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ABSTRACT

Orders are a certain class of noncommutative algebras over commutative rings. Originally

defined by Auslander and Bridger, an R-order is an R-algebra which is a maximal Cohen-

Macaulay R-module. In this thesis we consider orders, Λ, over Cohen-Macaulay local rings

R possessing a canonical module, ωR. In this case a great deal of structure is imposed on Λ.

In Chapter 3 we focus on the use of orders as noncommutative resolutions of commutative

local rings. This idea was introduced by Van den Bergh [45] for R Gorenstein and we

investigate the generalization to the case where R is Cohen-Macaulay. We show that if

an order is totally reflexive over R and has finite global dimension, then R was already

Gorenstein. Further, we investigate Gorenstein orders and give a necessary and sufficient

condition for the endomorphism ring EndR(R⊕ ω) to be a Gorenstein order.

The rest of the thesis focuses on various aspects of the representation theory of orders.

We investigate orders which have finite global dimension on the punctured spectrum, but

are not necessarily isolated singularities. In this case we are able to prove a generalization

of Auslander’s theorem about finite CM type [3]. We prove that if an order which satisfies

projdimΛop ωΛ 6 n possesses only finitely many indecomposable nth syzygies of MCM Λ-

modules, then in fact gldim Λp 6 n + dimRp for all non-maximal primes p. We are then

able to translate this to a condition on R by considering path algebras, since these maintain

finiteness of global dimension.

Finally, we consider orders which are true isolated singularities and Iyama’s higher

Auslander-Reiten theory [27]. We consider the action of τn on n-orthogonal subcategories

of CM Λ and on n-cluster tilting subcategories. For the former we are able to characterize

the projective dimension of duals of modules. For the latter, we provide an obstruction to a

module being τn-periodic, a question of great interest for the representation theory of orders

of finite global dimension.
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Chapter 1

Introduction

1.1 Commutative Rings

Here we remind the reader of some definitions and facts from commutative ring theory.

Throughout, R will denote a commutative Noetherian ring of finite Krull dimension d. When

necessary we will write (R,m, k) to mean R is a local ring with unique maximal ideal m and

residue field R/m = k.

Definition 1.1.1. Let (R,m, k) be a commutative Noetherian local ring and M a finitely

generated R-module. A sequence of elements x1 . . . , xn ∈ m is called an M -regular se-

quence provided x1 is a nonzerodivisor on M and for each i > 2, xi is a nonzerodivisor on

M/(x1, . . . , xi−1)M . The length of the longest M -regular sequence is independent of choice

of sequence and is called the depth of M denoted depthRM . A finitely generated module

M is called maximal Cohen-Macaulay (MCM) if depthRM = dim(R). A ring R is called

Cohen-Macaulay (CM) if it is maximal Cohen-Macaulay as a module over itself.

In this thesis we will focus on rings which are either Cohen-Macaulay with a canonical

module, ωR, or Gorenstein. A local ring is Gorenstein if it has finite injective dimension as

a module over itself, a non-local ring is Gorenstein if all of its localizations are Gorenstein

local rings; we note that Gorenstein local rings are Cohen-Macaulay having canonical module

1



CHAPTER 1. INTRODUCTION 2

ωR ∼= R.

1.2 Summary of Results

This thesis consists of five chapters. Following this introduction, in Chapter 2 we give some

background on orders, a special class of algebras over commutative rings. In addition to

motivating some of the specific orders on which we concentrate, we prove some homological

results for path algebras over commutative rings. This chapter largely consists of some

propositions and lemmas which are used in later chapters.

In Chapter 3, we address the notion of noncommutative crepant resolutions. Noncom-

mutative crepant resolutions were defined by Van den Bergh in a program to settle the

Bondal-Orlov conjecture that all crepant resolutions of a variety X are derived equivalent.

These resolutions represent algebraic analogs of geometric resolutions of singularities. The

work of Van den Bergh, Stafford-Van den Bergh, Buchweitz-Leuschke-Van den Bergh, etc.

([17, 44, 45]), deals with the study of noncommutative crepant resolutions over Gorenstein

rings–here many examples and strong theorems have been found. The generalization to the

Cohen-Macaulay case has proven more difficult, see [19,20]. For various technical reasons the

definition in the Gorenstein case does not extend the way one might hope. In this chapter

we introduce a type of noncommutative resolution for Cohen-Macaulay rings and show that

their existence actually implies that the base ring is Gorenstein. We then consider the class

of Gorenstein orders, which are a noncommutative generalization of Gorenstein rings. Moti-

vated by some examples, we find necessary and sufficient conditions for EndR(R⊕ωR) to be

a Gorenstein order. Furthermore, we are able to apply work of Iyama and Nakajima, [30], to

classify exactly when a certain class of endomorphism algebras has finite global dimension.

In Chapter 4, we turn to the question of finite representation type. In the case of

commutative rings we focus on finite CM type–the condition that a ring possesses only finitely

many non-isomorphic indecomposable MCM modules. We focus on a classical theorem of



CHAPTER 1. INTRODUCTION 3

Auslander,[3]: a CM local ring of finite CM type must be an isolated singularity. In this

chapter we introduce a homological condition on an order which controls the behavior of

high syzygies. This allows us to weaken the condition of Auslander’s theorem by requiring

finiteness of a smaller class of modules. We then provide an example of such orders over

Gorenstein local rings and show that finiteness of the class of first syzygies over such an order

actually implies that R is an isolated singularity. This is a strengthening of Auslander’s

theorem in the case of a Gorenstein local ring. The proof adapts work of Huneke-Leuschke,

[25], to a noncommutative setting where finite projective dimension is less restrictive.

Lastly, Chapter 5 focuses on higher Auslander-Reiten duality as introduced by Iyama,

[27]. Iyama, with both Herschend and Oppermann, has applied this tool to the study of

finite dimensional algebras which have finite global dimension, [24, 29, 31]. We focus on a

key lemma of Iyama’s work and the fact that for algebras of global dimension at most n, τn-

periodic modules cannot exist. Our main results are generalization of Iyama’s key lemma to

the case of arbitrary finite Krull dimension and a proof of the converse. Moreover, we show

that in fact projective dimension of duals of cluster tilting modules must detect the Krull

dimension of the base ring. Finally, we discuss the behavior of the higher AR translation,

τn, as a functor and give a criterion which prevents a module from being τn-periodic.



Chapter 2

Background on Orders

2.1 Background on Orders

Most often, R will be a Cohen-Macaulay local ring with canonical module ωR. We begin

with some definitions.

Definition 2.1.1. Suppose (R,m, k) is a local ring.

• An R-algebra Λ is an R-order if it is a MCM R-module.

• Denote by Mod Λ the category of left Λ-modules and mod Λ the full subcategory of

Mod Λ consisting of finitely generated modules. Unless specified otherwise, when we

say M is a Λ-module, we always mean a finitely generated left Λ-module.

• We denote by CM Λ the full subcategory of mod Λ consisting of the maximal Cohen-

Macaulay R-modules.

• For a (possibly non-commutative) ring Γ, we will denote by Γop the opposite ring. If

M is an abelian group with a right Γ-module structure, we will say M ∈ mod Γop to

indicate that M is a left Γop-module.

• Suppose R is a domain. An R-algebra Λ is birational if Λ⊗RK ∼= Mn(K) where K is

the fraction field of R.

4



CHAPTER 2. BACKGROUND ON ORDERS 5

• An R-algebra Λ is symmetric if HomR(Λ, R) ∼= Λ as an Λ-Λ-bimodules.

• Λ is non-singular if gldim(Λp) = dimRp for all p ∈ SpecR.

• We say an order Λ is an isolated singularity if gl.dim(Λp) = dimRp for all non-maximal

prime ideals p of R.

• Λ is homologically homogeneous if all simple Λ modules have the same projective di-

mension d over Λ.

• For any ring Γ, we denote by Proj Γ the full subcategory of all projective Γ-modules.

• For any module M , addM denotes the additive closure of M , i.e., the class of modules

isomorphic to direct summands of finite direct sums of copies of M .

Remark 2.1.2. We note that for R equidimensional (a mild assumption which holds for

e.g., a domain), an R-algebra being homologically homogeneous is equivalent to being a

non-singular order, see [45, Section 3] or [19, Section 2] for details.

Given a minimal projective resolution

· · · −→ Pn −→ Pn−1 −→ · · · −→ P1 −→ P0 −→M −→ 0

We set the nth syzygy of M to be ΩnM = ker(Pn−1 −→ Pn−2).

We will deal with syzygies a great deal in this thesis. As such, we wish to comment on

their behavior over commutative rings. Since exact sequences of Λ-modules are also exact

sequences of R-modules, we have the Depth Lemma. This will be utilized several times

throughout.

Lemma 2.1.3 (Depth Lemma, [35, Lemma A.4]). Let 0 −→ U −→ V −→ W −→ 0 be an

exact sequence of Λ-modules.

(1) If depthRW < depthR V , then depthR U = depthRW + 1
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(2) depthR U > min{depthR V, depthRW}.

(3) depthR V > min{depthR U, depthRW}.

We will also use two convenient consequences of the Depth Lemma.

Lemma 2.1.4. Let R be a local ring of dimension d and M an R-module. Suppose we have

an exact sequence

0 −→ Yn −→ Xn−1 −→ · · · −→ X1 −→ X0 −→M −→ 0

where the Xi are maximal Cohen-Macaulay modules, then

depthR Yn = min{d, n+ depthRM}.

In particular if R is CM local, for any module M ,

projdimRM > dimR− depthRM.

If projdimRM <∞, then equality holds.

Lemma 2.1.5. Suppose Λ is an R-order over a CM local ring R of dimension at least 2.

Set (−)∗ = HomΛ(−,Λ). Let X be a Λ-module. We have

depthRX
∗ > 2.

Proof. Note that if X is projective, the result holds since Λ is and R-order. Suppose X is

not projective. Since Λ is a Noetherian ring X has a presentation

P2 −→ P1 −→ X −→ 0,
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where P1, P0 are projective Λ-modules. Applying HomΛ(−,Λ) we get an exact sequence

0 −→ X∗ −→ P ∗0 −→ P ∗1 −→ TrX −→ 0.

Since Λ is an R-order, depthR P
∗
i > 2 for i = 0, 1. Further, Tr(−) is a duality, so TrX 6= 0.

It follows from the Depth Lemma that depthRX
∗ > 2.

We will be most interested in Cohen-Macaulay local rings having a canonical module ωR.

For more information on canonical modules, we direct the reader to [15, Section I.3] and

[35, Section 11.1], but we include the relevant facts here for convenience.

Definition 2.1.6. Let (R,m, k) be a CM local ring. A finitely generated module ωR is

a canonical module if it has finite injective dimension, is maximal Cohen-Macaulay and

dimk ExtdR(k, ωR) = 1.

It is known that a CM local ring possesses a canonical module if and only if it is the

homomorphic image of a Gorenstein local ring; this result is due to Foxby, Reiten, and Sharp

[21, 40, 42] . Canonical modules play an important role in Grothendieck local duality, and

we recall a long list of their properties.

Proposition 2.1.7 ([35, Theorem 11.5]). Let R be a CM local ring with a canonical module

ωR.

(i) ωR is unique up to isomorphism. The ring R is Gorenstein if and only if ωR ∼= R.

(ii) EndR(ωR) ∼= R. In particular, since R is local, ωR is an indecomposable module.

1. Let M be a Cohen-Macaulay module of R and set t = codepthRM := depthRR −

depthRM . Define (−)∨ = ExttR(−, ωR).

• M∨ is also CM of codepth t.

• ExtiR(M,ωR) = 0 for i 6= t.
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• M∨∨ is naturally isomorphic to M .

(iV) The canonical module behaves well with respect to completion, factoring out a regular

sequence, and localization.

The most important fact we will use about ωR is that it is a relatively injective object

for CM(R). This follows from the following more general fact.

Proposition 2.1.8 ([35, Proposition 11.3]). Let R be a CM local ring and M a finitely

generated R-module. Then M is MCM if and only if ExtiR(M,Y ) = 0 for all i > 0 and Y

an R-module of finite injective dimension.

That ExtdR(k, ωR) is one-dimensional can be thought of as a normalizing condition. Fur-

thermore, under mild conditions it forces ωR to be isomorphic to an ideal of R. This will be

important later in the proof of Theorem 3.3.5. To state the condition precisely we say R is

generically Gorenstein if Rp is a Gorenstein local ring for each minimal prime p of R.

Proposition 2.1.9 ([35, Proposition 11.6]). Let R be a CM local ring and ω a canonical

module for R. If R is generically Gorenstein, then ω is isomorphic to an ideal of R and

conversely. In this case, ω has constant rank 1, ω is an ideal of pure height 1 (that is every

associated prime of ω has height 1) and R/ω is a Gorenstein ring of dimension dimR− 1.

Canonical modules are important tools for studying the homological behavior of local

rings. We wish to study homological behavior of orders, and will thus heavily utilize the

following object.

Definition 2.1.10. Let R be a Cohen-Macaulay ring with canonical module ωR and Λ an

R-order. Then the canonical module of Λ is ωΛ = HomR(Λ, ωR).

As with local rings, if the canonical module is projective, our ring is particularly nice.

Thus, we give this condition a name.

Definition 2.1.11. Let Λ be an order over a CM local ring R with canonical module ωR.

If ωΛ is projective as a left Λ-module, then Λ is called a Gorenstein order.
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In fact, this condition is symmetric. In other words, if Λ is a Gorenstein R-order, so is

Λop; see [32, Lemma 2.15].

Commutative Gorenstein local rings R are characterized by their canonical module being

the rank one free module. It follows from this that a symmetric order over a Gorenstein

local ring is a Gorenstein order. This is a key point in the theory of noncommutative

crepant resolutions and will be discussed in Chapter 3.

In order to utilize this, we collect some facts about ωΛ. Most of these follow from facts

about ωR and the tensor-hom adjunction.

Theorem 2.1.12. Let R be a Cohen-Macaulay local ring with canonical module ωR and Λ

an R-order. Denote by ωΛ the canonical module of Λ. Let M ∈ CM Λ.

• ExtiΛ(M,ωΛ) = 0 for i > 0.

• Denote by (−)∨ the functor HomΛ(−, ωΛ). Then (−)∨ is a duality on CM Λ.

• There is a module Y ∈ CM Λ such that there is an exact sequence 0 −→M
ϕ−→ I −→ Y −→ 0

where I ∈ addωΛ.

Proof. This is largely an application of tensor-hom adjointness to the classical setting of

canonical modules, see [35, Chapter 12]. We prove the third assertion for convenience of the

reader.

By [35], the second assertion and the fact that M is also an R-module, we start with a

projective cover 0 −→ Y ′ −→ P −→M∨ −→ 0 over Λ, where Y is necessarily MCM by the

Depth Lemma. We then apply HomR(−, ωR) and the fact that Ext1
R(M∨, ωR) = 0 to get an

exact sequence

0 −→ HomR(M∨, ωR) −→ HomR(P, ωR) −→ HomR(Y ′, ωR) −→ 0

which is isomorphic to the top row of the commutative diagram
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0 −−−→ HomR(M∨ ⊗Λ Λ, ωR) −−−→ HomR(P ⊗Λ Λ, ωR) −−−→ HomR(Y ′ ⊗Λ Λ, ωR) −−−→ 0

∼=
y ∼=

y ∼=
y

0 −−−→ HomΛ(M∨, ωΛ) −−−→ HomΛ(P, ωΛ) −−−→ HomΛ(Y ′, ωΛ) −−−→ 0

where the vertical isomorphisms are the tensor-hom adjunction, since ωΛ is by definition

HomR(Λ, ωR). Setting Y = HomΛ(Y ′, ωΛ), the bottom row is exactly the exact sequence in

the assertion.

We need several functors to study orders. Let R be a CM local ring with a canonical

module ωR and Λ an R-order. We have the following functors.

• The canonical dual Dd(−) := HomR(−, ωR) : CM Λ −→ CM Λop.

• The Matlis dual D := HomR(−, E) where E is the injective hull of the residue field,

k, of R. Letting f.l.R denote the full subcategory of modR consisting of finite length

R-modules, D : f.l.R −→ f.l.R is a duality.

• The functor (−)∗ := HomΛ(−,Λ) : mod Λ −→ mod Λ which gives a duality (−)∗ :

add Λ −→ add Λop.

• The transpose duality Tr : modΛ −→ modΛ given by TrM = cok f ∗1 , where P1
f1−→

P0
f0−→M −→ 0 is a minimal projective resolution of M .

• Finally, we set (−)† = HomR(−, R). When R is Gorenstein, we note that Dd(−) =

(−)†.

Utilizing the duality Dd : CM Λ −→ CM Λ we note that given an exact sequence

0 −→ N −→ X1 −→ . . . −→ Xi −→M −→ 0

with M,N,Xj ∈ CM Λ, then we get an exact sequence of Λop-modules

0 −→ DdM −→ DdXi −→ . . . −→ DdX1 −→ DdN −→ 0.



CHAPTER 2. BACKGROUND ON ORDERS 11

Since Dd : CM Λ −→ CM Λop is an exact duality, a second application returns the initial

exact sequence. Thus we get a bijection of abelian groups

ExtiΛ(M,N) ∼= ExtiΛop(DdN,DdM). (2.1.1)

We also will define the stable and co-stable categories of CM Λ, denoted by CM Λ and

CM Λ, respectively. The objects in CM Λ and CM Λ are the same as those in CM Λ. We

then define the homomorphism groups as follows. For X, Y ∈ CM Λ, set P(X, Y ) to be all of

the Λ-homomorphisms X −→ Y which factor through a projective Λ-module. Set I(X, Y )

to be all of the homomorphisms which factor through a module in addωΛ. Then we have

HomΛ(X, Y ) := HomCM Λ(X, Y ) = HomΛ(X, Y )/P(X, Y )

HomΛ(X, Y ) := HomCM CMΛ(X, Y ) = HomΛ(X, Y )/I(X, Y ).

Call CM Λ the stable category of CM Λ and CM Λ the co-stable category. For any subcategory

C of CM Λ we denote by C and C the corresponding subcategories of CM Λ and CM Λ,

respectively.

Finally, we will often be concerned with orders of finite global dimension and the projec-

tive dimension of modules. The following technical lemma will be used more than once.

Lemma 2.1.13. Let A be a ring and M an A-module of finite projective dimension n. Then

ExtnA(M,A) 6= 0.

Proof. Let

0 −→ Pn −→ Pn−1 −→ · · · −→ P0 −→M −→ 0

be a projective resolution ofM . Suppose ExtnA(M,A) = 0. It follows that Ext1
A(Ωn−1M,A) = 0,

hence the exact sequence

0 −→ Pn −→ Pn−1 −→ Ωn−1M −→ 0
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splits and Ωn−1M is projective. This is a contradiction.

2.2 Examples of Orders

In our exposition, we will be concerned with two main examples of orders. One example,

that of endomorphism rings, plays a central role in chapter 2 and has long been an object

of study in the representation theory of commutative rings. We will review Auslander’s

projectivization and some facts about endomorphism rings over Cohen-Macaulay local rings.

In chapter 3, we will use the notion of a path algebra over a commutative local ring. Path

algebras of finite acyclic quivers over fields are examples of finite dimensional hereditary

algebras. Moreover, path algebras change the global dimension of a ring in a measurable

way, and we will exploit this fact to prove a generalization of Auslander’s theorem [3]. We

will now recall some background about these two types of orders.

2.2.1 Endomorphism Rings

Endomorphism algebras of modules are a convenient way to rephrase questions about a

module M into questions about a ring EndR(M) = HomR(M,M). One of the most useful

techniques involves translating summands of the module M into projective modules. This

is known as projectivization. We direct readers to [14, II.2] which treats the Artin algebra

case. We will use the generalization of these results to commutative Notherian rings.

Proposition 2.2.1. Let R be a commutative Noetherian ring and M an R-module. Let

Γ = EndR(M) and eM(−) := HomR(M,−) : modR −→ mod Γbe the evaluation functor.

• eM : HomR(Z,X) −→ HomΓ(eM(Z), eM(X)) is an isomorphism for Z ∈ addM and

X ∈ modR.

• If X ∈ addM then eM(X) ∈ Proj Γ.

• eM : addM −→ Proj Γ is an equivalence of categories.



CHAPTER 2. BACKGROUND ON ORDERS 13

One of the main reasons one might study endomorphism rings is their tendency to have

finite global dimension, [5]. Due to this fact, endomorphism algebras have popped up in

a host of places one may want a ring to have finite global dimension; in particular, they

have appeared in the work of Van den Bergh[45], Leuschke[33], and Buchweitz-Leuschke-

Van den Bergh[17] and others on noncommutative resolutions. These rings will be discussed

in Chapter 3, where we work to extend the notion of an noncommutative crepant resolution

to the case of a Cohen-Macaulay ring with canonical module.

In general, endomorphism rings are also a convenient place to find algebras which are

isolated singularities. Indeed, if R is an isolated singularity, then for any MCM R-moduleM

and non-maximal prime ideal p, we have that EndR(M)p ∼= EndRp(Mp) ∼= EndRp(R
n
p ) which

is a matrix ring over Rp and of global dimension equal to dimRp.

Finding conditions which guarantee an endomorphism ring is MCM over R seems to be

quite difficult. This topic will not be addressed in this thesis, but the interested reader can

turn to [34, Section M] for some details.

2.2.2 Path Algebras over Commutative Rings

The use of quivers was introduced by Gabriel in [22]. They are a foundational tool in the

study of representation theory of finite dimensional algebras over fields. They are also useful

for computations in homological algebra; see for example [19, Section 5.3]. As far as we can

tell, very little is known about path algebras over more general commutative local rings. The

following background is adapted from the treatment of path algebras over fields in [1]. Many

of these results are likely well-known to experts, but lacking a good reference we include

proofs.

Definition 2.2.2. A quiver Q = (Q0, Q1, s, t) is a quadruple consisting of two sets: Q0

(whose elements are called vertices) and Q1 (whose elements are called arrows), and two

maps s, t : Q1 → Q0 which associate to each arrow a ∈ Q1 its source s(a) ∈ Q0 and its target

t(a) ∈ Q0 respectively.
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We abbreviate Q = (Q0, Q1, s, t) by Q. We say that Q is finite if Q0 and Q1 are finite

sets.

Example 2.2.3. Consider the quiver Q

1 a // 2 b // 3

Here, Q0 = {1, 2, 3} and Q1 = {a, b}. We have s(a) = 1, t(a) = 2, and s(b) = 2, t(b) = 3.

Definition 2.2.4. A path of length l > 1 is a sequence of l arrows a1a2...al such that for

1 6 i 6 l − 1, t(ai) = s(ai+1). We will also consider paths of length 0 at a vertex v. Such a

path is called the trivial path at vertex v and is denoted ev.

Sometimes we denote a path of length m by p and write p = a1...am for ai ∈ K or write

l(p) = m. In 2.2.3 the only path of length 2 in Q is ab. The paths of length 1 are a and b,

and the paths of length 0 are e1, e2, and e3.

Definition 2.2.5. Let R be a commutative Noetherian ring and Q a quiver. The path

algebra RQ of Q over R is the free module on the basis the set of all paths alal−1...a1 of

length l > 0 in Q. The product of two basis vectors (i.e., paths) bk...b1 and al...a1 of RQ is

defined by

(bk...b1) · (al...a1) = bk...b1al...a1

if t(al) = s(b1) and 0 otherwise, i.e., the product of arrows b · a is nonzero if and only if b

leaves the vertex where a arrives. Multiplication is extended to linear combinations of basis

elements R-linearly.

It is also useful to work with quotients of path algebras, and thus we record the following

fact which will allow us to do computations more easily.

Proposition 2.2.6. Let R be an algebra over a commutative local ring S . Let Q a quiver,
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and I an ideal in SQ. Then there is an isomorphism of S-algebras

RQ/IRQ ∼= SQ/I ⊗S R.

Proof. We begin with the case that I = 0. Define a map Φ : SQ×S −→ SQ via Φ(p, r) = rp

for a path p and extending linearly. This map is clearly S-bilinear, and hence induces a map

Φ : SQ ⊗S R −→ RQ. This map is onto since any basis element of RQ (i.e., a path in Q)

say p, is Φ(p⊗ 1). We note that any element of SQ⊗ R can be written as
∑n

i=1 pi ⊗ si for

paths pi. Now, if

Φ

(
n∑
i=1

(pi ⊗ si)

)
= s1p1 + s2p2 + · · ·+ snpn = 0,

it must be that si = 0 for all i, since the paths form a basis over S for SQ.

We now move to the case that I is an ideal. We note

S ⊗S SQ/I ∼= R⊗S SQ⊗SQ SQ/I ∼= RQ⊗SQ SQ/I ∼= RQ/IRQ,

where the second isomorphism follows from the I = 0 case.

We remark that, in this thesis, we will focus on commutative rings which are Cohen-

Macaulay. Thus, since RQ is a free R-module, RQ is maximal Cohen-Macaulay and thus an

order. Finding conditions which guarantees that RQ/I is a free (or even MCM) R-module

would also be an interesting question.

2.2.3 Homological behavior of Path Algebras

The main theorem of Chapter 3, Theorem 4.3.1, is homological in nature. As such, here we

collect some background on the homological behavior of path algebras.

Proposition 2.2.7 ([18, Corollary IX.2.7]). Let R be a local commutative ring and Λ and Γ
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be R-algebras which are free as R-modules. Suppose M is a right Λ-module and N is a left

Γ-module. Then

projdimΛ⊗RΓM ⊗R N = projdimΛM + projdimΓN.

This proposition allows us to easily deduce the following fact.

Lemma 2.2.8. Let Λ and Γ be orders over a regular local ring R and suppose gldim Λ =∞.

Then gldim(Λ⊗R Γ) =∞.

Proposition 2.2.9. Let Q be a quiver without oriented cycles. Let R be a regular local ring

of dimension d and RQ the path algebra of Q over R. Then gldimRQ = d+ 1.

The proof requires a few lemmas; this is probably well known, but lacking a good reference

we include a proof here for convenience. First we introduce some definitions.

Definition 2.2.10. Let R be a commutative Noetherian ring and Q an acyclic quiver.

• A representation of a quiver Q over R is an object V = (Vx, ϕα)x∈Q0,α∈Q1 where Vx is

a finitely generated R-module and ϕα is a R-linear homomorphism.

• Denote by modRQ the category of representations of Q.

• Denote by P(RQ) the full subcategory of modRQ consisting of the representations

with finitely generated free R-modules at the vertices.

• For a vertex x ∈ Q0, let P (x) = (P (x)y, ϕα) where P (x)y is a free R-module on the

basis of paths from x to y, and the ϕα are multiplication by the paths.

It is well-known that the category of representations of Q over R is equivalent to the

category of finitely generated modules over RQ, see [1, Section III.2] for details. For a

representation V = (Vx, ϕα) denote the corresponding module by Ṽ , i.e., Ṽ =
⊕

x∈Q0
Vx as

a R-module.
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Lemma 2.2.11. For any x ∈ Q0, P̃ (x) is projective in modRQ.

Proof. Note that

RQ =
⊕

p a path

Rp.

We wish to show P̃ (x) = RQex, where ex is the idempotent corresponding to x. Indeed, the

equivalence assigns to P (x) the sum
⊕

y∈Q1
P (x)y. Multiplying on the right by ex kills all

summands of

RQ =
⊕

p a path in Q

Rp

which do not correspond to a path originating at x, and is the identity otherwise. Thus

RQex =
⊕

p a path from x to y

Rp ∼= P̃ (x).

Now, since RQex is clearly a projective module by the above direct sum decomposition, we

have that P̃ (x) is projective and so P (x) is a projective object in modRQ.

Then Proposition 2.2.9 follows from the following lemma.

Lemma 2.2.12. Let R be a regular local ring of dimension d, and Q an acyclic quiver.

1. Any M ∈ P(RQ) has a projective resolution of length 1 by direct sums of representa-

tions of the form P (x).

2. For any projective resolution over RQ of a module M ∈ modRQ, the dth syzygy of M

is in P(RQ). If M is of finite length over R, then ΩtM is not MCM over R for any

t < d.

Proof. (1) This is exactly the content of [41, Theorem 2.15].

(2) Let M ∈ modRQ. We begin by resolving M . Since kernels are computed at vertices,

the depth at each vertex is maximal by the dth iteration. Since the global dimension of R

is d, the dth syzygy of M is in P(RQ). We can resolve this dth syzygy in one step by (1).
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Hence, this gives a projective resolution of length d+ 1 over RQ. Now, suppose M has finite

length over R. It follows that the R-module attached to each vertex of Q has finite length.

Thus by the Depth Lemma, we must resolve at least d steps to achieve a syzygy which is in

P(RQ).

Our main concern with path algebras will be that their global dimension is finite provided

the global dimension of R is finite. The following proposition shows that the converse also

holds.

Proposition 2.2.13. If R is a non-regular local ring and Q is an acyclic quiver, then

gldimRQ =∞.

Proof. Since R is commutative of infinite global dimension, there is actually a module M

of infinite global dimension. Let M denote the module corresponding to a representation of

RQ with a copy of M at each vertex and the zero map for each arrow. As an R-module

M̃ ∼=
⊕n

i=1M where n = |Q0|. Hence, projdimR M̃ = ∞. But, since all indecomposable

projective modules over RQ are of the form Rex for some x ∈ Q0, any projective RQ-module

is also a projective R-module. Hence a projective resolution over RQ is also a projective

resolution over R. It follows that M̃ cannot have a finite length projective resolution over

RQ and hence gldimRQ =∞.

2.3 Background on noncommutative crepant resolutions

For a more thorough background of the origins of noncommutative (crepant) resolutions,

see [34]. In algebraic geometry, a resolution of singularities is a central tool. A resolution

of singularities for a singular algebraic variety X is a non-singular variety X̃ together with

a map π : X̃ −→ X which is proper and birational. For a variety X, denote by ωX the

canonical sheaf; we come to the following definition.

Definition 2.3.1. Let π : X̃ −→ X be a resolution of singularities of X. Then π is called

crepant if π∗ωX = ωX̃ .
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The technical details of crepant resolutions are geometric, and not immediately relevant

to this thesis. Instead, we provide some informal motivation for the notion of crepancy,

mostly paraphrased from [34]. Crepancy is a way of relating the method for getting a

sheaf on X̃ from one on X via Hom and the method for doing so via ⊗. In the world of

Cohen-Macaulay rings, we think of an extension R −→ S where S is module finite over

R. The module achieved by “co-inducing” ωR, i.e., ExttR(S, ωR) where t = dimR − dimS,

is a canonical module for S, yet the module “induced” from ωR, namely S ⊗R ωR, need

not be. Crepancy is a way of remedying this situation. In other words, we are demanding

ωS ∼= S ⊗R ωR. If we consider that Gorenstein rings have free canonical module we get the

fact that for a Gorenstein variety X, a crepant resolution X̃ is also Gorenstein.

In 2004, Van den Bergh defined the notion of a noncommutative crepant resolution of a

ring R. This is a certain endomorphism ring of a reflexive R-module, see definition 3.2.1.

The goal of this was to extend the algebraic side of algebraic geometry and investigate the

Bondal-Orlov conjecture, which asserts that any two crepant resolutions of a variety X are

derived equivalent.

For Gorenstein rings R, there is a natural notion of crepancy–EndR(M) should be a max-

imal Cohen-Macaulay R-module. Attempts to generalize the definition of noncommutative

crepant resolution to Cohen-Macaulay rings has met with some difficulty. Chapter 3 of this

thesis considers a new definition and some obstructions.

2.4 Gorenstein Projective Modules

Let Λ be a Noetherian ring. In [6], Auslander and Bridger introduce the notion of a Goren-

stein projective module. It is also referred to as a totally reflexive module.

Definition 2.4.1. A Λ-module M is called Gorenstein projective (or totally reflexive) if the

natural map M −→M∗∗ is an isomorphism and ExtiΛ(M,Λ) = ExtiΛop(M∗,Λ) = 0 for all

i > 0. Equivalently, M is isomorphic to cokϕ where ϕ is a map in an exact sequence of
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projective Λ-modules

· · · −→ P2 −→ P1
ϕ−→ P0 −→ P−1 −→ P−2 −→ · · ·

which remains exact when dualized

· · · −→ P ∗−1 −→ P ∗0 −→ P ∗1 −→ · · · .

From the second characterization, it is clear that Gorenstein projective modules are

always infinite syzygies. In Chapter 4 we show if Λ is a n-canonical order, then nth syzygies

of maximal Cohen-Macaulay Λ-modules are Gorenstein projective, and hence are infinite

syzygies.

In general, a great deal of work has been done on studying Gorenstein-projectives. They

will play a role in both chapters 3 and 4 of this thesis. As such, we will mention a few

important facts.

Over Gorenstein commutative rings of finite Krull dimension, Gorenstein projective mod-

ules are precisely the maximal Cohen-Macaulay modules. In [16], Buchweitz defines the

singularity category of an arbitrary ring and shows that for a Gorenstein ring this category

is triangle equivalent to the stable category of Gorenstein-projective modules. Additionally,

a large body of work exists on studying the existence of non-trivial Gorenstein-projective

modules and the number of indecomposable Gorenstein-projective modules for a ring, called

the Gorenstein type.

In [16], Buchweitz works with rings, Λ, which are not necessarily commutative. He defines

a notion of Gorenstein for such rings and then defines maximal Cohen-Macaulay Λ-modules,

denoted MCM(Λ), to be what we refer to as Gorenstein-projective or totally reflexive mod-

ules. We wish to note that our definition of modules in CM Λ does not agree with this

definition for general noncommutative rings. In particular, while Gorenstein-projectives are

notoriously difficult to find over a general ring, our definition of maximal Cohen-Macaulay
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Λ-modules are easy to produce–as long as R is CM local we can simply take any high enough

syzygy M over Λ and by the Depth Lemma it will be in CM Λ.



Chapter 3

Gorenstein and Totally Reflexive Orders

as NCCRs

3.1 The Gorenstein Case

In [34], Leuschke addresses the properties we would like from a noncommutative resolution

of singularites. We’d like it to be symmetric, birational and non-singular. In the case where

R is Gorenstein, these conditions give a concrete description of these orders:

Theorem 3.1.1. [34, Theorem 2] Let R be a Gorenstein normal domain of dimension d and

Λ a module finite R-algebra. The following are equivalent:

(i) Λ is a symmetric birational R-order and has finite global dimension.

(ii) Λ ∼= EndR(M) for some reflexive R-module M , and Λ is homologically homogenous.

(iii) Λ ∼= EndR(M) for some reflexive R-module M , Λ is an R-order and gldim(Λ) <∞.

Motivated by this theorem we have the following definition.

Definition 3.1.2. A noncommutative crepant resolution of singularities (NCCR) of a d-

dimensional Gorenstein normal domain R is a ring Λ = EndR(M) for a reflexive module M

such that Λ is an R-order and has finite global dimension.

22
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To provide further motivation of this definition, we will supply a few examples. One of

the first examples of such objects come from the McKay correspondence, [37]. This is a way

of connecting the representation theory of finite subgroups G ⊂ GL(n, k) for n > 2 and k an

algebraically closed field of characteristic relatively prime to |G|. The main points are the

following two theorems, both due to Auslander.

Theorem 3.1.3 ((Auslander)). The twisted group ring S#G, where S = k[[x1, . . . , xn]] and

G is a finite group of linear automorphisms of S with order invertible in k, has finite global

dimension equal to n.

This is connected to the world of NCCRs via the following theorem.

Theorem 3.1.4. [2,4] Let S = k[[x1, . . . , xn]], n > 2, G ⊂ GL(n, k) a finite subgroup acting

on S with |G| invertible in k. Set R = SG. If G contains no non-trivial pseudo-reflections

then S#G ∼= EndR(S). In particular, EndR(S) has finite global dimension equal to n and is

isomorphic to a finite sum of copies of S and hence is MCM over R.

Yet another natural example of NCCRs arises from a generalization of a theorem of

Auslander [5].

Theorem 3.1.5. [26, 33, 39] Let R be a CM local ring of finite representation type and let

M be a representation generator of R. The ring EndR(M) has global dimension at most

max{2, d} with equality in the case d > 2. More precisely, projdimEndR(M) S = 2 for all

simple EndR(M) modules except the one corresponding to R, which has projective dimension

d.

It should be remarked that this gives a way of constructing noncommutative crepant

resolutions for 2 dimensional rings of finite type. But, if dimR > 3 then for a representation

generator M , EndR(M) is never homologically homogenous, and thus EndR(M) is not a

noncommutative crepant resolution.

The following theorems of Van den Bergh and Van den Bergh-Stafford show how this

definition mirrors the geometric case and that it influences the singularities of R.
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Theorem 3.1.6. [45, Theorem 6.6.3] Let R be a Gorenstein normal domain which is a

finitely generated k-algebra with k an algebraically closed field of characteristic zero. Assume

R is three-dimensional and has terminal singularities. Then R has a noncommutative crepant

resolution if and only if SpecR has a commutative crepant resolution.

Theorem 3.1.7. [44, Theorem 1.1] Let ∆ be a homologically homogeneous k-algebra with k

algebraically closed and of characteristic zero, then Z = Z(∆) has at most rational singular-

ities.

In particular, if a normal affine k-domain R has a noncommutative crepant resolution

then it has rational singularities.

Remark 3.1.8. Note in [44] that the definition of a noncommutative crepant resolution is

any homologically homogeneous ring of the form ∆ = EndR(M) for M reflexive and finitely

generated. In the situation where R is not Gorenstein, this is stronger than Definition

3.1.2, which is why this assumption is not needed in Theorem 3.1.7. In the case where

R is Gorenstein, any Λ satisfying Definition 3.1.2 is homologically homogenous and so the

theorem remains true with our definition.

Remark 3.1.9. The key points here are the fact that over a Gorenstein ring of dimension

d, a symmmetric order of finite global dimension is actually non-singular, and in fact even

homologically homogeneous [45, Lemma 4.2]. This very strong result does not hold in the

non-Gorenstein case.

Example 3.1.10. Let k be an infinite field and let R be the complete (2,1)-scroll, that is,

R = k[[x, y, z, u, v]]/I with I the ideal generated by the 2× 2 minors of ( x y uy z v ). Then, R is a

3-dimensional CM normal domain of finite CM type [49, 16.12]. It is known Γ = EndR(R⊕ω)

is MCM over R, and Γ is symmetric since it is an endomorphism ring over a normal domain

[32, Lemma 2.10]. But, Smith and Quarles have shown gldim(Γ) = 4 [43] while dimR = 3.

Thus Γ is a symmetric R-order of finite global dimension but it is not non-singular, thus Γ

does not provide a NCCR.
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The work in the Gorenstein case has largely been in producing these resolutions, and

there are many results in this direction in [17,45].

3.2 The non-Gorenstein Case

We now assume only that R is a Cohen-Macaulay local normal domain with canonical module

ωR. Following [19,20,32], we define

Definition 3.2.1. A noncommutative crepant resolution of a Cohen-Macaulay normal do-

main, R, is Λ = EndR(M) for a reflexive R-module M such that Λ is MCM and of finite

global dimension. A noncommutative resolution of R is Λ = EndR(M) for a reflexive module

M such that Λ is of finite global dimension.

But, by example 3.1.10, we know that this definition does not nececssarily guarantee a

non-singular order.

In another example, we see that EndR(R ⊕ ω) does yield a noncommutative crepant

resolution. This is the only other known non-Gorenstein ring of dimension 3 with finite CM

type [34, Example P.4]:

Example 3.2.2. Let R = k[[x2, xy, xz, y2, yz, z2]]. Then, R is known to have finite CM type

[49, 16.10] with indecomposable MCM modules R, ω ∼= (x2, xy, xz) and M := syzR(ω). The

ring A := EndR(R⊕ω⊕M) has global dimension 3, but it is not MCM. Indeed, A has depth

2, as both HomR(M,R) and HomR(M,M) have depth 2.

In [33, Example 3.2], Leuschke points out a way to fix this example: Λ = EndR(R ⊕ ω)

is in fact a noncommutative crepant resolution. This is because R ⊕ ω ∼= k[[x, y, z]] and so

EndR(R⊕ ω) is isomorphic to the twisted group ring k[[x, y, z]]#Z2. This is known to have

global dimension 3 and be MCM over R [49, Ch. 10].

It would be helpful to have an analog of Theorem 3.1.1 to produce examples. In order

to rescue some of the results from the prior case, we strengthen the hypotheses on Λ =
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EndR(M). Since the crepant condition (i.e., that Λ is maximal Cohen-Macaulay) can be

seen as a type of symmetry condition, one might hope to impose more stringent symmetry

requirements on Λ. Since MCM is equivalent to totally reflexive for Gorenstein rings, but

weaker in general, we strengthen the assumptions on Λ.

Definition 3.2.3. A strong NC resolution of a CM normal domain R is Λ = EndR(M) for a

reflexive R-module M such that Λ is totally reflexive over R and of finite global dimension.

Remark 3.2.4. This definition agrees with the original definition in the Gorenstein case

since over a Gorenstein ring the totally reflexive modules are exactly the MCM modules.

This definition turns out to be quite strong. In general, the Ext-vanishing assumed on Λ

along with finite global dimension force strong homological conditions on R.

Proposition 3.2.5. Let (R,m, k) be a CM local ring, and Λ a module-finite R-algebra such

that Λ† = HomR(Λ, R) has finite injective dimension as a left Λ-module. Additionally suppose

ExtiR(Λ, R) = 0 for all i > 0. Then R is Gorenstein.

Before the proof, we need the following lemma:

Lemma 3.2.6. Let R be a Cohen-Macaulay normal domain and Λ an R-algebra such that

ExtnR(Λ, R) = 0 for all n > 0. For all i > 0 and all left Λ-modules B , we have that

ExtR(B,R) ∼= ExtiΛ(B,HomR(Λ, R)).

Proof. This follows from a well-known change of rings spectral sequence available in [18,

Chapter XVI, Section 4], but we include a straight-forward proof in order to make the

details clearer. We begin with an injective resolution of R over itself.

Q• : 0 −→ Q0 −→ Q1 −→ . . . −→ Qi −→ Qi+1 −→ . . .
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We know that HomR(Λ,−) takes injective R-modules to injective Λ-modules. Thus it follows

that

HomR(Λ, Q•) : Hom(Λ, Q0) −→ Hom(Λ, Q1) −→ . . .

is a complex of injective Λ-modules. Further, this sequence is acyclic since ExtiR(Λ, R) = 0,

thus this is an injective resolution of Λ† = HomR(Λ, R) over Λ. Thus we have that

ExtiΛ(B,Λ†) = H i(HomΛ(B,HomR(Λ, Q•))).

On the other hand, tensor-hom adjointness gives us, for each i, a natural isomorphism

HomΛ(B,HomR(Λ, Qi)) ∼= HomR(Λ⊗Λ B,Q
i) ∼= HomR(B,Qi)

which gives an isomorphism of complexes

HomΛ(B,HomR(Λ, Q•)) ∼= HomR(B,Q•).

Thus we have that

ExtiΛ(B,Λ†) = H i(HomR(B,Q•)) = ExtiR(B,R)

and the claim is established.

And now to prove the Proposition.

Proof of Proposition 3.2.5. We must only note that Λ/mΛ is a finite-dimensional vector

space over k, and we then have that ExtiR(k,R) is a summand of ExtiR(Λ/mΛ, R). Since Λ†

has finite injective dimension,we have that

ExtiR(Λ/mΛ,Λ†) = 0
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for i sufficiently large. Then by Lemma 3.2.6 we have that ExtiR(Λ/mΛ, R) and hence

ExtiR(k,R) is zero for all i sufficiently large.

Corollary 3.2.7. If R is a CM local normal domain possessing a strong NC resolution Λ,

then R is Gorenstein.

3.3 Gorenstein Orders

When R is Gorenstein, one of the crucial components to Theorem 3.1.1 is that a symmetric

R-order Λ of finite global dimension has many desirable homological properties. We remind

the reader of the definition of a Gorenstein order.

Definition 3.3.1. Let R be a d-dimensional CM local normal domain with canonical module

ωR. An R-order Λ is a Gorenstein order if ωΛ := HomR(Λ, ωR) is a projective left Λ-module.

If we demand our order Λ := EndR(M) be a Gorenstein order and of finite global dimen-

sion, the following implies we rescue Theorem 3.1.7.

Theorem 3.3.2. [32, Proposition 2.17] Let Λ be an order over a Cohen-Macaulay local ring

R with canonical module ωR. The following are equivalent:

(i) Λ is non-singular.

(ii) Λ is Gorenstein and of finite global dimension.

(iii) CM Λ = Proj Λ.

We begin by recalling the final assertion of Example 3.2.2.

Example 3.3.3. Let R = k[[x2, xy, xz, y2, yz, z2]]. As before, we know Λ = EndR(R⊕ ω) is

a noncommutative crepant resolution and hence is a non-singular R-order. In particular, by

Theorem 3.3.2, EndR(R⊕ ω) is a Gorenstein R-order.
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In view of this, the following question is motivated.

Question 3.3.4. For a Cohen-Macaulay normal domain R with canonical module ωR, when

is EndR(R⊕ ωR) a Gorenstein order of finite global dimension?

Theorem 3.3.5. Suppose R is a henselian local ring and I is an indecomposable ideal which

contains a nonzerodivisor. Then EndR(R⊕I) ∼= HomR(EndR(R⊕I), I) as left EndR(R⊕I)-

modules if and only if I ∼= I† as R-modules.

Proof. (⇒) Let Λ = EndR(R⊕ I). We see,

Λ =

HomR(R,R) HomR(I, R)

HomR(R, I) HomR(I, I)

 ∼=
R I†

I EndR(I)

 .

The bimodule structure on HomR(Λ, I) is given by taking HomR(−, I) in each component

and taking the transpose. Thus we have

HomR(Λ, I) =

 I EndR(I)

HomR(I†, I) I

 .

Since R and I are indecomposable, when we decompose as left modules, we take the

column vectors. Thus if Λ ∼= HomR(Λ, I) one of the following must hold

 I

HomR(I†, I)

 ∼=
R
I


 I

HomR(I†, I)

 ∼=
 I†

EndR(I)

 .

Thus, either I ∼= R or I ∼= I†. In either case, the result holds.
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(⇐) We wish to show that, HomR(Λ, I) is a free left Λ-module. We identify

Λ =

HomR(R,R) HomR(I, R)

HomR(R, I) HomR(I, I)

 ∼=
R I†

I EndR(I)


as a ring, and Λ = R⊕ I† ⊕ I ⊕ EndR(I) as an R-module. This allows us to identify

HomR(Λ, I) = HomR(R, I)⊕ HomR(I†, I)⊕ HomR(I, I)⊕ HomR(EndR(I), I)

where we see that the action of Λ on HomR(Λ, I) is given by (λ · g)(η) = g(η · λ) for λ ∈ Λ.

We choose an isomorphism ϕ : I† −→ I and show that f =

[
0 ϕ 1 0

]
is a basis for

the left Λ-module ΛI . Indeed, suppose we have a map g ∈ HomR(Λ, I), i.e.,

g =

[
g1 g2 g3 g4

]
∈ HomR(R, I)⊕ HomR(I†, I)⊕ HomR(I, I)⊕ HomR(EndR(I), I).

We wish to show that there is a

λ =

λ1 λ2

λ3 λ4

 ∈ Λ

so that

g(η) = λ · f(η) = f(η · λ) (3.3.1)

for all η ∈ Λ and f =

[
0 ϕ 1 0

]
. Set

η =

r f

a σ


for r ∈ R, f ∈ I†, a ∈ I and σ ∈ EndR(I). Computing the left hand side of (3.3.1) we get
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g(η) = g1(r) + g2(f) + g3(a) + g4(σ).

The right hand side becomes

f(η · λ) =f

rλ1 + fλ3 rλ2 + fλ4

aλ1 + σλ3 aλ2 + σλ4


=ϕ(rλ2 + fλ4) + a(λ1) + σ(λ3)

=ϕ(rλ2) + ϕ(fλ4) + a(λ1) + σ(λ3).

The only choice we have to make is that of λ1 ∈ R, λ2 ∈ I†, λ3 ∈ I, and λ4 ∈ EndR(I).

We note that since I contains a nonzerodivisor, we have that EndR(I) is contained in the

total quotient ring of R and thus that every R-linear morphism is also EndR(I)-linear.

It follows at once that HomR(EndR(I), I) ∼= I. Now, since g4 ∈ HomR(EndR(I), I) ∼= I

it is just multiplication by g4(1) ∈ I and hence we have g4(σ) = σg4(1) and so we can

choose λ3 = g4(1) ∈ I. The same argument works for choosing λ1 = g3(1) ∈ EndR(I)

since EndR(I) is contained in the total quotient ring of R. Since r ∈ R we have that

ϕ(rλ2) = ϕ(λ2)r; but, ϕ is an isomorphism, so we can choose λ2 = ϕ−1(g1(1)) so that

ϕ(λ2) = g(1) and as before ϕ(λ2r) = ϕ(λ2)r = g1(1)r = g1(r). Similarly we have that

ϕ(fλ4) = λ4ϕ(f) since λ4 ∈ EndR(I), but then we choose λ4 = g2ϕ
−1 ∈ HomR(I, I). It

follows that ϕ(fλ4) = λ4ϕ(f) = g2ϕ
−1ϕ(f) = g2(f) and thus we have

ϕ(rλ2) + ϕ(fλ4) + a(λ1) + σ(λ3) = g1(r) + g2(f) + g3(a) + g4(σ).

This concludes the proof.

Before our main corollary we make a note that for a normal domain, a useful invariant
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of a ring is the divisor class group, Cl(R). We denote by D(R) the free abelian group on all

divisorial ideals of R. We then set Cl(R) to be the quotient of D(R) by F (R), the subgroup

generated by the principal ideals. If R is CM with canonical module ω and is generically

Gorenstein, then by Prop 2.1.9 we know that [ω] ∈ Cl(R). For our purposes we need to

know only that |[ω]| = 2 if and only if ω† = ω.

Corollary 3.3.6. Suppose R is a CM henselian generically Gorenstein ring with canonical

module ωR. Then EndR(R ⊕ ωR) is a Gorenstein R-order if and only if ωR ∼= ω†R. In

particular if R is a CM local normal domain, then this is further equivalent to [ωR] having

order 2 in the divisor class group of R.

Proof. (⇐) : this is a direct application of Theorem 3.3.5.

(⇒) : We must address the fact that Λ being a Gorenstein order may not imply that

HomR(Λ, ω) ∼= Λ but only that HomR(Λ, ω) is a summand of a finite sum of copies of Λ as

a Λ-module. We note that as R-modules

Λ ∼= R2 ⊕ ω ⊕ ω†

HomR(Λ, ω) ∼= ω2 ⊕R⊕ HomR(ω†, ω).

Since the functor HomR(R⊕ω,−) : add(R⊕ω) −→ projΛ is an equivalence, we have that

the indecomposable projective Λ-modules are P1 = HomR(R ⊕ ω,R) and P2 = HomR(R ⊕

ω, ω). As R-modules, we have

P1
∼= R⊕ ω†

P2
∼= R⊕ ω.

By considering ranks, we see HomR(Λ, ω) ∼= Pi ⊕ Pj for i, j ∈ {1, 2}. In the case that

HomΛ(Λ, ω) is P 2
1 or P1 ⊕ P2 it is clear that either R is Gorenstein or ω† ∼= ω since R, ω,
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and ω† are all rank one R-modules at the associated primes; in either case, the result holds.

Thus, we must only deal with the case

HomΛ(Λ, ω) ∼= P 2
2

so that we deduce HomR(ω†, ω) ∼= R. But, as R is CM, we have that R satisfies Serre’s

condition (S1) and we know ω† satisfies (S2) as it is the dual of a finitely generated R-

module. Thus, we know ω† is ω-reflexive by [23, Lemma 1.5], and we see

ω† ∼= HomR(HomR(ω†, ω), ω) ∼= HomR(R,ω) ∼= ω.

3.3.1 Examples

Since we now have a criterion on the canonical module, we will consider some invariant

subrings under actions by cyclic groups, where the order of ωR is easily computed. We start

with a theorem of Weston [48].

Hypotheses 3.3.7. Let S = k[x1, . . . , xn] and G a finite subgroup of GLn(k) with generators

g1, . . . , gt which acts linearly on the variables. For each j = 1, . . . , t let ζj be a primitive

|gj|th root of unity in k. Then for each j there exists a basis for kx1 ⊕ · · · ⊕ kxn so that

gj =



ζ
a1j
j 0 . . . 0

0 ζ
a2j
j . . . 0

0 . . . ζ
a3j
j 0

... . . . ...

0 . . . 0 ζ
anj

j


for integers aij with 1 6 aij 6 |gj| for j = 1, . . . , t. Set dij = gcd(a1j . . . , âij, . . . anj, |gj|) and

mj the least integer so that mj

∑n
i=1 dijaij = 0 mod|gj|. Let R = SG. When G is cyclic (i.e.,

t = 1), we will suppress the use of j, as it is not needed.
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Theorem 3.3.8. [47, Theorem 2.2] With Hypotheses 3.3.7 the class [ω] in Cl(R) of the

canonical R module ω has order m := lcm(m1, . . . ,mt)

Corollary 3.3.9. Let S = k[x1, . . . , xn] (or, k[[x1, . . . , xn]] ) and G ⊂ GL(n, k) be a finite

subgroup acting linearly on the variables and set R = SG. If EndR(R ⊕ ω) is a Gorenstein

R-order, then G is of even order.

Proof. First we note that by [48, Theorem 3.1], it suffices to treat the polynomial ring

case. We adopt the notation of Hypotheses 3.3.7. By Theorem 3.3.8 the order of ω is

lcm(m1, . . . ,mt). Now, Corollary 3.3.6 says that if EndR(R ⊕ ω) is a Gorenstein algebra,

then we have |[ω]| = 2, since R is normal. This means at least one mi = 2, call it m1. Then

we have that m1

∑n
j=1 a1jd1j = l|g1|. But as 2 is prime, it must divide l or |g1|. It cannot

divide l as then a smaller integer would be chosen instead of m1. Thus it must be that |g1|

is even, and hence G must be of even order.

For the remainder of this section we will focus on Veronese subrings, so we introduce

some notation. Let k[[x1, . . . , xn]](a) denote the ath Veronese subring of k[[x1, . . . , xn]]. I.e.,

it is the subring generated by all monomials of degree a in x1, . . . , xn. Alternatively, fix a

primitive ath root of unity ζ ∈ k. Then k[[x1, . . . , xn]](a) is the ring of invariants of the group

action of the cyclic group Ca = 〈σ〉 where σ has order a and σ · xi = ζxi.

Remark 3.3.10. Note that the converse to this is not true, since it is possible to have |G|

even, but the order of the canonical module not be 2. For example, letR = k[[x1, x2, x3, x4]](2) =

k[[xixj]]16i6j64. HereG is cyclic of order 2, G ⊂ SL2(k), andG contains no pseudo-reflections,

hence R is Gorenstein [46, Theorem 1]. It follows that the order of [ω] is 1.

This gives us the ability to produce ample examples of Gorenstein algebras over the power

series ring in n variables.
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3.4 Steady NCCRs and global dimension

In this section we will suppose we are working within the conditions of 3.3.7. We start with

the following definitions, from [30]:

Definition 3.4.1. Let R be a d-dimensional CM local normal domain with canonical module

ωR.

• A module M is steady if it is a generator and EndR(M) ∈ addRM .

• If M is steady and EndR(M) is a noncommutative crepant resolution of R then we say

EndR(M) is a steady NCCR.

• If M is a direct sum of reflexive modules of rank one, then we call M splitting.

• We say EndR(M) is a splitting NCCR if it is an NCCR and M is splitting.

• If M = M1 ⊕ · · · ⊕Mn is a decomposition of M into indecomposables, we say M is

basic if the Mi are mutually nonisomorphic.

Remark 3.4.2. Let R be a d-dimensional CM local normal domain with canonical module

ωR. We see that if the conditions of Corollary 3.3.6 are satisfied, then EndR(R ⊕ ω) ∼=

R ⊕ R ⊕ ω ⊕ ω ∈ addR(R ⊕ ω) so that R ⊕ ω is a steady splitting module. If R is not

Gorenstein, then R⊕ ω is basic.

Theorem 3.4.3. Let R = SG be a subring of S = k[[x1, . . . , xn]] for k an algebraically

closed field of characteristic zero with G a finite abelian subgroup of GLn(k) and such that

[ω] has order 2 in Cl(R). Then EndR(R ⊕ ω) has finite global dimension if and only if R

is isomorphic to a ring of the form T [[x1, x2, . . . , xn−j]] for j odd and 3 6 j 6 n. where

T = k[[x1, . . . , xj]]
(2).

Before the proof, we need the following result of Iyama and Nakajima:

Lemma 3.4.4. [30, Theorem 3.1] Let R be a d-dimensional CM local normal domain. Then

the following are equivalent:
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• R is a quotient singularity associated with a finite abelian group G ⊂ Gld(k) (i.e.,

R = SG where S = k[[x1, . . . , xd]].)

• R has a unique basic module giving a splitting NCCR.

• R has a steady splitting NCCR.

• There exists a finite subgroup G of Cl(R) such that
⊕

X∈GX gives an NCCR of R.

• Cl(R) is a finite group and
⊕

X∈Cl(R) X gives an NCCR of R.

In this case, S is the unique basic splitting R-module giving an NCCR.

Furthermore, if R is a completion of a toric variety all of the above conditions are equiv-

alent to the following:

• Cl(R) is a finite group.

Proof of Theorem 3.4.3. (⇒): Suppose that EndR(R⊕ω) has finite global dimension. Since

|[ω]| = 2 we know that EndR(R⊕ω) is a GorensteinR-order by Corollary 3.3.6. Thus, by 3.3.2

the global dimension of EndR(R⊕ω) is d. Then EndR(R⊕ω) is a noncommutative crepant

resolution of R. Indeed, EndR(R⊕ω) is MCM since ω ∼= ω† and thus EndR(R⊕ω) ∼= R2⊕ω2.

This NCCR is steady and splitting and R ⊕ ω is basic by Remark 3.4.2. Thus R ⊕ ω ∼= S

by Lemma 3.4.4. It follows from Galois theory that |G| = rankR S = 2. We see immediately

that n > 3 since otherwise R would be Gorenstein and |[ω]| = 1. Then G = 〈σ〉 where

σ2 = 1. The minimal polynomial of σ is (t − 1)(t + 1) and so σ is diagonalizable with

eigenvalues λ = ±1. Thus there is a basis for V = kx1 ⊕ kx2 ⊕ · · · ⊕ kxn where

σ =



1 0 0 . . . 0

0 1 0 . . . 0

0 0 −1 0 . . .

... . . . ...

0 0 0 0 −1


.



CHAPTER 3. GORENSTEIN AND TOTALLY REFLEXIVE ORDERS AS NCCRS 37

Notice that the number of negative entries is exactly the quantity j from the theorem.

We claim there must be at least 3 entries which are negative, and that the number of negative

entries must be odd. Indeed, if σ = In, then |G| = 1 and hence there must be at least one

negative entry. Now, if there is exactly one then a1 = a2 = · · · = an−1 = 2 and an = 1 in

the notation of Hypotheses 3.3.7. It would follow that d1 = d2 = d3 = · · · = dn−1 = 1 and

dn = 2, hence
∑n

i=1 aidi = 2n and |[ω]| = 1, by Theorem 3.3.8. Now, let l be the largest

index so that the lth row contains a positive entry. We have that l 6 n− 2. Then it must be

that di = 1 for all i = 1, . . . , n. Thus aidi = 2 in the case that i 6 l and aidi = 1 in the case

that i > l. Since we need that
∑n

i=1 aidi is odd, it must be that n− l is odd, hence there are

an odd number of negative entries in σ. It follows at once that R is of the form indicated.

(⇐): Suppose R is of the indicated form. As above, we then have di = 1 for i =

1, . . . , n. Then by [48, Example 2.3] ω ∼= x1x2 . . . xnS ∩R ∼= (xj, . . . , xn) and hence R⊕ ω ∼=

k[[x1, . . . , xn]] as R-modules and thus, EndR(R ⊕ ω) ∼= EndR(S) which is known to have

finite global dimension, see [30, Example 2.3].

Example 3.4.5. It should be noted that the condition |[ω]| = 2 (in particular, that R is

not Gorenstein) is needed. If we do not require this, the theorem is false. Let R = k[[x, y]]Z2

where the group acts via x 7→ y and y 7→ x. Then R ∼= k[[xy, x + y]] and hence is a

regular local ring. Thus EndR(R⊕ω) = EndR(R2) has finite global dimension as it is Morita

equivalent to R. Similar examples exist for larger n.



Chapter 4

Auslander’s Theorem and Path Algebras

In this chapter we examine orders which exhibit some behavior seen in commutative rings.

Specifically, we note that by the Auslander-Buchsbaum formula [7], maximal Cohen-Macaulay

modules over commutative rings are either projective or have infinite projective dimension.

We consider non-commutative rings where a similar result holds for high syzygies and prove

that finite projective dimension of the canonical module, ωΛ is sufficient to guarantee this

condition. By moving to syzygies of MCM modules we are able to strengthen a theorem

of Auslander which states that a CM local ring of finite CM type must be an isolated sin-

gularity[3], see Theorem 4.3.1. It turns out, path algebras are a natural example of orders

whose canonical modules have finite projective dimension and thus provide a good setting to

apply our theorem. We are able to deduce that if for a complete Gorenstein domain R, the

path algebra RQ has finitely many nonisomorphic syzygies of MCM modules, then in fact

R must be an isolated singularity. Finally, we investigate the ascent of finite syzygy type to

and from the Henselization of an order.

We begin by studying a condition which produces a Auslander-Buchsbaum type formula

in orders.

38
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4.1 Projective Dimension and the Canonical module

Recall that a great deal of work has been done to study Gorenstein orders. These are natural

candidates in the CM local ring case for noncommutative crepant resolutions. One of the

reasons that Gorenstein orders are exceptionally useful is that they satisfy an Auslander-

Buchsbaum formula. Throughout R is a d-dimensional Cohen-Macaulay local ring with

canonical module ω and Λ will be an R-order. We remind the reader that ωΛ := HomR(Λ, ω)

is the canonical module of Λ. Recall that this is both a Λ- and Λop-module.

Lemma 4.1.1. [32, Lemma 2.16] Let Λ be a Gorenstein R-order. Then for any X ∈ mod Λ

with projdimΛX <∞ we have

projdimΛX + depthRX = dimR.

We begin this section by generalizing this result.

Theorem 4.1.2. Let Λ be an R-order with projdimΛop ωΛ = n. For any X ∈ mod Λ with

projdimΛX <∞ we have

dimR 6 projdimΛX + depthRX 6 dimR + n.

Moreover, if gldim Λ = n+ d, then projdimΛM 6 projdimΛop ωΛ = n for all M ∈ CM Λ.

With this motivation, we give a name to this condition.

Definition 4.1.3. Let R be a CM local ring with canonical module ω. Let Λ be an R-order.

We call Λ n-canonical if projdimΛop ωΛ = n.

Now we move on to prove Theorem 4.1.2, which follows from the strong condition of

Ext-vanishing imposed by being n-canonical.
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Lemma 4.1.4. Suppose Λ is an n-canonical order over a CM local ring R with canonical

module ω. If M ∈ CM Λ then ExtiΛ(M,Λ) = 0 for i > n. In particular, if X ∈ Ωn CM Λ,

then ExtiΛ(X,Λ) = 0 for i > 0.

Proof. Begin by taking a projective resolution of ωΛ as a left module over Λop

0 −→ Pn −→ Pn−1 −→ . . . −→ P0 −→ ωΛ −→ 0

and apply Dd(−) to get a resolution of left Λ-modules,

0 −→ Λ −→ I0 −→ . . . −→ In−1 −→ In −→ 0

with Ij ∈ addωΛ. Decompose this exact sequence into short exact sequences

0 −→Λ −→ I0 −→ Y1 −→ 0

0 −→Yi −→ Ii −→ Yi+1 −→ 0 for i = 1, . . . , n− 2

0 −→Yn−1 −→ In−1 −→ In −→ 0.

Since Ik ∈ addωΛ for all k, we have ExtiΛ(M, Ik) = 0 for all i > 0, M ∈ CM Λ, k = 1, . . . , n.

Then, we see

Extn+j
Λ (M,Λ) ∼= Extn+j−1

Λ (M,Y1) ∼= . . . ∼= Ext1
Λ j(M, In) = 0

for any M ∈ CM Λ, j > 0. This concludes the proof of the first statement. For the second

statement, the usual dimension shift in the first argument of Extn+1
Λ (M,Λ) gives

ExtjΛ(ΩnM,Λ) ∼= Extn+j
Λ (M,Λ) = 0

for j > 0.
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With this in hand, we are able to prove our generalize Auslander-Buchsbaum theorem.

Proof of Theorem 4.1.2. We start by showing that if X ∈ CM Λ satisfies projdimΛX < ∞,

then projdimΛX 6 n. By Lemma 4.1.4, if X ∈ CM Λ, then ExtiΛ(X,Λ) = 0 for i > n. Since

ExtrΛ(X,Λ) 6= 0 for r = projdimΛX by Lemma 2.1.13, we must have either projdimΛX 6 n

or projdimΛX = ∞. Applying the Depth Lemma and the fact that Λ is MCM over R we

know that given any module X ∈ mod Λ with depthRX = t, the (d − t)th syzygy must be

in CM Λ so that

projdimΛX 6 d− t+ n = dimR− depthRX + n.

The right side inequality follows at once from this. To prove the left inequality we simply

note that projective modules must be in CM Λ. By the Depth Lemma again, if depthRX = t,

then the first syzygy which could be projective is the (d− t)th, as each syzygy can go up in

depth by at most 1. Thus

projdimΛX > d− depthRX.

This concludes the proof.

Remark 4.1.5. Note that the second inequality of Theorem 4.1.2 surely can not be strength-

ened to an equality. Indeed, suppose M ∈ CM Λ has projdimΛM = n. Then of course

ΩM ∈ CM Λ has projdimΛ ΩM = n− 1, but depthR ΩM = depthRM .

It is clear by the work above that any order Λ with gldim Λ <∞ is an n-canonical order

for some n. The first question we address is whether these can exist with infinite global

dimension. We will show that in fact they do, and that the construction is natural. We

begin by identifying the canonical module of a tensor product of orders.

Lemma 4.1.6. Let Λ1 and Λ2 be algebras over a Gorenstein local ring R such that Λ1 and

Λ2 are free R-modules. Then Λ1 ⊗R Λ2 is an R-order and ωΛ1⊗Λ2
∼= ωΛ1 ⊗R ωΛ2 as both

Λ1 ⊗R Λ2- and (Λ1 ⊗R Λ2)op-modules.
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Proof. It is easy to check that since Λ1 and Λ2 are finitely generated free R-modules we have

an R-isomorphism

ωΛ1 ⊗ ωΛ2 = HomR(Λ1, R)⊗R HomR(Λ2, R)

∼= HomR(Λ1 ⊗R Λ2, R)

=ωΛ1⊗Λ2 .

The isomorphism Φ : HomR(Λ1, R) ⊗R HomR(Λ2, R) −→ HomR(Λ1 ⊗R Λ2, R) is given by

[Φ(f⊗g)](a⊗ b) = f(a)g(b). We must only show that Φ is a morphism of Λ1⊗RΛ2-modules.

Let f ⊗ g ∈ HomR(Λ1, R)⊗R HomR(Λ2, R). We compute, for any λ1 ⊗ λ2 ∈ Λ1 ⊗ Λ2,

[(λ1 ⊗ λ2) · Φ(f ⊗ g)](η1 ⊗ η2) =Φ[f ⊗ g]((η1 ⊗ η2) · (λ1 ⊗ λ2))

=f(η1λ1)g(η2λ2).

On the other hand, Φ(f ⊗ g) is the composition of f ⊗ g followed by multiplication µ :

R⊗R −→ R. We see then

[Φ((λ1 ⊗ λ2) · f ⊗ g))](η1 ⊗ η2) =µ ◦ [(λ1 ⊗ λ2) · f ⊗ g]((η1 ⊗ η2))

=µ ◦ f ⊗ g((η1 ⊗ η2)(λ1 ⊗ λ2))

=µ ◦ f ⊗ g(η1λ1 ⊗ η1λ1)

=f(η1λ1)g(η1λ1).

Checking that it is a (Λ1 ⊗R Λ2)op = Λop
1 ⊗R Λop

2 -module morphism is similar.

Since we are now able to find the canonical module of orders which are free over R, we

get the following examples for R a regular local ring. Recall that over a regular local ring

the MCM modules are exactly the free modules.
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Theorem 4.1.7. Let (R,m, k) be a regular local ring. Suppose Λ1, Λ2 are n1-canonical and

n2-canonical R-orders,respectively. Then Λ1 ⊗ Λ2 is an n1 + n2-canonical R-order.

Proof. Since Λ1 and Λ2 are MCM over R, and R is a regular local ring, then in fact they

are free. Then, noting that (Λ1 ⊗R Λ2)op = Λop
1 ⊗R Λop

2 , this follows from Lemma 4.1.6 and

Lemma 2.2.8; indeed, we see

projdimΛop
1 ⊗Λop

2
(ωΛ1⊗Λ2) = projdimΛop

1 ⊗Λop
2
ωΛ1 ⊗ ωΛ2

= projdimΛop
1
ωΛ1 + projdimΛop

2
ωΛ2 .

Now, in order to produce an order of infinite global dimension where projdimΛop ωΛ = n,

we can take a Gorenstein order of infinite global dimension as one factor, and an order of

finite global dimension as the other. The following example can be considered whenever we

have a commutative Gorenstein local ring R.

In order to reduce to the complete case, we need a lemma.

Lemma 4.1.8. Suppose R is a CM local ring with a canonical module ωR and that R ↪→ S is

a faithfully flat (commutative) ring extension such that dimS = dimR and S has a canonical

module ωS = ωR ⊗R S (e.g., if S = R̂). We have that Λ is an n-canonical R-order if and

only if Λ⊗R S is an n-canonical S-order.

Proof. We really only need to prove two facts. First we note that since S is faithfully flat

HomR(M,N)⊗R S ∼= HomS(M ⊗R S,N ⊗R S).

It follows at once that ωΛ⊗RS
∼= ωΛ⊗RS over S. Verifying that this is a Λ⊗RS-isomorphism is

straightforward. Next, since exactness of Λ-module sequences can be checked as R-modules,

S is faithfully flat over R, and − ⊗R S takes projective Λ-modules to projective Λ ⊗R S-

modules, we see that

projdimΛ ωΛ = projdimΛ⊗RS
ωΛ⊗RS.
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The lemma follows at once from these two observations.

Theorem 4.1.9. Let (R,m, k) be a d-dimensional Gorenstein local domain. Suppose Q

is an acyclic quiver. Then Λ = RQ is a 1-canonical R-order. If R is not regular, then

gldim Λ =∞.

Proof. We reduce to the case where R is complete. Let R̂ denote the completion of R with

respect to the maximal ideal. By Lemma 4.1.8, we see that RQ is 1-canonical if and only if

RQ⊗R R̂ is one canonical. But, by Proposition 2.2.6, we know that RQ⊗ R̂ ∼= R̂Q. Thus we

see RQ is 1-canonical if and only if R̂Q is 1-canonical. Thus we may assume R is complete.

Now, by Cohen’s Structure Theorem for complete local rings, [36]Theorem 8.24, R is an

order over some d-dimensional regular local ring S. Since R is a Gorenstein local ring and

an order over S, we have R ∼= ωR ∼= HomS(R, S) and projdimS ωR = 0 since R is MCM

over S and hence free; i.e., R is a 0-canonical S-order. Further, by Proposition 2.2.9, we

know that gldimSQ = d + 1 and hence by Theorem 4.1.2, projdimSQop ωSQ = 1; i.e., SQ is

a 1-canonical S-order. Now, by Proposition 2.2.6 and Theorem 4.1.7, Λ := RQ ∼= R ⊗S SQ

is a 1-canonical S-order.

All that is left is to establish that Λ is in fact an R-order (indeed, it is R-free) and that

HomS(Λ, S) ∼= HomR(Λ, R), i.e. that the canonical module of Λ as an R-order agrees with

that as an S-order. For the final assertion, we see

HomR(Λ, R) ∼= HomR(Λ,HomS(R, S)) ∼= HomS(Λ⊗R R, S) ∼= HomR(Λ, S).

It is straight-forward to verify this is also an isomorphism of Λ-modules. Lastly, by Lemma

2.2.8 we know that if R is not regular, we have gldim Λ =∞.

One might ask if we can extend the previous theorem to includeRQ/I for some admissable

ideal I. One problem is that, in general, RQ/I may not be free (or even MCM) over R and

so some of our isomorphisms fail to hold. If I is monomial and admissable and generated by

paths this is satisfied and the theorem generalizes accordingly.
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Precisely, ifQ and I are a quiver and an admissable monomial ideal so that gldim(SQ/I) =

n+ d, then RQ/IRQ is an n-canonical order with infinite global dimension. Note that The-

orem 4.1.9 in addition to Theorem 4.1.7 allow us to produce n-canonical orders of infinite

global dimension for arbitrary n.

Here we have chosen only to present the simpler version of Theorem 4.1.9 since the proof

is much nicer, and in Corollary 4.4.5 it still exhibits the usefulness of Theorem 4.3.1.

4.2 n-Isolated Singularities

Our main theorem of this chapter is that if an order Λ is n-canonical and has only finitely

many nonsiomorphic indecomposable modules in Ωn CM Λ, then Λ has finite global dimension

on the punctured spectrum of R. Here we give such orders a name and investigate some of

their properties. These are direct generalizations of isolated singularities and non-singular

orders which have been investigated by various authors; see e.g., [27, 29,32].

Definition 4.2.1. Let Λ be an order over a CM ring R. We call Λ an n-isolated singularity

if

gldim Λp 6 n+ dimRp

for all non-maximal prime ideals p ∈ SpecR. We say Λ is n-nonsingular if gldim Λp =

n+ dimRp for all p ∈ SpecR.

The following category is of central importance here, so we endow it with its own notation.

Notation 4.2.2. Denote by S the additive closure of the full subcategory of nth syzygies of

maximal Cohen-Macaulay Λ-modules, i.e., S = add{Ωn CM(Λ)}

The rest of this Chapter focuses on the class of modules S. Generally, over n-canonical

orders, modules in S exhibit similar behavior to MCM modules over Gorenstein local rings.

We begin by noting that Λ is an n-isolated singularity if and only if modules in S are

projective on the punctured spectrum. To do this, we need the following lemma.
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Lemma 4.2.3. Let Λ be an n-isolated singularity over a CM local ring R. Then if M ∈

CM(Λ) we have

projdimMp 6 n

for all non-maximal primes p ∈ SpecR.

Proof. Let M ∈ CM Λ. It follows that Mp ∈ CM Λp. Pick a maximal Mp-regular sequence

x1, . . . , xt ∈ pRp. We have an exact sequence

0 −→Mp
x1−→Mp −→Mp/x1Mp −→ 0

which induces an exact sequence

ExtiΛp
(M,−)

x1−→ ExtiΛp
(M,−) −→ Exti+1

Λp
(M/x1M,−) −→ Exti+1

Λp
(M,−).

It follows from this that projdimΛp
Mp/x1Mp = projdimΛp

Mp + 1, and by induction we get

projdimΛp
Mp/(x1, . . . , xt)Mp = projdimΛp

Mp + dim(Rp). Since gldim Λp = n + dim(Rp), it

must be that projdimΛp
Mp 6 n.

From this we get the following useful characterization of n-isolated singularities.

Corollary 4.2.4. Let Λ be an order over a CM local ring R. Then Λ is an n-isolated

singularity if and only if for all X ∈ S, Xp is a projective Λp-module for all non-maximal

primes p ∈ SpecR.

Proof. (⇒): This follows at once from the previous lemma.

(⇐): This is clear by the Depth Lemma. Since any dth syzygy of a Λ-module is in CM Λ,

we have nth syzygies of modules in CM Λ are projective on the punctured spectrum. It

follows that (n + d)th syzygies of arbitrary (finitely generated) Λ-modules are projective on

the punctured spectrum. This implies Λ is an n-isolated singularity.

The following lemma will be useful later, as it detects n-isolated singularities.
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Lemma 4.2.5. Let R be a CM local ring with canonical module ω. Let Λ be an R-order.

Then Λ is an n-isolated singularity if and only if `R(Ext1
Λ(N,M)) < ∞ for all M,N ∈ S,

where `R(−) denotes the length of an R-module.

Proof. (⇒): Recall that an R-module M has finite length if and only if `R(M) <∞ for all

non-maximal p ∈ SpecR. Since N ∈ S, by Corollary 4.2.4 we know Np is projective on the

punctured spectrum. It follows that ExtΛ(N,M)p = ExtΛp(Np,Mp) = 0 for all non-maximal

p ∈ SpecR.

(⇐): Suppose `(Ext1
Λ(N,M)) <∞ for allM,N ∈ S. Suppose there is a prime ideal p for

which gldim Λp > n + dim(Rp). Then there must exist a maximal Cohen-Macaulay module

M so that projdimX > 1 for X = ΩnM . Consider the short exact sequence

0 −→ ΩX −→ F −→ X −→ 0,

where F is a free module since X,ΩX ∈ S, by assumption Ext1
Λ(X,ΩX) = 0. This means

the above sequence splits, and hence X is projective, a contradiction. Thus it must be that

gldim Λp 6 n+ dim(Rp).

The next proposition illustrates that nth syzygies (of MCM modules) over an n-isolated

singularity behave like MCM modules over an isolated singularity. This is shown for the

n = 0 case in [27, Theorem 1.3.1]; the proof is largely the same except the d = 2 case of part

(1).

Proposition 4.2.6. Let Λ be an n-isolated singularity over a d-dimensional CM local ring

R. For X ∈ S:

1. ExtiΛ(TrXop,Λ) = 0 for i = 1, . . . , d.

2. ExtiΛ(X, Y ), TorΛ
i (Z,X), and HomΛ(X, Y ) are all finite length over R for any Y ∈

mod Λ and Z ∈ mod Λop.
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Proof. For assertion (1), we note that if d = 0 there is nothing to show. In the case where

d = 1, the fact that X is projective on the punctured spectrum implies that Ext1
Λ(TrXop,Λ)

has finite length since TrXop
p = 0 for any non-maximal prime ideal p. Then the well-known

exact sequence (see, e.g., [35, Proposition 12.8])

0 −→ Ext1
Λ(TrXop,Λ) −→ X −→ X∗∗ −→ Ext2

Λ(TrXop,Λ) −→ 0

shows that Ext1
Λ(TrXop,Λ) embeds in X. But, depthX > 1 since d > 1 so that X is

torsion-free. Thus, Ext1
Λ(TrXop,Λ) = 0.

Now suppose d > 2. We still have that Ext1
Λ(TrXop,Λ) = 0 by the above case. Thus, we

have an exact sequence

0 −→ X −→ X∗∗ −→ Ext2
Λ(TrXop,Λ) −→ 0.

By virtue of being a dual module, X∗∗ has depth over R at least 2, by Lemma 2.1.5. Since

Ext2
Λ(TrXop,Λ) is of finite length, hence depth zero, the Depth Lemma implies depthRX =

1. This is a contradiction since d > 2 andX ∈ CM Λ. Thus, we must have Ext2
Λ(TrXop,Λ) =

0. It now follows from the above exact sequence that X ∼= X∗∗.

Finally, suppose TrXop ∈ ⊥k−1Λ for some 3 6 k 6 d. We begin with a projective

resolution

... −→ Pk −→ Pk−1 −→ . . . −→ P1 −→ P0 −→ TrXop −→ 0.

Dualizing the above exact sequence, and utilizing the fact that X ∼= X∗∗, we get an exact

sequence

0 −→ X −→ P ∗2 −→ P ∗3 −→ . . . −→ P ∗k−1 −→ (ΩkX)∗ −→ ExtkΛ(TrXop,Λ) −→ 0,

where depthR(ΩkX)∗ > 2, again by Lemma 2.1.5 since it is a dual module. Now, if

ExtkΛ(TrXop,Λ) 6= 0 the Depth Lemma implies depthRX 6 d − 1, since ExtkΛ(TrXop,Λ)
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has finite length and P ∗i ∈ CM Λ for all i. This is impossible since X ∈ CM Λ. Thus, it must

be that ExtkΛ(TrXop,Λ) = 0. Thus part (1) is proved by induction.

The next result shows that n-nonsingular orders have trivial category of nth syzygies.

This is the analog of [32, Prop 2.17], and the proof is largely the same.

Proposition 4.2.7. Let Λ be an order over a CM ring R with canonical module ωR. The

following are equivalent:

1. Λ is n-nonsingular.

2. gldim Λm 6 n+ d for all maximal ideals m ∈ SpecR.

3. CM Λ ⊂ projdim6n Λ.

4. projdimΛop ωΛ 6 n and gldim Λ <∞.

Proof. The first 3 implications are the same argument as [32], but we include them for the

convenience of the reader. (1)⇒ (2) This is immediate.

(2)⇒ (3) This proof is nearly identical to the proof of Lemma 4.2.3.

(3) ⇒ (4) Since ωΛ ∈ CM Λ, we know it has projective dimension at most n by (3).

Further, since each dth syzygy is MCM by the depth lemma, we also have gldim Λ <∞.

(4) ⇒ (1) Fix a non-maximal prime ideal p ∈ SpecR and let X be in CM(Λp). We will

show that projdimΛp
X 6 n and the depth lemma will conclude the proof as in the previous

step. Since localization can only reduce projective dimension, we have that projdimΛop
p
ωΛp 6

n and gldim Λp <∞. The result then follows from Theorem 4.1.2

Remark 4.2.8. One might ask if we can strengthen condition (3) to be a set equality. If

n > 1, the answer is no: consider a regular sequence x = x1, . . . , xd on Λ, and take the

Koszul complex over Λ on x. Then this is exact, and has length d. Then Ωd−1(Λ/xΛ) has

depth d − 1 by the Depth Lemma, but the end of the Koszul complex gives a length one

resolution. Thus Ωd−1(Λ/xΛ) ∈ projdim6n Λ but is not in CM Λ. We finally note that (3) is

equivalent to C ⊂ Proj Λ.
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4.3 Gorenstein Projectives and Auslander’s Theorem

The goal of this section is to show the following variation of Auslander’s Theorem, [3, Corol-

lary A.2].

Theorem 4.3.1. Let R be a CM local ring R with canonical module, ωR and let Λ be an R-

order. Suppose projdimΛop ωΛ = n. If Λ has only finitely many nonisomoprhic indecomposable

modules in S, then Λ is an n-isolated singularity.

The proof of this will rely on the notion of Gorenstein projective modules, introduced in

Chapter 2.

Our interest in Gorenstein projectives is motivated by the following fact. We let GProj Λ

denote the subcategory of all Gorenstein projective modules, and GProjΛ the corresponding

stable category.

Proposition 4.3.2. Let R be a CM local ring with canonical module ωR. Suppose Λ is an

R-order with projdimΛop ωΛ = n, where n > 2. Let M be a non-projective Λ-module; then

M ∈ GProj if and only if M ∈ S.

Before the proof we note that the only reason we require M to be non-projective is

that it is not necessarily true that Proj Λ ⊂ S, but certainly all projectives are Gorenstein

projective.

Proof. Since Gorenstein projectives occur as syzygies in complete resolutions, it is clear that,

excluding projective modules, GProj Λ ⊂ add Ωn(CM Λ). We show the reverse inclusion. Let

M = ΩnX for a maximal Cohen-Macaulay module X, and suppose M is nonprojective. By

Lemma 4.1.4 we have that ExtiΛ(M,Λ) = 0 for all i > 0. Then, by dualizing a projective

resolution of M , we get an exact sequence

0 −→M∗ −→ P ∗0 −→ P ∗1 −→ · · · .
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Since M necessarily has infinite projective dimension by Lemma 3.4.3, we see M∗ is an

arbitrarily high syzygy. By Lemma 4.1.4 again we have ExtiΛ(M∗,Λ) = 0 for i > 0. All that

remains to show is that M is reflexive. Note that TrM op fits into the above exact sequence

as follows

0 −→ TrM op −→ P ∗2 −→ P ∗3 −→ · · · .

Thus, TrM op is also an arbitrarily high syzygy and satisfies the same Ext vanishing as M .

Thus the exact sequence from before

0 −→ Ext1
Λ(TrM op,Λ) −→M −→M∗∗ −→ Ext2

Λ(TrM op,Λ) −→ 0

implies that M ∼= M∗∗.

The key use of Gorenstein projectives is that they are closed under extensions. This has

been shown in various places, see e.g., [13, Proposition 5.1].

Corollary 4.3.3. Let Λ be a n-canonical order over a CM local ring R with canonical module

ω. Then S is closed under extensions.

4.4 Main Theorem

We now return to proving the following main theorem of this chapter.

Theorem 4.4.1. Let R be a CM local ring with canonical module ω. Let Λ be an n-canonical

R-order. If Λ has only finitely many nonisomorphic indecomposable modules in S, then Λ is

an n-isolated singularity.

The proof of this involves several lemmas. It follows closely Huneke and Leuschke’s proof

of Auslander’s theorem, [25]. We start with Miyata’s Theorem.
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Lemma 4.4.2. [38, Theorem 2] Let Λ be a module finite algebra over a commutative Noethe-

rian ring R. Suppose we have an exact sequence of finitely generated Λ-modules

M −→ X −→ N −→ 0

and that X ∼= M ⊕N . Then the sequence is a split short exact sequence.

From this we are able to deduce the following lemma about Ext1
Λ(N,M). This is originally

due to Huneke-Leuschke, [25, Theorem 1]. Here we include a simpler proof contained in

[35, Lemma 7.10]. Note that the r = 0 case of this lemma is exactly Miyata’s theorem,

Lemma 4.4.2.

Lemma 4.4.3. Let (R,m) be a CM local ring and Λ an R-order. Fix r ∈ m. Suppose we

have an exact sequence of Λ-modules

α : 0 −→M −→ Xα −→ N −→ 0

and a commutative diagram

α : 0 −−−→ M
i−−−→ Xα −−−→ N −−−→ 0

r

y f

y ∥∥∥
rα : 0 −−−→ M −−−→

j
Xrα −−−→ N −−−→ 0.

If Xα
∼= Xrα, then α ∈ rExt1

Λ(N,M).

Proof. The commutative diagram in the lemma is a pushout diagram, so we have an exact

sequence

0 −→M
f−→M ⊕Xα

g−→ Xrα −→ 0,

where f =

 r
−i

 and g =

[
j f

]
. Since M ⊕ Xα

∼= M ⊕ Xrα, Lemma 4.4.2 implies this
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exact sequence is split. From this we get that the induced map on Ext,

 r

−i∗

 : Ext1
Λ(N,M) −→ Ext1

Λ(N,M)⊕ Ext1
Λ(N,Xα),

is a split monomorphism. Let h : Ext1
Λ(N,M)⊕Ext1

Λ(N,Xα) −→ Ext1
Λ(N,M) be a splitting,

i.e., a left inverse of this split monomorphism. Now apply HomΛ(N,−) to the exact sequence

α : 0 −→M −→ Xα −→ N −→ 0;

this yields an exact sequence

· · · −→ HomΛ(N,N)
δ−→ Ext1

Λ(N,M)
i∗−→ Ext1

Λ(N,Xα) −→ · · · .

The connecting map δ takes 1N to α, hence i∗(α) = 0, as the sequence is exact. From this

we get that  r

−i∗

 (α) = (rα, 0).

It follows that

α = h ◦ [r − i∗]T (α) = h(rα, 0) = rh(α, 0) ∈ rExt1
Λ(N,M).

Now, we are able to prove the following lemma from which the main theorem follows.

This proof in the commutative case is again due to Huneke-Leuschke [25]; the generalization

to the case of orders is straightforward, but included for convenience.

Lemma 4.4.4. Suppose Λ is an order over a local ring (R,m, k). Let

0 −→M −→ X −→ N −→ 0
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be an exact sequence of Λ-modules. If there are only finitely many choices for X up to

isomorphism, then Ext1
Λ(N,M) is a finite length R-module.

Proof. Let α ∈ Ext1
Λ(N,M) and r ∈ m. It is well known that an R-module M has finite

length if and only if for all r ∈ m and x ∈ M there is an integer n so that rnx = 0. Thus,

we must only show that rnα = 0 for n� 0. For any integer n we consider a representative

rnα : 0 −→M −→ Xn −→ N −→ 0.

Since only finitely many Xn can exist up to isomorphism there is an infinite sequence n1 <

n2 < n3 < . . . such that Xni
∼= Xnj

for all pairs i, j. Set β = rn1α, and let i > 1. Then

rniβ = rni−n1α. We show β = 0. We have, for each i, a commutative diagram

β : 0 −−−→ M −−−→ Xn1 −−−→ N −−−→ 0

rni−n1

y y ∥∥∥
rni−n1β : 0 −−−→ M −−−→ Xni

−−−→ N −−−→ 0.

By Lemma 4.4.3, since Xn1
∼= Xni

, we have β ∈ rni−n1 Ext1
Λ(N,M) for every i. Since the

sequence of ni is infinite and strictly increasing, this means β ∈ mt Ext1
Λ(N,M) for all t.

Finally, the Krull Intersection Theorem [36, Theorem 8.10] implies β = 0.

Finally, we provide the proof of the main theorem following this lemma.

Proof of Theorem 4.3.1. LetM,N ∈ S. By Lemma 4.2.5 we must only show that `(Ext1
Λ(N,M)) <

∞. Consider any sequence α ∈ Ext1
Λ(N,M),

α : 0 −→M −→ X −→ N −→ 0.

By the work above, specifically Corollary 4.3.3, we know X ∈ S. Now since M and N are

finitely generated and there are only finitely many indecomposable modules in S, there are

only finitely many possibilities for X. Namely, X must be one of the finitely many modules
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in S generated by at most µΛ(M) + µΛ(N) where µΛ(Y ) denotes the minimum number of

generators of Y over Λ. Thus, `(Ext1
Λ(N,M)) <∞ by Lemma 4.4.4.

In view of Theorem 4.1.9, we arrive at the following strengthening of Auslander’s theorem

in the case where R is a suitable Gorenstein local ring.

Corollary 4.4.5. Let R be a Gorenstein local domain, and let Q be an acyclic quiver. If

there exist only finitely many nonisomorphic indecomposable modules in Ω CM(RQ), then R

is an isolated singularity, i.e.,

gldimRp = dim(Rp)

for all non-maximal primes ideals p ∈ SpecR.

Proof. We only need to notice that by Theorem 4.1.9 RQ is a 1-canonical order. Thus by

Theorem 4.3.1 if there are only finitely many indecomposable modules in Ωn CM(RQ) we

must have that RQ is a 1-isolated singularity. But, by Proposition 2.2.13, this is only possible

if gldimRp <∞ for all non-maximal primes p. Since R is commutative, this is only possible

if gldimRp = dim(Rp).

We give a quick example which demonstrates that Ω CM Λ has the propensity to be much

smaller than CM Λ.

Example 4.4.6. Let R be a regular local ring and Q be the quiver

1 2
α

β

It is known that RQ has infinitely many indecomposable modules in CM Λ. But, since

gldimRQ = dimR + 1, we know Ω CMRQ = ProjRQ which definitely has finitely many

indecomposables.



Chapter 5

Higher AR Theory in positive dimension

Auslander-Reiten (AR) theory was developed by Maurice Auslander and Idun Reiten over

the course of several papers, including [8–12] . It has been used in the representation theory

of hereditary finite dimensional algebras over fields, [14] and the representation theory of

commutative Noetherian rings, [35,49]. In [27], Osamu Iyama generalizes this to algebras of

higher global dimensions and orders over commutative Noetherian rings. In this chapter we

consider results of Iyama on cluster tilting subcategories for finite dimensional algebras, [29].

Specifically, we examine orders of finite global dimension n+ dimR, and use Iyama’s higher

Auslander-Reiten theory to examine the category of maximal Cohen-Macaulay modules.

This chapter contains two main results. In the case of algebras over Artinian rings,

sufficient Ext vanishing implies vanishing of dual modules, [29, Lemma 2.16]. Our first

main result, Theorem 5.2.4 proves that this in fact characterizes the Krull dimension 0 case.

Moreover, we extend the result to arbitrary finite Krull dimension and produce a condition on

our order Λ which detects the Krull dimension of the base ring R. In [29], Iyama characterizes

cluster tilting subcategories over finite dimensional algebras of finite global dimension. In

particular, he proves that if Γ is a finite dimensional algebra of global dimension n, then

there are no τn-periodic modules in any n-cluster tilting subcategory of mod Γ. The proof

of this does not extend to higher Krull dimensions. We investigate the possible existence

56
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of τn-periodic modules, and provide a sufficient condition, Theorem 5.3.7, which prevents a

module from being τn-periodic.

In this chapter, R is a d-dimensional Cohen-Macaulay local ring with canonical module

ω. We will let Λ be an R-order which is an isolated singularity.

5.1 Background on Higher AR Theory

Higher AR Theory was introduced by Iyama in [27] in order to study algebras which have

finite global dimension, but which are not hereditary (i.e., algebras Γ such that gldim Γ =

n > 1). A first resultof Iyama’s work is a higher (homological) dimensional analog of the

Auslander Correspondence, [26, Theorem 0.2]. Since, what were originally called “maximal-

(n− 1) orthogonal” subcategories, have been renamed n-cluster tilting subcategories, and a

great deal of work has been done in finding and studying them. We begin by introducing

higher AR theory and some of the tools involved. The following proposition is a special case

of Proposition 4.2.6 where n = 0.

Proposition 5.1.1. [27, Prop 1.3.1] Suppose Λ is an R-order which has at most an isolated

singularity.

1. X is in CM Λ if and only if ExtiΛ(TrXop,Λ) = 0 for i = 1, . . . , d− 1.

2. HomΛ(X, Y ),ExtiΛ(X, Y ) and TorΛ
i (Z,X) are all finite length R-modules for any X ∈

CM Λ, Y ∈ mod Λ and Z ∈ mod Λop

One of the main reasons to ask that Λ be an isolated singularity is that being in CM Λ is

equivalent to a module being a dth syzygy, which mirrors the commutative case, [35, Corollary

A.15]. The proof is very similar to the commutative case. The fact that Λ is an isolated

singularity replaces the assumption that R is Gorenstein on the punctured spectrum.
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Proposition 5.1.2. Let R be a CM local ring of dimension d. Let Λ be an R-order which

has at most an isolated singularity. If M ∈ CM Λ, then there exists a non-zero Λ-module X

so that M ∼= ΩdX.

Proof. We define Serre’s condition (Sn). Say an R-module (or a Λ-module) M satifies (Sn)

if

depthRp
Mp > min{n, dimRp} for all p ∈ SpecR.

We show that if M ∈ mod Λ satisfies (Sk) for some k > 1, then there is an exact sequence

0 −→M
α−→ F −→ N −→ 0

where F is a finitely generated free Λ-module and N satifies (Sk−1). This will finish the

proof since M ∈ CM Λ satifies (Sn) for all n > 0.

Begin with an exact sequence

0 −→ K −→ G −→M∗ −→ 0 (5.1.1)

where G is a finitely generated free Λ-module. Setting F = G∗ we have an exact sequence

0 −→M∗∗ β−→ F −→ K∗ −→ Ext1
Λ(M∗,Λ) −→ 0. (5.1.2)

Now set σ : M −→M∗∗ to be the natural morphism, α = βσ and N = cokα. Then we have

a sequence

0 −→M
α−→ F −→ N −→ 0 (5.1.3)

as desired. We must only verify that it is exact and that N satisfies (Sk−1).

To prove that the sequence

0 −→M
α−→ F −→ N −→ 0 (5.1.4)
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is exact, we must only show that α is injective. Suppose L = kerα 6= 0. Choose an associated

prime p ∈ AsspL. Then depthRp
Lp = 0.

We claim that depthRp
Rp > 1. Since k > 1 and M satisfies (Sk), this will imply

depthRp
Mp > 1. Since Λ is an isolated singularity, Λq is nonsingular for all minimal primes

q. Further, Mq ∈ CM Λq for all minimal primes q, since Rq is zero-dimensional. Thus Mq

is Λq-projective by [32, Prop 2.17]. Then σq is an isomorphism for all minimal primes q.

Thus, Lq = 0 for all mininal primes q. Since L 6= 0 there must be at least one non-maximal

prime ideal, hence dimRp > 1. It follows that depthRMp > 1 since M satifies (Sk), which

contradicts that depthR Lp = 0, thus it could not be that L 6= 0.

We now show that N satisfies (Sk−1). Let p be a prime of height h. If h 6 k − 1 we

must show that Np ∈ CM Λ. Since Λp is non-singular, and Mp ∈ CM Λp the canonical map

σp is an isomorphism. Also, M∗
p ∈ CM Λp so Ext1

Λp
(M∗

p ,Λp) = 0. Together with sequence

(5.1.2) this implies that Np
∼= K∗p . The Depth Lemma and the sequence (5.1.1) imply that

Kp ∈ CM Λ, and therefore K∗p ∈ CM Λ.

To finish the proof, suppose now that h > k. We need to show that depthRp
Np > k − 1.

Suppose the contrary, that depthRp
Np < k−1. Since F is free and hence depthRp

Fp > k−1,

the Depth Lemma and sequence (5.1.4) imply that

depthRp
Mp = 1 + depthRp

Np < k.

This is a contradiction to the fact that M satifies (Sk).

Our goal is to study CM Λ by taking nth syzygies and using Auslander-Reiten theory.

Here we will outline the basic tools we will use, beginning with the n-AR translation. Recall

that Dd := HomR(−, ωR) : CM Λ −→ CM Λ is a duality.



CHAPTER 5. HIGHER AR THEORY IN POSITIVE DIMENSION 60

Definition 5.1.3. Assume Λ is an isolated singularity. We let

τ1 = DdΩ
d Tr

τ−1 = Ωd TrDd

be the usual AR translations [35, Chapter 12]. For n > 1 we define the n-AR translation

τn = τ1Ωn−1

τ−n = τ−1 Ωn−1

It is well known that for a hereditary k-algebra, the functor τ1 : CM Λ −→ CMΛ is

an equivalence. The main problem which arises in higher global dimensions is that τn :

CMΛ −→ CMΛ is no longer an equivalence, [27]. Instead, we restrict the domain and

codomain of this functor.

Notation 5.1.4. For X, Y ∈ mod Λ write X ⊥n Y if ExtiΛ(X, Y ) = 0 for i = 1, . . . , n. For

full subcategories C and D of mod Λ, write C ⊥n D if X ⊥n Y for every X ∈ C and Y ∈ D.

Put C⊥n = {X ∈ mod Λ | ExtiΛ(C, X) = 0 (0 < i 6 n)} and ⊥nC = {X ∈ mod Λ |

ExtiΛ(X, C) = 0 (0 < i 6 n)}. Set

Xn = ⊥n−1Λ ∩ CM Λ, Yn = ω
⊥n−1

Λ ∩ CM Λ.

We note that Dd : Xn −→ Yn.

Lemma 5.1.5. [27, Theorem 1.4.1] τn : X n −→ Yn and τ−n : Yn −→ X n are mutually quasi-

inverse equivalences. Moreover, τn induces a bijection from indecomposable non-projectives

in Xn to indecomposable non-injectives in Yn.

One of the main tools in the use of AR theory is AR Duality. We have a generalization

as follows:
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Theorem 5.1.6 (n-AR Duality, [27, Theorem 1.5]). Let Λ be as above. For any 0 < i < n

there exist functorial isomorphisms below for any X ∈ Xn, Y ∈ Yn, and Z ∈ CM Λ.

Extn−iΛ (X,Z) ∼= DExtiΛ(Z, τnX) HomΛ(X,Z) ∼= DExtnΛ(Z, τnX)

Extn−iΛ (Z, Y ) ∼= DExtiΛ(τ−n Y, Z) HomΛ(Z, Y ) ∼= DExtnΛ(τ−n Y, Z)

This is stated in [27] for R a Gorenstein ring. We include a proof in the Cohen-Macaulay

case for the convenience of the reader. For the proof we will need the following:

Notation 5.1.7. For canonical module, ω, of R, we have an injective resolution over R,

0 −→ ω −→ I0 −→ I1 −→ · · · −→ Id −→ 0.

Here Id is ER(k), the injective hull of the residue field of R.

Lemma 5.1.8. [27, Proposition 1.1.3] Let Λ be a Noetherian ring and n > 1. For any i

(0 < i < n), X ∈ Xn and Y ∈ mod Λ there exist functorial isomorphisms

TorΛ
n−i(Tr Ωn−1X, Y ) ∼= ExtiΛ(X, Y ) TorΛ

n(Tr Ωn−1X, Y ) ∼= HomΛ(X, Y )

Proof of Theorem 5.1.6. We prove the first isomorphism as the rest are similar. For any in-

jective module I, we have a functorial isomorphism HomR(TorΛ
i (W,Z), I) ∼= ExtiΛ(W,HomR(Z, I))

via [18, VI, Prop. 5.1]. Begin with the injective resolution,

0 −→ ω −→ I0 −→ I1 −→ · · · −→ Id −→ 0.

Then, applying HomR(Z,−) and the fact that Z is MCM over R, hence ExtiR(Z, ω) = 0 for

i > 0, we obtain an exact sequence

0 −→ DdZ −→ HomR(Z, I0) −→ · · · −→ HomR(Z, Id) −→ 0.
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By the remark above, we know HomR(TorΛ
i (W,Z), Ij) ∼= ExtiΛ(W,HomR(Z, Ij)). Further,

since TorΛ
i (W,Z) has finite length for i > 0 by Proposition 5.1.1 and [36, Theorem 18.4] we see

0 = HomR(TorΛ
i (W,Z), Ij) = ExtiΛ(W,HomR(Z, Ij)) for i > 0, j < d. It follows easily that

HomR(TorΛ
i (W,Z), Id) = ExtiΛ(W,HomR(Z, Id)) = Exti+dΛ (W,DdZ) = ExtiΛ(ΩdW,DdZ) =

ExtiΛ(Z,DdΩ
dW ). The result follows by setting W = Tr Ωn−1X.

Lemma 5.1.9. For X ∈ CM(Λ), τn(X) = 0 if and only if projdimΛX < n.

Proof. We must show the “only if”. We suppose τn(X) = DdΩ
d Tr Ωn−1(X) = 0. Since Dd is

a duality on CM(Λ), we have Ωd Tr Ωn−1(X) = 0. Thus, it must be that we have a projective

resolution

0 −→ Pm −→ Pm−1 −→ · · · −→ P0 −→ Tr Ωn−1(X) −→ 0

where m 6 d. By the definition of Tr we get an exact sequence

0 −→ Ωn−1(X) −→ P ∗2 −→ P ∗3 −→ . . . −→ P ∗m −→ ExtmΛ (Tr Ωn−1(X),Λ) −→ 0

but ExtmΛ (Tr Ωn−1(X),Λ) = 0 by 5.1.1 and hence the sequence above splits and Ωn−1(X) is

projective.

5.2 Ext vanishing and Dual modules

In this section, we prove that [29, Lemma 2.3 (b)], a key ingredient in Iyama’s study of

so-called n-representation type characterizes the case when d = 0. Moreover, we extend the

result to arbitrary finite d > 0 and are able to produce a condition on our order Λ which

detects the Krull dimension of the base ring R. In his paper, Iyama begins with a finite

dimensional algebra Γ which has global dimension n. To consider the natural generalization

of these objects in the setting of orders, we will strengthen our assumptions on Λ. Let R be

a CM local ring of dimension d. Suppose Λ is an order over R such that Λ is an isolated

singularity and gldim Λ 6 n + d. The new assumption of finite global dimension allows us
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to use a different characterization of τn. Note that if X ∈ CM(Λ) and projdimΛX = n (the

situation where τn(X) 6= 0, by Proposition 5.1.9), then we have a projective resolution

0 −→ Pn −→ Pn−1 −→ . . . −→ P1 −→ P0 −→ X −→ 0.

It follows that Tr Ωn−1X = cok(P ∗n−1 −→ P ∗n) = ExtnΛ(X,Λ). Thus we have that

τn(−) = DdΩ
d ExtΛ(−,Λ) : Xn −→ Yn

τ−n (−) = Ωd ExtΛ(DdΛ,−) : Yn −→ Xn.

Also with our new assumptions on the global dimension, we can say more about the

projective dimension of modules X ∈ Xn. Since Λ is an isolated singularity any X ∈ CM Λ

is a dth syzygy by Proposition 5.1.2.Together with the fact that gldim Λ 6 n+ d we get that

projdimΛX 6 n for any X ∈ CM Λ. By Lemma 2.1.13 we see that projdimΛX ∈ {0, n} for

any X ∈ Xn.

The following result is a key part of Iyama’s n-cluster tilting theory [29] and the work

of Hirschend-Iyama-Oppermann [24] and Iyama-Oppermann [31] on n-representation type.

Our goal is to prove a converse to this and generalize it to higher Krull dimension.

Proposition 5.2.1. [29, Lemma 2.3(b)] Let Γ be a finite dimensional algebra with gldim Γ 6

n, where n > 1. If X has no projective summands and ExtiΓ(X,Γ) = 0 for i = 1 . . . , n− 1,

then HomΓ(X,Γ) = 0.

We wish to show that this actually characterizes the d = 0 case. We start by investigating

this condition for orders where d > 1, noting that if n 6 d − 1, Prop 5.2.1 does not hold.

This is due to the behavior of depth over R with respect to exact sequences.

Due to Lemma 2.1.4, Λ-modules which have finite length over R cannot have projective

resolutions (even over Λ) of length less than d. From this observation we have the following

lemma.
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Lemma 5.2.2. Let d > n+ 1 > 2. Suppose Λ is an R-order which is an isolated singularity

with gldim Λ 6 n+ d and X ∈ Xn. Then X∗ 6= 0.

Proof. Consider a projective resolution over Λ of X,

0 −→ Pn −→ Pn−1 −→ . . . −→ P1 −→ P0 −→ X −→ 0.

By our hypotheses on X, applying (−)∗ gives an exact sequence

0 −→ X∗ −→ P ∗0 −→ P ∗1 −→ · · · −→ P ∗n −→ ExtnΛ(X,Λ) −→ 0. (5.2.1)

Since Λ is an isolated singularity, ExtnΛ(X,Λ) has finite length (hence depth 0) as an R-

module. If X∗ = 0, then projdim ExtnΛ(X,Λ) < d which is impossible by the Depth Lemma.

We wish to study the behavior of dual modules of modules in Xn = ⊥n−1Λ ∩ CM Λ. In

view of 5.2.1, we may begin by studying the behavior of ExtnΛ(X,Λ) :

Lemma 5.2.3. Suppose Λ is an isolated singularity and has gldim Λ 6 n+ d. Then for any

X ∈ Xn which is not projective,

projdimΛ ExtnΛ(X,Λ) = n+ d.

For any Y ∈ Yn which is not injective,

projdimΛ ExtnΛ(DdY,Λ) = n+ d.

Proof. Let X ∈ Xn not projective. Then we know that τn(X) = DdΩ
d Extn

Λ(X,Λ) ∈ Yn,
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hence for all i = 1, . . . , n− 1

0 = ExtiΛ(DdΛ, DdΩ
d ExtnΛ(X,Λ)) (5.2.2)

= ExtiΛ(Ωd Extn
Λ(X,Λ),Λ) (5.2.3)

= Exti+dΛ (Extn
Λ(X,Λ),Λ) (5.2.4)

Hence ExtiΛ(ExtnΛ(X,Λ),Λ) = 0 for i = d+1, . . . , d+n−1. Since ExtnΛ(X,Λ) has finite length,

any projective resolution must have length at least d by Lemma 2.1.4. Since ExtkΛ(Y,Λ) 6= 0

for projdimY = k, it must be that projdimΛ ExtnΛ(X,Λ) = d or n + d. But, by 5.1.1,

ExtdΛ(ExtnΛ(X,Λ),Λ) = 0 since ExtnΛ(X,Λ) = Tr Ωn−1X for gldim Λ 6 n + d. Thus, it must

be that projdimΛ Extn
Λ(X,Λ) = n+ d.

The proof of the other assertion is dual to this.

From this we get the following characterization of projective dimension of dual modules

for orders which have finite global dimension, the main theorem of this section.

Theorem 5.2.4. Let Λ be an R-order which is an isolated singularity with gldim Λ = n+ d,

where n > 0. The following are equivalent:

1. d = k + 1

2. For all non-projective indecomposables X ∈ Xn, projdimΛ HomΛ(X,Λ) = k;

3. For all non-injective indecomposables Y ∈ Yn, projdimΛ HomΛ(DdΛ, Y ) = k;

If Λ ∈ Yn (e.g., if Λ has an n-cluster tilting subcategory, see definition 5.3.1), then this is

further equivalent to:

4. projdimΛ(HomΛ(τ−n (Λ),Λ) = k;

5. projdimΛ(HomΛ(DdΛ, τn(DdΛ)) = k;
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In particular all dual modules of non-projective X ∈ Xn have the same projective dimen-

sion.

Proof. ((1)⇒(3)) Let X ∈ Xn with no projective summands and suppose d = k+1; it follows

that gldim Λ = n+ k + 1 so that the sequence

0 −→ X∗ −→ P ∗0 −→ · · · −→ P ∗n −→ ExtnΛ(X,Λ) −→ 0

indicates that projdimΛX
∗ 6 k. Now if projdimX∗ < k, we have via the exact sequence

above that projdim ExtnΛ(X,Λ) < d + n. This is impossible via Lemma 5.2.3, thus it must

be projdimX∗ = k.

((3)⇒(1)) We know by (1)⇒ (3) that for X ∈ Xn, we have projdimΛX
∗ = d− 1. Thus

if all X ∈ Xn have projdimΛX
∗ = k, it is clear d = k + 1.

The proof of (1)⇔ (2) is dual to this.

In the case that Λ ∈ Yn, the assertions (2) ⇔ (4) and (3) ⇔ (5) are clear since τn(Λ) ∈ Xn

and τn(DdΛ) ∈ Yn.

Remark 5.2.5. 1. Note that, in the case n = 0 in the above theorem, Λ is non-singular.

From Theorem 3.3.2 it follows that CM Λ = Proj Λ. This implies that τ−n (Λ) and

τn(DdΛ) are both projective. In this case, the argument fails; k (which is necessarily

0) and d need not be related.

2. The theorem remains true with the convention that projdimΛX = −1 if and only if

X = 0. In other words, this theorem shows that Lemma 5.2.1 completely characterizes

the case d = 0.

5.3 n-Cluster Tilting for Orders

Cluster tilting subcategories were introduced by Iyama in [27]. They play a pivotal role in

the study of algebras which are not hereditary. In another article, [28], Iyama explains their
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introduction by noting that for a k-algebra Γ the pair (τn, τ
−
n ) is an adjoint pair, but in general

these are not equivalences modΓ ↔ modΓ. Cluster tilting subcategories are restrictions of

the domain and codomain of these functors. They provide the natural setting for which a

higher version of Auslander Reiten duality and higher almost split sequences exist.

Iyama has many results on cluster tilting for algebras. In particular, he shows that if an

algebra of global dimension at most n possesses a cluster tilting object, then it cannot have

τn-periodic modules. This is a key fact in the definition of n-representation finite and infinite

algebras [24, 31]. In the case of orders, it is not clear if τn-periodic modules can exist, even

with an assumption on the global dimension. The main result of this section is a criterion

which indicates a module must not be τn-periodic.

For what follows, we will again assume Λ is an order with an isolated singularity and

gl.dimΛ = n+ d. We begin with the definitions in which we are interested.

Definition 5.3.1. A subcategory C of an abelian category A is called covariantly finite if

any object X ∈ A has a left C-approximation, i.e., there is an object C ∈ C and a map

X −→ C such that the sequence of functors

(−, C) −→ (−, X) −→ 0

is exact on C, where (A,B) := HomA(A,B) for any A,B ∈ A. Contravariantly finite and

right C-approximation are defined dually. A subcategory C is functorially finite if it is both

covariantly and contravariantly finite.

Finally, a subcategory C ⊂ CMΛ is called an n-cluster tilting subcategory if C is a func-

torially finite subcategory and

C ={X ∈ CMΛ | ExtiΛ(X, C) = 0, i = 1, . . . , n− 1}

={X ∈ CMΛ | ExtiΛ(C, X) = 0, i = 1, . . . , n− 1}

We callM ∈ CM(Λ) an n-cluster tilting object if addM is an n-cluster tilting subcategory.
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Notation 5.3.2. For an order Λ over a Cohen-Macaulay local ring R with canonical module

ωR which contains an n-cluster tilting subcategory C defineM = add{τ ln(ωΛ) | l > 0}.

Theorem 5.3.3. [27, Theorem 2.3] Let C be an n-cluster tilting subcategory of CM(Λ).

Then:

• τn(X) ∈ C and τ−n (X) ∈ C for any X ∈ C.

• τn : C −→ C and τ−n : C −→ C are mutually quasiinverse equivalences.

• τn gives a bijection from indecomposable non-projective objects in C to indecomposable

non-injective objects in C.

We start with the generalization of the foundation of n-cluster tilting and n-Auslander

Reiten theory. The following is a generalization of [29, Proposition 1.3], which is foundational

in Iyama’s theory. The proof is the same as in [29].

Proposition 5.3.4. Let Λ be a R-order with M an n-cluster tilting module in CM Λ.

(1) Exactly one of the following happens for each indecomposable X in addM :

(a) τ ln(X) ∼= X for some l > 0.

(b) X ∼= τ ln(I) for some injective module I and X ∼= τmn (P ) for some projective module

P .

(2) A bijection from indecomposable injective Λ-modules to indecomposable projective Λ-

modules is given by I 7→ τ lIn (I) where lI is the maximal integer so τ ln(I) 6= 0.

Note that part (1) says that ifX ∈ addM is not τn-periodic, thenX ∈ add{τ ln(ωΛ) | l ∈ Z}.

We wish to address the existence of τn-periodic modules, which do not exist in the d = 0

case, see [29, Proposition 1.3]. Our main result is Theorem 5.3.7. Before it is presented we

define the extinguishing time of Λ.
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Definition 5.3.5. Let Λ be an order over a CM local ring R of dimension d with a canonical

module. Suppose Λ has global dimension at most n + d and possesses an n-cluster tilting

module M . Then the extinguishing time of Λ is T := min{s | τ sn(ωΛ) = 0}.

Remark 5.3.6. In the case of algebras, finite global dimension and existence of a cluster

tilting module M is enough to yield that τ ln(ωΛ) = 0 for some l implies that τ ln(X) = 0 for

any X ∈ addM . Thus finite extinguishing time is equivalent to τn-finite. This is not clear

in the case of orders. It is still true, by Proposition 5.3.4 (1)(b), that τTn (X) = 0 for any

X ∈ M. In particular, if gldim Λ 6 n + d and Λ possesses an n-cluster tilting module M ,

then the extinguishing time of Λ is finite.

Given a finite dimensional algebra Γ of global dimension at most n with an n-cluster

tilting object, Iyama has shown that Theorem 5.3.4 (1b) cannot occur. In particular the

unique n-cluster tilting object is given by
⊕

l∈Z τ
l
n(ωΛ) which is a finitely generated Γ-module.

The necessary step of taking a dth syzygy in the middle of τn renders Iyama’s proof non-

applicable to our case. It is not clear if τn-periodic modules can exist for orders of finite

global dimension. Their (non)existence is crucial to a theory of higher-representation type.

The following theorem is a first step in investigating such objects.

Theorem 5.3.7. Suppose Λ is an R-order of global dimension at most n+d. Suppose Λ has a

n-cluster tilting module M ∈ CM Λ. If X ∈ addM is τn-periodic, then there exists an integer

0 6 s 6 T so that ExtnΛ(τ−n (Λ), τ sn(X)) 6= 0. In other words, if ExtnΛ(τ−n (Λ), τ ln(X)) = 0 for

all 0 6 l 6 T , then X ∈ add{τ ln(ωΛ) | l ∈ Z}.

For the proof we will use a few lemmas.

Lemma 5.3.8. Let Λ be an order with gldim Λ 6 n+ d. Given an exact sequence

0 −→ X −→ Z −→ Y −→ 0
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with Extn−1
Λ (X,Λ) = 0, Y, Z ∈ CM Λ, we have an exact sequence

0 −→ τn(X) −→ τn(Z)⊕ I −→ τn(Y ) −→ 0

where I ∈ addωΛ.

Proof. Since gldim Λ 6 n+ d, we know that τn(−) = DdΩ
d ExtnΛ(−,Λ). From the long exact

sequence of ExtΛ(−,Λ) and the fact that Extn−1
Λ (X,Λ) = 0 we have an exact sequence

0 −→ ExtnΛ(Y,Λ) −→ ExtnΛ(Z,Λ) −→ ExtnΛ(X,Λ) −→ 0

since Y ∈ CM Λ and hence has projective dimension at most n by Proposition 5.1.2. The

Horseshoe Lemma yields an exact sequence

0 −→ Ωd ExtnΛ(Y,Λ) −→ Ωd ExtnΛ(Z,Λ)⊕ P −→ Ωd ExtnΛ(X,Λ) −→ 0

for some projective module P . Then since each term is in CM Λ we have an exact sequence

0 −→ DdΩ
d ExtnΛ(X,Λ) −→ DdΩ

d ExtnΛ(Z,Λ)⊕DdP −→ DdΩ
d ExtnΛ(Y,Λ) −→ 0.

This is exactly the desired sequence.

We can use this lemma to examine the behavior of τn on long exact sequences as well.

Lemma 5.3.9. Let Λ be as in Lemma 5.3.8. Suppose there is an exact sequence

0 −→ X −→ I0 −→ I1 −→−→ · · · −→ Ik −→ 0

for some 1 6 k 6 n with ExtjΛ(Im,Λ) = 0 for 0 6 m 6 k and 1 6 j 6 n − 1. Set

Ym = ker(Im−1 −→ Im) for 1 6 m 6 k. If Extn−1
Λ (Yi,Λ) = 0 for i = 0, . . . , k − 1 then we
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have an exact sequence

0 −→ τn(X) −→ τn(I0)⊕ I0,1 −→ · · · −→ τn(Ik−1)⊕ Ik−1,1 −→ τn(Ik) −→ 0

where Ii,j ∈ addωΛ.

Proof. We first break the long exact sequence into short exact sequences. We have

0 −→X −→ I0 −→ Y1 −→ 0 (5.3.1)

0 −→Yl −→ Il −→ Yl+1 −→ 0 l = 1, . . . , k − 1. (5.3.2)

By assumption, the left hand terms of all exact sequences 5.3.1 and 5.3.2 satisfy Extn−1
Λ (−,Λ) = 0.

Now, Lemma 5.3.8 yields exact sequences

0 −→τn(X) −→ τn(I0)⊕ I0,1 −→ τn(Y1) −→ 0

0 −→τn(Yi) −→ τn(Ii)⊕ Ii,0 −→ τn(Yi+1) −→ 0 i = 1, . . . , k − 1.

These can then clearly be pieced together to give the long exact sequence desired.

With this we are able to prove our main result on the existence of τn-periodic modules.

Proof of Theorem 5.3.7. Note that since X ∈ addM , we also have DdX ∈ addM . Since X

is assumed to be τn-periodic it cannot be projective. It is easy to see that by definition

Ddτ
−
n (−) = τnDd(−).

From this it follows that if X is τn-periodic, then DdX is τn-periodic (over Λop); in particular,

τn(DdX) 6= 0. By Lemma 5.1.9 since τn(DdX) 6= 0, we have projdimΛop DdX = n. We begin

with a projective resolution of DdX over Λop

0 −→ Pn −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ DdX −→ 0.
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Since X ∈ addM , we know ExtiΛop(DdX,Λ) = ExtiΛ(DdΛ, X) = 0 for i = 1, . . . , n − 1 by

(2.1.1) and the definition of n-cluster tilting. Thus we have an exact sequence

0 −→ X −→ I0 −→ · · · −→ In −→ 0

where Ij ∈ addωΛ. In order to prove the Theorem, we wish to employ Lemma 5.3.9 repeat-

edly. We want to, for any l > 0, achieve an exact sequence

0 −→ τ ln(X) −→ J
(l)
0 −→ J

(l)
1 −→ . . . −→ J

(l)
n−1 −→ τ ln(In) −→ 0 (5.3.3)

with J (l)
j ∈M for all j, 0 6 l 6 T . From Lemma 5.3.9 it is clear we must only establish the

following claim

Claim: Extn−1
Λ (τ ln(Yk),Λ) = 0 for l > 0 and k = 1, . . . , n− 1.

With this claim we have the long exact sequence (5.3.3) desired. Indeed, after an appli-

cation of τn(−), we have short exact sequences

0 −→τn(X) −→ J
(1)
1 −→ τn(Y1) −→ 0

0 −→τn(Yi) −→ J
(1)
i −→ τn(Yi+1) −→ 0 i = 1, . . . , k − 1.

By the claim we can apply τn(−) again (and so on), yielding, for any l, exact sequences

0 −→τ ln(X) −→ J
(l)
1 −→ τ ln(Y1) −→ 0

0 −→τ ln(Yi) −→ J
(l)
i −→ τ ln(Yi+1) −→ 0 i = 1, . . . , k − 1

where J (l)
i ∈ M. These can clearly be pieced together to form the sequence (5.3.3). Then,

since τTn (In) = 0, we have an exact sequence

0 −→ τTn (X) −→ J
(T )
0 −→ J

(T )
1 −→ . . . −→ J

(T )
n−1 −→ 0.
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Now we can apply Lemma 5.3.9 again since n− 1 < n. Since τTn (J
(T )
n−1) = 0 by remark 5.3.6,

we eventually get

0 −→ τn(X) −→ J
(2T )
1 −→ · · · −→ J

(2T )
n−3 −→ J

(2T )
n−2 −→ 0.

We can repeat this until we arrive at the exact sequence 0 −→ τRn (X) −→ JN −→ 0 for

JN ∈ M. Since X is indecomposable, this indicates X ∈ M. We must now only prove the

claim.

Proof of Claim. The case for In = Yn is handled first. By n-AR Duality, Theorem

5.1.6, we see that Ext1
Λ(τ ln(Y1),Λ) = DExtn−1

Λ (τ−n (Λ), τ ln(Y1)) for all l. Then, applying

HomΛ(τ−n (Λ),−) to the exact sequence

0 −→ τ ln(X) −→ J −→ τ ln(Y1) −→ 0,

which we get from the long exact sequence in ExtΛ(τ−n (Λ),−) and the fact that J ∈ addM ,

we get an exact sequence

0 −→ Extn−1
Λ (τ−n (Λ), τ kn(Y1)) −→ ExtnΛ(τ−n (Λ), τ kn(X)).

This part of the claim follows immediately from our assumption on X.

The rest of the claim is proved by induction on l. For l = 0, we simply have the exact

sequence

0 −→ X −→ I0 −→ · · · −→ In −→ 0.

Then, for any k = 1, . . . , n− 1, we have

Extn−1
Λ (Yk,Λ) ∼= Extn−2

Λ (Yk−1,Λ) ∼= . . . ∼= Extn−kΛ (X,Λ) = 0.

Thus, the base case is established. Now suppose the claim holds for some l − 1 > 0. Since
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the first part is established for all l, we can use Lemma 5.3.9 to produce an exact sequence

0 −→ τ ln(X) −→ J
(l)
0 −→ · · · −→ J

(l)
n−1 −→ τ ln(In) −→ 0.

It is clear from the proof of Lemma 5.3.9 that τ ln(Yk) = ker(J
(l)
k −→ J

(l)
k+1). Then since

J
(l)
j ∈M for all j, we can again dimension shift to get

Extn−1
Λ (τ ln(Yk),Λ) ∼= Extn−2

Λ (τ ln(Yk−1),Λ) ∼= . . . ∼= Extn−kΛ (τ ln(X),Λ) = 0

for all k = 1, . . . , n− 1. This establishes the claim, and thus the Theorem. .
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