
Syracuse University Syracuse University

SURFACE SURFACE

Syracuse University Honors Program Capstone
Projects

Syracuse University Honors Program Capstone
Projects

Spring 5-1-2005

Using A PDA to Control Home Appliances Using A PDA to Control Home Appliances

Atif Albraiki

Follow this and additional works at: https://surface.syr.edu/honors_capstone

 Part of the Computer and Systems Architecture Commons, and the Digital Communications and

Networking Commons

Recommended Citation Recommended Citation
Albraiki, Atif, "Using A PDA to Control Home Appliances" (2005). Syracuse University Honors Program
Capstone Projects. 679.
https://surface.syr.edu/honors_capstone/679

This Honors Capstone Project is brought to you for free and open access by the Syracuse University Honors Program
Capstone Projects at SURFACE. It has been accepted for inclusion in Syracuse University Honors Program Capstone
Projects by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/honors_capstone
https://surface.syr.edu/honors_capstone
https://surface.syr.edu/honors_capstones
https://surface.syr.edu/honors_capstones
https://surface.syr.edu/honors_capstone?utm_source=surface.syr.edu%2Fhonors_capstone%2F679&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=surface.syr.edu%2Fhonors_capstone%2F679&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=surface.syr.edu%2Fhonors_capstone%2F679&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=surface.syr.edu%2Fhonors_capstone%2F679&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/honors_capstone/679?utm_source=surface.syr.edu%2Fhonors_capstone%2F679&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Using A PDA to Control Home Appliances

Atif Albraiki

Candidate for B.S. Degree

in Computer Engineering with Honors

May / 2005

APPROVED

Thesis Project Advisor: _____________________________

 Dr. Daniel J. Pease

Second Reader: ___________________________________

 Dr. Frederick W. Phelps

Honors Director: __________________________________

Honors Representative: _____________________________

Date: ___

Abstract

The Personal Digital Assistant (PDA) is a handheld device that gives users

different organizational capabilities. Over the years, the functionality of PDAs has

expanded tremendously to include internet connectivity and different computer

applications. The purpose of my honors thesis, combined with my engineering

senior design project, was to include a new functionality to the PDA and use it to

control different home appliances. The goal of the project was to develop a PDA

program that will communicate with a PC program, and have the PC program

communicate with a microcontroller to control home appliances. My part of the

project was the development of the PDA and PC programs and the

communication between them and the microcontroller.

In this paper I will describe some basics of the PDA, and I will also describe

how the two programs that I developed work and communicate together. In

addition, I will describe how the PC program communicates with the

microcontroller. Most of the microcontroller program and the hardware

connection between it and the home appliances were implemented by two

members on my senior design team. I will briefly describe their work in this paper

to give a clear picture of the project.

Table of Contents

Title Page

Acknowledgements i

Basics About PDAs 1

Overview About the PDA Program 1

Communication Between PDA and PC 4

Functions’ Description of the PDA Program 5

Installing PDA Program 10

Overview About The PC Program 11

Communication Between PC and Microcontroller 12

Functions’ Description of The PC Program 13

Microcontroller and Hardware Connection 17

How Can This Project Be Taken Further? 19

References 20

Appendix A: Source Code for the PDA Program 21-A

Appendix B: Source Code for the PC Program 21-B

 i

Acknowledgments

I would like to thank Dr. Daniel Pease, Dr. Linda Milosky, Dr. Duane Marcy and

Dr. Frederick Phelps for supervising me throughout this thesis and senior design

project and for their great help. I also would like also to thank my senior design

teammates Renaldo Williams, Lindsay Robbins and Matt Candurra for all the

work that we did together as a team. And for the biggest part, I would like to

thank my parents, without whom I wouldn’t have been able to complete this thesis.

 1

Basics About PDAs

The operating systems running on PDAs are different than operating systems

running on desktop PCs. While PCs run operating systems such as Windows XP

and Linux, PDAs run different operating systems such as Windows Pocket PC

and Palm OS. These operating systems run on special CPUs such as the ARM and

the MIPS microprocessors. The PDAs don’t have hard disks; they store their basic

programs in read-only memory (ROM). Additional programs are stored in

random-access memory (RAM) which is erased whenever the device completely

loses power. This explains why PDAs keep on running on low power even when

they are turned off.

Overview About The PDA Program

PDA programs can be written in different languages such as Visual Basic and

C++. For this project I decided to develop the program using C# because it

provides powerful features and it simplifies the program development process. C#

is a managed code language that gives the programmer the capability of

developing applications that target the .NET Compact Framework. There are two

advantages for targeting the .NET Compact Framework. The first advantage is the

common language runtime, which makes the framework responsible for managing

the code at runtime so that the programmer doesn’t have to worry about writing

code for memory and thread management. The second advantage is the rich class

libraries included in the framework. These libraries give the programmer the

capability of using prewritten class variables and functions and make the

 2

development process easier. The operating system that I targeted for the PDA

program was Windows Mobile 2003, also known as Windows Pocket PC 2003,

and it is based on Windows CE .NET 4.2.

The program was built and tested using Microsoft Visual Studio .NET 2003,

which was the only option I had for developing mobile device applications using

C# .NET. I had to download the Pocket PC 2003 Software Development Kit

(SDK) to develop applications for Windows Mobile 2003. I also had to download

the emulator for Pocket PC 2003 to be able to test the program on my PC. For the

purpose of connecting to the PDA device and downloading the developed

program there, I had to download Microsoft ActiveSync 3.7.1.

The first development process for the PDA program was to specify the

graphical user interface (GUI). I tried to keep the GUI as simple as possible to

avoid confusing the user. All windows forms in the program are displayed in a

full screen mode, except in the case of displaying error messages where the form

is displayed as a small message box. I created a special integer in my program to

keep track of the state of the program. This integer is called ProgramStatus. The

program GUI is displayed based on the value of ProgramStatus, as seen in the

next page in figure 2.

 3

 4

Communication Between PDA and PC

There are different ways that programs can communicate together. For

example, they can communicate using Bluetooth, Infrared or Internet. I used the

Internet as a communication method between the PDA program and the PC

program. The Internet actually uses TCP/IP, which stands for Transmission

Control Protocol / Internet Protocol. TCP is a connection-oriented protocol,

meaning that it provides reliable connection and data delivery between two

computers, usually a client and a server. IP is a protocol that manages the routing

of the message from the sender to the receiver.

Each computer on the Internet has a unique IP address that is provided by the

Internet Service Provider. It is divided into four octets, separated by a dot, in the

form of n.n.n.n, with each octet holding a value between 0-255. In order for a

client to connect to a server, it needs to know the server’s IP address. In this

project, the PDA program acts as a client program that needs to communicate

with the server PC program. The PDA program needs to know the IP address of

the PC that it wants to communicate with. However, when the data, also known as

packet, reaches the PC, it needs to know to which program it must go to.

Therefore, the PC program must be listening into a specific port number for

incoming messages or connection requests.

A port number is a logical 16-bit number that works as a channel to a specific

application in a computer. Specific service applications such as FTP and HTTP

have special port addresses called well-known port addresses and they range from

0-1024. The user must enter the port number that he or she wants the PC program

 5

to be listening at. It is always advisable to enter a port number that is not used by

another application to avoid having the error of two programs listening at the

same port. The combination of the server IP address and a port number is known

as socket and it defines a unique application to connect to in the Internet.

Functions’ Description of the PDA Program

a. Main()

This is the first function called when the user requests to open the PDA

program. It starts running the application by creating a new instance of

PDAProgram class, which is the main form in this program. Creating an

instance of the class leads to calling the class constructor.

b. PDAProgram()

This is the PDAProgram class constructor. It performs two actions. First it

specifies the value of ProgramStatus to 0. Second it calls the

InitializeComponent() function, which is described below.

c. InitializeComponent()

This function is called from the class constructor. It initializes all the windows

controls in the program, such as buttons and textboxes, into their default value.

It specifies their sizes, locations and it also specifies the function that should

be called when a specific button is clicked. Initializing the values doesn’t

mean that the control will appear in the GUI. The control needs to be added to

the program’s control collection to be activated. Therefore, the only control

added in this initial stage is the start button.

 6

d. OnPaint(PaintEventArgs)

This overridden function is called whenever the program is refreshed. The

program can be refreshed at any point by calling the .NET library function

Refresh(), which forces the form to redraw itself based on the content of the

control collection. The OnPaint(PaintEventArgs) function calls the

DoPage(Graphics) function which is described below.

e. DoPage(Graphics)

This function is called to redraw the screen whenever the program is refreshed.

It draws the text that appears in the program based on the value of

ProgramStatus. I always use a white background and black text with bold

“Brush Script MT” font.

f. StartButton_Click(object , System.EventArgs)

This function is called when the start button is clicked. It changes the value of

ProgramStatus from 0 to 1. Then it removes the start button from the control

collection and adds the connect button, the server IP textbox and the port

number textbox into the control collection. The user gets to write the server IP

address and the port number to connect to inside the two textboxes. Then this

function calls the Refresh() function to redraw the screen.

g. ConnectButton_Click(object , System.EventArgs)

This function is called when the connect button is clicked. It tries to connect

to the server based on the IP address and the port number entered in the two

textboxes. The function performs that by calling the ConnectToServer()

function described below.

 7

h. ConnectToServer()

This function tries to connect to the IP address and the port number requested

by the user. The PC program must be listening at the requested port number to

ensure the success of the connection. The function first initializes the socket

that will be used in connecting to the PC program. I chose the TCP protocol

for this connection. Next the function converts the inputted server IP address

from string into a special IPAddress format that the socket can understand. It

also converts the port number from string into integer. After that it creates a

variable of type IPEndPoint, which combines the IP address and the port

number to specify the end point of the connection. Then the socket tries to

connect to the desired end point. If the connection succeeds, ProgramStatus

value is incremented from 1 to 2, the current control collection is removed and

the combo box that displays the appliances’ names is added into the control

collection. At the end of this function, the screen is refreshed.

i. ApplianceBox_SelectIndexChange(object , EventArgs)

This function is called whenever the user chooses one of the options in the

appliance index box seen in figure 2. First it gets the index value of the

appliance that the user chooses. It then removes the control buttons of the

previously chosen appliance. It does this by calling RemovePreviousControls()

function described below. Then based on the index value of the appliance

currently chosen from the list, ProgramStatus value is set and the desired

appliance control buttons are added into the control collection. At the end of

this function, the screen is refreshed.

 8

j. RemovePreviousControls()

This function is called from the ApplianceBox_SelectIndexChange(object ,

EventArgs) function. It removes the control buttons based on the value of

ProgramStatus. Note that this function is called before the ProgramStatus is

changed in the ApplianceBox_SelectIndexChange(object, EventArgs) function.

k. Lights1_Click(object , System.EventArgs)

This function is called when the user presses the Lights Level 1 button. It

sends special bytes to the PC program informing it to turn on lights to level 1.

l. Lights2_Click(object , System.EventArgs)

This function is called when the user presses the Lights Level 2 button. It

sends special bytes to the PC program informing it to turn on lights to level 2.

m. Lights3_Click(object , System.EventArgs)

This function is called when the user presses the Lights Level 3 button. It

sends special bytes to the PC program informing it to turn on lights to level 3.

n. BlenderOn_Click(object , System.EventArgs)

This function is called when the user presses the blender on button. It sends

special bytes to the PC program informing it to turn on the blender.

o. DoorUnLock_Click(object , System.EventArgs)

This function is called when the user presses the door unlock button. It sends

special bytes to the PC program informing it to unlock the door.

p. DoorLock_Click(object , System.EventArgs)

This function is called when the user presses the door lock button. It sends

special bytes to the PC program informing it to lock the door.

 9

q. StereoPlay_Click(object , System.EventArgs)

This function is called when the user presses the stereo play button. It sends

special bytes to the PC program informing it to play a song on the stereo.

r. StereoNext_Click(object , System.EventArgs)

This function is called when the user presses the stereo next button. It sends

special bytes to the PC program informing it to play the next song on stereo.

s. StereoStop_Click(object , System.EventArgs)

This function is called when the user presses the stereo stop button. It sends

special bytes to the PC program informing it to stop playing the stereo.

t. TempButton_Click(object , System.EventArgs)

This function is called when the user presses the temperature set button. Based

on the value inside the temperature control box, it sends special bytes to the

PC program informing it to set the temperature to the value in control box. If

the value in the control box is not between 0-99, an error message is

displaying asking the user to input a valid temperature number.

u. ExitMenu_Click(object , System.EventArgs)

This function is called when the user chooses from the menu file � Exit. If

there is connection established with the PC program, the connection is

terminated by sending specific bytes to end the connection. Then the socket is

shutdown and closed in the PDA program. At the end, the Close() function

within the .NET library is called to close the application. I added this menu to

the program because when the user presses the X button at the top right of the

 10

form, the application doesn’t close completely. Instead it keeps on running

behind the scene.

v. RestartMenu_Click(object , System.EventArgs)

This function is called when the user chooses from the menu file � Restart. It

removes the current control collection based on the value of ProgramStatus. If

there is a connection established with the PC program, it terminates it. Then it

adds the start button to the control collection, it changes the value of

ProgramStatus to 0 and it refreshes the screen.

Installing The PDA Program

In order to install the PDA program into the device I had to connect the device

to the PC using Microsoft ActiveSync 3.7.1. The first step I had to do was to

generate the CAB file by clicking on the Build Cab File in the Build menu in

Visual Studio. This generated an .inf file and a batch file in the obj\Debug folder

of the project. In the .inf file, I had to specify the name that would appear in the

Program section of the device. After that I had to run the batch file with the

changes and this generates different CAB files for different processors such as

ARM and SH3 processors. Since I was targeting the ARM processor, I had to

copy the generated CAB for ARM processors to the PDA device. Then when I

run the file in the PDA device the program gets installed.

 11

Overview About The PC Program

The PC Program was developed using C# and it targeted the .NET Framework.

It gives the programmer the same capabilities as the ones described in the .NET

Compact Framework. In fact .NET Framework even includes more libraries than

the compact version. The PC program is not displayed in full screen mode.

Instead the form is displayed in fixed size, 640x480. Similar to the PDA program,

I created an integer called ScreenState to keep track of the state of the program. I

also tried to keep the GUI as simple as possible, and the screen is drawn based on

the value of ScreenState as seen in figure 3.

As mentioned in the previous sections, the PC program must be listening into

a specific port number for incoming connection requests. The user gets to enter

the port number in the port number box seen in the figure above.

 12

Communication Between PC and Microcontroller

The Microcontroller we used for this project is the Motorola MC9S12C32.

We found that a PC program can communicate reliably with the Microcontroller

through the RS232 serial interface. This protocol is used to communicate within

the serial port. It is the communication method used to load a developed program

from the PC to the microcontroller. As I mentioned before, I have been using

Visual Studio .NET 2003 for developing the PC program. It works with .NET

Framework 1.1, and unfortunately this framework does not contain a library for

serial communication. This library is only included with .NET Framework 2.0,

which works with Visual Studio .NET 2005. Unfortunately, up to today, this

version of Visual Studio is only available for MSDN subscribers. The actual

release is expected to be available sometime this summer.

To solve this problem, I had to include a free library called

OpenNETCF.IO.Ports into the PC program project. This library is available

through the OpenNETCF.org, which is a shared open-source site for .NET

Compact Framework development. This library was written by Yuri Astrakhan,

with the original idea implemented in Visual Basic .NET by Daniel Moth, a

software developer and a member of the OpenCF.org. This library gives me the

same capabilities found in the .NET Framework 2.0 serial port library.

 13

Functions’ Description of the PC Program

a. Main()

This is the first function called when the user requests to open the PC program.

It starts running the application by creating a new instance of PCProgram

class, which is the main form in this program. Creating an instance of the class

leads to calling the class constructor.

b. PCProgram()

This is the class constructor that is called by the Main() function. It mainly

does three actions. It calls the InitializeComponent() function to initialize the

variables of this class, it sets ScreenState value to 0 and it calls the

CreateMainMenu() function to create the main menu displayed in the top of

the form as seen in figure 3.

c. InitializeComponent()

This function does the same task as in the PDA program. It only activates the

start button that appears in the beginning of the program.

d. CreateMainMenu()

This function adds a menu at the top of the application. There are basically

two items in the menu. The first is File � Exit, which closes the application

whenever pressed. And the second is Help � About MCS05, which just

shows a small message box describing the program.

e. OnPaint(PaintEventArgs)

This function is called whenever the screen is refreshed, and as in the PDA

program, it calls the DoPage(Graphics) function.

 14

f. DoPage(Graphics)

This function displays the text on the program based on the value of

ScreenState. I specified the background of the program as a DarkSlateGray

color and text as Beige Arial Black font.

g. MenuExitOnClick(object , EventArgs)

This function is called whenever the user presses File � Exit. Basically it

closes the application.

h. MenuAboutOnClick(object , EventArgs)

This function is called whenever the user presses Help � About MCS05.

Basically it displayes a message box describing the application.

i. StartButton_Click(object , EventArgs)

This function is called when the user pressed the start button at the beginning

of the application. It removes all the items in control collection and adds the

next GUI controls into the collection.

j. ConnectButton_Click(object , EventArgs)

The function is called when the user presses the connect button seen in

figure 3. First it creates a listening socket that will be used to listen for

incoming connection request at the specified port number entered in the text

box. This socket must be bind with a specific IP address and port number.

This is done by creating IPEndPoint variable. Since we want the application

to accept connection request from any IP address, we specify the IPEndPoint

value to accept connection from any IP address on the port number requested

by the user. The IPEndPoint variable is then bound with the socket by calling

 15

the socket function Bind(IPEndPoint). After that the listening socket function

BeginAccept(System.AsyncCallback , object) is called to specify which

function to be called when a connection is requested. I specified the

ClientRequestConnect(IAsyncResult) function to be called whenever a

connection is requested.

This function also does two additional tasks. It disables the connect button

so that the user can’t have control over it, and it also opens a serial port

connection, if not yet opened, to the microcontroller by calling the serial port

function Open(). If an error occurs at anytime inside this function, an error

message box is displayed that explains the error.

k. ClearList_Click(object , EventArgs)

This function is called when the user presses the clear list button at the bottom

of the received command list. Basically it removes all the items from the

command list.

l. ClientRequestConnect(IAsyncResult)

This function is called when the listening socket receives a connection request.

It initializes a new socket to work as a connection socket. This socket starts

listening for incoming data by calling the WaitForData() function, which is

described below.

m. WaitForData()

This function makes the connection socket start asynchronously listening for

incoming data. The received data is stored in a special buffer. Whenever data

 16

is received, a special function ServerReceiveData(IAsyncResult) is called. The

function is described below.

n. ServerReceiveData(IAsyncResult)

This function is called when the PC program receives data from the PDA

program. First it checks to see if the received data in “END”, which is sent by

the PDA before it closes the connection. If the received data equals “END”, it

closes the listening socket as well as the connection socket, then it starts to

listen again for incoming connection requests. If the received data does not

equal “END”, then it calls SendDataToMicrocontroller() function, which is

described below. After that it clears the receiving buffer so that it can hold the

next command that will be received and calls the WaitForData() function.

o. ProgramClosing(object , CancelEventArgs)

This function is called right before the program terminates. Basically it closes

the serial port that was opened for communicating with the microcontroller.

p. SendDataToMicrocontroller()

This function is called whenever data is received from the PDA program.

Basically it sends a special byte to the microcontroller through the serial port.

The value of the byte depends on the data received from the PDA program,

which is stored in the receiving buffer. If the request is to control any of the

appliances other than the temperature, then a byte is sent to the

microcontroller with the 4 least significant bits set to 1. However, if the

received request is to control temperature, another function is called to handle

that as explained below.

 17

q. SendTempData()

This function is called when the PC has to send a byte representing a

temperature. Since a temperature can be between 0-99, one byte can be

efficient to represent the value of the temperature. And instead of having 100

different byte representations for each possible temperature value, I decided to

represent the first digit (the tens digit) using the 4 most significant bits of the

byte and to represent the second digit (the ones digit) using the 4 least

significant bits of the byte. The byte is then sent to the microcontroller using

the serial port connection.

Microcontroller and Hardware Connection

The microcontroller program and the hardware connection were mainly

implemented by other members of the team. I will briefly describe the way the

microcontroller and the hardware connection work. The PC program sends

different commands to the microcontroller program based on the action of the

PDA user. These commands are sent in the form of 1 byte. The microcontroller

program has a special subroutine that keeps on checking if data has been received.

When the data is received, the microcontroller performs different actions based on

the value of the received byte. For the purpose of this project, our team decided to

have different options to control.

The first option is setting the light brightness using three different frequencies

generated from the microcontroller. These frequencies will be applied to a steady-

state relay inserted in the extension cord that connections the appliance to the

 18

power source. This will allow the microcontroller to have light be either off, low

or high. The second action is to turn on the blender using a relay that completes

the circuit connection between a blender and the power source. The third option is

to control two LEDs, displaying the red one to represent that a door is locked and

displaying a green one to represent that a door is unlocked. The forth option is to

start playing a CD in a stereo, go to next track or stop playing the stereo. This is

done through duplicating the stereo’s remote control signal using the

microcontroller. The last option is to display different temperature using two

seven segment displays. The figure below shows the hardware connection

between the microcontroller and the appliances.

 19

How Can This Project Be Taken Further?

A reader might ask, how can this project be taken further? There are many

answers to this question. One of the main features that can be added into this

project is security features. In reality, a home control program will need

authentication process that makes sure that only permitted users control the

appliances at home. Another feature that can also be added is the two way

communication capability between the devices. A user might be interested to

know the status of an appliance before performing an action on it.

Another big feature that can be considered is to remove the PC program from

the communication channel and make direct communication between the PDA

and the microcontroller. Or even a better feature to consider is to have direct

communication between the PDA and each of the appliances, considering the fact

that there are many computerized appliances in market today. I’m not claiming

that any of these features is feasible; I’m just giving ideas on how this system can

be improved.

 20

References

1. http://www.msdn.com

2. http://www.opennetcf.org

3. http://www.codeproject.com

4. Programming Microsoft Windows CE .NET by Douglas Boling

5. Pocket PC Network Programming By Steve Makofsky

 21-A

Appendix A

 21-B

Appendix B

	Using A PDA to Control Home Appliances
	Recommended Citation

	Microsoft Word - 396401-convertdoc.input.384525.u_fyA.doc

