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Abstract 

The complex social behavior of M. xanthus makes it an excellent model system to study the 

relationship between genotype and phenotype. Under nutrient rich conditions, a swarm of M. 

xanthus cells coordinate their movement outward in search of prey. When starved, cells 

condense into multicellular structures called aggregates. Taken together, these two aspects of 

the M. xanthus life cycle display several sub-traits that are used to describe its phenotype. 

Furthermore, the genome of M. xanthus is large, encoding a predicted 7,314 genes, many of 

which have been linked to aspects of its multicellular phenotype. 

This work presented here addresses the genotype-to-phenotype (G2P) problem as it 

relates to the annotation of a biological process in a model system. The first project addresses 

G2P from a population genetics approach; we constructed a mutant strain library consisting of 

180 single gene knockouts of the ABC transporter superfamily of genes to examine the 

distribution of mutant phenotypes among an entire group of genes. While the phenotype of only 

~10% of mutants show extreme defects, more than three quarters of mutants are parsed into 

different categories of phenotypic deviation following our analyses. Our results demonstrate that 

strong mutant phenotypes are uncommon, but the majority of null mutants are phenotypically 

distinct from wild type in at least one trait. Thus, a more comprehensive understanding of the M. 

xanthus phenome will help elucidate the biological function of many uncharacterized genes. 

The second part of this dissertation examines the evolution of M. xanthus as it has been 

studied as a model organism in different laboratories. Disrupting a gene, or mutating a single 

nucleotide, may have no discernable impact on the organism's phenotype by itself, but may still 

substantially affect the phenotypes of additional mutation through epistasis. This is an ongoing 

phenomena in M. xanthus; whole genome resequencing and phenotypic characterization of 

several inter-laboratory isolates of M. xanthus wild type DK1622 revealed genomic variation that 

has resulted in significant phenotypic variation. We demonstrate that the naturally occurring 



genetic variants among wild type isolates is sufficient to mask the effect of a targeted mutation 

in one isolate that is significant in another. These results are the first to indicate that isolates of 

wild type M. xanthus DK1622 have evolved to a functionally significant degree. 

  



 

Evolution, epistasis, and the genotype-to-phenotype problem 

in Myxococcus xanthus. 

 

 

Michael D. Bradley 

B.S. Biology, Syracuse University 2008 

 

 

 

DISSERTATION 

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in 

Biology 

 

 

Syracuse University 

May 2017 

  



 

 

 

 

 

 

 

 

Copyright © Michael D. Bradley 2017 

All Rights Reserved 

  



ACKNOWLEDGEMENTS 

 

I extend my sincerest gratitude to my advisor, mentor, and friend, Dr. Roy Welch. I would not 

have been able to complete this program without your continuous support, both personally and 

professionally. Graduate school is a humbling experience and I am immensely grateful to be 

included in your lab. 

 

I am hugely indebted to Dr. Jinyuan Yan for teaching me about our study system, and helping 

me transition into graduate school. I would also like thank Drs. Anthony Garza, John Belote, 

Dacheng Ren, Eleanor Maine, Jannice Friedman, and everyone in the Welch lab for helpful 

discussion over the years. Lastly, I would like to thank Syracuse University and The National 

Science Foundation for supporting my projects. 

 

  

v 



TABLE OF CONTENTS 

Chapter 1. Introduction ........................................................................................................ 1 

    1.1 Motivation ..................................................................................................................... 2 

    1.2 Aims of research .......................................................................................................... 3 

    1.3 Contributions ................................................................................................................ 3 

    1.4 Organization ................................................................................................................. 4 

 

Chapter 2. Background & Significance .............................................................................. 5 

     2.1 Introduction ................................................................................................................. 6 

     2.2 The genotype-to-phenotype relationship ..................................................................... 7 

     2.3 Evolutionary approaches to G2P ............................................................................... 12 

     2.4 Obstacles of G2P studies .......................................................................................... 14 

     2.5 Myxococcus xanthus as a model organism ............................................................... 17 

     2.6 Summary ................................................................................................................... 23 

 

Chapter 3. Phenotypic Profiling of a Large Mutant Library ............................................. 31 

     3.1 Project summary ....................................................................................................... 32 

     3.2 Materials and methods .............................................................................................. 32 

     3.3 Results ...................................................................................................................... 36 

     3.4 Discussion ................................................................................................................. 40 

 

Chapter 4. Inter-laboratory Evolution of Wild Type Sublines.......................................... 48 

      4.1 Project summary ...................................................................................................... 49 

      4.2 Materials and methods ............................................................................................. 49 

      4.3 Results ..................................................................................................................... 51 

      4.4 Discussion ................................................................................................................ 57 

 
vi 



Concluding remarks .......................................................................................................... 66 

 

Appendices ........................................................................................................................ 67 

      Appendix I Primers to construct ABC transporter mutants (Chapter 3) ........................... 67 

      Appendix II Source of M. xanthus sublines (Chapter 4) .................................................. 73 

      Appendix III Pairwise comparison of A-motility phenotypes (Chapter 4) ......................... 74 

      Appendix IV Pairwise comparison of S-motility phenotypes (Chapter 4) ......................... 75 

      Appendix V Pairwise comparison of aggregation phenotypes (Chapter 4) ..................... 76 

      Appendix VI Pairwise comparison of sporulation phenotypes (Chapter 4) ...................... 77 

      Appendix VII Summary of read mappings (Chapter 4) ................................................... 78 

      Appendix VIII Primers used to generate DNA inserts for plasmids (Chapter 4) .............. 79 

      Appendix IX Plasmids used to construct mutant strains (Chapter 4) .............................. 80 

 

References ......................................................................................................................... 81 

 

Vita ...................................................................................................................................... 93 

  

vii 



TABLES & FIGURES 

 

Table 2.1 Notable sequenced organisms ......................................................................... 24 

Table 4.1 Summary of ANOVAs ........................................................................................ 60 

Table 4.2 Summary of ANOVAs with outliers removed ................................................... 61 

Table 4.3 Subline variant screen ....................................................................................... 62 

 

Figure 2.1 Experimental and evolutionary approaches to phenotypic profiling ........... 25 

Figure 2.2 Site-directed mutagenesis and homologous recombination ........................ 26 

Figure 2.3 Schematic of positive and negative epistasis on fitness .............................. 27 

Figure 2.4 Life cycle of M. xanthus (simplified) ............................................................... 28 

Figure 2.5 Phenotypic metrics used to describe M. xanthus .......................................... 29 

Figure 2.6 Origin of wild type M. xanthus ......................................................................... 30 

Figure 3.1 Distribution of ABC transporters in the M. xanthus genome ........................ 43 

Figure 3.2 Phenotypic traits and phenotypic assays ...................................................... 44 

Figure 3.3 Distribution of phenotypic data ....................................................................... 45 

Figure 3.4 Correlation of phenotypic variables ................................................................ 46 

Figure 3.5 Phenotypic traits of wild type and mutant aggregates during development 47 

Figure 4.1 Characterization of DK1622 subline phenotypes in a common garden ....... 63 

Figure 4.2 Characterization of S8 mutant strains ............................................................ 64 

Figure 4.3 Epistasis in S1, S8, and S9 mutant strains ..................................................... 65 

 

 

viii 



1 
 

 

 

 

 

 

 

 

 

CHAPTER 1 

INTRODUCTION 
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1.1 Motivation 

Despite the wealth of available sequencing data, our ability to link gene products to their 

functions remains poor. The most standard method to ascertain gene function is to analyze 

phenotypic data when the gene is inactivated. Mutating a gene and observing the biological 

process that is disrupted will sometimes provide clues towards gene function. The guiding 

assumption of all genotype-to-phenotype (G2P) studies is that genetic perturbation causes a 

discrete change in phenotype that can be used to infer the biological function of a mutated 

gene. This genotype-first method of annotation relates one genotype to one phenotype, 

sectioning the organism into smaller parts that attempt to explain the whole. Genetic 

reductionism is a perfectly acceptable approach to uncover the causes of phenotypic diversity, 

but is limited in two ways: First, it is difficult to assign function to the proportion of mutants that 

display no deviation in phenotype. Redundancy may account for a lack of detectable 

phenotypes within a large family of proteins, but is unlikely to explain absent phenotypes for 

orphaned genes. Second, the phenotypic effects of mutation may not be reproducible in closely 

related yet genetically distinct cell lines. How can these disconnects between genotype and 

phenotype be reconciled to create a substantive map to infer biological function from phenotypic 

data? 

The “no phenotype” phenomena can be addressed from two perspectives: First, a G2P 

diagram is often inaccessible without a comprehensive view of an organism’s phenome (the 

sum of all possible phenotypes). Subtle phenotypes may be hidden by broad profiling that 

examine only a subset of traits such as growth and morphology. It would be experimentally 

cumbersome to test tens or hundreds of assay conditions for thousands of mutant strains; 

therefore, extracting more information from the existing characterization assays is the most 

feasible approach to a better understanding of the phenome, including the structures between 

phenotypic traits. “Phenotypic sensitivity” can be can be addressed by determining if the model 

organism has evolved while it has been studied. Most G2P experiments manipulate a wild type 



3 
 

strain to generate mutant strains that are scored for changes in certain traits. For experimental 

purposes, isolates of a wild type studied by a research community are assumed to be isogenic. 

However, the laboratory is a model organism’s natural environment, and evolution continues 

during and between experiments. Heterogeneity of the genetic background results after 

decades of research. Superficially, isolates may be indistinguishable, displaying the phenotypic 

prerequisites of wild type, while at the same time accumulate mutations that significantly 

diversify their genotypes. Epistasis between naturally occurring and targeted mutations may 

influence the results of phenotypic screens and the subsequent annotations of gene products. 

 
 

1.2 Aims of research 

The work presented here examines the complex relationship between genotype and phenotype 

in Myxococcus xanthus, a model bacterium for biofilm development. M. xanthus is unique in that 

it has one of the most complex life cycles in the bacterial world, capable of self-organization and 

cellular differentiation in response to environmental cues. Our first aim is to better define the 

intersection between wild type and mutant phenotype through a rigorous characterization and 

quantitative analyses of several phenotypic traits among a large group of single gene mutants. 

Our second aim is to determine the extent of M. xanthus microevolution while it has been 

studied by the field. The history of wild type M. xanthus can be traced back 40 years because it 

has a single origin and a sequenced genome. 

 

1.3 Contributions 

1. The first large-scale statistical analysis of phenotypic traits in M. xanthus. Our approach 

was to create and characterize a library of mutant strains (the ABC Transporter 

superfamily) and profile the resulting phenotypes in search of new mutant phenotypes, 

and to identify correlations among traits. 
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2. The first whole genome sequence comparison of inter-laboratory isolates of wild type M. 

xanthus strain DK1622. Our approach was to resequence multiple laboratory isolates to 

link genetic variants with the observed phenotypic variations. Lastly, we compare the 

phenotypic response of multiple isolates to an identical targeted mutation. 

 

1.4 Organization 

Chapter 2 of this dissertation introduces the concepts of genotype and phenotype, the use of 

phenotypic screens for functional analysis, and the obstacles for interpreting G2P data. Also 

introduced in Chapter 2 is M. xanthus as a model system, including descriptions of the major 

genetic pathways. Chapters 3 and 4 describe the projects listed in section 1.3; each chapter 

consists of a project summary, materials and methods, results, and discussion. 



5 
 

 

 

 

 

 

 

 

 

CHAPTER 2 

BACKGROUND & SIGNIFICANCE 

 



6 
 

2.1 Introduction 

An ambitious goal for the post-genomics era is to assign a function to every gene in an 

organism’s genome. The first step towards accomplishing this goal is to search for strong 

sequence homology among previously annotated genes; function can be inferred from a 

homolog. Genome-wide analyses across multiple organisms in silico allows researchers to 

classify categories of well-characterized gene products such as enzymes, transporters, and 

receptors [1–3]. Orthologs in phenotypically similar organisms, such as spore forming bacteria, 

provide putative annotations in lieu of experimentation [4–6]. However, annotation via sequence 

homology remains an imperfect tool; highly conserved proteins may have entirely different 

structures and biological functions [7,8], while partial sequence alignments suggest a conserved 

domain but offer little insight with respect to function. Further compounding the problem are 

genes with no sequence homology; the majority of bacterial and archaeal genomes are 

predicted to consist of 20-40% orphaned hypothetical genes [9–11]. The absence of sequence 

homology provides no basis to predict function. 

Counterintuitively, a more powerful approach to determine function is to inactivate a 

gene and observe the phenotypic response of the organism; gene function can also be inferred 

by mutation. The genotype-to-phenotype (G2P) experimental approach compares the 

phenotypic state of a mutant strain to the phenotypic state of a wild type reference - a 

convenient shortcut for functional analyses. If a mutation causes a variation in some observable 

trait, then the function of the gene product is assumed to be involved in the manifestation of that 

trait (Fig. 2.1a). For example, in the pathogenic bacterium Salmonella typhimurium, a mutation 

in flgJ results in non-motile cells. The initial functional annotation of this gene could be “involved 

in motility” and would direct future experiments towards understanding the cellular and 

molecular function of FlgJ with respect to motility [12]. 

Both methods of functional annotation require an understanding of the articulation 

between genotype and phenotype. The following sections introduce the history of G2P, genome 

https://paperpile.com/c/ILfYVS/xIdj+5zdG+Jcyp
https://paperpile.com/c/ILfYVS/9Qm3+0TlK+3D2w
https://paperpile.com/c/ILfYVS/SWM8+tuRu
https://paperpile.com/c/ILfYVS/Z0eE+LTV1+HW3A
https://paperpile.com/c/ILfYVS/rGEn
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sequencing and its applications, and examples of high-throughput phenotypic profiling of model 

organisms. Finally, I will describe the current obstacles that limit our ability to assign functional 

annotations using phenotypic data. 

 

2.2 The genotype-phenotype relationship 

The definition of a gene is relatively straightforward - a sequence of nucleotides that is 

replicated, transcribed, and operates a cellular function [13]. The term genotype is used broadly 

to describe the total set of genes and genetic material, or narrowly to specify loci of interest. 

Genotype may also refer to pseudogenes and noncoding elements such as small RNAs and 

junk DNA, which have been shown to regulate expression of nearby genes [14–17]. The 

definition of phenotype is more complex and is classified several ways: (1) the molecular 

phenotype describes the processes that are detected by technical instruments, such as 

transcripts and small molecule production (e.g. metabolites); (2) the cellular phenotype 

describes the empirical traits of individuals such as growth rate and morphology; and (3) the 

system phenotype describes the dynamic processes such as cell-cell signaling and emergent 

behavior of groups. The abstract concept of “extended phenotype” includes unique behaviors 

such as beaver dam and caddisfly house construction as a phenotype [18]. Clearly, the concept 

of phenotype is multidimensional. 

Initially hinted at by Gregor Mendel’s experiments with hybrid plants, the genotype-

phenotype distinction was formally introduced by Wilhelm Johannsen in the early 1900s [19] 

and has provided the conceptual framework for modern geneticists. For nearly a century, 

researchers have sought to link these two elements into a coherent map that can be used to 

predict one from the other. In other words, using genes and their sequences to predict an 

organism’s phenotype, and map post hoc changes in phenotype to specific genes. This is 

known as the G2P problem [20]. Understanding this relationship allows researchers to design or 

alter a biological system to exploit a desirable trait. The broader impacts of G2P studies are 

https://paperpile.com/c/ILfYVS/s2Mq
https://paperpile.com/c/ILfYVS/anJJ+sxU0+xJjl+VJd6
https://paperpile.com/c/ILfYVS/JNbQ
https://paperpile.com/c/ILfYVS/wVqP
https://paperpile.com/c/ILfYVS/i1gJ
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widespread, including the synthesis of biomaterials, identifying new antibiotic targets, and 

understanding the genetics of human disease. 

 

Genome sequencing and population genetics 

To understand the biology of an organism, it is necessary to determine its entire genome 

sequence. The advent of next-generation sequencing technology has revolutionized the way 

researchers think about basic and clinical sciences. Indeed, genome sequencing has been an 

important tool in the fields of forensic science [21,22], biotechnology [23,24], and molecular 

biology [25–27]. 

The first complete genome sequence of a free-living organism was of the pathogenic 

bacterium Haemophilus influenzae in 1995 [28]. Since this initial project, thousands of other 

organisms have been sequenced, ranging from viruses [29–31] to the consortium-based human 

genome project [32] (see Table 2.1 for a list of major sequencing projects). The availability of 

fully sequenced genomes has motivated numerous comparative studies between organisms of 

varying complexity. For example, Rubin et al. report >20% orthologous genes among 

Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae, which 

suggests evidence of a core genome among eukaryotes [33]. Similarly, it has been reported that 

~75% of genes associated with human disease have a functional homolog in D. melanogaster 

[34]. Clearly, the availability of sequencing data has expanded the fields of evolutionary biology 

and phylogenetics, and is integral for future therapeutic discoveries. 

Following the completion of the Human Genome and HapMap projects [32,35], 

thousands of Genome-Wide Association Studies (GWAS) have been performed to analyze 

genomic metadata in search of associations between common variants and disease. Human 

disorders are usually not as straightforward as sickle cell anemia or Huntington’s disease, 

where one point mutation causes the disease phenotype [36,37]. For this reason, a GWAS 

assays hundreds of thousands of SNPs to identify significant associations with the phenotype of 

https://paperpile.com/c/ILfYVS/OX7v+DuMi
https://paperpile.com/c/ILfYVS/2tdN+Bpnd
https://paperpile.com/c/ILfYVS/YFeo+RWKn+AHL4
https://paperpile.com/c/ILfYVS/5FXo
https://paperpile.com/c/ILfYVS/1quU+kNIQ+FdhZ
https://paperpile.com/c/ILfYVS/t2HF
https://paperpile.com/c/ILfYVS/C8vl
https://paperpile.com/c/ILfYVS/nxbH
https://paperpile.com/c/ILfYVS/t2HF+4lWX
https://paperpile.com/c/ILfYVS/USvu+H8DM
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interest. These phenotype-first studies are non-candidate-driven and therefore unbiased to a 

priori expectations. The first successful GWAS identified a SNP located within an intron of the 

gene for complement factor H that is associated with age-related macular degeneration [38]. 

Other GWAS projects have identified SNPs correlated with heart disease [39], HIV susceptibility 

[40], and resistance to hepatitis C treatment [41]. GWAS databases such as NCBI dbGaP and 

the NHGRI GWAS Catalog have been curated [42,43], and to date thousands of disease 

associated SNPs have been reported [44]. 

Finally, the enormous amount of sequencing data necessitates the need for 

bioinformatics tools. The Gene Ontology Project (GO) is a bioinformatics initiative developed to 

annotate gene sequences with consistent language: (1) the cellular component, which describes 

parts of the cell (i.e. the biological matter); (2) the molecular function, which describes events at 

the molecular level such as binding and catalytic activity; (3) the biological function, which 

describes organized events that have a defined beginning and end that describe a larger 

process, such as metabolism and cell division [45]. 

 

Phenomics and functional analysis 

The term phenomics describes the characterization of mutation on an organism-wide scale [46]. 

Because phenomics projects are inherently large and require an extensive collection of mutant 

strains, bacteria represent a nearly ideal system of study because of their simple and tractable 

genomes and ease of cultivation. To construct large mutant libraries, an organism may be 

exposed to DNA-damaging agents such as UV radiation or reactive chemicals. Phenotypic 

screens following UV bombardment have been widely conducted [47–49], but this method is 

indiscriminate and typically result in multigene mutations. DNA mutagens have largely been 

replaced by transposons, which disrupt functional elements by incorporating a short piece of 

foreign DNA into the host chromosome. Transposons are generally less lethal, can be 

recovered to determine insertion sites, and some bacterial transposons carry selectable 

https://paperpile.com/c/ILfYVS/TTfX
https://paperpile.com/c/ILfYVS/zVrR
https://paperpile.com/c/ILfYVS/JINc
https://paperpile.com/c/ILfYVS/iwab
https://paperpile.com/c/ILfYVS/wHJ2+TMa2
https://paperpile.com/c/ILfYVS/WoRn
https://paperpile.com/c/ILfYVS/SEzR
https://paperpile.com/c/ILfYVS/BD19
https://paperpile.com/c/ILfYVS/AscH+0rtq+AELw
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markers. Tn5 transposon insertion-mutations have been successful in studies of virulence in 

Bordetella pertussis [50], identification of auxotrophic Escherichia coli [51], and bioluminescence 

of Vibrio fischeri [52]. In addition to bacterial studies, transposons have been used to construct 

genetically modified lines of D. melanogaster (P elements) [53–55] and C. elegans (Mariner) 

[56,57]. Transposon screens generate a large number of mutants; near-saturation mutant 

libraries have been constructed in the budding yeast Saccharomyces cerevisiae [58], 

pathogenic bacterium Pseudomonas aeruginosa [59,60], and the flowering plant Arabidopsis 

thaliana [61], but are generally limited by specificity and the size of the genome, even in 

overrepresented experiments. Site-directed mutagenesis is a method that inactivates target 

genes; a fragment of the target gene is PCR amplified, ligated into a double stranded plasmid, 

and introduced into the host chromosome via homologous recombination, resulting in complete 

loss-of-function of the gene product (Fig. 2.2). While less scalable than random mutagenesis, 

site-directed mutation allows the systematic disruption of single targets, which is necessary to 

confirm essential genes. Other methods such as RNA interference (RNAi) elucidate function by 

knocking down gene expression post-transcriptionally [62]. 

The transcriptome is the sum total of mRNAs expressed under a given environmental 

condition. The ability to quantify global transcript levels allows researchers to conceive of 

expression as a phenotype, and transcriptional events under various environmental or 

development conditions may lend insight to gene function. Presumably, a gene involved in a 

particular biological process is expressed to a higher degree during that process. Nucleic acid 

based microarrays have been developed to quantify mRNA levels in a high-throughput manner 

[63,64]. Fluorophore labeled targets hybridize to complementary probes on a microarray chip, 

and the signal is measured digitally to quantify relative abundance of molecules bound to each 

probe. Microarray technology has been instrumental in understanding the molecular basis of 

various cancers [65–67]. More recently, RNA sequencing by synthesis has emerged as a more 

precise tool to quantify expression; RNA-Seq has the advantages of being able to identify novel 

https://paperpile.com/c/ILfYVS/hKqZ
https://paperpile.com/c/ILfYVS/t6HM
https://paperpile.com/c/ILfYVS/Gnic
https://paperpile.com/c/ILfYVS/0QAm+UAz3+mKrp
https://paperpile.com/c/ILfYVS/unvN+Cv9j
https://paperpile.com/c/ILfYVS/T1PI
https://paperpile.com/c/ILfYVS/NQE9+hGaa
https://paperpile.com/c/ILfYVS/LSLA
https://paperpile.com/c/ILfYVS/mob6
https://paperpile.com/c/ILfYVS/8TA1+Qpy9
https://paperpile.com/c/ILfYVS/YOpf+bxsZ+0g3P
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genes, fusion transcripts, and sequence variants without high-intensity signal saturation. The 

promise of these technologies is that we will be able to group genes into functional pathways 

based on a similar temporal or developmentally regulated patterns of expression. 

Similar to how DNA microarrays provide a high-throughput assay to quantify gene 

expression, a phenotype microarray (PM) allow researchers to test numerous growth 

phenotypes simultaneously. Unlike qualitative assays that interpret phenotypic traits as plus or 

minus, PM plates are scored quantitatively via colorimetric changes (indicator dyes) that are 

measured with commercial software. PM plates may contain hundreds of chemicals – carbon 

and nitrogen sources, ions, hormones, at various concentrations – to observe cellular 

respiration and metabolism under different environmental conditions [68]. Mutant libraries grown 

on PM plates have elucidated gene function [69–72], metabolic variations among evolved lines 

[73], pathogenicity [74,75], and culture conditions that trigger morphological and developmental 

changes [76]. 

Antibiotic susceptibility testing is a clinical method of phenotypic profiling. In these 

experiments, an inoculum of bacteria is overlaid with an antibiotic impregnated disc. As the 

antibiotic diffuses, the appearance of a visible zone of clearing around the disc indicates the 

susceptibility of the bacterium. These results are scored qualitatively as either susceptible, 

intermediate, or resistant by measuring the diameter of the zones, or quantitatively by titrating 

dilutions of the antibiotic into broth cultures to determine the minimum inhibitory concentration 

(MIC) that prevent visible growth [77,78]. Antibiotic resistance of the biofilm forming bacteria 

Staphylococcus aureus and P. aeruginosa has been extensively studied in an effort to 

understand the genetics of resistance [79–81]. 

Using these techniques, E. coli strain K-12 has been the subject of numerous mutation 

and phenotypic screens. As of 2009, the Keio Collection at the Nara Institute of Science and 

Technology (Japan) contain nearly 4,000 thousand single gene deletion mutants, accounting for 

~93% of the K-12 genome [82,83]. Phenotypic profiling of this collection has identified growth 

https://paperpile.com/c/ILfYVS/q0es
https://paperpile.com/c/ILfYVS/4xYU+Xdfg+9ElF+VNEz
https://paperpile.com/c/ILfYVS/HppU
https://paperpile.com/c/ILfYVS/sfkw+mCMe
https://paperpile.com/c/ILfYVS/cPYT
https://paperpile.com/c/ILfYVS/AJvy+M1u9
https://paperpile.com/c/ILfYVS/UDwn+Da7P+oHqi
https://paperpile.com/c/ILfYVS/psyE+mkuL
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defects, provided putative annotations for previously uncharacterized genes, and revealed the 

functional relationships between genes and the genomic organization of E. coli [84,85]. The 

sheer number of G2P databases renders K-12 one of the best-known model organisms [86,87]. 

 

2.3 Evolutionary approaches to G2P 

An important consideration in biology is how phenotypes are shaped by evolution; examining 

the genotypes of two closely related organisms may reveal genes that correlate with phenotypic 

variation (Fig. 2.1b). For example, a sequence comparison of Bacillus anthracis and Bacillus 

cereus, two bacteria that are widely considered to be the same species, has provided some 

evidence for the observed differences in pathology [88,89]. Similarly, a genetic comparison of 

two closely related enterobacteria revealed a diversity of molecular mechanisms relating to 

pathogenicity [90]. 

Recently, the paradigm of evolutionary genetics has extended beyond investigating the 

differences between extant natural organisms to investigating how model organisms evolve in 

the laboratory [91–96]. Long-term evolution experiments (LTEE) are carried out under controlled 

environments to explore the evolutionary dynamics with respect to gene function and 

adaptation. The utility of this experiment is that researchers can implement predetermined 

selective pressures to force an evolutionary response, and resequence the evolved lineage to 

correlate mutations and the adaptive phenotype. LTEEs track evolution in real time; bacterial 

systems have been exploited because their rapid generational times allow evolution to be 

observed on a reasonably short timeline. 

The most famous example of an LTEE was started in 1988 by Richard Lenski [97]. 

Twelve parallel cultures of E. coli Bc251 have been growing aerobically under identical 

environmental conditions and limited to six generations per day in glucose-limited media for 

nearly 30 years. Samples are archived every 500 generations to create a “frozen fossil record” 

of Bc251 evolution for each independently evolving population [97]. Each culture is sequenced 

https://paperpile.com/c/ILfYVS/4WcF+25oO
https://paperpile.com/c/ILfYVS/EmUm+LwjV
https://paperpile.com/c/ILfYVS/JjYU+Bhbp
https://paperpile.com/c/ILfYVS/x2gt
https://paperpile.com/c/ILfYVS/tEGW+wpht+YuBw+nChI+ahS2+BWL1
https://paperpile.com/c/ILfYVS/E7bn
https://paperpile.com/c/ILfYVS/E7bn


13 
 

at milestone generations to catalog genomic divergence [98–102]. At present, the twelve 

founding cultures are separated by over 64,000 generations of independent evolution, a timeline 

sufficiently long that every possible spontaneous point mutation could have occurred several 

times [103]. The results of this study have pioneered the sub-field of experimental evolution; first 

was the discovery of two mutator genes [104]. Genomic instability was observed in several 

cultures, and in each case resulted from spontaneous mutations in at least one mutator gene. 

Second is the parallel evolution of cell size and generation time across all cultures, a phenotype 

that is sustained through 60,000 generations, which may suggest perpetual and unbound 

evolution [105,106]. Third is the discovery of a novel phenotype; while all twelve cultures 

experienced similar evolutionary trajectories, one culture evolved the ability to metabolize citrate 

present in the growth media under aerobic conditions, a phenotype that normally differentiates 

E. coli from other Enterobacteriaceae. Trait acquisition was mapped back to mutations in the 

transporters CitT and DctA, and the upstream promoter rnk [103,107]. This finding is significant 

with respect to historical contingency and evolution; the accumulation of many neutral 

potentiating mutations prepared the organism to achieve a fitness gain from a future mutation. 

The longstanding impact of this ongoing study improves our understanding of the evolutionary 

mechanisms relating to mutation rates and fitness trajectories [104,106,108]. 

Experimental evolution studies have also been carried out in eukaryotic systems. 

Drosophila melanogaster has been extensively studied to understand the mechanisms of 

selection and adaptation [109,110]. One prominent example is the study by Haddad et al. that 

placed replicate lineages of flies into environments of low oxygen content for 200 generations. 

Genome resequencing revealed the genetics of tolerance, and to date 188 genes have been 

correlated with apoxia tolerance [111]. A second example is the ongoing “high runner (HR)” 

selective breeding experiment in mice. There have been 65 generations in this evolutionary 

lineage of mice that demonstrate increased aerobic capacity and overall endurance in a 

running-wheel experiment [112]. The genetics of this adaption are not yet understood. 

https://paperpile.com/c/ILfYVS/Mf8J+vZcX+UIFQ+JaZZ+T5fX
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2.4 Obstacles for G2P studies 

Despite much being already known regarding the functions of individual genes, even in 

relatively simply bacterial systems there are still thousands genes without a known function. As 

the number of sequenced bacteria species quickly approaches 100,000 [113], it is doubtful that 

more sequencing will bring us any closer to resolving function via sequence homology. Gene 

inactivation is the now to most feasible tool to elucidate function. 

 

Phenotypic constraints 

Mutations in nonessential genes typically result in a small number of distinct phenotypes. 

Studies that have characterized the near-saturation mutant libraries of P. aeruginosa and S. 

cerevisiae report that only ~15% of mutant strains display changes in growth rate [59,114]. 

Whole genome RNAi knockdown experiments in C. elegans and D. melanogaster and T-DNA 

insertions in Arabidopsis thaliana yielded a similar percentage for defects relating to growth and 

development [115–117]. While many studies focus on simple characteristics such as growth 

rate and metabolism, others have focused on multicellular traits such as biofilm density in P. 

aeruginosa [118] and fruiting body formation in Dictyostelium discoideum [119]. However, the 

number of mutant strains with distinguishable phenotypes remained <10%. 

One plausible explanation for the lack of obvious changes in phenotype is that too little 

information regarding the organism’s phenotype is known to serve as a baseline to compare 

wild type and mutant phenotypes. In many cases, the assays that measure mutant phenotypes 

are qualitative or semi-quantitative, and the interpretation of these data vary between 

laboratories [120]. Furthermore, phenotypic defects are measured by the magnitude of change 

from the wild type strain, and studies that set arbitrary cutoffs to detect the most severe defects 

and may neglect more subtle defects. It has become necessary to refine and expand the current 

characterization techniques to better define the intersection of wild type and mutant phenotype. 

 

https://paperpile.com/c/ILfYVS/jRMo
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A global view of genotype: strain evolution and the epistatic genome 

The examples of experimental evolution described in 2.3 investigate natural selection and 

Darwinian adaptation by deliberately forcing evolution under preselected and controlled 

conditions. These fundamental concepts of these experiments can be applied to organisms 

under real laboratory conditions; the founding strain of a widely studied bacterial system has a 

documented origin and a sequenced genome, but is usually represented by several laboratory 

“sublines”. Each subline is an independent population that is capable of evolving across multiple 

organizational levels. Because they are in isolation, each subline can adopt different solutions to 

the selective pressures in a laboratory setting. Subline evolution that results in a sudden and 

drastic phenotypic shift would likely be observed, however, if the subline displays little or no 

change in phenotype it would go unnoticed. Over time, mutations may accumulate despite the 

wild type strain’s phenotype remaining relatively unchanged. This is the difference between 

proving evolution can happen in a model system, and proving that it has. 

Several studies have begun to address the topic of subline evolution. Schacherer et al. 

characterized single nucleotide variation for seven experimentally relevant laboratory strains of 

S. cerevisiae using Affymetrix yeast tiling assays, and report as much as 0.36% genomic 

variation from the reference [121]. In P. aeruginosa, PAO1 is the major reference strain and has 

been distributed to laboratories worldwide. PAO1 has also been the subject of numerous 

mutation screens [123]; a comparison of three PAO1 sublines identified a 2.2Mb inversion, a 

12Kb duplication, and numerous SNPs and deletions in protein coding regions [124,125]. 

Differential pathological potential has also been reported among these three PAO1 sublines 

[124]. These examples clearly demonstrate subline-specific genomic architecture. Without a 

detailed examination of how laboratory strains differ with respect to both genotype and baseline 

phenotype, the reproducibility of G2P studies may be jeopardized. Genome divergence 

following subline propagation presents a real possibility of conflicting phenotypes, particularly in 

the case of epistasis from multiple mutations. 

https://paperpile.com/c/ILfYVS/omfD
https://paperpile.com/c/ILfYVS/KTw2
https://paperpile.com/c/ILfYVS/0YIq+ldiS
https://paperpile.com/c/ILfYVS/0YIq
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The term epistasis was introduced by William Bateson to resolve the discrepancy 

between predicted segregation ratios and the observed phenotypic outcomes of dihybrid 

crosses [126]. Epistasis is defined as the interaction of mutations in two or more genes that 

produce a phenotype that is unequal to the sum of the individual mutations. In other words, one 

mutation alters the phenotypic effect of the other. Positive epistasis refers to a phenotype that is 

more fit than would be expected from the two mutations individually, through either enhancing 

the individual beneficial effects or alleviating the deleterious effect of one mutation (Fig. 2.3). 

For example, mathematical models predict a high fitness cost (e.g. reduced growth rate) of drug 

resistance-conferring mutations [127–129]. However, multiple studies report fitness gains 

(positive epistasis) from compensatory mutations in drug resistant strains. In P. aeruginosa, 

Ward et al. report a reduction in the cost of acquiring streptomycin resistance (StrepR) in 

genetic backgrounds that carry parallel resistance to rifampicin (RifS) [130]. Similarly, in E. coli, 

Trindade et al. report compensated fitness costs of StrepR when RifS is introduced concurrently 

[131]. Other studies have reported positive epistasis in bacteria that harbor multiple resistance 

conferring plasmids in the absence of the corresponding selective pressure [132]. Conversely, 

negative epistasis refers to a phenotype that is less fit than expected, where the net benefit of 

two individual mutations is reduced, or two deleterious mutations result in a greater than 

additive effect. Negative epistasis has been reported between the malaria-protective mutations 

in α and β globin genes in humans [133]. 

Epistatic interactions are also used to evaluate the function and organization of complex 

networks; epistasis is commonly studied between pairs or sets of relevant genes. In S. 

cerevisiae, nearly 80% of the genome is nonessential, at least in part because of genetic 

buffering [114,134,135]. A study by Tong et al. constructed pairwise double mutants for eight 

genes against the nonessential mutant library to reveal synthetic lethal phenotypes [136]. The 

results of this study generated a network of 291 interactions among 204 genes, some of which 

were previously uncharacterized. Larger studies have investigated hundreds of query strains 

https://paperpile.com/c/ILfYVS/CUEa
https://paperpile.com/c/ILfYVS/wGdm+WLs3+qt3q
https://paperpile.com/c/ILfYVS/Zk2E
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https://paperpile.com/c/ILfYVS/bybe
https://paperpile.com/c/ILfYVS/WXYd
https://paperpile.com/c/ILfYVS/Nnso+AJRH+8Hdu
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against the mutant library to further elucidate the S. cerevisiae interactome [137] In C. elegans, 

analyses of epistatic interactions have successfully ordered genetic pathways for traits such as 

sex determination [138], vulva development [139], and entry into dauer [140]. 

 

2.5 Myxococcus xanthus as a model organism 

The Myxobacteria are members of the 𝛿-proteobacteria and display a cooperative and 

coordinated social behavior that is more characteristic of a eukaryote. Multicellular behaviors 

include swarming/group predation, self-organization (aggregation), and cellular morphogenesis 

(sporulation). Because of the complex life cycle yet simple prokaryotic genome, the 

Myxobacteria are an attractive system to study the genetics and signaling associated with 

multicellular phenotypes. 

Myxococcus xanthus is a gram-negative soil dwelling bacterium that displays a complex 

multicellular phenotype when several million cells are spotted as a dense swarm on an agar 

surface. If the agar is nutrient rich, the swarm will expand out from the point of inoculation 

through the coordination of two motility systems, adventurous (A-motility) and social (S-motility), 

in a process called swarming [141] (Fig. 2.4). Alternatively, if the agar contains no nutrients, the 

starving swarm will appear to contract in a process called development, where cells first move 

to form aggregates of approximately 1x105 cells each [142], and then a subset of cells within 

each aggregate differentiate into dormant and environmentally resistant spores that germinate 

when nutrients become available. M. xanthus myxospores are environmentally resistant, able to 

withstand temperatures and other stresses that are lethal to vegetative cells. Explained in this 

way, the life cycle of M. xanthus is divided into two distinct halves, swarming and development, 

both of which can be described by measuring different phenotypic traits, such as the rate at 

which a swarm expands on nutrient agar, or the number of aggregates and spores that form 

during development (Fig. 2.5). The phenotype of the wild type M. xanthus has always been 

described as a range of assay results that measure traits like these. 

https://paperpile.com/c/ILfYVS/cjOx
https://paperpile.com/c/ILfYVS/GO8t
https://paperpile.com/c/ILfYVS/QAI1
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https://paperpile.com/c/ILfYVS/653p
https://paperpile.com/c/ILfYVS/yjzP
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Genetics of major biological processes 

Vegetative growth and swarming: Since M. xanthus contains no physical mechanism for 

propulsion in liquid, the entire life cycle of M. xanthus depends on solid substrate motility. 

Motility is a coordinated swarm, with some isolated individuals found along the edge of the 

swarm. Individual cells of an M. xanthus swarm glide along the direction of their long axis, 

occasionally stopping and reversing their direction of movement [143]. M. xanthus is a predatory 

bacterium, and coordinated motility allows the swarm to collectively prey on nearby 

microorganisms [144,145]. Gliding motility demonstrated by M. xanthus is regulated using the A- 

and S-motility engines [146]. Coordination of these engines is essential for directed movement, 

and reversing the intracellular localization of motility proteins allows individual M. xanthus cells 

to change directions. 

S-motility is characterized by type IV pili (T4P) mediated movement and extracellular 

fibrils, and is similar to twitching motility observed in P. aeruginosa [147]. Forward locomotion of 

individual cells is achieved by the extension of pili from the leading pole, attachment to the solid 

substrate, followed by retraction of the pili thus pulling the cell forward towards the site of 

attachment [147]. T4P can extend up to 5μm from the leading pole, and retraction of a single 

pilus generates sufficient force to pull an individual cell forward. 

PilA is the major subunit for M. xanthus T4P and is localized at the leading pole [148]. 

PilA is a 23-kDa protein monomer that is anchored to the inner membrane. PilA monomers are 

processed by PilD peptidases and polymerized into a growing pilus by PilB ATPases [149]. 

Polymerized PilA is secreted through PilQ outer membrane secretory channels [150]. For 

retraction, PilA disassembly is mediated by PilT, a PilB homolog [149]. Presumably, ATP bound 

to PilB is hydrolyzed to insert PilA monomers to the growing pilus from an inner membrane 

reservoir. Conversely, PilT catalyzes disassembly by returning monomers from the elongated 

pilus back to the inner membrane. While the other S-motility components are localized only at 

the leading pole, PilQ is localized to both poles to facilitate cell reversal; S-motility components 

https://paperpile.com/c/ILfYVS/YVfg
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reverse their localizations from the leading pole to the lagging pole (now the leading pole) to 

allow for bidirectional movement. Studies investigating the frz system in M. xanthus have shown 

cells move in one direction only a for a few minutes before reversing the cellular localization of 

their motility machinery [151–153]. A second important extracellular appendage found on M. 

xanthus cells are fibrils. These branching, filamentous structures are 30-50nm in diameter [154–

156] and are composed of nearly equal parts proteins and carbohydrates. Fibrils are considered 

essential for contact mediated cell-cell interaction, linking cells to the substrate as a collective 

unit [155,157,158]. Deficiencies in fibril production, as demonstrated by dsp and dif mutants, 

abolish S-motility [157,159–161]. Together, T4P and fibrils promote cohesion (cell-to-cell) and 

adhesion (cell-to-substrate). 

The mechanism of A-motility in M. xanthus is not as well understood because it is not 

dependent on external structures. One model suggests the use of a “slime gun” at the lagging 

pole, a similar feature found in gliding Cyanobacteria [162]. In this model, an extruder systems 

acts as a thrusting motor by secreting slime to propel the cell forward [163], while also serving 

as a slime track for neighboring cells [164]. However, this model remains largely speculative 

because of the lack of genetic evidence. A second model of A-motility is the use of focal 

adhesion complexes distributed along the cell body. Identified through transposon screens, AglZ 

has been shown to be required for A-motility [165]. AglZ accumulates at the leading pole and is 

dispersed at regular intervals along the cell body. AglZ assemblies remain fixed in position 

relative to the substrate [166]. Presumably, a moving cell spirals around the AglZ focal 

adhesions until the adhesions reach the lagging pole, where they are disassembled. A motility 

mutants are grouped into two classes; motor proteins (Agl, adventurous gliding) and 

stimulation/protein exchange between contacting cells (Cgl, conditional gliding). Early work has 

demonstrated that cgl mutants are also defective for A-motility [167]. Recent work has shown 

that A-motility is restored by diluting cgl mutant strains with wild type [168]. The proposed 

mechanism is outer membrane exchange (OME); OME is the bidirectional exchange of 
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lipopolysaccharide and is thought to repair membrane damage caused by environmental 

hardship, or act as a mechanism to exchange toxic material to rival cells [169]. Presumably, cgl 

gene products are donated from wild type host cells via OME to restore A-motility in cgl mutant 

cells. 

 

Nutrient limitation and development: One of the most distinguishing features of the 

myxobacteria is their response to nutrient deprivation. When organic material is exhausted, a 

swarm of M. xanthus cells cease to swarm outward, instead condensing into mound like 

structures called aggregates. Pre-aggregation (i.e. transcription of early development genes) 

occurs approximately two hours post starvation, while aggregation and maturation into three-

dimensional stalk-like structures known as fruiting bodies occurs within 24 hours of starvation 

[150]. Within fruiting bodies are metabolic dormant and environmentally resistant myxospores 

that have the capacity to germinate when nutrients become available again. Sporulation 

represents the end of the cell cycle. 

Developing cells assume different fates; autolysis, differentiation into peripheral rods, or 

differentiation into myxospores. Previous studies estimate nearly 80% of developing cells 

undergo autolysis, presumably to release nutrients that are cannibalized by the remainder of the 

population [170,171]. Peripheral rods represent approximately 5% of cells and are located 

outside of aggregate mounds. Peripheral rods are structurally identical to vegetative cells, but 

have an altered transcription profile and do not aggregate, sporulate, or divide [172]. Thus, 

peripheral rods represent the first category of differentiated cell types in M. xanthus 

development and are proposed to function either as nutrient sensors or in defense [172]. The 

remaining 1-15% of the starting population differentiate from rod shaped cells into ~1μm 

diameter quiescent myxospores that are resistant to environmental stress [173]. Tremendous 

progress at the molecular level has been made to identify the intracellular signals responsible 

for induction of development. Currently, there is genetic evidence of at least five signals, 

https://paperpile.com/c/ILfYVS/chOz
https://paperpile.com/c/ILfYVS/qp7g
https://paperpile.com/c/ILfYVS/wZze+nUGY
https://paperpile.com/c/ILfYVS/P3UZ
https://paperpile.com/c/ILfYVS/P3UZ
https://paperpile.com/c/ILfYVS/k00F


21 
 

annotated A- through E-signal, that are necessary to initiate and culminate development [150]. 

Mutant strains deficient in any of these signals show extreme developmental defects and an 

inability to fruit or sporulation. Previous work has shown that these phenotypic defects can be 

rescued by co-development with wild type [174,175]; however, only A- and C-signals have been 

extensively studied. 

Starving cells can either slow their growth proportional to the level of available nutrients, 

or engage the development program. Fruiting body morphogenesis and sporulation require the 

synthesis of at least 30 proteins [176], and therefore development must proceed before 

nutrients are depleted entirely. Starving cells synthesize the alarmone guanosine penta-

phosphate ((p)ppGpp) as an indicator of starvation in a RelA-dependent manner that is similar 

to that of E. coli [177,178]. Briefly, starvation of essential amino acids (leucine, isoleucine, 

valine) result in uncharged cognate tRNAs. Free tRNAs encountered at the ribosome halt 

translation, causing RelA to synthesize (p)ppGpp [179,180]. Accumulation of (p)ppGpp halts 

DNA and RNA synthesis and increases proteolysis [181]. (p)ppGpp above the threshold 

concentration is necessary and sufficient to induce development. relA mutants do not produce 

(p)ppGpp, and thus are defective for aggregation and sporulation [179]. Furthermore, ectopic 

expression of relA in M. xanthus initiates development, even in the presence of abundant 

nutrients [182]. 

A-signal is a quorum signal that functions in the pre-aggregation phase of development 

as an indicator of cell density [183]. A-signal can be recovered from conditioned media and 

separated into two fractions, heat stable and heat labile. The heat stable fraction contains 

roughly equal portions of amino acids and small peptides, and serves as a chemosensory signal 

[184]. The heat labile fraction contains two proteolytic enzymes that hydrolyze cell surface 

proteins [185]. The current model of A-signal is that RelA synthesizes (p)ppGpp in response to 

nutrient deprivation, which serves as a signal of starvation. Proteases then degrade cell surface 

proteins causing amino acids and peptides to accumulate in the extracellular space. A-signal 
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acts as an indicator of density because M. xanthus cells themselves are the substrate for 

proteolysis; the concentration of the heat stable fraction is directly proportional to the number of 

cells in the population. A-signal must accumulate to a threshold concentration to ensure that 

there are enough cells to enter the aggregation phase of development. While an A-signal 

receptor has not been identified, the sas three-component regulatory system is suggested to 

function in the A-signal transduction pathway [186,187]. However, five components of the A-

signaling system have been identified; AsgA/D (hybrid HPKs), AsgB (putative DNA-binding 

protein), AsgC (sigma factor), and AsgE (putative amidohydrolase) [188–192].  

Following the events of early development, the morphological events of late 

development (aggregation and sporulation) are governed by C-signal, a membrane associated 

signal that is exchanged via cell-cell contacts [193]. C-signal is a 25-kDa (p25) protein encoded 

by csgA that accumulates on the outer membrane [193]. p25 is cleaved into the 17-kDa protein 

(p17) active form by PopC six hours after nutrient depletion [181], and therefore is only 

expressed by starving cells. Mutations in csgA abolish fruiting body morphogenesis and 

sporulation. However, these events are restored by co-development with csgA+ cells or purified 

exogenous csgA gene product; low levels of C-signal restore aggregation and C-signal 

dependent gene expression, while higher levels restore sporulation [194]. Incremental addition 

of C-signal beyond a threshold concentration induces sporulation without the prerequisite 

aggregate formation [194]. It is proposed that, similar to A-signal, C-signal acts in a threshold-

dependent manner to regulate developmental events sequentially (i.e. cells do not sporulate 

before aggregating) [193,195,196]. Presumably, the local density within an aggregate increases 

the efficiency of end-to-end cell contacts, and therefore increases C-signal transmission. Unlike 

endospore formation in Bacillus spp. which undergo binary fission in an asocial manner, the 

positive feedback mechanism of C-signal exchange in M. xanthus ensures that a sufficiently 

large number of cells sporulate and emerge from an aggregate to collectively feed. 
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Origin of wild type M. xanthus DK1622 

The M. xanthus founding strain FB (DK100) was obtained from the Stanier Collection at the 

University of California, Berkeley in 1960 [197] (Fig. 2.6). Two distinct colony varieties were 

reported for FB; yellow and tan swarmers (YS/TS) [197]. DK101 is a derivative of DK100 that 

harbors a disruption in pilQ1 [198,199]. DK101 was isolated because the spontaneous mutation 

retained fruiting body formation and allowed dispersed cell growth in liquid media [198]. The 

disruption of pilQ1 abolishes S-motility [198]. DK320 is a derivative of DK101 generated by 

exposure to UV radiation [141]. aglB1 is disrupted in DK320, rendering the strain defective for 

motility. pilq1 was restored in DK320 via transduction from a YS donor to create DK1217 [198]. 

DK1217 was the recipient of second transduction from YS for aglb1, yielding the fully motile 

strain DK1622 [198]. DK1622 is commonly used as wild type because it reliably forms 

symmetric fruiting bodies, ripples (a predatory behavior), and develops in submerged culture 

[200]. DK1622 has been one of two de facto wild type strains (DZ2 is the other) since its initial 

isolation in 1979. DK1622 and DZ2 are phenotypically similar, capable of self-organization and 

differentiation, but differ by a 220Kb deletion in DK1622 [201]. 

 

2.6 Summary 

High-throughput functional annotation of bacterial genomes is currently at a crossroad; some 

mutants have no discernable phenotype, while others do not reflect the anticipated outcome 

based on previous studies. There are two likely explanations for this disconnect: (1) phenotypes 

are present, but undiscovered in the current assays, and (2) phenotypes are influenced by 

variations in the genetic background. As the most severe phenotypes – the lowest hanging fruit 

– have been well studied, a more thorough characterization of mutant phenotypes is needed to 

identify the most subtle variations. Lastly, taking advantage of the decreasing costs of genome 

sequencing will resolve the genetics of discordant phenotypes. 
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A B 

Fig. 2.1 Experimental and evolutionary approaches to phenotypic profiling. 

(A) Schematic of a forward genetics experimental approach. A gene of interest 

(GOI) is disrupted and the resulting abnormal phenotype is scored and compared 

to wild type. (B) Schematic of evolutionary approach. The genomes of two closely 

related organisms are compared to reveal genetic and phenotypic variation. 
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Fig. 2.2 Site-directed mutagenesis and homologous recombination. A fragment of the target gene 

(grey box) is ligated into a vector containing antibiotic resistance (yellow arrow). The plasmid is 

introduced into the host cell and recombination involving the crossover (red lines) between the plasmid 

and host chromosome disrupts the target gene. 
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Fig. 2.3 Schematic of positive and negative epistasis on fitness. The phenotypic impact 

(fitness) of two individual mutations (X and Y) can have epistatic interactions. For individual 

mutations (X or Y, white arrows) the magnitude of change in fitness relative to wild type is 

represented by the direction and size of the arrow. For double mutants (XY), the expected change 

in fitness for non-interacting double mutants is shown in gray (the summation of the individual X 

and Y mutations). Positive epistasis (green arrow) exceeds the expected change in fitness from 

each individual mutation; negative epistasis (red arrow) results in a change in fitness that is less 

than the sum of the individual mutations, or a negative effect that is greater than the sum of two 

deleterious mutation. (A) Potential net effect of two beneficial mutations. (B) Potential net effect of 

two deleterious mutations. (C) Potential net effect of two mutations, one beneficial and one 

deleterious. Adapted from Ostman et al. (2012). 
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Fig. 2.4 Life cycle of M. xanthus (simplified). On a solid substrate with abundant nutrients, a 

group of M. xanthus cells feed, divide, and expand radially (swarming). On a solid surface that is 

nutrient depleted, swarming cells aggregate into mounds and three-dimension fruiting body 

structures (aggregation). Prolonged starvation induces a subset of the rod-shaped cells within 

fruiting bodies to differentiate into spherical spores that are metabolically dormant and resistant to 

environmental conditions (sporulation). When nutrients return, spores are released to germinate 

into vegetative rod shaped cells and re-enter the life cycle (germination). The life cycle of M. 

xanthus is divided into behaviors under nutrient rich conditions (green arrows) and nutrient 

deprived conditions (gray arrows). 
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Fig. 2.5 Metrics used to describe the phenotype of M. xanthus. There are several qualitative and 

quantitative features of the life cycle at each stage (swarming, aggregation, and sporulation). 

Representative images at each corresponding stage (vegetative growth, starvation, germination) are 

shown. Quantitative (black) and qualitative (red) metrics used to describe phenotype are listed for each 

stage. 
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Fig. 2.6 Origin of wild type M. xanthus. Two strains, FB and DZ2 were acquired from the Stanier 

Collection. Strain FB has been the subject of several mutation and phenotypic screens to produce 

the fully motile (A+S+) strain DK1622. Wild type strains used by the research community are shown 

in red.  
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CHAPTER 3 

PHENOTYPIC PROFILING OF A LARGE MUTANT LIBRARY 

 

The material presented in this chapter has been published in: 

Yan, J., Bradley, M. D., Friedman, J. & Welch, R. D. Phenotypic profiling of ABC transporter 

coding genes in Myxococcus xanthus. Front. Microbiol. 5, 352 (2014). 
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3.1 Project summary 

The ATP-binding cassette (ABC) transporters superfamily is large and diverse, present in both 

prokaryotic and eukaryotic systems. Consisting of two distinct domains, these ATP-dependent 

transmembrane proteins recognize and translocate nutrients, proteins, and small molecules 

when undergoing a conformational change. The mechanism of import and export maintains a 

variety of cellular processes including signal transduction, protein secretion and multi-drug 

resistance. 

Using multiple bioinformatics tools, we have identified 192 Open Reading Frames (ORF) 

in Myxococcus xanthus that code for ABC transporters. We compiled an insertion-disruption 

mutant library containing each of the ORFs and characterized the resulting phenotype using 

three independent assays to determine cell motility, aggregation rate, and sporulation efficiency 

against wild type DK1622. The aim of this project is to examine the relationship between ORF 

sequence homology, gene function, and phenotype. To identify any correlations, we analyzed 

all of the M. xanthus ABC transporters as a group, to identify any abnormal phenotypes that 

might be overlooked if mutants were characterized individually. 

 

3.2 Materials and methods 

Annotation of ABC transporters: The sequence of M. xanthus was obtained from GenBank 

(http:// www.ncbi.nlm.nih.gov/GenBank/) with the accession number NC_008095.1. Each 

predicted ORF in the genome was annotated using multiple databases. ABC transporter-

associated genes in the M. xanthus genome were reviewed and identified mostly using the 

databases pfam [202-204] and COG [205]. Additional tools such as BLAST [206], InterPro [207], 

GenBank [208] and transmembrane prediction server TMHMM Server v. 2.0 [209] 

(http://www.cbs.dtu.dk/services/ TMHMM/) were used to assist in the selection. A manual 

curation was adopted to complete the annotation. Briefly, an ORF was deemed an ABC 
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transporter when at least two databases identified it as such. In order to ensure that all putative 

ABC transporter-associated ORFs were identified in the genome, a list of pfam accession IDs 

associated with these ORFs was compiled and used to search the rest of the genome. ORFs 

annotated as “hypothetical” that were located in the same operon with ABC transporter coding 

ORFs were manually checked using pfam and psi-blast. TMHMM was used to predict 

transmembrane domains in putative permeases. Using these methods, two additional ABC 

transporter-associated ORFs were identified, resulting in a total of 192 putative ABC transporter 

component coding ORFs. 

 

Cultivation and development: M. xanthus strains were grown at 32°C in CTTYE broth [1.0% 

Casitone, 0.5% yeast extract, 10mM Tris-HCl (pH 8.0), 1mM KH2PO4, and 8 mM MgSO4] or on 

plates containing CTTYE broth and 1.5% agar. CTTYE broth and plates were supplemented 

with 40µg/ml kanamycin sulfate as needed. Cells underwent development on TPM agar [10mM 

Tris-HCl (pH 8.0), 1mM KH2PO4, 8mM MgSO4, and 1.5% agar] at 32°C for 5 days. 

 

Mutagenesis: Primers for amplifying internal fragments of M. xanthus ORFs were selected using 

primer3 (http://sourceforge.net/projects/ primer3/). The procedure for homologous 

recombination by plasmid insertion has been described previously [210]. Briefly, an internal 

fragment of 400-600bp was amplified using the polymerase chain reaction (PCR), and ligated 

into a linear plasmid pCR®2.1-TOPO (Invitrogen). Following ligation, the plasmid now includes 

the PCR product, and thus can be amplified in TOP10 E. coli cells. The plasmid was then 

isolated from E. coli and electroporated into M. xanthus cells (650V). The transformed plasmid 

was incorporated into the M. xanthus chromosome by homologous recombination [211], thus 

conferring kanamycin resistance on the cells. In order to confirm that the plasmid was 

successfully inserted into the desired location in the M. xanthus chromosome, we used PCR to 
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amplify across the upstream region of the target gene loci and TOPO vector, thereby generating 

an amplicon with size ∼1.2Kb. Wild type DK1622 was used as negative control. 

 

Phenotype assays: M. xanthus cells were inoculated in CTTYE broth, cultivated with vigorous 

agitation (300rpm) over night, and harvested at the density of ∼5×108 cells/ml. For motility 

assays, four spots of 2µl cells at a concentration of 5×109 cells/ml were placed on CTTYE plates 

containing 0.4 or 1.5% agar. Plates were incubated at 32°C for 3 days, and the diameters of 

colonies were then measured. For cell development, cells were washed once with TPM buffer 

and resuspended at a concentration of 5×109 cells/ml in TPM buffer. Spots of 20µl cell 

resuspension were spotted on TPM agar and incubated at 32°C for up to 5 days. The 

development of aggregates was observed and recorded at designated time intervals using 40× 

brightfield microscopy (Nikon) and SPOT imaging software. For the sporulation assay, cells 

were spotted on TPM agar and incubated at 32°C for 5 days to allow full development. Three 

sets of five spots were harvested and suspended in 500µl TPM buffer. The cells were then 

exposed to mild sonication (10% altitude, 10s × 3 with 30s intervals, MISONIX, S-4000), 

followed by heat treatment at 50°C for 2h. Cells were then diluted to the desired concentration 

and plated with CTTSA [1.0% Casitone, 10mM Tris-HCl (pH 8.0), 1mM KH2PO4, and 8mM 

MgSO4, 0.7% agar] onto CTTYE agar plates (supplemented with 40µg/ml kanamycin sulfate for 

insertion mutants). After 5 days of incubation at 32°C, viable spores germinated and grew into 

visible colonies, and the number of colonies was recorded and converted to the unit of cells/ml. 

 

Image analysis of development: At each time point of development on TPM agar, we examined 

at least five spots of 108 cells. Brightfield images were taken for two of the five spots using a 

Nikon microscope and SPOT Insight camera (model #11.0 monochrome w/o IR) and imaging 



35 
 

software at 40× magnification, and images were saved as non-reduced .tiff files. A .tiff file was 

selected because it preserves image quality and is lossless. To avoid the effect that the edge of 

the spot would have on image analysis, a section of each image representing 25% of the 

original that did not include the spot edge was submitted for analysis. ImageJ 

(http://rsbweb.nih.gov/ij/index.html) [212] was used to analyze the features of aggregates. 

These images were threshold using the RenyiEntropy macro, and then manually corrected if 

necessary. After the area of each aggregate was selected for analysis, any aggregate that was 

less than 200 pixels (background noise) or that overlapped the edge of the image was excluded. 

 

Data analysis: We analyzed the extent of phenotypic variation in the mutant strains by 

comparing the mean ± SD across three independent replicates for each trait separately. For two 

of the traits we did not generate an SD; count was presented simply as the total number of 

aggregates observed, and timing, because it was recorded at five discrete intervals, was 

insufficient to resolve variation between replicates. To identify mutant phenotypes that are 

statistically distinct from wild type, we used a randomization test with 1000 iterations. This 

method generates P values regardless of the distribution of the raw data, and we adjusted the P 

values using the Benjamini, Hochberg, and Yekutieli method to control for any false discovery 

rate. To investigate whether phenotypic traits are correlated within mutant strains, we used a 

Spearman’s rank correlation (both zero-order and partial correlations). We added the SDs from 

three phenotypic variables in order to exclude the possibility that a large variation is caused by 

large average values (e.g., large average fruiting body area will also have a larger variation). 

We normalized the SD using std/mean. 
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3.3 Results 

Identification of ABC transporter ORFs in M. xanthus: We performed a sequence-level 

characterization of all ABC transporters in the M. xanthus genome. To accomplish this, we 

carefully examined the entire genome using a combination of pfam [202,203], COG [213] GO 

[214] and GenBank [208]. The results are included in Figure 3.1. Once we had established the 

number, type, and distribution of ABC transporter component ORFs, we performed insertion-

disruption mutagenesis on all 192 of them. Among these were 12 that contain an ATPase 

domain and a TMC, and three that contain a TMC and an SBP. The rest contain only one of the 

three types of components, either an ATPase, a TMC, or an SBP. A total of 139 of the 192 

ORFs were predicted to be coding for components of 57 complete ABC transporters, 20 

importers and 37 exporters, based on our observation that they clustered within operons. The 

remaining 53 ORFs either form operons incomplete for an ABC transporter, or they are located 

alone in the genome. 

 

Mutagenesis results and phenotypic assays: We succeeded in creating 180 ABC transporter 

insertion-disruption mutant strains. For the remaining 12, we made three independent attempts, 

and each time no viable colonies were produced. We labeled all of these 12 ABC transporter 

ORFs “putative” essentials, since we did not perform a standard complementation assay to 

confirm that they were essential. It is important to note that this number is close to previous 

estimations of the percent of essential genes in M. xanthus [215]. All of the assays we 

performed for this study used methods for measuring mutant phenotypes that are considered 

standard for M. xanthus laboratory research. Each assay focused on either swarming or 

development, and we examined a total of eight phenotypic traits: (1) and (2) the expansion rate 

of a swarm on both 0.4% (soft) and 1.5% (hard) agar surfaces, taken as a rough estimation of 

Social and Adventurous motility systems, respectively; (3) the time required for development 
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(timing); (4) the opacity of aggregates as an indication of density (grayness); (5) the circularity of 

aggregates (circularity); (6) the number of aggregates in one unit area (count); (7) the average 

size of aggregates (area); and (8) the efficiency of sporulation (sporulation). We refer to each 

phenotypic trait using the above name in parentheses. For three of these variables (circularity, 

grayness, area), we quantified what is typically reported as a qualitative observation, but each 

one measures an aspect of the M. xanthus phenotype that is frequently described [210]. Figure 

3.2 illustrates how each assay is related to the M. xanthus phenotype and lifecycle. 

 

Distribution of phenotypic variation: For each of the phenotypic assays, data from wild type and 

the 180 mutant strains were listed in decreasing order according to their resultant means on the 

x-axes and the experimental values for each phenotypic trait on the y-axes (Figure 3.3). 

Therefore, the order of mutant strains is different for each graph. The range of phenotypic 

variation is different across the traits: e.g., sporulation ranges from 0 to 270% of wild type, soft 

and hard expansion are from 10 to 130% and 50 to 125% of wild type, respectively, and count is 

from 0 to 4-fold greater than wild type. Nonetheless, the distributions of all eight phenotypic 

traits in Figure 3.3 have at least four notable features in common: (1) all display a continuous 

distribution; (2) the majority of mutant strains fall within a confidence interval one standard 

deviation about the mean; (3) wild type is always within this confidence interval, usually near the 

middle; (4) mutant strains with “outlier” phenotypes (i.e., ones located where the slope sharply 

changes at either end) always represent a small percentage of the overall population. To 

identify mutant phenotypes that are statistically distinguishable from wild type, we used a 

randomization test. Because the distributions of each phenotypic trait are continuous, it is 

difficult to establish meaningful thresholds that can be used to distinguish a set of strains as 

having one or more “mutant phenotypes.” We used a resampling strategy to compare each 

strain to wild type, and used an adjusted P value to control for false discovery rates. Using this 
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method, we identified the number of mutant strains that are different from wild type for each 

phenotypic trait—area: 39, circularity: 91, grayness: 46, hard: 37, soft: 59, and sporulation: 62. A 

total of 86% of strains (154/180) exhibited at least one phenotypic trait that was statistically 

distinguishable from wild type. 

 

Measuring pleiotropy among phenotypic traits: A total of 93 mutant strains (52%) exhibited 

some degree of pleiotropy, with at least two phenotypic traits statistically distinguishable from 

wild type; for example, strain MXAN_1097 exhibited both a slow rate of expansion on soft agar 

(soft) and reduced sporulation efficiency (sporulation). To characterize pleiotropic effects in M. 

xanthus, we examined correlations among phenotypic traits using Spearman’s rank correlation 

coefficient for all 180 mutant strains. For several strains, we noticed a large variation in the area, 

grayness, and/or circularity of aggregates within the same swarm. We therefore analyzed 

means and standard deviations separately for these three traits. Figure 3.4 shows the 

correlation between the now eleven traits (with area, circularity, and grayness reported as both 

average and standard deviation “_std”). Each trait exhibits several positive or negative 

correlations. Some support common sense hypotheses or confirm long-standing empirical 

observations. For example, soft and hard expansion exhibit a strong positive correlation with 

each other, and timing exhibits a strong negative correlation with both soft and hard expansion, 

thus indicating that slower swarm expansion is linked to slower development. Other correlations 

may seem less obvious; for example, sporulation exhibits no correlation with soft or hard 

expansion, or with most of the phenotypic traits associated with development, except for count 

and circularity. In addition to this zero-order correlation, we also calculated the partial correlation 

coefficients between each pair of phenotypic traits, and found that they decreased in some 

cases (Figure 3.4, upper panels, inside parenthesis). In particular, five pairs of phenotypic 

traits associated with development exhibit decreased partial correlations: timing and count, 
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timing and area, timing and grayness, timing and circularity_std, area and grayness_std. For 

each of the three phenotypic variables represented by both average and standard deviation 

(area, grayness and circularity), each average still exhibits a correlation with its corresponding 

standard deviation, and all three standard deviations are still correlated with each other. 

Sporulation correlates only with count, area, and area_std, but is no longer correlated with 

circularity. Interestingly, the partial correlations associated with soft and hard expansion are 

diminished significantly. Neither soft nor hard expansion is correlated with area or area_std. 

More surprisingly, soft and hard expansion are no longer correlated with each other, which 

indicates that they are more independent with respect to phenotype than may have been 

previously assumed. Furthermore, soft and hard expansions now exhibit different correlations; 

count correlates only with soft, while grayness and circularity correlate only with hard. To 

summarize, partial correlation analysis reveals that the phenotypic traits associated with 

development are more closely correlated with each other (11 of 28 with P < 0.05, or 36%) than 

with phenotypes associated with swarming (soft and hard expansion) (5 of 18 with P < 0.05, or 

28%). Also, the correlation of other phenotypes with soft and hard expansion shows patterns 

different from their zero-order correlations, and they are also more different from each other, 

with soft exhibiting a correlation with only two of 10 phenotypic traits, namely timing and count. 

 

A comparison of wild type and mutant development: A quantitative description of swarm 

patterns that form during development has been previously reported using time-lapse 

microcinematography images [216-218], but these kinds of observations have not been reported 

for a collection of mutants. Here, we used the four phenotypic traits extracted from our images 

(count, area, grayness, and circularity) to describe the dynamics of development for the 180 

ABC transporter mutant strains over 5 days. Changes in each of these four traits are plotted in 

Figure 3.5, and they are compared to 24 independent replicates of wild type. For the five time 
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points of the four traits shown in Figure 3.5, the averages and standard deviations of all the 

mutant strains are actually very similar to the replicates of wild-type, although almost all of the 

outliers are mutant strains. 

 

3.4 Discussion 

From these data and analyses we have made several observations that apply to at least the 180 

single gene disruption mutants in the M. xanthus ABC transporters. Our observations can be 

summarized in the following statements: (1) By combining several quantitative measurements 

and applying randomization tests, 155 out of 180, or 86% of mutant strains were observed to 

exhibit at least one phenotypic trait that could be statistically distinguished from wild type. (2) 

The average wild type phenotypic trait closely follows the average for all 180 mutant strains, so 

that wild type was always within the confidence interval about the mean, and never represented 

an outlier for any phenotypic traits. (3) Phenotypic traits are not independent, so that observing 

one changed trait in a mutant strain alters the probability that other traits will also be changed, 

and this significantly impacts what should be considered an improbable phenotype. 

The impact of the first observation is the most obvious. The percent of strains that exhibit 

mutant phenotypes becomes higher when more than one phenotypic trait is included, the 

observation’s comparison to wild type is quantitative, and setting the cutoff between what is wild 

type and what is mutant is not done completely arbitrarily, but instead is done using well-known 

statistical procedures. By altering our experimental design and analysis accordingly, we were 

able to increase the percent of distinguishable mutant strains in M. xanthus to 86%, and this 

was using only a subset of standard M. xanthus phenotypic assays. These findings directly 

address the question of why previous studies have detected few M. xanthus mutant strains with 

distinguishable phenotypes: in part, it is because the limitations of our assays and analysis did 

not capture more subtle phenotypic changes. 
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The second observation affects how we view each mutant strain’s phenotypic traits and, 

by extension, the relationship between these standard laboratory assays and any real 

consideration of fitness. We disrupted 180 ORFs with no pre-selection for a specific phenotype, 

and found that between 3 and 26% of mutant strains performed “better” than wild type for any 

trait. This means that wild type is almost always somewhere toward the middle of the 

confidence interval about the mean, and this observation alone provides compelling evidence 

that fitness should not be defined through trait maximization, and assay results should be 

analyzed accordingly. Otherwise, by assigning wild type as “100%” of any phenotypic trait and 

then selecting only mutant strains that perform less than this arbitrary 100%, we will fail to 

distinguish a significant number of mutant phenotypes and inadvertently bias our results. 

The impact of the third observation relates to the identification of outlier mutant 

phenotypes. If two phenotypic traits (A and B) exhibit a high degree of pleiotropy, so that for 

every mutant strain that exhibits a change in A there is always a change in B, then it is assumed 

that A and B must share some molecular underpinnings. In such a case, a strain that exhibits a 

large change in A with no change in B would be exceptional, and might be of particular interest 

to someone studying either trait. For example, M. xanthus aggregation and sporulation are 

correlated, so that mutant strains which fail to aggregate are much more likely to fail at 

sporulation. Therefore, a mutant strain such as MXAN_6671, that has been shown to sporulate 

without aggregating, represents a very interesting outlier mutant strain (Welch lab, unpublished 

data∗). ∗The gene MXAN_6671 (sglK) has been previously disrupted using transposon insertion 

[219,220] and was described as having defects in aggregation and a lower sporulation efficiency 

than wild type (5%). In our laboratory, the disruption mutant displayed defects in aggregation 

and nearly wild type sporulation efficiency. 

For a model organism such as M. xanthus, initial estimations of the dimensionality and 

scale of the phenome depend on the identification and characterization of outlier strains, since 



42 
 

sets of phenotypic traits exhibited by these exceptional strains represent practical boundary 

values. Current definitions for the phenome of an organism are imprecise, but if the word 

“phenome” has any valid scientific meaning, it cannot be defined as infinite. Perhaps it would be 

logical to think of boundary values for a phenome as sets of phenotypic traits that are so unlikely 

to occur that their probability approaches zero. Therefore, by compiling sets of traits using 

standard assays for hundreds of M. xanthus mutant strains, we are just beginning to populate a 

map of the M. xanthus phenome. In this map, each independent phenotypic trait represents one 

full “dimension” of the phenome, and two correlated traits represent more than one and less 

than two full dimensions. 
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CHAPTER 3 

FIGURES 

 

Fig. 3.1 Distribution of ABC transporters in the M. xanthus genome. The innermost black ring 

represents the M. xanthus chromosome. Blue bars in the outer ring represent the genes 

transcribed in the clockwise direction (+ strand) while gray bars in the inner ring represents the 

genes transcribed in the counterclockwise direction (− strand). Colored dots represent operons 

containing coding genes for ABC transporters. The location of dots indicates that they are either in 

the + strand (outside blue ring) or in the − strand (inside black ring). Cyan and salmon colored dots 

represent full operons coding for complete exporters and importers, respectively. Green colored 

dots represent incomplete and orphan operons. 
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Fig. 3.2 Phenotypic traits and phenotypic assays. We tested eight phenotypic traits spanning 

the two parts of the M. xanthus life cycle: swarming (top) and development (bottom). Two data sets 

related to swarming were obtained under rich media using either soft (0.4%) or hard (1.5%) agar 

as rough measurements of S and A motility, respectively. Images of the two yellow colonies are 

swarms after 3 days on both agar concentrations. Six data sets related to development were 

obtained under nutrient starvation. The six panels with times listed above are images of wild type 

development. Sporulation is also related to development, as well as cell differentiation. 
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Fig. 3.3 Distribution of phenotypic data: area (A), circularity (B), grayness (C), count (D), 

timing (E), expansion on soft (F), and hard agar (G), and sporulation efficiency (H). The y-

axis represents the measurement for each phenotypic assay. Bars on the x-axis represent 180 

mutants and wild type. Green bars represent mutant strains, while red bars represent wild type. 

Box plots represent two middle quartiles. Error bars represent the top and bottom interquartile 

range for each strain. Yellow dash lines represent the mean ± SD (top, bottom), and median for 

wild type. In (D,E), no error bars are present due to the nature of our measurements (for details, 

please see Materials and Methods). 
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Fig. 3.4 Correlation of phenotypic variables. The histogram in the diagonal panels shows the 

distribution of each phenotypic trait. The value of Spearman's rank correlation is the first number shown 

above the diagonal. The number inside the parenthesis is the Spearman's rank partial correlation. The 

background color above and below the diagonal corresponds to the degree of correlation, where deeper 

gray indicates a higher correlation. Significance correlations are indicated with asterisks: **0.01, *0.05. 
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Fig. 3.5 Phenotypic traits of wild type and mutant aggregates during development. (A–

D) Represent the quantitative traits for fruiting body development: (A) count, (B) area, (C) grayness, 

and (D) circularity. At each time point, the box represents the middle 50% of the data points, together with 

the median (thick line in each box) for the 180 mutants or DK1622 wild type replicates. Error bars 

represent the 1.5 interquartile ranges. Small circles above and below each error bar represent outliers. 
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CHAPTER 4 

INTER-LABORATORY EVOLUTION OF WILD TYPE SUBLINES 

 

The material in this section has been published in: 

Bradley, M.D., Neu, D., Bahar, F., & Welch R.D. Inter-laboratory evolution of a model organism 

and its epistatic effects on mutagenesis screens. Sci. Rep. 6, 38001 (2016). 
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4.1 Project summary: 

Laboratory evolution is inevitable for a model microbial system like Myxococcus xanthus. 

Mutations that have a less than catastrophic impact on the wild type phenotype of M. xanthus 

will likely go unnoticed. Over time, these mutations might cause deviations in the phenotypes of 

inter-laboratory wild type sublines. 

We have carefully measured the phenotypic profiles of DK1622 obtained from nine 

different laboratories and report considerable differences in aggregate number, aggregate size, 

and viable spore counts, with the developmental phenotype of two strains representing both 

extremes. Whole genome sequencing revealed few genomic differences among all sublines, 

supporting the hypothesis that a few naturally occurring mutations can have a significant impact 

on phenotype. Using resequencing and common garden characterizations, our first aim was to 

convert a strain with a mean developmental phenotype to resemble a subline with an extreme 

developmental phenotype by introducing the mutations identified by our variant screen. Our 

second aim was to identify an example of naturally occurring epistasis, so that constructing an 

identical mutation in two different sublines yields a significantly different phenotype. 

 

4.2 Materials and Methods: 

Wild type sublines: The first M. xanthus isolate moved into the laboratory was strain FB [221]. 

DK1622 is a derivative of FB that swarms on nutritive media and develops on starvation media 

[222]. In 2014, we received DK1622 from eight other laboratories that study M. xanthus as a 

model organism. Each subline was received on nutrient agar, grown in nutrient broth, 

concentrated, and preserved as a frozen stock. Our laboratory subline (S8) was cloned from the 

Kaiser Strain Archive at Stanford University in 2003. 

 

Growth conditions: M. xanthus cells were cultured on CTTYE [223] + 1.5% agar plates and 

incubated at 32°C. Liquid cultures were prepared in agitating CTTYE liquid media. Media was 
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supplemented with 40μg/mL kanamycin sulfate for insertion-disruption mutants. Liquid cultures 

were harvested at a density of 5×108 cells/mL and concentrated tenfold for characterization 

assays. Cells were washed with 5mL TPM buffer [224] before performing development assays. 

 

Strain characterization and analysis: DK1622 sublines were characterized as previously 

described [225]. Briefly, A and S expansion rates were measured by spotting sublines onto 

CTTYE + 1.5% (hard) and 0.4% (soft) agar plates. Growth rates were determined by dividing 

the swarm diameters by growth hours. Five temporally independent replicates were conducted. 

Aggregation assays were performed by spotting cells onto TPM + 1.5% agar. Images of 

resulting aggregates were captured after 24 hours using 20× brightfield microscopy and SPOT 

software (SPOT Business Systems). Resulting aggregates were manually counted. Sporulation 

assays were performed by spotting cells onto TPM + 1.5% agar, incubating for 120 hours, and 

scraping spore containing aggregates off the substrate. Cells were sonicated, diluted, and 

plated onto CTTYE. The resulting colonies are presumed to arise from a single germinated 

spore, and colony counts represent the number of viable spores (i.e. spores that survive heat 

and sonication). Three temporally independent replicates were conducted for both development 

assays. 

 

Multiplex sequencing: Genomic DNA was extracted and purified using Zymo Universal Quick-

DNA and DNA Clean & Concentrator miniprep kits (Zymo Research). Library preparation was 

performed using Nextera XT dual indexing kit (Illumina) according to the manufacturer’s 

instructions. Fragmented DNA libraries were verified with a 2100 Bioanalyzer (Agilent) and 

sequenced on a NextSeq500 pyrosequencer (Illumina) at the University of Pittsburgh Children’s 

Hospital Rangos Genomics Facility. 
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Genome assembly and variant detection: CLC Genomics Workbench (v8.0, Qiagen) was used 

to filter and assemble reads: Short reads (<60 base pairs), reads containing ambiguous 

nucleotides (“N”), low quality reads, duplicate reads (artificially inflates mapping coverage), and 

homopolymers were removed. Reads were assembled against the M. xanthus DK1622 

reference genome [226] (NCBI accession number: NC_008095). Fixed variants were identified 

by restricting candidates to a frequency of ≥95% and a minimum sequencing depth of 15x. 

 

Mutant strain construction: Targeted insertion-disruption mutations were performed as 

previously described [5]. Briefly, fragments of target genes were ligated into a pCR2.1 TOPO 

vector (Thermo Fisher) containing a kanamycin resistance selective marker, and replicated in 

TOP10 E. coli host cells (Invitrogen). Plasmids were integrated into the M. xanthus chromosome 

via homologous recombination [227]. Plasmid integration was confirmed by PCR. 

 

Data analysis: Statistical comparisons between subline phenotype data sets were made using a 

one-way ANOVA (α = 0.05), followed by post hoc analysis with Tukey’s multiple comparisons 

test (TMC) with multiplicity adjusted P values. Aggregation data were log-transformed prior to 

analyses to achieve a normal distribution. 

 

4.3 Results 

Characterization of subline phenotypes in a common garden: Phenotype is considered the 

product of two variables, genotype and environment. To minimize environmental effects, all 

characterization experiments were performed under identical conditions in the same laboratory. 

All sublines were grown in aliquots from the same media preparations, each assay was 

performed on all sublines together using the same reagents and equipment, and images of each 

subline were acquired at the same time. These conditions defined our “common garden.” 
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A set of representative swarming images for each subline reveal clear differences in 

several qualitative aspects of phenotype (Fig. 4.1a); a side-by-side comparison of swarm 

expansion on hard agar (Fig. 4.1a, top row) reveals differences in swarm translucency and 

edge flare patterns. For example, sublines S5 and S6 are more translucent than S2 and S8, and 

the swarm edge flares are more pronounced in S2 and S8 than in S5 and S6. The same type of 

comparison on soft agar (Fig. 4.1a, middle row) reveals a range of swarm shapes, edge flare 

patterns, and color gradients extending from the center of the swarm to its edge. Sublines S3 

and S5 are nearly circular in shape with a smooth swarm edge and a steep color gradient from 

dark yellow to translucent, while S4 and S8 are nearly circular in shape with a rough swarm 

edge consisting of numerous small and directional flares and a more subtle color gradient. 

Subline S6 is irregular in shape with a rough swarm edge consisting of a variety of flare shapes 

and an inconsistent color gradient, while S9 is circular in shape with long pronounced edge 

flares and no color gradient. A similar range of phenotypes is revealed by a side-by-side 

comparison of development on starvation agar (Fig. 4.1a, bottom row). Subline aggregates 

range from small (S5) to large (S4), some of the sublines appear to have a greater distribution 

of individual aggregate sizes (S1), and some appear to have a dense ring of aggregates at the 

outermost edge (S1, S2, S4, S5, S8). 

This qualitative characterization of sublines in a common garden reveals obvious 

differences, but their description is subjective, and so it is impossible to rank them using only 

this information. To achieve such a ranking, we selected four quantitative assays to represent 

the phenotype of DK1622 at both stages of its life cycle (Fig. 4.1b). Two swarming assays are 

used to measure changes in swarm diameter on hard and soft nutrient agar, and are considered 

estimates of the expansion rate for A and S motility systems. Two development assays are used 

to measure the number of aggregates and the number of spores that form on starvation agar, 

and are considered tests of self-organization and cellular differentiation. These four assays are 

commonly used by the research community to compare the phenotypes of mutant M. xanthus 
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strains, using DK1622 as a wild type control. Because all of the strains in this study are DK1622 

there can be no wild type control, and thus subline assay data are arranged by increasing 

means for each of these four traits. 

The sublines differed significantly from one another in each of the four assays (Table 

4.1), indicating that there are real and measurable differences between sublines. Because we 

observed a continuous distribution of means in each assay, we focused on the sublines at the 

phenotypic extremes, which we hereafter refer to as “outlier” sublines. We deemed a subline to 

be an outlier if its mean ± SD falls beyond one standard deviation of the total population mean 

for that assay. Based on this criterion, we identified two outliers with respect to development 

traits: S1 is an outlier for sporulation, and S9 is an outlier for both aggregation and sporulation. 

S9 is also an outlier with respect to S motility. To determine if the non-outlier sublines are 

different from each other, we repeated the analyses with S1 and S9 excluded, and the results 

remain significant for all traits except S motility (Table 4.2). 

 

Subline variant screen: Each subline was sequenced and assembled using the original closed 

DK1622 genome sequence [226] as a scaffold (NCBI accession number: NC_008095). An 

average of 8.1 million reads covering >99.4% of the scaffold genome were mapped for each 

subline. A total of 29 variants, consisting of 28 single nucleotide polymorphisms (SNPs) and one 

nucleotide deletion were identified among the nine sublines (Table 4.3). Any variant that 

occurred in two or more sublines was counted as one variant (i.e. the overlapping SNPs found 

in S2, S4, S5, and S8 were counted only once). Of the 28 SNPs, eight are transitions and 20 

are transversions. Twenty-one variants (72%) are located within putative Open Reading Frames 

(ORFs), 11 of which are non-synonymous (i.e. they alter the protein coding sequence of their 

constituent ORF). Eight variants are found within noncoding regions. No evidence of 

chromosome structural variation was found in any of the sublines using the variant detection 

parameters described in Materials and Methods; a sampling of possible insertions and deletions 



54 
 

with scores below the stated threshold were examined, and all were confirmed to be false 

positives by PCR (data not shown). 

One part of the subline variant screen is in agreement with the common garden 

characterizations and functions as a useful control; sublines S2 and S4 are identical with 

respect to genotype, and they do not vary to a significant degree with respect to the four 

quantitative assays used in this study (P ≥ 0.818 for each trait). In addition, there are two results 

from these resequencing data that are notable, even though they are tangential to the primary 

focus of this study: First, Velicer et al. previously reported five variants in a derivative of the S3 

subline in 2006 [228]. These five variants were independently identified in this study along with 

three more, which may indicate that S3 has continued to accumulate mutations since 2006 or 

that the higher sequencing depth in this study was able to identify three variants that were not 

identified in the previous study. Second, two variants, a thymine-to-guanine transversion at 

position 830180 and a thymine-to-cytosine transition at position 7101832 are in all of the 

sublines. Because some of these sublines have been isolated from each other for more than 30 

years, while the reference genome sequence was completed just over ten years ago, the 

simplest explanation for these two variants is that they represent sequencing errors within the 

reference genome. 

 

Targeted mutagenesis: S1 and S9 represent outlier sublines on different ends of the 

development rankings (Fig. 4.1b); S1 produces fewer spores than any other subline and is 

among the group of sublines (S1, S2, S3, and S4) that produce the fewest aggregates, whereas 

S9 produces more aggregates and more spores than any other subline. However, despite these 

differences, both sublines have functioned effectively as wild type controls for years in their 

respective laboratories. 

The non-synonymous variants from either S1 or S9 are reasonable candidates for 

causing each subline’s outlier phenotype because they alter a protein’s sequence, and therefore 
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may negatively affect its function. If it does, then disrupting the ORFs that harbor these variants 

in a more “average” non-outlier subline may shift its phenotype to resemble the phenotype of 

the corresponding outlier subline. To test this, we selected S8 to represent the average subline; 

S8 has a nearly average aggregate count, and its spore count is significantly different from both 

S1 (P < 0.001) and S9 (P = 0.023). 

We constructed mutant strains containing single ORF insertion-disruptions in S8 for 

each of the ORFs harboring the three non-synonymous variants specific to the outliers S1 

(located in MXAN4601 and MXAN4672) and S9 (located in MXAN7041); these new mutant 

strains are hereafter referred to as S8_4601, S8_4762, and S8_7041 respectively. Aggregation 

and sporulation assays were performed on each of the strains, and results were compared to 

both the parent subline (S8) and the corresponding outlier subline (either S1 or S9). For each 

mutant strain, the change in phenotype is reported as a percent change compared to the parent 

subline: S8_4601 exhibits a 33% reduction in aggregate count, which is significantly lower than 

S8 (P = 0.005) and matches its corresponding outlier subline, S1 (P = 0.863) (Fig. 4.2a). 

S8_4762 exhibits a 36% reduction in spore count, which is significantly lower than S8 (P = 

0.021) and is intermediate between S8 and its corresponding outlier subline, S1 (Fig. 4.2b). 

Spore count for S8_4601 and aggregate count for S8_4762 did not differ from S8 to a significant 

degree (data not shown). S8_7041 exhibits a 238% increase in aggregate count, which is 

significantly higher than S8 (P < 0.001) and matches its corresponding outlier subline, S9 (P = 

0.981) (Fig. 4.2c). S8_7041 also exhibits a 70% increase in spore count, which is significantly 

higher than both S8 (P = 0.001) and its corresponding outlier subline, S9 (P = 0.026) (Fig. 4.2c). 

It is important to note that while the sporulation phenotypes of S8_4762 and S8_7041 do 

not exactly match that of their corresponding outlier sublines, they are both different from their 

parent subline in a way that moves their phenotypes closer to their corresponding outlier 

sublines. In other words, S8_4762 produces significantly fewer spores, which is more like S1, 

and S8_7041 produces significantly more spores, which is more like S9. These data support the 
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idea that disrupting ORFs harboring these unique outlier variants in a more phenotypically 

average subline would shift its phenotype towards that of the outlier subline. These data also 

support the idea that the genetic variants in the outlier sublines are likely loss-of-function 

mutations, because if one of the variants were gain-of-function, then disrupting its 

corresponding ORF would likely have driven the phenotype of the average subline away from 

the phenotype of the outlier subline. In particular, the alanine-to-proline substitution in 

MXAN7041 of S9 almost certainly has a detrimental impact on its protein structure and function, 

due to severe conformational constraints imposed on it by proline. 

Results from the M. xanthus subline resequencing and analysis provide strong evidence 

for microevolution, and the purpose of our mutant analysis thus far has been to identify the 

candidate sublines and candidate ORFs most likely to provide strong evidence of epistasis. For 

the candidate sublines, we chose the average subline S8, together with the two phenotypically 

opposite outlier sublines S1 and S9. For the candidate ORFs we chose MXAN4601 and 

MXAN7041 because, at least for S8, their disruption significantly changes the results of the two 

most common development assays in opposite directions, so differences in their impact are 

easy to distinguish. To test for epistasis, one of the variant ORFs specific to each outlier subline, 

in this case MXAN4601, which is specific to S1, and MXAN7041, which is specific to S9, was 

disrupted in the opposing outlier subline. In other words, MXAN4601 was disrupted in S9 to 

create the mutant strain S9_4601, and MXAN7041 was disrupted in S1 to create the mutant 

strain S1_7041. The development phenotypes of both these strains were then compared to the 

development phenotypes of the same ORF disrupted in S8 (Fig. 4.3). 

Differences in phenotype between a mutant strain and its parent subline are reported as 

a percent change compared to the parent subline: S9_4601 exhibits a relatively large reduction 

in aggregate count (81%) and spore count (45%) when compared to S8_4601, which exhibits a 

small reduction in aggregate count (33%) and no significant change in spore count (Fig. 4.3a). 

Most notably, S1_7041 exhibits no significant change in either aggregate or spore count, 



57 
 

whereas S8_7041 exhibits a large increase in both (238% and 70%, respectively) (Fig. 4.3b). It 

is important to note that the same construct was used to disrupt MXAN7041 in sublines S1 and 

S8; S1_7041 and S8_7041 have the same disruption genotype, and only differ by the naturally 

occurring variants listed in Table 4.1. Clearly, the variants between sublines S1 and S8 are 

having an epistatic effect on the disruption of MXAN7041, enough that this ORF would be 

annotated as “involved in development” in S8, but not S1. 

 
 

4.4 Discussion 

Several previous studies have explored inter-laboratory microbial evolution. In 2007, 

Schacherer et al. identified nonrandom mutational events among several closely related 

laboratory sublines of Saccharomyces cerevisiae [229]. In 2008, Srivatsan et al. resequenced 

several Bacillus subtilis sublines and identified a previously unknown metabolism defect [230]. 

Finally, in 2010, Klockgether et al. identified discordant genotypes of the widely studied 

Pseudomonas aeruginosa strain PAO1 [231]. To the best of our knowledge, this is the first 

study to examine the epistatic impact of microevolution on a microbial model organism, and to 

demonstrate that it was sufficient to change the initial annotation of a gene with respect to its 

biological function. 

There are two mechanisms that could affect the evolution of M. xanthus in the 

laboratory. The first is genetic drift, which would have a stochastic effect on each subline’s 

genome and is almost certainly responsible for some of the genetic variation between sublines. 

The second is selection, which probably varies between laboratories and affects each subline 

differently. Selection may occur when cells are grown in liquid culture, favoring faster growing 

cells. It may occur when cells are grown as swarms on nutrient agar plates because inoculants 

for liquid cultures are taken from the swarm edge, favoring highly motile cells that may be 

overrepresented there. It may occur when cell cultures are made into frozen stocks, favoring 
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cells that are better able to resist lysis when frozen. Certainly, purifying selection is always 

occurring, so that any cells with mutations that have a deleterious impact on growth or survival 

are removed. The variants in the nine M. xanthus sublines most likely were produced through 

some combination of these factors: drift, purifying selection, and selective pressures that were 

slightly different in each of the laboratories. 

Resequencing of the nine M. xanthus DK1622 sublines clearly demonstrated 

microevolution, given that DK1622 has a single origin. Rather than randomly searching for an 

example of epistasis from that point, we decided to hedge our bets. This is why we singled out 

the two outlier sublines from the common garden, why we selected the three candidate ORFs 

we deemed most likely to be responsible for the sublines’ outlier phenotypes, and why we finally 

settled on the two ORFs whose disruption caused the strongest opposite changes in phenotype. 

In this study, our goal was to identify a statistically significant and entirely unambiguous 

example of naturally occurring epistasis, and we believe that we identified at least one: S1_7041 

versus S8_7041. Future studies that employ a broader mutagenesis approach will likely 

produce an “epistasis distribution”, which may provide insight into the role of epistasis in the 

annotation of the M. xanthus genome. 

The practical impact of epistasis on determining biological function in M. xanthus is 

evident in these results. Depending on which laboratory constructed the initial disruption, the 

ORF MXAN7041 may or may not have been identified as important for development. Disrupting 

MXAN7041 in S8 causes a more than 200% increase in aggregation and an almost 100% 

increase in sporulation, whereas disrupting that same ORF in S1 results in no change to either 

aggregation or sporulation. If a screen were performed for aggregation and sporulation mutants, 

S8_7041 would be identified as a gain-of-function mutation, whereas S1_7041 would not. This 

initial characterization would then guide all further experiments, as well as the annotation of this 

ORF with respect to its biological function. 
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Epistasis is a fundamental and frequently observed evolutionary phenomenon; 

thousands of examples have been identified [232-233], and yet our ability to predict when and 

how epistasis will manifest remains very poor, and shows no real sign of improving. Perhaps 

this is because established evolutionary principles, like epistasis, seem to contradict the current 

interaction-network-as-a-circuit functional genomics paradigm, and this has produced a form of 

cognitive dissonance. As a result, a concept like gradual microevolution and epistasis can seem 

both obvious and confounding.    

It is important to note that our findings are not from a controlled evolution project 

designed to demonstrate that gradual microevolution and epistasis could occur in isolates of a 

model bacterium when separated by time and distance. Rather, gradual microevolution and 

epistasis has occurred in M. xanthus wild type DK1622 laboratory stocks whose genomes were 

assumed to be identical and static. For the past ten years, the interpretation of mutant M. 

xanthus phenotype data has been based on the implicit assumption that the 2005 published 

reference sequence was the genome sequence for DK1622 in every laboratory that studied M. 

xanthus. This assumption is false, at least for the sublines in this study, all of which have at 

least one or two variants that are different from the reference. It seems very likely that this 

occurrence in M. xanthus is one example of a common phenomenon that is also happening in 

other model organisms.
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CHAPTER 4 

TABLES & FIGURES 

 

 

Table 4.1 Summary of ANOVAs. 

     A one-way analysis of variance (ANOVA) was performed for 

each quantitative trait. Degrees of freedom (DF) are calculated from 

the number of sublines (nine, numerator) and replicate experiments 

(three or five, denominator). Aggregate count data were normalized 

by log-transforming prior to analysis. Significant differences in 

subline means are indicated by P < 0.05. 
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Table 4.2 Summary of ANOVAs with outliers removed. 

     A one-way analysis of variance (ANOVA) was performed for each 

quantitative trait with sublines S1 and S9 removed from the analysis. 

Degrees of freedom (DF) are calculated from the number of sublines 

(nine, numerator) and replicate experiments (three or five, 

denominator). Aggregate count data were normalized by log-

transforming prior to analysis. Significant differences in subline 

means are indicated by P < 0.05. 
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Table 4.3 Subline variant screen. 

     Nt, nucleotide; Nc, noncoding; AA, amino acid; Δ, deletion; Syn, synonymous; Fs, frameshift. Sublines 

S2 and S4 are listed together because they have identical variants. 
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Fig. 4.1 Characterization of DK1622 subline phenotypes in a common garden. The nine sublines were 

characterized for growth and development: (a) Qualitative comparisons of A motility (top), S motility (middle), and 

aggregation (bottom); Black arrows indicate pronounced edge flares; blue arrows indicate stunted edge flares; 

red arrows indicate steep color gradients from the swarm center to the edge; brown arrows indicate directional 

edge flares; the white arrow indicates an irregular swarm shape; the orange arrow indicates long edge flares; 

purple arrows indicate sublines that have dense outer rings of aggregates. (b) Quantitative comparison of A & S 

motility, aggregation, and sporulation. The x-axes are ordered by increasing mean values. Error bars represent ± 

SD for each subline. The dashed line represents the population mean. The gray bar represents ± SD of the 

population mean.  
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Fig. 4.2 Characterization of S8 mutant strains. Insertion-disruption mutations constructed in S8 targeting ORFs 

MXAN4601, MXAN4762, and MXAN7041: The outlier subline is shown in gray; the parent subline is shown in blue; 

the mutant strain is shown as a cross of blue and gray. (a) Aggregate counts for S1, S8, and the mutant strain 

S8_4601. (b) Spore counts for S1, S8, and the mutant strain S8_4762. (c) Aggregate and spore counts for S9, S8, 

and the mutant strain S8_7041. Significance was determined using Tukey’s multiple comparison test: * P < 0.05; ** 

P < 0.01; *** P < 0.001. 
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Fig. 4.3 Epistasis in S1, S8, and S9 mutant strains. Insertion-disruption mutations constructed in S1, S8, and 

S9 targeting ORFS MXAN4601 and MXAN7041: The parent sublines are shown as blue or red; the mutant strain 

specific to each parent subline is shown as a cross of blue and gray or red and gray. (a) Aggregate and spore 

counts for MXAN4601 disruptions in S8 and S9. (b) Aggregate and spore counts for MXAN7041 disruptions in S8 

and S1. (c) Representative aggregate images of mutant strains. Significance was determined using Tukey’s 

multiple comparison test: * P < 0.05; ** P < 0.01; *** P < 0.001. 
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CONCLUDING REMARKS 

 

Populating a G2P map is an important step towards understanding the most basic question in 

biology - what makes two organisms, A and B, different. Tremendous progress in the field of 

genetics has been made by studying genes in isolation, but genes by themselves do not cause 

a phenotype; genes require a suitable environment and multiple interactions between many 

other elements (such as gene-gene or network-network interactions) to produce an observable 

trait. With respect to phenotype, genes are best described as predictors rather than 

determinants. 

The primary focus of this work has been to populate the genotype and phenotype 

spaces of single gene mutant strains and pseudo-isogeneic wild type sublines of M. xanthus. 

Through a series of rigorous characterization experiments, we highlight the need for a 

statistically derived definition of phenotype combined with a more routine whole genome 

resequencing of genetic backgrounds. The conclusions presented here are possible because of 

our large mutant strain library, the availability of multiple reference strains, and a sequenced 

reference genome. 



67 
 

APPENDICES 

 

Appendix I. Primers to construct ABC transporter mutants (Chapter 3). 

ORF Forward Primer Reverse Primer 

MXAN_0035 CTTCTTCCCCAACATCACCC GTCTCCAGCACCTGTCGTGT 

MXAN_0036 CTACCTGATGTCAGTGGCCC GGAGACGAAGAGCAGCTCAC 

MXAN_0037 GCTGCTGATGTTCCAGGAG CATGGGCAGGTGGACTTC 

MXAN_0107 TCTCGAAGTTCCCCTGGAC GGTTGATGGCGAAGTCGT 

MXAN_0108 TCCGACTGCTTCCAGGTG CTCCTCCAACGGCTTCAG 

MXAN_0146 CATCCAGGTCTCCGCCAC AGGACGATGGGATTCAGGTC 

MXAN_0249 CTCGTGTACCACACGGAGTC CGATGATGAGTCCGAACACC 

MXAN_0250 TATGACGACATGGACCTGGA GTCACGACGATGGAAGTGC 

MXAN_0251 GACGGGCATCGTCTTCTC GTCCTGGCCGTAGACGAG 

MXAN_0553 CGTACCTGCACTTCATCGTG GTTGAAGAGGCTGACGGTGT 

MXAN_0554 GTCTTCGGCAAGGACCTG CTCCACGTAGGTGAGGGTG 

MXAN_0559 CAGGAGCCACAGCTCGAT CTCTCCGACTTCTCCTCCAG 

MXAN_0596 TGTGGCAAGTCAACACTGCT ATGAACCGGGTGACGAAGT 

MXAN_0597 TCGACGTGTACCCCGAGT GCGTTGAGCTTCACCATGT 

MXAN_0622 ATTGGCTACTTCAGCCAGGA CTGCTGCTGCTTCTCGTTC 

MXAN_0629 GCGAAGCTCTCTTTCGATTTGC TTCATCAAGGAGCAGCACGTGG 

MXAN_0684 ACCCTGCTGTCCATGATGA ATGTGGTCGGAGTAGCAGGA 

MXAN_0685 GTGCTCTTCCAGACGGTGAC ATGTTGGCCACCAGCAAC 

MXAN_0686 ATCATGCAGATGATTGCCC ATGACCATGCTGACCAGGTT 

MXAN_0687 GACATGTTCCCCCAGCAC CACCAATTCATTGTCCAGCA 

MXAN_0696 ATGGCCCAATTACCAGGACT GTTGCCCGTCACCGTCTC 

MXAN_0721 GGAAGACGACCACCATCAAC GACCTCCTCCACCTCGTACA 

MXAN_0722 ATACAACTTCGTTCCGGTGC ACACGTACGAGGGTGGTAGC 

MXAN_0748 GTTCCTCTACGGACGGCTG GACTTCACGGGCTGGTACA 

MXAN_0751 CACCCCGGACAAGAAGAAG GTCCCGCAGGTGGTAGTAGA 

MXAN_0770 CACGTTGCTGGAGGAGGG GTGTTCTTCGAGCCCTTGAG 

MXAN_0771 CAAGACGTGGGGCCTGTT ACCGTCACGGACACCAAC 

MXAN_0772 GTGTGGCAAGACGACGAC AGGAAGTACGCCACGAAGG 

MXAN_0966 GTTCCCCACGGAGACATTC GTCCAGCTTCAGGTGCTTCT 

MXAN_0967 CCGTTCATCATCCTCATGGT GTCACCCAGCCATTGGAC 

MXAN_0968 CGACGGACAGGACTTGCT GGAAAGCACAGTTGATGCAG 

MXAN_0995 CACACAAGACGGTGTTCGAC GACAAGGTGTTGTTCACCCC 

MXAN_1060 GGAAGACGACCAGCTTCAAC TGATGTACGCACGATCACAG 

MXAN_1097 GTATGTGGTGGACCGGCT ATGAAGACGGAGGTCTGGAG 

MXAN_1124 GGAAGACGGTGCTGATGAAG GTGTTCGATGATGCGTCCTT 

MXAN_1151 CTCATCACCCAGGACAAGGT GTCCGGCGAGTAGTGGTTC 

MXAN_1153 GACTATCAGGCCATCCGCTA GGAGTACTTGATGGTGGCGT 
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MXAN_1154 GTGACGGCTACGAGGTGAC CTTGTCCGGGACGATGTAGT 

MXAN_1155 GTGACGAGGCGTGGAAGTA GAGCTTGTAGTGGTGGAGGC 

MXAN_1262 GAGGGCTGTGGAGTGGTCTA TCATTCACGTAGCTGATGCC 

MXAN_1286 CATCTTTCCCCGCTGGTC ATAGGCGACCTCGTTCCAG 

MXAN_1287 AGGTTCAGGTCGTCGTTCC CTCCGAACTCCAGCACGTC 

MXAN_1288 GTTGGATGGGATTGCCTTCT GTCGAACTGGAAGAAGTCCG 

MXAN_1318 CTCCTGCCTCGTTTCGAGT AAAATCATGATGGGCAGCTC 

MXAN_1319 CCATCACCGAAACCGTCTT CTGGCATGAGGATGAAGTCC 

MXAN_1320 ACAAGCTGGAGTCCGTGC CTTGAGGCGCTCGACATC 

MXAN_1321 GTGCTTCTGGACGGCACT ACTCCTGGGAAAGCACCTG 

MXAN_1377 GGAAGTCCACCAGCATCG CGGAGATGAGCTTCTCGAAC 

MXAN_1547 CATGACGTGGTGAGCAATG ACCTCCACCGAGCCAAAG 

MXAN_1548 GGTGCTGTCGCAGTTCTTCT GGGAAGTGCTGATTCCACAG 

MXAN_1597 AGACGACGACCGTGGAAAT CTCCAACTCGATGACCTGCT 

MXAN_1598 GTTCCGGAATGACTCCCTG CAATGTGAAGTAGCTGCCGA 

MXAN_1604 CGAAGTCTCATCGAGAGCG AGGAAGCTGCCCGGAGAC 

MXAN_1605 CTACTTCAAGGAGCATCCCG CCCAGCTTGTCGCCGTAG 

MXAN_1695 GTTCTCGGACCCCAACTTC CAAGCAGGTAGAGCGTGGAC 

MXAN_1788 GTGCTCTCGCTGCTCAAACT GTCGGCAATGAACGCTCC 

MXAN_1789 GTCACCTTGGATGAAGTCGC GGGCGAACGGACCAATAG 

MXAN_1790 ATCACGCCACTCTACCACG CTTCAGCAGCGTTCCGAG 

MXAN_1791 GAGCAGCTACTCGACCGC TTGTTGTAGTCGATCTGCCG 

MXAN_1792 ATTCCTGGGACAAGATCCG CACCAGCACGTACCCGAC 

MXAN_2018 GTGACTTCGTCGTGGGCT CAGGAAGTACGTGGACAGCA 

MXAN_2019 CGTGGGAGAAGCTCTTTCG GTAGAGCTGGCCGAAGTACG 

MXAN_2020 CCCTGTCCAGCACCTGTC AAGAAGCTCACGGTGGACTC 

MXAN_2078 CCGTATGCCTCCGTCATC CCCTTCCTTCACCTGGCT 

MXAN_2249 CTGCCTCAACCGCCTCAT GTCCACGTGCTCCACGAAG 

MXAN_2250 CCAGCTACGCCATCATCACGG ACCACCATGGACAGCGACAGC 

MXAN_2251 ATGACACATCTGGTCCAGGC CGTGTGGATGGACTCCTTG 

MXAN_2268 GACTTCTTCCCGATGCTGG ACGGAGACTTCCCCCTCAC 

MXAN_2407 GAGCTGTCCGTGTCCCAG GCCACTTCCTGGGCAATC 

MXAN_2428 CGGTCGTCACCGGCTATC CCTCACGGTTGACGGTCT 

MXAN_2429 TCGGATGACTCCAAGGACC GAAGAACTTGGACAGCAGCA 

MXAN_2430 CCGGTGAGTTCATCTCCATC GAGAAGATGAAGGTGGTGCC 

MXAN_2654 TGTCGTCTACCTGGCCTACC GTTCAGCGTGTCCAGGAACT 

MXAN_2783 GTGCAGGAGTCGGTGAGC TCGTCGTGAGGTGGTCCT 

MXAN_2795 TTTGTGCAACAGTTCATGCC AGGTGGCTCGGGTGAAGAT 

MXAN_2831 GAATTCGGCGGCTTCTATG GTAGGTCCGCCACCCCTC 

MXAN_2832 GAGGCCTCCTCGCTCCTC GATCCGTGCGCAGTTGAC 

MXAN_2833 ACATCTCCTTCACCCCGAC CTTCGGAAATGGAGTGGGT 

MXAN_2853 CTGTCTGGCCATGGTGCT GACGTGAGCAGCTCGAAGA 

MXAN_2948 TCCTGAGCGTGTACGTGGT CCGCAGCTCCAACATCAG 
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MXAN_2949 CAAGAGCACCTGGTTCCG GGTCCACGAAGACGAGCAC 

MXAN_2951 ACTTCGTGGATGCCAAGC TGGTGTCCGGGTAGTAGCTC 

MXAN_3208 GATGTGCGGCTACCTCTACC GTGAGCTCCGGGATGATG 

MXAN_3209 CTACAGCATGTTCTCCGCGT AGAAGACGAACAGCAGGATGA 

MXAN_3256 CAGCTACCTCATGAAGGCGA GAACCAGAGGGTGAGGAACA 

MXAN_3257 ACGCTGCTGATGTTCTCCTT GTCTCCCTGAAGTACGAGCG 

MXAN_3258 ACAACGGTTCCGGGAAGAC CTTGAGTTCGGCGATGATG 

MXAN_3339 TGCAATACAGCCGCAAGG TCAACAGCTCCTTCTCCTCC 

MXAN_3452 GGTACTTCGAATCCGTGGC CGTGAAGGTGCCCATGTAG 

MXAN_3648 AGGTGTTACTGCGGCCGTT AGCAGGCTCCTCCGTGAA 

MXAN_3650 CCTACGAGGTGCTGCCTTC GAGGTTTGCCAGGTTGACAC 

MXAN_3717 AACTGGACTTCGTGGGTGTG AAGCAGCAGATGAGGGACAC 

MXAN_3718 ATGAAGCACATGATTGGCCT ATGTCATGGCTGATGACCAC 

MXAN_3719 GCGAAGGTCTGGTTGAAGAT CAGCTTCTTGAGCGTCTCCT 

MXAN_3745 CACTGACGGTCGTCCAATC TTCTCCTTCTCCAACTGCGT 

MXAN_3773 GGTTAGTCTCGTCGAGGTGC CTTTCATCGAGCGGAATGAC 

MXAN_3908 GAAGACGACGCTGGTGAAG CTGGGACACGTCCAGGAG 

MXAN_3909 GCTGGTGCAATTCGGCTAC GAAGATGCCCGTCTTCACC 

MXAN_3910 CGTGTGGCTGGTGATGTC GCCAGCGGAATGTAGAGC 

MXAN_3911 ACGAAGGAGCTGACGTTCAT TAGTCGTGGGACACCACCAT 

MXAN_3911 ACGAAGGAGCTGACGTTCAT GGCTCGTCGAAGAGGAGATA 

MXAN_3912 AGGACATCCAGCTCCAACC GAGGCATCGTCCAACAGC 

MXAN_3986 AGGGACACCTTCAGTTCGAG CGTCGTTGTCGTGTTTGTTC 

MXAN_4074 GGCACCATGACCTTCGAC GCGATGACCTCCAACTGTTT 

MXAN_4102 GGGTCCATCCGGGTACTG CTCGACGACGTATTGTCCCT 

MXAN_4172 ACCTTCCAGGTGACGAAGTG GAACAGCTCCGGGGACTT 

MXAN_4173 GATCAAGGGCGACTGGTG CGGTTGATGGAGAAGTCGTC 

MXAN_4174 GCAAGAGCACGATGATGAAC ACAATCTCTCCGTCGCTCAG 

MXAN_4175 ACGGTGAAGATCTCGTCCAG AGTACGTCTGGCCCTCCAGT 

MXAN_4176 AGGAGTTCACCACGGTTCC CAGCTCCAGCGTCCTGAG 

MXAN_4177 GGTTCTGGTCAGCTGATGG AAGGCCGATGAGGAAGATG 

MXAN_4198 GAGCCTACCTCCCCAACCT AAGGTGGACACGTCCTGG 

MXAN_4199 ACCTTCATGAACCTCATCGG GAAGAGGGCCATGATCTCCT 

MXAN_4200 TGAAGGTCCACTACGACACG GAAGAGGGTGACGTTCTGCT 

MXAN_4201 GATGACCATCGACGACGC GTCTCCTGCATGGTGTTGAG 

MXAN_4523 GGAGCATTCGGACATCGAC CTCTTCCGCCAGGGAACTAT 

MXAN_4586 ACTTCCGCTACGAGGACAAC GCTGGGCAATCTTCTTCTTC 

MXAN_4622 ACCATCCCCAAGGGTAAGAC GAAATGGCCTCACGGTACTC 

MXAN_4623 CTGGTGTACGTGCTGCTGTT GTGCTCGTAGAAGATGGCCT 

MXAN_4664 GTTTCGACGGACAGGAACTC ACAACAACGCCTGGGTGTA 

MXAN_4665 GGAGAGGTGCGCTTCCAG CGCGTACATCACCACCAC 

MXAN_4716 GCTGGTGATGGTCATCGTT AGCACCTCCATCAGCCCT 

MXAN_4729 AGCACCTTCCTGCACGTC GTCTCGTTGTGGGTGACGAC 
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MXAN_4730 GGTTCGAGCTCTTTGTCGC GGATGTTCTTGGGCAGGTC 

MXAN_4749 AGGTGGTGCAACTCTTCCC CGTCTCCTCGAACGGAACT 

MXAN_4750 ATATGACTTGTCGCGGACG ACAACTCCTCCACCAGCG 

MXAN_4787 GTCCTCATCGTCATGCTCAC GACGTGGGTGTCGATGGT 

MXAN_4788 CAACATCAAGGTCCAGGTCACCG CGATCTCCTCGTTGCCCTTCTTC 

MXAN_4789 CGCTCATCCTCATCATCGTC CCATGAGGACAATCATCGTC 

MXAN_4790 ATCTTCCCCGCCATCTTC ATGAACTGGGAGTCCAGGTG 

MXAN_4791 GAACGACCTCATCTCCGGCACC GTGACGATGGCGATGGTGTACG 

MXAN_4792 TCATCGTCCAGAGCATGAAG ATGTAGACGACCATCTCCGC 

MXAN_4818 GTGGGGGTGGTCTTCCAG GTCATGCGGACGGACAAAG 

MXAN_4819 TTCCAGAAGGGCTGGGAG TTGTAGAGAATCTCCGCGTG 

MXAN_4820 CTGAGCTGGGAGGAGTTCTG ATGTTGCCGGAGATGAAGAC 

MXAN_4821 GTCATCGAAGGACTGCGG GTCCGAATAGAGGTACGCCA 

MXAN_4878 GTCCACCACCATGAAAATCC TGGATGATGAGCACCTTCTG 

MXAN_4879 CCCGGACTTCAACATGTACC CTTGATCATCCCCTGCAACT 

MXAN_4880 CAGCTTCTTCGCCACCAC GACACCCGCGAGGTTCAG 

MXAN_5167 GGGGTGTGTTTCATCCAGTC GTACCAGAAGACGAGCAGGG 

MXAN_5168 GAGCGGAGCGAGACATCC CTCAAGGGCCCCAGGTAG 

MXAN_5183 GACACACCCTTGGAAGCAAC CCAGGAAGGTGGCGTAGAG 

MXAN_5275 GGCATCCACGTCATCAAGACCT CCTGGAACACCATCGAGAGGTG 

MXAN_5276 GATCAGAGCGATGTCCAACA CAGGGTGCTTCCTGCGTA 

MXAN_5315 TGCCTGTAAGAAGGAGGAGC GAAGTACGGGTTCTCGTTGC 

MXAN_5316 CTCTTCTGGTTCGTCATCGG CTCCACGGAGTAGCGCAT 

MXAN_5317 AAGTCCACCACCTTCCAGG CCTCCACGGAGAGGATGTC 

MXAN_5377 GCGATGGTGTTCCAATCCT GGACAGGGCAGGGTGAAG 

MXAN_5378 GCCCGGACGTCTTCATCT GGGATGTTCGTGGTGCTC 

MXAN_5379 GAAACCGTCACGCTGGAG ACTCCACCTTGTGCTCGC 

MXAN_5380 CTCTACTTCGGCCAGCAAGA GAATACCCGACGAAGCATGT 

MXAN_5419 CGCTACCGGGACTTCTACTG AAGAGCTCGAAGCCCATCTT 

MXAN_5502 GCATCAACGCCGTCTTCT GTCCATCAGCAGCACCTCC 

MXAN_5503 CGGTTCGTCCAGAACGACT GTCCGTCCAGTCGACCAT 

MXAN_5535 CATCGACCCACTGGTTTTCT ACTACTGAAACCCGCTCCTG 

MXAN_5583 CTCTTCTACGACCCCACGCT CTGGAGCAGGTAGTAGCCGA 

MXAN_5584 GGGAAGACGACGACGGTG GAGACAAAAGCGCTCCGC 

MXAN_5698 GTCATCCGGGAGAAGGTCT GTAGTTCTCCGAGTCCACGC 

MXAN_5699 AAGTCCACGCTGCTCCAC CACAACACGGTGAGTCCTTC 

MXAN_5702 GGTGCTCATCGGCTTCAG CTCCACGTCACCCCACAG 

MXAN_5711 CTACGAGGGCGGCAAGTA CCCTTGGAGATGAGGTCCTG 

MXAN_5712 GGAGAACGTGGTGCTGGG GATGCCGACGATTTCACC 

MXAN_5713 GTTCAAGGTGGGCCTGTTC GTGTCAGCCACACCCACAC 

MXAN_5714 GGCATGGAGGGGATGATG CTGCTCGAAACGGTCCAGTA 

MXAN_5747 GGTGACGGTGTATCTGTCGC AACAGAAAGGCGAAGAGCG 

MXAN_5748 GACGCTGCTGAAGCTCATCT GTCCTCGTCGGACACAATCT 
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MXAN_5780 ATGAGCCTGCTGCTTGTCTT GTCACCTCGATGCCATAGGT 

MXAN_5781 CCATCAAGATTCTCATGGGG GAATCCCAGAGACTGGAGCA 

MXAN_5847 GCCCTCTACCTGTCTTCGC GCCGTAGAACTCCAGCGAC 

MXAN_5978 CGCCAAGGATTTGCTCTCT TGAAGATGTCCTTCAGCAGC 

MXAN_6000 TGTCCGCCTACAACAGCA GTCTCCAGGGCCTTGTTCTC 

MXAN_6001 TGTTCGTCGTCTACGGTGAG CGTACGTGAACACCATCGTC 

MXAN_6002 GAGGCGGACTTCATCAGCTA GACTCCTCCCAGCCATAGG 

MXAN_6003 ACGACGCTCAAGGTCCTCT GTCCACTTCCTCCGACAGG 

MXAN_6042 GTGCTGGGCTTCTCTGACTT CCTCGTAGAGCTGGTCATCC 

MXAN_6402 CAAGTCCAGCCTGATGAACA CGTCCTTGAGCAGGAGTTTC 

MXAN_6403 GCGCAATACATGTTCTCCAA GACAGTTCCAGCCACGTCTT 

MXAN_6456 CACCAGCACGGACGTGAG GTCTGGTCCGCAATCTCCT 

MXAN_6474 CGTCTTCTGGGTGTGCTTC TGCCCACCAGATAGAGGAAC 

MXAN_6475 AGGTGCTACTGGACGGACAC CAGTAGACGCCCCTGCTC 

MXAN_6518 GTGAAGACCGTGGTGCAGT TTCTTCTTCACCTTCGCCAG 

MXAN_6551 CGTCTACGAGTGCCTTGAAA CAGTCCACTTCCCCTTCCAC 

MXAN_6552 CAGTACGCCACGTACCTGAA GTAGCGCAGCATCACCTG 

MXAN_6553 GTGATGGACCCCACGGAG GGCCCAGTAGAGGTTGGTG 

MXAN_6554 GACGTGCTCACCCTGGAG GGGTGTTGAGGAAGTCCG 

MXAN_6568 CGTCCACCTGGGACTGCTA ACGTCCTGTGAGAGCTGGTT 

MXAN_6569 GGAGAAGTCCGCCTGCTG GTAGAGCGTTTCCAGGGAGC 

MXAN_6575 GAGCAGTCCATCTCCCTCAC GGCGAGCCAGTAGAGGATTT 

MXAN_6576 CTGTCGGAGATGGTGCTGT ACTTGTCCTTGCCCACGTC 

MXAN_6643 GTGTTGTTGGACAGCGTTGC CACCCACAACGACAACCC 

MXAN_6644 GGTGGAGACGGTGCTGAC AAGATGGCCAGGGAGAGC 

MXAN_6645 CGGTGGAGTTCTCCCTGG CTCAGGCACCTGGAAGGC 

MXAN_6661 GCTGAAGGGTGTGTCGCT CAACACATAGCCGTAGTGCG 

MXAN_6662 GTGTACCAGCCCACCCAG CATGACCAGCTTCATGTCGT 

MXAN_6663 GTCCTGTCGCTGAACCTCA AGCAGCGTGAGGAACGTG 

MXAN_6664 GTCTACATGGGCTACGCCAC CTTGAGGCCCACGTACAGG 

MXAN_6665 CACCTTCGGCATCTCCAC ATGCCCACCTCGCTGTAGTA 

MXAN_6765 GCTGCTCAACCTCATCAGTG CAGGTGTTGCCCTTCTGG 

MXAN_6766 CGGTATACCAGGCGCTGC ATGAGGAACATCCCCACCAC 

MXAN_6826 CTGATGGCCTTCCTGGAG CTTCACCCCCAGGTCCTC 

MXAN_6827 ATGCTCTACACGCTGGTGC ATCACGTGGCTGGAGAACAC 

MXAN_6934 CTGGTGGGGTTGGAGTTC ATAGAAGGCGCCCAATGAG 

MXAN_7114 ACGTCTGGGTCTACACGTCC CTCTCCACCTTCTGGAGCAC 

MXAN_7115 CCTTCACGGTGCTGTTCAC GAAGGGACGGGACGACAG 

MXAN_7144 TCATCTCCCTGAGGAACGTC GGAAGACCTCCATGATTTGC 

MXAN_7145 AGACCGAGGACGTGGAGAC AGTTCCGTCAAGAGCTGCAT 

MXAN_7146 CTCGAGGACATCTCCCTGTC GAGAAGGACCAACCCACCTT 

MXAN_7147 GAGTACATCCGCTGGCTCAC CTTCACCACCTTCGCCAG 

MXAN_7225 GGTGAACGACATGTCACCG ACGAAGCCCCAACACCAC 
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MXAN_7226 GCTGATGAAGCACATCATGG GTGCTGTGACTCACGGAAGG 

MXAN_7293 CGTTCCTGACCTTCTTCCTG GGAACGTCAGCGCATACAG 

MXAN_7294 ACCGCTTCATCCTCGTCTTT GTCAGCACGTAGATGGCGT 

MXAN_7295 CTGGCGCACCAGTTCTTC CCAGTTGCGCATGAACAC 
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Appendix II. Source of M. xanthus sublines (Chapter 4). 
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Appendix III. Pairwise comparison of A-motility phenotypes (Chapter 4). 
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Appendix IV. Pairwise comparison of S-motility phenotypes (Chapter 4). 
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Appendix V. Pairwise comparison of aggregation phenotypes (Chapter 4). 
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Appendix VI. Pairwise comparison of sporulation phenotypes (Chapter 4). 
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Appendix VII. Summary of read mappings (Chapter 4). 
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Appendix VIII. Primers used to generate DNA inserts for plasmids (Chapter 4). 

      

ORF, open reading frame; F, forward; R, reverse; C, confirmation. 
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Appendix IX. Plasmids used to construct mutant strains (Chapter 4). 
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