)

and the corresponding effective capacity is

RB = − 1

θBC

logE
{
e−τ2θBCrB,C

}
. (7.6)

In the cellular mode, the D2D link is a two-hop channel with two queues in tandem.

More specifically, D1 first sends information to BS in the third phase, and then BS

forwards the information to D2 in the last phase. The instantaneous transmission

rates of D1 −BS and BS−D2 links are given, respectively, by

rD,B = B log2

(
1 +

Pdmax

Bσ2
0

z2

)
, (7.7)

rB,D = B log2

(
1 +

Pb

Bσ2
0

z3

)
. (7.8)

Define τ̂ as the fraction of time allocated to the third phase. Then the fraction

of time allocated to the last phase is τ3 − τ̂ . In this two-hop case, the arrival rate

at node D1 has to satisfy the QoS constraints at D1 and BS, simultaneously. The

effective capacity analysis of this half-duplex two-hop channel is much more involved,
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and a detailed analysis is given in [17, Section III-B]. Through a similar process, we

express the effective capacity of the D1 −BS−D2 link as

RD = − 1

θD
logE{e−τ̂ θDrD,B}, (7.9)

where τ̂ = min{τ0, τ ∗}, and τ0 is the solution to

τ0E{rD,B} = (τ3 − τ0)E{rB,D}, (7.10)

and τ ∗ is the solution to

− 1

θD
logE{e−τ∗θDrD,B} = − 1

θBD

logE{e−(τ3−τ∗)θBDrB,D} (7.11)

when θD ≥ θBD, or

− 1

θD
logE{e−τ∗θDrD,B} = − 1

θD

(
logE{e−(τ3−τ∗)θBDrB,D}+ logE{eτ∗(θBD−θD)rD,B}

)
(7.12)

when θD < θBD.

7.1.2.2 Throughput in the Dedicated Mode

In the dedicated mode, CU−BS, BS−CU, and D1 −D2 links are active, and the

fraction of time allocated to these links are given by τ = (τ1, τ2, τ3). In this mode,

D1 transmits to D2 directly without the help of the base station. Since there is no

interference, all transmitters transmit using their maximum power. Similar to the

analysis above, the instantaneous transmission rates of the uplink, downlink are also

given by (7.3) and (7.5), and their effective capacities still follow (7.4) and (7.6). For
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the direct D2D link, the instantaneous transmission rate is

rD1,D2 = B log2

(
1 +

Pdmax

Bσ2
0

z5

)
. (7.13)

Plugging (7.13) into (2.7), we can get its corresponding effective capacity expressed

as

RD = − 1

θD
logE

{
e−τ3θDrD1,D2

}
. (7.14)

7.1.2.3 Throughput in Reuse Modes

In the two reuse modes, only one cellular link is active in the first phase, and the

other cellular link share the channel resource with the D2D direct link in the second

phase. We denote the fraction of time allocated to the first phase as τ1. Then the

fraction of time left for the second phase is 1−τ1. In reuse modes, we assume that the

base station and cellular user transmit with their maximum power, due to cellular

links being assumed to have higher priority over the D2D link. Assume that the

transmission power of D1 is given by Pd. Then the instantaneous transmission rates

for the downlink, uplink and D2D link are given by

rB,C = B log2

(
1 +

Pb

Bσ2
0

z4

)
(7.15)

rC,B = B log2

(
1 +

Pc/Bσ2
0

1 + (Pd/Bσ2
0)z2

z1

)
(7.16)

rD1,D2 = B log2

(
1 +

Pd/Bσ2
0

1 + (Pc/Bσ2
0)z6

z5

)
, (7.17)
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in the uplink reuse mode, and their corresponding effective capacities are given, re-

spectively, by

RB = − 1

θBC

logE
{
e−τ1θBCrB,C

}
(7.18)

RC = − 1

θC
logE

{
e−(1−τ1)θCrC,B

}
(7.19)

RD = − 1

θD
logE

{
e−(1−τ1)θDrD1,D2

}
. (7.20)

Similar characterizations can be obtained for the downlink reuse mode, and the op-

timization over Pd in reuse modes is discussed in the next subsection.

7.1.3 Resource Allocation

In the previous subsection, we have formulated the throughput under statistical queu-

ing constraints for all 4 modes. In this subsection, we investigate efficient resource

allocation strategies with the goal of maximizing the sum throughput. In the cellular

and dedicated modes, only the time allocation vector τ is optimized, and in the two

reuse modes, both τ1 and Pd are optimized.

7.1.3.1 Cellular Mode

In cellular mode, the throughput maximization problem is formulated as

Maximizeτ Rsum = RC +RB +RD (7.21)

Subject to ∥τ∥1 = 1 (7.22)

Rj ≥ Rj min, for j = C,B,D (7.23)

whereRCmin, RDmin andRDmin are the minimum rates required for the uplink, down-

link and D2D link, respectively. This optimization problem can be solved through

auction game approach. Auction game has been studied in the game theory literature,
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Table 7.1: Algorithm 7.1

Resource allocation for the cellular mode

1. Initialization: Initialize τ1 and τ2 by solving RC = RCmin and RB = RBmin.
τ̂ is given by the solution of − 1

θD
logE{e−τ̂ θDrD,B} = RDmin. With this τ̂ value,

solve τ3 from (7.10), and denote this solution by τ3,1. If θD ≥ θBD, solve τ3
from (7.11), otherwise solve τ3 from (7.12), and denote this solution by τ3,2.
Set τ3 = max{τ3,1, τ3,2}.
Check if ∥τ∥1 > 1, then end the allocation process.

2. Auction: Divide the remaining time resource equally into N parts, and set
∆τ = (1 − τ1 − τ2 − τ3)/N . Set the bids of the uplink, downlink and D2D
link as BidC = RC(τ1 + ∆τ) − RC(τ1), BidB = RB(τ2 + ∆τ) − RB(τ2) and
BidD = RD(τ3 +∆τ)−RD(τ3), respectively.

For i = 1 : N

(a) Select the link with the highest bid as the winner of the ith round, and
increase its time allocation parameter by ∆τ .

(b) Update the winner’s bid with its new time allocation parameter.

end

and it has been used to design algorithms for resource allocation in D2D models. For

example, in [47], spectrum allocation problem was solved through an iterative com-

binatorial auction approach. In our setting, we build our auction game as follows:

The time resource is divided into small time slots (of the same duration), which are

regarded as resource units. In each round, three bidders, which are uplink, down-

link and D2D link, compete for a single resource unit. Bidders bid according to the

throughput increment they gain with an additional time slot, and the resource unit

will be allocated to the link giving the highest bid. The detailed algorithm is provided

in Table 7.1.

The initialization step guarantees the rate constraints. If the rate constraints

cannot be satisfied, we have ∥τ∥1 > 1. It is immediately seen that this iterative

algorithm is completed within finite time, and the system only needs to evaluate
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effective capacity N + 3 times, where N is the number of resource units. Therefore,

the complexity of this algorithm does not depend on the number of bidders.

The performance of this auction algorithm is evaluated via numerical results. We

generate the location of the nodes randomly, and compare the optimal throughput

values obtained from Algorithm 7.1 and exhaustive search. The normalized error is

defined as ε =
|Rsum,auction−Rsum,search|

Rsum,search
. Over 105 rounds of testing, the average normal-

ized error is 2.01 × 10−5. In each time, N is selected as the smallest integer that

makes the step ∆τ ≤ 5× 10−3.

7.1.3.2 Dedicated Mode

In the dedicated mode, the optimization problem has the same formulation as in the

cellular mode. Different from the cellular mode case, the throughput maximization

problem can be solved by convex optimization algorithms.

Theorem 21 In the dedicated mode, the sum rate Rsum = RC+RB+RD is concave

with respect to the time allocation vector τ .

Proof : See Appendix A.14

Also, the constraints define a convex region in the τ1−τ2−τ3 space. Therefore, the

throughput maximization problem in the dedicated mode is a concave maximization

problem, which can be solved efficiently by convex optimization algorithms.
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7.1.3.3 Reuse Modes

In the two reuse modes, we need to optimize the throughput over τ1 and the D2D

transmission power Pd, and the optimization problem is formulated as

Maximizeτ1,Pd
Rsum = RC +RB +RD (7.24)

Subject to 0 ≤ Pd ≤ Pdmax (7.25)

Rj ≥ Rj min, for j = C,B,D (7.26)

Due to the interference between the D2D and cellular users, the objective function

is not concave. To solve this problem, we search for the optimal τ1 from 0 to 1.

For a given value of τ1, we determine the optimal Pd through the successive convex

approximation (SCA) algorithm. If the rate constraints cannot be all satisfied, the

sum rate is set to 0.

The idea of SCA was proposed in [91]. In this approach, the nonconvex opti-

mization problem is transformed into a series of convex optimization problems. More

specifically in our model, we replace the sum throughput by a series of concave func-

tions of Pd, which are denoted as {Ul} for l = 1, 2, · · · . In the uplink reuse mode,

since RB does not depend on Pd, we only need to consider the maximization of

R = RC +RD, and we construct {Ul} as

Ul = RD(Pd) +RC(P
l−1
d ) + (Pd − P l−1

d )
∂RC

∂Pd

∣∣∣∣
Pd=P l−1

d

where P l−1
d is the optimal Pd value in the (l −1)th iteration, and the derivative of RC

with respect to Pd is given by

∂RC

∂Pd

= − 1− τ1
E{e−(1−τ1)θCrC,B}

E
{
e−(1−τ1)θCrC,B

BPcz1z2
(Pdz2 +Bσ2

0)(Pdz2 + Pcz1 +Bσ2
0) loge 2

}
.

(7.27)
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Table 7.2: Algorithm 7.2

SCA algorithm for power allocation in the uplink reuse mode

1. If RB < RBmin, set Rsum = 0, end process.

2. Find the lower bound of Pd by solving RD = RDmin, and denote this lower
bound by Pdl. Find an upper bound of Pd by solving RC = RCmin, and denote
this upper bound by P̂du. Set Pdu = min{P̂du, Pdmax} as the upper bound of
Pd. If Pdl > Pdu, set Rsum = 0, end process.

3. Set l = 1 and select an initial value P 0
d between Pdl and Pdu.

Repeat

(a) Maximize Ul with the constraint Pdl ≤ Pd ≤ Pdu.

(b) Update P l
d, and increase l by 1.

Until convergence

The optimal Pd value is given by the P l
d in the last iteration, and the maximum

sum rate is given by Rsum = Uopt +RB, where Uopt is the optimal Ul value in
the last iteration.

For a given τ1, our SCA algorithm is described in Table 7.2, and the overall

resource allocation algorithm for the uplink reuse mode is given in Table 7.3. The

optimization algorithm for the downlink reuse mode can be obtained through a similar

process.

7.1.3.4 Mode Selection

In previous subsections, we have introduced the throughput formulation and resource

allocation algorithms for all 4 possible modes. In its overall operation, the system

runs the throughput maximization algorithms for these 4 modes, and selects the one

with the highest optimal sum throughput. Since effective capacity is a long-term

throughput criterion, the system does not need to conduct mode selection frequently.

Our resource allocation algorithms can also be extended to the case of multiple

cellular users without much difficulty. Since the number of cellular users only changes
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Table 7.3: Algorithm 7.3

Resource allocation in the uplink reuse mode

1. Set a step ∆τ for the searching algorithm, and set the optimal τ1, Pd and Rsum

values as τ ∗1 = 0, P ∗
d = 0 and R∗

sum = 0.

2. For τ1 = 0 : ∆τ : 1

(a) Maximize the sum rate using the SCA algorithm. Denote the maximum
sum rate and optimal Pd as R̂sum and P̂d, respectively.

(b) If R̂sum > R∗
sum, then update R∗

sum = R̂sum, P
∗
d = P̂d and τ ∗1 = τ1.

end

the dimensionality of the optimization problem, the algorithms given in the previous

subsection can still be employed.

7.1.4 Numerical Results

In this subsection, we further analyze the mode selection for the D2D users in the

considered cellular network through numerical results. In all numerical results, we

consider Rayleigh fading with path loss E{z} = d−4, where d is the distance between

the transmitter and receiver, and z is the magnitude square of the corresponding fad-

ing coefficient. The position of the base station is fixed at the origin of the coordinate

plane, and we set Pc = Pdmax = 500, Pb = 1200. For the rate constraints, we set

RCmin = RDmin = 0.308 bit/s and RBmin = 0.341 bit/s 1. Also, we set all θ values to

1. In the figures, we use dark blue points to indicate the positions of the base station,

D1 and D2. The color of each pixel represents the selected mode if the cellular user

is in that position, and we denote the cellular mode, dedicated mode, uplink reuse

mode and downlink reuse mode by I, II, III and IV, respectively in the color bars.

1The values of RCmin, RBmin and RDmin are selected as the throughput of each link in the
dedicated mode, when the distance between the transmitter and receiver pairs is 4, and τ1 = τ2 =
τ3 = 0.25.
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Figure 7.2: Mode selection result when D1 is placed at (0,−2.5), and D2 is placed
at (0, 2.5). Cellular mode, dedicated mode, uplink reuse mode and downlink reuse
mode are denoted by I, II, III and IV, respectively.
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Figure 7.3: Mode selection result when D1 is placed at (2,−1), and D2 is placed at
(2, 1). Cellular mode, dedicated mode, uplink reuse mode and downlink reuse mode
are denoted by I, II, III and IV, respectively.
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Figure 7.4: Mode selection result when D1 is placed at (3.5,−0.5), and D2 is placed
at (3.5, 0.5). Cellular mode, dedicated mode, uplink reuse mode and downlink reuse
mode are denoted by I, II, III and IV, respectively.
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Figure 7.5: Sum rate vs. angle α
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In Fig. 7.2, we place D1 and D2 at (0,−2.5) and (0, 2.5) respectively. In this

situation, only cellular mode can be selected, because the relatively large distance

between D1 and D2 makes it difficult for the rate constraint of the D2D users to

be satisfied. Cellular mode is preferred when the D1 − BS link and BS − D2 link

are much stronger than direct link D1 −D2. The dark blue regions on the corners

represent the region outside the range of the cell.

In Fig. 7.3, D1 andD2 get closer to each other, and both of them are shifted to the

right. Since the direct link becomes stronger, cellular mode is no longer preferred.

In this situation, most of the region prefers dedicated mode. Dedicated mode is

preferred when the D2D direct link and interference links are strong. There is a small

region on the lower left, in which uplink reuse mode is selected. In this region, the

interference link CU−D2 becomes weaker, which results in the uplink reuse mode to

have higher throughput than the dedicated mode. When CU further moves towards

to the bottom left corner, the uplink becomes too weak to satisfy the rate constraint,

and dedicated mode is selected.

In Fig. 7.4, D1 and D2 are very close to each other, and both of them are far away

from the base station. In this situation, a large area on the left side prefers uplink

reuse mode, because the D2D direct link and uplink are stronger than the interference

links. Reuse modes are preferred when the direct links are all much stronger than the

interference links. When the cellular user is close to the D2D users, there is still a large

region, where dedicated mode is preferred. Since Pb is much larger than Pc and Pdmax,

the interference arising from the base station is very strong, which makes downlink

reuse mode unfavorable. We let the cellular user move around the circle x2 + y2 = 4,

and we denote the angle between line CU − BS and the positive direction of the x

axis as α. We plot the sum rates of these 4 modes as functions of the angle α in Fig.

7.5. When α = 190◦, the distance between CU and D2 is maximal, and the uplink

reuse mode achieves the maximum sum rate. When α = 170◦, the distance between
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CU and D1 is maximal, and the downlink reuse mode reaches its own maximum

sum rate. Moreover, the downlink reuse mode provides the highest sum rate when

60◦ < α < 90◦, verifying the observation in Fig. 7.4. Around the upper right corner

of Fig. 7.4, there is also a small region that prefers downlink reuse mode. In this

region, the received SINR in downlink is higher than that in uplink, because Pb is

much greater than Pc, and the interference link CU−D1 is also relatively weak.

7.2 Joint Mode Selection and Resource Allocation

for D2D Communications under Queuing Con-

straints

7.2.1 System Model and Transmission Modes

7.2.1.1 System Model

We consider a cellular network with one base station (BS), N1 cellular users {CU1,CU2,

· · · ,CUN1} and N2 D2D pairs {(DT1,DR1), (DT2,DR2), · · · , (DTN2 ,DRN2)}. We

assume that the D2D transmission is one-way, in which DTi and DRi represent the

transmitter and receiver of the ith D2D pair, respectively. Each cellular user trans-

mits to the base station through an uplink channel, and receives data from the base

station via a downlink channel. For all transmitters, the data packets are stored in

buffers before being sent to the corresponding receiver. We assume that all transmit-

ters operate under statistical queuing constraints, which require the buffer overflow

probability to decay exponential fast with QoS exponent θ. The QoS exponent at

CUi and DTi are denoted by θCi
and θDi

, respectively. For simplicity, we assume

that there are N1 +N2 separate buffers at the base station. N1 of them are used for

the downlink transmission, and the QoS exponent of the BS−CUi link is θBCi
. The
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remaining N2 buffers are for the data of the D2D users operating in the cellular mod-

e, in which the base station acts as a relay. The QoS exponent for the base-station

buffer storing the data to be sent via the BS−DRi link is θBDi
. Since not all D2D

users operate in the cellular mode, only a portion of the buffers are used at the base

station.

The channel fading is assumed to be block fading, in which the fading coefficients h

stay constant in one time block and change independently across blocks. In Figs. 7.6,

7.7 and 7.8, the magnitude-square of the fading coefficients are denoted by z = |h|2.

At each receiver, the background noise is assumed to follow an independent complex

Gaussian distribution with zero mean and variance σ2, i.e., n ∼ CN (0, σ2).

There are N available orthogonal channels for this cellular network, each of them

having a bandwidth of B. In the resource allocation step, these orthogonal channels

are allocated to the transmission links, and those links to which channels are not

assigned are not activated for communication. There are five assumptions regarding

the channel allocation:

1. A D2D pair operating in the cellular mode occupies only one channel, and

cannot share its channel with other users.

2. Each cellular uplink or downlink is allocated a single orthogonal channel, and

channels cannot be shared by different cellular links.

3. Each D2D direct link, cellular uplink and downlink can occupy at most one

channel.

4. Each orthogonal channel can be occupied by two transmission links at most.

5. Cellular links have higher priority to be assigned a channel than D2D links.

In this section, we mainly consider the case in which N ≥ 2N1, so that we have

sufficient number of channels to guarantee the performance requirements of all cellular
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Figure 7.6: System model in the D2D cellular mode

users. The transmission power of a cellular user is set at Pc, and the maximum

transmission power of D2D transmitters is Pdmax. When acting as a transmitter,

the base station transmits with power Pb in each channel. Therefore, the overall

transmission power of the base station depends on the number of cellular users and

the number of D2D pairs operating in the cellular mode.

The primary objective in this section is to maximize the overall system throughput

under statistical queuing constraints by using our joint mode selection and channel al-

location algorithm. In the following subsection, we introduce all possible transmission

modes and describe the relationship between mode selection and channel allocation.

7.2.1.2 Transmission Modes and Instantaneous Transmission Rate

In this section, our mode selection is done through channel allocation. Depending on

how the system uses each channel, we can determine the transmission mode for each

user. For instance, if a channel is allocated to a cellular uplink and a D2D direct

link, then the corresponding D2D pair and cellular user are in the uplink reuse mode.

According to our channel allocation assumptions, there are 7 possible modes for the

users in each channel, namely D2D cellular mode, uplink reuse mode, downlink reuse

mode, D2D reuse mode, uplink dedicated mode, downlink dedicated mode, and D2D

dedicated mode. All of these modes can be summarized into 3 categories.

D2D Cellular Mode

The first category is D2D cellular mode, and the model is shown in Fig. 7.6.
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In this mode, the channel is occupied by a D2D pair, transmitting with the help

of the base station. In this mode, each transmission period is equally divided into

two phases. The first phase is allocated to the DTi − BS link, in which the D2D

transmitter sends information to the base station, and the second phase is allocated

to the BS − DRi link, in which the base station forwards the information to the

D2D receiver. Denote the fraction of time allocated to the first phase as τ , and the

fraction of time allocated to the second phase as 1 − τ . In each phase, there is only

one transmitter and one receiver, and the received signal at each transmitter follows

the form

y = hx+ n, (7.28)

where x is the transmitted signal, n is the additive Gaussian noise component, h is

the corresponding channel fading coefficient. We can express the instantaneous rates

of DTi −BS link and BS−DRi link as

rDi,BS(τ) = τB log2

(
1 +

Pdmax

Bσ2
z1

)
(7.29)

and

rBS,Di
(τ) = (1− τ)B log2

(
1 +

Pb

Bσ2
z2

)
, (7.30)

respectively.

In this two-hop model, to guarantee the stability, the average arrival rate should be

less than or equal to the average departure rate from the buffer at the base station,

which can be expressed as E{rDi,BS(τ)} ≤ E{rBS,Di
(τ)}. Suppose that τ0 is the

solution of E{rDi,BS(τ)} = E{rBS,Di
(τ)}, then the effective capacity of the two-hop
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Figure 7.7: System model in the reuse mode (interference links are denoted by the
dashed lines)

channel DTi −BS−DRi is given by

RDi
= − 1

θDi

logE{e−θDi
rDi,BS(τ̂)} (7.31)

where τ̂ = min{τ0, τ ∗}, and τ ∗ is the solution to

− 1

θDi

logE{e−θDi
rDi,BS(τ)} = − 1

θBDi

logE{e−θBDi
rBS,Di

(τ)} (7.32)

when θBDi
≤ θDi

, or

− 1

θDi

[
logE{e−θBDi

rBS,Di
(τ)}+ logE{e(θBDi

−θDi
)rDi,BS(τ)}

]
= − 1

θDi

logE{e−θDi
rDi,BS(τ)}

(7.33)

when θBDi
> θDi

, which comes from the results in [17].

Reuse Mode

The second category is the reuse mode, and the system model is shown in Fig. 7.7.

In this model, two transmitter-receiver pairs share the same channel, and they inflict

interference on each other. In Fig. 7.7, two interference links (z3 and z4 links) are
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denoted by the dashed line. According to the types of users sharing the channel,

reuse mode includes uplink reuse mode, downlink reuse mode, and D2D reuse mode.

In the uplink reuse mode, a cellular uplink shares the channel with a D2D direct link;

in the downlink reuse mode, a cellular downlink shares the channel with a D2D direct

link; in D2D reuse mode, two pairs of D2D users transmit in the same channel.

The received signal at each receiver follows the form

y = hx+ hinterxinter + n, (7.34)

where x is the desired signal, h is the fading coefficient of the channel between this

receiver and its corresponding transmitter, xinter is the interference signal, hinter is the

fading coefficient of the interfering link, and n is the Gaussian noise. Treating the

interference as noise, we can express the instantaneous transmission rates in these

two links as

r1 = B log2

(
1 +

P1

Bσ2 + P2z3
z1

)
(7.35)

and

r2 = B log2

(
1 +

P2

Bσ2 + P1z4
z2

)
, (7.36)

respectively.

In (7.35) and (7.36), P1 and P2 denote the transmission powers of Tx1 and Tx2,

respectively. For the base station and cellular users, the transmission powers are fixed

at Pb and Pc, respectively. For the D2D users, the transmission power is determined

by the average SINR constraints. To control the interference, the users operating in

reuse modes have to satisfy the average SINR constraints, which set lower bounds on

the SINR values at the receivers. If two transmission links cannot satisfy the average

SINR constraints, then they are not allowed to share the same channel, i.e., the reuse

mode will not be permitted for these links.

In the uplink reuse mode, we suppose that Tx1 is the cellular user CUi, Rx1 is
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the base station, Tx2 is the D2D user DTj, and Rx2 is the D2D user DRj. Then,

the SINR constraints can be expressed as


E
{

Pc

Bσ2+Pdj
z3
z1

}
≥ γc

E
{

Pdj

Bσ2+PCz4
z2

}
≥ γd

Pdj ≤ Pdmax

(7.37)

where Pdj is the transmission power of DTj, γc and γd are the SINR thresholds of

cellular and D2D users, respectively. Inequality group (7.37) provides us upper and

lower bounds on Pdj , hence describing an interval of Pdj values that satisfy the average

SINR constraints. Similar formulations and characterizations can be obtained for the

downlink reuse mode.

In the D2D reuse mode, we have to determine the transmission power for the two

D2D transmitters. Suppose that Tx1 is the D2D user DTi, Rx1 is the D2D user

DRi, Tx2 is the D2D user DTj, and Rx2 is the D2D user DRj. Then, the SINR

constraints can be expressed as



E
{

Pdi

Bσ2+Pdj
z3
z1

}
≥ γd

E
{

Pdj

Bσ2+Pdi
z4
z2

}
≥ γd

Pdi ≤ Pdmax

Pdj ≤ Pdmax

(7.38)

where Pdi and Pdj are the transmission powers of DTi and DTj, respectively. In-

equality group (7.38) provides a region on the Pdi − Pdj plane, and each (Pdi , Pdj)

pair in this region satisfies the average SINR constraints.

For the uplink, downlink and D2D reuse modes, the optimal transmission power of

the D2D transmitter has to be identified by searching over the region determined by
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Figure 7.8: System model in the dedicated mode

the average SINR constraints. Inserting the rate expressions given in (7.35) and (7.36)

with the optimal transmission power into (2.7), we can get the effective capacities of

these two links.

Dedicated Mode

The third category is the dedicated mode, which is depicted in Fig. 7.8. In this

model, one transmitter-receiver pair occupies a channel without sharing it with others.

Depending on the type of the transmission link occupying the channel, this category

includes uplink dedicated mode, downlink dedicated mode, and D2D dedicated mode,

in which the channel is occupied by a cellular uplink, a cellular downlink, and a

direct D2D link, respectively. Since there is no interference, the received signal at

the receiver also follows the form given in (7.28), and the instantaneous rate can be

expressed as

r = B log2

(
1 +

P

Bσ2
z

)
, (7.39)

where P is the transmission power. In this mode, the transmission powers of cellular

users, base station and D2D transmitters are fixed at Pc, Pb and Pdmax, respectively.

For the uplink, downlink and D2D dedicated modes, inserting the instantaneous

rates given by (7.39) into (2.7), we obtain the effective capacity for the corresponding

transmission link.
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7.2.2 Channel Allocation via Maximum-Weight Matching Ap-

proach

From the above analysis, we can determine that the essence of mode selection is

channel allocation. To identify the optimal modes for all users, we only need to

come up with a channel matching rule that maximizes the overall throughput. This

problem can be modeled as a maximum-weight matching problem. In our setting, we

seek to match the transmission links to the channels. The weight/gain of matching a

transmission link with a channel is given by the effective capacity of that link.

There are four main challenges to solve this maximum-weight matching problem

as described below:

1. This problem involves both one-to-one matching and two-to-one matching.

• This is due to the fact that there are three kinds of reuse modes, in which

two transmission links are matched to a single channel.

2. The weights are not independent of each other in the case of two-to-one match-

ing.

• Due to the interference in three reuse modes, the throughput of each link

also depends on the other link with which it shares the channel.

3. Even for the case of one-to-one matching, the weights are not constant.

• This occurs when a D2D pair uses the channel exclusively. The D2D pair

has two choices, which are the D2D cellular mode and D2D dedicated

mode. The link throughput varies depending on which mode the user is

in.

4. Cellular links have higher priority than D2D links.

• In conventional matching problems, there are no priorities.
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To solve these problems, we propose a new channel matching algorithm, which

transforms the original problem into a one-to-one maximum-weight matching prob-

lem. In the following subsections, we introduce our new algorithm step by step.

Before the matching process, we enumerate the N1 cellular users, N2 D2D users and

N channels to distinguish them.

7.2.2.1 Channel Allocation for Cellular links

The first step is to assign the cellular uplink and downlink to the channels. Since

cellular links have higher priority, we can give each of them a channel at the very

beginning. In this step, we allocate the 1st to N th
1 channel to the cellular uplink,

and allocate the (N1 +1)th to 2N th
1 channel to the cellular downlink. After this step,

there are N − 2N1 free channels left. Now the problem becomes matching N2 D2D

pairs to the N channels, which is a one-to-one matching problem if the D2D reuse

mode is excluded. If a D2D pair gets a channel assigned also to a cellular link, then

they operate in the corresponding reuse mode; if a D2D pair gets a free channel, it

can choose from the D2D reuse mode, D2D dedicated mode and D2D cellular mode.

Now, the first and last challenges above are overcome. In the next step, we construct

the throughput matrix.

7.2.2.2 Constructing the Throughput Matrix

The structure of the (N2 + 2N1)×N throughput matrix is shown in Fig. 7.9. Each

row corresponds to a D2D pair, and each column corresponds to a channel. Each

element of this matrix equals to the channel throughput if the corresponding channel

and D2D pair are matched together. To include the uplink and downlink dedicated

modes, we introduce 2N1 dummy D2D pairs with enumerations varying from N2 + 1

to N2 + 2N1, and assume that they do not perform transmissions. If a dummy D2D

pair is matched to the channel with a cellular uplink/downlink, then the cellular link
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Figure 7.9: Structure of the throughput matrix

works in uplink/downlink dedicated mode. The matrix can be divided into 6 regions,

which correspond to the 6 modes.

Suppose Ri,j denotes the element of the throughput matrix in the ith row and

jth column, then Ri,j is given by the maximum throughput that can be achieved in

channel j if we match D2D pair i to it. Here, the throughput of a channel is the sum

effective capacity of the transmission links in this channel. For the reuse modes, we

have to search for the optimal transmission power for the D2D transmitters. If a D2D

pair gets a free channel, then it compares the effective capacities of D2D dedicated

and D2D cellular modes, and chooses the one giving a higher throughput. Since we

do not want to match a dummy D2D pair to a free channel, we set the elements in

the corresponding region (in the lower right corner) to negative infinity. Since the

D2D reuse mode involves two-to-one matching, we exclude the D2D reuse mode in

this step, and consider it in the next step.

At the end of this step, we have successfully transformed the original problem

to a conventional maximum-weight matching problem, and all matching weights are

independent from each other. Hence, the second and third challenges are addressed.

Assume that ζi,j is a parameter that indicates whether the ith row and jth column are

matched. If they are matched, then ζi,j = 1, otherwise ζi,j = 0. Then, the matching
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problem can be formulated as

max
ζi,j

∑
i

∑
j

Ri,jζi,j (7.40)

Subject to
∑
i

ζi,j ≤ 1, ∀j (7.41)

∑
j

ζi,j ≤ 1, ∀i (7.42)

This problem can be solved by the Hungarian algorithm (Kuhn-Munkres algo-

rithm) [92]. After applying the Hungarian algorithm, we get a result for both mode

selection and channel allocation without considering the D2D reuse mode. We pick

out all D2D pairs working in the D2D dedicated mode, enumerate them from 1 to

M1, and also enumerate the D2D pairs without any channel assignments from 1 to

M2, where M1 is the number of the D2D pairs in D2D dedicated mode, and M2 is the

number of D2D pairs which were not assigned channels. In the next step, we conduct

the matching just for the D2D reuse mode.

7.2.2.3 Channel Allocation for the D2D Reuse Mode

In this last step, we just seek to match the D2D pairs in D2D dedicated mode with the

D2D pairs without any channel assignments. Similar to the previous step, we form

another (M1 + M2) ×M1 throughput matrix, which is shown in Fig. 7.10. In this

matching step, those D2D pairs in the D2D dedicated mode choose whether to share

their channel with another D2D pair. In order to give the right to the D2D users in

the D2D dedicated mode to refuse sharing channel with others for the purposes of

throughput maximization, we have to include D2D dedicated mode by introducing

M1 dummy D2D pairs with enumerations from M2 + 1 to M2 +M1. After applying

the Hungarian algorithm to this throughput matrix, the channel allocation and mode

selection are accomplished.
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Figure 7.10: Structure of the throughput matrix for the D2D reuse mode

7.2.3 Numerical Results

In this subsection, we further investigate the performance of our proposed channel

matching algorithm via numerical results. In the simulation, we set the overall channel

number as N = 6, the number of cellular users N1 = 2, all θC = θD = 1, θBD =

θBC = 2, Pc = Pdmax = 500, Pb = 600. For each cellular uplink, the SINR threshold is

γc = 1.95; for each downlink, the SINR threshold is γc = 2.34; and for each D2D link,

the SINR threshold is γd = 0.39. We assume Rayleigh fading with path loss E{z} =

d−4, where d is the distance between the corresponding transmitter and receiver.

In the numerical results, we choose random channel matching as the benchmark,

and compare its performance with our improved channel matching algorithm. In the

random matching algorithm, we randomly allocate the channel to the D2D users after

assigning 2N1 channels to the cellular links, and repeat N3
2 times and pick the best

matching results. Hence, in the results of random matching, there is still an attempt

to optimize the performance by finite attempts but without using any particular

structure.
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Figure 7.11: Average throughput vs. N2
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Figure 7.12: Average number of unserved D2D pairs vs. N2
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In Figs. 7.11 and 7.12, we plot the system throughput and the number of un-

served D2D pairs as functions of the number of D2D pairs N2. Since the results

vary as we move the position of users for each N2 value, we take the average over

100 different systems, which are generated randomly. In Fig. 7.11, we find that the

system throughput of our algorithm is higher, especially for high N2 values. As the

number of D2D pairs increases, the random allocation algorithm has less chance to

obtain the best result via random searching. Therefore, the throughput of random

allocation algorithm reaches the limit when N2 > 8. On the contrary, the throughput

of our algorithm keeps increasing fast as we increase N2 to very high values. This is

because our algorithm can more effectively match the D2D pairs to the channels and

efficiently identify their modes when the number of D2D pairs is large. In addition,

Fig. 7.12 shows that our algorithm can serve more users compared to the random

allocation algorithm.

7.3 A Joint Mode Selection and Resource Alloca-

tion Algorithm for D2D Communications via

Vertex Coloring

7.3.1 System Model and Assumptions

In this section, as shown in Fig. 7.13, we consider a D2D underlaid cellular network,

which has one base station (BS), Nc cellular users {CU1,CU2, · · · ,CUNc} and Nd

D2D pairs {(DT1,DR1), (DT2,DR2), · · · , (DTNd
,DRNd

)}. We assume that the

D2D transmission is one-way, in which DTi and DRi represent the transmitter and

receiver of the ith D2D pair, respectively. Each D2D pair can choose between the

cellular mode and D2D mode. In D2D mode, D2D users transmit through D2D

direct links, while in cellular mode, they transmit via D2D two-hop links through
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Figure 7.13: System model

the base station. Each cellular user transmits to the base station through an uplink

channel, and receives data from the base station via a downlink channel. Hence, there

are overall Nc uplinks, Nc downlinks and Nd D2D links. The maximum transmission

power of a cellular user and D2D transmitter are set at Pc and Pd, respectively. When

acting as a transmitter, the maximum transmission power of the base station is Pb in

each channel. Therefore, the overall transmission power of the base station depends

on the number of cellular users and the number of D2D pairs operating in the cellular

mode.

There are N available orthogonal channels for this cellular network, each of them

having a bandwidth of B. For simplicity, there are four assumptions regarding the

channel allocation, which were also made in many related works such as [43] and [93]:

1. A D2D pair operating in the cellular mode cannot share its channel with other

users.
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2. Each cellular link, including both uplink and downlink, is allocated a single

orthogonal channel, and channels cannot be shared by different cellular links.

3. It is necessary for a pair of direct links to satisfy the pair-wise interference

constraints given below in (7.43) in Section 7.3.2.1 to reuse the same channel.

4. Each link, including D2D direct link, D2D two-hop link, cellular uplink and

downlink, can operate in one channel at most.

5. The base station has the knowledge of the distributions of all channel fading

coefficients, i.e., has statistical channel side information.

The first assumption helps to protect the performance of those D2D users that se-

lect the cellular mode. In general, D2D users that select the cellular mode usually

have weak connections to their corresponding receivers, i.e., the distances between

D2D transmitter, D2D receiver and the base station are relatively large. Therefore,

assigning these D2D two-hop channels dedicated transmission resources provides a

certain level of QoS guarantee. The second assumption guarantees the performance

of cellular users, which have higher priorities than D2D users. The third assumption

controls the interference among the users that reuse the same transmission resource.

The last assumption implies that our resource allocation algorithm is performed at

the base station, and our algorithm only requires the knowledge of the fading dis-

tributions, i.e., statistical channel side information. In general, fading distributions

depend on the environment and distance between the transmitter and receiver. If a

certain fading model is considered, such as Rayleigh, Rician or Nakagami-m fading,

then the fading distributions are mainly determined by the location of the users.

According to these assumptions, a channel can be assigned to a single D2D link, a

single cellular link, a group of D2D direct links or a group of D2D direct links together

with a cellular link. For the last two cases, the users transmitting in the same channel

cause interference to each other. Note that in some systems, cellular downlinks do
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not share transmission resources with D2D users. In such cases, we just need to

first assign transmission resources to those cellular downlinks before applying our

algorithm. In this section, we assume that 2Nc ≤ N ≤ 2Nc +Nd, which implies that

we have sufficient number of channels to guarantee the performance requirements of

all cellular users. However, having dedicated channels for all D2D users is not feasible

in such a situation, and reusing/sharing of channel resources has to be considered in

order to serve as many D2D users as possible.

The channels are assumed to experience ergodic fading, and the fading coefficients

are denoted by h. Fading coefficients in different frequency bands are assumed to be

i.i.d.. In the following analysis, the magnitude-squares of the fading coefficients are

denoted by z = |h|2. At each receiver, the background noise is assumed to follow

an independent complex Gaussian distribution with zero mean and variance σ2, i.e.,

n ∼ CN (0, σ2). Therefore, the SNR of each transmitter can be defined as SNR = P
Bσ2 ,

where P represents the transmission power.

In this section, we consider mode selection, power optimization and channel allo-

cation jointly to maximize the throughput as well as the number of users served in

the network. In the next subsection, we introduce our algorithm step by step.

7.3.2 Joint Mode Selection and Resource Allocation Algo-

rithm

In this subsection, we introduce our three-step joint mode selection and resource

allocation algorithm in detail. In the first step, we divide the transmission links

into groups via the vertex coloring method. In the second step, we conduct power

optimization for each group, and perform mode selection between D2D mode and

cellular mode for those D2D links which form groups. In the last step, we assign

channels to those groups.

Before applying the algorithm, we enumerate cellular uplinks from 1 to Nc, cellular
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downlinks from Nc +1 to 2Nc, and D2D direct links from 2Nc +1 to 2Nc +Nd. D2D

two-hop links are only considered in the mode selection part in the second step. With

the given link indices, we can denote the magnitude-square of the fading coefficient

between the transmitter of link i and the receiver of link j by zi,j, and we can represent

the expected values of z collectively in a channel fading matrix Z.

Two main objectives of our algorithm are to maximize the sum rate and to max-

imize the number of users served in the network. Most of the time, these two goals

cannot be achieved simultaneously because of the presence of interference. In the

following discussion, we illustrate how to balance these two goals via parameter se-

lection.

7.3.2.1 Partition via Vertex Coloring Method

The first step of our algorithm is transmission link partition. The partition algorithm

divides transmission links into small groups, greatly reducing the dimensionality of the

power optimization problem in the second step. According to our channel assignment

assumptions, multiple cellular links cannot be in the same group, and any two links

in the same group have to satisfy the pair-wise interference constraints given by


Pimaxz̄ii/(Pjmaxz̄ji) ≥ γ

Pjmaxz̄jj/(Pimaxz̄ij) ≥ γ

(7.43)

where Pimax and Pjmax are the maximum transmission powers over links i and j

respectively, z̄ represents the expected value of z, and γ is the interference threshold.

These pair-wise interference constraints provide QoS guarantees for both cellular and

D2D users from the perspective of interference control.

The key steps of our partition algorithm are to construct a graph while regarding

these 2Nc +Nd transmission links as vertices, and to perform the partition using the

minimum vertex coloring algorithms from graph theory. Note that these algorithms
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Table 7.4: Algorithm 7.4

Partition Algorithm

Input: interference threshold γ, channel fading matrix Z.
Output: partition Π = π1, π2, · · · , πng .
For i = 1 : 2Nc +Nd

γi = γ;
End
Generate a random permutation of integers from 1 to 2Nc + Nd, and denote it by
A1;
For each i ∈ A1

Generate a random permutation of integers from i+ 1
to 2Nc +Nd, and denote it by A2;
For each j ∈ A2

If both links i and j are smaller than 2Nc

Create an edge between vertices i and j;
Elseif links i and j cannot satisfy{

Pimaxz̄ii/(Pjmaxz̄ji) ≥ γi

Pjmaxz̄jj/(Pimaxz̄ij) ≥ γj

Create an edge between vertices i and j;
Else

Increase both γi and γj by ∆γ;
End

End
End
Apply the Welsh-Powell algorithm to get the partition Π;

divide all vertices into minimum number of groups such that any two vertices in

the same group are not connected. Therefore, we construct the graph by checking

each pair of vertices, and connect them if they cannot be in the same group. A

detailed description of our partition algorithm is given in Table 7.4. The output of

this algorithm is a partition with size ng, and each element of the partition is a set of

vertices that form a group. In order to further control the interference and number

of users in a group, we gradually increase the γ values of each link. As we can see in

the algorithm, all threshold values are set at γ initially. Each time we find a pair of

links that can be in the same group, we increase the thresholds of these two links by
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∆γ. This mechanism can effectively limit the received interference at each receiver,

and balance the size of each group. Also due to this mechanism, two links may have

a higher chance to be in the same group if we check them earlier. In order to let

the vertices to have equal chances to connect with each other, we use random orders

to choose link pairs in the double for-loop. In the last step of the algorithm, we use

the Welsh-Powell algorithm [94] to solve the vertex coloring problem. Welsh-Powell

algorithm is a very fast algorithm that can provide good results effectively.

In this step, γ and ∆γ are the parameters to control the tradeoff between sum

rate and number of users served by the system. For large values of γ and ∆γ, the

interference is well controlled, but the system serves potentially small number of users.

On the other hand, for small γ and ∆γ values, more users can reuse the same channel

resource, but the interference may lower the sum rate.

In practice, the partition algorithm can potentially provide us a partition with size

smaller than the number of channels, which means that some of the channels will not

be utilized, because each user group πi is assigned a channel in the third step of our

algorithm. In order to avoid this situation, we need to further improve our partition

algorithm using a γ-adjusting algorithm described in Table 7.5. In Algorithm 7.5, we

find a threshold γ̂ that makes the partition size ng = N through bisection search.

Notice that the threshold value that can achieve ng = N is not unique, and the time

consumption of this adjusting algorithm is very small.

After obtaining the partition, we conduct power optimization and mode selection

in the second step.

7.3.2.2 Power Optimization and Mode Selection

In the second step, we do power optimization for each group. If a group just contains

a single D2D direct link, then we perform mode selection for this D2D pair.
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Table 7.5: Algorithm 7.5

γ Adjusting Algorithm

Input: interference threshold γ, channel fading matrix Z.
Output: partition Π = π1, π2, · · · , πng .
Run Algorithm 7.4 with threshold γ;
If ng ≥ N

End process;
End
Set γ̂ = γ;
While ng < N

γ̂ = 2γ̂;
Run Algorithm 7.4 with threshold γ̂;

End
Set the upper bound γu = γ̂, lower bound γl = γ̂/2, and γ̂ = (γu + γl)/2;
While ng ̸= N

Run Algorithm 7.4 with threshold γ̂;
If ng > N

γu = γ̂;
Elseif ng < N

γl = γ̂;
End
γ̂ = (γu + γl)/2;

End
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Power Optimization

If a group only contains one direct link, then the transmitter transmits with its

maximum power. For the groups containing multiple transmission links, a general

expression of the objective function for the power optimization problem in group πi

is

Obj(Pi) =
∑
k

ωkCRTk(Pi), (7.44)

where Pi represents the power vector which consists of the transmission powers of

the transmitters in group πi, the function CRT can be defined based on the criteria

selected in the optimization problem, such as the maximization of the sum rate,

energy efficiency, or minimum rate, and ωk is the corresponding weight of CRTk which

indicates the significance of CRTk. The formulation given in (7.44) can provide QoS

and fairness guarantees. For instance, by choosing the energy efficiency as a criterion,

a certain energy efficiency performance can be achieved; or by choosing the minimum

rate as a criterion, the minimum rate performance of each users can be guaranteed.

In this section, we consider both the sum rate and minimum rate as the criteria,

and formulate our power optimization problem for group πi as

Maximize Pi

∑
j∈πi

E{Rj(Pi)}+ µmin
j∈πi

{
E{Rj(Pi)}

}
(7.45)

Subject to 0 ≤ Pj ≤ Pjmax, for j ∈ πi (7.46)

where Pjmax represents the maximum transmission power in link j. The evaluation

of the average transmission rate E{Rj(Pi)} is discussed in Remark 3 below. In this

problem, µ is the weight parameter for the minimum rate. For small µ values, the

objective function is mainly determined by the sum rate component, which may

sacrifice the rates of some users. On the other hand, for large µ values, the objective

function is mainly dominated by the minimum rate component, which may limit the
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sum rate. This optimization problem can be transformed into

Maximize Pi,r

∑
j∈πi

E{Rj(Pi)}+ µr (7.47)

Subject to 0 ≤ Pj ≤ Pjmax, for j ∈ πi (7.48)

E{Rj(Pi)} ≥ r, for j ∈ πi (7.49)

for which suboptimal solutions can be obtained via the interior-point method [95].

In order to improve the performance, we need to repeat the algorithm several times

with randomly selected initial points.

Remark 3 In order to determine the average rate of a user accurately and efficient-

ly,we perform numerical integration. To evaluate this high-dimensional integral, we

transform it into two single integrals for certain specific fading models:

E{Rj(Pi)} =E

{
B log2

(
1 +

SNRjzjj
1 +

∑
k∈πi,k ̸=j SNRkzkj

)}
(7.50)

=E

{
B log2

(
1 +

∑
k∈πi

SNRkzkj

)}

− E

{
B log2

(
1 +

∑
k∈πi,k ̸=j

SNRkzkj

)}
. (7.51)

In Rayleigh fading, SNR z follows an exponential distribution with probability density

function (pdf)

f(x) =
1

SNR z̄
e−x/(SNR z̄). (7.52)

According to the results in [96], the summation of independent exponentially distribut-

ed random variables SM =
∑M

k=1Xk, where Xk ∼ exp(λk), has a pdf given by

fSM
(s) =

M∑
i=1

∏M
j=1 λj∏M

j=1,j ̸=i(λj − λi)
e−sλi . (7.53)
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Using this characterization, the sum terms
∑

k∈πi
SNRkzkj and

∑
k∈πi,k ̸=j SNRkzkj in

(7.51) can be regarded as two random variables, and the average rate can be evaluated

using two single integrals. Similar approach can be applied to some other fading

models as well.

Mode Selection

If a group just contains a single D2D direct link, then this D2D pair can choose

between D2D mode and cellular mode. In cellular mode, D2D users communicate

through the base station, and each time block is divided into two phases. In the first

phase, the D2D transmitter sends packets to the base station, and base station for-

wards the packets to the corresponding D2D receiver in the second phase. We assume

that the base station decodes and stores the received packets from D2D transmitters

in a buffer, and the buffer empty probability is negligible. Let τi denote the fraction

of time allocated to link DTi−BS. If users DTi and DRi are in cellular mode, then

the fraction of time allocated to BS −DRi link is 1 − τi. Since the throughput of

the two-hop link DTi−BS−DRi is min{τiE{RDTi−BS}, (1− τi)E{RBS−DRi
}}, the

optimal τi value is given by

τ ∗i =
E{RBS−DRi

}
E{RDTi−BS}+ E{RBS−DRi

}
, (7.54)

which leads to τiE{RDTi−BS} = (1− τi)E{RBS−DRi
}. Above in (7.54), the instanta-

neous rates of links DTi −BS and BS−DRi are formulated as

RDTi−BS = B log2

(
1 +

Pd

Bσ2
zDTi−BS

)
(7.55)

RBS−DRi
= B log2

(
1 +

Pb

Bσ2
zBS−DRi

)
(7.56)

where the subscript of the fading power z denotes the link to which the fading power
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is associated. Then, the average transmission rate of the ith D2D pair in cellular

mode is

E{RDTi−BS−DRi
} = τ ∗i E{RDTi−BS} (7.57)

=
E{RBS−DRi

}E{RDTi−BS}
E{RDTi−BS}+ E{RBS−DRi

}
. (7.58)

In D2D mode, the average transmission rate of link DTi −DRi is

E{RDTi−DRi
} = E

{
B log2

(
1 +

Pd

Bσ2
zjj

)}
(7.59)

where j = 2Nc + i is the index of the ith D2D direct link. We compare the average

rates in these two modes, and select the one with the higher average rate.

7.3.2.3 Channel Assignment

In the first step, we divide the transmission links into ng groups, and the optimal

transmission power and transmission mode of each user are obtained in the second

step. In this third step discussed in this subsection, we allocate channel resources to

each group.

We first allocate a channel to each group containing a cellular link, to guarantee

that each cellular link is provided a channel. Following this step, there are N − 2Nc

channels left for the remaining D2D users. Given these channels, we can choose to

maximize the sum rate or maximize the total number of users served by the system.

If we choose to maximize the sum rate, then we need to pick N −2Nc groups with

the highest group sum rates from the remaining ng − 2Nc groups, and assign each of

them a channel. If we choose to maximize the number of users served by the system,

then we need to select N − 2Nc groups with the largest group sizes, and assign each

of them a channel.
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Table 7.6: Algorithm 7.6

Joint Mode Selection and Resource Allocation Algorithm

Run Algorithm 7.5 for a given γ value to obtain a partition with size Ng greater or
equal to the number of channels N ;
For i = 1 : ng

Run the power optimization algorithm for the ith group;
If the ith group only contains one D2D link

Run the mode selection algorithm for this D2D link;
End

End
Run the channel assignment algorithm to assign channel resources to these groups.

7.3.2.4 Summary

Our joint mode selection and resource allocation algorithm is described in Table 7.6.

Via the vertex coloring algorithm, we can quickly divide users into small groups,

which greatly lowers the dimensionality of the power optimization problem in the

second step and reduces the time consumption. From numerical results, we notice

that the majority of the time is spent on solving the power optimization problems

in the second step. Therefore, finding a faster algorithm instead of the interior-point

method for the power optimization problem is the key to further reduce the time

consumption of our algorithm, and we leave a detailed study of this problem as our

future work.

7.3.3 Numerical Results

In this subsection, we further investigate the performance and parameter selection of

our joint mode selection and resource allocation algorithm via simulations. For our

algorithm, we set the initial threshold of the interference constraints as γ = 250, and

∆γ ∈ {50, 125, 250, 1250, 2500}. In the power allocation step, we set the weight for the

minimum rate objective as µ = 0.2 × Size(πi), where size(πi) represents the number

of links in the ith group. In the channel assignment step, we choose to maximize the
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Figure 7.18: Number of users served by the system vs. Nd

sum rate. The number of channels is N = 25, and the number of cellular users is

Nc = 10. The maximum SNRs are Pb

Bσ2 = 27.78 dB, Pc

Bσ2 = Pd

Bσ2 = 26.99 dB. We

consider Rayleigh fading with path loss E{z} = d−4, where d is the transmission

distance, and users are randomly placed in the cell. We repeat each simulation 200

times, and each point in the numerical plots is averaged over 200 randomly generated

systems.

In Figs. 7.14-7.16, we compare the performance of our algorithm with the coali-

tional game method proposed in [48]. In the coalitional game, each user forms a

coalition at the beginning, and link i prefers to join coalition j if the sum objective

function increases by moving link i to coalition j. In Figs. 7.14-7.16, algorithms I, II,

III, IV, V and VI represent the coalitional game algorithm and the vertex coloring

algorithms with ∆γ = 50, ∆γ = 125, ∆γ = 250, ∆γ = 1250 and ∆γ = 2500, respec-

tively, and the number of D2D pairs is fixed as Nd = 15. From the results, we can see

that our vertex coloring algorithm provides higher sum rates and serves more users

than the coalitional game algorithm. As ∆γ increases, the sum rate increases due to

less interference, but the number of users being served decreases due to stricter inter-

ference constraints, as noted in Section 7.3.2.1. Also, we notice that as ∆γ increases,
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the time consumption of our algorithm reduces, and when ∆γ = 2500, our algorithm

is much faster than the coalitional game algorithm2. For larger values of ∆γ, the

maximum group size is small, reducing the dimensionality and time consumption of

the power allocation problems in the second step.

In Figs. 7.17 and 7.18, we plot the sum rate and number of served users as

functions of the number of D2D pairs Nd. In these two figures, we consider the

results without channel reuse as the benchmark, in which all users transmit with

their maximum power and only 25 links (10 cellular uplinks, 10 cellular downlinks

and 5 D2D links) with the highest rates are allocated dedicated channels. We can see

that as Nd increases, the advantages of allowing channel reuse become more obvious.

The sum rate and number of served users increase much faster when channel reuse is

allowed. Similarly, larger ∆γ improves the sum rate while sacrificing the number of

served users.

In summary, our algorithm has high performance and low time consumption.

When the sum rate is more important, we can choose relatively high values for γ

and ∆γ, and assign channels to the groups with higher group rates. In this case, the

time consumption can also be reduced. However, if the values of γ and ∆γ are too

large, then our algorithm leads to the cases in which channel reuse is not allowed.

On the other hand, we can choose relatively low values for γ and ∆γ, and assign

channels to the groups with more users if we choose to maximize the number of served

users. However, if the values of γ and ∆γ are too small, then the interference limits

the transmission rate of each user, and the service quality may degrade. Therefore,

avoiding such extreme values and optimizing parameter selection are preferred.

2These time consumption measurements are obtained for codes in Matlab 2015b running on a
2.40GHz Intel i7-4700MQ CPU.
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Chapter 8

Resource Allocation for Content

Delivery over Wireless Cellular

Networks

In this chapter, we focus on the delay performance of content delivery over wireless

cellular networks. Three types of network models are considered, including D2D

caching network, D2D cellular network, and C-RAN.

By storing parts of the popular files at the mobile users, users can locate some of

their requested files in their own caches or the caches at their neighbors. In the latter

case, when a user receives files from its neighbors, D2D communication is enabled.

D2D communication underlaid with cellular networks is also a new paradigm for the

upcoming 5G wireless systems. In Section 8.1, we propose a very efficient caching

algorithm for D2D-enabled cellular networks to minimize the average transmission

delay. Instead of searching over all possible solutions, our algorithm finds out the best

<file,user> pairs, which provide the best delay improvement in each loop to form a

caching policy with very low transmission delay and high throughput. This algorithm

is also extended to address a more general scenario, in which the distributions of fading
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coefficients and values of system parameters potentially change over time.

In Section 8.2, we develop a scheduling algorithm for D2D cellular networks with

deadline constraints via the convex delay cost approach. At the beginning of each

time slot, the algorithm allocates all available channels to the users, and each us-

er can choose to transmit in different modes. After characterizing the transmission

rates and defining the utility for each possible scheduling decision, we propose pow-

er optimization algorithms to maximize the utility for each type of decision. Our

scheduling algorithm allocates each channel according to the decision that provides

the maximum utility value, and it manages mode selection, channel allocation and

power optimization. Via simulation results, we discuss the parameter selection for

our algorithm and verify the performance improvements by allowing D2D users to

share channels with other users.

In Section 8.3, we formulate the utility of each user using a convex delay cost

function, and design a two-step scheduling algorithm with good delay performance for

the C-RAN architecture. C-RAN architecture is a new mobile network architecture

that enables cooperative baseband processing and information sharing among multiple

cells and achieves high adaptability to nonuniform traffic by centralizing the baseband

processing resources in a virtualized BBU pool. In the first step, all users in multiple

cells are grouped into small user groups, according to their interference levels and

estimated utilities. In the second step, channels are matched to the user groups to

maximize the system utility. The performance of our algorithm is further studied via

simulations, and the advantages of C-RAN architecture is verified.
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Figure 8.1: System model of a D2D cellular network with caches

8.1 A Delay-Aware Caching Algorithm for Wire-

less D2D Caching Networks

8.1.1 System Model and Problem Formulation

8.1.1.1 System Model and Channel Allocation

As shown in Fig. 8.1, we consider a cellular network with one base station (BS), in

which a library with M files (F1, F2, · · · , FM) is stored, and we assume that the size

of each file is fixed to F bits 1. There are N users (U1, U2, · · · , UN) in the network

who seek to get the content files from the library. Each user is equipped with a cache

of size µF bits, and therefore can store µ content files. The caching state is described

by an N ×M matrix Φ, whose (i, j)-th component has a value of ϕi,j = 1 if file Fj is

1In the literature, it is noted that the base station may only store a portion of the library contents,
and needs to acquire the remaining files from the content server [58]. Since we focus on the wireless
transmission delay, we do not explicitly address the link between the base station and content server.
Also, the content files may not have the same size in practice, but we can further divide them into
sub-files with equal size.
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cached at user Ui, and ϕi,j = 0 when the user Ui does not have file Fj in its cache.

In general, users request files with different probabilities, which are characterized

by an N ×M popularity matrix P, in which the entry on the ith row and jth col-

umn, Pi,j, represents the probability of user Ui requesting file Fj. Each row of the

popularity matrix corresponds to a popularity vector of a user. Although the popu-

larity matrix may change over time in practice, we can assume that the popularity

stays constant within a certain period, and our caching algorithm needs to be re-

peated when the popularity matrix is updated. In the literature, Zipf distribution is

generally considered as a good statistical model for the popularity. The pmf of this

distribution is given by

Pi,j =
f−β
i,j∑M

k=1 k
−β

, (8.1)

where fi,j is the popularity index that user Ui gives to file Fj, and β ≥ 0 is the Zipf

exponent. Each user enumerates the files with popularity index from 1 to M , where

the most popular file gets index 1, and the least popular file gets indexM . As the Zipf

exponent β increases, the difference in the popularity of different files increases, while

all files have the same popularity when β → 0. Although we use Zipf distribution

for our numerical results in Section 8.1.4, our proposed algorithm works for any type

of popularity model. At each user, the generated requests are buffered in a queue

before getting served, and it is assumed that these request queues are not empty at

any time.

In a D2D-enabled wireless network, users can choose to transmit in cellular mode

or D2D mode. In the cellular mode, users request and receive information from the

base station, while in the D2D mode, a user requests and receives information from

another user through a D2D direct link. In our model, the users first check their

local cache when a file is requested. If the user does not have the corresponding file
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in its own cache, it sends a request to the base station. We assume that the base

station has knowledge of all fading distributions (i.e., only has statistical information

regarding the channels) and the cached files at each user. After receiving the request,

the base station identifies the source node from which the file request can be served

and allocates channel resources to the corresponding user. Therefore, the result of

mode selection is determined by the result of source selection. If the source node is

another user, then the requested file is sent over the direct D2D link and hence the

communication is in D2D mode, otherwise the receiving user works in cellular mode

and receives files from the base station. In source selection, among all the nodes

(including the base station) who have the requested file, the node with the lowest

average transmission delay to the receiver is selected as the transmitter.

In this section, we consider an OFDMA system with Nc orthogonal channels, and

the bandwidth of each channel is B. We assume that the background noise samples

follow i.i.d. circularly-symmetric complex Gaussian distribution with zero mean and

variance σ2 at all receivers in all frequency bands, and the fading coefficients of the

same transmission link are i.i.d. in different frequency bands. The fading coefficients

are assumed to stay constant within one time block of duration T0, and change across

different time blocks. We summarize the resource allocation assumptions for the

discussions in Sections 8.1.1 and 8.1.2 as follows:

1. Each channel can be used for the transmission of one requested file at most,

and the transmission of a file cannot occupy multiple channels.

2. D2D transmitters are not allowed to transmit to multiple receivers simultane-

ously. In other words, the file requests whose best source node is a user who is

already transmitting cannot be assigned a channel resource by the base station.

3. The probability of a channel being allocated to a request generated by user i is

p̂i.
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4. After a request is served, the corresponding transmitter keeps silent in the

remaining time block, and the base station allocates the channel resource to

other requests at the beginning of the following time block.

5. If the ith user is selected as a D2D transmitter, its maximum transmission power

is Pi.

6. The base station can serve multiple requests simultaneously using different chan-

nels, and its maximum transmission power is Pb for each request.

The first four assumptions describe a class of simple scheduling algorithms, in

which only point to point transmission without spectrum reusing is considered. At the

beginning of each time block, base station assigns available channels to the requests,

and each transmission link gets one channel at most, and uses the assigned channel

exclusively. The transmitter transmits until the request is served and then releases

the channel resource. The behavior of the scheduling algorithm is described by a set of

probabilities p̂i defined in the third assumption. Although our delay characterizations

in Sections 8.1.1.2 and 8.1.1.3 are only valid for this type of scheduling algorithms,

we further extend our results for more complicated scheduling algorithms in Section

8.1.3. In that case, only the last two assumptions are required, which describe the

maximum power constraints. With a more complicated scheduling algorithm, we can

only estimate the average delay of each request at each user through simulation or

learning methods. A detailed discussion is provided in Section 8.1.3.

In this section, only the distributions of the fading coefficients are required at the

base station, which mainly depend on the environment and the location of each user.

A centralized computation scheme is used, and the base station sends the results of

caching and scheduling algorithms to the users through additional control channels.

Since the base station knows the distributions of all fading coefficients and the cached

files at each user, the average delay between each user pair and the best source node
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for each request can be obtained at the beginning and stored in tables at the base

station. A detailed discussion on delay calculation and the determination of the best

source node is provided in the next subsection.

8.1.1.2 Transmission Delay

In this section, we use the transmission delay, which is defined as the number of time

blocks used to transmit a content file, as the performance metric. From the above

discussion, the instantaneous channel capacity a transmission link in the kth time

block is

C[k] = B log2

(
1 +

Pt

Bσ2
zk

)
bits/s (8.2)

where Pt is the transmission power, and zi is the magnitude square of the correspond-

ing fading coefficient in the kth time block. In order to maximize the transmission

rate, all transmitters transmit at the maximum power level. Therefore,

Pt =


Pb if the transmitter is the base station

Pi if the transmitter is the ith user

, (8.3)

and the duration to send a file is

T = min

{
t : F ≤

t∑
k=1

T0C[k]

}
(8.4)

where F is the size of each file, T0 is the duration of each block, and C[k] is the

instantaneous channel capacity in the kth time block. When the fading distribution

is available, the average transmission delay of the link Ui − Uj, which is denoted

by E{Ti,j}, can be obtained through numerical methods or Monte-Carlo simulations.

These average delay values can be stored in an N ×N symmetric matrix Tavg, whose
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component on the ith row and jth column is given by E{Ti,j} when i ̸= j, and the

diagonal element Ti,i is the average delay between Ui and the base station. According

to our channel assumptions, the average delays of a transmission link are the same

in every channel. Therefore, we only need to analyze the performance in a single

channel.

The best source node of the request, which is generated by user Ui requesting file

Fj, is the node which has file Fj and the smallest average transmission delay to Ui,

and this minimum average delay is denoted by Di,j
2. The best source of each possible

request can be stored in an N ×M table S, in which each row corresponds to a user

who generates the request, and each column corresponds to a file being requested.

Also, these Di,j values can be collected in an N ×M matrix D.

Using the above results, the average transmission delay of the requests generated

by user Ui can be obtained as

Di =
M∑
j=1

Pi,jDi,j, (8.5)

where Pi,j is the (i, j)-th component of the popularity matrix P.

8.1.1.3 Problem Formulation

In the previous subsection, we have determined and expressed the average delay. In

this subsection, we formulate and discuss our caching problem. In this section, our

goal is to minimize the weighted sum of the average delays of the users, which is

expressed as

η =
N∑
i=1

ωiDi =
N∑
i=1

ωi

M∑
j=1

Pi,jDi,j (8.6)

2If Ui has cached Fj , then the best source node is Ui itself, and Di,j = 0.
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where ωi ∈ [0, 1] is the weight for user Ui. We assume that the values of the weights

are predetermined. In practice, ω values can be determined according to the priorities

of users, so that users with higher priority have higher weights.

Our caching problem is formulated as

P1: Minimize Φ η (8.7)

Subject to
M∑
j=1

ϕi,j = µ (8.8)

ϕi,j ∈ {0, 1} (8.9)

where Φ is the caching result indicator matrix. The constraint in (8.8) arises due to

the maximum cache size. It is obvious that the optimal caching policy must use all

caching space.

In a special case, if we choose ωi = p̂i, where p̂i is the probability that a channel

is allocated to user Ui, then η expresses the average delay of the system. In this

situation, the throughput of the system can be expressed as

R = Nc
F

η
. (8.10)

Therefore, in this special case, minimizing η is equivalent to maximizing the through-

put of the system.

8.1.2 Caching Algorithm

In this subsection, we propose our caching algorithm that solves problem P1. Note

that the objective in problem P1 is not convex, and the solution space is a discrete set

with size ( M !
(M−µ)!µ!

)N . Therefore, the globally optimal solution can only be obtained

via exhaustive search. In this section, we propose an efficient algorithm to determine

a caching policy with delay performance close to the optimal solution. At the end of
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Table 8.1: Algorithm 8.1

Find the delay improvement for a <file,user> pair

Input : user index i, file index j, caching indicator ϕi,j, weight vector ω =
(ω1, · · · , ωN), popularity matrix P, source table S, delay matrices Tavg and D.

Output : delay improvement gi,j, updated source table Ŝ, updated optimal delay

matrix D̂.

Initialization : Ŝ = S and D̂ = D
If ϕi,j = 1

gi,j = 0, end process.
Else

gi,j = ωiPi,jDi,j and update Ŝi,j ← Ui, D̂i,j = 0.
End

For k = 1 : N
If Dk,j > Ti,k and i ̸= k

gi,j = gi,j + ωkPk,j(Dk,j − Ti,k)

update D̂k,j = Ti,k and Ŝk,j ← Ui

End
End

this section, we show that our algorithm has the potential to be extended to more

complicated scenarios.

8.1.2.1 Caching Algorithm

Our algorithm is a greedy algorithm, which searches over a subset of the solution

space with smaller size. At the beginning, we assume that all caches are empty, and

every user has to operate in cellular mode, in which they only receive files from the

base station. Then, in each step, we find the best <file,user> pair, which provides

the maximum delay improvement (or equivalently reduction in delay) if the selected

file is stored in the cache of the corresponding user. This process needs to be repeated

Nµ times, in order to fill all cache space, and the final caching policy is obtained.

In Table 8.1, we describe Algorithm 8.1 in detail, which calculates the delay im-

provement and determines the updated S and D matrices accordingly when we cache

file Fj at user Ui. First, we check if Fj has already been cached at Ui. If so, we end
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Table 8.2: Algorithm 8.2

Find the optimal <file,user> pair to be added in the updated caching result, leading
to maximum delay improvement

Input : weight vector ω = (ω1, · · · , ωN), popularity matrix P, caching indicator
matrix Φ, source table S, delay matrices Tavg and D.
Output : new source table S, new optimal delay matrix D, and new caching
indicator matrix Φ.
Initialization : set optimal delay improvement g∗ = 0, and set the corresponding
S∗ = S, D∗ = D.

For i = 1 : N

If
∑M

j=1 ϕi,j < µ

For j = 1 : M
run Algorithm 8.1 for < Ui,Fj >, to obtain

the gain gi,j and the corresponding Ŝ and D̂.
IF gi,j > g∗

update g∗ = gi,j, S
∗ = Ŝ, D∗ = D̂,

ĩ = i, and j̃ = j.
End

End
End

End
update ϕĩ,̃j = 1, S = S∗ and D = D∗.

the process, and return the delay improvement gi,j = 0; if not, we set gi,j = ωiPi,jDi,j

because that is the reduction in η at user Ui if it adds Fj to its cache. Then, we

need to sum up all reductions at each user. At user Uk, if Dk,j > Ti,k, then D2D link

Ui − Uk has the lowest average delay for Uk to receive Fj and the reduction at Uk is

ωkPk,j(Dk,j − Ti,k); if not, then caching Fj at Ui does not help to improve the delay

performance at Uk.

Based on Algorithm 8.1, Algorithm 8.2 described in Table 8.2 helps to find the

optimal <file,user> pair to be added to the updated caching result, which leads to

the maximum delay reduction. In Algorithm 8.2, ĩ and j̃ record the optimal user

index and file index, respectively. g∗ tracks the maximum delay improvement, and S∗

and D∗ record the new source table and minimum delay matrix, respectively, after
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Table 8.3: Algorithm 8.3

Caching Algorithm

Input : weight vector ω = (ω1, · · · , ωN), popularity matrix P, and delay matrix
Tavg.
Output : caching indicator matrix Φ, source table S.
Initialization : for all requests, Si,j ← BS, Di,j = Ti,i. Set all ϕi,j = 0.
For loop = 1 : Nµ

run Algorithm 8.2 to cache a file and update the result.
End

caching Fj̃ at Uĩ. We search over all NM possible <file,user> combinations, find

their delay improvements and update g∗, ĩ, j̃, S∗ and D∗ accordingly. At user Ui,

we check if there is empty space in its cache. If its cache is full, we directly jump

to the next user Ui+1. For each <file,user> pair, we run Algorithm 8.1 to calculate

the corresponding delay improvement, and compare it with g∗. If a <file,user> pair

exceeds the maximum delay improvement up to that point, we perform the update

accordingly. Every time we run Algorithm 8.2, we cache one more file at a user.

Therefore, we need to run Algorithm 8.2 Nµ times to obtain the final caching result,

and this process is described in Algorithm 8.3 in Table 8.3.

For our proposed caching algorithm, we initially have all caches empty, and all

users work in cellular mode, in which they only receive files from the base station

at first. We assume that the system has calculated the average delay between every

two nodes, and stored the delay matrix Tavg at the base station. Then, base station

runs Algorithm 8.2 Nµ times, and in each time we cache one more file and update

the caching indicator Φ, source table S, and minimum delay matrix D accordingly.

Finally, the base station sends the caching files to the users when the traffic load is

low.
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8.1.2.2 Complexity Analysis

In the lth iteration, Algorithm 8.2 searches over NM − (l − 1) possible <file,user>

pairs, where the term l− 1 corresponds to the l− 1 <file,user> pairs that have been

selected in previous iterations. Therefore, the size of the search space of our algorithm

is
∑l=Nµ

l=1 NM − (l − 1) = N2Mµ − 1
2
N2µ2 + 1

2
Nµ, which is much smaller than the

size of the entire solution space ( M !
(M−µ)!µ!

)N .

In order to test the performance of our algorithm, we compare our algorithm with

the brute-force exhaustive search algorithm. We apply both algorithms to a system,

in which there are 5 users, 10 files in the library and each user can cache 2 files. These

two algorithms obtain the same caching result, however the time consumption of the

exhaustive search algorithm is 1.28×105 seconds, while our algorithm only takes only

2.7× 10−3 seconds.

8.1.3 Extensions and Future Work

In this subsection, we consider a more general case, in which the delay matrices

Tavg and D, weight vector ω = (ω1, · · · , ωN), popularity matrix P and transmission

powers Pi change over time. For simplicity, we assume that all these parameters stay

constant within one update cycle, and we use κ as the index of cycles. The duration

of the κth cycle, denoted by τκ, depends on how fast the parameters vary. Then, we

can formulate our caching problem in the κth cycle as

P2: Minimize Φκ

N∑
i=1

ωκ
i

M∑
j=1

P κ
i,jD

κ
i,j (8.11)

Subject to
M∑
j=1

ϕκ
i,j = µ (8.12)

M∑
j=1

∣∣∣ϕκ
i,j − ϕκ−1

i,j

∣∣∣ ≤ 2ξκi (8.13)

ϕκ
i,j ∈ {0, 1}. (8.14)
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If we define the weight of user i as ωκ
i = E{NPKκ

i /NPK
κ}, where NPKκ

i and NPKκ

represent the number of received packets in the κth cycle at user i and at all users,

respectively, then the objective function in the optimization problem P2 represents

the expected packet delay in the κth cycle. The transmission power P κ
i is determined

according to the battery budget of user i. Due to the changes in transmission powers

and the distributions of channel fading, the delay matrices Tavg
κ and Dκ also vary

over time. Compared with P1, P2 includes an additional constraint given by (8.13).

In (8.13), ξκi is the upper bound of the number of cache files that will be replaced in

the current update cycle. Due to requirements regarding energy efficiency and current

traffic load, each user may be able to update only a few cache contents.

The solution of P2 is described below:

1. At the beginning of the κth cycle, the system estimates the delay matrix Tavg
κ−1,

weight vector ωκ−1, and popularity matrix Pκ−1 according to the samples ob-

tained in the previous cycle. The base station receives the transmission powers

P κ
i from the users, determine the cycle period τκ and the upper bound ξκi , and

then predicts Tavg
κ, ωκ and Pκ.

2. Algorithm 8.2 is repeated Nµ times to determine the caching result in the κth

cycle.

3. At the end of each iteration in the second step, it is checked if the constraint

in (8.13) is satisfied with equality at any one of the users. If this constraint

is satisfied with equality at a user, then no more cache updating is allowed for

this user, meaning that this user can only choose from the files that are already

stored in its cache in the remaining iterations.

After this process, the base station sends the cache contents to each user, and conduct

regular transmission after updating the cache files at each user.
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As we have mentioned in Section 8.1.1, this improved algorithm does not require

the first 4 resource allocation assumptions described in Section 8.1.1.1, and works

for any resource allocation algorithm, since the delay matrices Tavg and D need to

be evaluated via estimation or learning methods. Also, we note that this method

requires estimation algorithms in the first step. Due to the page limitations, we leave

a detailed study of this problem as our future work.

8.1.4 Numerical Results

In this subsection, we investigate the performance of our proposed algorithm via

numerical results. Since the estimation and resource allocation components required

for the extended algorithm in Section 8.1.3 are beyond our scope, we only consider

Algorithm 8.3 and its corresponding system model in this subsection. In the numerical

results, the location of each user is randomly generated within a circular cell with

the base station placed at the center. Each point in the figures is obtained by taking

average over 500 randomly generated systems. The popularity matrix is generated

according to the Zipf distribution. When the users have identical popularity, they

give the same popularity index to a file, which leads to identical rows in the popularity

matrix P . When the users have independent popularity, each user gives popularity

indices to the files independently. In other words, identical popularity indicates that

all users have the same preference, while independent popularity indicates that each

user has an independent preference. The number of files in the library is M = 100,

and the size of each file is 11.3 bits. We assume Rayleigh fading with path loss

E{z} = d−4, where d represents the distance between the transmitter and the receiver.

The transmission powers are set as Pb = 23 dB and Pu = 20 dB, and we choose the

weights as ωi = p̂i so that η represents the average system delay.

In the numerical results, we compare the performance of our proposed algorithm

with a naive algorithm, in which each user just caches the most popular µ files. This
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Figure 8.2: Average delay η vs. Zipf exponent β

naive algorithm is efficient when the base station does not have the knowledge of the

channel fading statistics and the cached files at each user. In this circumstance, the

users just cache files according to their own preference. In the case of naive algorithm

with identical popularity, every user caches the same files, and they get the files they

do not have via cellular downlink from the base station. Therefore, the gap between

the two curves using naive algorithm in Figs. 8.2-8.4 (which will be discussed in

detail next) demonstrates the benefit of enabling D2D communications. By allowing

D2D transmission, the users far away from the base station can get files from their

neighbors, which helps to significantly reduce the delay.

In Fig. 8.2, we set N = 25, µ = 30 and plot the average delay η as a function

of the Zipf exponent β. As β increases, the popularity difference increases. When

β = 0, the users request all files with equal probability; when β → +∞, each user

only requests its most favorite file. Therefore, we only need to concentrate on the

delay performance of fewer popular files as β increases, and it becomes easier to

achieve better delay performance with limited caching space. That is the reason for

having monotonically decreasing curves in Fig. 8.2. Another observation is that our
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Figure 8.3: Average delay η vs. cache size µ

algorithm is more robust to the popularity setting. Compared to the curves using

the naive algorithm, identical popularity model only slightly raises the delay of our

algorithm. If a node can get a popular file from its near neighbor, then caching some

less popular files might give better delay improvement. Therefore, our algorithm can

enable D2D transmission even in an identical popularity model, which guarantees the

robustness.

In Fig. 8.3, we select β = 0.1, N = 25 and plot the average delay as a function of

the caching size µ. When µ is small, the delay difference between different algorithms

and different popularity settings is small. In such a situation, both algorithms cache

the most popular files. As µ increases, the difference in performance increases. As we

have mentioned in Algorithm 8.2, our algorithm searches for the optimal <file,user>

pair that provides the maximum delay improvement, and this mechanism guarantees

a very sharp decrease at the beginning. After exceeding a threshold, further increasing

the caching size reduces the performance difference, because the system gets enough

caching size to cache most of the popular files. Overall, Fig. 8.3 shows that our

algorithm can achieve better delay performance with limited caching size.
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Figure 8.4: Average delay η vs. the number of users N

In Fig. 8.4, we select β = 0.1, µ = 30 and plot the average delay as a function

of the number of users N . For the curve using the naive algorithm with identical

popularity model, having more users does not affect the average delay because each

user works in cellular mode and receives the files from the base station. For other

curves, increased number of users enables more chances for D2D communication, and

as a result the average delay decreases. Compared with the naive algorithm, our

algorithm can achieve better performance when the number of users is large.

8.2 Scheduling in D2D Underlaid Cellular Net-

works with Deadline Constraints

8.2.1 System Model and Transmission Modes

8.2.1.1 System Model

We consider an OFDMA cellular network with N available orthogonal channels,

one base station (BS), Nc cellular users {CU1,CU2, · · · ,CUNc} and Nd D2D pairs
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{(DT1,DR1), (DT2,DR2), · · · , (DTNd
,DRNd

)}. Each channel is assumed to have

a bandwidth of B. Each cellular user transmits to the base station through an uplink

channel, and receives data from the base station via a downlink channel. D2D trans-

mission is assumed to be one-way between a D2D pair, in which DTi, the transmitter

of the ith D2D pair, sends packets to its corresponding receiver DRi. The maximum

transmission power of cellular users and D2D transmitters are set at P̂c and P̂d, re-

spectively. When acting as a transmitter, the maximum transmission power of base

station is P̂b in each channel. We assume that the time is slotted, and each time slot

has a duration of T . At the beginning of each time slot, the system runs a scheduling

algorithm to allocate its channels to the users. Those users to which channels are not

assigned are not activated for communication until they get an available channel in

another time slot.

In a cellular network with D2D users, D2D users can choose to transmit trough

a direct link DTi − DRi or a two-hop link DTi − BS − DRi. When it transmits

through the base station, a D2D transmitter first sends packets to the base station,

and then the base station decodes and forwards the packets to the corresponding D2D

receiver. When a pair of D2D users chooses to communicate through the direct link,

they can also decide whether to reuse the same channel with an uplink, a downlink

or another D2D direct link. In this section, mode selection is performed by the

scheduling algorithm, and the mode of each active user is determined by the channel

allocation results. There are 4 assumptions for the channel assignment:

1. Each active link can occupy only one channel, and a D2D two-hop link is also

regarded as one transmission link.

2. Each channel can be occupied by two transmission links at most.

3. A two-hop link cannot share its channel with other transmission links.

4. Cellular uplinks and downlinks can only share their channels with D2D direct
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links.

According to our assumptions, there are overall 7 different modes, namely D2D cellu-

lar mode, uplink reuse mode, downlink reuse mode, D2D reuse mode, uplink dedicat-

ed mode, downlink dedicated mode, and D2D dedicated mode. A detailed discussion

about these possible modes is given in Section 8.2.1.2.

The channel fading is assumed to be block fading, in which the fading coeffi-

cients denoted by h stay constant in one time block and change independently across

blocks. In Figs. 8.5, 8.6 and 8.7, the magnitude-square of the fading coefficients are

denoted by z = |h|2. At each receiver, the background noise is assumed to follow

an independent complex Gaussian distribution with zero mean and variance σ2, i.e.,

n ∼ CN (0, σ2).

For all transmitters, the data packets are stored in buffers before being sent to

the corresponding receiver. For simplicity, we assume that new packets arrive at

the beginning of each time slot, and the size of each packet is assumed to be fixed

at Ip bits. We further assume that there are totally 2Nc + Nd + 1 buffers in the

system, operating in a first-in first-out (FIFO) manner. At each cellular user and

D2D transmitter, there is a buffer storing the packets for cellular uplinks and D2D

links, respectively. Although there might be only one physical buffer at the base

station in reality, we can decompose it into Nc + 1 virtual buffers, in which Nc of

them correspond to cellular downlinks, and there is one special buffer corresponding

to the D2D cellular mode. We enumerate all these buffers from 1 to 2Nc + Nd,

except the one corresponding to the D2D cellular mode. The system operates under

deadline constraints, and the delay upper bound of the ith buffer is set to be Di. In

the following subsection, we introduce all possible transmission modes and describe

the relationship between mode selection and channel allocation.
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Figure 8.5: System model in the D2D cellular mode

8.2.1.2 Transmission Modes and Instantaneous Transmission Rate

In this section our mode selection is done through scheduling. Depending on how

the system uses each channel, we can determine the transmission mode for each user.

According to our channel allocation assumptions, there are 7 possible modes, which

can be further summarized into 3 categories.

D2D Cellular Mode

The first category is D2D cellular mode, and the model is shown in Fig. 8.5. In this

mode, the channel is occupied by a D2D pair, transmitting with the help of the base

station, and the packet arrival rate at DTi is represented by RDi
. For simplicity, we

assume that the whole time slot is divided into two sub-slots with duration τT and

(1 − τ)T , respectively3. In the first sub-slot, D2D transmitter DTi sends packets

to the base station, and base station stores the received packets in the special buffer

corresponding to the D2D cellular mode. In the second sub-slot, base station forwards

all the packets received in the first sub-slot to their destination DRi
4.

In each sub-slot, there is only one transmitter and one receiver, and the received

signal at each receiver follows the form

y = hx+ n, (8.15)

3In this section, we assume that the time cost for signal processing at the base station is negligible
in cellular mode.

4No deadline constraints are imposed on this special buffer at the base station, because all packets
sent in the first sub-slot arrive at their destination in the second sub-slot
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Figure 8.6: System model in the reuse mode

where x is the transmitted signal, n is the additive Gaussian noise component, h is

the corresponding channel fading coefficient. We can express the packet transmission

rates (in packets/slot) of DTi −BS link and BS−DRi link as

rDi,BS(τ, Pd) =

⌊
τ
TB

Ip
log2

(
1 +

Pd

Bσ2
z1

)⌋
(8.16)

and

rBS,Di
(τ, Pb) =

⌊
(1− τ)

TB

Ip
log2

(
1 +

Pb

Bσ2
z2

)⌋
, (8.17)

respectively, where Ip is the packet size, Pd and Pb are the transmission powers of DTi

and base station respectively, and ⌊•⌋ represents the floor function. The parameter

τ is determined from rDi,BS = rBS,Di
.

Reuse Mode

The second category is the reuse mode, and the system model is shown in Fig. 8.6.

In this model, two transmitter-receiver pairs share the same channel, and they inflict

interference on each other. According to the types of users sharing the channel, reuse

mode includes uplink reuse mode, downlink reuse mode, and D2D reuse mode. In
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Figure 8.7: System model in the dedicated mode

the uplink reuse mode, a cellular uplink shares the channel with a D2D direct link; in

the downlink reuse mode, a cellular downlink shares the channel with a D2D direct

link; in D2D reuse mode, two pairs of D2D users transmit in the same channel.

The received signal at each receiver follows the form

y = hx+ hinterxinter + n, (8.18)

where x is the desired signal, h is the fading coefficient of the channel between this

receiver and its corresponding transmitter, xinter is the interference signal, hinter is the

fading coefficient of the interfering link, and n is the Gaussian noise. Treating the

interference as noise, we can express the instantaneous packet transmission rates in

these two links as

r1(P1, P2) =

⌊
TB

Ip
log2

(
1 +

P1z1
Bσ2 + P2z21

)⌋
(8.19)

and

r2(P1, P2) =

⌊
TB

Ip
log2

(
1 +

P2z2
Bσ2 + P1z12

)⌋
, (8.20)

respectively. In (8.19) and (8.20), P1 and P2 denote the transmission powers of Tx1

and Tx2, respectively.

Dedicated Mode

The third category is the dedicated mode, which is depicted in Fig. 8.7. In this model,

one transmitter-receiver pair occupies a channel without sharing it with others, and
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the packet arrival rate is represented by R. Depending on the type of the transmission

link occupying the channel, this category includes uplink dedicated mode, downlink

dedicated mode, and D2D dedicated mode. Since there is no interference, the received

signal at the receiver also follows the form given in (8.15), and the instantaneous rate

can be expressed as

r(P ) =

⌊
TB

Ip
log2

(
1 +

P

Bσ2
z

)⌋
, (8.21)

where P is the transmission power.

8.2.2 Scheduling with Convex Delay Cost Method

8.2.2.1 Convex Delay Cost Function

The convex delay cost approach was proposed in [55], where a monotonic increasing

convex cost function was employed for the packet delay. In our analysis, we use the

same convex cost function proposed in [56]. More specifically, for the jth packet in

the ith buffer with delay di,j, the delay cost is given by

Ci,j(di,j) =

(
di,j
Di

)α

, (8.22)

where Di is the corresponding delay threshold for the packets in the ith buffer, and

α ≥ 0 is a relaxation parameter. As α increases, the cost grows faster when the delay

increases beyond the threshold.

At the beginning of each slot, the delays for newly arrived packets are set as 0. 5

At the end of each slot, packet delay for all packets that have not been sent increases

by 1. If we denote the length of the packet queue in the ith buffer as li, then the

5When α = 0, the cost of a new packet is defined as 1
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overall cost of the entire cellular network can be expressed as

C =

2Nc+Nd∑
i=1

li∑
j=1

Ci,j(di,j). (8.23)

8.2.2.2 Scheduling Decisions and Utility

The decision of a single channel assignment can be denoted by a set of active links

that occupy this channel. Therefore, for the 3 dedicated modes, the corresponding

decisions only contain a single direct link; for the D2D cellular mode, the decision

contains a two-hop channel; for the 3 reuse modes, the decisions contain two direct

links sharing the same channel. For each channel, there are overall NDC = 2NdNc +

2(Nd+Nc)+Nd(Nd− 1)/2 different possible decisions at most, and we enumerate all

these decisions from 1 to NDC . For each channel, we select the optimal decision from

all possible candidates, that minimizes the overall cost.

If the system does not make any decision, then the overall cost would become

C̃0 =

2Nc+Nd∑
i=1

li∑
j=1

Ci,j(di,j + 1), (8.24)

at the end of the current slot. If the kth decision is selected, then the overall cost

would be

C̃k =

2Nc+Nd∑
i=1

li∑
j=µi,k+1

Ci,j(di,j + 1), (8.25)

where µi,k is the instantaneous departure rate (in packets/slot) from the ith buffer.

We define the utility of the kth decision as

Uk = C̃0 − C̃k =

2Nc+Nd∑
i=1

µi,k∑
j=1

Ci,j(di,j + 1). (8.26)
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Since the decision with the highest utility can minimize the overall cost, the scheduling

algorithm allocates each channel to the transmission link(s) giving the highest utility.

In the next subsection, we discuss the utility maximization for each type of decision.

8.2.3 Utility Maximization and Scheduling Algorithm

In previous subsections, we have characterized the instantaneous transmission rates

for all possible modes, and formulated the cost function and utility. In this subsection,

we first provide utility maximization algorithms for all possible modes, and propose

our scheduling algorithm. In our scheduling algorithm, utility maximization is the

same as power optimization, in which we find the optimal transmission powers that

maximize the utility for a scheduling decision.

8.2.3.1 Utility Maximization in Dedicated Modes

For uplink, downlink and D2D dedicated mode, there is only one direct transmission

link occupying the channel, and the instantaneous transmission rate r(P ) is given

by (8.21). In order to maximize the utility, the transmitter just transmits with its

maximum power. Suppose that Fig. 8.7 describes the kth decision, in which the

channel is occupied by a direct transmission link with maximum power Pmax. The

instantaneous departure rate is

µi,k = min {r(Pmax), li} . (8.27)

Then the maximum utility is given by

Uk =

µi,k∑
j=1

Ci,j(di,j + 1). (8.28)
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8.2.3.2 Utility Maximization in D2D Cellular Mode

In D2D cellular mode, a pair of D2D users transmit through a two-hop channel,

and the base station works as the relay. In order to maximize the utility, the D2D

transmitter and base station transmit with their maximum power. Assume that Fig.

8.5 describes the kth decision. By setting Pd = P̂d and Pb = P̂b, the instantaneous

transmission rates rDi,BS and rBS,Di
are given by (8.16) and (8.17), respectively. The

optimal τ value is given by

τ ∗ =
log2

(
1 + P̂b

Bσ2 z2

)
log2

(
1 + P̂d

Bσ2 z1

)
+ log2

(
1 + P̂b

Bσ2 z2

) , (8.29)

which arises from rDi,BS = rBS,Di
. Inserting the optimal τ value back into (8.16), we

get the instantaneous departure rate as

µi,k = min
{
rDi,BS(τ

∗, P̂d), li

}
, (8.30)

and the maximum utility is also given by (8.28).

8.2.3.3 Utility Maximization in Reuse Modes

In uplink, downlink and D2D reuse modes, two direct links transmit simultaneously

in the same channel. Suppose that Fig. 8.6 describes the kth decision, in which

the channel is occupied by two direct links, connecting with the ith1 and ith2 buffer,

respectively. The instantaneous transmission rates r1 and r2 are given by (8.19) and

(8.20), respectively, and the departure rates of these two buffers are given by

µis,k = min {rs, lis} , (8.31)
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for s = 1, 2. The utility is given by

Uk =

µi1,k∑
j=1

Ci1,j(di1,j + 1) +

µi2,k∑
j=1

Ci2,j(di2,j + 1). (8.32)

Then the optimization problem can be formulated as

MaximizeP1,P2 Uk

Subject to 0 ≤P1 ≤ P1max (8.33)

0 ≤P2 ≤ P2max, (8.34)

which is not a convex optimization problem. In addition, derivative-based algorithms

are not applicable, due to the floor function in (8.19) and (8.20).

Since the transmission rates r1 and r2 only take integer values, the optimization

problem can be solved by an efficient search algorithm. If we fix the value of r1, then

the maximum utility is achieved when r2 is maximized. Therefore, we can search over

all possible r1 values, and for any given r1, the optimal utility is given by the power

values P1 and P2 which maximize r2. When we fix r1, we can get

P1 =
(
2

r1Ip
TB − 1

)
(P2z21 +Bσ2)/z1 (8.35)

and

r2 =

TB
Ip

log2

1 +
P2z2

Bσ2 + z12
z1

(
2

r1Ip
TB − 1

)
(P2z21 +Bσ2)

 (8.36)

from (8.19) and (8.20).

We can easily verify that r2 given by (8.36) is an increasing function of P2. There-

fore, r2 is maximized when P2 achieves its upper bound. From (8.33) and (8.35), we
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Table 8.4: Algorithm 8.4

Utility Maximization for Reuse Mode

1. Initialization:

(a) Set r2 = 1 and P1 = P1max. Solve P2 from 8.20, find r1max and µi1,k max using (8.19)
and (8.31), respectively. Set the optimal utility value U∗

k as −1.
(b) If µi1,k max = 0, , and then end the utility maximization process.

2. Searching:

For r1 = 1 : µi1,k max

(a) Compute the transmission power P1 and P2 using (8.35) and (8.38), respectively. Then
find r2 and µi2,k from (8.20) and (8.31), respectively.

(b) Compute the utility Uk using (8.32). If Uk > U∗
k , update the optimal utility value as

U∗
k = Uk.

end

get one upper bound on P2 expressed as

P2 ≤
z1P1max

z21

(
2

r1Ip
TB − 1

) − Bσ2

z21
. (8.37)

Combining this result with (8.34), the optimal P2 is given by

P ∗
2 = min

P2max,
z1P1max

z21

(
2

r1Ip
TB − 1

) − Bσ2

z21

 . (8.38)

The overall utility optimization algorithm is given in Table 8.4.

8.2.3.4 Scheduling Algorithm

After providing the utility maximization algorithms for all possible modes, we now

propose our scheduling algorithm. At the beginning of each slot, we schedule the

channels one by one. For each channel, we compute the maximum utility values that

each decision can achieve, and assign the channel according to the decision that gives

the maximum utility value. The algorithm is described in Table 8.5. In order to have

245



Table 8.5: Algorithm 8.5

Scheduling Algorithm

Randomly enumerate the channels from 1 to N .
For n = 1 : N

1. Using the fading coefficients in the nth channel, compute the maximum utility values for all
decisions in the possible decision set. In the first loop, there are NDC possible decisions.

2. Assign the nth channel according to the decision that gives the maximum utility.

3. Remove all decisions that contain the links in the selected decision from the possible decision
set. Therefore, the links in the selected decision would not be selected by other channels.

end

lower complexity and high performance, we randomly enumerate the channels so that

the order of channels would not affect our algorithm.

Assume the number of users is Nu = Nc + Nd, then it is easy to show that

NDC ≤ 16N2
u+40Nu+1

24
, where equality is achieved at Nd = 4Nu−1

6
. Therefore, the

complexity of this algorithm is o(NNDC), which is also equal to o (NN2
u)).

8.2.4 Numerical Results

In this subsection we further investigate the performance of our scheduling algorithm

via numerical results. In our numerical results, we use Monte Carlo simulations to

obtain the delay violation probability, average delay, and average throughput. We

consider Rayleigh fading with path loss E{z} = d−4, where d is the transmission

distance, and we fix N = Nc = Nd = 3, P̂c = P̂d = 26.99 dB, P̂b = 30 dB, σ2 = 0 dB.

For all users, we select the delay thresholds as 30 time slots. We use constant arrival

rate in the simulations, and the arrival rates are set as R = ρNE{rDirect}/(2Nc+Nd),

where rDirect is the transmission rate of the corresponding direct link, and ρ is the

intensity parameter. When generating the position of each node, we fix the base

station at the origin of the coordinate axes, and place the D2D and cellular users

randomly in the cell with coverage radius equal to 3. In order to eliminate the

influence of the random positions, we generate 100 systems randomly, in which all
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Figure 8.8: Delay violation probability vs. α

nodes are uniformly distributed, and each point we plot in our figures is obtained

by averaging the results from these 100 systems. Each simulation is conducted over

2× 104 time slots.

In Figs. 8.8 and 8.9, we plot the delay violation probability and average delay as

functions of the relaxation parameter α. From (8.22), we can see that as α increases,

the importance of the maximum packet delay grows. When α = 0, the utility just

depends on the transmission rate, and our scheduling algorithm becomes a greedy

algorithm that maximizes the instantaneous transmission rate. When α is sufficient-

ly large, the utility is mainly decided by the maximum packet delay of each buffer,

and our algorithm would allocate the channel to the user(s) with the largest delay.

From Figs. 8.8 and 8.9, we can see that α = 1 gives the best performance with

very small delay and high throughput. The scheduling algorithm has degraded per-

formance when the balance between the importance of instantaneous transmission

rate and packet delay is broken. When α = 0, the algorithm does not use any delay

information; when α is too large, the algorithm may often allocate the channels to the
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Figure 8.9: Average Delay vs. α

users with large packet delay even when their channel conditions are not favorable,

which lowers the throughput and increases the average delay.

Figs. 8.10 and 8.11 show the advantage of using reuse modes. If we do not

have reuse modes, the packet delay increases significantly. In order to satisfy the

delay constraints and stabilize the system, the systems without reuse modes need to

reduce their arrival rates, sacrificing the throughput. Therefore, by allowing D2D

users to share channels with other users, D2D communication can have much better

performance when deadline constraints are applied.
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Figure 8.12: System model of C-RAN with ICI

8.3 Intercell Interference-Aware Scheduling for De-

lay Sensitive Applications in C-RAN

8.3.1 System Model and Preliminaries

8.3.1.1 System Model

In this section, the uplink transmission in a C-RAN within an OFDMA setting is

considered as shown in Fig. 8.12. There are Nc cells in this network, and each

cell is served by a base station with one RRH. RRHs are connected to a centralized

BBU pool with multiple BBUs working cooperatively. All cells reuse Nch frequency

bands/channels, and each channel has a bandwidth of B. The total number of mobile

users in this network is fixed at Nu, and users are assumed to be associated with their

nearest RRHs. Each user is equipped with a buffer storing the arriving packets

before sending them through the wireless uplink channels, and the size of each packet

is assumed to be Ip bits. All buffers are assumed to operate in a FIFO manner. The

system is assumed to operate under delay constraints, and target delay of packets

sent by the ith user is denoted by Di (time frames). Block fading is assumed in this

section, in which the fading coefficients stay constant within one time frame with a
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duration of T , and change across frames. Also it is assumed that the distributions of

the fading coefficients are identical in different channels.

At the beginning of each time frame, BBU pool allocates channel resources to the

users using a scheduling algorithm. It is assumed that users keep silent until they get

channel resources from the BBU pool, and the channel resources are returned back

at the end of each time frame. There are 4 assumptions for the channel assignment:

1. The number of users is much greater than the number of available channels,

Nu ≫ Nch. In such a case, each user transmits using one channel at most.

2. Only the users that can satisfy the pair-wise interference constraints given in

(8.47) can reuse the same channel resource.

3. Users associated with the same RRH cannot reuse the same channel resource.

4. The BBU pool is assumed to have perfect CSI, and it is also assumed to keep

track of the buffer status (including the queue length and packet delay infor-

mation) of each user.

The first assumption addresses a heavy load scenario, in which all channels are reused

by multiple users and ICI becomes a significant problem. In such a case, the assump-

tion that each user transmits using one channel at most helps to reduce ICI caused

by excessive frequency reuse. The second assumption limits the interference, and the

third assumption guarantees that all interference comes from neighbouring cells. The

last assumption guarantees that the BBU pool has enough information to conduct

our scheduling algorithm. CSI is estimated at RRHs and sent to the BBU pool via

optical fiber links. Information of the arrival rates at all users is also sent to the BBU

pool via special feedback channels6, and the BBU pool can track the queue status at

each user.

6We assume ideal feedback without delay and error.
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Define Ψj(t) as the set of users that use the j
th channel in the tth time frame, and

ξi,j(t) as the indicator function that indicates whether the jth channel is assigned to the

ith user in the tth time frame. In other words, ξi,j(t) = 1 if i ∈ Ψj(t), otherwise ξi,j(t) =

0. According to our first channel assignment assumption, we have
∑Nch

j=1 ξi,j(t) ≤ 1.

Then for the tth time frame, the received signal corresponding to user i at its associated

base station can be expressed as

yi = hj
ixi +

∑
k∈Ψj(t),k ̸=i

hj
k,ixk + nj

i (8.39)

if ξi,j(t) = 1. Above, xi represents the transmitted signal of user i, hj
i denotes

the fading coefficient of the channel between user i and its corresponding RRH, hj
k,i

denotes the fading coefficient of the interference channel between user k and the RRH

associated with user i, and nj
i is the background noise at the base station associated

with user i which is assumed to follow an independent complex Gaussian distribution

with zero mean and variance σ2, i.e., nj
i ∼ CN (0, σ2). The transmission rate of user

i in the tth time frame is given by

ri(t) = TB log2

(
1 +

Piz
j
i

Bσ2 +
∑

k∈Ψj(t),k ̸=i Pkz
j
k,i

)
bits/frame (8.40)

where j is the index of the channel that is assigned to user i, Pi represents the

transmission power of user i, T is the duration of each time frame, B is the bandwidth

of each channel, zji = |h
j
i |2, and zjk,i = |h

j
k,i|2.

8.3.1.2 Convex Delay Cost and Utility

In the convex delay cost approach, the cost function of a packet is formulated as an

increasing convex function of its delay [55]. The high performance of this approach

was shown in [56] for a single cell model without any interference. In our previous work

[97], we designed a scheduling algorithm using the convex cost function provided in
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[56] for a D2D communication setting, and verified via simulations that this approach

has very good delay performance. Here, we define the cost of the jth packet in the

buffer at user i as

Cj,i =
dj,i
Di

, (8.41)

where dj,i is the current delay of this packet, and Di is the target delay of user i. At

user i, the number of packets that can be transmitted in the current time frame is

µi = min {li, ⌊ri/Ip⌋} , (8.42)

where li is the number of packets waiting in the buffer at user i, Ip is the size of each

packet, and ⌊·⌋ represents the floor function. The utility of user i is defined as

Ui =

µi∑
j=1

Cj,i, (8.43)

and the utility of the system is defined as

U =
Nu∑
i=1

Ui =
Nu∑
i=1

µi∑
j=1

Cj,i. (8.44)

The utility given in (8.44) represents the total cost of the packets that can be trans-

mitted to the base station in the current time frame. At the beginning of each time

frame, the BBU pool runs a scheduling algorithm for channel assignment to maximize

the utility. In the next subsection, a detailed discussion on our scheduling algorithm

is provided.
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8.3.2 ICI-Aware Scheduling Algorithm for C-RAN

In this subsection, we introduce our scheduling algorithm. In each time frame, our

scheduling algorithm assign channels to the users in a way that maximizes the utility

given in (8.44). Since we consider a C-RAN architecture, the BBU pool has the

knowledge of all fading distributions and cost functions of each packets, and it can

allocate channel resources to all users in different cells together. Our scheduling

algorithm can be divided into two steps, namely the user grouping step and channel

matching step. In the first step, we divide all users into small groups such that the

users in the same group reuse the same channel. In the second step, we match the

channels to the user groups to maximize the utility.

8.3.2.1 User Grouping

In the first step of our algorithm, we divide all users into small groups, and each group

will be assigned a channel resource in the next step. Before channel assignment, we

cannot compute the instantaneous transmission rates because the sets Ψ1, Ψ2, · · · ,

ΨNch
have not been determined yet. Therefore, we use a rate estimator

r̂i =
1

m

t−1∑
τ=t−m

ri(τ) (8.45)

instead. This rate estimator is essentially the average rate over the most recent m

time frames. Plugging (8.45) into (8.42) and (8.43), we obtain the utility estimator

of user i as

Ûi =

µ̂i∑
j=1

Cj,i =

min{li,⌊r̂i/Ip⌋}∑
j=1

Cj,i. (8.46)

In order to control ICI, we assume that any two users (i1 and i2) reusing the same
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Table 8.6: Algorithm 8.6

Input: γ, transmission power and utility estimator of each user, the fading coeffi-
cients.
Output: User groups GP1, GP2, · · · , GPNg .

Collect the utility estimators Ûi into a vector V = [Û1, Û2, · · · , ÛNu ].
Set k = 1
While max(V) ≥ 0

Set V∗ = V and GPk = ∅
While max(V∗) ≥ 0

i = argmax(V∗)
Add user i into GPk.
Set V(i) = −1 and V∗(i) = −1.
For j from 1 to Nu

Set V∗(j) = −1 if user i and j cannot satisfy the
interference constraints given in (8.47) or they are associated
to the same RRH.

End
End
k = k + 1

End

channel resource have to satisfy the pairwise interference/SINR constraints given by


E
{

Pi1
zi1

Bσ2+Pi2
zi2,i1

}
≥ γE

{
Pi1

zi1
Bσ2

}
E
{

Pi2
zi2

Bσ2+Pi1
zi1,i2

}
≥ γE

{
Pi2

zi2
Bσ2

} , (8.47)

where the parameter γ is between 0 and 1. Since the distributions of the fading

coefficients are identical in different channels, the expected values of the SINRs and

SNRs in (8.47) do not depend on the channel assignment result. The details of our

user grouping algorithm is given in Table 8.6, and we denote the number of the output

user groups as Ng.

At the beginning, we set group GPk as an empty set. Each time, we select the

user with the maximum utility estimator and include it into GPk. After adding a

user into a group, we kick out the users that cannot reuse the same channel resource

with this selected user by setting V∗(j) = −1, which can be processed in parallel at
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the BBU pool. Our grouping algorithm aims to collect the users with high utility

estimators together, which helps to serve these users with less channel resources.

Note that the number of groups Ng might be smaller than the number of channels

Nch. In such cases, some of the channels cannot be assigned to users, and we need

to break those groups with large sizes into several small groups so that Ng = Nch.

To divide a big group into two small groups, we select half of the users with smaller

utility estimator values within the large group, and let them form a new small group.

8.3.2.2 Channel Matching

In the second step, we assign channels to the user groups via the maximum-weight

matching approach. In this step, we find a matching between user groups and channels

that maximizes the system utility given in (8.44). Let us define ηi,j as the indicator

of the channel assignment result, i.e., ηi,j = 1 if channel j is assigned to GPi, and

ηi,j = 0 if channel j is not matched to GPi. Then the matching problem can be

formulated as

Maximize ηi,j U

Subject to ηi,j ∈ {0, 1}
Nch∑
j=1

ηi,j ≤ 1

Ng∑
i=1

ηi,j = 1.

In graph theory, the maximum-weight matching problem can be solved by the

Hungarian algorithm (Kuhn-Munkres algorithm) [92]. To use the Hungarian algo-

rithm, we have to first construct the utility matrix U, in which each row corresponds

to a user group and each column corresponds to a channel. The element of this ma-

trix Ui,j is the sum utility of the users in GPi if the jth channel is assigned to that
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group. The elements of the utility matrix can be computed in parallel at the BBU

pool. After constructing the utility matrix, the Hungarian algorithm is applied, and

channels are assigned to the users.

8.3.2.3 Summary and Complexity Analysis

In summary, we propose a two-step scheduling algorithm with good delay performance

for a multi-cell C-RAN model. In the first step, we group the users to control the ICI

and aim to collect the users with high utility estimator values into smaller number

of groups. In the second step, we formulate the channel allocation problem as a

maximum-weight matching problem, and assign the channel resources to the user

groups using the Hungarian algorithm. Although our algorithm only considers an

uplink scenario, it can also be easily adapted to a downlink scenario.

Since we consider a C-RAN model, our algorithm is performed considering users in

multiple cells, and parallel processing can be performed in some parts of our algorithm

at the BBU pool to reduce time consumption. Compared with conventional resource

allocation algorithms, in which cooperative processing among multiple cells is not

considered, our algorithm has a significant potential to achieve better performance.

Assume that the number of processers at BBU pool is Θ(Nc), then the time

complexity of the user grouping step is O(N2
u/Nc). In the matching step, the time

consumption for constructing the utility matrix is O(NgNch/Nc), and the time con-

sumption of the Hungarian algorithm is O(max{Ng, Nch}3). To further accelerate

this process, we can replace the Hungarian algorithm with some heuristic algorithms

with time complexity of O(min{Ng, Nch}). As an example, in each iteration, we can

select the maximum element in the utility matrix, and match its corresponding group

and channel together. The overall time consumption of this algorithm depends on

the relationship among Nu, Nc, Ng and Nch.
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Figure 8.13: Delay violation probability vs. interference control parameter γ

8.3.3 Numerical Results

In this subsection, we further study the performance of our algorithm and the influ-

ence of parameters via simulations. In our simulations, we consider a C-RAN with 3

adjacent cells, each with a radius of 2. The coordinates of the RRHs of these three

cells are (−2, 0), (0, 2) and (2, 0), respectively. In each cell, there are 5 randomly

placed users, and each one has the maximum transmission power Pmax

Bσ2 = 13 dB. The

number of available channels is Nch = 5. We assume Rayleigh fading with path loss

E{z} = s−4, where s represents the distance between the transmitter and the receiver.

Each point on the curves is determined by taking the average over the results of 500

systems with randomly placed users, and the performance result of each system is

evaluated over 5× 104 time frames.

In Figs. 8.13 and 8.14, we study the influence of the interference control parameter

γ, which is used in the pairwise interference constraints expressed in (8.47). The

arrival rate at user i is set as λi = ρE{TB log2(1 + Pizi/Bσ2)}, where the parameter

ρ is the arrival intensity. The target delay is 25 time frames for all users, and all
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Figure 8.14: Throughput vs. interference control parameter γ

users transmit at their maximum power level. When γ is small, the ICI is not well

controlled and the average transmission rate is not maximized. As γ increases, the

system achieves lower delay violation probability and higher throughput due to better

ICI management. However, when γ is too large, the interference constraints become

too strict, which leads to less frequency reuse. In such cases, the throughput becomes

smaller and the delay violation probability increases.

In Figs. 8.15 and 8.16, we analyze the influence of power control on our algorithm.

In several conventional ICI control algorithms such as SFR, cell center users transmit

with small power to reduce the interference they cause to the cell edge users. In these

two figures, the transmission power of user i is selected as Pi = Pmax(si/Rcell)
α, where

si is the distance between the user and its corresponding RRH, and Rcell is the radius

of the cell. As α increases, cell center users are restricted to transmit with smaller

power. Also, all arrival rates are set as λ = 1.5E{TB log2(1+Pmaxzedge/Bσ2)}, where

E{TB log2(1+Pmaxzedge/Bσ2)} is the average transmission rate of a user at the edge of

its associated cell. In Figs. 8.15 and 8.16, we notice that as α increases, both delay and

throughput performances become worse. Our algorithm control the interference in the
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Figure 8.15: Delay violation probability vs. power control parameter α
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Figure 8.16: Throughput vs. power control parameter α
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Table 8.7: Comparison between our algorithm and SFR

user grouping step. Users that cannot satisfy the pairwise interference constraints are

not allowed to reuse the same channel resource. Further decrease in the transmission

power of the cell center users reduces their transmission rates, making it more difficult

to stabilize the system.

Finally, we compare our algorithm with the conventional SFR scheme introduced

in [72]. The arrival rates are set in the same way as in Figs. 8.13 and 8.14, and the

target delay is 40 for all users. In our algorithm, all users transmit with maximum

power. In the SFR scheme, users transmit with full power in the edge bands and

they use 70% of their maximum power in the center bands. Channel assignment is

conducted at the BBU of each cell individually to maximize the sum utility of the users

in that cell. The results are provided in Table 8.7. As the arrival intensity increases,

the advantage of our algorithm becomes obvious in terms of the average delay. With

the C-RAN architecture, cooperative processing over multiple cells enhances the delay

performance significantly.
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Chapter 9

Conclusion

9.1 Summary

In this thesis, we have studied the delay QoS provisioning and optimal resource allo-

cation for wireless networks. The contributions of this thesis are summarized below.

In Chapter 3, we have analyzed the throughput and energy efficiency of HARQ

protocols in the presence of statistical queuing requirements when the QoS exponent

θ is sufficiently small via Taylor expansion.

• In Section 3.1, we have investigated the throughput of HARQ-IR in the presence

of queuing constraints imposed as limitations on buffer overflow probabilities.

Using the statistical properties of the renewal counting process, we have iden-

tified the first-order expansion of the effective capacity of HARQ-IR in terms

of the QoS exponent θ. We have taken into account hard deadline constraints

by imposing an upper bound on the number of HARQ rounds to send a mes-

sage. We have discussed that the main result on the first-order expansion of

the effective capacity holds in the presence of deadline constraints with a mod-

ified description of the transmission time. Through numerical results, we have

demonstrated that increasing the transmission rate R improves the throughput
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monotonically in HARQ-IR and makes it approach the throughput of a system

with perfect CSI at the transmitter, while it initially improves and then lowers

the throughput of Type-I HARQ and HARQ Chase Combining protocols. We

have also observed that increased throughput with larger R comes at the ex-

pense of longer transmission time or equivalently larger number of HARQ-IR

rounds. We have shown that the throughput degrades when stricter queuing

constraints or hard-deadline constraints are imposed. In particular, we have

demonstrated that monotonic growth in the throughput with increasing R is

not experienced in the presence of deadline limitations.

• In Section 3.2, we have analyzed the energy efficiency of the HARQ-CC scheme

under outage, deadline, and statistical queuing constraints in the low-power

and low-θ regimes by employing the notions of effective capacity and effec-

tive bandwidth from the stochastic network calculus while considering both

constant-rate and random data arrivals to the buffer. Two queue models are

considered. When outage happens, the transmitter discards the packet in the

second queue model, while it transmits the same packet later in the first queue

model. First, we have determined the minimum energy per bit and wideband

slope achieved with HARQ-CC for fixed outage probability and both constant-

rate and Markov source models. Also, we have provided comparisons among

different random arrival models. Analyzing the results, we have concluded that

source burstiness does not affect the minimum energy per bit when ON-OFF

discrete time and Markov fluid sources are considered. On the other hand, due

to the Poisson arrivals and the resulting higher level of burstiness, MMPS is

shown to have worse energy efficiency compared to the ON-OFF Markov flu-

id source. Moreover, among the considered arrival models, MMPS is the only

source for which the minimum energy per bit depends on the QoS exponent θ

and grows with stricter QoS constraints. In contrast to the characterizations
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regarding the minimum energy per bit, we have shown that wideband slope in

all cases varies with the QoS exponent θ and source statistics. The impact of

source burstiness is clearly identified with additional terms introduced in the

denominators of the wideband slope expressions.

In Chapter 4, throughput of HARQ under statistical queuing constraints has been

studied via the recurrence approach proposed in [15]. Compared with the low-θ ap-

proximation used in Chapter 3, recurrence approach is accurate for any QoS exponent

value.

• In Section 4.1, we have analyzed the throughput of the HARQ-CC scheme

under outage, deadline, and statistical queuing constraints by employing the

notions of effective capacity and effective bandwidth from stochastic network

calculus, while considering both constant-rate and random data arrivals to the

buffer. Two typical queue models are considered. First, we have determined

the throughput for the constant-rate arrival model. Then, with the effective

capacity expression we obtained for the constant-rate arrival model, we have

further formulated the throughput for the ON-OFF discrete-time and fluid

Markov sources and MMPS. We have verified our analytical characterizations

via Monte Carlo simulations. Finally, with the help of numerical results, we

have compared the throughput values for the two considered queue models, and

further investigated the impact of the deadline constraints, outage probability,

queuing constraints and source randomness on the throughput.

• In Section 4.2, we have studied the throughput of HARQ-IR with finite block-

length codes, deadline limits, and statistical queuing constraints by employing

the notions of effective capacity and effective bandwidth from stochastic network

calculus. Two different arrival models, namely the constant-rate and ON-OFF

discrete time Markov arrivals, have been studied, and throughput characteriza-
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tions have been obtained for both arrival models. We have first characterized the

distribution of the duration of the transmission period and outage probability,

and determined the effective capacity using the results from the recurrence rela-

tion approach. Subsequently, we obtained the throughput expressions for both

constant-rate and ON-OFF discrete time Markov arrival models. Our charac-

terizations have been verified via Monte Carlo simulations. Finally, we have

further investigated the impact of the deadline constraints, fixed transmission

rate, queuing constraints and blocklength via numerical results.

In Chapter 5, we have investigated the throughput of cooperative relay networks

under statistical queuing constraints. Three types of cooperative relay networks are

considered, namely two-hop relay channel, two-way relay channel and multi-source

multi-destination relay network.

• In Section 5.1, we have investigated the throughput of the buffer-constrainted

two-hop relay channel in the finite blocklength regime. We have initially charac-

terized the system throughput through effective capacity analysis. Subsequent-

ly, we have formulated the throughput maximization problem, and investigated

the properties of the optimal error probabilities for given time allocation pa-

rameter τ . Based on these properties, we have proposed an search algorithm in

order to determine the optimal parameter setting more efficiently compared to

directly searching in the three-dimensional bounded τ−ϵ1−ϵ2 space. Finally, we

have provided numerical results and investigated the impact of the source-relay

distances, QoS exponents, and the blocklength on the throughput.

• In Section 5.2, we have investigated the throughput of two-way relaying under

queueing constraints at both the source nodes and the relay. We have initial-

ly identified the instantaneous transmission/service rates in the multiple-access

and broadcast phases of two-way relaying, and considered the stability condi-
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tions and their impact on the system parameters (τ, ρ). Subsequently, we have

defined the throughput region and provided characterizations of the maximum

arrival rates, that can be supported by the sources, in terms of the QoS expo-

nents and resource allocation parameters τ and ρ. We have provided numerical

results and investigated the impact of the source-relay distances, signal-to-noise

parameters, QoS exponents, and time-sharing between different decoding orders

on the throughput.

• In Section 5.3, we have studied the throughput of multi-source multi-destination

relay networks under statistical queueing constraints, for both cases of with and

without CSI at the transmitter sides. When there is perfect CSI at the trans-

mitter, transmission rates can be varied according to the instantaneous channel

conditions. We have characterized the instantaneous channel capacities in dif-

ferent phases as functions of the system parameters τ , ρ and δ. When CSI is

not available at the transmitter side, transmissions are performed at fixed rates,

and decoding failures lead to retransmission requests via an ARQ protocol. We

have modeled the links to be in ON or OFF states depending on the reliability

of the reception. We have determined the probabilities of these states. Fol-

lowing these characterizations, we have described, for both perfect and no CSI

cases, the stability conditions, and defined the feasible region of the transmis-

sion parameters. Finally, we have characterized the arrival rates under queueing

constraints at the source and relay nodes as a function of the QoS exponents,

channel fading and system parameters for both cases. In addition, the concav-

ity of the throughput function is shown with respect to the system parameters

δ and τ for the variable-rate scheme. We have verified the theoretical results

via Monte Carlo simulations. Numerically, for the variable-rate model, we have

investigated the optimal position of the relay node. Also, the throughput region

is obtained via searching over the three dimensional parameter space.
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In Chapter 6, we have investigated the mode selection between half-duplex and

full-duplex modes in two-way MIMO systems operating under queuing constraints.

To have a fair comparison, each antenna in full-duplex mode is assumed to transmit

and receive at the same time so that it can have the same number of transmitting

antennas as in half-duplex mode. We have characterized the system throughput for

both half-duplex and full-duplex modes with given input covariance matrices. In

the low-SNR regime, we have proposed an iterative algorithm to find the optimal

input covariance matrices, which achieves the smallest Eb

N0min
of the system. In the

numerical results, we have found that full-duplex mode has better performance at low

SNRs and short distances because two users can transmit simultaneously and make

more efficient use of the resources. On the other hand, half-duplex mode has better

performance in the high-SNR regime and at long distances.

In Chapter 7, we have studied the mode selection and resource allocation algo-

rithms for D2D cellular networks.

• In Section 7.1, we have studied the mode selection and resource allocation in

a TDM cellular network with one cellular user and one pair of D2D users op-

erating under queueing constraints. For all four possible modes, namely the

cellular mode, dedicated mode, uplink reuse mode, and downlink reuse mode,

we have first formulated the system throughput using the effective capacity, and

proposed efficient throughput maximization algorithms. Via numerical results,

we have analyzed the influence of the positions of each node.

• In Section 7.2, we have proposed, for D2D cellular networks, a joint mode selec-

tion and channel allocation algorithm that maximizes the system throughput

under statistical queueing limitations and average SINR constraints. First, we

have characterized the instantaneous rate and effective capacity for all possible

modes, namely the D2D cellular mode, D2D dedicated mode, uplink dedicat-

ed mode, downlink dedicated mode, uplink reuse mode, downlink reuse mode,
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and D2D reuse mode. Then, we have proposed our channel matching algorith-

m, which selects modes for each user and allocates the channels simultaneously.

Finally, we have further studied the performance of our algorithm by comparing

its throughput and the numbers of unserved users with the random allocation

algorithm through simulation results. In the results, we have demonstrated that

our new algorithm can achieve higher throughput and serve more users.

• In Section 7.3, we have proposed a joint mode selection and resource allocation

algorithm for D2D underlaid cellular networks. We have decomposed the prob-

lem into three subproblems, and designed algorithms for each subproblem. In

the first step, we divide the transmission links into small groups using vertex

coloring algorithm. In the second step, we solve the power optimization prob-

lem using the interior-point method for each group and conduct mode selection

for those D2D links which form a group, and we assign channel resources in the

final step. Via simulation results, we have compared the performance of our

algorithm with that of the coalitional game method, and have shown that our

algorithm achieves higher sum rate and serves more users with relatively small

time consumption. Also, the influence of the interference threshold step size ∆γ

is studied through numerical results, and the tradeoff between sum rate and the

number of served users is identified.

In Chapter 8, we have studied the delay performance of content delivery over

wireless cellular networks. Three types of network models are considered, including

D2D caching network, D2D cellular network, and C-RAN.

• In Section 8.1, we have proposed a caching algorithm for D2D cellular networks,

which minimizes the weighted average delay. First, we have characterized the

popularity model and average transmission delay of a request. Then, we have

formulated the delay minimization problem and developed our algorithm which
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can solve the weighted average delay minimization problem efficiently. We have

also extended our algorithm for a more general scenario, in which the distribu-

tions of fading coefficients and system parameters change over time. Finally,

we have further investigated the performance of our algorithm by comparing

it with a naive algorithm which simply caches the most popular files at each

user. By applying both algorithms to two different popularity models, we have

shown that our algorithm is more robust to variations in the popularity models,

and can achieve better performance, because the proposed algorithm can more

effectively take advantage of D2D communications. Also, the influence of the

popularity parameter, caching size and number of users is studied via numerical

results.

• In Section 8.2, we have proposed a scheduling algorithm for D2D cellular net-

works with deadline constraints. First, we have characterized the instantaneous

packet rates for all possible modes, namely the D2D cellular mode, D2D ded-

icated mode, uplink dedicated mode, downlink dedicated mode, uplink reuse

mode, downlink reuse mode, and D2D reuse mode. Then, we have formulated

the cost function and defined utility for all possible decisions. Each scheduling

decision can be regarded as a result of joint mode selection and channel alloca-

tion. For each type of decision, we have provided a power allocation algorithm

to maximize the utility. Our algorithm allocates each channel according to the

decision that provides the maximum utility value. Finally, we have further stud-

ied the performance of our algorithm through numerical results. In the results,

we have provided characterizations on the optimal value of the system parame-

ter α, and verified the advantages of having D2D users sharing the channel with

other users.

• In Section 8.3, we have proposed an ICI-aware scheduling algorithm for the
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C-RAN architecture that minimizes the sum delay cost of the system. The

procedure is divided into two steps, namely the user grouping step and the

channel matching step. In the user grouping step, we have designed a grouping

algorithm that partitions all users in the network into small groups by checking

their pairwise interference levels. In order to serve those users with high utility

values with less channel resources, our grouping algorithm aims to collect users

with high utility estimator values into small number of groups. In the chan-

nel matching step, we have formulated the channel assignment problem as a

maximum-weight matching problem, which can be solved using the Hungarian

algorithm. In the second step, user groups are matched to the available channel

resources with goal of maximizing the system utility. Finally, we have studied

the impact of the interference threshold and power control parameter via sim-

ulations, and compared our algorithm to the conventional SFR scheme. With

the advantages of cooperative processing and information sharing over multiple

cells, it has been verified that our algorithm designed for C-RAN can achieve

higher throughput and lower delay.

9.2 Future Research Directions

9.2.1 Popularity Estimation and Scheduling for D2D Caching

Systems

In Section 8.1, we assume that the base station has perfect knowledge about the

popularity matrix. However, it is very difficult for the base station to predict the

popularity of each content for each user. A reasonable popularity estimation and

tracking algorithm should be designed, in order to apply our proposed caching algo-

rithm. Also, it is of interest to combine the estimation and caching algorithms with

the scheduling algorithm proposed in Section 8.2, to make our work more complete.
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Appendix A

A.1 Proof of Theorem 1

The proof of Theorem 1 is based on the Taylor expansion of the cumulant generating

function, which expresses Ce as a polynomial function of θ. After deriving the zeroth

and first order coefficients of this polynomial, a closed-form expression for the first-

order expansion is obtained for small θ. Before finding the polynomial approximation,

we need to show that the moments of the random transmission time T are finite.

Let us denote the jth moment of the random transmission time T by

µj = E{T j}. (A.1)

The following characterization shows that T has finite support for any fixed trans-

mission rate and therefore we have µj <∞ for all 1 ≤ j <∞.

Lemma 1 If the expected value of the instantaneous capacity is strictly greater than

zero, then for any fixed transmission rate R, the random transmission time T of

HARQ-IR has finite support. Hence, all of its moments are finite.

Proof 7 Since {zi} is a sequence of i.i.d. random variables, by the strong law of

large numbers [98, Section 7.4], we have 1
n

∑n
i=1 TsB log2(1 + SNRzi) converge to
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E{TsB log2(1 + SNRzi)} = E{Ci} almost surely, i.e., we have

Pr

(
lim
n→∞

1

n

n∑
i=1

TsB log2(1 + SNRzi) = E{Ci}
)

= 1. (A.2)

This almost sure convergence implies that with probability one, for any given ε > 0,

there exists a positive integer n1 such that for all n ≥ n1

∣∣∣∣ 1n
n∑

i=1

TsB log2(1 + SNRzi)− E{Ci}
∣∣∣∣ ≤ ε. (A.3)

or equivalently

E{Ci} − ε ≤ 1

n

n∑
i=1

TsB log2(1 + SNRzi) ≤ E{Ci}+ ε. (A.4)

Hence, under the assumption that E{Ci} > 0, we have the following lower bound with

probability one for some 0 < ε < E{Ci}:

1

n

n∑
i=1

TsB log2(1 + SNRzi) ≥ E{Ci} − ε > 0. (A.5)

Next, we consider a bound on R
n
. For a fixed transmission rate R, we have

lim
n→∞

R

n
= 0. (A.6)

Therefore, for any ε2 > 0, there exists an integer n2 ≥ n1 such that for all n ≥ n2,

we have

R

n
≤ ε2. (A.7)

Choosing ε2 = E{Ci} − ε and using the bound in (A.5), we have for all n > n2 that

R

n
≤ 1

n

n∑
i=1

TsB log2(1 + SNRzi) (A.8)
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or equivalently

R ≤
n∑

i=1

TsB log2(1 + SNRzi) (A.9)

with probability one for all n ≥ n2. According to the condition of successful decoding

in equation (3.4), (A.8) implies that the random transmission time T for reliably

sending R bits is upper bounded by n2 with probability one, i.e., Pr(T ≤ n2) = 1.

Hence, for any given fixed transmission rate R, T has finite support as claimed in

the lemma. Hence, the moments µj = E{T j} ≤ nj
2 <∞ are finite for all 1 ≤ j <∞.

For HARQ Chase Combining, we can also show that all the moments of T are

finite. Similar approach can be applied to chase combining protocol.

Lemma 2 If the expected value of zi is strictly greater than zero, then for any fixed

transmission rate R, the random transmission time T of HARQ Chase Combining

has finite support. Hence, all of its moments are finite.

Proof 8 By the strong law of large numbers [98, Section 7.4], we have 1
n

∑n
i=1 zi

converge to E{zi} almost surely, i.e., we have

Pr

(
lim
n→∞

1

n

n∑
i=1

zi = E{zi}
)

= 1. (A.10)

Similar to the proof of Lemma 1, for any given E{zi} > ε > 0, there exists a positive

integer n1 such that for all n ≥ n1, we can have

1

n

n∑
i=1

zi ≥ E{zi} − ε > 0. (A.11)

For a fixed rate R,
(
2

R
TsB − 1

)
/SNR is also a constant. Then we have

lim
n→∞

(
2

R
TsB − 1

)
/(n SNR) = 0. (A.12)
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Therefore, for any ε2 > 0, there exists an integer n2 ≥ n1 such that for all n ≥ n2,

we have (
2

R
TsB − 1

)
/(n SNR) ≤ ε2. (A.13)

Choosing ε2 = E{zi} − ε and using the bound in (A.11), we have for all n ≥ n2 that

(
2

R
TsB − 1

)
/(n SNR) ≤ 1

n

n∑
i=1

zi (A.14)

or equivalently

R ≤ TsB log2(1 + SNR

n∑
i=1

zi) (A.15)

with probability one for all n ≥ n2. Similar as in the HARQ-IR case, we have shown

that for HARQ Chase Combining the transmission time T also has finite support, and

hence all the moments of T are finite.

Having shown the finiteness of all moments of T , the rest proof is the same for both

HARQ-IR and HARQ Chase Combining. We next consider the cumulant generating

function of Nt, which is the logarithm of the moment generating function of Nt, i.e.,

g(z) = logE{ezNt}. (A.16)

According to the theory of cumulant generating function, it can be expressed as

g(z) =
∞∑
j=1

κj(t)
zj

j!
(A.17)

where κj(t) is the j
th order cumulant of Nt. Examining (3.8), we notice that effective
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capacity is proportional to the cumulant generating function of Nt and we can write

1

θt
loge E{e−θRNt} = 1

θt

∞∑
j=1

κj(t)
(−θR)j

j!
(A.18)

=
∞∑
j=1

κj(t)

t

(−1)jRj

j!
θj−1. (A.19)

Applying the theory of cumulant generating function to our problem, the effective

capacity can be expressed as

Ce = − lim
t→∞

1

θt
loge E{e−θRNt} (A.20)

= − lim
t→∞

∞∑
j=1

κj(t)

t

(−1)jRj

j!
θj−1 (A.21)

=
∞∑
j=1

(
lim
t→∞

κj(t)

t

)
(−1)j+1Rj

j!
θj−1. (A.22)

(by moving the limit inside the summation)

It has been proven in [99] that if the moments of T are finite, then the jth cumulant

of Nt can be written as

κj(t) = ajt+ bj + o(1) (A.23)

for some constants aj and bj which depend on the moments of T . From this result,

we conclude that

lim
t→∞

κj(t)

t
= aj (A.24)
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and hence

Ce =
∞∑
j=1

aj
(−1)j+1Rj

j!
θj−1. (A.25)

Furthermore, it has been shown in [99] and [100] that

a1 =
1

µ1

and a2 =
µ2 − µ2

1

µ3
1

=
σ2

µ3
1

(A.26)

where µ1 = E{T} and µ2 = E{T 2} are the first and second moments of T and σ2 is

the variance of T . Plugging in these values into (A.25), we readily obtain

Ce =
R

µ1

− R2σ2

2µ3
1

θ + o(θ) (A.27)

where o(θ) denote the terms which decay faster than θ, i.e., limθ→0
o(θ)
θ

= 0. Hence,

the desired characterization in Theorem 1 is proved.
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A.2 Proof of Theorem 2

Proof 9 For queue model I, the distribution of TQ1 is given by (3.32). Then, the

expected value E{TQ1} = µQ1 can be found as

µQ1 =
∞∑
t=1

t Pr{TQ1 = t} (A.28)

=
M∑
v=1

∞∑
k=0

(kM + v) Pr{TQ1 = kM + v} (A.29)

=
M∑
v=1

(
∞∑
k=0

(kM + v)εk Pr{V = v}

)
(A.30)

=
M∑
v=1

(
v Pr{V =v}

∞∑
k=0

εk+M Pr{V =v}
∞∑
k=0

kεk

)
(A.31)

=
1

1− ε

M∑
v=1

v Pr{V =v}+ Mε

(1− ε)2

M∑
v=1

Pr{V =v} (A.32)

=
1

1− ε

M∑
v=1

v Pr{V = v}+ Mε

1− ε
. (A.33)

Above, in (A.29), we replace t by kM + v and sum over both k and v in order to

more explicitly address possible violations of the maximum retransmission limit before

successful packet transmission. Noting that
∑∞

k=0 ε
k = 1

1−ε
and

∑∞
k=0 kε

k = ε
(1−ε)2

,

(A.31) can be simplified to (A.32). Notice that
∑M

v=1 Pr{V = v} = Pr{V 6 M}

represents the probability that the transmission has been completed before violating

the deadline constraint M , and hence is equal to 1− ε. Applying this fact to (A.32),

we obtain (3.39).

Similarly, the variance of TQ1 is given by

σ2
Q1 = E{T 2

Q1} − µ2
Q1 (A.34)
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where

E{T 2
Q1} =

∞∑
t=1

t2 Pr{TQ1 = t} (A.35)

=
M∑
v=1

(
∞∑
k=0

εk(kM + v)2 Pr{V = v}

)
(A.36)

=
1

1− ε

M∑
v=1

v2 Pr{V = v}+ 2Mε

(1− ε)2

M∑
v=1

v Pr{V = v}+ M2ε(1 + ε)

(1− ε)2
. (A.37)

Akin to the steps applied from (A.28) to (A.33), we again sum over kM+v in (A.36),

and then compute several summation terms with respect to k. Subsequently, using the

fact that
∑M

v=1 Pr{V = v} = 1− ε, we obtain (A.37).

Similarly, the distribution of TQ2 is given by (3.38) for queue model II, and we

can directly obtain that

µQ2 =
M∑
t=1

t Pr{TQ2 = t} =
M∑
t=1

t Pr{V = t}+Mε, (A.38)

and

σ2
Q2 = E{T 2

Q2} − µ2
Q2 (A.39)

=
M∑
t=1

t2 Pr{TQ2 = t} − µ2
Q2 (A.40)

=
M∑
t=1

t2 Pr{V = t}+M2ε− µ2
Q2. (A.41)

A.3 Proof of Theorem 3

Proof 10 In order to derive the minimum energy per bit and wideband slope expres-

sions, we need to obtain the first and second derivatives of the throughput ravg(SNR)

with respect to SNR at zero SNR. For the constant-rate arrival model, ravg or equiva-

lently the effective capacity is given by (3.10). In this regard, for both queue models
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I and II, the first and second derivatives of ravg(SNR) with respect to SNR, are given,

respectively, by

ṙavg(SNR) =
F−1
M (ε)

(1 + F−1
M (ε)SNR)µ loge 2

−
F−1
M (ε)θσ2

(
loge(1 + F−1

M (ε)SNR)
)2

(1 + F−1
M (ε)SNR)µ3(loge 2)

2
, (A.42)

r̈avg(SNR) =

(
F−1
M (ε)

)2
θσ2

(1 + F−1
M (ε)SNR)2µ3(loge 2)

2
−

(
F−1
M (ε)

)2
(1 + F−1

M (ε)SNR)2µ loge 2

+

(
F−1
M (ε)

)2
θσ2 loge(1 + F−1

M (ε)SNR)

(1 + F−1
M (ε)SNR)2µ3(loge 2)

2
. (A.43)

For queue model I, the corresponding µ and σ values are given by (3.39) and (3.40)

respectively, and for queue model II, the corresponding µ and σ values are given by

(3.41) and (3.42) respectively. Then, taking the limit as SNR → 0 results in the

following expressions:

ṙavg(0) =
F−1
M (ε)

µ loge 2
, (A.44)

and

r̈avg(0) = −
(
F−1
M (ε)

)2
(θσ2 + µ2 loge 2)

µ3(loge 2)
2

. (A.45)

Inserting the expressions in (A.44) and (A.45) into (3.26), (3.27), (3.28) and (3.29),

the minimum bit energy and wideband slope for both queue models I and II are readily

obtained.

A.4 Proof of Proposition 1

Proof 11 Comparing (3.39) and (3.41), we obtain that

µQ1 =
µQ2

1− ε
(A.46)
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by replacing the summation index t with v in (3.41). Inserting (A.46) into (3.43) and

comparing with (3.45), we obtain Eb

N0min Q1
= Eb

N0min Q2
.

Then, we rewrite (3.40) as

σ2
Q1 =

1

1− ε

M∑
v=1

v2 Pr{V =v}+ 2Mε

(1− ε)2

M∑
v=1

v Pr{V =v}+ M2ε(1 + ε)

(1− ε)2
− µ2

Q1 (A.47)

=
1

(1− ε)2

(
M∑
v=1

v2 Pr{V =v}+M2ε(1+ε)−µ2
Q2

)

+

(
2Mε

(1− ε)2

M∑
v=1

v Pr{V =v}− ε

(1− ε)2

M∑
v=1

v2 Pr{V =v}

)
(A.48)

=
1

(1− ε)2
σ2
Q2 +

(
2Mε

(1− ε)2

M∑
v=1

v Pr{V = v} − ε

(1− ε)2

M∑
v=1

v2 Pr{V = v}
)
.

(A.49)

From (A.47) to (A.48), we use the fact that 1
1−ε

= 1
(1−ε)2

− ε
(1−ε)2

to break 1
1−ε

∑M
v=1 v

2 Pr{V =

v} into two terms. From (A.48) to (A.49), we apply the expression of σ2
Q2 in (3.42).

Also, for the last two terms in (A.49), we have

2Mε

(1− ε)2

M∑
v=1

v Pr{V =v}− ε

(1− ε)2

M∑
v=1

v2 Pr{V =v} (A.50)

≥ 2Mε

(1−ε)2
M∑
v=1

v Pr{V =v}− ε

(1−ε)2
M∑
v=1

vM Pr{V =v} (A.51)

=
Mε

(1− ε)2

M∑
v=1

v Pr{V = v} (A.52)

≥0 (A.53)

From (A.50) to (A.51), we use v2 ≤ vM , because we only consider the summation of

v from 1 to M . Using the above results, we get

σ2
Q1 ≥

1

(1− ε)2
σ2
Q2 (A.54)
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from (A.49). Applying (A.46) and (A.54) to (3.44) and (3.46), we conclude that

S0 Q2 ≥ S0 Q1.

A.5 Proof of Theorem 4

Proof 12 Plugging the effective capacity formulation obtained in Theorem 1 into

(2.13), and then taking the derivative with respect to SNR and evaluating as SNR→ 0,

we have

ṙ(0) =ĊE(0)

/[
p22
2

+
p22(p11 + p22)− 2(p11 + p22 − 1)

2(2− p11 − p22)

]
(A.55)

=ĊE(0)/PON . (A.56)

In determining (A.55), we have used the fact that limSNR→0 r(SNR) = 0 and limSNR→0CE(SNR) =

0. Note that when the transmit power approaches 0, the departure rate should also go

to 0, which in turn makes the effective capacity approach 0. To satisfy the queuing

constraints, the arrival rate r in the ON state should also diminish to 0. In the proof

of Theorem 3, we have shown that ĊE(0) =
F−1
M (ε)

µ loge 2
. Therefore, we can have the first

order derivative of the throughput evaluated as SNR goes to 0 as

ṙavg(0) = ṙ(0)PON = ĊE(0) =
F−1
M (ε)

µ loge 2
. (A.57)

Similarly, by taking the second order derivatives of the arrival rate r with respect to

SNR and evaluating as SNR→ 0, we obtain

r̈(0) =
θĊE(0)

2 + C̈E(0)− ĊE(0)
2θ(ζ + 1)

PON

(A.58)
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where ζ is defined in (3.49). In the proof of Theorem 3, we show that C̈E(0) =

−F−1
M (ε)2(θσ2+µ2 loge 2)

µ3(loge 2)
2 . Therefore, we can find

r̈avg(0) = r̈(0)PON =
F−1
M (ε)2(−θζ − θσ2+µ2 loge 2

µ
)

(µ loge 2)
2

. (A.59)

Inserting the results in (A.57) and (A.59) into (3.26) and (3.27), and replacing µ

and σ2 by µQ1 and σ2
Q1 respectively, we get the desired results for queue model I in

Theorem 4. Similarly, inserting the results in (A.57) and (A.59) into (3.28) and

(3.29), and replacing µ and σ2 by µQ2 and σ2
Q2 respectively, we obtain the desired

results for queue model II.

A.6 Proof of Theorem 5

Proof 13 The proof is similar to the proof of Theorem 4. Plugging (2.18) into (2.4),

taking the first and second order derivatives and evaluating as SNR→ 0, we get

ṙ(0) = ĊE(0)/PON . (A.60)

From ṙ(0), we get ṙavg(0) as

ṙavg(0) = ṙ(0)PON = ĊE(0) =
F−1
M (ε)

µ loge 2
. (A.61)

Furthermore, we have

r̈avg(0) =r̈(0)
α

α + β
(A.62)

=C̈E(0)− Ċ2
E(0)θ

2β

α(α + β)
(A.63)

=−
(
F−1
M (ε)

µ loge 2

)2(
θσ2 + µ2 loge 2

µ
+

2θβ

α(α + β)

)
. (A.64)
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Inserting the results in (A.61) and (A.64) into (3.26) and (3.27), and replacing µ

and σ2 by µQ1 and σ2
Q1 respectively, we obtain the desired results for queue model I

in Theorem 5. Similarly, inserting the results in (A.61) and (A.64) into (3.28) and

(3.29), and replacing µ and σ2 by µQ2 and σ2
Q2 respectively, we get the desired results

for queue model II.

A.7 Proof of Theorem 6

Proof 14 Using the characterization in (2.24), and taking the first and second order

derivatives and evaluating as SNR→ 0, we get

ṙavg(0) = PON
θα(α + β)

α2(eθ − 1)
ĊE(0) =

θ

eθ − 1
ĊE(0), (A.65)

and

r̈avg(0) =
θ

eθ − 1
C̈E(0)−

2βθ2

(α + β)(eθ − 1)
Ċ2

E(0) (A.66)

where ĊE(0) =
F−1
M (ε)

µ loge 2
and C̈E(0) = −F−1

M (ε)2(θσ2+µ2 loge 2)

µ3(loge 2)
2 . Inserting the results in

(A.65) and (A.66) into (3.26) and (3.27), and replacing µ and σ2 by µQ1 and σ2
Q1

respectively, we obtain the desired results for queue model I in Theorem 6. Similarly,

inserting the results in (A.65) and (A.66) into (3.28) and (3.29), and replacing µ and

σ2 by µQ2 and σ2
Q2 respectively, we get the desired results for queue model II.
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A.8 Proof of Theorem 11

Proof 15 In [17], the throughput of the half-duplex two-hop relay system under queu-

ing constraints is given by

R =


min

{
− 1

θ1
ΛS,R(−θ1),− 1

θ2
ΛR,D(−θ2)

}
θ2 ≤ θ1

min
{
− 1

θ1
ΛS,R(−θ1),− 1

θ1

(
ΛR,D(−θ2) + ΛS,R(θ2 − θ1)

)}
θ2 > θ1

(A.67)

when the stability condition is satisfied. In our finite blocklength regime, the instan-

taneous rate of the uplink is equal to 0 or τmr1 bits per block with probabilities ϵ1 and

1− ϵ1, respectively. Therefore, we can write the LMGF of the S−R link as

ΛS,R(θ) = logEz1{ϵ1eτθ1m0 + (1− ϵ1)e
τθ1mr1}

= logEz1{ϵ1 + (1− ϵ1)e
τθ1mr1}. (A.68)

Similarly, the LMGF of the R−D link can be simplified as

ΛR,D(θ) = logE{ϵ2 + (1− ϵ2)e
(1−τ)θ2mr2}. (A.69)

Plugging (A.68) and (A.69) into (A.67), and normalizing over the blocklength m (to

change the unit from bits per block to bits per channel use), we obtain the throughput

in the finite blocklength regime as in (5.7).

A.9 Proof of Theorem 15

Proof 16 On the ϵ1 − ϵ2 plane, for an arbitrary point (ϵ̂1, ϵ̂2) inside the stability re-

gion, the line segment (ϵ̂1, ϵ̂2) − (ϵ∗1, ϵ
∗
2) has an intersection point with the boundary

of the stability region because (ϵ∗1, ϵ
∗
2) given in Theorem 13 is assumed to be out-

side the stability region, and we denote the coordinates of this intersection point as
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(ϵ̂∗1, ϵ̂
∗
2). In [20], it was shown that as ϵ increases from 0 to 1, −Λ(−θ) first increas-

es and then decreases after achieving its maximum value in the single-hop model.

This property can be applied directly to −ΛS,R(−θ1) and −ΛR,D(−θ2) in our half-

duplex two-hop system. Since ϵ̂∗1 is between ϵ̂1 and ϵ∗1, and ϵ̂∗2 is between ϵ̂2 and ϵ∗2,

we have −ΛS,R(−θ1)
∣∣
ϵ̂∗1
≥ −ΛS,R(−θ1)

∣∣
ϵ̂1

and −ΛR,D(−θ2)
∣∣
ϵ̂∗2
≥ −ΛR,D(−θ2)

∣∣
ϵ̂2
. In

the proof of Theorem 13, we find that the throughput is a non-decreasing function of

both −ΛS,R(−θ1) and −ΛR,D(−θ2). Therefore, the error probability pair (ϵ̂∗1, ϵ̂
∗
2) gives

the same or higher throughput, compared to (ϵ̂1, ϵ̂2). This implies that for any error

probability pair inside the stability region, there exists a point on the boundary of the

stability region that achieves the same or higher throughput, when (ϵ∗1, ϵ
∗
2) is outside

the stability region. Therefore, the maximum throughput is achieved on the boundary

of the stability region.

A.10 Proof of Theorem 16

Proof 17 We know that both S1−D1 and S2−D2 links are restricted by two queuing

constraints, one at the corresponding source node, and the other one at the relay node.

We consider these two constraints separately, and then combine the results. First, we

only consider the constraints at the source nodes. According to (2.25), the maximum

arrival rate that can be supported under queuing constraints at a source node is given

by

Rj = −
ΛSj ,R(−θj)

θj
, (A.70)
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for j = 1, 2. Similarly, when we only consider the queuing constraint at the relay

node, the maximum arrival rates should satisfy

Rj =


− 1

θr
ΛR,Dj

(−θr) θr ≤ θj

− 1
θj

(
ΛR,Dj

(−θr) + ΛSj ,R(θr − θj)
)

θr > θj,

(A.71)

which is obtained from (2.26) and (2.27). Combining these results, the overall max-

imum arrival rates that can be supported by the system should be the minimum of

(A.70) and (A.71), i.e.,

Rj =


min

{
− 1

θj
ΛSj ,R(−θj),− 1

θr
ΛR,Dj

(−θr)
}

θr ≤ θj

min
{
− 1

θj
ΛSj ,R(−θj),

− 1
θj

(
ΛR,Dj

(−θr) + ΛSj ,R(θr − θj)
)}

θr > θj,

(A.72)

for j = 1, 2. Using the definition of LMGF, (A.72) can be expressed in terms of the

instantaneous rates, which is given by (5.44).

A.11 Proof of Theorem 17

Proof 18 Depending on the relationship between θj and θr for j = 1, 2, there are two

possible cases identified by (5.44).

Case 1 : θr ≤ θj.

In this case, the throughput Rj is given by

Rj = min

{
Rj,1,Rj,2

}
(A.73)
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where Rj,1 and Rj,2 are defined as


Rj,1 = − 1

θj
log
(
E
{
e
−θjτ(δRSj ,R{1,2}+(1−δ)RSj ,R{2,1})

})
,

Rj,2 = − 1
θr
log
(
E
{
e−θr(1−τ)RR,Dj

})
.

(A.74)

By taking the second order derivative with respect to δ, we can easily show the con-

cavity of Rj,1 and Rj,2. The second order derivative of Rj,1 is given by

∂2Rj,1

∂δ2
=− θjτ

2(
E{e−θjτ(δRSj ,R{1,2}+(1−δ)RSj ,R{2,1})}

)2

×

{
E
{
(RSj ,R{1,2} −RSj ,R{2,1})

2e
−θjτ(δRSj ,R{1,2}+(1−δ)RSj ,R{2,1})

}
E{e−θjτ(δRSj ,R{1,2}+(1−δ)RSj ,R{2,1})}

−
(
E
{
(RSj ,R{1,2} −RSj ,R{2,1})e

−θjτ(δRSj ,R{1,2}+(1−δ)RSj ,R{2,1})
})2

}
. (A.75)

According to the Cauchy-Schwarz inequality, two random variables U and V should

satisfy E2{UV } ≤ E{U2}E{V 2}. Assuming that

U = e
− 1

2
θjτ(δRSj ,R{1,2}+(1−δ)RSj ,R{2,1}), (A.76)

and

V = (RSj ,R{1,2} −RSj ,R{2,1})U, (A.77)

we can easily determine that the part inside the large curly brackets in (A.75) can be

written as E{V 2}E{U2} − E2{UV } and hence is nonnegative. Then, we can readily

determine that
∂2Rj,1

∂δ2
≤ 0, which indicates that Rj,1 is a concave function of δ. From

(A.74), we notice that the expression of Rj,2 does not contain δ. In other words, Rj,2

is a constant function in terms of δ, and
∂2Rj,2

∂δ2
= 0. Hence, we can still regard Rj,2

as a concave function of δ.

Since the pointwise minimum of concave functions is concave [95], the concavity
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of R1 and R2 with respect to the time sharing parameter δ follows immediately when

θr ≤ θj.

Case 2 : θr > θj.

In this case, the throughput Rj is given by

Rj = min

{
Rj,1,Rj,3

}
(A.78)

where Rj,3 is defined as

Rj,3 = −
1

θj

(
log(E{e−θr(1−τ)RR,Dj }) + log(E{e(θr−θj)τ(δRSj ,R{1,2}+(1−δ)RSj ,R{2,1})})

)
.

(A.79)

We have already shown the concavity of Rj,1 in the previous case, and we can show

the concavity of Rj,3 following the same approach. The second order derivative of Rj,3

is given by

∂2Rj,3

∂δ2
=− (θr − θj)

2τ 2

θj

(
E{e(θr−θj)τ(δRSj ,R{1,2}+(1−δ)RSj ,R{2,1})}

)2

×

{
E
{
(RSj ,R{1,2} −RSj ,R{2,1})

2e
(θr−θj)τ(δRSj ,R{1,2}+(1−δ)RSj ,R{2,1})

}
E{e(θr−θj)τ(δRSj ,R{1,2}+(1−δ)RSj ,R{2,1})}

−
(
E
{
(RSj ,R{1,2} −RSj ,R{2,1})e

(θr−θj)τ(δRSj ,R{1,2}+(1−δ)RSj ,R{2,1})
})2

}
. (A.80)

Again using the Cauchy-Schwarz inequality, we have
∂2Rj,3

∂δ2
≤ 0, and the concavity

follows. Since Rj is the pointwise minimum of Rj,1 and Rj,3, Rj is a concave function

of δ. Now, we have shown in both cases that R1 and R2 are concave functions of δ.

Finally, since the sum of two concave functions is also a concave function, the
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sum rate is concave as well.

A.12 Proof of Theorem 18

Proof 19 Similar to the proof of Theorem 17, Theorem 18 can be proved easily by

evaluating the derivatives with respect to τ . The second order derivatives of Rj,1, Rj,2

and Rj,3 with respect to τ are given, respectively, by

∂2Rj,1

∂τ 2
=− θj(

E{e−θjτRSj ,R}
)2

{
E{R2

Sj ,R
e−θjτRSj ,R}E{e−θjτRSj ,R} −

(
E{RSj ,Re

−θjτRSj ,R}
)2}

(A.81)

∂2Rj,2

∂τ 2
=− θr(

E{e−θr(1−τ)RR,Dj }
)2

×
{
E{R2

R,Dj
e−θr(1−τ)RR,Dj }E{e−θr(1−τ)RR,Dj } −

(
E{RR,Dj

e−θr(1−τ)RR,Dj }
)2}

(A.82)

∂2Rj,3

∂τ 2
=− θ2r(

θjE{e−θr(1−τ)RR,Dj }
)2

×
{
E{R2

R,Dj
e−θr(1−τ)RR,Dj }E{e−θr(1−τ)RR,Dj } −

(
E{RR,Dj

e−θr(1−τ)RR,Dj }
)2}

− (θr − θj)
2

θj

(
E{e−θjτRSj ,R}

)2

{
E{R2

Sj ,R
e−θjτRSj ,R}E{e−θjτRSj ,R} −

(
E{RSj ,Re

−θjτRSj ,R}
)2}

.

(A.83)

Using the Cauchy-Schwarz inequality and concavity-preserving property of pointwise

minimum, the concavity of R1, R2 and the sum rate follow readily.
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A.13 Proof of Theorem 20

Proof 20 We first consider user A and assume KxB
is given. From (6.19), the

instantaneous rate of A can be written as

rA(SNRA) =
B

loge 2

∑
i

loge

(
1 +NBSNRAλi(HABKxA

H†
ABK

−1
zB)
)
, (A.84)

where λi(∆) denotes the ith eigenvalue of the matrix ∆. Taking the derivative with

respect to SNRA, we get

ṙA(SNRA) =
B

loge 2

∑
i

NBλi(HABKxA
H†

ABK
−1
zB)

1 +NBSNRAλi(HABKxA
H†

ABK
−1
zB)

. (A.85)

From (6.21), the first derivative of CA with respect to SNRA, evaluated at SNRA = 0

is given by

ĊA(0) = E {ṙA(0)} =
BNB

loge 2
E
{
tr(HABKxA

H†
ABK

−1
zB)
}

(A.86)

where tr(∆) denotes the trace of the matrix ∆. Note that both of KxA
and K−1

zB

are positive definite Hermitian matrices and therefore we can perform eigenvalue de-

composition, and express them as KxA
= VAΛAV

†
A =

∑NA

i=1 λA,ivA,iv
†
A,i and K−1

zB =

VzBΛzBV
†
zB, where VA and VzB are unitary matrices, ΛA and ΛzB real diagonal ma-

trices, vA,i is the i
th column of VA, and λA,i is the i

th eigenvalue of KxA
corresponding
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to the eigenvector vA,i. Plugging this decomposition into (A.86), we get

ĊA(0) =
BNB

loge 2
E
{
tr(Λ

1/2
zB V†

zBHABKxA
H†

ABVzBΛ
1/2
zB )
}

=
BNB

loge 2

NA∑
i=1

λA,iE
{
tr(Λ

1/2
zB V†

zBHABvA,iv
†
A,iH

†
ABVzBΛ

1/2
zB )
}

=
BNB

loge 2

NA∑
i=1

λA,iE
{
tr(v†

A,iH
†
ABK

−1
zBHABvA,i)

}
(A.87)

≤BNB

loge 2
E
{
λmax(H

†
ABK

−1
zBHAB)

}
(A.88)

where λmax(∆) denotes the maximum eigenvalue of matrix ∆. The equality is achieved

when KxA
= ΨAΨ

†
A, where ΨA is the eigenvector corresponding to the maximum

eigenvalue of H†
ABK

−1
zBHAB. Following the same approach, we can shown a similar

result for KxB
, and hence prove the theorem.

A.14 Proof of Theorem 21

Proof 21 The second order derivative with respect to τ1 is

∂2Rsum

∂τ 21
= − θC

E{e−τ1θCrC,B}2

[
E{r2C,B e−τ1θCrC,B}E{e−τ1θCrC,B} − E{rC,B e−τ1θCrC,B}2

]
.

(A.89)

Applying the Cauchy-Schwarz inequality, we can determine that ∂2Rsum

∂τ21
is negative.

Through a similar approach, we can also determine that ∂2Rsum

∂τ22
≤ 0 and ∂2Rsum

∂τ23
≤ 0.

Because τ1 only appears in RC, τ2 only appears in RB, and τ3 only appears in RD,

the Hessian matrix is diagonal, and can be expressed as

H = Diag

(
∂2Rsum

∂τ 21
,
∂2Rsum

∂τ 22
,
∂2Rsum

∂τ 23

)
. (A.90)

It is readily noted that H ≼ 0, and the concavity is shown.
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