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Abstract 

Green infrastructure has been endorsed by many practitioners and organizations as a 

more sustainable approach to stormwater management. Decisions on how to best design 

municipal green infrastructure systems can be complicated by factors such as uncertainties about 

the performance and public acceptance of particular technologies. Thus, deciding how to design 

sustainable stormwater management systems requires engineers not only to reflect upon the 

fundamental principles used to conceptualize their designs, but also to consider how a broad 

array of social, economic, and environmental factors both influence and are influenced by their 

work.  

This thesis examines factors that influence the design and adoption of sustainable civil 

infrastructure systems in two research areas: (1) municipal stormwater management decisions in 

the United States, and (2) student understanding of engineering design principles. The objective 

of this thesis is to identify elements of engineering design and related decision-making processes 

that can provide engineers, stormwater management stakeholders, and engineering educators 

with lessons and tools that can advance the sustainable development of stormwater management 

systems.  

One challenge to understanding how particular factors may lead to sustainable outcomes 

is devising a tractable way to organize and document them. Using observations from national 

meetings and an extensive literature review, I develop a social-ecological framework for 

identifying factors that condition the adoption of green infrastructure technologies by stormwater 

management authorities. Findings from this work demonstrate a need to more fully develop 

robust descriptions of technological attributes within a social-ecological framework for urban 



 
 

stormwater systems, particularly for technology decision-making activities such as green 

infrastructure adoption.  

Understanding past outcomes of engineering planning within a particular context can 

provide useful insight for future decision-making. I conduct a case study on the evolution of 

stormwater management planning in Onondaga County, New York between 1998 and 2009, in 

which plans for certain unpopular gray infrastructure technologies were eventually replaced in 

part by a large-scale green infrastructure program. I find that the adoption of this program was 

driven by an alignment of several sociopolitical factors, including the presence of a policy 

entrepreneurship coalition in support of alternative stormwater management plans, the election of 

a key political official who acknowledged the needs of local stakeholders, and a shift in mindset 

of local and national officials as to what technologies are effective for stormwater management.  

A growing number of U.S. cities are adopting green infrastructure programs for 

stormwater management, particularly for combined sewer overflow mitigation. Viewing green 

infrastructure program adoption in combined sewer communities as a policy innovation, I 

develop an empirical model to differentiate factors associated with a sewer management 

authority’s binary decision to adopt or not adopt a large-scale green infrastructure program, and 

factors associated with decisions related to the extent of planned program implementation. This 

study finds that the binary decision to adopt a municipal green infrastructure program for 

combined sewer overflow management is largely driven by municipal population size and 

precipitation characteristics, while the extent of program implementation is also driven by 

socioeconomic characteristics of municipal residents and the amount of total capital needs 

required to achieve combined sewer overflow compliance. 



 
 

Engineers must be able to mathematically model the complexities of fundamental 

physical processes within real systems, such as green infrastructure systems for stormwater 

management. Many engineering processes are built upon fundamental concepts of mass and 

energy balances, in which mathematical models are used to analyze rates of change and 

accumulated quantities across system boundaries of interest. The Rate and Accumulation 

Concept Inventory (RACI) is an assessment tool that I developed to measure students’ 

mathematical and physical understandings of such concepts. I use data from an administration of 

the RACI (N=305) to assess evidence of the tool’s validity and reliability through structural 

equation modeling and multidimensional item response theory. Validity and reliability evidence 

indicates that the RACI can appropriately be used to measure students’ overall understanding of 

rate and accumulation processes.  

Case-based teaching methods have been suggested as a best practice for introducing 

students to ethical decision-making scenarios. By sensitizing future engineers to the concerns of 

stakeholders who are impacted by engineering decisions, educators can better prepare them to 

create designs that address social outcome criteria such as welfare and justice. Using case study 

findings related to stakeholder concerns and engineering decisions for stormwater management 

planning in Onondaga County, I develop a case-based teaching module on engineering decision-

making for use in undergraduate civil and environmental engineering courses. Assessments from 

three years of module implementation demonstrate that the module can be used to meet multiple 

learning objectives and enhance student understanding of stakeholder engagement principles.  
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Chapter 1 Introduction 

1.1 Motivation 

Anthropogenic environmental changes have eroded the resilience of major components of 

ecosystem functioning that provide the appropriate living environments and ecological services 

that humanity depends on to exist (Rockström et al., 2009). Sustainable development is widely 

recognized as an essential strategy to decrease the negative impacts of anthropogenic activities, 

despite multiple interpretations of its underlying concepts (Glavič and Lukman, 2007; Redclift, 

2005; WCED, 1987). Attainment of large-scale sustainable development goals requires 

collaborative efforts across governments, corporations, nonprofit organizations, academia, and 

individuals.  

Engineers can play a pivotal role in the design and implementation of sustainable 

development strategies. Several professional engineering organizations have responded to 

concerns of sustainable development by adopting principles of sustainable engineering design 

and amending their codes of practice. For instance, the American Society of Civil Engineers 

amended its first Code of Ethics Canon in 1996 to include sustainable development principles 

(ASCE, 2008). While the need to consider sustainability as an inherent part of engineering 

practice has been widely accepted, embedding it in daily practice remains to be fully realized 

(Jones et al., 2017). 

Many researchers argue that there is a need to integrate the physical and social science 

disciplines with engineering to address the ecological, economic, and social processes of 

sustainable development (Clark and Dickson, 2003; Kates et al., 2001; Mihelcic et al., 2003).  

The importance of interdisciplinary efforts in building sustainable solutions to critical 
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environmental problems is becoming more apparent to many policy makers, scientists, and 

engineers who seek to encourage research and education at the interfaces of different disciplines 

(Hollander et al., 2016). Interdisciplinary and transdisciplinary research that balances 

disciplinary perspectives and actively involves stakeholders and decision-makers can provide 

research that is both more useful and readily accepted (Reid et al., 2010).  

There are considerable challenges to integrating sustainable engineering into 

undergraduate education, particularly in addressing the normative social dimensions of 

sustainable development (Allenby et al., 2009).  It is unrealistic to expect students with little 

“real-world” experience to understand the complexities of sustainable engineering design 

through traditional instructional methods. Instead, introducing pedagogical elements such as 

historical context, decision-making problems, and ethical problems into the classroom can help 

students to develop a sustainable design mindset. At the same time, conceptual knowledge of 

fundamental mathematic and scientific principles is central to the practice of engineering 

(Sheppard et al., 2007; Streveler et al., 2008). Thus, engineering students must develop deep 

conceptual understandings of both the engineering processes that underlie complex 

environmental systems as well as the broad array of social and economic factors that influence 

the design of sustainable engineered systems. 

1.2 Urban Water Infrastructure Systems 

Cities across the U.S. are facing mounting water crises that threaten social and 

environmental sustainability due to population growth, deteriorating infrastructure, and climate 

change. These issues stem in part from unforeseen consequences of engineering system designs 

that fail to incorporate the complexity of social and ecological factors that are affected by these 
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systems. For instance, the rationale that 19th and early 20th century engineers used to build 

thousands of miles of combined sewer systems throughout the U.S. has left a legacy of water 

pollution problems that policy-makers continue to deal with today (Tarr, 1979). As an immediate 

replacement of centralized urban water systems is an economically unrealistic option, transitions 

toward sustainable water systems through redevelopment projects will be needed to provide 

adequate water services for future generations (Daigger, 2009; Sedlak, 2014). 

Traditionally, water infrastructure decisions have been framed from a function, safety, 

and cost perspectives, without important stakeholders effectively engaged in developing 

integrated, sustainable solutions (Guest et al., 2009). While many technological approaches exist 

that can transition water infrastructure systems to more sustainable and resilient states, their 

implementation is limited by institutional impediments and uncertainties about the design, 

performance, and life cycle costs of new technologies. Thus, there is a need for more robust 

decision-making frameworks for water infrastructure systems that integrate evaluation methods 

based on sustainable development principles and engagement with a wide range of stakeholders 

in defining and implementing solutions  

1.3 Thesis Overview 

In summary, challenges to sustainable stormwater management include a lack of 

appropriate design and planning methodologies that incorporate interdisciplinary research to 

identify and implement the most sustainable solution in a particular context. Similarly, 

challenges to educating the next generation of engineers include a lack of appropriate 

educational tools that adequately prepare students to take on such approaches to sustainable 

engineering design. The objective of this thesis is to identify elements of such a decision-making 
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methodology that can provide engineers, stormwater management stakeholders, and engineering 

educators with lessons and tools that can advance the sustainable development of stormwater 

management systems. This work brings together an assessment of sustainable stormwater 

management planning in the United States with investigations of student understanding of 

engineering design principles. The intent of this research is to explore two different but related 

problems: (1) a need to understand key factors affecting sustainable stormwater technology 

adoption and implementation in municipalities, and (2) a need for engineering students to apply 

fundamental scientific and mathematical principles while incorporating complex social 

constraints within engineering design problems. This thesis includes five chapters that aim to 

address these challenges of sustainable engineering design.  

Interdisciplinary research is facilitated when common vocabulary is shared by scholars 

working on a particular system of interest. A framework is a type of ontology that can aid in the 

organization and accumulation of knowledge from empirical studies through a shared 

understanding the concepts and terms used in interdisciplinary research endeavors. In Chapter 2, 

I propose a framework for identifying factors that condition the adoption of green infrastructure 

technologies by stormwater management authorities. The application of this framework can be 

useful in the analysis of social-ecological outcomes at multiple scales. Chapter 3 presents a case 

study that utilizes the revised framework to describe and evaluate changes in stormwater 

management planning in Onondaga County, NY between 1998 and 2009.  In Chapter 4, I use 

select factors from the framework to build an empirical model to analyze combined sewer 

management authorities’ decisions related to green infrastructure program adoption.  

Many engineering processes are built upon the basic principles of mass and energy 

balances, which invoke the use of mathematical models derived from the fundamental theorem 
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of calculus to analyze rates of change and accumulation across system boundaries of interest. 

Chapter 5 provides evidence of the validity and reliability of an assessment tool designed to 

measure students’ understanding of rate and accumulation concepts. Investigating various social 

elements of engineering practice in the classroom can improve students’ recognition of ethical 

problems in real-world settings and provide an understanding of sustainable decision-making. 

Chapter 6 describes the development and use of a case-based active-learning module to enhance 

student understanding of stakeholder engagement principles. 

1.4 References 

Allenby, B., Murphy, C.F., Allen, D., and C.I. Davidson. 2009. Sustainable engineering 
education in the United States. Sustainability Science 4(1), 7–15. doi:10.1007/s11625-009-0065-
5 

ASCE, 2008. The ASCE Code of Ethics: Principles, Study, and Application. American Society 
of Civil Engineers. 

Clark, W.C., and N.M. Dickson. 2003. Sustainability science: the emerging research program. 
Proceedings of the National Academy of Sciences 100(14), 8059–8061. 

Daigger, G.T. 2009. Evolving urban water and residuals management paradigms: Water 
reclamation and reuse, decentralization, and resource recovery. Water Environment Research 
81(8), 809–823. 

Glavič, P., and R. Lukman. 2007. Review of sustainability terms and their definitions. Journal of 
Cleaner Production 15(18), 1875–1885. 

Guest, J.S., Skerlos, S.J., Barnard, J.L., Beck, M.B., Daigger, G.T., Hilger, H., Jackson, S.J., 
Karvazy, K., Kelly, L., Macpherson, L., Mihelcic, J.R., Pramanik, A., Raskin, L., Van 
Loosdrecht, M.C.M., Yeh, D., and N.G. Love. 2009. A new planning and design paradigm to 
achieve sustainable resource recovery from wastewater. Environmental Science & Technology 
43(16), 6126-6130. 

Hollander, R., Amekudzi-Kennedy, A., Bell, S., Benya, F., Davidson, C.I., Farkos, C., Fasenfest, 
D., Guyer, R., Hjarding, A., Lizotte, M., Quigley, D., Watts, D., and K. Whitefoot. 2016. 
Network priorities for social sustainability research and education: Memorandum of the 
Integrated Network on Social Sustainability Research Group. Sustainability: Science, Practice, 
& Policy 12(1). 



6 
 

Jones, S.A., Michelfelder, D., and I. Nair. 2017. Engineering managers and sustainable systems: 
the need for and challenges of using an ethical framework for transformative leadership. Journal 
of Cleaner Production 140, 205–212. 

Kates, R.W., Clark, W.C., Corell, R., Hall, J.M., Jaeger, C.C., Lowe, I., McCarthy, J.J., 
Schellnhuber, H.J., Bolin, B., Dickson, N.M., Faucheux, S., Gallopin, G.C., Grübler, A., 
Huntley, B., Jäger, J., Jodha, N.S., Kasperson, R.E., Mabogunje, A., Matson, P., Mooney, H., 
Moore, B., O’Riordan, T., and U. Svedin. 2001. Sustainability science. Science 292(5517), 641–
642. 

Mihelcic, J.R., Crittenden, J.C., Small, M.J., Shonnard, D.R., Hokanson, D.R., Zhang, Q., Chen, 
H., Sorby, S.A., James, V.U., Sutherland, J.W., and J.L. Schnoor. 2003. Sustainability science 
and engineering: the emergence of a new metadiscipline. Environmental Science & Technology 
37(23), 5314–5324. 

Redclift, M., 2005. Sustainable development (1987–2005): An oxymoron comes of age. 
Sustainable Development 13(4), 212–227. 

Reid, W.V., Chen, D., Goldfarb, L., Hackmann, H., Lee, Y.T., Mokhele, K., Ostrom, E., Raivio, 
K., Rockström, J., Schellnhuber, H.J., and A. Whyte. 2010. Earth system science for global 
sustainability: grand challenges. Science 330(6006), 916–917. 

Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F.S., Lambin, E.F., Lenton, T.M., 
Scheffer, M., Folke, C., Schellnhuber, H.J., Nykvist, B., de Wit, C.A., Hughes, T., van der 
Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P.K., Costanza, R., Svedin, U., Falkenmark, M., 
Karlberg, L., Corell, R.W., Fabry, V.J., Hansen, J., Walker, B., Liverman, D., Richardson, K., 
Crutzen, P., and J.A. Foley. 2009. A safe operating space for humanity. Nature 461(7263), 472–
475. 

Sedlak, D. 2014. Water 4.0: The past, present, and future of the world’s most vital resource. Yale 
University Press. New Haven, CT, USA. 

Sheppard, S., Colby, A., Macatangay, K., and W. Sullivan. 2007. What is engineering practice? 
International Journal of Engineering Education 22(3), 429-438. 

Streveler, R.A., Litzinger, T.A., Miller, R.L., and P.S. Steif. 2008. Learning conceptual 
knowledge in the engineering sciences: Overview and future research directions. Journal of 
Engineering Education 97(3), 279–294. 

Tarr, J.A. 1979. The separate vs. combined sewer problem: a case study in urban technology 
design choice. Journal of Urban History 5, 308–339. 

World Commission on Environment and Development (WCED). 1987. Our Common Future. 
Oxford University Press. Oxford, United Kingdom.  

 



7 
 

Chapter 2 Adapting the social-ecological system framework for 
urban stormwater management: The case of green infrastructure 
adoption1 

2.1 Abstract 

Stormwater management has long been a critical societal and environmental challenge for 

communities. An increasing number of municipalities are turning to novel approaches such as 

green infrastructure to develop more sustainable stormwater management systems. However, 

there is a need to better understand the technological decision-making processes that lead to 

specific outcomes within urban stormwater governance systems. We used the social-ecological 

system (SES) framework to build a classification system for identifying significant variables that 

influence urban stormwater governance decisions related to green infrastructure adoption. To 

adapt the framework, we relied on findings from observations at national stormwater meetings in 

combination with a systematic literature review on influential factors related to green 

infrastructure adoption. We discuss our revisions to the framework that helped us understand the 

decision by municipal governments to adopt green infrastructure. Remaining research needs and 

challenges are discussed regarding the development of an urban stormwater SES framework as a 

classification tool for knowledge accumulation and synthesis. 

2.2 Introduction 

The lack of well-integrated urban stormwater management strategies throughout the past 

century has left a heritage of environmental and social problems that policy-makers continue to 

deal with today. Municipal stormwater management plans in many developed countries have 

                                                 
1 This paper is published in the Ecology and Society. It is cited in the rest of the dissertation as Flynn and Davidson (2016). 
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favored the use of gray infrastructure (e.g., sewer separation projects, deep storage tunnels, and 

regional treatment facilities). These engineering solutions can be costly, tend to promote 

centralized subsurface conveyance systems with end-of-pipe treatment, and often take years to 

complete. Despite major investments in stormwater infrastructure, urban areas continue to 

experience critical problems in managing water flows, including flooding, surface water 

impairment, and combined sewer overflows (U.S. EPA 2004, National Research Council 2009, 

Coles et al. 2012). 

Recent advances in stormwater management methods seek to enhance the sustainability 

of urban water systems. For instance, stormwater systems that include green infrastructure (GI), 

also known as low impact development, are recognized as a more sustainable approach. GI 

technologies are designed to protect or restore the natural hydrology of a site, capturing 

stormwater volume through the use of engineered systems that mimic natural hydrologic 

systems. Comprehensive GI programs can be implemented for a variety of outcomes, including 

flood control, surface water quality improvement, and water harvesting, in conjunction with a 

broad range of additional outcomes such as ecosystem restoration, air quality improvement, and 

urban heat reduction (Hatt et al. 2004, Villarreal et al. 2004, Walsh et al. 2005, Tzoulas et al. 

2007). However, there are potential practical limitations for GI to achieve sustainable outcomes 

for municipalities, such as a limited capacity for storing and infiltrating stormwater. 

The decision to adopt a comprehensive GI program is influenced by a complex array of social 

and biophysical factors. To explore such complexities, an urban water system can be understood 

as a social-ecological system (SES), or a collection of dynamic systems that coevolve through 

interactions among actors, institutions, and water systems, such as source water, groundwater, 
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wastewater, and stormwater (Berkes et al. 1998, Holling and Gunderson 2002). The stormwater 

flows and storage volumes within an urban water SES represent common-pool resources, in that 

water quality and available storage volumes are diminished as runoff flows through urban 

environments. These issues prompt the need for public authorities to establish various standards 

related to the management of stormwater. 

A fundamental component of urban stormwater SESs is the role of technology as a 

critical interface between the social and ecological structures, which allows actors to shape 

different processes to achieve outcomes in system functioning (Ferguson et al. 2013). 

Technologies also act as a feedback mechanism between the social and biophysical systems of an 

SES. Walker et al. (2004) describe the potential of an SES intervention to create a new system 

when the conditions of an existing system are weakened. Stormwater management systems that 

are exclusively composed of gray infrastructure may result in urban water system weakening 

because these technology systems are considered neither sustainable nor sufficiently resilient to 

accommodate climatic changes, and may result in unforeseen outcomes such as high economic 

costs and environmental justice issues (Pahl-Wostl 2007, Novotny et al. 2010, Dominguez et al. 

2011, Pyke et al. 2011, Wendel et al. 2011, De Sousa et al. 2012). Alternatively, large-scale use 

of GI in stormwater management planning represents an opportunity for transformational shifts 

in urban water SESs away from point source solutions to decentralized, systematic techniques 

that may also bring multiple benefits to communities (Shuster and Garmestani 2015). 

There is a need to more easily relate attributes and configurations of urban stormwater 

SESs to particular outcomes, such as the development of comprehensive GI programs. Several 

frameworks exist which conceptualize and operationalize SES dynamics, each of which may 
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provide different types of diagnostic insights. Thus, an analyst must be clear about the aim and 

purpose of any diagnostic procedure, and hence, which analytic framework will support the 

specific procedure being undertaken (Ferguson et al. 2013). Binder et al. (2013) provide an 

overview of the prevailing frameworks for analyzing SESs, and provide guidance on the 

selection of an appropriate framework. Scholars studying water systems have developed 

frameworks that identify key processes and structures affecting their governance (Pahl-Wostl et 

al. 2010, Wiek and Larson 2012). Because GI represents a suite of innovative technologies for 

many urban water SESs, it is necessary to first identify and define attributes that may prove to be 

significant in social-ecological interactions before establishing causal mechanisms linking 

conditions and governance outcomes. Providing a framework to organize and document SES 

attributes can serve this function. 

Our primary goal is to identify the influential SES attributes related to the development of 

municipal urban stormwater programs that feature GI. We chose the SES framework because it 

provides a systematic and comprehensive method for defining system attributes and identifying 

those that are associated with outcomes of interest (Ostrom 2007, 2009). Numerous 

environmental case studies have applied the SES framework while adding or redefining 

attributes to best characterize the SES of interest (Fleischman et al. 2010, Gutiérrez et al. 2011, 

Cinner et al. 2012, Basurto et al. 2013, Nagendra and Ostrom 2014, Marshall 2015, Partelow and 

Boda 2015). No such effort has been previously undertaken to assess the suitability of the SES 

framework to characterize urban stormwater management systems. We use qualitative methods 

to identify and define the attributes most commonly associated with the inclusion of GI in 

municipal urban stormwater programs. 
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2.3 Methods  

The identification of attributes associated with GI adoption in municipal urban 

stormwater programs included several phases of data collection and analysis (Fig. 2.1). 

Exploratory work began with observations at GI summits in 2013 and 2014, in which delegates 

from U.S. municipalities were invited to discuss their respective community’s GI programs. 

Extensive field notes from both meetings were coded line-by-line to identify factors that affected 

decisions to adopt municipal GI programs. The resulting codes were grouped into general 

categories of attributes that emerged during the analysis process. These categories were then 

incorporated into the SES framework, using first- and second-tier modifications, as suggested by 

McGinnis and Ostrom (2014), Epstein et al. (2013), and Vogt et al. (2015), as the initial 

framework. 

 

 

Figure 2.1 Sequence of data collection and analysis 
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Another stage of data collection included a literature review of original research efforts 

related to the adoption and implementation of GI in urban stormwater systems. Green 

infrastructure, green stormwater infrastructure (GSI), low impact design (LID), and best 

management practices (BMPs) are among the terms used for various suites of urban stormwater 

management technologies. We refer to GI, GSI, and LID technologies are “GI” because these 

terms are often used synonymously (Fletcher et al. 2014). Searches were carried out using 

Scopus, Web of Knowledge, and Google Scholar. Key words included in the literature review 

were “green infrastructure,” “low impact development,” “stormwater,” and “municipal.” 

Searches were conducted for studies published between 2000 and 2015. In total, 135 articles, 

theses, and reports were reviewed for their relevance to factors affecting the adoption and 

implementation of GI technologies for municipal programs. Reasons for exclusion included a 

study focus on adoption of water systems other than stormwater (e.g., drinking water, 

wastewater), or an exclusive focus on GI technology design attributes outside the context of 

municipal stormwater management program implementation (e.g., experimental findings). 

Studies were not excluded on the basis of study design, the scale or primary design goal of 

stormwater technologies discussed, nor the geographical location of the study; however, most 

studies reviewed were based in the United States or Australia. This process resulted in 83 studies 

that met the criteria, and thus formed the basis of the review. 

Qualitative document analysis techniques were used to identify factors that influence 

municipal GI programs in each of the collected studies. These methods often involve the 

development of a “protocol,” which is tested on each unit of analysis and revised based on the 

quality and likely efficiency of the results (Altheide et al. 2008). The SES framework adapted in 

the initial research phase served as a beginning protocol that consisted of identified attributes 
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related to GI adoption. After analyzing each study of the literature review, new findings were 

organized within the protocol. After all studies were analyzed, each study was reviewed a second 

time to test the protocol. This process resulted in the addition or redefining of second-tier SES 

framework attributes and the development of new third-, fourth-, and fifth-tier attributes 

presented in Table 2.1. Working definitions were developed for each attribute and are included in 

Appendix A2, along with at least three citations of illustrative studies collected in the literature 

review for the highest tier of each nested attribute added to the SES framework. Listed citations 

for each attribute are not presented as definitive authoritative sources nor as a comprehensive 

listing of all studies in which the attribute was identified. Rather, they represent examples of how 

scholars have applied the concept in other studies. 

2.4 Results 

The SES framework organizes system attributes into nested tiers. The first-tier attributes 

of the SES framework, as defined for an urban stormwater management system, are summarized 

in Fig. 2.2. The resource system (RS) is defined as an urban stormwater system; i.e., the system 

of water flows that results from wet weather. Multiple sets of resource units (RU) can be defined 

within an urban stormwater system, such as units of stormwater or the storage volumes available 

for stormwater throughout the system. The governance system (GS) includes the sets of rules 

agreed upon by national, state, and local organizations for managing urban stormwater. The 

actors (A) category includes individuals and groups that interact with the urban stormwater 

system. Multiple categories of actors can be defined, including individuals and groups that are 

involved in rule-making processes, and property owners that are affected by stormwater 

management decisions. Attributes from each of these categories provide inputs to action 

situations, where interactions (I) among actors transform these inputs into various outcomes, 
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which can be measured by outcome criteria (O). Additional influences flow between the focal 

SES attributes and related ecosystems (ECO); ecological rules (ER); and social, economic, and 

political settings (S). 

 

Figure 2.2 First tiers of the urban stormwater SESF, adapted from Ostrom (2009) and 
Epstein et. al (2013) 

Table 2.1 summarizes the changes made to the SES framework. A detailed summary of 

the modifications, along with working definitions and illustrative references, are provided in 

Appendix A2. Because the study focus is only on changes related to resource management 

programs, the findings led to detailed expansions of multiple governance system and actor 

attributes. Attributes for RU, ECO, ER, and S were not modified beyond second-tier changes 

suggested by McGinnis and Ostrom et al. (2014) and Vogt et al. (2015), though many of these
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Table 2.1 Modified second through fifth tier attributes of the urban stormwater SES framework. Factors modified from 
McGinnis and Ostrom (2014), Epstein et. al (2013), and Vogt et. al (2015) that are specific for GI adoption in urban 
stormwater SESs are noted with italic    

Social, Economic, and Political Settings (S) Governance Systems (GS) Actors (A) Resource Systems (RS) 
S1 – Economic development GS1 – Policy area A1 – Number of actors  RS1 – Sector 
S2 – Demographic trends GS2 – Geographical scale  A2 – Socioeconomic attributes RS2 – Clarity of system boundaries 
S3 – Political stability GS3 – Population A3 – History or past experiences RS3 – Size of resource system 
S4 – Government policies GS4 – Regime type    A3.1 – Experimentation RS4 – Human-constructed facilities 
S5 – Market incentives GS5 – Rule-making organizations    A3.2 – Environmental injustices    RS4.1 - Locations  
S6 – Media organization    GS5.1 – Number of organizations A4 – Location       RS4.1.1 – Availability for potential facilities 
S7 – Technology    GS5.2 – Institutional diversity A5 – Leadership/entrepreneurship    RS4.2 – Functionality 
    GS5.3 – Economic resources    A5.1 – Policy entrepreneur  RS5 – Productivity of system 
Related Ecosystems (ECO)    GS5.4 – Human resources    A5.2 – Policy community  RS6 – Equilibrium properties 
ECO1 – Climate patterns GS6 –  Rules-in-use A6 – Norms (trust-reciprocity)/social capital    RS6.1 – Frequency/timing of disturbances 
ECO2 – Pollution patterns    GS6.1 – Operational -choice rules    A6.1 – Trust RS7 – Predictability of system dynamics 
ECO3 – Flows into and out of focal SES       GS6.1.1 – Stormwater ordinances      A6.2 – Reciprocity  RS8 – Storage characteristics 
          GS6.1.1.1 – Technical basis    A6.3 – Social capital    RS8.1 – Soil characteristics 
Ecological Rules (ER)          GS6.1.1.2 – Administrative apparatus A7 –  Knowledge of SES/mental models    RS8.2 – Imperviousness 
ER1 – Physical Rules          GS6.1.1.3 – Enforcement provisions    A7.1 – Types of knowledge RS9 –  Location 
ER2 – Chemical Rules       GS6.1.2 – Stormwater utility funding scheme       A7.1.1 – Traditional ecological knowledge RS10 – Ecological history 
ER3 – Biological Rules          GS6.1.2.1 – Price instrument        A7.1.2 – Local ecological knowledge    RS10.1 – Human use and disturbance 
ER3 – Biological Rules          GS6.1.2.2 – Credits or fee reduction       A7.1.3 – Technical expertise  
       GS6.1.3 – Stormwater management plans    A7.2 – Mechanisms to share knowledge Resource Units (RU) 
Action Situations: Interactions (I) →           GS6.1.3.1 – Operations and maintenance     A7.3 – Scale of mental models RU1 – Resource unit mobility 
Outcomes (O)       GS6.1.4 – Related regulations A8 –  Importance of resource (dependence) RU2 – Growth or replacement rate 
Interactions (I)    GS6.2 – Collective-choice rules A9 – Technology available RU3 – Interaction among resource units 
I1 – Harvesting       GS6.2.1 – Enforcement responsibilities    A9.1 – Ownership RU4 – Economic value 
I2 – Information sharing    GS6.3 –  Constitutional-choice rules    A9.2 – Research support  RU5 – Number of units 
I3 – Deliberation processes       GS6.1.3 – Stormwater management plans       A9.2.1 - Environmental performance  RU6 – Distinctive characteristics 
I4 – Conflicts          GS6.1.3.1 – Operations and maintenance           A9.2.1.1 – Stormwater management RU7 – Spatial and temporal distribution 
I5 – Investment activities       GS6.1.4 – Related regulations          A9.2.1.2 – Environmental "co-benefits"  
I6 – Lobbying activities    GS6.2 – Collective-choice rules       A9.2.2 – Social benefits  
I7 – Self-organizing activities       GS6.2.1 – Enforcement responsibilities       A9.2.3 – Design and complexity   
I8 – Networking activities    GS6.3 – Constitutional-choice rules       A9.2.4 – Maintenance procedures  
I9 – Monitoring activities GS7 – Property-rights systems       A9.2.5 – Reliability   
I10 – Evaluative activities    GS7.1 – Watercourse law       A9.3.1 – Capital  
       GS7.1.1 – Prior appropriation doctrine       A9.3.2 – Operation and maintenance  
Outcome Criteria: GS8 –  Repertoire of norms and strategies    A9.4 –  Perceptions/attitudes  
O1 – Social performance measures     GS8.1 –  Diversity   
O2 – Ecological performance measures     GS8.2 –  Risk tolerance   
O3 – Externalities to other SESs GS9 –  Network structure   
    GS9.1 – Horizontal   
    GS9.2 – Vertical   
 GS10 – Historical continuity    
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attributes have direct and important effects on the design of municipal stormwater management 

programs. Additional studies on implementing various technological designs may result in a 

more detailed account for influential attributes in these categories. 

Multiple third-, fourth-, and fifth-tier variables were added to describe various attributes 

of stormwater management technologies that are available to actors within the SES (A9), such as 

research support (A9.2), associated costs (A9.3), and perceptions of particular technologies 

(A9.4). The addition of third-, fourth-, and fifth-tier variables related to human-constructed 

facilities (RS4) designates both the types and functionalities of existing and potential stormwater 

infrastructure. A notable factor related to the construction of GI technologies is the availability of 

suitable locations for potential facilities (RS4.1.1), which is often associated with other factors 

such as local soil characteristics (RS8.1) (Shuster et al. 2014). Additional tiers allow for a 

detailed account of the assortment of resources and rules used by organizations to manage GI 

technologies. Stormwater ordinances (GS6.1.1) often acted as a barrier to GI implementation 

(Nowacek et al. 2003, Lassiter 2007, Stockwell 2009, Dochow 2013). Another common barrier 

was lack of sufficient program funding (Clean Water America Alliance 2011, Siglin 2012, Winz 

et al. 2014), which is associated with limited economic resources available to rule-making 

organizations (GS5.3), type of stormwater utility funding schemes (GS6.1.2), and socioeconomic 

attributes of actors (A2). Multiple attributes of actors that interact with and manage stormwater 

resources were found to influence GI program adoption, such as the leadership efforts of policy 

entrepreneurs (A5) and policy communities (A5.2), multiple actor knowledge types (A7.1), 

experimentation (i.e., technology pilot projects) (A3.1), and environmental injustices (A3.2). 
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2.5 Discussion 

In the broadest sense, integration of GI into an urban stormwater management system can 

be understood as the development of human-constructed facilities (RS4) across diffuse locations 

(RS4.1) using available technologies (A9) to alter the storage characteristics of an urban 

stormwater system (RS8). In developing this SES framework, additional third-, fourth-, and fifth-

tier variables were needed to account for complex arrangements of social and biophysical factors 

that affect GI implementation. Operational-choice rules (GS6.1), such as ordinances, funding 

schemes, and comprehensive management plans, were found to be among the most complex 

factors. These rules are often further complicated by related SES regulations (GS6.1.4), such as 

zoning, building codes, and demolition practices (Lassiter 2007, Carter and Fowler 2008, Shuster 

et al. 2014). These related regulations are often managed by separate organizations, which may 

create barriers to GI implementation if the regulations are prohibitive. Property-rights systems 

that include prior-appropriation doctrines (GS7.1.1) can limit the choices of GI technologies 

(e.g., rainwater collection systems for some communities in the western United States) (Jensen 

2008, Salkin 2009). 

Funding was found to be among the most frequently cited barriers to GI (Godwin et al. 

2008, Roy et al. 2008, Brown et al. 2009, Earles et al. 2009, Ruppert and Clark 2009, Stockwell 

2009, Clean Water America Alliance 2011), most often in reference to the limited economic 

resources of enforcement organizations (GS5.1.1.2) and a lack of information on the cost-

effectiveness of GI (A9.3). In the studies reviewed, stormwater management programs were 

enforced primarily by public organizations that selected stormwater management technologies to 

meet outcome criteria in a cost-effective manner. Environmental services associated with GI 

(A9.2.1.2), such as reducing urban heat island effects or promoting recreational opportunities, 
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were cited as drivers for adoption when these benefits were quantifiable (Nowacek et al. 2003, 

Madden 2010). This suggests that it is difficult to maintain clear institutional boundaries when 

assessing the market and nonmarket value of GI because there may be additional benefits that GI 

can bring to a community beyond stormwater management. 

The financial concerns of enforcement organizations are complicated by the design of 

effective stormwater utility funding schemes (GS6.1.2). Many funding schemes are predicated 

on the extent of total impervious area of urban land parcels because this metric has frequently 

been used to predict levels of surface water impairments due to stormwater runoff (Booth and 

Jackson 1997, Parikh et al. 2005). However, studies suggest that the subset of impervious 

surfaces that route runoff directly to surface waters via sewer pipes, known as directly connected 

impervious area or effective impervious area, may be responsible for most surface water 

impairments due to urbanization (Brabec et al. 2002, Walsh 2004, Walsh et al. 2005, Roy and 

Shuster 2009). Thus, stormwater utility funding schemes based on total impervious area rather 

than effective impervious area may not lead to desired SES outcomes. Additional limitations of 

utility funding schemes may develop if financial credits for GI are calculated as a one-time credit 

based on the initial installation without including ongoing performance and maintenance criteria, 

or if residential property owners are not included in financial incentive programs (Parikh et al. 

2005). 

Technological attributes are described in both the social and ecological domains of the 

SES framework. While it has been argued that there is no need to create a separate technological 

domain (McGinnis and Ostrom 2014), we demonstrate a need to more fully develop robust 

descriptions of technological attributes within urban stormwater SESs because these attributes 
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act as key feedback mechanisms between the social and ecological domains. Historically, 

technological innovations in urban water SESs have been shown to bring about desired social 

and ecological regime shifts, such as a reduction in water-borne illness and a decrease in the 

frequency of algal blooms due to eutrophic states of receiving waters (Melosi 1999, Smith et al. 

1999). Urban water infrastructure choices may also lead to unforeseen consequences over long 

periods. For example, combined sewer systems were once deemed to be the most appropriate 

choice for urban settings due to factors such as cost-effectiveness and availability of water 

courses for overflow disposal (Tarr 1979). These decisions have left a legacy of water pollution 

problems for many communities, as combined sewer overflows continue to impair surface waters 

and create human health hazards (U.S. EPA 2004, Donovan et al. 2008, Gooré Bi et al. 2015). 

By developing a comprehensive categorization of technological attributes within an SES 

framework, policy-makers will be better equipped to make well-informed decisions concerning 

technology selection for desired urban water SES outcomes. 

Though additional characterizations were not added within several second-tier categories, 

such as resource units (RU) and outcome criteria (O), attributes in these categories have 

important implications for stormwater management technology decisions. For instance, 

stormwater management plans are traditionally designed according to the spatial and temporal 

distribution of stormwater flows in an urban area (RU7), which will be affected by changes in 

local precipitation patterns (RU2). The spatial and temporal distribution of stormwater volumes 

within an urban setting places clear boundaries on which technologies should be considered and 

where they should be situated in an urban setting (Askarizadeh et al. 2015). Additionally, the 

criteria used to select stormwater management technologies, such as relative cost-effectiveness 

or ecological performance measures, will often strongly influence enforcement officials’ 
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decision-making processes (Flynn et al. 2014). Expansion of these attribute categories may be 

necessary when considering research questions related to the design of specific stormwater 

technologies or the influence of particular outcome criteria. 

Some limitations of the modified framework attributes should be noted. Because several 

programs reviewed in the literature are in early phases of development, some SES framework 

attributes are likely relevant to only nascent GI implementation. However, an analysis of GI 

technologies in urban stormwater SESs over longer timescales may result in other variables 

having a greater effect (Brown et al. 2013). Much of the research we reviewed relies on case 

study methods such as the solicitation of particular actors’ perceptions. Thus, some factors listed 

may pertain to specific actors or institutions, such as engineering firms, municipal officials, 

developers, or community residents. Additional studies can provide further insights into the 

possibility of shared, complementary interactions among actors within specific situations that 

result in the development of successful GI programs. It is also important to note that while the 

literature review was not restricted to studies from particular geographic locations, most studies 

were based in the United States or Australia, which prescribe similar stormwater governance 

structures. Researchers who use the revised SES framework in studies of community-based 

stormwater governance regimes may need to add more detailed characterizations of particular 

attributes (such as property-rights systems or collective-choice rules), or may need to omit others 

(such as particular operational rules). 

2.6 Conclusions 

We developed a modified SES framework to recognize the combinations of influential 

variables related to the development of municipal urban stormwater management programs that 
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feature extensive use of GI technologies. The modifications made to the SES framework 

revealed the need for additional attribute tiers related to variables such as available technologies, 

actor characterizations, and operational-choice rules. Our findings demonstrate that affecting 

change in the built structure of urban stormwater systems involves multiple interacting attributes 

of the actors and governance systems within an SES. 

The framework we developed should be interpreted as a flexible, proposed framework 

rather than a definitive set of variables that will be relevant in all urban stormwater SES cases. 

Other studies highlight qualities of particular attributes within adapted SES frameworks to 

explore dynamic interactions and outcomes of interest (Fleischman et al. 2010, Basurto et al. 

2013, Nagendra and Ostrom 2014, Leslie et. al 2015, Partelow and Boda 2015). The revised 

framework we presented highlights key factors of GI adoption that can be further explored using 

various theories and models to assess outcomes of interest related to urban stormwater SESs 

seeking to adopt GI technologies (Flynn et al. 2014). Tiers may be added or omitted to 

accommodate particular theories and research questions. 

There is a need to explore the specific, contextual factors affecting the decision to adopt 

particular management approaches in urban stormwater SESs. The growing popularity of GI 

systems across municipalities carries a risk that these technologies will be perceived as a panacea 

for stormwater management (Ostrom 2007). However, there continues to be a need for a more 

sophisticated quantitative understanding of how GI technologies bring out particular SES 

outcomes. Neither a fully green nor entirely gray infrastructure approach to stormwater 

management will likely be optimal at any location. Instead, long-term solutions must be built 

around improved knowledge of factors influencing water quantity and quality in urban areas, and 
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leveraging the services and capacities of both gray and green infrastructure. Such understanding 

should include the consideration of the unique characteristics of a particular urban water SES. 
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Appendix 2 

Table A2.1 Modified framework for green infrastructure adoption in urban stormwater social-ecological systems. References 
provided as working definitions and illustrative examples from the literature. 

Tier Level 
 

Attribute 
 

Working Definition 

 
Definition 

References†, and 
Select 

Illustrative 
Examples‡ 

Second Third Fourth Fifth 
   

Ecological Rules (ER) 
The broader context of laws, 
theories, and principles developed 
in the natural sciences 

Epstein et al. 
(2013)† 

ER1    Physical rules 
Laws, theories, and principles of or 
relating to nature and properties of 
matter and energy 

 

ER2    Chemical rules 
Laws, theories, and principles of or 
relating to composition, structure, 
properties, and change of matter 

 

ER3    Biological rules 
Laws, theories, and principles of or 
relating to living organisms 

 

Social, economic, and political settings (S) 
The broader context within which 
the governance system per se is 
located, including the effects of 

McGinnis 
(2011)† 
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market dynamics and cultural 
change 

S1 
   

Economic development 
Efforts that seek to improve the 
economic well-being and quality 
of life for a community 

Madden (2010)‡, 
Winz et al. 
(2014)‡ 

S2    Demographic trends 
Developments and changes in 
human populations 

Travaline et al. 
(2015)‡ 

S3    Political stability 
Degree of durability and integrity 
of a current government regime 

 

S4 
   

Government policies 
Sets forth policies that address 
public issues related to, or 
otherwise effect, stormwater flows 

Roy et al. 
(2008)‡, Dunn 
(2010)‡, Dochow 
(2013)‡, 
Holloway et al. 
(2014)‡ 

S5 
   

Market incentives 
Policies that incentivize certain 
stormwater management 
approaches 

Carter and 
Fowler (2008)‡, 
Dunn (2010)‡, 
Clean Water 
America Alliance 
(2011)‡, Dochow  
(2013)‡ 

S6    Media organization 

Characteristics of entities engaged 
in disseminating information to the 
general public through mass 
communication channels 

Madden (2010)‡, 
Cettner et al. 
(2014) b 
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S7 
   

Technology 

Broader cultural settings and 
development context that affect the 
technologies regularly used by 
actors in their interactions with the 
resource units 

Clean Water 
America Alliance 
(2011)‡, Siglin 
(2012)‡, Cettner 
et al. (2014b)‡ 

Resource Units (RU) 

Characteristics of the units 
extracted from a resource system, 
which can then be consumed or 
used as an input in production or 
exchanged for other goods or 
services. 

McGinnis 
(2011)† 

RU1    Resource unit mobility 
Ability for resource units to move 
throughout the resource system 

 

RU2    Growth or replacement rate 

Absolute or relative descriptions of 
changes in quantities (x) of 
resource units 

over time (t) 

Basurto et al. 
(2013)†, Clean 
Water America 
Alliance (2011)‡ 

RU3    Interaction among resource 
units 

Interactions among resource units 
during different time periods 
affecting the 

future structure of the population 

Basurto et al. 
(2013)† 

RU4    Economic value 
Value of resource units in relation 
to the portfolio of resources 
available to 

Basurto et al. 
(2013)†, Clean 
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actors 
Water America 
Alliance (2011)‡ 

RU5    Number of units 
Amount of individual resource 
units in resource system 

 

RU6    Distinctive markings 

Characteristics that can be 
identified in resource units and 
affect actors’ behavior toward 
them 

Basurto et al. 
(2013)† 

RU7    
Spatial and temporal 
distribution 

Allocation patterns of resource 
units across a geographic area in a 
particular 

time period 

Basurto et al. 
(2013)† 

Resource systems (RS) 

The biophysical system from 
which resource units are extracted 
and through which the levels of the 
focal resource are regenerated by 
natural dynamic processes 

McGinnis 
(2011)† 

RS1 
   

Sector 
Characteristic(s) of a resource 
system that distinguishes it from 
other resource systems 

Ostrom (2007)† 

RS2 
   

Clarity of system boundaries 

Biophysical characteristics that 
make feasible for actors to 
determine where the resource 
system starts or ends 

Basurto et al. 
(2013)† 
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RS3 
   

Size of resource system 
Absolute or relative descriptions of 
the spatial extent of a resource 
system 

Basurto et al. 
(2013)† 

RS4 
   

Human-constructed facilities 
Facilities produced by actors that 
affect the resource system 

 

 
RS4.1 

  
Locations 

Spatial extent where facilities are 
constructed by actors 

Perez-Pedini et 
al. (2005)‡, 
Montalto et al. 
(2013)‡, 
Askarizadeh et 
al. (2015)‡ 

  
RS4.1.1 

 
Potential facilities 

Availability of suitable locations 
for potential facilities 

Clean Water 
America Alliance 
(2011)‡, Hammitt 
(2010)‡, Shuster 
et al. (2014)‡ 

 
RS4.2 

  
Functionality 

Degree to which stormwater 
management facilities achieve 
desired outcomes 

Nowacek et al. 
(2003)‡, Siglin  
(2012)‡, Keeley 
et al. (2013)‡, 
Flynn et al. 
(2014)‡ 

RS5 
   

Productivity of system 
Rate of generation of resource 
units 

Clean Water 
America Alliance 
(2011)‡ , 
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Askarizadeh et 
al. (2015)‡ 

RS6 
   

Equilibrium properties 

Characterization of the type of 
attractor of a resource system 
along a range from one to multiple 
(chaotic) attractors 

 

 
RS6.3 

  Frequency/timing of 
disturbances 

Characterization of extreme events 
(e.g., intense wet weather events) 

Madden (2010)‡, 
Clean Water 
America Alliance 
(2011)‡, Keeley 
et al. (2013)‡, 
Cettner et al. 
(2014a)‡ 

RS7 
   Predictability of system 

dynamics 

Degree to which actors are able to 
forecast or identify patterns in 
environmentally driven variability 
on recruitment 

Basurto et al.  
(2013)†, 
Askarizadeh et 
al. (2015)‡ 

RS8 
   

Storage characteristics 
Degree to which the resource units 
can be retained or detained 

 

 
RS8.1 

  
Soil characteristics Hydrologic characteristics of soils 

Nowacek et al. 
(2003)‡, Clean 
Water America 
Alliance (2011)‡, 
Shuster et al. 
(2014)‡, Rhea et 
al. (2014)‡ 
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 RS8.2   Impervious surface area 
Amount of system coverage by 
materials that inhibit water 
infiltration 

Dietz and 
Clausen (2008)‡, 

Roy and Shuster 
(2009)‡, Kertesz 
et al. (2014)‡ 

RS9 
   

Location 
Spatial and temporal extent where 
resource units are found by actors 

Hammitt (2010)‡, 
Madden (2010)‡, 
Askarizadeh et 
al. (2015)‡ 

RS10 
   

Ecosystem history 
Past interactions that affect current 
actors' behaviors and stormwater 
management plans 

 

 
RS10.3 

  
Human use and disturbance 

Past interactions in which actors 
have greatly degraded resource 
system quality 

Shandas and 
Messer, (2008)‡, 
Hammitt (2010)‡, 
Madden (2010)‡,  
Flynn et al. 
(2014)‡ 

Governance systems (GS) 

The prevailing set of processes or 
institutions through which the 
rules shaping the behavior of the 
actors are set and revised 

McGinnis 
(2011)† 

GS1 
   

Policy area 
Rule systems tailored for a 
particular area of knowledge, 
geography, or time 

Basurto et al. 
(2013)†, 
Holloway et al. 
(2014)‡ 
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GS2 
   Geographical scale of 

governance system 

Defined area that participates in, or 
is subject to, the system of 
governance 

McGinnis and 
Ostrom (2014)†, 
Nowacek et al. 
(2003)‡, Siglin  
(2012)‡, 
Stockwell 
(2009)‡ 

GS3 
   

Population 
Defined group of people that 
participates in, or is subject to, the 
system of governance 

McGinnis and 
Ostrom (2014)† 

GS4 
   

Regime type 
Specifies the logic upon which the 
overarching governance system is 
organized 

McGinnis and 
Ostrom (2014)† 

GS5 
   

Rule-making organizations 

Institutions recognized by external 
actors and/or authorities that 
facilitate formal structured 
interactions among actors affected 
by these institutions 

McGinnis and 
Ostrom (2014)† 

 
GS5.1 

 
 Number of organizations 

Number of organizations affecting 
decision-making processes related 
to stormwater management in the 
watershed 

Madden (2010)‡,, 
(Shuster et al., 
2008)‡

, Hammitt 
(2010)‡, Keeley 
et al. (2013)‡ 

 GS5.2   Institutional diversity 
Degree of variation represented 
among rule-making organizations 
(including public sector, private 

Stockwell 
(2009)‡, Hammitt 
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sector, nongovernmental, 
community-based, or hybrid 
organizations) 

(2010)‡, Keeley 
et al. (2013)‡ 

 
GS5.3 

  
Economic resources 

Funds available to an organization 
that are used for the creation, 
operation and maintenance of the 
stormwater management program. 
Funds may be generated through a 
variety of means such as a variety 
of taxes, service charges, 
exactions, assessments, grants, 
loans, and bonds. 

Debo and Reese 
(2003)†, (Clean 
Water America 
Alliance (2011)‡, 
Keeley et al. 
(2013)‡ 

 
GS5.4 

  
Human resources 

Human capital available to an 
organization for the creation, 
operation and maintenance of the 
stormwater management program. 

Roy et al.  
(2008)‡, 
Stockwell  
(2009)‡, Winz et 
al. (2014)‡ 

GS6 
   

Rules-in-use 

Regulations or principles that 
specify the values of the working 
components of an action situation, 
each of which has emerged as the 
outcome of interactions in an 
adjacent action situation at a 
different level of analysis or arena 
of choice. 

Ostrom et al. 
(1994)†, Clean 
Water America 
Alliance  (2011)‡, 
Winz et al.  
(2014)‡ 

 
GS6.1 

  
Operational-choice rules 

Set of regulations or principles 
governing the implementation of 
practical decisions by individuals 
authorized or allowed to take these 

McGinnis 
(2011)†, Hammitt  
(2010)‡ 
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actions, often as a result of 
collective choice processes 

  
GS6.1.1 

 Stormwater ordinances and 
regulations 

Sets forth public policies directly 
related to drainage, flood control, 
and water quality aspects of 
stormwater, as well as the legal 
framework for permitting 
implementation of the controls. 

Debo and Reese 
(2003)†, Hammitt  
(2010)‡, Madden 
(2010)‡, Siglin  
(2012)‡ 

   
GS6.1.1.1 Technical basis 

Performance standards, design 
criteria and information provided 
by rule-making organizations to 
assist designers in complying with 
ordinances and regulations. 

Debo and Reese 
(2003)†, Roy et 
al.  (2008)‡, 
Hammitt (2010)‡,  
Dochow (2013)‡ 

   GS6.1.1.2 Administrative apparatus 

Required procedures, such as 
approvals, permits, and 
inspections, to ensure that 
measures meet technical and legal 
requirements 

Debo and Reese 
(2003)†, Jaffe et 
al. (2010)‡, 
Kulkarni, 
(2012)‡, Dochow 
(2013)‡ 

   GS6.1.1.3 Enforcement provisions 
Procedures for penalties (such as 
sanctions) applied to rule violators 

Dunn (2010)‡, 
Hammitt (2010)‡, 

Jaffe et al. 
(2010)‡ 

  
GS6.1.2 

 Stormwater utility funding 
scheme 

Premise that urban drainage 
systems are public systems 

Debo and Reese 
(2003)†, (Fletcher 
et al., 2011)‡, 
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Keeley et al. 
(2013)‡ 

   
GS6.1.2.1 Price instrument 

Fee or tax collected from 
ratepayers (e.g., property owners) 
in exchange for demand placed on 
stormwater system. May exist as a 
stormwater user fee or runoff 
charge. 

Debo and Reese 
(2003)†, 
(Thurston et al., 
2003)‡, Parikh et 
al. (2005)†, 
Hammitt  (2010)‡ 

   
GS6.1.2.2 Credits or fee reductions 

Mechanism to reduce utility fees. 
Can be derived though several 
bases, including the class of 
property, location within 
watershed, or activities on the 
property that reduce stormwater 
impacts. 

Debo and Reese 
(2003)†, Carter 
and Fowler 
(2008)‡, 

(Thurston et al., 
2010)‡, Kertesz 
et al. (2014)‡ 

  GS6.1.3  Stormwater management 
plans 

Comprehensive management plan 
outlining regulations, outcome 
criteria, technical approaches, 
financing strategies, and 
engineering design manuals 

Madden (2010)‡, 
Kulkarni, (2012)‡ 
Keeley et al.  
(2013)‡ 

   GS6.1.3.1 Operation and maintenance 
procedures 

Specifies responsibilities, 
objectives, standards, approaches, 
and protocols related to the 
operation and maintenance of 
stormwater management 
infrastructure 

Nowacek et al. 
(2003)‡, Clean 
Water America 
Alliance (2011)‡,  
Montalto et al. 
(2013)‡ 
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  GS6.1.4  Related regulations 

Sets forth public policies that 
affect the implementation of 
decisions related to stormwater 
management (e.g., zoning codes, 
building codes). 

Lassiter (2007)‡, 
Carter and 
Fowler  (2008)‡, 
Hammitt (2010)‡ 

 
GS6.2 

  
Collective-choice rules 

Set of regulations or principles 
governing institution creation and 
policy decision-making by actors 
who are authorized (or allowed) to 
do so, often as a result of 
constitutional-choice processes 

McGinnis 
(2011)† 

 
GS6.3 

  
Constitutional-choice rules 

Set of regulations or principles 
governing the processes though 
which collective-choice 
stormwater management 
procedures are defined and 
legitimized, often resulting in a 
state or federal guideline or law 

McGinnis 
(2011)†, Dunn 
(2010)‡, Winz et 
al.  (2014)‡ 

GS7 
   

Property-rights systems 

Systems of interrelated rights that 
determine which actors have been 
authorized to carry out which 
actions with respect to a specified 
good or service 

McGinnis 
(2011)† 

 GS7.1   Watercourse law 
Water laws pertaining to water 
within a defined watercourse 

Debo and Reese 
(2003)†, 
Holloway et al. 
(2014)‡ 
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  GS7.1.1  Prior appropriation doctrine 

Private water laws that are 
established by the date when 
beneficial uses were first initiated 
and tied to place and type of use, 
not location. 

Debo and Reese 
(2003)†, Jensen  
(2008)‡,  LaBadie  
(2010)‡, Salkin  
(2009)‡ 

 

GS8 
   Repertoire of norms and 

strategies 

Collection of actions and 
behaviors that actors regularly use, 
as shaped by the broader social 
and cultural setting 

McGinnis and 
Ostrom (2014)†, 
Cettner et al. 
(2014a)‡, Cote 
and Wolfe 
(2014)‡ 

 
GS8.1 

  
Diversity 

Degree of diversity in norms and 
strategies related to stormwater 
management decisions 

Nowacek et al. 
(2003)‡, Hammitt  
(2010)‡,  Madden 
(2010)‡, Winz et 
al. (2014)‡ 

 
GS8.2 

  
Risk tolerance 

Degree to which actors are willing 
to take action in spite of 
uncertainties 

(Singh, 2006)‡, 
Olorunkiya et al.  
(2012)‡, Cettner 
et al. (2014a)‡ 

GS9 
   

Network structure 
The connections among the rule-
making organizations and the 
population subject to these rules 

McGinnis and 
Ostrom (2014) a, 
Madden (2010)‡, 
Cettner et al. 
(2014)‡, Winz et 
al. (2014a)‡ 
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GS9.1 

  
Horizontal 

Connections that link actors with 
each other to act collectively for a 
common purpose 

Shandas and 
Messer, (2008)‡, 
Madden (2010)‡, 
Keeley et al.  
(2013)‡ 

 
GS9.2 

  
Vertical 

Connections that link actors with 
other organizations across levels 

Hammitt (2010)‡, 
Dochow (2013)‡,  
Keeley et al. 
(2013)‡, Shuster 
et al. (2008)‡ 

GS10 
   

Historical continuity 
The length of time for which a 
particular form of governance has 
been in place 

McGinnis and 
Ostrom (2014)† 

Actors (A) 
Attributes of the individuals or 
groups that interact with resource 
units 

McGinnis and 
Ostrom (2014)† 

A1 
   

Number of relevant actors 

Number of actors affecting 
decision-making processes related 
to stormwater management in the 
watershed 

Madden (2010)‡,  
Keeley et al.  
(2013)‡,  
Holloway et al. 
(2014)‡ 

A2 
   

Socioeconomic attributes 

Characteristics of actors related to 
social and economic dimensions 
affecting stormwater management 
plans 

Hammitt (2010)‡, 
Montalto et al.  
(2013)‡, Keeley 
et al. (2013)‡, 
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Travaline et al. 
(2015)‡ 

A3 
   

History or past experiences 
Past interactions that affect current 
actors' behaviors and stormwater 
management plans 

Montalto et al. 
(2013)‡, Baptiste 
(2014)‡, Baptiste 
et al. (2015)‡, 

Travaline et al. 
(2015)‡ 

 
A3.1 

  
Experimentation 

Variations in use patterns to 
increase knowledge of stormwater 
system dynamics (e.g., 
demonstration projects) 

Madden (2010)‡, 
Shuster et al., 
(2013)‡, Marks 
(2014)‡ 

 A3.2   Environmental justice 

Degree to which the development, 
implementation, and enforcement 
of stormwater management plans 
reflect a fair treatment and 
meaningful involvement of all 
people regardless of race, color, 
national origin, or income 

Perreault et al. 
(2012)‡, Flynn et 
al.  (2014)‡, 
Wolch et al. 
(2014)‡ 

A4 
   

Location 
Physical place where actors are in 
relation to components of the 
resource system 

Thurston et al. 
(2010)‡ 

A5 
   

Leadership/entrepreneurship 

Actors who have skills useful to 
organize collective action and are 
followed by their peers/ Non-
exertion of power particularly of 
the public/ 

Hammitt (2010)‡, 
Winz et al. 
(2014)‡ 
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A5.1 

  
Policy entrepreneur 

Individuals who introduce and 
advocate for policy alternatives in 
many different settings, and invest 
time and energy to increase the 
chances for an idea to be placed on 
the decision agenda 

Kingdon (1995)†, 
Godwin et al., 
(2008)‡, Madden 
(2010)‡, Flynn et 
al. (2014)‡ 

 
A5.2 

  
Policy community 

Group composed of specialists in a 
given policy area developing 
policy alternatives 

Kingdon (1995)†, 
Shandas and 
Messer, (2008)‡, 
Madden (2010)‡ 
Flynn et al. 
(2014)‡ 

A6 
   Norms (trust-reciprocity) 

and social capital 

Degree by which one or several 
individuals can draw upon or rely 
on others for support or assistance 
in times of need 

Hammitt (2010)‡, 
Cettner et al., 
(2014b)‡, Winz et 
al. (2014)‡ 

 
A6.1 

  
Trust 

Measure of the extent to which 
members of a community feel 
confident that other members will 
not take maximum advantage of 
their vulnerabilities and/or live up 
to their agreements even if doing 
so may not be in their immediate 
interest. 

McGinnis 
(2011)†, 
Nowacek et al.  
(2003)‡, Shandas 
and Messer, 
(2008)‡, Flynn et 
al. (2014)‡, 
Travaline et al. 
(2015)‡ 

 
A6.2 

  
Reciprocity 

Norm of behavior that encourages 
members of a group to cooperate 

McGinnis 
(2011)†, Shandas 
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with others who have cooperated 
with them in previous encounters. 

and Messer, 
(2008)‡, Clean 
Water America 
Alliance (2011)‡ 

 
A6.3 

  
Social capital 

Resources that an individual can 
draw upon in terms of relying on 
others to provide support or 
assistance in times of need, or a 
group’s aggregate supply of such 
potential assistance, as generated 
by stable networks of important 
interactions among members of 
that community. 

McGinnis 
(2011)†, Roy et 
al.  (2008)‡, 
Dochow  (2013)‡, 
Green et al. 
(2012)‡ 

A7 
   Knowledge of SES/mental 

models 

Degree to which actors understand 
and make sense of the 
characteristics and/or dynamics of 
the SES 

Basurto et al. 
(2013)†, Clean 
Water America 
Alliance  (2011)‡, 

 
A7.1 

  
Types of knowledge 

Types of knowledge actors use to 
understand SES 

 

  
A7.1.1 

 Traditional ecological 
knowledge 

Degree to which actors make use 
of the cumulative body of 
knowledge, practices and beliefs 
evolving by adaptive processes 
and handed down through 
generations by cultural 
transmissions about the 
relationship of living beings 
(including humans) with one 
another and with their environment 

Berkes (2012)†, 
Mbilinyi et al., 
(2005)‡, Flynn et 
al. (2014)‡, Winz 
et al. (2014)‡ 
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A7.1.2 

 
Local ecological knowledge 

Degree to which actors make use 
of knowledge and beliefs held by a 
specific group of people related to 
their environment acquired over 
the lifetime of individual 
generations 

Olsson and Folke 
(2001)†  McGarry  
(2007)‡,  Winz et 
al. (2014)‡, 
Baptiste et al. 
(2015)‡ 

  
A7.1.3 

 
Technical expertise 

Skills held by an actor related to 
specific technologies 

Hammitt (2010)‡, 
Keeley et al. 
(2013)‡, Winz et 
al. (2014)‡ 

 A7.2   Mechanisms to share 
knowledge 

Practices allow actors to learn 
characteristics of the resource at 
sufficiently rapid rates leading to 
behaviors affecting the state of the 
resource 

Thurston et al. 
(2010)‡, 
Dolowitz et al. 
(2012)‡, Green et 
al. (2012)‡ 

 
A7.3 

  
Scale of mental models 

Representation of the physical 
extent of actors’ understanding 
regarding SES characteristics and 
dynamics 

Madden (2010)‡ , 
Hellier (2012)‡, 

(Cettner, 2012)‡ 

A8 
   Importance of resource 

(dependence) 

 
Siglin (2012)‡ 

A9 
   

Technology available 
Attributes of the stormwater 
technologies available to actors 

Clean Water 
America Alliance 
(2011)‡ 
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A9.1 

  
Ownership 

Degree to which stormwater 
management technologies are 
owned by various actors 

Thurston et al. 
(2010)‡, Montalto 
et al. (2013)‡, 
Flynn et al. 
(2014)‡ 

 
A9.2 

  
Research support 

Cumulative body of knowledge 
related to a specific technology 

Roy et al. 
(2008)‡, Hammitt  
(2010)‡, Clean 
Water America 
Alliance  (2011)‡, 
Dochow  (2013)‡ 

  
A9.2.1 

 Environmental performance 
and benefits 

Extent of environmental outcomes 
associated with a technology 

Stockwell 
(2009)‡ 

   
A9.2.1.1 Stormwater management 

Direct stormwater management 
control associated with a 
technology 

Carter and 
Fowler (2008)‡ 
Clark and Pitt 
(2012)‡, Mayer et 
al. (2012)‡, 
Shuster and Rhea 
(2013)‡ 

   
A9.2.1.2 Environmental outcomes 

External environmental outcomes 
associated with a technology 

Carter and 
Fowler  (2008)‡, 
Madden (2010)‡, 
Wise et al. 
(2010)‡, 
Askarizadeh et 
al. (2015)‡ 
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A9.2.2 

 
Social outcomes 

Extent of social outcomes 
associated with a technology 

Clean Water 
America Alliance 
(2011)‡,  Kondo 
et al. (2015)‡ 

  
A9.2.3 

 
Complexity of design 

Degree to which technology 
designs are easily replicable 

Nowacek et al. 
(2003)‡, Roy et 
al. (2008)‡, 
Hammitt  
(2010)‡, Dochow  
(2013)‡ 

  A9.3.4  Maintenance procedures 
Known practices that maximize 
the continued functionality of a 
technology 

Lord and Hunt 
(2008)‡, Clean 
Water America 
Alliance (2011)‡, 
Keeley et al. 
(2013)‡ 

  A9.2.5  Reliability 
Extent to which a technology 
produces the same outcomes on 
repeated trials 

Nowacek et al. 
(2003)‡, 
Olorunkiya et al. 
(2012)‡ 

 
A9.3 

  
Associated costs Expenses related to a technology 

Perez-Pedini et 
al. (2005)‡, Roy 
et al. (2008)‡, 
Jaffe (2011)‡, 
Dochow (2013)‡ 
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A9.3.1 

 
Capital 

Fixed, one-time expenses related 
to the implementation of a 
technology 

Winz et al. 
(2014)‡, Thurston 
et al. (2010)‡, 
Cote and Wolfe 
(2014)‡ 

  
A9.3.2 

 
Operation and maintenance 

Ongoing expenses related to the 
operation and maintenance of a 
technology 

Clean Water 
America Alliance 
(2011)‡, Keeley 
et al. (2013)‡, 
Winz et al. 
(2014)‡ 

 
A9.4 

  
Perceptions/attitudes 

Subjective assessments on various 
technology attributes 

Siglin (2012)‡, 
Keeley et al.  
(2013)‡ , Marks 
(2014)‡, Carlet  
(2015)‡ 

Activities and Processes (I)   

I1    Harvesting Gathering of resource units  

I2    Information sharing 
Exchanges of knowledge between 
actors and/or groups 

Roy et al. (2008)‡ 
Madden (2010)‡, 
Dolowitz et al. 
(2012)‡ 

I3    Deliberation processes 
Activities related to the of 
weighing options 

Madden (2010)‡ 
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I4    Conflicts 

Form of disagreement or discord 
that arise when the beliefs or 
actions of one or more members of 
a group are either resisted by or 
unacceptable to one or more 
members of another group 

Flynn et al. 
(2014)‡ 

I5    Investment activities 
Contributions of financial and 
other resources by the managers or 
producers of a public good/service 

McGinnis 
(2011)†, Hammitt  
(2010)‡, Madden 
(2010)‡ 

I6    Lobbying activities 
Actions that attempt to influence 
decisions made by rule-making 
individuals and/or organizations 

Madden (2010)‡ 

I7    Self-organizing activities 
Interactions among actors that 
increase some form of overall 
order or coordination 

Roy et al. (2008)‡ 
Winz et al. 
(2014)‡ 

I8    Networking activities 

Meetings which build social 
structure between actors, 
connecting them through various 
social familiarities 

Roy et al. (2008)‡ 
Hammitt  
(2010)‡, Madden 
(2010)‡ 

I9    Monitoring activities 
Accumulation of new knowledge 
related to system attributes 

Stockwell 
(2009)‡ Flynn et 
al.  (2014)‡,  

Askarizadeh et 
al. (2015)‡ 
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I10    Evaluative activities 

Determination of which aspects of 
the observed outcomes are deemed 
satisfactory and which aspects are 
in need of improvement 

McGinnis 
(2011)† , Madden 
(2010)‡, Winz et 
al. (2014)‡ 

Outcome Criteria (O) 

Evaluative criteria used to 
determine which aspects of 
observed outcomes are deemed 
satisfactory and which aspects are 
in need of improvement. 

McGinnis 
(2011)†, 
(Holloway et al.  
(2014)‡ 

O1 
   

Social performance measures 
Indicators that describe various 
social conditions 

Brown and 
Farrelly (2008)‡, 
Madden (2010)‡, 
Winz et al. 
(2014)‡ 

O2 
   Ecological performance 

measures 
Indicators that describe various 
ecological conditions 

Burns et al. 
(2012)‡, Mayer et 
al. (2012)‡ (Roy 
et al., 2014)‡ 

O3 
   

Externalities to other SESs 
Indicators that describe impacts on 
other SESs 

Tzoulas et al. 
(2007)‡, Foster et 
al.  (2011)‡, 
Mayer et al. 
(2012)‡ 

Related ecosystems (ECO) 
The broader ecological context 
within which the focal resource 
system is located, including the 

McGinnis and 
Ostrom (2014)† 
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determinants of many potential 
exogenous influences 

ECO1    Climate patterns 
Recurring characteristics of the 
statistical distribution of weather 
over an extended period of time 

Clean Water 
America Alliance 
(2011)‡ 

ECO2    Pollution patterns 
Recurring characteristics of 
contaminants that cause adverse 
effects 

Lassiter (2007)‡, 
Hammitt (2010)‡ 

ECO3    
Flows into and out of focal 
SES 

Movement patterns of various SES 
attributes 

Nowacek et al. 
(2003)‡ , Madden 
(2010)‡, Winz et 
al. (2014)‡ 

†Reference for attribute definition  
‡ Reference that provides illustration of example of attribute’s relationship to green infrastructure adoption in urban stormwater SESs 
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Chapter 3 Transforming a waterscape: Application of the social-
ecological framework to assess the evolution of stormwater 
governance in Onondaga County, New York, USA 
 

3.1 Abstract 

The social-ecological systems framework provides a classification structure of attributes and 

processes that are common to social-ecological systems. This paper illustrates the use of this 

framework to identify key attributes and processes related to the adoption of a municipal green 

stormwater infrastructure program. A case study on the urban stormwater social-ecological 

system in Onondaga County, New York, examines the factors related to transformational 

changes within local stormwater management planning. Important changes occurred in the 

program goals, political leadership, economic opportunities, and knowledge sources used in 

stormwater program design. These changes are discussed within the context of institutional 

power relations and governance characteristics. The findings make explicit the importance of 

integrating diverse stakeholder goals and adaptive decision making to address urban water 

management challenges.   

3.2 Introduction  

Historically, stormwater management plans in the U.S. have favored gray infrastructure, 

or technologies that either enhance or supplement existing sewer infrastructure. In many 

communities, urban stormwater objectives are changing in response to socio-political drivers 

(Brown et al. 2009, Moglia et al. 2012).  Alternatives to gray infrastructure include an array of 

technologies broadly referred to as green stormwater infrastructure (GI), also known as low 

impact design. GI is designed to protect, restore, or mimic the natural hydrology of a site. 

Examples of GI include green roofs, rain gardens, street trees, and permeable pavement. It has 
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been theorized that GI can improve social-ecological system resilience through improved urban 

temperature regulation, air quality management, enhanced biodiversity, and increased 

recreational values (Tzoulas, et al., 2007). Using solely gray stormwater infrastructure and 

neglecting GI has been linked to negative social-ecological outcomes such as high economic 

costs, environmental justice issues, and an inability to accommodate climatic change (Novotny et 

al. 2010, Pyke et al. 2011, Wendel et al. 2011, De Sousa et al. 2012).   

Hundreds of communities are finding ways to integrate GI into local stormwater 

infrastructure systems, including Onondaga County, New York, USA. For decades, Onondaga 

County’s stormwater management plans implemented only gray infrastructure technologies to 

reach strict ecological outcomes as dictated in a regulatory compliance order, resulting in 

disapproval and protest from multiple stakeholder groups. In 2009, these plans changed 

significantly with the addition of GI projects and redesign of unfavorable planned gray 

infrastructure projects. The revised plans explicitly acknowledged the effects of various 

stormwater infrastructure practices have on both the local residents and broader watershed 

ecology.  

As more communities seek to avoid negative social-ecological outcomes related to 

stormwater management planning, there is a need to more easily relate attributes and 

configurations of urban stormwater systems to particular outcomes. Frameworks can help in the 

accumulation of knowledge from empirical studies and the identification of universal elements 

and relationships that lead to particular outcomes. The social-ecological system (SES) 

framework gives equal attention to the biophysical and ecological foundations of institutional 

systems that influence social-ecological decision-making processes (Ostrom 2007, 2009). We 

hypothesize that the SES framework can aid researchers in diagnosing challenges related to the 
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stormwater management and exploring strategies to avoid negative social-ecological outcomes. 

This paper presents a case study on the evolution of stormwater management practices in 

Onondaga County. An urban water management SES framework (Flynn and Davidson, 2016) is 

used to explore the interactions between key SES attributes that led to the adoption of new 

stormwater management plans. Two key objectives of this research are (1) to explore the 

evolution of SES attributes that led to GI adoption in the case study, and (2) to provide an 

illustrative case of positive environmental transformation that connects issues of institutional 

power, environmental injustice, and social exclusion using an adapted SES framework. Findings 

from this analysis are used to explore broader changes of institutional power relations and 

adaptive governance characteristics from the case that are not explicitly defined within the SES 

framework. 

3.3 Background 

Wicked water management problems are related to collective action dilemmas, in which 

actors must overcome short-term individual incentives to achieve socially preferred outcomes in 

the management of common pool resources (Ostrom et al. 1994, Adams et al. 2003). To 

appreciate this complexity, it is helpful to consider a water management system as an example of 

a social-ecological system (SES), defined by both its social components, such as water users, 

policymakers, governing institutions, and cultural relations to local water supplies, as well as its 

ecological components, such as water flows (e.g., precipitation, groundwater, surface water, 

wastewater, stormwater, etc.), climate, and topography. Similarly, the concept of a water 

landscape, or “waterscape,” has been used to explicitly acknowledge the interacting linkages 

between social and environmental attributes of water, power, and governance within water 

management systems (Swyngedouw 1999, Harris 2006, Loftus 2009, Loftus and Lumsden 2008, 
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Perreault et. al 2012). Within this waterscape concept, attributes such as water use and rights are 

often considered as expressions of power relations. 

Numerous SES attributes have the potential to affect the patterns of collective action and 

outcomes related to sustainable resource governance (Agrawal 2001, Ostrom 2009).  Because 

urban water management SESs involve a vast number and diversity of stakeholders, solutions to 

overcoming collective action problems in these contexts often require an emphasis on 

institutional interactions and decisions, rather than those of individual actors. Many scholars 

have explored the effects of institutional characteristics and arrangements on large scale water 

management systems (Blomquist et. al 2004, Kerr 2007, Meinzen-Dick 2007, Schlager and 

Blomquist 2008, Schlager and Heikkila 2011).   

Several conceptual frameworks aim to identify the complex attributes of common pool 

resource systems. The SES framework bridges disciplinary and methodological boundaries by 

providing classification of important SES attributes and relationships (Ostrom 2007, Ostrom 

2009, McGinnis and Ostrom 2014). It draws on an understanding of individual actors, 

governance systems, resource units, and resources systems as interacting elements. Revisions to 

the SES framework continue to develop as new cases and theoretical insights address limitations 

of the framework (Basurto et al. 2013, Epstein et al. 2013, Vogt et al. 2015). Past common pool 

resource and SES research has faced criticism for inadequately addressing how power, politics, 

and inequality affect governance processes (Goldman 1997, Agrawal 2014). The SES framework 

may assist in the analysis of institutional power; because it is not explicitly defined within the 

framework, power must be operationalized using select attributes (Epstein et al. 2014).  
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3.4 Methods 

The overall empirical research and analysis approach to the study is based on a case study 

research design, as the context of stormwater management transformations in Onondaga County 

between 1998 and 2009 is viewed as a major part of the study (Yin 2013). A blend of descriptive 

and exploratory case study designs are used to both develop a complete description of the 

transformation with its context and to develop causal inferences on why important changes took 

place (Hancock and Algozzine 2015; Bryman 2015).  Triangulation methods, using document 

analysis and interviews, were used to identify important factors that acted as both inputs and 

outputs of action situations related to stormwater management decisions in Onondaga County 

between 1998 and 2009.  

Data for this study were collected through several iterations. Regulatory orders that 

stipulated the establishment and amendment of Onondaga County’s stormwater management 

program were collected as the preliminary document archive. Initial coding of these documents 

assisted in identifying a purposeful sample of interviewees and informed the production of an 

interview guide. The interview guide was designed to collect information regarding the 

stakeholders’ knowledge and attitudes that were associated with the evolution of local 

stormwater management plans. A semi-structured format allowed interviewees to recount events 

from their own perspective. A “snowball sampling” approach (Biernacki and Waldorf 1981) 

enabled both the expansion of the interviewee sample and the document archive for this case. At 

the closing of all interviews, participants were asked to suggest other individuals or organizations 

relevant to the case, as well as documents that would provide insight to the events related to GI 

adoption. This approach carries a risk of reinforcing the silencing of stakeholder perspectives due 

to the limited social network of initially chosen interviewees. This risk was offset by 



66 
 

independently reviewing documents for additional interviewees and ensuring professionally 

diverse interviewees were represented in the sample. In total, 11 in-person interviews were 

conducted with government officials, community group representatives, and water quality 

researchers.   

 An SES framework adapted for urban stormwater management (Flynn and Davidson, 

2016) is used to describe and organize these findings.  Identifying what SES attributes are linked 

to particular outcomes is complicated by the dynamic interactions and evolution of multiple 

variables. Cole et al. (2014) address this problem by analyzing variables as pre-existing 

conditions and significant outcomes and effects of adjacent action situations. A similar process 

was used in this study to describe the findings in three analytical stages: pre-existing conditions 

during a traditional infrastructure stage (Stage 1), a transition stage when multiple adjacent 

actions took place (Stage 2), and the significant outcomes of the early GI implementation stage 

(Stage 3).  

Results from the SES framework application are used to highlight dynamic power 

relations that characterize this case. Epstein et al. (2014) propose a four-step process for testing 

the effect of power within an SES study: (1) adopt relevant definitions or theories of power, (2) 

classify chosen definitions in terms of one or more SES framework attributes, (3) choose how to 

operationalize or measure those attributes for empirical analysis, and (4) analyze the effects of 

measured attributes on the outcomes of interest. Institutional power is considered in this study, as 

many theoretical connections to institutional power emerged during the data analysis process of 

this study. Institutional power can be operationalized at several levels of rule-making, as defined 

within the SES framework. Operational-level rules dictate what, when and how resources are 

accessed and used (or in the case of stormwater, conveyed and collected), whereas collective-
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choice rules provide a framework for how and by whom operational rules are created and 

modified. Thus, rules that define and constrain the operational activities of SES actors are 

established by collective-choice processes (McGinnis and Ostrom 2014).  Several SES 

framework attributes from Table 2.1 are used to examine the institutional power relations at the 

operational and collective levels, including actors’ history of use (A3), participation of 

organizations in rule-making processes (GS5), and their perceived fairness of operational rules 

(GS6.1) and collective-choice rules (GS6.2). 

3.5 Results 

3.5.1 Stage 1 

Onondaga County’s political boundaries contain at least a portion of four lakes and eight 

sub-watersheds that drain to one of two major watersheds2. The Onondaga Lake watershed 

covers 738 square kilometers in Central New York and drains to Onondaga Lake, located along 

the edge of the City of Syracuse, which is the largest city within Onondaga County. Combined 

sewers, which convey both wastewater and stormwater, comprise approximately 58% of the 

sewer system in the city. While the City of Syracuse is responsible for the private sewer laterals, 

the County government owns and operates the large combined sewer trunk lines that convey city 

sewage to the County’s wastewater treatment plant. During wet weather, combined sewer 

overflows (CSOs) release a flow of untreated sanitary sewage and stormwater to the lake’s 

tributaries.  

Onondaga Lake is the central ecological feature of an urban water SES that has 

experienced multiple environmental crises and transformations throughout the 20th century due 

                                                 
2 A map of watersheds in Onondaga County is available here: 
http://www.ongov.net/planning/documents/map_gallery/Watersheds%20in%20Onondaga%20County.pdf  
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to the large contribution of municipal and industrial wastes to the lake. Nutrient-rich treatment 

plant effluents led to a hypereutrophic state in the lake, resulting in high populations of 

phytoplankton, increased turbidity, extended periods of hypolimnetic anoxia, and a decrease in 

ecosystem function (Effler and O’Donnell 2010, Canale and Effler 1989) Drastic changes in lake 

ecological regimes led to socioeconomic shifts. For instance, during the early half of the 20th 

century, thriving fisheries and resort industries that had operated since the 1800s slowly died out 

as the lake’s water quality deteriorated. Swimming was banned in 1940 due to elevated bacteria 

counts and poor water clarity, and all fishing was banned in 1972 due to mercury contamination 

(Thompson 2002, Landers 2006). CSOs have been a persistent issue in restoration of the lake. 

Originally, the sewer system included over 90 CSO points that discharged an average of once per 

week. 

In the U.S., CSO water management policies are designed around federal and state 

regulations which aim to improve urban water quality and prevent human health risks. The 

passage of the 1972 Clean Water Act by the U.S. Congress created a national framework for 

establishing water quality standards and discharges to surface waters, requiring industries and 

municipalities to implement pollution control programs (Clean Water Act, 1972). Under this 

framework, municipal CSO abatement programs focus on infrastructure projects that reduce 

stormwater flows within the combined sewer system (e.g., sewer separation, storage tanks for 

CSO volume), and enhance water quality (e.g., additional or enhanced treatment facilities).  

Onondaga County’s Department of Water Environment Protection began implementing 

stormwater management plans for CSO control after a 1988 lawsuit. The Atlantic States Legal 

Foundation, a local nonprofit, filed the lawsuit against Onondaga County, alleging that the 

discharges from the wastewater treatment plant and CSOs were in violation of the Clean Water 
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Act. In 1989, Onondaga County entered into a judgment of consent with Atlantic States Legal 

Foundation and the New York State Department of Environmental Conservation (NYSDEC), 

requiring the County to execute a series of studies and develop a CSO management plan. In 

1990, the Onondaga Lake Management Conference was established and was tasked with 

developing and coordinating the implementation of a comprehensive restoration, conservation, 

and management plan for Onondaga Lake. The organization consisted of six voting members, 

each of which was a governmental organization at either the federal, state, or local level. Studies 

and negotiations of the compliance plans ensued until an amended consent judgment as executed 

in 1998. At the time, existing gray infrastructure solutions captured or eliminated about 74% of 

the total annual CSO volume. The 1998 amended consent judgement required the annual CSO 

volume capture rate to increase to 85%, along with increased removal of floatable waste as well 

as more stringent water quality standards for bacteria in the lake by 2012. Approved technologies 

for the plan included multiple regional treatment facilities, which would provide primary 

treatment to disinfect CSOs. The Midland regional treatment facility was the largest proposed 

facility and was to be built in the Southside neighborhood, home to a high proportion of low 

income and minority residents near Onondaga Creek, a main tributary of Onondaga Lake.  

3.5.2 Stage 2 

In 1999, the Onondaga Lake Partnership replaced the Onondaga Lake Management 

Conference, though its voting membership comprised of the same six governmental 

organizations. The exclusion of many stakeholder groups from the planning and decision-making 

processes resulted in an opposition to the proposed gray infrastructure projects, most notably 

among members of Onondaga Nation, a sovereign member of the Haudenosaunee Confederacy 

of native nations, and the residents of the Southside neighborhood of Syracuse. Onondaga Nation 



70 
 

retains a section of its original territory within Onondaga County south of the City of Syracuse. 

As Onondaga Lake has been considered a sacred site by the Onondaga people for over a 

thousand years, Onondaga leaders argue that the infringement of their nation’s traditional 

resource use rights and degradation of the lake have harmed their people’s cultural, economic, 

physical, emotional, and spiritual well-being (Perreault et al., 2012). Onondaga Nation remains 

committed to fulfilling its vision of cooperative resource management and environmental 

stewardship of the lake to restore natural hydrological cycles (Onondaga Nation 2010). Despite 

the filing of a Land Rights Action in 2005, no formal recognition of these traditional rights has 

yet been made. Southside residents viewed the Midland treatment facility as a stigmatizing 

environmental injustice. In 2000, a nonprofit organization, the Partnership for Onondaga Creek 

(POC), was formed and began organizing protests, lobbying policy makers, and developing 

alternative solutions to the Midland treatment facility, such as increasing the use of underground 

storage technologies. The POC began to collaborate with the Onondaga Nation and other 

stakeholders to form a policy community around alternative stormwater management solutions 

(Tauxe 2011). The alternative plans proposed by the POC gained the support of most other 

stakeholders including the City of Syracuse. The City refused to sell property to the County 

government for the Midland treatment facility, citing concerns from residents who opposed the 

plan (Weiner 2002). Claiming a historical and legal interest in Onondaga Creek, Onondaga 

Nation was granted admission to the stormwater planning negotiations. With the support of the 

Onondaga Nation, the POC was also admitted as a party to the negotiations (Adams 2003). 

Ultimately, the County ended negotiations on the Midland treatment facility location and gained 

a court order in 2002 to take the City land. The Midland treatment facility construction resulted 

in several social damages and injustices in the Southside community (Lane and Heath 2007, 
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POC 2006). An “anti-treatment facility” sentiment grew throughout the County along with a lack 

of trust in the stormwater management decision makers.    

 Several communities in the U.S. began to experiment with GI technologies in the 1990s. 

The success of early projects led to an influential 2006 report that stimulated national groups to 

promote GI, including the U.S. Environmental Protection Agency (EPA) in 2007 (Kloss et al. 

2006, U.S. EPA 2007) Around this time, the POC, Onondaga Nation and other local groups and 

stakeholders in Onondaga County began to develop alternative plans in which GI would replace 

unfavorable technologies such as regional treatment facilities (Knauss, 2010). However, the pre-

existing County leadership made it difficult for new plans to gain approval. Onondaga County’s 

previous stormwater management plans were limited by a governance network with long 

standing officials who supported only gray infrastructure solutions. This network had developed 

a high level of interconnectivity between engineering firms and the County and State 

governments which supported established stormwater management solutions (Tauxe 2011).  

 A local politician who was familiar with the backlash against regional treatment facility 

sentiment of local residents and the alternative plans proposed by the POC began a campaign for 

County Executive in 2007. During this time, she reached out to Onondaga Nation and POC to 

better understand their goals for stormwater management. She also learned of scientific studies 

that suggested treatment facility would not provide a comprehensive solution to reduce bacteria 

loadings to the tributaries of Onondaga Lake. Shortly after taking office in January 2008, she 

obtained a moratorium on construction of a regional treatment facility that was to be built in 

downtown Syracuse. Any changes to the program would require approval by prosecuting parties 

of the original consent judgment (the NYSDEC and Atlantic States Legal Foundation) and a 

federal judge. Working together with these parties as well as the POC and Onondaga Nation, the 
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County received permission to evaluate alternative engineering solutions for CSO management. 

Several committees were created by the County Executive to consider how to move forward. The 

committees included representatives from the Onondaga Nation, POC, and other formerly 

excluded stakeholder groups. Each committee made recommendations to the County Executive’s 

administration regarding revised management plans, though the Executive retained the authority 

to decide on the final plans.  

3.5.3 Stage 3 

The committees’ findings were incorporated into a revised amended consent judgement 

in November 2009, requiring Onondaga County to use both gray infrastructure and GI in its 

stormwater management plans. Previously, several municipalities throughout the U.S. had 

integrated GI into consent decrees as supplemental environmental projects. However, Onondaga 

County’s amended consent judgement represented the first time in the U.S. that GI was listed as 

a direct legal requirement in the reduction of CSOs (Garrison and Hobbs 2011). Revised gray 

infrastructure projects were also required, including a large storage tank in place of the 

downtown regional treatment facility. The gray infrastructure projects completed between 1998 

and 2009 increased the annual CSO volume capture rate to an estimated 84.6% on a system-wide 

basis. The 2009 judgement stipulated a higher annual CSO volume capture rate of 95%, up from 

the target of 85% stipulated in the 1998 judgement. This was agreed upon due to modeling 

estimates suggesting that had all original planned gray infrastructure project been built, they 

would have captured 95% annual CSO volume. Thus, the changes made in 2009 would also need 

to reach this level.  

The revised plans were approved not only because replacing select gray projects with GI 

would be less intrusive, but also because they were estimated to save Onondaga County more 



73 
 

than $20 million in meeting regulatory requirements.  The revised stormwater program budget of 

approximately $400 million set aside $78 million specifically for GI projects, which reflects a 

reallocation of funds originally designated towards the regional treatment facilities. Aside from 

cost savings, the rapid development of GI projects throughout the County would not have been 

possible without additional economic opportunities developed by County officials. The majority 

of funds for the GI program are financed through independently-secured bond debt. This is due 

to a loan and bond process that favors large centralized projects such as gray infrastructure 

(Flynn et al. 2014). Additional funding originated from grant programs for GI projects that did 

not exist prior to 2009.  Another unique economic opportunity is the development of a public-

private partnership program for GI, which set aside funds to offer reimbursement incentives to 

businesses and non-profits to install GI on their property. 

3.5.4 Application of Urban Stormwater SES Framework 

Multiple SES framework attributes were identified as key factors that shifted over the 

course of the three transformation stages. These variables are listed in Figure 3.1, beginning with 

S1 and S7 and continuing down to O2. Note that most variables experienced a change between 

Stage 1 and Stage 3 as indicated in the figure. For example, for variable S1, there was no grant 

funding for green infrastructure during Stage 1, but grants became available by the time of Stage 

3. Several key attributes that were identified did not change during the time period explored and 

thus acted as system parameters, which are listed as bolded attributes in Stage 1. All Stage 1 

attributes set conditions for the principal activities that are listed in the figure under Stage 2, 

beginning with I4 and continuing down to I10. The activities are organized to convey a 

progression of the types of activities and interactions that occurred over time. While the 

significant outcomes in variables are listed in Stage 3, many of these changes took place 
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Figure 3.1 Evolution of Onondaga County’s Stormwater SES, 1998-2009. Bolded items in Stage 1 indicate parameters that did 
not change between Stage 1 and 3 
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gradually throughout Stage 2 as a result of feedback loops and interactions during various 

activities and processes. The variables describing the “Actors” category depict changes related to 

the individuals or groups that are involved in rule-making processes related to Onondaga 

County’s stormwater management plans.  

The norms of the pre-existing political administration in Onondaga County’s governance 

network included long standing actors who were accustomed to implementing only gray 

infrastructure solutions for CSO compliance (GS8), leading to conflict (I4) with excluded 

stakeholder groups that were dissatisfied with these solutions. As these stakeholder groups began 

to share information (I2) and network (I8), they self-organized (I7) into a policy community 

(A5.2) as they lobbied (I6) to support alternative stormwater management plans.  A policy 

window, or an opportunity for a policy proposal to move onto the political agenda, can be 

opened when two key attributes are present: an alternative policy proposal and a policy 

entrepreneur, or an individual who is willing to introduce and advocate for policy alternatives 

(Kingdon 1995). The 2007 election for County Executive can be interpreted as the major impetus 

for the opening of a policy window for a new stormwater management program featuring 

extensive use of GI. The new County Executive acted as a policy entrepreneur (A5.1) by 

collaborating with the policy community of excluded stakeholders in support of GI and seeking 

additional sources of knowledge (A7.1). The multi-stakeholder steering committees included a 

greater number of actors in decision-making processes (GS5.1), including a diverse set of 

formerly excluded stakeholder groups that had experienced a history of environmental injustices 

(GS5.2, A3.2). This integration of stakeholders within these committees formalized a stronger 

horizontal network structure (GS9.1) that allowed for information sharing and deliberations (I2, 

I3) between the County government and key stakeholders. This collaboration led to increased 
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trust and reciprocity (A6) and enhanced social outcomes in the County’s stormwater 

management plans (O1). Various social performance measures can be used to assess the value of 

the County’s revised stormwater management plans. The use of GI created the potential for 

additional “co-benefits” (A9.3.1.2), such as increased recreational value and improved health 

statistics (Tzoulas et al. 2007). Onondaga County’s GI efforts include goals to enhance social 

benefits of infrastructure projects through job programs, strategic project placement, and avoided 

social costs associated with additional regional treatment facility and pipeline projects. Both the 

environmental and social outcomes of GI can enhance the long-term social well-being of 

communities in Onondaga County, though these benefits will be realized over time periods 

beyond Stage 3 of this analysis.   

Increased knowledge (A7.1) from monitoring efforts (I9) revealed that the proposed gray 

infrastructure solutions would not provide a comprehensive solution to Onondaga County’s 

environmental problems, despite achieving the desired CSO volume control. A local 

environmental non-profit organization conducted a study in 2007 that revealed high levels of 

bacteria in tributaries flowing into Onondaga Lake during dry weather, suggesting that there 

were sources of contamination other than CSOs leading to non-compliance of state standards for 

bacteria (Hughes 2008). Because regional treatment facilities would provide only primary 

disinfection treatment to manage bacteria loadings from CSOs, they were deemed inadequate to 

reach compliance due contamination sources associated with the existing sewer infrastructure 

(RS4.2).  

The original consent judgement represents a set of constitutional rules (GS6.3) for 

stormwater management. This judgment stipulated that Onondaga County, as the owner of the 

central combined sewer lines (A9.2), was required to achieve the ecological performance 
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measures (O2) of capturing or eliminating CSO volumes and reducing bacteria levels in 

Onondaga Lake. The desired ecological performance outcomes did not change between 1998 and 

2009. However, the constitutional rules regarding how the CSO volumes would be mitigated did 

change. The 1998 judgement included a conditional statement that only if there are “proven 

technologies available that could satisfy the requirement of the amended consent judgement in a 

less costly manner” could the agreed upon plans be revised. The 2009 judgement changed the 

constitutional rules of how CSO volume could be managed, acknowledging that GI technologies 

would be utilized by the County to achieve the CSO control requirements The revised plans 

represent a change in the operational rules (GS6.1.3), dictating the gray and green technologies 

that would be implemented.  

Two key attribute changes that are reflected in the acceptance of GI in the revised 

consent judgement plans include the change in technological settings of accepted stormwater 

management technologies (S7) and accepted norms of the governing system (GS8).  Technology 

settings refer to the broader set of established technological solutions that are generally 

considered to be effective stormwater management practices. While GI technologies had been 

used in several municipalities of the U.S. in the 1990s, such as Portland and Seattle, they were 

not nationally recognized in the U.S. as an effective stormwater management practice until the 

U.S. EPA’s promotion of GI in 2007 (U.S. EPA 2007). This change in mindset of the EPA, a 

national rule-making organization, acted as an exogenous system setting change and provided 

momentum to local stakeholders in Onondaga County to develop stormwater plans which 

included GI.  New economic opportunities, including public-private partnerships as well as 

federal and state assistance (S1), made GI cost effective against gray infrastructure alternatives.  



78 
 

3.5.5 Institutional Power 

The application of the SES framework identified multiple system attributes and 

interactions that shifted over the time period examined in this case study. This identification 

process leaves some questions about the heterogeneous interactions between actors and their 

desired outcomes. For instance, several groups of actors held differing perceptions of justice 

regarding Onondaga County’s original stormwater management plans, as well as varying degrees 

of participation in decision-making processes. To explore this heterogeneity, we consider the 

interactions among several SES framework attributes as dynamic institutional power relations. 

Perreault et al. (2012) analyze the multiple modes of environmental injustices that arose from 

uneven power relationships in water resource management in Onondaga County. Their study 

provides a detailed account of the historical and geographical perspectives of the Onondaga 

Nation and Southside residents, and uncovers the multi-scale nature of environmental injustices 

related to water resources in Central New York. The results from our study build on these 

findings with insights on the institutional power dynamics and arrangements within the case of 

stormwater management planning between 1998 and 2009.  

One approach to measuring power is to assess differences in the interests of actors who 

are involved in rule-making processes at various levels, and the interests of those who are not. 

Under the ruling of the amended consent judgement, the collective-choice rules (GS6.2) stipulate 

that the power to negotiate the stormwater management plans is held by the County government 

and the prosecuting parties (NYSDEC and Atlantic States Legal Foundation). The County 

Executive holds a high level of power in the County government, in that this actor can 

unilaterally make decisions regarding operational rules for stormwater management (GS6.1). The 

power relations in Stages 1 and 2 connect to the first two faces of power as defined by Steven 
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Lukes (2005). According to Lukes’s second face of power, an imbalance exits when groups are 

prevented from representing their interests in political processes by virtue of the actions of 

another group. This imbalance is found in Stage 1, as the Onondaga Nation and POC perceived 

the stormwater management plans as unjust and insufficient, and both groups were excluded 

from negotiations during inputs to rule-making (GS5). Early in the transition period of Stage 2, a 

shift in the second face of power dynamics occurred as the both parties were invited into voice 

their concerns during the negotiations on the sale of City land to build the Midland Treatment 

Plant. It should be noted that while the POC and Onondaga Nation participated in negotiations 

during Stages 2, their legitimacy to participate and effect change in the CSO management 

planning was never formalized. However, the County ultimately moved forward with the original 

plans, using their designated power from the amended consent judgement to do so. These 

circumstances can be understood as an exertion of Lukes’s first face of power, such that groups 

participating in collective choice decisions fail to produce rules that align with the interests of all 

groups. Thus, the shift in the second face of power was not enough to effect change in the 

County’s plans. The described imbalances in both Luke’s first and second faces of power and 

resulted in resistance to institutional change and undesirable social-ecological outcomes present 

in Stage 1 and much of the conflict throughout Stage 2.  

Another approach to understanding forms of institutional power is to assess the activities 

and processes that create institutions that are resistant to change. One such process is a positive 

feedback of increasing returns along a particular decision pathway, which privileges some 

groups with a greater share of benefits and institutional control that enhances their bargaining 

power (Arthur 1989, North 1990, Pierson 2000). The individual that held the position of County 

Executive during Stage 1 and most of Stage 2 was, at the time, the longest running county 
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executive in New York State, holding the office for 20 years. During this time, many of the 

consulting engineering firms had personal connections to the County administration and faced 

lucrative opportunities to design and implement stormwater management projects (POC 2006, 

Tauxe 2011). This feedback between the County’s plans and engineering solutions ended after a 

change in the individual attributes of the elected County Executive (A3, A6). The 2008 incoming 

County Executive had experienced the early planning negotiations as a previous member of the 

Syracuse City Common Council, and she had opposed many of the County’s plans. During her 

campaign, she sought guidance from the POC and Onondaga Nation to develop a strategy for 

alternative proposals.  With her election, the shift in the norms of the County Executive reduced 

the difference between the goals of the County and other stakeholder groups.  

3.5.6 Adaptive Governance  

The institutional power dynamics in this case can be understood within the context of 

evolving environmental governance processes that shaped multiple SES outcomes. Onondaga 

County’s revised stormwater management approaches embody many characteristics of adaptive 

governance (Flynn et al. 2014). Adaptive governance is defined as the range of interactions 

between actors, networks, organizations, and institutions emerging in pursuit of a desired state 

for SESs (Chaffin et al. 2014). This collaborative approach to governing SESs is often associated 

with an increased capacity to adapt to changing social and biophysical circumstances including 

shocks and surprises (Dietz et al. 2003, Folke et al. 2005). Two key characteristics of adaptive 

governance are a polycentric governance structure, or a system in which political power or 

legitimacy is dispersed to separate organizations with overlapping jurisdictions that do not stand 

in hierarchical relationship (Skelcher 2005, Huitema et al. 2009); and adaptive management 

strategies, in which actors build and make continuous use of SES knowledge through 
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experiments and monitoring efforts to inform policy (Holling 1978, Brunner et. al 2005, Folke et 

al. 2005).  

 In Stage 1, the institutional arrangement of Onondaga County’s stormwater governance 

system consisted of a limited number of governmental organizations (GS5.1, GS5.2) operating 

under a hierarchical structure of rule-making (GS9.2). The Onondaga Lake Partnership’s original 

mission was to act as a bridging organization by coordinating stakeholders, activities, and 

information related to watershed management projects. Between 1999 and 2009, the Onondaga 

Lake Partnership increased its diversity of member organizations in outreach and project 

committees; however, the power for decision-making remained with the government 

organizations in the executive committee, and little progress was made in legitimizing the 

concerns of multiple stakeholder groups.  

Adaptive governance emergence is often initiated by a crisis or release event in an SES 

(Chaffin et al. 2014) and is fostered by individual leadership and trust building among 

stakeholders at the local level (Olsson et al. 2004, Folke et al. 2005, Olsson et al. 2007). The 

2008 election of a new County Executive released past feedback mechanisms of institutional 

power. Similar to a policy window, a “window of opportunity” for adaptive governance can be 

opened when shadow networks and key leaders come together (Olsson et al. 2006). The policy 

community formed by the POC and Onondaga Nation can also be understood as a shadow 

network, or an informal collection of individuals or groups without rule-making power. The 

2008 planning committees formed by the County Executive created formal institutional 

arrangements for this shadow network and other stakeholders to interact, share knowledge, and 

build trust. These committees grew into a polycentric governance structure of multiple formal 

partnerships between Onondaga County and local nongovernmental and community 
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organizations (GS5.1, GS5.2), thus enhancing the local horizontal network for stormwater 

governance (GS9.1). For example, the Environmental Finance Center at Syracuse University, a 

university-based organization that promotes the development of sustainable communities and 

intergovernmental cooperation, was tasked with leading education and outreach efforts for GI 

projects in Onondaga County. In 2013, the Onondaga Lake Partnership transitioned into a more 

inclusive bridging organization called the Onondaga Lake Watershed Partnership, operating as a 

neutral information clearinghouse for watershed dialogue and decisions with membership open 

to all watershed stakeholders.   

The changes in the stormwater management institutional network created opportunities 

for adaptive management practices, particularly related to the continuous incorporation of new 

knowledge into management decisions. Beginning with the 2008 planning committees, 

stakeholders were able to share knowledge and negotiate a common vision for stormwater 

governance.  Several long-term monitoring efforts have existed to collect data on the Onondaga 

Lake watershed, some of which are commissioned by Onondaga County. Additional scientific 

studies conducted by nongovernmental organizations first provided an impetus for the County to 

consider management solutions beyond regional treatment facilities. The 2009 amended consent 

judgement set up additional monitoring efforts, where new data are used to evaluate and modify 

stormwater management models. Annual reporting requirements are used to determine 

compliance with ecological outcomes, as well as to adapt stormwater infrastructure plans as new 

information is obtained. The Onondaga Lake Watershed Partnership works to continuously 

gather and facilitate input from stakeholders to develop a shared community vision for the 

restoration of the Onondaga Lake watershed. 
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3.6 Conclusions 

An adapted SES framework was applied to the evolving stormwater management 

practices in Onondaga County, NY. This aided in the identification of the social and ecological 

factors that affected the decision to adopt GI projects beginning in 2009.  The dynamic nature of 

these factors was considered by organizing the findings in three stages: pre-existing conditions 

during a traditional infrastructure stage (Stage 1), a transition stage when adjacent actions took 

place (Stage 2), and the outcomes and effects of the early GI implementation stage (Stage 3). 

Several actions and interactions were determined to be critical in the transition to GI adoption, 

including ecosystem monitoring, knowledge sharing, and lobbying efforts. Multiple SES 

attributes shifted throughout the transition, including the governance network structure, program 

goals, economic incentives, and the broader technological mindset for stormwater management. 

Select attributes were used to examine the institutional power relations and adaptive governance 

characteristics within Onondaga County’s stormwater governance network.  

The application of the SES framework to the evolving stormwater management practices 

in Onondaga County highlights the combination of SES attributes associated with a transition 

towards more sustainable stormwater governance practices. This transition is primarily 

understood through the examination of the social dynamics and political ecology of urban 

stormwater management that are embedded in the decision-making processes for stormwater 

infrastructure. In the case of Onondaga County, the interactions among actors, particularly 

among a policy community and policy entrepreneur for GI, were critical to the adoption of a GI 

program. The level of local leadership efforts to create a set of new common goals has been 

pinpointed as a critical factor in the adoption of GI in other U.S. communities (Hammitt 2010, 

Madden 2010), as well as the emergence of adaptive governance practices (Österblom and Folke 
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2013, Shuster and Garmestani 2015).  Knowledge related to ecological system attributes, in 

particular the functionality of existing infrastructure systems, was found to affect stakeholders’ 

conceptualization of the urban stormwater SES and which management practices would achieve 

desired ecological outcomes. The revised stormwater governance system represents a shift 

towards a more adaptive governance approach that includes multiple stakeholder perspectives, 

which may lead to more sustainable outcomes for the Onondaga Lake SES. 

 Certain limitations to these findings should be addressed. Firstly, conclusions drawn 

from any singular case study are limited. Further, data for this case study includes stakeholder 

interviews, which may be biased due to personal memory or opinion. Additionally, the adoption 

of a GI program does not necessarily imply that meaningful changes have taken place across an 

urban stormwater SES and may lead to other environmental justice issues (Wolch et al. 2014). 

Thus, the acknowledgment of past environmental injustices does not suggest that future 

injustices will be avoided. When analyzing urban water SESs, defining the outcomes of interest 

will likely determine which variables are most pertinent, or how certain variables are interpreted. 

Finally, the conclusions do not suggest that underlying power dynamics or issues of 

marginalization have been overcome by the reforms of stormwater management plans or 

governance structure. Rather, they signify a shift towards more open and adaptive decision-

making processes. As many governments are facing challenges that limit their ability to regulate 

and maintain urban common pool resources, models of adaptive governance could provide more 

inclusive, equitable, and sustainable institutional alternatives. 
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Chapter 4 An assessment of sustainable stormwater system planning 
in the United States 
 

4.1 Abstract 

Improvements to stormwater management infrastructure systems are a critical social and 

environmental need in most municipalities of the U.S., particularly those with combined sewer 

systems. This study examines the adoption of sustainable stormwater management initiatives in 

the U.S., with a focus on green stormwater infrastructure program adoption in large combined 

sewer municipalities. Results from surveys of municipal leaders are incorporated into a 

framework that identifies significant variables that influence municipal green infrastructure 

program adoption. A hurdle model is used to assess the factors that influence management 

authorities’ decision to adopt green infrastructure programs, and the factors associated with the 

extent of program adoption. We find that the decision to adopt a green infrastructure program is 

strongly driven by the population size and precipitation event characteristics of a municipality. 

The extent of program adoption is shown to be additionally driven by municipal socioeconomic 

characteristics, including residents’ political preferences, median household income, and 

unemployment rate.   

4.2 Introduction 

Municipal wet weather sources of pollution are among the greatest contributors to 

modern water quality impairment, aquatic ecosystem degradation, and stream function damage 

(National Research Council, 2009). Throughout the past century, urban stormwater management 

systems in the U.S. have expanded vast networks of centralized subsurface conveyance 

technologies with end of pipe treatment to remedy surface water impairments. Most current 
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stormwater regulations favor the continued use of these traditional or gray infrastructure systems 

that either enhance or supplement existing sewer infrastructure. Gray infrastructure engineering 

solutions are designed to efficiently handle large amounts of urban runoff volumes.  However, 

they are associated with multiple societal costs, including high economic costs, negative 

community health effects, and, depending on the technology, harmful environmental effects. 

Furthermore, gray infrastructure stormwater management technologies encourage the continued 

development of impervious urban infrastructure, exacerbating the source of most urban 

stormwater problems. Many researchers have pointed out that this current paradigm for urban 

stormwater management is neither sustainable nor resilient enough to accommodate climatic 

change (De Sousa et al., 2012; Novotny et al., 2010; Pyke et al., 2011).   

To decrease the reliance on inefficient centralized treatment systems, distributed systems 

of green infrastructure (GI) have been adopted in many U.S. metropolitan areas. GI is designed 

to protect or restore the natural hydrology of a system, capturing stormwater volume through the 

use of soils, vegetation, and engineered systems that mimic nature. GI supports the principals of 

Low Impact Development (LID), an approach to land development or re-development that works 

with nature to manage stormwater close to its source. GI can be utilized at site-scale through 

practices such as green roofs, permeable pavement, and rain gardens; and at the watershed-scale 

through practices such as riparian buffers, flood plain preservation or restoration, and wetland 

creation or preservation. 

Various regions of the U.S. have utilized GI for distinct primary goals. Cities in the 

Northeast, Midwest, and Pacific Northwest tend to implement GI as part of water quality 

compliance efforts, particularly those related to combined sewer overflows (CSOs). On the other 

hand, cities in water stricken areas of the U.S. tend to focus on GI for water reuse as well as 
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stormwater discharge issues related to water quality.  In addition to these primary goals, many 

municipalities often consider the adoption of GI programs within a framework of sustainability 

goals that seek to maximize welfare gains for the respective communities, such as community 

revitalization, “green job” creation, and climate change mitigation and adaptation. Because gray 

infrastructure technologies do not seek to enhance the ecological resiliency of communities and 

are associated with high societal costs, integrating widespread use of GI into watershed focused 

planning represents a shift towards more sustainable environmental planning and stormwater 

management methods.   

Many case studies have explored the barriers facing individual communities after 

stormwater management authorities have made the decision to adopt a GI program (Hammitt, 

2010; Madden, 2010; U.S. EPA, 2010). Fewer studies have sought to bring together a more 

comprehensive view of common barriers to GI program adoption faced by multiple communities 

(Clean Water America Alliance, 2011; Roy et al., 2008). White and Boswell (2007) investigate 

the adoption of best practices for stormwater management across municipal governments in 

Kansas and find little difference in the quality of management responses across adopters. Several 

studies have also focused on the effects of select stages or processes on GI adoption, such as 

learning through communication channels (Dolowitz et al., 2012) and the perceptions of risk 

effect adoption decisions (Olorunkiya et al., 2012). A study by Carlet (2015) finds evidence that 

the perceived usefulness of the ecological and technical benefits of GI influences municipal 

planners’ and engineers’ attitudes toward adoption. 

There is a need to develop a deeper understanding of why growing numbers of U.S. 

municipalities are considering the adoption of GI technologies, and to what degree these 

technologies are being used. Viewing the adoption of a comprehensive municipal GI program as 
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a policy innovation, this paper investigates how social, environmental, and economic factors 

influence the decisions of CSO management authorities. Survey findings are incorporated into 

previous work that identified significant factors that influence municipal GI program adoption 

(Flynn and Davidson, 2016). The identified factors are used to investigate key differences 

affecting whether or not GI technologies are adopted by CSO management authorities in large 

U.S. cities, and the degree to which adopting authorities plan to implement GI technologies. This 

article is significant in several ways. First, as the article considers the adoption of an innovative 

infrastructure program for municipal governments, both the scale of the type of policy it 

considers are relatively underexamined in policy innovation studies. Second, the wide range of 

implementation plans associated with GI programs offers a unique opportunity to assess the 

intensive margin of adoption in a policy innovation, a measure that is less often assessed in 

policy innovation studies.  

4.3 Background  

4.3.1 Municipal Stormwater Management in the U.S. 

Municipal policies to manage wet weather discharges in U.S. municipalities are designed 

around federal and state regulations which aim to improve urban water quality and prevent 

human health risks. Table 4.1 summarizes key legislative and regulatory action undertaken by 

the U.S. government in response to public concern regarding stormwater pollution. The Clean 

Water Act enacted a permit program, the National Pollutant Discharge Elimination System 

(NPDES), to manage and control point source discharges of pollution. Current regulatory and 

management approaches address municipal wet weather discharges under at least two distinct 

NPDES programs: stormwater management for municipal separate sewer systems, and 

wastewater management for CSOs, sanitary sewer overflows, and peak flow discharges at  
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Table 4.1 Major U.S. legislative and regulatory actions related to municipal stormwater 
control (adapted from National Research Council, 2009) 

Government Actions 
Enactment 

Date(s) 
Summary and Implications 

Federal Water Pollution 
Control Act  

1948, 
1952, 
1955 

Provided federal financial assistance to state & local 
governments for wastewater treatment plans and state 
water pollution control programs 

Water Quality Act 1965 
Required federally approved state water quality standards 
and implementation plans 

Federal Water Pollution 
Control Act  
Clean Water Act Section 
303(d)  
Clean Water Act Section 
208  

1972 

 Prohibited discharge of pollutants into surface waters 
without a permit 

 Outlines water-quality based strategies required if 
pollution remains after technology-based standards 

 Designated and funded development of regional water 
quality management plans 

Clean Water Act Sections 
301 and 402  

1977, 1987 
Regulated the release of toxic pollutants and established 
technology treatment standards for conventional pollutants 
and priority toxic pollutants 

NRDC vs. Costle 1977 
Stormwater discharges in the National Pollution Discharge 
Elimination System (NPDES) program 

Clean Water Act 
Amended Sections 301 
and 402  

1987 
Required the management of urban stormwater pollution 
and stormwater permit programs for urban areas and 
industry  

National CSO Control 
Strategy 

1989 
Encouraged states to develop NPDES permitting strategies 
for CSOs, and recommended six minimum CSO control 
measures  

EPA’s Phase I 
Stormwater Permit Rules 

1990 
Application and permit requirements for large and medium 
municipalities (≥ population of 100,000); light and heavy 
industrial facilities; and construction activity ≥ 5 acres 

Combined Sewer 
Overflow Control Policy 

1994 

Assigns primary responsibility for CSO control 
implementation and enforcement to NPDES authorities 
and water quality standards authorities. Established 
objectives for CSO communities to 1) document and 
implement nine minimum controls measures, and 2) 
develop and implement a long-term control plan (LTCP) 

EPA’s Phase II 
Stormwater Permit Rules  

1999 
Permit requirements for all census-defined urbanized 
areas, and construction sites 1 to 5 acres 

Total 
Maximum Daily Load 
(TMDL) Program 
Litigation 

1997-2001 

Courts order EPA to establish TMDLs in a number of 
states if the states fail to do so. Assigns Waste Load 
Allocations for stormwater discharges which must be 
incorporated as effluent limitations in permits 

Wet Weather Water 
Quality Act 

2000 CSO Control Policy endorsed in the Clean Water Act 
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treatment facilities. In 1987, the U.S. Congress mandated that the U.S. Environmental Protection 

Agency (U.S. EPA) control certain stormwater discharges under NPDES, resulting in the Phase I 

Stormwater Rules (1990) and Phase II Stormwater Rule (1999) that set forth requirements for 

municipal separate storm sewer systems. The 1994 Combined Sewer Overflow Control Policy 

put in place a national approach to manage CSOs through the NPDES permit program, providing 

guidance for municipalities to implement CSO control measures in a flexible and cost-effective 

manner. Management plans produced by CSO management authorities are referred to as a Long-

Term Control Plan (LTCP), which encompass several stages of analysis a CSO management 

authority must complete (e.g., characterization of a sewer system, defining control targets, and 

development and evaluation of alternative approaches to meet control targets).  

There are notable distinctions between CSO control plans and municipal separate 

stormwater management plans. The Phase I rules required municipal separate stormwater system 

operators to develop a stormwater management program that reduces pollutant loadings and 

removes system pollutants to the "maximum extent practicable," which is left to be defined by 

each operator. Basic NPDES permit provisions for municipal separate stormwater systems are 

targeted at eliminating illicit discharges and controlling runoff from construction sites, 

redevelopment sites, and newly developed areas. These provisions can present large 

administrative burdens to municipal separate stormwater system operators, but generally do not 

require operators to fund large-scale capital infrastructure projects for wet weather control. 

Alternatively, for many cities with combined sewer systems, compliance with CSO control 

targets represent greater challenges to meeting water quality standards and require large financial 

investments to reach compliance. While federal and state funding assistance is available, local 

ratepayers ultimately fund the majority of CSO control projects. Thus, CSO control programs 
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represent significant municipal investments that compete with other local programs. The 

financial requirements for the combined sewer system upgrades needed in U.S. communities to 

reach federal regulatory compliance was estimated at $48 billion in 2012 (U.S. EPA, 2016). 

Municipal CSO LTCPs that were developed between 1994 and 2007 focused on gray 

infrastructure projects that reduce stormwater flows and enhance water quality through operation 

and maintenance practices, collection system controls, and storage facilities, and treatment 

facilities. While a 1995 EPA guidance document for LTCPs identified particular GI measures as 

potential source controls for wet weather (U.S. EPA, 1995), some municipal authorities faced 

barriers to using GI approaches for CSO compliance and instead adopted experimental or 

demonstration approaches for stormwater management (Siddique, 2009). During this time 

period, GI approaches were also commonly implemented as a form of injunctive relief in 

municipal Clean Water Act settlements. One example of an early GI program is the City of 

Portland’s downspout disconnection program, which achieved about 4,400 disconnections per 

year from 1995 to 2006, removing approximately 1.5 billion gallons of stormwater per year from 

the combined sewer system (Portland Bureau of Environmental Services, 2010). The success of 

early demonstration projects led an influential 2006 report on the use of GI in various 

communities (Kloss et al., 2006), as well collaborative efforts between the EPA and national 

groups to promote GI as an environmentally preferable approach for stormwater management.  

Since 2007, the US EPA’s Office of Water has released several policy memos and other 

forms of support for authorized permitting authorities to structure their permits as well as 

guidance or criteria for stormwater plans and CSO LTCPs to utilize GI approaches. Table 4.2 

summarizes some of various efforts of the EPA to encourage the use of GI to manage wet 

weather. While an increasing number of cities and states are integrating GI provisions into  
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Table 4.2 Major U.S. EPA Office of Water policy memos, action strategies, and 
collaboration efforts related to green infrastructure 

Document Date Summary and Implications 
Using Green Infrastructure to 
Protect Water Quality in 
Stormwater, CSO, Nonpoint 
Source and other Water 
Programs 

March 
2007 

Promotes GI as a viable stormwater management 
solution across multiple EPA regulatory water 
programs. 

Green Infrastructure Statement 
of Intent 

April 
2007 

Formalized collaborative effort between EPA and four 
national organizations to promote GI in stormwater 
control programs 

Use of Green Infrastructure in 
NPDES Permits and 
Enforcement 

August 
2007 

Encourages incorporation of GI into NPDES 
stormwater permits and CSO LTCPs. Pledged that EPA 
could and would use GI in its future enforcement 
activities. 

Action Strategy for Managing 
Wet Weather with Green 
Infrastructure 

January 
2008 

Identified objectives for the EPA and partner 
organizations to develop strategies to stimulate the use 
of GI throughout the US.  

 
Protecting Water Quality with 
Green Infrastructure in Water 
EPA Permitting and 
Enforcement Programs 

April 
2011 

Reaffirms official commitment to work with 
communities to incorporate GI into stormwater permits 
and remedies for noncompliance  

Green Long Term Control Plan 
(LTCP) – EZ 

July 
2011 

Template for CSO communities to assess GI as part of 
LTCPs 

Achieving Water Quality 
through Integrated Municipal 
Stormwater and Wastewater 

October 
2011 

Encourages EPA Regions to assist their state and local 
partners in pursuing an integrated planning approach to 
Clean Water Act stormwater obligations.  

Integrated Municipal 
Stormwater and Wastewater 
Planning Approach Framework 

June 
2012 

Framework for integrated planning to facilitate the use 
of sustainable and comprehensive solutions “that 
protect human health, improve water quality, manage 
stormwater as a resource, and support other economic 
benefits and quality of life attributes that enhance the 
vitality of communities.” 

Federal Agency Support for the 
Green Infrastructure 
Collaborative 

July 
2014 

Established partnership among seven federal agencies 
and outlines commitments of each agency in promoting 
GI  

Green Infrastructure 
Collaborative Statement of 
Intent 

October 
2014 

Established network of 26 academic, nongovernmental, 
and private sector organizations committed to the 
advancement of GI in US communities 
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municipal separate stormwater system permits, GI capital projects have been more commonly 

adopted by sewer management authorities in combined sewer system municipalities. CSO 

management authorities have sought multiple ways to adopt GI programs for CSO control, 

including the replacement of specific gray infrastructure projects in LTCPs with GI, public-

private partnerships, and adaptive management programs that implement GI over time.   

4.3.2 GI Program Adoption as a Policy Innovation 

This study considers the adoption of a GI program for CSO management to be a policy 

innovation, as it represents a new program that guides infrastructure decisions for CSO 

management authorities. A policy innovation is generally defined as the adoption of a new policy 

or program by a government entity that had never utilized it previously (Walker, 1969). 

Numerous studies have sought to understand and explain why government agencies adopt 

particular policies or programs (Berry and Berry, 1990, 1999; Mintrom and Norman, 2009; 

Mintrom and Vergari, 1998; Walker, 1969). While most policy innovative research has focused 

on states as an adopter, an increasing amount of research has focused on the determinants of 

local policy innovation (Godwin and Schroedel, 2000; Shipan and Volden, 2006), including local 

environmental policy innovations (Krause, 2011; Pitt, 2010; Vasi, 2006; Wang, 2013; Zahran et 

al., 2008).  

Traditional technology adoption models seek to measure the extensive margin of 

adoption, or a binary assessment of whether an innovation is adopted or not, and fail to capture 

the degree of intensity to which technologies are used once adopted (Comin and Mestieri, 2013). 

Alternatively, the intensive margin, or a measure of the intensity of the use of an innovation, is a 

key component in developing an understanding of its diffusion. GI programs for CSO 

management have a wide range of implementation plans, from hundreds of thousands of dollars 
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for small-scale projects to billions of dollars for city-wide projects. While many policy 

innovations studies investigate only the extensive margin of a particular policy, this study 

investigates the intensive margin of adoption of GI program adoption, which can provide insight 

on the influential factors that distinguish “deep” and “superficial” commitments (Berry and 

Berry, 1999). 

Common determinants of policy innovation include the political, economic, and social 

characteristics of a particular governance system. Local context has been shown to affect the 

likelihood of an innovation’s adoption, particularly regarding the local relevance and viability for 

the innovation, and the availability of local resources to accommodate adoption of the innovation 

(Ormrod, 1990). This study hypothesizes that a CSO management authority’s decisions related to 

GI program adoption are determined by the relative strengths of motivations and obstacles to 

environmental action, and by the resources available to overcome those obstacles.  

4.4 Methods 

4.4.1 Study Population  

The population considered in this study includes U.S. CSO management authorities that 

provide combined sewer services for an urban population of at least 100,000 people3. A 2004 US 

EPA report lists 828 NPDES permits for authorized CSO discharges (U.S. EPA, 2004, p. 

Appendix D). These data were used to identify the CSO management authorities and associated 

combined sewer system municipalities. Each NPDES permit number was used to identify 

permittees (referred to here as the CSO management authorities, or simply “authorities”). The 

largest combined sewer system municipality managed by an authority was identified using 

                                                 
3 This population threshold was chosen in part due to the lack of planning documents available from authorities 
below this threshold.  
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NPDES permit information and CSO management authority websites. Data from the 2010 U.S. 

census were used to account for the population of each serviced municipality, resulting in 68 

authorities identified as providing combined sewer management services for municipalities with 

populations of 100,000 or above. Documentation on the LTCPs for each community was 

collected through municipal websites and emails with municipal officials. Municipalities were 

removed from the study population if CSO compliance goals had been met before the year-end 

2015 without the adoption of a GI program specifically for CSO compliance efforts. This process 

resulted in 53 CSO management authorities remaining in the study population. In cases when 

more than one CSO authority provides combined sewer services to a municipality, authorities are 

considered separately if each has a unique CSO compliance management plan.  

4.4.2 Adoption Criteria 

In reviewing the LTCPs of authorities in this population, GI approaches were often found 

to be adopted in two stages. First, a pilot program of GI demonstration projects is adopted to 

allow for authorities to directly monitor the effectiveness of various GI approaches. This is 

followed by a decision on whether a large-scale program is appropriate for CSO management 

goals. While many authorities report the adoption of demonstration projects, data on the timing 

and funding related to pilot programs were not consistently available across the study population. 

Thus, the GI programs considered in this study are only large-scale programs for CSO 

management. We define a large-scale program as one that dedicates at least one percent of 

overall planned capital expense funds to GI projects for CSO management. The present value of 

funding dedicated to an adopted GI program adjusted to 2010 dollars is used as an assessment of 

the intensive margin of GI program adoption. Alternative metrics for the intensive margin were 

considered, such as the estimated gallons of stormwater captured by planned GI projects relative 
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to gray projects; however, these data were also not consistently available across all plans. For 

plans with funds allocated as flexible spending under the principle of adaptive management, we 

use 50% of the flexible spending value toward total GI funding. In cases when a funding range 

was given, the average value is used. The GI program is considered to be adopted once it is 

approved by a municipal government agency (e.g., a common council) or NPDES permitting 

authority. While many municipal governments may adopt GI programs that are not associated 

with the LTCPs of CSO management authorities, these are not considered within this study. 

Unapproved strategic plans recommended to or by a managing authority, and GI programs 

adopted as a form of injunction relief, are also not considered as a large-scale GI program 

adoption. In cases when multiple GI program updates were released by an authority before 2015, 

data on the earliest adoption of a large-scale GI program are used. Of the 53 CSO authorities in 

the study population, 22 were found to have adopted large-scale GI programs. Table A4.1 in 

Appendix A provides descriptions of the data sources for the adopted programs. Figure 4.1 

shows the distribution of logged GI program funding amounts, adjusted to 2010 dollars. The 

natural log of GI funding is used to account for the positive skew of adopted GI program 

funding.   

4.4.3 Independent Variable Selection 

Independent variable selection builds on previous research that identified significant 

factors that influence municipal decisions related to GI adoption (Flynn and Davidson, 2016). 

Select variables from this study are categorized according to a social-ecological framework for 

municipal GI adoption. This framework organizes the internal determinants of a decision-making  
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Figure 4.1 Planned capital expenses for GI programs
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process into three categories: Resource System, Governance System, and Actors. 

4.4.3.2 Resource System 

CSO control programs represent significant municipal investments that are required to 

meet Clean Water Act compliance goals. The communities considered in this study have a wide 

range of capital infrastructure needs for CSO abatement to meet these goals, as each community 

has implemented various stages of CSO management compliance efforts. The total funds needed 

for an authority to reach Clean Water Act compliance for CSO management are used as a control 

for the maximum potential infrastructure funding that a CSO authority is hypothesized to 

undertake.  

A key measure of a stormwater management technology’s effectiveness is the 

performance criteria to which the control is designed. A design storm is a typical approach to the 

sizing of stormwater control approaches. Design storms are defined by a recurrence interval 

designation (i.e., 1-year), indicating the probability that a storm of a certain size will occur 

during any given year, and a recurrence interval duration designation (i.e., 24-hour). Stormwater 

control measures such as GI approaches generally designed for smaller precipitation events 

(National Research Council, 2009). Thus, it is hypothesized that municipalities with smaller 

design storm sizes will be more likely to adopt a GI program.  

4.4.3.2 Governance System  

CSO management authorities are tasked with making critical decision regarding financial 

resource allocations for capital infrastructure projects while under strict regulatory environments. 

Funding limitations are among the most frequently cited barriers to GI (Godwin et al. 2008, Roy 

et al. 2008, Brown et al. 2009, Earles et al. 2009, Ruppert and Clark 2009, Stockwell 2009), most 
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often in reference to the limited economic resources of enforcement organizations. As GI 

technologies are often viewed as less proven than traditional approaches, CSO management 

authorities may be less willing to allocate capital infrastructure funds to GI projects for 

compliance goals if the degree of effectiveness is uncertain, particularly if economic resources 

are scarce. Research on state policy adoption has found that larger states with greater economic 

resources are more likely to adopt policy innovations (Berry, 1994; McLendon et al., 2005; 

Walker, 1969). Furthermore, larger cities have been found to have higher rates of innovation 

(Bettencourt et al., 2007a; Hagerstrand, 1968), and to dedicate more administrative resources to 

planning initiatives (Burby and May, 1998). Accordingly, this study hypothesizes that larger and 

wealthier municipalities are more likely to have the resources necessary to adapt existing CSO 

management plans to include GI programs. Conversely, if GI programs are adopted as additional 

programs rather than a substitute for current infrastructure, interest in GI program adoption has 

to compete with other municipal priorities such as economic development and job growth.  CSO 

management program funding guidance has commonly cited municipal unemployment rate as a 

primary measure of a municipality’s ability to pay for CSO capital infrastructure projects. Thus, 

unemployment rate is used in this study as a competing factor that may hamper the incentive to 

adopt a large-scale GI program. 

4.4.3.3 Actors  

A survey was administered to municipal officials involved in GI planning efforts to 

collect additional data on factors that influence GI adoption. The survey included both open 

ended questions and questions with a five point Likert scale to collect both descriptive and 

quantitative data on each municipality. Administration took place during a 2014 national summit 

on GI that included delegates from US communities that had adopted or explored GI programs. 
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Surveys results for select questions from delegates representing 15 CSO management authorities 

in this study population are included Appendix A4.  

Figure 4.2 shows the results for questions regarding the characterization of non-

governmental organizations (NGOs) in GI planning efforts. The majority of delegates 

consistently agreed or strongly agreed that NGOs were successful in encouraging GI initiatives 

at a residential and governmental level, while in both a supportive and supervisory role. Open-

ended questions allowed respondents to name the organizations that collaborated in GI adoption 

efforts. The most common types of NGOs listed were environmental organizations, particularly 

those related to water initiatives, and community development organizations. Interest group 

models of local policy adoption suggest that policy emerges from interest group competition, 

with the groups that effectively utilize political resources to lobby local elected officials being 

more likely to see their preferred policies adopted (Lubell et al., 2009). It is hypothesized that 

higher economic resources available to a municipality’s nonprofit environmental organizations 

will increase the likelihood of GI program adoption.  

The adoption of sustainable initiatives and policies in the US are often characterized by 

partisanship (Chandler, 2009; Guber, 2001). An independent variable indicating local political 

leanings is used to estimate the level of resident level support or opposition that may accompany 

the adoption of a GI program. It is hypothesized that a higher percentage of Democratic Party 

voters will lead to an increased likelihood of large-scale GI program adoption.  

4.4.4 Data Description  

Table 4.3 summarizes data sources used, while Table 4.4 provides summary statistics for 

each variable. For resource system factors, the average size of precipitation events is estimated  
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Figure 4.2 Survey results on the involvement of NGOs in GI planning 
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Table 4.3 Variable description and data sources 

 Factors Variable Measurement (Data Source) 

Resource System 

Average size of 
precipitation event 

2-year 24-hour precipitation event size, inches 
(NOAA Precipitation Frequency Data Server)   

Quality of built 
infrastructure 

Capital needs for CSO infrastructure to reach Clean Water Act goals 
(2008 U.S. EPA Clean Watersheds Needs Survey)  

Governance System 

Population 
City population, 2010 
(US Census) 

Economic resources 

Median household income, 2010 
(American Communities Survey)  
 
Unemployment rate, 2010 
(American Communities Survey) 

Actors 

Socioeconomic 
attributes 

% Democratic Vote, 2008 # 
(2008 Presidential Election, CQ Press) 

Environmental 
leadership 

Assets of registered environmental nonprofits, 2010 # 
(National Center for Charitable Statistics)  

 
Notes: # indicates County level data. Per capita values for data collected at the County level are normalized using 
County population values collected from the 2010 US Census. For municipalities with multiple counties, a weighted 
average based on the population of each county that resides in municipality is used.  
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Table 4.4 Summary statistics 

 Full Population (N=53) GI Adopting Population (N=22) 

Variable Mean 
Std. 
Dev 

Min Max Mean 
Std. 
Dev 

Min Max 

2-year 24-hour precipitation 
event size, inches 

2.94 0.48 1.50 3.67 2.75 0.47 2.07 3.55 

log(CSO capital 
infrastructure needs, dollars 
per person) 

6.99 1.47 1.72 8.99 7.12 1.34 2.45 8.70 

log(City population) 12.5 0.89 11.52 15.9 13.2 0.92 11.9 15.9 

Median household income, 
thousand $ 

44.7 12.1 27.4 88.0 45.2 14.9 27.4 88.0 

Unemployment rate, % 6.77 1.90 3.00 13.50 7.01 2.22 4.50 13.5 

Democratic vote, % 62.4 11.4 37.0 93.4 67.3 12.0 49.4 93.4 

log(Assets of Environmental 
NGOs, dollars per person) 

3.86 1.63 0 8.44 4.44 1.58 1.36 8.44 

log(Planned GI funding, 
adjusted to 2010 dollars) 

- - - - 3.91 1.65 0.72 7.79 
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using a 2-year, 24-hour precipitation frequency from the National Oceanic and Atmospheric 

Administration Precipitation Frequency Data Server. The quality of an authority’s sewer 

infrastructure is determined using the capital funding needs for CSO infrastructure to reach 

Clean Water Act goals from the 2008 Clean Watersheds Needs Survey (U.S. EPA, 2012), 

normalized on a per capita basis. Unemployment rate and median household income fare 

collected from the American Communities Survey. Percentage of Democratic Party voters are 

measured using the percent total Democratic votes in the 2008 Presidential Election as reported 

by CQ Press (CQ Press, 2017). Data from the National Center for Charitable Statistics (NCCS, 

2016) are used for environmental leadership, measured using the annual assets of registered 

environmental nonprofits. Population data are collected from the 2010 U.S. Census.  

4.4.5 Model Specifications  

To empirically examine the influence of factors on the extensive and intensive margins of 

adopting a comprehensive GI program, a lognormal hurdle model is used. Hurdle models were 

first proposed by Cragg (1971) to allow for two sets of explanatory variables in the 

determination of purchasing behaviors. This approach allows for the non-adoption of a large-

scale GI program to be treated as a corner solution (as opposed to unobserved) and for the 

program adoption and funding decisions to be determined by separate combinations of factors.   

The lognormal hurdle model (Wooldridge, 2010) is characterized as 

௜ݕ
 = ௜ݏ ௜ݕ

∗ = ௜ݖߛ ]1 + ௜ݑ  > 0] exp(ݔߚ௜ + ߭௜)                   (1) 

where ݕ௜
  is the observed value of GI program funding, ݏ௜ is the binary selection variable for 

adoption, and ݕ௜
∗  is the latent variable representing GI program adoption, ݖ௜ is a vector of 

explanatory variables describing the adoption selection, ߛ is a vector of coefficients, ߳௜ is a 
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standard normal error term, ݔ௜is a set of explanatory variables describing the program funding 

amount, ߚis a vector of coefficients, and ݑ௜ and ߭௜ are independent, homoscedastic, normally 

distributed error terms. The selection equation is governed by a probit model. Vectors ݖ௜and ݔ௜ 

are kept identical to assess the effects of each variable in the two decision stages. The model is 

estimated using maximum likelihood techniques in Stata with the log likelihood as follows:  

݈௜ = ௜ݕ]1 = 0] log[1 −  (γݖ௜
ᇱ)] + ௜ݕ]1 > 0] log[ (γݖ௜

ᇱ)]    (2) 

௜ݕ]1+                  > 0] ቄlog ቄ ቂlog(ݕ௜) −
ఉ௫೔

ᇲ

ఙ
ቃቅ − log(σ) − log(ݕ௜)ቅ          

To relax the assumption homoscedasticity of ߭௜, heteroskedastic conditional variance is modeled 

as 

(௜ݓ)ଶߪ = exp(2ݓ௜
ᇱ(3)                  (ߠ 

where ݓ௜
ᇱ is a set of exogenous variables, and ߠ is the parameter vector.  In this study, ݓ௜

ᇱ is 

hypothesized to vary with municipal population, as factors that are not explicitly defined in the 

model likely have population scaling effects (Bettencourt et al., 2007b, 2007a).  

4.5 Results 

 Table 4.5 presents the regression results of GI program adoption for equation (1) and 

average marginal effects of the selection probability and conditional GI program funding 

amounts with respect to all independent variables. Table A4.2 in Appendix A4 presents the 

regression results for the same model fitted to the outcome variable of planned gray 

infrastructure expenses for GI program adopting communities. The results in Tables 4.5 and 

A4.2 indicate that the extent of both GI spending and gray infrastructure spending are strongly 

driven by remaining funding required for CSO compliance goals and municipal population. 

These variables are considered as controls in assessing the extent of any type of CSO 
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Table 4.5 Hurdle model of GI adoption for CSO management 
 
 Selection of GI Program Amount of GI Funding 

Variable (1) (2) (1) (2) 

     

2-year 24-hour precipitation event size, inches 
-1.635** 
(0.676) 

-1.985** 
(0.683) 

-0.379*** 
(0.148) 

-0.995*** 
(0.341) 

log(Capital needs for CSO infrastructure, dollars per 
person) 

0.361* 
(0.225) 

0.592** 
(0.246) 

0.242*** 
(0.051) 

0.629*** 
(0.134) 

log(City population, thousand people) 
1.636*** 

(0468) 
1.967*** 
(0.521) 

0.368*** 
(0.073) 

0.934*** 
(0.158) 

Median household income, thousand $ 
0.007 

(0.036) 
-0.012 
(0.036) 

-0.019*** 
(0.006) 

-0.049*** 
(0.015) 

Unemployment rate, % 
-0.144 
(0.216) 

-0.274 
(0.216) 

-0.136*** 
(0.035) 

-0.352*** 
(0.090) 

Democratic vote, % 
0.021 

(0.032) 
0.038 

(0.033) 
0.018** 
(0.008) 

0.046** 
(0.020) 

log(Assets of environmental NGOs, dollars per 
person) 

0.106 
(0.192) 

0.013 
(0.195) 

-0.095** 
(0.045) 

-0.250** 
(0.122) 

constant 
-19.528*** 

(6.280) 
 

-3.238*** 
(0.099) 

 

log(σ) log(City population, thousand people)   
-0.102*** 

(0.012) 
 

  

N 53 

Log likelihood -17.670 

AIC 69.340 

Note: GI funding levels are logged values in million dollars adjusted to 2010 price. Columns 1 and 3 report coefficient estimates from maximum likelihood, and column 2 and 4 

report the corresponding average marginal effect. Standard errors in parentheses. ***p<0.01, **p<0.05, *p<0.1 
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management fund planning. The heteroskedasticity of the error term modeled with the natural 

logarithm of municipal population was found to be significant for both the conditional GI 

program funding level and conditional gray infrastructure funding level.  

 Precipitation event size characteristics are found to be strongly significant in both the 

selection and amount decision levels for GI program adoption. This supports the hypothesis that 

municipalities experiencing large precipitation events more frequently relative to the other CSO 

communities in this population are less likely to adopt GI for CSO management, and tend to 

dedicate less overall funding toward a GI program when a program is adopted. A growing body 

of research has demonstrated the effectiveness of GI approaches during large events (Horst et al., 

2010; Lewellyn et al., 2015). This suggests that authorities may be unaware of the effectiveness 

of GI approaches for larger storm events, or that perceptions of GI limitations may have a greater 

influence on GI adoption decisions than research supporting the effectiveness of GI technologies. 

However, it should be noted that storm size characteristics are associated with climatic regions of 

the U.S., suggesting that the influence of this factor may include regional variation 

characteristics not captured in this model.   

 In terms of governance resource factors, median household income and unemployment 

rate were found to be strongly significant in the GI funding amount decision level but not the 

program selection decision level. The strong negative effect of unemployment rate supports the 

hypothesis that GI programs may be competing for other municipal program and development 

funding, as a higher rate of municipal unemployment results in less GI program funding adopted. 

Interestingly, median household income is also shown to have a significant negative relationship 

with the amount of GI program funding. One possible explanation for this relationship is that 

authorities that adopt large-scale GI programs do so in part for community redevelopment 
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purposes. The relationship between higher amounts of GI funding with lower median household 

incomes may suggest that some authorities adopt a greater extent of GI technologies that provide 

additional public services in municipal populations that are experiencing a greater relative level 

of fiscal stress.  

 The coefficient on the voting preference influence is positive and moderately statistically 

significant at the program amount decision, indicating an increased amount of GI funding 

adopted in cities with a higher percentage of residents with Democratic voting preferences. This 

corresponds with research on ideological preferences for sustainability policies (Chandler, 2009; 

Guber, 2001). The coefficient for local environmental NGO support is negative in both the 

selection and amount models, and moderately significant at the amount model level, which 

indicates a higher per capita level of environmental NGO assets is associated with lower levels 

of GI program funding. One possible explanation for this unexpected result is that communities 

with lower levels of environmental NGO assets are able to effectively do “more with less” 

through campaigning for their policy interests without the need for monetary funding. Another 

reason may be that there are higher levels of per capita environmental NGO assets in 

communities where public authorities take less action for sustainability initiatives such as GI 

programs, and residents have effectively built more capital to fill the need for local 

environmental initiatives. Alternative functional forms for this variable were tested, such as the 

number of environmental NGOs per capita or using metrics for environmental NGOs categorized 

as water-initiative based organizations, and the overall model results and marginal effects were 

similar in each case. In comparing these findings with those from the survey results, the 

regression results suggest that the metrics used in this study are not able to fully capture the 

strength of interactions of individual organizations in their lobbying efforts for GI programs.  
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Two authorities’ GI program amounts were identified as outliers, with values over two 

standard deviations above the mean. These data points were removed from the population, and 

the remaining population was used to re-analyze the fit of the model presented in Table 4.5. 

Table A4.3 in Appendix A4 shows the results for GI program adoption with outliers removed. 

Overall, the coefficients and average marginal effects for most independent variables in both the 

selection model and amount model remain relatively consistent. The sensitivity of municipal 

population size is tested using County level population data, collected from the 2010 US Census. 

These results are included in Table A4.4 in Appendix A4. The models display little variation in 

the significance or effect sizes across all independent variables for both the selection and funding 

amount models.  

4.6 Discussion and Conclusions 

 Over the past decade, GI programs have transformed from site-scale demonstration 

projects to city-wide initiatives that seek to reduce the negative social and ecological impact of 

highly impervious urban environments. This study provides the first comprehensive, quantitative 

assessment of factors influencing stormwater management authorities’ decisions related to GI 

program adoption. Overall, we find that the decision to adopt a large-scale GI program is 

strongly driven by the population size and precipitation event characteristics of a municipality, 

while the extent of program adoption is additionally driven by municipal socioeconomic 

characteristics, including residents’ political preferences, median household income, and 

unemployment rate.  

Assessing CSO management authorities’ decisions related to GI program adoption provides 

a first step to understanding sustainable design decisions related to municipal stormwater 

management systems. Two limitations of this study that can guides future research should be 
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noted. First, the GI programs analyzed are the initial GI program plans adopted by CSO 

management authorities. Initial program plans only capture preliminary commitments and goals 

for implementation. Some authorities may choose to commit additional funds over time, while 

authorities that do not have legal stipulations for specific plans or funding amounts may choose 

to implement less GI than original commitment levels. Thus, the findings on the extent of GI 

plan adoption reflect a particular willingness and ability to adopt a degree of GI at the start of a 

program. How GI technologies are implemented over time by CSO management authorities and 

other stormwater management authorities deserves additional research in the future.  

Second, this study focuses only on GI capital projects by CSO management authorities 

for CSO compliance. Thus, it does not give a full picture of GI adoption in municipalities. Many 

municipalities adopt substitutes for the capital improvement GI programs adopted by CSO 

managing authorities. For instance, GI policies are commonly adopted within municipal 

stormwater management ordinances to require or encourage low impact development practices 

on new and redevelopment sites. Capital programs such as those for CSO management are also 

commonly adopted in other municipal departments, such as parks and recreation or 

transportation departments. Finally, GI may be adopted by CSO management authorities after 

Clean Water Act compliance goals have already been reached. Examining the diffusion of policy 

substitutes for GI capital improvement programs would provide a more complete picture of how 

and why municipal authorities choose to adopt GI policies.  
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Appendix A4 

 

 
Figure A4.1 Survey results on the adoption and implementation of GI plans 
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Considerations of social criteria (e.g., health and recreation benefits) are important in the
approval of GI projects.

The experiences of other communities pursuing GI initiatives has provided valuable knowledge
to the development of local GI projects.

Interdepartmental coordination issues present barriers to GI project implementation.

Operation and maintenance issues present barriers to GI project implementation.
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Figure A4.2 Survey results on the role of leadership in GI planning 
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Local leadership efforts provided a major impetus for the pursuit of GI projects.

Much of the effort related to the pursuit of GI projects can be linked to a single individual.

Much of the effort related to the pursuit of GI projects can be linked to a collaborative or
partnership organization.



123 
 

 

 

Figure A4.3 Survey results on the characterization of stakeholder interactions in GI 
planning 
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There is a history of a high degree of trust and reciprocity between stakeholders for GI projects.

There is currently a high degree of trust and reciprocity between stakeholders for GI projects.

There is a history of excluding certain groups of stakeholders from water management
infrastructure decision making processes.

There is a currently an exclusion of certain groups of stakeholders from water management
infrastructure decision making processes.

There is a local history of environmental injustices related to water management infrastructure.
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Figure A4.4 Survey results on involvement of various groups in GI planning 
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Representatives from indigenous communities are involved with planning GI projects and
initiatives.

Representatives from a diversity of socioeconomic groups are involved with planning GI
projects and initiatives.

A collaborative or partnership organization consisting of multiple stakeholders (e.g.,
government authorities, academics, and NGOs, etc.) exists for the development of GI plans.

Monitoring activities for GI projects are conducted by various stakeholders in addition to
government organizations.
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Table A4.1 Descriptions of adopted GI programs 

Authority Name 
Combined 
Sewer City 
Managed 

Total Planned 
Capital 

Funding for GI 
Notes and source used for funding amount 

City of Akron Akron, OH 46 

On November 13, 2009, the City of Akron agreed to a consent decree for CSO 
compliance. This agreement and a 2011 LTCP update allows for green for gray 
replacement of previous plans. The City of Akron submitted an Integrated Plan to the 
EPA in August of 2015. The overall program is referred to as “Akron Waterways 
Renewed!”. Three green projects from the Integrated Plan were approved in December 
2015, totaling $46 million in planned costs. 

City of Aurora, IL Aurora, IL 3.44 

The City of Aurora and Fox Metro Water Reclamation Plant collaborate on the 
investigation, maintenance and repair of combined and separated sewers throughout the 
City of Aurora.  The City of Aurora’s LTCP (dated March 2010, revised April 25, 2011, 
approved July 31, 2014) includes several GI projects (2010 LTCPU, Table 5.02-01) 

Massachusetts Water 
Resources Authority (MWRA) 

Boston, MA 13.8 

One LTCP is shared by MWRA and the City of Cambridge. MWRA’s final CSO LTCP 
was approved in 1998 and revised in 2006. The total cost of the CSO control program is 
$857 million (FY12 CIP). The revised CSO control plan for the Alewife Brook 
comprises several component projects that were individually incorporated into the Court 
Schedule in April 2006. In 1997, MWRA originally agreed to $13.8 million for a 
wetlands project in the court schedule (out of $487 million when EPA and DEP 
approved the Final CSO Facilities Plan and Environmental Impact Report in 1997). 
Sources: MWRA 2004 Annual LTCP progress report, page 13 MWRA 2013 Annual 
LTCP progress report   

Boston Water and Sewer 
Commission (BWSC) 

Boston, MA 2.24 

A consent decree was signed in 2012 requiring BWSC to initiate GI demonstration 
projects and to control pollutants other than sewage, using GI best practices to manage 
these pollutants wherever possible. Source: BWSC 2014-2016 Capital Improvement 
Program (2013), Table 15 
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Buffalo Sewer Authority (BSA) Buffalo, NY 92.61 

On April 30, 2012 BSA submitted a LTCP, which has since been revised and was 
submitted on January 10, 2014. On April 14, 2014, the plan including GI was approved 
by the Environmental Protection Agency and the New York State Department of 
Environmental Conservation. Source: BSA 2014 LTCP, Table ES-6 

Metropolitan Water 
Reclamation District of Greater 
Chicago (MWRD) 

Chicago, IL 37.5 

1972 began the Tunnel and Reservoir Plan (TARP) for flood control and pollution 
prevention. In 1995, TARP was approved as the LTCP for MWRDGC, Chicago, and 40 
satellite communities. In 2011, MWRD entered a consent decree for CSO violations 
(was delayed until 2014 approval). The consent decree contains a requirement that 
MWRD spend $25-50 million to develop 10 million gallons in retention capacity using 
GI by 2015 Source: 2014 consent decree requires $25-50 million dollars be spent on GI. 
/ Note: The City of Chicago has several GI programs (e.g., green roof and green alley 
programs) embedded in a number of departments, including $50M GI strategy released 
in 2014. However, the City does not have separate consent decree or LTCP.  

Metropolitan Sewer District 
(MSD) 

Cincinnati, 
OH 

34.41 

Consent Decree was entered in 2006 for a global wet weather plan. Final Wet Weather 
Improvement Plan approved in federal court in 2010 that focuses on CSO control and 
implementation of SSO correction plan. MSD has a three-prong approach – storage and 
conveyance, product control, and source control to control sources of overflows 
(includes GI). Cost: Capped at $1.5 billion over a period of 19 years. Source: 2010 Wet 
Weather Improvement Plan, Attachments 1B and 4 (Attachment 4 items includes: Green 
Program, Regional BMPs, and Long Term Projects) 

Northeast Ohio Regional Sewer 
District (NEORSD) 

Cleveland, 
OH 

42 

Original plan approved in 2003. Revised 2010 plan includes combination of gray 
infrastructure and GI at a cost of $3 billion over 25 years. NEORSD signed a Consent 
Decree in July 2011 which replaced a LCTP submitted in 2003. Source: Appendix 3 of 
2010 Consent Decree (signed 2010, filed 7/7/11) 

City of Columbus, Department 
of Public Utilities 

Columbus, 
OH 

373 

LTCP and Wet Weather Management Plan (WWMP) submitted in 2005 and approved in 
2009, estimated to cost $2.5B over 20 years. In 2012, Columbus’s “Blueprint Columbus” 
plan was proposed (and officially accepted in 2015) as a replacement to the 2005 
WWMP. Blueprint plan is projected to cost a total of about $1.78B and GI is $373M 
Source: 2015 Columbus Blueprint, p 153, approved by the Ohio EPA on December 1, 
2015 
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Detroit Water and Sewerage 
Department (DWSD) 

Detroit, MI 50 

Detroit adopted a LTCP in 1993 with a $2.2 billion CSO program. The primary aspect of 
Detroit’s plan, the Upper Rouge Tunnel (est. to cost $1.5 billion) was cancelled in 2009 
due to financial hardship that exceeded EPA’s criteria. Detroit’s Alternative Rouge River 
Control Plan includes 25 phased projects focusing on GI (to reduce CSO volume by 10-
20%). Source: 2011 Alternative Rouge River Control Plan  

Kansas City’s Water Services 
Kansas City, 

MO 
114 

Kansas City submitted an Overflow Control Plan in 2008, including a GI program. If 
pilots are successful, additional gray infrastructure projects may be replaced with GI. 
Overall cost is approximately $2.5 billion control plan over 25 years Source: 2009 
Overflow Control Program, Table 12-20 / Note: Total of programmatic elements plus 
Combined Sewer System Items. GI items are all programmatic elements minus Blue 
River Watershed Management Plan, GI pilots, and Distributes Storage for Outfalls 059 
and 069. Approved by the MDNR by letter dated April 14, 2010 

Louisville and Jefferson County 
Metropolitan Sewer District 
(MSD) 

Louisville, 
KY 

47 

Louisville and Jefferson County MSD entered a 2005 Consent Decree, which was 
amended in 2009. Approved Plan (2009) includes $47M to GI. An Integrated Overflow 
Abatement Plan (IOAP) will be constructed over next 13 years at cost of $850 million 
and will address both combined systems as well as sewer systems with overflows. 
Source: Integrated Overflow Abatement Plan, Final CSO LTCP Volume 2 of 3 / MSD 
received a conditional letter of approval from the regulatory agencies on October 23, 
2009.  

The City of Omaha Omaha, NE 24.76 

First LTCP was submitted to Nebraska Department of Environmental Policy (NDEQ) in 
September 2009, and was approved by NDEQ in February 2010. The 2009 cost estimate 
was $1.66B (2009$) with 15-year schedule. 2014 LTCPU includes improvements to the 
WTP, added facilities, deep tunnel, 2 retention treatment basins, 2 storage tanks, and GI 
plan. Source: 2014 LTCPU, approved by NDEQ in January 2015 

New York City Department of 
Environmental Protection 

New York 
City, NY 

2426 

In 2007, PlanNYC formed inter-agency task force and released a Sustainable Stormwater 
Management Plane in 2008. In 2010, NYDEP released Green Infrastructure Plan, which 
extends on 2008 plan and provides details on CSO management through GI. 2011 
consent decree amendment states that LTCPs will incorporate elements of plan to 
achieve 10% city-wide application rate by 2030.  Source: 2011 consent decree (March 
13, 2012 - The New York State DEC and New York City DEP announced an agreement 
on 2011 enforcement order) 
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The Philadelphia Water 
Department (PWD) 

Philadelphia, 
PA 

1323 

LTCP update submitted in 2009 (Green City, Clean Waters). A 2011 consent order 
approved amended plans from 2009. The revised plan includes cumulative spending of 
$345M for gray, $1670M for GI, and $420 million for adaptive funds. The LTCP 
includes large scale implementation of GI within a 25-year period that emphasizes the 
economic and social benefits Source: LTCPU (Green City Clean Waters, amended 2011, 
p 20), approved by Philadelphia Department of Environmental Protection in 2011, 
approved by EPA on 4/10/12. Note: green funds used here include 50% of planned 
flexible funds 

Pittsburgh Water and Sewer 
Authority (PWSA) 

Pittsburgh, 
PA 

9.86 

A Wet Weather Feasibility Study was submitted in 2013 to fulfill the requirements of the 
City of Pittsburgh/PWSA consent order agreement. PWSA proposed an evaluation of the 
ability of GI and integrated watershed management (IWM) to assist in the control of 
combined sewer overflows as the first step of a broader adaptive management plan aimed 
at optimizing the recommended approach to meeting legal requirements. Source: Table 
ES-2 in 2013 Wet Weather Plan  

King County  Seattle, WA 115 

In April of 2008, the County completed the 2008 CSO Control Plan Update, 
summarizing the County’s progress on its CSO projects and the effectiveness of the 
projects it had undertaken (this report mentions LID but no active or planned LID 
projects). EPA issued Seattle and King County a Consent Order in 2009 to increase 
efforts to reduce CSOs. King County’s 2012 proposed plan has cost of $711 million with 
$115 toward GI. Source: 2012 CSO control plan amendment p 5-41 (adopted in 2012, 
approved in 2013). Total plan cost is $711, GI life cycle planning costs are assumed to 
replace gray costs 100% 

City of Seattle, Seattle Public 
Utilities (SPU) 

Seattle, WA 12.16 

The 2001 CSO Reduction Plan Amendment reevaluated previously studied areas of the 
City and expanded the evaluation to include other areas. The 2005 Update was prepared 
to evaluate the effectiveness of best management practice (BMP) projects from the 2001 
Amendment that had been completed, and to revise cost estimates and schedules for 
remaining 2001 projects. 2010 CSO Plan update incorporate extensive GI strategies as 
part of the toolbox to meet goals. Source: 2010 CSO Plan update / Note: 2015 Approved 
Plan: Seattle’s CSO control plan continues to use a combination of the following CSO 
control strategies: sewer system upgrades; natural drainage solutions – measures such as 
rain gardens, porous pavement, and cisterns that use soil to absorb stormwater); and 
underground storage, that would be jointly built by King County and Seattle. 
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City of Spokane Spokane, WA 40 

2005 plan estimated to cost $314M; 2013 update: $183M; 2014 integrated plan: 
determined that implementing GI solely for the purpose of CSO reduction is not cost‐
effective when compared with storage and conveyance facilities, but GI will be 
implemented jointly with other infrastructure improvements, GI projects listed at a total 
capital cost of $40M, On May 5, 2014, the Spokane City Council passed a resolution, 
adopting the City's Integrated Clean Water Plan. A final draft of the plan was completed 
in December 2014. Source: 2013 Spokane Integrated plan  

Metropolitan St. Louis Sewer 
District (MSD) 

St. Louis, 
MO 

100 

2011 Consent Decree and Approved Plan: Ongoing system improvements as well as new 
components, including GI. Total plan is $ 1.8 billion for CSO control plan, including 
$100 million for enhanced GI. 25-year baseline schedule for implementing CSO controls 
with substantial rate increases. Source: 2011 Consent Decree (approved 8/4/2011) and 
associated LTCP (capital costs in Table ES-2, also present PV) 

Onondaga County  Syracuse, NY 83 

GI program adopted with 2009 amended consent judgement. Revised plans replaced 
several large gray infrastructure projects, including a regional treatment facility. 
Cumulative GI costs estimated at $83M Source: GI Program report (Onondaga County, 
New York Save the Rain Program 2010-2018 Green Infrastructure Plan, page 7)  

District of Columbia Water and 
Sewer Authority (D.C. 
Water/WASA) 

Washington 
DC 

90 

The LTCP was developed in 2002 and approved in 2004, included $3M in LID 
demonstration projects on WASA projects (out of $1262B, ~0.2% overall spending). 
Pages 9-4 and 9-5 point out barriers to extensive LID). The LTCP was estimated to cost 
$1.3 billion. 2015 LTCPU (Clean Rivers Project) - On May 20, 2015, the EPA, the 
Department of Justice, DC Water and the District of Columbia agreed to the Consent 
Decree Modifications included in the revised agreement that will cost $2.6 billion and 
take 15 years to complete.GI Projects: $60 million for GI in Rock Creek and $30 million 
for GI for the Potomac CSOs 027, 028 and 029. 
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Table A4.2 Hurdle model of gray infrastructure expenses for GI program adopting communities 

  

 Selection of GI Program Amount of Gray Infrastructure Funding 

Variable (1) (2) (3) (4) 

     

2-year 24-hour precipitation event size, inches 
-1.635** 
(0.676) 

-3.528*** 
(1.374) 

-0.083 
(0.074) 

-0.450 
(0.389) 

log(Capital needs for CSO infrastructure, 
dollars per person) 

0.361* 
(0.225) 

1.149** 
(0.490) 

0.201*** 
(0.025) 

1.087*** 
(0.135) 

log(City population, thousand people) 
1.636*** 

(0468) 
3.688*** 
(1.012) 

0.163*** 
(0.033) 

0.869*** 
(0.163) 

Median household income, thousand $ 
0.007 

(0.036) 
0.022 

(0.074) 
0.004 

(0.002) 
0.022 

(0.016) 

Unemployment rate, % 
-0.144 
(0.216) 

-0.299 
(0.442) 

-0.002 
(0.017) 

-0.009 
(0.090) 

Democratic vote, % 
0.021 

(0.032) 
0.035 

(0.066) 
-0.004 
(0.003) 

-0.021 
(0.020) 

log(Assets of environmental NGOs, dollars 
per person) 

0.106 
(0.192) 

0.220 
(0.400) 

0.0009 
(0.022) 

-0.005 
(0.121) 

constant 
-19.528*** 

(6.280) 
 

-1.45*** 
(0.470) 

 

log(σ) log(City population, thousand people)   
-0.156*** 

(0.011) 
 

  
N 53 

Log likelihood -13.962 
AIC 61.926 

Note: Gray infrastructure funding levels are logged values in million dollars adjusted to 2010 price. Columns 1 and 3 report coefficient estimates from maximum likelihood, and 

column 2 and 4 report the corresponding average marginal effect. Standard errors in parentheses. ***p<0.01, **p<0.05, *p<0.1 
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Table A4.3 Hurdle model of GI adoption for CSO management with outliers removed 

 Selection of GI Program Amount of GI Funding 
Variable (1) (2) (3) (4) 

     

2-year 24-hour precipitation event size, inches 
-1.633** 
(0.675) 

-1.779*** 
(0.636) 

-0.375** 
(0.156) 

-0.946*** 
(0.347) 

log(Capital needs for CSO infrastructure, 
dollars per person) 

0.360 
(0.224) 

0.520** 
(0.230) 

0.242*** 
(0.054) 

0.613*** 
(0.146) 

log(City population, thousand people) 
1.631*** 
(0.478) 

1.740*** 
(0.475) 

0.368** 
(0.073) 

0.828*** 
(0.286) 

Median household income, thousand $ 
0.007 

(0.007) 
-0.008 
(0.033) 

-0.017** 
(0.008) 

-0.044** 
(0.018) 

Unemployment rate, % 
-0.143 
(0.215) 

-0.229 
(0.197) 

-0.126*** 
(0.049) 

-0.318*** 
(0.112) 

Democratic vote, % 
0.020 

(0.032) 
0.032 

(0.030) 
0.017* 
(0.009) 

0.023* 
(0.023) 

log(Assets of environmental NGOs, dollars per 
person) 

0.107 
(0.192) 

0.025 
(0.178) 

-0.091* 
(0.045) 

-0.229* 
(0.131) 

constant 
-19.46*** 

(6.309) 
 

-2.952*** 
(0.099) 

 

log(σ) log(City population, thousand people)   
-0.098*** 

(0.012) 
 

  
N 51 
Log likelihood -16.617 

AIC 67.233 

Note: GI funding levels are logged values in million dollars adjusted to 2010 price. Columns 1 and 3 report coefficient estimates from maximum likelihood, and column 2 and 4 report 

the corresponding average marginal effect. Standard errors in parentheses. ***p<0.01, **p<0.05, *p<0.1 
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Table A4.4 Sensitivity of hurdle model to population scale 

 Selection of GI Program Amount of GI Funding 
Variable (1) (2) (3) (4) 

     

2-year 24-hour precipitation event size, inches 
-1.145** 
(0.563) 

-0.329 
(0.164) 

-0.329 
(0.164) 

-0.666* 
(0.395) 

log(Capital needs for CSO infrastructure, 
dollars per person) 

0.372** 
(0.182) 

0.277*** 
(0.052) 

0.277*** 
(0.052) 

0.724*** 
(0.143) 

log(County population, thousand people) 
1.403** 
(0.552) 

0.237** 
(0.097) 

0.237** 
(0.097) 

0.595** 
(0.237) 

Median household income, thousand $ 
-0.040 
(0.026) 

-0.019** 
(0.009) 

-0.019** 
(0.009) 

-0.050** 
(0.023) 

Unemployment rate, % 
-0.529* 
(0.283) 

-0.183** 
(0.072) 

-0.183** 
(0.072) 

-0.478*** 
(0.178) 

Democratic vote, % 
0.050 

(0.035) 
0.022** 
(0.010) 

0.022** 
(0.010) 

0.058** 
(0.024) 

log(Assets of environmental NGOs, dollars per 
person) 

-0.005 
(0.199) 

-0.091* 
(0.054) 

-0.091* 
(0.054) 

-0.239 
(0.146) 

constant 
-15.39** 

(7.00) 
 

-1.960 
(1.489) 

 

log(σ) log(County population, thousand 
people) 

  
-0.085*** 

(0.011) 
 

  
N 53 
Log likelihood -22.147 

AIC 78.293 

Note: GI funding levels are logged values in million dollars adjusted to 2010 price. Columns 1 and 3 report coefficient estimates from maximum likelihood, and column 2 and 4 report 

the corresponding average marginal effect. Standard errors in parentheses. ***p<0.01, **p<0.05, *p<0.1 



 

133 
 

Chapter 5 Development and psychometric testing of the Rate and 
Accumulation Concept Inventory 
 

5.1 Abstract 

A fundamental understanding of rate and accumulation principles is important for educating 

engineers across all sub-disciplines. A method is needed to assess engineering students’ 

conceptual understanding of these principles and to evaluate instruction. This article describes 

the development of the Rate and Accumulation Concept Inventory (RACI) instrument and 

provides an analysis of its validity and reliability, along with a discussion of its use in 

engineering courses. This instrument is designed to test (1) overall mastery of rate and 

accumulation concepts, and (2) mastery of these concepts within particular contexts (e.g., 

mathematics, mass flow, and heat flow). The RACI can also be used to assess curricular 

interventions aimed at changing students’ conceptual understanding of rate and accumulation 

principles. Exploratory findings on students’ conceptual understanding prompted the 

development of a pilot RACI survey. Two different pilot survey administrations took place, with 

adjustments made to the instrument between each. Data from the most recent administration (N= 

305) are used to assess evidence of validity and reliability through structural equation modeling, 

multidimensional item response theory, and Cronbach’s alpha. Validity and reliability evidence 

indicates that the RACI can be used to measure students’ overall understanding of the concepts 

identified. Issues of potential construct underrepresentation were uncovered in two of the context 

categories. The evidence of reliability and validity shows that the RACI may be a useful tool to 

assess engineering student understanding of rate and accumulation principles. Potential uses of 

the RACI included measurements of changes in student understanding over time, and the 
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effectiveness of educational interventions intended to affect understanding. Additional research 

stages will enhance the validity and reliability of the RACI as a diagnostic tool.  

5.2 Introduction 

There is a growing recognition that many engineering students are not learning as much 

as instructors assume. Of particular concern are the high numbers of students who leave 

undergraduate engineering courses with scientifically incorrect ideas related to fundamental 

processes. This study investigates engineering students’ conceptual understanding of rate and 

accumulation processes in various physical contexts. These processes bring together scientific 

principles of a particular physical context (e.g., water flow or heat flow) with mathematical 

models that are used to analyze rates of change and accumulation across system boundaries of 

interest. Thus, for students to improve their ability to learn about and manage complex systems, 

they must have a strong conceptual understanding of calculus fundamentals, and then be able to 

interpret how these fundamentals are associated with real world phenomena.  

Examples of rate and accumulation processes are mass and energy balances, which are 

conceptual models used by engineers in many disciplines and contexts. These models are used in 

structural analysis by civil and mechanical engineers, heat-work relationships by chemical 

engineers, and fate and transport modeling by environmental engineers. These processes are also 

used in so-called “stocks and flows” problems by engineers in different types of design 

problems. Research shows that most people’s intuitive understanding of stocks and flows is poor, 

and student misconceptions related to rate and accumulation processes have been known for 

some time (Carlson et al., 2003; Sweeney and Sterman, 2000, 2007; Thompson, 1994a). Students 

may form misconceptions of rate and accumulation processes for numerous reasons. For 
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example, certain focusing phenomena used in the classroom have been linked to students 

incorrectly generalizing slopes as differences in quantities rather than ratios (Lobato et al., 2003).      

Knowing how students think and learn about rate and accumulation processes in complex 

systems can help educators better prepare students for their engineering careers. This paper 

describes the development of the Rate and Accumulation Concept Inventory (RACI), which was 

designed to address the need for an assessment tool to measure student understanding of rate and 

accumulation processes across multiple contexts. While many concept inventories have been 

developed to assess students’ understanding of either mathematical principles or scientific 

concepts related to particular topics, the RACI combines these both of these important types of 

understanding in one assessment tool. This article presents a psychometric analysis of the RACI 

to ascertain its viability as a research instrument. We begin with a background on conceptual 

understanding and psychometric analysis before applying those theories to the evaluation of the 

RACI. Finally, we conclude with recommendations for the refinement of the RACI and its 

appropriate current uses.  

5.3 Theoretical Basis 

Several decades of research have led to different approaches to assessing conceptual 

understanding in students. We will present literature on conceptual understanding and highlight 

key methods on developing and analyzing concept inventories. We then summarize the 

exploratory work that demonstrated the need for the inventory, followed by a discussion of the 

development of the conceptual categories and question items included in the RACI. 
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5.3.1 Conceptual understanding   

Conceptual understanding refers to an individual’s collection of concepts (i.e., pieces or 

clusters of knowledge), beliefs (i.e., propositional relationships between concepts), and mental 

models (i.e., groups of meaningfully related beliefs and concepts that allow one to explain 

phenomena and make predictions) related to a particular topic (Streveler et al., 2014).  

Conceptual change, defined as the process of altering some aspect of one’s conceptual 

understanding to be consistent with scientific understanding, has long been recognized as a 

fundamental aspect of learning (Duit and Treagust, 2003; Mayer, 2002). Constructivism provides 

a foundation for research of conceptual change, as it implies that one’s pre-existing knowledge 

affects how new knowledge is encountered (Fosnot and Perry, 1996; Piaget, 1973; Von 

Glasersfeld, 1989; Vygotsky, 1980). Thus, how a student acquires new knowledge can be 

affected by misconceptions, which we define as some aspect of one’s conceptual understanding 

that is different from what is known to be scientifically or mathematically correct (sensu 

National Research Council, 2012).   

Several prominent theories exist which seek to describe the structure of students’ 

conceptual understanding related to particular topics. Many researchers propose that conceptual 

understanding exists as coherent categorizations of one’s concepts, beliefs, and mental models, 

which can be organized along shared properties (Carey, 1985; Chi et al., 2012; Chi and Roscoe, 

2002; Clement, 1983; McCloskey, 1983; Vosniadou, 2007, 1994; Vosniadou and Brewer, 1992; 

Vosniadou et al., 2008). This view suggests that students maintain stable ways of thinking about 

a particular topic (including misconceptions) because their knowledge is structured in coherent 

or theory-like ways. Alternatively, knowledge can be understood as separate pieces of intuitions 

based on experiences, which one can learn to relate and establish meaningful relationships 
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(diSessa, 2008, 2002, 1988; Minstrell, 2001). Thus, the “knowledge in pieces” theory (diSessa, 

1983) posits that a students’ conceptual understanding on a topic is comprised of 

phenomenological primitives (p-prims), which are self-explanatory schemata that are generally 

apparent to people in real-world contexts. In this sense, our definition of a misconception could 

be interpreted as a misapplication of a p-prim. Furthermore, conceptual change would require 

corresponding p-prims to be re-contextualized to create normative conceptual understanding 

(diSessa, 2008).  

While there are key differences in these two views, there is strong evidence for them both 

and they are not necessarily incompatible (Özdemir and Clark, 2007). Several researchers have 

argued that both models are needed to fully explain conceptual understanding (Hammer, 1996; 

Taber, 2008). For instance, Brown and Hammer (2008) propose a conceptual system in which 

cognitive structures arise from the interactions of smaller conceptual elements similar to p-prims. 

The tension between these views can also be construed as a question of that grain size of the 

conceptual understanding elements that are studied (diSessa, 2008). How conceptual 

understanding is structured has important implications for how conceptual understanding is 

assessed in the RACI, which is discussed below.  

5.3.2 Concept Inventories and Development of the RACI 

Assessing engineering students’ conceptual understanding before a course begins can 

provide instructors with valuable feedback. Concept inventories are assessment instruments that 

have been used in several math, science, and engineering disciplines as a way to provide reliable 

and valid assessment of students’ misconceptions. The work of Hestenes et al. (1992) on the 

Force Concept Inventory established many of the protocols for concept inventory development, 
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which have since been further established by many authors (Adams and Wieman, 2011; Steif and 

Dantzler, 2005; Streveler et al., 2011, 2003).  

One of the most critical issues in developing a concept inventory is the process used to 

establish content validity.  Several educational measurement theorists argue that test validation 

should involve iteration that begins with evidence-based approaches to determine the constructs 

worthy of assessment (Kane, 2013; Lissitz and Samuelsen, 2007). For example, the “assessment 

triangle” (Pellegrino et al., 2014, 2001) is an evidence-based framework for instrument 

development that consists of three underlying elements: cognition, observation, and 

interpretation. First, a model of student cognition and learning should be developed that 

demonstrates how students represent and develop new knowledge on a topic. Second, observable 

tasks or situations must be identified that allow a researcher to observe students’ performance 

and provide evidence of their competencies. Third, a method must be established for interpreting 

the performance evidence.   

 The assessment triangle framework is used to describe the iterative process used in the 

development of the RACI. We developed the current version through four stages of research 

(Table 5.1). The concept inventory development steps suggested by Richardson (2005) and 

analytical framework suggested by Jorion et. al (2015) also provided insight on the data 

collection and analytical methods at each stage. Past findings from stages 1-3 are summarized 

below, and new findings for research stage 4 are discussed in this paper.  
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Table 5.1 Research stages and strategies for RACI development 

Research 
Stage 

Assessment 
Triangle 
Corner(s) 

Data Collection 
Methods 

Analytical Methods Resulting Actions 

1. Exploratory 
Work  

 

Cognitive 

 Open ended survey 
instruments based on 
class activities 

 Video and audio 
recordings of student 
work 

 Rubric scoring of 
surveys 

 Pre- & post- testing 
of surveys 

 Line-by-line 
transcript analysis 

 Articulate 
concepts to 
assess in new 
instrument  

2. Instrument 
Development   

Observation 

 Construct initial 
RACI, using open-
ended questions for 
untested items 

 Content validity 
testing 

 Begin pilot 
testing 

3. Pilot study 
#1 

 

Observation 

and 
Interpretation 

 RACI administered 
to small population 

 Interviews 

 Rubric scoring of 
open ended 
question items 

 Preliminary 
validity and 
reliability testing 

 Design 
multiple-choice 
answers  

 Revise, delete, 
add items 

4. Pilot study 
#2  

 

Interpretation  RACI administered 
to larger population 

 Classical test 
theory and item 
response theory 
analyses  

 Exploratory factor 
analysis, tentative 
confirmatory factor 
model 

 Formulate 
tentative factor 
analysis model 

 Revise, delete, 
add items 

 

5.3.2.1 Stage 1: Cognitive Basis 

Our study began in an urban hydrology unit that is part of a sophomore course entitled 

“Sustainability in Civil and Environmental Systems” that is required for all civil engineering and 

environmental engineering undergraduate majors at a university in the Northeast U.S. Several 

methods were used to study student learning of engineering concepts related to water flow 

processes. We first developed original survey instruments to assess student understanding of two 

topics: first order calculus and water flow. Multiple representations of understanding were 
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assessed in the survey questions, including equations, graphs, mental models, and descriptions. 

Video and audio recordings of student activities were analyzed to identify patterns in students’ 

discourse. These findings were triangulated with the survey results to draw inferences about 

students’ conceptual understanding. Results suggested the existence of persistent misconceptions 

among the students, specifically the inability to distinguish between rate and accumulation 

processes (Flynn et al., 2014).    

A key finding was that many students often struggled to understand fundamental 

scientific concepts relating to a particular physical context, and had difficulty correctly using 

mathematical models when analyzing rate and accumulation processes. This led us to develop a 

theoretical cognitive model, in which students have a broad conceptual understanding of rate and 

accumulation problems that is shaped by mathematical understandings and scientific 

understandings (Figure 5.1).  

 

  

 

 

 

Mathematics education has long been considered to exist in a different domain of 

learning from physical sciences. This view stems from the argument that since mathematics is 

based on deductive proofs and not on experiments, it should be separated from the empirical 

pattern of scientific development and change (Kuhn, 1962). However, it can be argued that the 

Mathematical 
Understandings 

Rate and 
Accumulation 

Processes 

Scientific 
Understandings 

Figure 5.1 Path diagram showing generalized hypothetical cognitive model for 
rate and accumulation understanding 
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conceptual change theories for scientific understanding can be successfully applied to 

mathematics learning (Vosniadou, 2008), as math students have been found to develop naïve 

presuppositions that affect learning much like in the physical sciences (Dehaene, 2011; Gelman, 

2000; Lipton and Spelke, 2003).  

Many studies have investigated the relationships between mathematical and scientific 

abilities and understandings. A study by Meltzer (2002) suggested that students’ pre-instruction 

algebra skills may be associated with their ability to gain physics conceptual knowledge. 

Similarly, Wage, Buck, and Wright (2005) used correlations between student scores on the 

Signals and Systems concept inventory and grades in prerequisite mathematics courses to claim 

that the mathematical understanding of students contributes to conceptual learning of signals and 

systems concepts. Fewer studies have investigated the way in which a scientific or mathematical 

context can affect a student’s understanding. Potgieter et al. (2008) investigated whether student 

difficulties in undergraduate chemistry problems were due to deficiencies in their mathematics 

understanding or the complexity of transferring mathematical understanding to a scientific 

domain, concluding that fundamental mathematical understanding was the primary issue for 

most students. Jones (2015) examined students as they applied their mathematical knowledge to 

science and engineering problems by examining their definite integral conceptualizations in both 

a pure mathematics and an applied physics context, finding that a Riemann sum-based 

conceptualization was highly productive in applied contexts. 

There may be many complex conceptual elements that shape a student’s scientific or 

mathematical understanding of rate and accumulation problems. For instance, students should be 

proficient with their mathematical understandings of variables, functions, differentiation, and 

integration. Mathematical misconceptions of rate of change and accumulation processes have 
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been well researched (Ärlebäck et al., 2013; Carlson et al., 2003; Confrey and Smith, 1994; 

Doerr et al., 2013; Thompson, 1994a, 1994b; Thompson and Silverman, 2008; Zandieh, 2000). 

There is evidence that students have weak understandings of the concepts of variables (Martin, 

2000; White and Mitchelmore, 1996), the concepts of functions (Carlson, 1998; Confrey and 

Smith, 1994; Monk, 1992; Oehrtman et al., 2008), and covariational reasoning, or the ability to 

coordinate two varying quantities while attending to how they change in relation to each other 

(Carlson et al., 2002). Many science and engineering education studies have shown that students 

frequently confound physical factors involved in rate and accumulation problems. For instance, 

rate of change and accumulation misconceptions have been identified in studies on energy 

transfer (Miller et al., 2006; Prince et al., 2012), chemical reactions (Thomas and Schwenz, 

1998), and induced current (Thong and Gunstone, 2008).  

5.3.2.2 Stage 2-3: Observation Basis and Initial Interpretation  

Work began on the development of an assessment tool that would assess students’ 

conceptual understanding of rate and accumulation processes. Several existing concept 

inventories were considered for their suitability as assessment instruments (Gray et al., 2005; 

Martin et al., 2003; Shallcross, 2010). While some of these inventories include questions to 

assess student understanding of particular rate and accumulation processes, they tend to be 

context-specific for particular science and engineering disciplines.  Because rate and 

accumulation processes represent a fundamental conceptual framework that spans many 

engineering disciplines, the RACI is not intended to be a discipline specific concept inventory.   

The preliminary concepts included in the first beta-version of the RACI were identified 

using the cognitive basis study results and a literature review of rate and accumulation 

conceptual understanding in other engineering disciplines. Three categories of concepts were 
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included: (1) mathematical understandings of first order calculus, (2) physical factors involved in 

mass flow, and (3) physical factors involved in heat flow. Ten sets of questions were included 

with thirty individual question items in total. The questions were designed to be representative of 

knowledge that students would be expected to know after a first-year coursework in calculus and 

physics. Two question sets were modified problems from an introductory calculus textbook (W. 

Briggs and L. Cochran, 2010). These questions were included to assess students’ ability to 

interpret rate and accumulation processes using graphical representation of rate of change 

functions. A third calculus question set was adapted from research that investigates students’ 

covariational reasoning abilities (Carlson et al., 2002). The mass flow category included original 

inventory items developed from the exploratory study over a number of iterations with several 

engineering instructors and graduate students. These question items were designed to assess 

student understanding of physical principles that define water flow processes. While student 

understanding of heat flow principles was not directly tested in Stage 1 of our research, several 

studies have shown that students frequently confound factors that affect energy transfer rates 

with those that affect the total amount of energy transfer (Miller et al., 2006; Prince et al., 2012). 

The heat flow question items for the RACI were taken directly from a rate and accumulation 

processes subsection of the Heat and Energy Concept Inventory, developed by Prince et al. 

(2012) with the primary author’s permission. Two of these question items were designed to 

assess mass flow principles, and were categorized as such in the study analysis.    

Questions item formats were open-ended unless the question had been previously 

developed and assessed for its validity and reliability. The open-ended questions allowed for the 

collection of a range of student reasoning responses for each question. Incorrect responses were 

categorized by multiple graders according to the type of misconception suggested in the 
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students’ work. These categories were then combined into a single rubric for the grading of each 

question. Confidence ratings were also included to assess potentially confusing or overly 

difficult problems. Initial pilot testing of the RACI using a pre- and post-course testing scheme 

indicated persistent misconceptions across multiple contexts. Internal consistency reliability was 

assessed on an earlier version of the RACI using the Kuder-Richardson Formula 20. This yielded 

a value of 0.77 for the instrument and ranges of 0.64 to 0.76 for the three contextual categories 

(Flynn et al., 2015), suggesting satisfactory consistency. Structural analysis was not completed 

during this stage of research, as the study populations were low (N=75).  

5.4 Study Goal 

Misconceptions of scientific and mathematical principles related to rate and accumulation 

processes is widespread across many disciplines, and thus a concept inventory on rate and 

accumulation processes across several contexts is warranted. Such an inventory can help 

instructors design pedagogical interventions that will enhance student learning on these 

principles. The objective of this research is to provide instructors a tool to measure the degree to 

which a student’s misconceptions of rate and accumulation processes is related to mathematical 

understandings of rate of change problems and physical understandings of particular processes, 

such as water flow and heat flow processes. Specifically, the primary goals of the RACI are to 

assess (1) overall mastery of rate and accumulation concepts, and (2) mastery of these concepts 

within particular contexts. This paper describes reliability and validity testing of the RACI that 

was conducted to assess the degree of support for these goals. Results from a recent pilot test are 

used to assess the validity and reliability of question items and concept categories. The analysis 

methodologies suggested by the Evidentiary Validity Framework (Jorion et al., 2015b) are used 

to assess the validity of each of the primary goals of the RACI. Methods to assess claim 1 
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include classical test theory methods (Cronbach’s alpha, standard error of measurement, alpha-if-

item-deleted, item discrimination, and item difficulty) and item-response theory tests. Methods to 

asses claim 2 include subscale alphas and factor analyses. Table A5.1 in Appendix A5 includes 

criteria used for the qualitative judgments that were assigned for rating each test.  

5.5 Results 

5.5.1 Stage 4: Interpretation Basis 

Phase 4 of the RACI development aims to continue the improvement of the RACI’s 

validity, reliability, and fairness. The results of Phase 3 led to the development of a second pilot 

version of the RACI (referred to as “RACI 2.0”), which began with the refinement or removal of 

several question items. The rubric for scoring in the initial development phase was used to 

develop multiple choice answers, including “distractor” choices, for each question item. RACI 

2.0 includes additional question items from the Precalculus Concept Assessment instrument that 

are identified as “rate and accumulation” questions (Carlson et al., 2010), with the author’s 

permission. In total, RACI 2.0 includes 25 question items. Five sets of questions are two-tiered, 

in that two related question items are presented as a factual question followed by a conceptual 

question. For this analysis, two-tiered sets of question items are coded as correct when both 

question items are correctly answered. Five sets of two-tiered question items followed this 

coding scheme; thus, the total possible score for RACI 2.0 is 20. Confidence ratings were 

removed from the RACI 2.0 pilot test to reduce test taking time requirements. Test questions for 

RACI 2.0 are include in Appendix A5.  

A taxonomy of the RACI was developed (Table 5.2) to synthesize the understandings and 

abilities that are included in the RACI question items. The subscales used in the Precalculus 

Concept Assessment taxonomy (Carlson et al., 2010) provided a basis for some of the RACI 
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taxonomy. While most mathematical questions on the RACI are presented within a physical 

context, such as a person walking in a line or water filling a particular shape, the questions are 

not designed to test scientific principles related to the particular context. Four question items (1a, 

1b, 5 and 9) feature water flow as a representative rate of change process but are identified in the 

mathematical concept category, as they require no knowledge of the physical properties related 

to water flow. Several question items require multiple types of reasoning abilities and functional 

representations. As categories for items are not mutually exclusive, they are not analyzed as 

unique subscales within the RACI.  

Table 5.2 Taxonomy of RACI subscales and corresponding question items 

 Subscale Questions 
Total question 

score 

Reasoning 
Abilities 

Process view of function 
items 

1a, 1b, 2a, 2b, 2c, 3, 4, 6, 9 9 

Covariation reasoning 
1a, 2a, 2b, 2c, 3, 5, 7, 8, 10, 12, 

13.1, 13.2, 14, 15a, 15b 
12 

Computational abilities 1a, 1b, 2a, 2b, 2c, 4, 9 7 

Functional 
Representations 

Graphical 1a, 1b, 2a, 2b, 2c, 3, 5, 7, 9 9 

Equation 4, 6, 9 3 

Descriptive 
8, 10, 11, 12, 13.1, 13.2, 14, 

15a, 15b 
9 

Concept 
Category 

Mathematics 1a, 1b, 2a, 2b, 2c, 3, 4, 5, 6, 7, 9 11 

Mass flow 8, 10, 11, 12, 15a, 15b 6 

Heat flow 13.1, 13.2, 14 3 
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The Stage 4 pilot test population includes students from a variety of disciplines enrolled in 

either a sophomore or junior level class engineering course (Table 5.3). Tests were administered 

in eight courses across three private universities in the Northeast U.S. in 2015 or 2016 using a 

pre-course and post-course testing scheme. Pre-course tests were given in the first two weeks of 

a course, and post-tests were given in the final two weeks of a course. Pre-course and post-course 

tests were collected for all but two courses, in which only post-tests were collected. The post-test 

population is used for the reliability and validity testing due to the larger number of respondents 

(N=305).  

Table 5.3 Stage 4 study population demographics 

  Post-test Responses (N=305) 

Major 

Civil 124 (40.7%) 

Chemical 35 (11.5%) 

Environmental 61 (20.0%) 

Mechanical/Aerospace 63 (20.7%) 

Other 22 (7.2%) 

Academic 

Level 

Sophomore 192 (63.0%) 

Junior 63 (20.7%) 

Senior 43 (14.1%) 

Other 7 (2.3%) 

Gender 

Female 52 (17.0%) 

Male 252 (82.6%) 

Nonbinary 1 (0.33%) 

GPA Cumulative GPA 2.70 
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Table 5.4 Summary statistics 

 Total Possible Score Mean Standard Deviation 

Mathematics 11 6.55 (59.6%) 2.39 

Mass flow 6 2.55 (42.5%) 1.30 

Heat flow 3 0.73 (24.5%) 0.92 

Overall 20 9.84 (49.2%) 3.48 

 

 

5.5.2 Classical Test Theory 

Table 5.4 summarizes the results for the overall test and the three concept categories. The 

mean observed score was 9.84 out of 20 points, or 49.2%. The overall Cronbach’s alpha value is 

0.70, indicating an average level of reliability as an overall assessment tool. Table 5.5 

summarizes the question item difficulty, discrimination, and Cronbach’s alpha value for the 

RACI if the item is deleted. Four question items had alpha-if-deleted values equal to or greater 

than the overall test alpha (Q1b, Q11, Q13.2, and Q15b).  
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Table 5.5 Summary of classical test theory values for question items. Bolded numbers 
indicate a value that does not meet recommended threshold criteria 

Item 
Item 

Difficulty 
Item 

Discrimination 
Alpha-if-deleted 

Q1a 0.65 0.46 0.69 
Q1b 0.89 0.18 0.71 
Q2a 0.75 0.40 0.69 
Q2b 0.50 0.48 0.68 
Q2c 0.70 0.36 0.69 
Q3 0.45 0.58 0.67 
Q4 0.53 0.35 0.69 
Q5 0.48 0.39 0.69 
Q6 0.48 0.42 0.69 
Q7 0.80 0.47 0.68 
Q8 0.28 0.41 0.69 
Q9 0.33 0.34 0.69 

Q10 0.90 0.30 0.69 
Q11 0.22 0.20 0.71 
Q12 0.47 0.39 0.69 

Q13.1 0.29 0.41 0.69 
Q13.2 0.09 0.27 0.70 
Q14 0.35 0.60 0.67 
Q15a 0.40 0.39 0.69 
Q15b 0.29 0.27 0.70 

 

Figure 5.2 compares the difficulty and discrimination values for each item. Question item 

Q13.2 fell below the recommended difficulty level but not for discrimination. Other item 

difficulties ranged from 0.22 to 0.89. One item fell slightly below recommended values for 

discrimination (Q1b), while other discrimination values ranged from 0.210 to 0.654. 
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Figure 5.2 : Scatterplot of item difficulty and discrimination values for RACI 2.0. Each dot 
represents an individual question item or grouped two-tier question. Recommended 
minimum and maximum values are denoted by the dotted lines. One item did not meet the 
recommended values for difficulty (Q13.2) and one fell below the recommended value for 
discrimination (Q1b).  

 

5.5.3 Item Response Theory 

Item response theory analyses were performed using one-parameter, two-parameter, and 

three-parameter logistic models. The models were compared with the Akaike information 

criterion fit statistic, with the two-parameter model resulting in the best fit. Figure 5.3 shows the 

two-parameter item response functions as indicated by the cumulative probability of answering 

an item correctly across the students’ proficiency (theta) scale, i.e., the latent trait continuum. In 
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general, the curves begin with low values of student ability and rise with increasing probabilities 

of answering the item correctly along with increasing student ability. The theta location at the 

inflection point of the curve indicates the item’s degree of difficulty. The two-parameter model 

includes both estimated difficulty and discrimination parameters, allowing curves to have 

different slopes. Steeper slopes indicate higher levels of discrimination across student abilities.  

The majority of question items demonstrated close model-data fit, with the exception of items 

Q1b, Q11, and Q13.2, and Q15b. Item Q10 also has a weaker fit for the post-course populations, 

as it was found to have a lower level of difficulty than other questions.  

 

Figure 5.3 Two-parameter item response function for all post-test RACI 2.0 question items. 
Two items (Q1b and Q11) deviate from the standard model shape, while other items 
generally fit the two-parameter model well. Question items Q13.2 and Q15b were among 
the more difficult question items, but generally conform to the shape of the model. 
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Figure 5.4 Two-parameter item information function for all post-test RACI 2.0 question 
items. 

 

The item information function for the RACI is shown in Figure 5.4. As scores for each 

item are binary, the amount of information each question item provides is proportional to the 

discrimination parameter. Items Q3, Q7, and Q14 provide the most information for this study 

population. The results reiterate the overall weak discrimination power of item Q10, other than 

for students who performed poorly (i.e. those with a lower theta). Similarly, item Q13.2 only 

provided useful discrimination information for higher performing students. As the majority of 

this pilot test population includes sophomore engineering students who may not have been 
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exposed to heat flow concepts, item 13.2 may be too difficult for certain populations and 

teaching contexts. 

The item information functions are summed to obtain a test information function (Figure 

5.5). This plot shows how well the instrument can estimate person locations. The test 

information curve peaks at an approximate theta value of zero, suggesting that the RACI 

provides the most information for average students. As the curve moves away from that point in 

either direction, the standard error of the test information function increases, and the instrument 

provides less and less information about student understanding.  

 

 

Figure 5.5 Test information function for RACI 2.0 
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On the basis of the item testing analysis, two items were removed for the structural 

analyses: Q1b and Q11. Both items had higher alpha-with-item-deleted values and did not fit 

well in one or both pre-course and post-course information response models. The results suggest 

that the current form Q1b may be too easy compared to other RACI items, while Q11 may be 

misleading and thus would require revision in subsequent versions of the RACI. Item 13.2 and 

item 15 did not have excellent results in the item testing analysis but were retained for the 

structural analysis to test if they fit well with the theoretical constructs of the RACI.  

5.5.4 Structural Analysis 

5.5.4.1 Tetrachoric Correlation 

Covariation among item responses is used as an initial analysis of the possible underlying 

structure within the RACI. Tetrachoric correlations constitute an adjusted version of Pearson 

correlations that are appropriate for pairs of items discretely scored right/wrong (Bonett and 

Price, 2005). The RACI item-pair tetrachoric correlations are shown graphically by a heat map 

for the study population (Figure 5.6). The heat map matrix is symmetric, and items are ordered 

according to the three contextual RACI concept categories.  The pattern of tetrachoric 

correlations shown in Figure 5.6 indicates the strongest correlations in the Heat Flow subscale. 

Correlations are moderately strong among question items in the Mathematics subscale, 

particularly among Q1a-Q3. Question items Q8-Q12 in the Mass Flow subscale also showed 

moderate correlations, while Q15a and Q15b were among the weaker correlations within the 

Mass Flow subscale and across all other question items. Two other outlying items are Q9, which 

has weak correlations with all other items, and Q14, which is moderately correlated with many 

items in other subscales.  
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Figure 5.6 Tetrachoric correlation heat map for the RACI 2.0. Darker shaded squares 
indicating strong correlations between correctly answered items. Question items are 
grouped according to their conceptual subscale category (MATH = Mathematics, MF= 
Mass Flow, and HF=Heat Flow) with borders added to interpret these theoretical 
groupings.  

 

5.5.4.2 Subscale Alphas 

Subscale reliabilities (Cronbach’s alphas) were estimated for each of the three context 

subscales using the post-course population (Table 5.6). Individual subscale alpha values ranged 

from 0.42 to 0.65. Because Cronbach’s alpha is influenced by test length, lower values of 

subscale alphas may result in part from small numbers of items per subscale. 
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Table 5.6 Cronbach’s alpha for RACI subscales 

Concept Context Subscale Alpha 
Number of 

Question Items 

Mathematics 0.65 10 

Mass Flow 0.42 5 

Heat Flow 0.57 3 

 

5.5.4.3 Exploratory Factor Analysis 

An exploratory factor analysis (EFA) was performed to assess the dimensionality and 

structure of the RACI. The primary goals of an EFA are to determine the number of factors 

underlying the variation in and correlations among the items and to identify items that load onto 

particular factors (Thompson, 2004). Items that do not load onto any of the extracted factors, or 

that cross-load onto multiple extracted factors, may be considered for removal from the RACI.   

Results for the EFA using the post-course populations are presented in Table 5.7. A 

parallel analysis (Horn, 1965) indicated that a three-factor structure was optimal, which accounts 

for 80% of the total variance. An oblique rotation was performed under the assumption that the 

factors are correlated. Very poor factor loadings (less than 0.32) were suppressed to allow for 

ease of interpretation (Comrey and Lee, 1992; Tabachnick and Fidell, 2013). The overall Kaiser-

Meyer-Olkin measure suggested that the sample size is sufficient for the structural analysis 

(Kaiser, 1974). Inter-factor correlations are shown in Table 5.8.  
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Table 5.7 Exploratory factor analysis for RACI 2.0 

 

Question Item 

Subscale Factor Loadings  

Mathematics Heat Flow Mass Flow  

Q1a 0.68    

Q2a 0.77    

Q2b 0.57    

Q2c 0.55    

Q3 0.57    

Q4     

Q5     

Q6 0.51    

Q7 0.64    

Q9   0.34  

Q13.1  0.85   

Q13.2  0.68   

Q14  0.64   

Q15a  0.45   

Q15b  0.32   

Q8   0.56  

Q10   0.64  

Q12   0.70  
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Table 5.8 Inter-factor correlation matrix 

Factor Factor Name 1 2 3 

1 Mathematics 1 
 

           

2 Heat Flow 0.379 1            

3 Mass Flow 0.359 0.313 1 

Most question items loaded onto the predefined conceptual subscales, and thus the 

conceptual subscale names are presented for the three factors in Table 5.7. However, there are 

several exceptions. Two question items (Q4 and Q5) did not have strong loadings on any of the 

factors. Three items loaded on unexpected factors (Q9 on Mass Flow, Q15a and Q15b on Heat 

Flow), though these loadings are the lowest of the retained factor loadings and thus account for 

little of the overlapping variance.  

We believe there are several interpretations for these unexpected loadings. Messick 

(1995) notes two threats to instrument validity are (1) construct underrepresentation, in which an 

instrument does not actually represent what it is designed to measure; and (2) construct irrelevant 

variance, in which something other than the actual measured trait is influencing results (Douglas 

and Purzer, 2015). It is likely that items Q4, Q5 and Q9 have poor results in the factor analysis 

due to construct irrelevant variance, as students must use overlapping reasoning abilities and 

understandings to answer these items (see Table 5.2 for classifications). Without these items, the 

only item in the Mathematics category that does not involve covariational reasoning is Q6; thus, 

this category may be dominated by this particular mathematical understanding. Furthermore, 

because all question items in the Mass Flow and Heat Flow categories also assess covariational 

understanding, it is possible that this is the predominant concept of rate and accumulation 

understanding that is assessed in the RACI.   
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There are several interpretations for the unexpected loadings for Q15a and Q15b. First, 

there may be a level of contract irrelevant variance due to the style of question wording effecting 

student responses. Because these items are derived from the same concept inventory as all other 

items in the Heat Flow subscale, there may be subtle differences in question wording that prompt 

students differently than other items. There may also be several interpretations for construct 

underrepresentation. One possibility is students interpret the context for these items (a solution of 

dye being absorbed by sponges) as more similar to that of heat flow, and thus use similar 

understandings to think about the problem. Alternatively, a closer examination of the physical 

factors involved in the processes for both the Mass Flow and Heat Flow categories reveal 

interesting patterns. The problem context for question items Q8 and Q12 focus on two physical 

factors related to water flow, namely water column height and drain size, while the contexts for 

the processes presented in question items Q13.1, Q13.2, Q14, Q15a, and Q15b focus on how the 

physical factors of surface area, amount, and gradient influence heat and mass transfer. Thus, the 

exploratory factor results may point to issues of construct underrepresentation due to categories 

labeled for physical context rather than the physical understandings that students are using when 

answering these items. Recategorizing items Q15a and Q15b as Heat Flow problems slightly 

lowers the Heat Flow subscale Cronbach’s alpha to a value of 0.56, but increases the Mass Flow 

subscale alpha significantly to a value of 0.65.   

5.5.4.4 Tentative Confirmatory Factor Analysis 

A confirmatory factor analysis was performed to explore the extent to which the item 

covariances conformed to the hypothesized cognitive model for rate and accumulation 

understanding. Two models were considered in this analysis. Model 1 (Figure 5.7) represents an 

independence model, in which the subgroups of concepts and their associated items are 
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completely separable. Model 2 (Figure 5.8) represents a higher-order factor model that reflects 

our hypothesis that students have a broad conceptual understanding of rate and accumulation 

processes that shapes performance on all concepts and items. Factor analyses were conducted for 

two additional models in order to investigate findings from the exploratory factor analysis. In 

Model 3, question items Q15a and Q15b are recategorized to the Heat Flow factor, as both items 

loaded on this factor in the exploratory analysis. Finally, Model 4 uses the categorizations in 

Model 3, but eliminates question items that did not load on any factor (Q4, Q5, and Q9). Results 

for the confirmatory factor analysis are presented in Table 5.9. Factor loadings using 

standardized regression weights are shown on the paths in Figures 5.7 and 5.8 for Models 1 and 

2, respectfully. 

For Model 1, most items have moderate loading scores (> 0.3) with the exception of 

items Q15b and Q13.2. All loadings are significant at the p=0.01 level with the exception of 

items Q9 and Q10, which are significant at the p=0.05 level, and Q15b, which was not found to 

be significant in this model. Model 1 did not display strong fit to the data, with most indexes 

falling below recommended cutoff values.   

In Model 2, most items have moderate factor loading scores (> 0.3) with the exception 

of items Q4 and Q9 on MATH, and Q15b on MF. All loadings were significant at the p=0.01 

level with the exception of item Q15b, which was significant at the p=0.05 level. Relations 

between three conceptual subscales (MATH, MF, and HF) are explained by their shared variance 

with the higher order factor (RA). All three subscales had very good loadings on the higher-order 

factor, indicating that a proportion of the variance in each conceptual grouping of factors can be 

explained by a common factor. Overall, Model 2 displayed a good fit to the data, with most 
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indexes either approaching or exceeding the recommended cutoff values (e.g., Comparative fit 

index (CFI) > .90; Root mean squared error of approximation (RMSEA) < .03).  

 

Figure 5.7 Path diagram for the Model 1 with factor loadings (standardized regression 
weights) 
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Figure 5.8 Path diagram for the Model 2 with factor loadings (standardized regression 
weights) 

 

 

 

 

 

 



 

163 
 

Table 5.9 Fit index for confirmatory factor analysis models 

  Model 

Fit statistic 
Recommended 

Value 
1 2 3 4 

Likelihood ratio 
     

Degrees of freedom n/a 135 132 132 101 

Chi-square (model vs 

baseline) 

Low relative to 

df 
247.2** 171.7* 165.1* 124.8 

 
     

Population error      

Root mean squared error of 

approximation (RMSEA) 
<0.03 0.052 0.031 0.029 0.028 

Probability RMSEA <= 0.05 High 0.351 0.995 0.998 0.995 

Standardized root mean 

squared residual (SRMR) 
Small 0.090 0.051 0.049 0.047 

 
     

Information criteria      

Akaike's information criterion 

(AIC) 
Lower values 6458 6388 6382 5551 

 
     

Baseline comparison      

Comparative fit index (CFI) > 0.9 0.769 0.918 0.932 0.947 

Tucker-Lewis index (TLI) > 0.9 0.738 0.905 0.921 0.937 

Note: *=significant at p=0.05, **=significant at p=0.01 
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Models 3 and 4 also display overall good fit to the data, with most indexes showing 

marginally better values than Model 2. The differences between Models 2 and 3 align with the 

exploratory factor results that pointed to possible issues of construct underrepresentation in the 

Mass Flow and Heat Flow categories. However, because the fit statistics for Models 3 and 4 

show only marginal improvements, additional studies will need to be conducted to define the 

conceptual understanding that are currently categorized as Mass Flow and Heat Flow, and to 

determine if additional question items should be removed from the Mathematics category.   

5.6 Limitations and Future Work  

Douglas and Purzar (2015) discuss the ongoing developmental nature of assessment tools 

such as concept inventories, suggesting that establishing a tool’s validity is never quite over. 

While many of the results presented in this paper point to an average level of validity for this 

version of the RACI, there are several research steps that may improve its diagnostic abilities. 

Because some results pointed to possible construct underrepresentation in the physical science 

context categories, additional research should focus on the cognitive and observation corners of 

the RACI. This can be achieved through additional observations of student learning coupled with 

interviews to examine how students solve particular problems. Another approach to increasing 

the overall validity for the RACI would be to conduct a Delphi study, which is a structured 

process for collecting and distilling knowledge from a group of experts that has been used in the 

development of several concept inventories (Goldman et al., 2008; Linstone et al., 1975; 

Streveler et al., 2003).  

A common goal for some concept inventories is the diagnosis a student’s propensity for 

misconceptions or common errors using patterns of distractor response patterns (Jorion et al., 

2015). Diagnostic classification modeling or a combination of item response theory and 
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diagnostic classification models can be used to assess student misconceptions (Bradshaw and 

Templin, 2014; Jorion et al., 2015). While this stage of the RACI development did not include 

the aim of diagnosing misconceptions, future work should include the development of a Q-

matrix (a binary representation of cognitive attributes associated with each answer choice) for 

existing question items, and plans to develop addition items that will assist in the diagnosis of 

particular misconceptions.  

The conclusions drawn from administrations of the RACI also have certain limitations 

that should be acknowledged. While statistical measures supported the sample size of this study 

for the tests conducted in this paper, the samples of students in the RACI pilot tests have thus far 

been generally small. Also, convenience samples were used rather than random samples. While 

efforts were made to collect results from students enrolled in different courses at different 

universities, some of these findings may be unique to particular populations of students. Because 

the pre-course sample of this pilot test population was much smaller than the post-course sample, 

the pre-course analysis was excluded from this paper. As much of the usefulness of concept 

inventories lies in formative pre-course assessments, future stages of this study should seek to 

include larger, random samples of pre-course and post-course populations across various 

institutions and disciplines. As new versions of the RACI are developed that further establish its 

reliability and validity, pre-course and post-course findings may aid in the development of 

instructional techniques designed to address particular student misconceptions.  

5.7 Conclusions 

We developed the RACI over several iterative developmental stages in order to assess 

students’ conceptual understanding of rate and accumulation processes. Psychometric tests were 

performed to assess the reliability and validity of the RACI. The Cronbach’s alpha provided 



 

166 
 

evidence of an average level of reliability for the overall test and mathematics category, and poor 

reliability for the mass flow and heat flow categories. Item testing analysis suggested the 

removal of two question items from the instrument. Structural equation modeling provided 

evidence that most of the remaining items mapped to the three contextual categories defined in 

our cognitive model, and that a higher order factor of rate and accumulation understanding 

explains the shared variance of the context categories. Issues of potential construct 

underrepresentation were uncovered in two of the context categories. Additional research stages 

for RACI development should focus on modeling student cognition and learning, and developing 

additional question items that align with the cognitive model.  
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Appendix A5 

Table A5.1 Categorical judgment scheme for concept inventory evaluation (adapted from 
Jorion et. al, 2015) 

Analysis Excellent Good Average Poor Unacceptable 

Classical test theory      

  Item Statistics      

    Difficulty 0.2 to 0.8 
0.2 to 0.8 

(3) 
0.1 to 0.9 

0.1 to 0.9 
(3) 

0.0 to 1.0 

    Discrimination > 0.2 > 0.1 > 0.0 > -0.2 > -1.0 

  Total score reliability      

    Cronbach’s alpha of total    
    score 

> 0.9 > 0.8 > 0.65 > 0.5 > 0.0 

    Cronbach’s alpha-with-item- 
    deleted 

All items less 
than overall α 

(3) (6) (9) > (9) 

      

Item response theory       

  Individual item measures      

    All items fit the model (2) (4) (6) (8) (10) 

      

Structural analyses      

  Exploratory factor analysis 
Conforms to 
pre-directed 
constructs 

(5) (10) (15) > (15) 

      

Confirmatory factor analysis      

  Item loading > 0.3 > 0.3 (3) > 0.1 > 0.1 (3) > -1.0 

  Comparative fit index > 0.9 > 0.8 > 0.7 > -0.6 > 0.0 

  Root-mean-square error  
  approximation 

< 0.03 < 0.05 < 0.10 < 0.20 > 0.20 

Note: Cell values in parenthesis indicate the number of items that can fall outside of this recommendation  
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RACI 2.0 Question Items 

 
1. A reservoir is filled with a single inflow pipe. The reservoir is empty when the inflow 

pipe is opened at t = 0. The flow rate of water into the reservoir (in m3/hr) with respect 
to time, t, is shown below.  
 

 

a. How much water flows into the reservoir in the first 2 hours? 

 

a. 1 m3  
b. 2 m3 
c. 4 m3 
d. 9 m3 
e. 10 m3 
f. 16 m3 

 

b. What is the flow rate of water into the reservoir at hour 4? 

 

a. 1 m3/hr 
b. 2 m3/hr 
c. 4 m3/hr 
d. 9 m3/hr 
e. 10 m3/hr 
f. 16 m3/hr 
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2. The figures below show velocity functions with respect to time, t, for two people walking 
along two straight paths.  

 

Person A:       Person B: 

  

 

a. Which person is further from their starting position at t = 4?  
 

a. Person A  
b. Person B 
c. Both are the same distance from their respective starting point 

 
b. Which person travels a greater total distance over the time interval t = 0 to t = 4?  

 
a. Person A  
b. Person B 
c. Both travel the same total distance 

 
c. Which person has a greater acceleration at t = 4?  

 
a. Person A  
b. Person B 
c. Both have the same acceleration at this time 
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3. The given graph represents speed vs. time for two cars. (Assume the cars start from the 
same position and are traveling in the same direction.) Use this information and the 
graph below to answer item a.  

 

 

                                                                         time                 1 hour 

 

 

a. What is the relationship between the position of car A and car B at t = 1 hr.? 
 

a. Car A and car B are colliding. 
b. Car A is ahead of car B. 
c. Car B is ahead of car A. 
d. Car B is passing car A. 
e. The cars are at the same position. 

 

 

 

 

4. The distance, s (in feet), traveled by a car moving in a straight line is given by the 
function, s(t) = t2 + t, where t is measured in seconds. Find the average velocity for the 
time period from t = 1 to t = 4.  

 

a. 5 ft/sec 
b. 6 ft/sec 
c. 9 ft/sec 
d. 10 ft/sec 
e. 11 ft/sec 
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5. The following graph represents the height of water as a function of volume as water is 
poured into a container. Which container is represented by this graph?  

 

 

 

 

 

 

 

 

   

 

     

 

 

 

        __a__       __b__            __c__                     __d__                   __e__ 
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6. A baseball card increases in value according to the function, ࢈(࢚) =
૞

૛
 ࢚ + ૚૙૙, where b 

gives the value of the card in dollars and t is the time (in years) since the card was 

purchased. Which of the following describe what 
૞

૛
 conveys about the situation?  

 
I. The card’s value increases by $5 every two years.  

II. Every year the card’s value is 2.5 times greater than the previous year.  

III. The card’s value increases by 
ହ

ଶ
 dollars every year.  

 

a. I only 
b. II only 
c. III only 
d. I and III only 
e. I, II and III 
 
 
 
 
 
 
 
 
 

7. Using the graph below, explain the behavior of function f on the interval from  
x = 5 to x = 12.  

 
 

 
 
 
a. Increasing at an increasing rate. 
b. Increasing at a decreasing rate. 
c. Increasing at a constant rate.  
d. Decreasing at a decreasing rate. 
e. Decreasing at an increasing rate.  
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8. Two bathtubs are partially filled with water and have identical outlet drains which are 
plugged. The width and height of the bathtubs are equal, but the length of Bathtub 1 is 
twice that of Bathtub 2. The water level in both bathtubs is equal and no water is 
entering either bathtub.  

 

a. If the outlet drains of each bathtub are unplugged at the same time, how will the 
water flow rates of the outlet drains compare?  
 
a. Outlet water flow rate in Bathtub 1 is greater than that of Bathtub 2 
b. Outlet water flow rate in Bathtub 1 is less than that of Bathtub 2 
c. Outlet water flow rate in Bathtubs are equal 

 
 

b. Because… 
 

I. Flow rates will depend on the surface area of water in the tubs 
II. Flow rates will depend on the height of water in the tubs 

III. Flow rates will depend on the size of the drains 
 

a. I only 
b. II only 
c. III only 
d. I and II only 
e. I and III only 
f. II and II only 
g. I, II and III  
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9. A hose is used to fill an empty wading pool. The graph shows volume (in gallons) in the 
pool as a function of time (in minutes). Which of the following defines a formula for 
computing time, t, as a function of the volume, v? 

 

 

 

 

a. (ݐ)ݒ =
௧

ଶ
 

b. (ݒ)ݐ =  ݒ2
c. (ݒ)ݐ =

௩

ଶ
 

d. (ݐ)ݒ =  ݐ2
e. None of the above 
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10. Two identical sinks are connected with a single pipe as shown. Both sinks are partially 
filled with water. The sinks are fixed at the same height.  
 

 

          Sink 1      Sink 2 

 

 

 

a. Additional water is added to Sink 1 by pouring water from a pitcher. As the water is 
being added to Sink 1, the water level in Sink 2 will be: 
 

a. Rising 
b. Falling 
c. Remaining the same 
d. Unknown (not enough information to select one of these three answers) 

 

 

 

11. A gardener has two identical planter boxes that are filled with different mixtures of 
potting soil. The first box contains soil with 50% porosity (or void space) and the 
second box contains soil with 40% porosity. Both planters are completely dry, so the 
gardener uses two hoses with equal constant water flow rates to water both planters 
simultaneously.  
 
a. Which of the planters will collect water at a faster rate?  

 
a. Planter 1 will collect water at a faster rate.  
b. Planter 2 will collect water at a faster rate.  
c. Both systems will collect water at the same rate.  
d. Unknown (not enough information to select one of these three answers) 
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12. Two identical graduated cylinders with identical spigots at the bottom are partially 
filled with water. The water level in Graduated Cylinder 1 (GC1) is twice that of 
Graduated Cylinder 2 (GC2).  
 
a. If the spigots of each graduated cylinder are opened fully at the same time, how will 

the water flow rates of the spigots compare?  
 
a. Spigot water flow of GC1 will be greater than that of GC 2 
b. Spigot water flow of GC1 will be less than that of GC 2 
c. Spigot water flows are equal 

 
 
b. Because… 

 

a. Additional water will result in slower flow rate out of the spigot 
b. The water flow rates are proportional only to the size of the cylinders and spigots 
c. A higher water level will create more pressure on the water which will increase 

the water flow rate  
d. Equal gravitational forces acting on the water in each cylinder will create equal 

water flow rates 
 
 
 
 
 

13. You would like to melt ice which is at 0°C using hot blocks of metal as an energy source. 
One option is to use one metal block at a temperature of 200°C and a second option is to 
use two metal blocks each at a temperature of 100°C. Each individual metal block is 
made from the same material and has the same mass and surface area. Assume that the 
heat capacity is not a function of temperature.  

 
a. If the blocks are placed in identical insulated containers filled with ice water, which 

option will ultimately melt more ice?  
  

a. Either option will melt the same amount of ice.  
b. The two 100°C blocks 
c. The one 200°C block.  
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b. Because…  
 

a. 2 blocks have twice as much surface area as 1 block so the energy transfer rate 
will be higher when more blocks are used.  

b. Using a higher temperature block will melt the ice faster because the larger 
temperature difference will increase the rate of energy transfer.  

c. The amount of energy transferred is proportional to the mass of blocks and the 
change in block temperature during the process.  

d. The temperature of the hotter block will decrease faster as energy is transferred to 
the ice water.  

 

 
c. Which option will melt ice more quickly?  
 

a. Either option will melt ice at the same rate.  
b. The two 100°C blocks.  
c. The one 200°C block.  
 

 

d. Because…  
 

a. 2 blocks have twice as much surface area as 1 block so the energy transfer rate 
will be higher when more blocks are used.  

b. The higher temperature block creates a larger temperature gradient which will 
increase the rate of energy transfer.  

c. The temperature of the hotter block will decrease faster as energy is transferred to 
the ice water.  

d. The rate of heat transfer is proportional to the surface area of blocks and the 
temperature difference between the blocks and ice.  
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14. You have a glass of tea in a well-insulated cup that you would like to cool off before 
drinking. You also have 2 ice cubes to use in the cooling process and an equivalent mass 
of crushed ice.  
 
a. Assuming no energy is lost from the tea into the room, which form of ice (cubes or 

crushed ice) added to your tea will give a lower final drink temperature?  
 
a. The crushed ice.  
b. The ice cubes.  
c. Either will lower the drink temperature the same amount.  

 
 

b. Because…  
 
a. Energy transfer is proportional to the mass of ice used.  
b. Crushed ice will melt faster and will transfer energy from the tea faster.  
c. Ice cubes contain less energy per mass that crushed ice so tea will cool more.  
d. Ice cubes have a higher heat capacity than crushed ice.  
e. Crushed ice has more surface area so energy transfer rate will be higher.  
 

 
 

15. An engineering student has two beakers containing mixtures of dye in water. The first 
beaker has a 1% dye solution (1 gram of dye in 100 grams of water) and the second 
beaker has an equal volume of a 2% dye solution (2 grams of dye in 100 grams of 
water). The student places 2 identical sponges in the 1% dye solution and 1 sponge in 
the 2% dye solution.  
 
a. Which of these combinations will absorb more dye?  

 
a. The two sponges in the 1% solution will absorb more dye.  
b. The one sponge in the 2% solution will absorb more dye.  
c. Both systems will absorb the same amount of dye.  

 

b. Which of these combinations will initially absorb dye at a faster rate?  
 

a. Two sponges in the 1% solution will absorb dye at a faster rate.  
b. One sponge in the 2% solution will absorb dye at a faster rate.  
c. Both systems will absorb dye from solution at the same rate. 
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Chapter 6 Development of a case-based teaching module to improve 
student understanding of stakeholder engagement processes within 
engineering systems design4 
 

6.1 Abstract 

This paper introduces a case-based teaching module designed to increase student understanding 

of the importance of stakeholder engagement processes in the design of sustainable civil 

infrastructure engineering systems. A case study on past technology adoption and environmental 

injustices related to stormwater management plans in Onondaga County, NY, provides the basis 

for an active learning module on integrating stakeholder engagement in engineering design 

processes. The module begins with a review of relevant historical events, including community 

unrest when the needs of certain stakeholder groups were ignored. A simulation activity begins 

with students divided into groups, each representing an assigned stakeholder community. The 

students predict what engineering designs will most directly affect their stakeholder group and 

how various design solutions may impact other groups. Assessment tools are used to gauge the 

students’ learning outcomes and perceptions of stakeholder engagement and engineering design 

after the module. Results from three implementations of the module demonstrate that the 

activities effectively increased student understanding of the complexities related to the 

engineering design processes, particularly stakeholder engagement activities. The module has 

also been shown to improve student motivation and interest in course material. These results 

provide insights for instructors seeking effective ways to bring stakeholder concerns into the 

classroom.  

                                                 
4 This chapter is adapted from a 2016 paper published in New Developments in Engineering Education for Sustainable 
Development 
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6.2 Introduction 

Engineers are now being tasked with understanding the broader social, economic, and 

environmental implications of their work (Allenby et al., 2009). This presents a need for 

educational approaches that can enable future engineers to think holistically and incorporate a 

complexity of new constraints in practice (Davidson et al., 2007). It is unrealistic to expect 

students with little “real-world” experience to understand these complexities through traditional 

instructional methods. Instead, introducing pedagogical elements such as historical context, 

decision-making, and ethics into the classroom can aid in the development of “post-

conventional” engineers. This term has been used to describe engineers who have a sense of 

autonomy in their work and see and treat engineering work as requiring complex decision 

making and social responsibility (Nair, 1997).  

This paper proposes that case-based teaching modules that include simulation activities can 

better prepare engineering students to appreciate the complex situations they will encounter on 

the job. For this study, a stakeholder engagement simulation exercise on selecting management 

practices for stormwater management was developed to help civil and environmental engineering 

students learn to apply sustainability concepts and principles. The module makes use of active 

and collaborative teaching pedagogies within a learning cycle framework.  

6.3 Context and Motivation for Module Development  

The module was originally designed for the course Sustainability in Civil and 

Environmental Systems, a sophomore core course for Civil and Environmental Engineering 

majors at Syracuse University. The course encompasses a broad range of topics integrating 
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sustainability into a traditional introductory environmental engineering course with the following 

primary instructional objectives:  

A. Introduce principles of sustainability and systems as applied to the natural and built 

environments; 

B. Provide skills necessary for quantitative assessments of civil and environmental 

engineering problems; 

C. Use principles developed in class to evaluate and solve complex open-ended 

environmental problems and communicate the results of the analysis. 

The course material is primarily covered in lectures, or a combination of lecture and in-

class problem solving activities. The course is divided into four topic areas: population, energy, 

water, and air.  Within the water unit, topics include water contaminants, physical properties of 

water and the hydrologic cycle, municipal water and wastewater, and urban water management 

including sustainable approaches for controlling urban stormwater runoff.    

6.4 Theoretical Background 

Active learning methods have consistently shown an increase in student performance in 

undergraduate courses in science, technology, engineering, and mathematics disciplines 

(Freeman et al., 2014; Prince and Felder 2006; Prince 2004). Several researchers have suggested 

that active learning methods may be especially useful in allowing students to better understand 

sustainability principles (Huntzinger et al., 2007; Korkmaz, 2011; Siller, 2001). The case-based 

urban water stakeholder simulation module designed in this study employs several pedagogies to 

promote active student learning.  
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6.4.1 Case-Based Learning  

Inductive learning begins with a context for learning rather than fundamental theories and 

concepts. Inquiry-based learning is an inductive learning method based on the constructivist 

theory of learning that knowledge is constructed by the learner. Students assume responsibility 

for the learning process by engaging in experiences and experiments to solve a problem. 

Inductive teaching strategies provide students with opportunities to engage in experience-driven 

learning within collaborative learning environments (Prince and Felder, 2006).  

Case-based learning is a type of inductive learning method in which students are 

presented with the context of a case study with complex, ill-defined problems to consider. Case-

based learning goes beyond the constructivist theory of learning in that it defines a model of 

cognition that can be turned to for advice and for predictions that can be simulated to test ideas, 

thus allowing students to draw productive lessons from a case and transfer their knowledge to 

future situations (Jonassen and Land, 1999). Case-based methods have also been shown to be a 

preferred inductive learning style among instructors and students (Srinivasan et al., 2007).  

To design case-based modules as effective inductive learning tools, the context of the 

case is described but the actual decisions made are withheld so students can inductively develop 

their own solutions to the problems presented (Lynn, 1999). The following steps to structure 

case-based discussions have been suggested to optimize the student learning experience in case-

based environments (Kardos, 1979): (1) review of the case content, (2) statement of problems, 

(3) collection of relevant information, (4) development of alternatives, (5) evaluation of 

alternatives, (6) selection of a course of action, and (7) evaluation of solutions and review of 

actual case outcomes.  
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6.4.2 Learning Cycle-Based Instruction  

The steps proposed for case-based learning closely follow several learning cycle models. 

For instance, Kolb’s experiential learning theory, which asserts that experiences play a key role 

in the learning process, suggests that student learning occurs in two stages: grasping experiences 

(through a concrete experience phase and an abstract conceptualization phase) and transforming 

experiences (through a reflective observation phase and an active experimentation phase) (Kolb, 

1984). Based on this theory, Kolb postulates that complete learning occurs when students engage 

in all four phases of a learning cycle, and that instructors can promote complete learning by 

designing course materials to encourage students to complete all learning cycle phases (Kolb et 

al., 2001). 

6.5 Module Design and Implementation 

The module employed in this study was designed to make use of case-based learning 

methods within a learning-cycle-based instructional framework. The seven steps suggested for 

case study design by Kardos (1979) were used in the design of the urban water stakeholder 

simulation module, as summarized in Table 6.1.  

6.5.1 Case Selection and Context  

Preparation for case-based learning is very demanding, as instructors must be intimately 

familiar with the history and current state of decisions related to the case in order to actively 

respond to questions during the case (Kardos, 1979). This case was selected based on the 

authors’ expertise on sustainable urban water systems and depth of knowledge on stakeholder 

perspectives (Flynn et al., 2014; Flynn and Davidson, 2016). The context of the case takes place 

in Onondaga County, located in Central New York. Onondaga County operates a combined 

sewer system and must provide a control plan to manage combined sewer overflows (CSOs).  
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Table 6.1 Module design components 

Steps for Case-Based 
Module Development 

Module Features Pedagogy Elements 

(1) Review of the case 
content 

Mini lecture, videos and discussions of 
stormwater engineering design and 
Onondaga County context 

Grasping experiences 
through concrete 
experience and abstract 
conceptualization 

(2) Statement of 
problem 

As a member of a key stakeholder 
group in Onondaga County, what type 
of technologies or solutions would you 
consider and why? 

Case-based problem 

(3) Collection of 
relevant information, 
and  
(4) Development of 
alternatives 

Stakeholder simulation activity: 
student group discussion aided by 
floating facilitators 

Student collaboration; 
transforming experiences 
primarily through active 
experimentation 

(5) Evaluation of 
alternatives, and 
(6)  Selection of a 
course of action 

Environmental, economic, social and 
ethical considerations used to evaluate 
each set of proposals 

Student collaboration; 
transforming experiences 
primarily through 
reflective observation 

(7) Evaluation of 
solutions and review of 
actual case outcomes 

Summary of actual changes to 
Onondaga County’s stormwater 
management plans 

Grasping experiences 
through abstract 
conceptualization 

 

Most municipal CSO control plans in the U.S. make use of traditional “gray infrastructure” 

solutions, or CSO control technologies that either enhance or supplement existing sewer 

infrastructure, which tend to be large in scale and cost. Implementing only gray infrastructure 

systems for urban stormwater management is neither sustainable nor sufficiently resilient to 

accommodate climatic changes (Novotny et al., 2010; Pyke et al., 2011).  Conversely, urban 

stormwater systems that include green infrastructure (GI) technologies are recognized as a more 

sustainable management approach. Onondaga County’s original CSO management plans 

included multiple expensive gray infrastructure technologies that were considered unjust and 

insufficient by many local community members. While all major regulating and regulated parties 
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were directly involved in the Onondaga County CSO management planning process, several 

important stakeholder groups were not. Over time, the environmental injustices stemming from 

this exclusion led to the social unrest of many groups in Onondaga County, particularly the 

Onondaga Nation and the residents of the Southside neighborhood (Perreault et al., 2012).  

6.5.2 Initial Module Implementation  

The first implementation of the module took place in 2014 during a single lecture period 

lasting eighty minutes. Instruction began with grasping experiences through a mini-lecture on 

why stormwater engineering design is both necessary and inherently complex. Early module 

content also described available technology options and the stakeholders that are affected by 

each option. Urban stormwater management issues were reviewed and local contextualization 

was provided with videos of recent localized flooding on campus and the surrounding 

neighborhoods.  The module continued with a discussion of these issues and how the framing of 

water issues impacts the goals, system boundaries and specific solutions. Stakeholder 

engagement processes were introduced and a variety of different stakeholder groups involved 

with and affected by municipal stormwater management decisions were discussed. Students were 

then presented with the context of the Onondaga County case study. Information on changes to 

Onondaga County’s stormwater management plans to include widespread use of GI technologies 

were intentionally left out of the module to elicit original student ideas as the module progressed. 

The case-based simulation activity was designed to promote the active experimentation 

phase of learning, as students explored how they would advocate for particular engineering 

solutions while representing a certain stakeholder group within Onondaga County, and 

considered what consequences would occur if their solutions were chosen. Background on the 

case and on each stakeholder group was presented to the students and is shown in Table 6.2. The 
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four stakeholder groups described in Table 6.2 were selected from the multiple stakeholders 

involved with this case. The class was divided into four equal groups, each representing one 

stakeholder group. Potential solutions using gray infrastructure and GI were reviewed, as 

summarized in Table 6.3.  Information on technology options was presented for the time period 

of 2007-2008, when GI technologies were acknowledged as a potential alternative to gray 

infrastructure technologies but not widely implemented. Students were then asked to answer the 

following question with their group: As a member of a key stakeholder group in Onondaga 

County, what type of technologies or solutions would you consider and why? 

Table 6.2 Stakeholder groups included in initial module 

 

Several possible considerations were provided to the students, including economic 

limitations and opportunities, political and community culture, current ecosystem conditions, 

current state of existing infrastructure, legal constraints, and current and future climatic 

conditions. Students were provided time to discuss the various technology options within their 

groups. A floating facilitator model was employed with four instructors moving from group to 

group during the discussion period to respond to student questions. Each facilitator had studied 

Stakeholder Group Primary Interests 

Onondaga County 
Government 

Must meet consent judgment criteria to treat or mitigate 400 million 
gallons of annual CSO volume and decrease bacteria, phosphorus 
and trash loadings to Onondaga Lake using proven technologies in a 
cost-effective manner 

Engineering firms 
Must design proven and cost effective stormwater management 
solutions to meet the needs of their client (Onondaga County) 

Southside residents  
Proximity of invasive infrastructure projects, localized and basement 
flooding, construction disruptions, aesthetics, recreation, health 

Onondaga Nation 
Lake is a sacred site; Onondaga Nation follows a vision of 
environmental stewardship and cooperative resource management 
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different aspects of this case over multiple years and was able to provide robust answers to 

student questions. After the discussion, students were asked to advocate for their technology 

selection and to provide support based on the goals and concerns of their stakeholder group. The 

class ended with an open discussion of the various proposals and a brief presentation of the 

actual solutions implemented in Onondaga County.  

Table 6.3 Technological aspects of gray and green infrastructure 

Technological 
Aspect 

Gray Infrastructure  Green Infrastructure 

Materials Human manufactured materials 
Human manufactured and natural 
materials 

Benefits 
Single purpose technologies for 
stormwater mitigation and 
treatment   

Multifunctional technologies with 
multiple environmental and social 
benefits 

Distribution and 
capacity 

Large capacity to centrally treat 
and transport stormwater 

Varied capacities to treat and 
manage stormwater through a 
diffuse network 

System integration 
Concentrates stormwater and 
pollutants to be treated with 
chemicals 

Complementary to existing 
infrastructure; systems-thinking 
design 

 

6.5.3 Formative Assessment Tool 

A formative assessment tool was administered directly following the module 

implementation to provide feedback on its effectiveness as a teaching tool. The assessment also 

provided information on student self-evaluations of learning outcomes, as well as their overall 

enjoyment of the module activities and structure.  The initial formative assessment tool included 

a three point Likert scale (Disagree, Agree, or Strongly Agree) to assess students’ perceived level 

of understanding on several topics after the module. Two open-ended questions were included to 

elicit student comments on their satisfaction of the module. Certain questions from this tool were 
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administered during the subsequent implementations to assess if changes made to the module 

produced any positive effects in students’ perceptions and satisfaction.  

6.5.3 Revisions to the Module and Assessment Tools  

 Based on formative assessment findings from the first-year implementation (to be 

discussed in Section 6.6.1), several changes were made to the structure of the module. Activities 

were spread out over two eighty-minute lecture periods, and an innovative classroom space has 

also been utilized to allow for enhanced interaction of small groups within a large classroom 

setting. The first lecture period serves as an expansion of the mini-lecture to allow for additional 

discussion of stormwater management principles and possible needs of various stakeholder 

groups. This lecture focuses on seven stages of an engineering design process: problem 

definition, gathering information, generating ideas, modeling, feasibility analysis, evaluation, 

and decision-making. Research by Atman et. al (2007) suggests that engineering students spend 

significantly less time in the stages of problem definition, gathering information, generating 

ideas, evaluation, and decision-making stages. As these stages present opportunities for 

stakeholder input, the importance of stakeholder engagement throughout each of these stages is 

emphasized during the lecture activities.  

The second period is dedicated to the simulation activity. Additional stakeholder groups 

(summarized in Table 6.4) were added in order to promote additional student interactions during 

the activity, and introduce additional complexity for students to consider during decision-making 

processes. An expansion of the initial formative assessment tool was developed using Bloom’s 

Taxonomy as a framework to assess learning outcomes (Bloom et al., 1956). The revised tool is 

administered before and after module implementation to assess learning outcomes through 

student self-evaluations on fourteen question items using a five point Likert scale. 
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Table 6.4 Stakeholder groups included in revised module 

Group # Stakeholder Group 

1 Engineering Firm #1 

2 Engineering Firm #2 

3 Engineering Firm #3 

4 Engineering Firm #4 

5 Syracuse City Government 

6 Business Owners 

7 Local Environmental NGOs 

8 Onondaga Nation 

9 Southside Residents 

10 Suburban Residents  

 

6.6 Results 

Results from student evaluations of the first module implementation are presented in Table 

6.5.  Previous to this module implementation, urban hydrology issues were covered in several 

lectures with specific examples of existing technological solutions. However, stakeholder 

concerns and stormwater issues in Onondaga County (i.e., the Syracuse area) were not directly 

addressed. Following the module implementation, 95% of students agreed or strongly agreed that 

they had a better understanding of how course concepts apply to real world cases, and 96% felt 

that the module helped them to better understand urban water problems in Syracuse, NY. 

Anecdotal evidence suggested that most of the students in the course are not from the Central 

New York area and therefore would not be informed of ongoing local issues. This response is of 

particular importance to the instructors who encourage their students to relate course material to 

local contexts. Additionally, 86% of students agreed or strongly agreed that they better 

understood stakeholder involvement in engineering decisions following this module.  This result 
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is also notable, as increasing students’ ability to understand the complexities of engineering 

design decisions was a primary objective of the module.   

Table 6.5 Student evaluations of 2014 module (N=30) 

Question Disagree Agree 
Strongly 

Agree 

As a result of today’s activities, I have a better understanding of 
how concepts learned in this course apply to the real world. 

5% 75% 20% 

As a result of today’s activities, I have a better understanding of 
how different stakeholders influence engineering decisions. 

14% 59% 27% 

As a result of today’s activities, I have a better understanding of 
urban water problems in the Syracuse area. 

4% 60% 36% 

I enjoyed today’s activities. 25% 57% 18% 

 

Student responses to open-ended questions for three years of module implementation are 

summarized in Figures 6.1 and 6.2. Two instructors categorized the open comments based on 

common themes and language that students used to describe their experiences in the module. The 

first open-ended question asked what the students enjoyed most about the class activity. These 

comments were classified into seven groups. Many students mentioned that they enjoyed 

working in groups and enjoyed learning about the various interests of the different stakeholders.  

In comparing responses between the first year of the module implementation (2014) and the 

second and third implementations (i.e., after the module was modified), several trends in student 

preferences stand out. The largest differences are an increase in students’ enjoyment stemming 

from “real-world” complexities and a connection to their future careers. This suggests that the 

revised module succeeds in expanding students’ understanding of how material learned in the 

classroom will apply to future engineering design projects they may encounter in their careers. 

Many students consistently responded positively to incorporating more group interactions during 
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class time. Several responses to this question also indicated an increase in student motivation to 

continue investigating stormwater engineering issues. Two such comments are included below:  

“I thought the lecture was well done and I found it to be engaging, interesting and 
extremely useful.  This was possibly the most useful lecture I have here at Syracuse and 
reminded me why I chose engineering.” 
 
“I enjoyed how it was based off of real world problems, which made it feel a lot more 
realistic. It was the first time I have been involved in an activity that has shown me what I 
may deal with in my future profession.” 
 
 
 

 

Figure 6.1 Student responses to “What did you enjoy most about today’s activities?” 
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A second open-ended assessment question relates to improvements that can be made to the 

module. Responses to this question are summarized in Figure 6.2. In 2014, most comments 

related to group size and limited interaction within the groups, while in 2015 and 2016 the 

primary area of improvement identified by the students is more time to work through the 

simulation activity. Requests for additional information or structure within the module tend to be 

consistent across all years.  

 

Figure 6.2 Student responses to “What suggestions do you have for improvement of today’s 
activities?” 
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Results from student self-assessments of learning outcomes for 2015 and 2016 are 

summarized in Table 6.6. Student responses to multiple questions are averaged according to each 

Bloom’s Taxonomy level, and a paired two sample t-test for differences in means is used to 

assess the significance of changes in student knowledge at each level before and after module 

implementation. All results for both years show significant learning gains across all taxonomy 

levels. Because control data is not available for equivalent learning outcomes without using the 

simulation activity, these results cannot precisely demonstrate the effectiveness of the case-study 

module against traditional classroom learning activities. However, when considered along with 

student responses of overall satisfaction with the module, the revised version of the module is 

shown able to both meet the learning outcomes of the course, particularly in regards to students’ 

analysis of complex open-ended environmental problems, while enhancing the learning 

experience for students.  
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Table 6.6 Student self-assessments of learning outcomes using mean values from a five 
point Likert scale (1=strongly disagree, 5=strongly agree)  

Bloom’s 
Taxonomy 

Level 
Question 

2015 2016 
Pre-

survey 
Post-

survey 
Pre-

survey 
Post-

survey 

Knowledge 

I can define the natural 
hydrologic cycle. 

3.49 4.16 3.66 4.08 

I can define urban water 
management. 

3.26 4.14 3.32 4.08 

I can define gray infrastructure. 2.73 4.21 2.89 3.95 
I can define green infrastructure. 3.51 4.30 3.63 4.18 
I can define stakeholders. 3.41 4.28 3.55 4.18 
Mean “Knowledge” value 3.28 4.22*** 3.41 4.09*** 

Comprehension 

I can give examples of 
stakeholders in urban water 
management systems. 

2.82 4.22 3.02 4.13 

I can explain the difference 
between urban and natural 
hydrology. 

3.09 4.1 3.16 3.89 

I can explain urban water issues. 3.44 4.16 3.55 4.15 
I can explain urban water issues 
in Syracuse. 

3.13 4.26 3.19 4.08 

I can explain the differences 
between gray and green 
infrastructure. 

2.73 4.20 2.92 3.93 

Mean “Comprehension” value 3.04 4.19*** 3.17 4.04*** 

Application 
I can apply hydrologic principles 
to urban water system. 

2.71 3.88*** 2.95 3.77*** 

Analysis 
I can prioritize diverse 
stakeholder needs within 
engineering decisions. 

2.69 4.04*** 2.98 3.92*** 

Evaluation 

I can evaluate water 
infrastructure options, such as 
gray vs. green infrastructure, 
within and urban water 
management system. 

2.56 3.98 2.90 3.93 

I can critique past and present 
urban water management 
decisions in Syracuse. 

2.79 4.04 2.90 4.15 

Mean “Evaluation” value 2.68 4.01*** 2.90 4.04*** 
***p<0.01 for paired two sample t-test significance for mean value in each Bloom’s Taxonomy level 
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6.7 Conclusions and Future Work  

To encourage active student engagement in learning about sustainable urban stormwater 

system design, a case-based module was developed and implemented in a sophomore civil and 

environmental engineering course. Assessment results suggest that the module effectively 

increased student understanding of complex decision making processes required of engineers. 

The instructors observed high levels of student involvement and engagement in the material 

throughout the module, particularly during the simulation activity. Students enjoyed the 

collaborative learning activities and focus on a local engineering case study involving diverse 

stakeholder concerns.  

Several modifications were applied after initial module implementation in response to 

student suggestions, such as the addition of multiple stakeholder groups and activities during the 

stakeholder engagement simulation. Several student comments from the first-year 

implementation also suggested the need for additional reflective observation time.  Learning 

activities are now designed as a two-day module, with one full lecture period dedicated to 

simulation activities. An innovative classroom space has also been utilized to allow for enhanced 

interaction of small groups within a large classroom setting.  Additional work on this module 

aims to further engage students with local, real-world situations that foster an understanding of 

the complexities of inclusive, human-centered design processes.  
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Chapter 7 Conclusions 

This research has the potential to inform current decision-makers on influential factors 

related to the design and implementation of sustainable civil infrastructure systems, and guide 

best practices in education that will influence future engineers’ understanding of sustainable 

systems design principles. From a policy innovation perspective, this research contributes to a 

deeper understanding of sustainable infrastructure adoption as both an environmental outcome-

based and community-interest driven process. From a pedagogical perspective, this work reveals 

a need for engineering faculty to both develop strategies that can address student misconceptions 

related to rate and accumulation problems and provide opportunities to actively engage in 

learning complex engineering design concepts.   

7.1 Summary of Findings 

In the first study of this thesis, described in Chapter 2, I developed a social-ecological 

framework for categorizing factors that condition the adoption of GI programs by stormwater 

management authorities. While it has been argued that there is no need to create a separate 

technological domain in the social-ecological framework (McGinnis and Ostrom 2014), this 

study demonstrates a need to more fully develop robust descriptions of technological attributes 

within an urban stormwater system, particularly for technology decision-making activities. This 

framework can provide guidance for officials and professionals in the development of more 

sustainable stormwater management planning methods. This research may also provide insight 

for other sustainable technology decision-making frameworks.  

The second study of this thesis, described in Chapter 3, describes a case study that 

analyzes the evolution of stormwater management plans in Onondaga County, NY, from 1998 to 



 

205 
 

2009. Interviews with stakeholders and document analysis were used to identify important 

factors that led stormwater management authorities to overhaul existing CSO management plans 

by adopting a comprehensive GI program to replace certain gray projects. Findings suggest that 

the adoption of this program can be understood as an alignment of several sociopolitical factors, 

including the presence of a policy entrepreneurship coalition in support of alternative stormwater 

management plans, the election of a key political official who acknowledged the needs of local 

stakeholders, and a shift in mindset of local and national officials as to what technologies are 

effective for stormwater management. These findings demonstrate the importance of integrating 

diverse stakeholder goals and adaptive decision making to address urban stormwater 

management challenges.  

In the study described in Chapter 4, I developed an empirical model of GI program 

adoption decisions in large U.S. communities with combined sewer systems. A sewer 

management authority’s decision to adopt a large-scale GI program is modeled as a two-tier 

decision to separately assess factors that influence the decision to adopt a program, and factors 

that influence decisions related to the extent of planned program implementation. I find that the 

decision to adopt a large-scale municipal GI program is largely driven by the population size of a 

municipality and precipitation characteristics, while the extent of program implementation is also 

driven by socioeconomic characteristics of municipal residents in addition to the total amount of 

remaining capital infrastructure needs for CSO compliance. By examining the motivation for and 

barriers to green infrastructure adoption, this research has important implications for 

environmental governance at the municipal level.  



 

206 
 

Knowing how students think and learn about rate and accumulation processes in complex 

systems can help educators better prepare students for their engineering careers. This work 

provides educators with a reliable and valid assessment tool that can be used to identify gaps in 

student understanding of rate and accumulation processes. The study described in Chapter 5 

provides evidence of validity and reliability of the RACI through structural equation modeling 

and multidimensional item response theory. Validity and reliability evidence indicates that the 

RACI can be used to measure students’ overall understanding of all concepts identified. Factor 

analysis findings point to issues of possible construct underrepresentation in certain subscales of 

conceptual understanding; thus, evidence for the validity of RACI subscales is limited.  

This research also provides educators with findings on incorporating broad, complex 

constraints such as stakeholder needs into undergraduate engineering coursework. The study 

discussed in Chapter 6 describes the development and use of a case-based learning module for 

use in a sophomore civil and environmental engineering class. Findings from Chapter 2 of this 

dissertation are used to develop a case-based teaching module on incorporating stakeholder 

engagement processes in engineering system design. This study demonstrates the overall success 

of using a simulation activity to engage students in complex engineering decision-making 

scenarios. Thus far, each implementation of the module has been shown to enhance student 

understanding of stakeholder engagement principles, as well as overall satisfaction with course 

material. While the module presented in this thesis can be incorporated in other engineering 

courses, the success of a case study module may be determined in part by an educator’s level of 

expertise on the case materials. Preparation for case-based learning can be quite demanding, and 

instructors should be very familiar with the history and current state of the case to provide 

nuanced responses to student questions. This should be viewed as a worthy task, as exposure to 
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open-ended, real-world scenarios can help engineering students appreciate the complex design 

considerations that will be required of them in their careers.   
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