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ABSTRACT

Interference in wireless networks is a major problem that impacts system performance quite

substantially. Combined with the fact that the spectrum is limited and scarce, the performance

and reliability of wireless systems significantly deteriorates and, hence, communication sessions

are put at the risk of failure. In an attempt to make transmissions resilient to interference and,

accordingly, design robust wireless systems, a diverse set of interference mitigation techniques are

investigated in this dissertation.

Depending on the rationale motivating the interfering node, interference can be divided into two

categories, communication and jamming. For communication interference such as the interference

created by legacy users (e.g., primary user transmitters in a cognitive radio network) at non-legacy

or unlicensed users (e.g., secondary user receivers), two mitigation techniques are presented in this

dissertation. One exploits permutation trellis codes combined with M -ary frequency shift keying

in order to make SU transmissions resilient to PUs’ interference, while the other utilizes frequency

allocation as a mitigation technique against SU interference using Matching theory. For jamming

interference, two mitigation techniques are also investigated here. One technique exploits time

and structures a jammer mitigation framework through an automatic repeat request protocol. The

other one utilizes power and, following a game-theoretic framework, employs a defense strategy

against jamming based on a strategic power allocation. Superior performance of all of the proposed

mitigation techniques is shown via numerical results.
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CHAPTER 1

INTRODUCTION

Over the last century, the world has witnessed many advances in wireless technologies [2, 8, 12,

22,24,30,66,70,71,85], the impact of which has been and will continue to be great and immense.

Among its fastest growing segments, cellular technology ranks first. It has captured a lot of at-

tention from media as well as researchers. The number of subscribers (users) has tremendously

increased due to the many exciting services and features that such networks offer. Consequently,

a huge demand on spectrum, which is already limited, has surfaced. This rapid growth, combined

with the continuous generation of new wireless technologies, has advocated a vivid future for wire-

less systems, both as standalone and as part of the larger network infrastructure. However, such

a swift growth and generation have also highlighted interference1 and spectrum scarcity as two

major issues which, if not handled properly, would critically affect the continuous operability and

existence of the different technologies.

In order to accommodate the growing needs for wireless communication, impact and mitiga-

tion of interference needs to be addressed. In most existing wireless systems, interference is dealt

with by using powerful forward error-correcting codes (FEC) or by coordinating users to orthogo-

nalize their transmissions in time or frequency or by increasing the transmission power and treating

1Interference is a basic characteristic of wireless communication systems resulting from multiple transmissions
that often take place simultaneously over a shared communication medium or nature that introduces noise, shadowing,
scattering, etc.
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each other’s interference as noise. A number of sophisticated receiver designs have also been pro-

posed for interference suppression under various settings, e.g., multiuser detection. Furthermore,

interference can be classified into two categories based on its source as follows:

• Communication interference: This is the interference that nature causes or a transmitter acci-

dentally creates at another receiver that is in its vicinity and shares the same communication

medium and band when sending information to its corresponding receiver.

• Jamming interference: This is the interference that a jammer creates at one or more receivers

in order to bring down the communication sessions when the corresponding transmitters and

the jammer share the same communication medium and band.

This classification is based on the fact that, in the case of communication interference, the primary

source is either nature or co-existence of other users on the same frequency band and the transmit-

ter’s main objective in this case is to ensure a successful reception (decoding) of its information at

the corresponding receiver. On the other hand, in the case of a jammer, the jammer is a malicious

entity and its main objective is to intentionally disrupt the on-going communication sessions in the

network.

The traditional static spectrum assignment policy that is adopted by the Federal Communi-

cations Commission (FCC) leads to spectrum scarcity given the dramatic increase in spectrum

demands. At the same time, there exists an inefficient spectrum utilization due to the fact that

a large portion of the licensed spectrum is still not in use or severely underutilized [1]. Hence,

spectrum scarcity and the inefficiency in the spectrum usage necessitate a new communication

paradigm to opportunistically exploit the existing wireless spectrum. This new communication

paradigm is referred to as Dynamic Spectrum Access (DSA) and radios implementing this access

mechanism are called cognitive radios (CRs). Supplied with the inherent capabilities of the CR,

cognitive radio networks (CRNs) are expected to yield an optimum spectrum-aware communica-

tion paradigm in wireless networks. We root this to the fact that the cognitive radio technology is

envisaged to solve problems in wireless networks resulting from the inefficiency in the spectrum
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usage and the limited available spectrum. The CR concept was first introduced by Mitola [60]. The

idea he proposed was to make the licensed spectrum available to unlicensed or non-legacy users

(i.e., secondary users) only when the licensed (legacy) users (i.e., primary users) are not using their

frequency bands. Nevertheless, such a spectrum access agreement does not hold between multiple

secondary users (SUs) in the absence of a primary user (PU). In other words, SUs are highly likely

expected to interfere with each other upon transmitting over the same frequency band. As a matter

of fact, the open nature of DSA is expected to stimulate such a behavior of the SUs in a CRN. It

is important, at this point, to mention that communication interference in a CRN can be classified

into two subcategories:

• PU interference: This is the interference that a PU creates at an SU’s receiver when both the

SU and the PU coexist over the same frequency band.

• SU interference: This is the interference that an SU creates at other SUs’ receivers (a PU’s

receiver) when two or more SUs (an SU and a PU) coexist over the same frequency band.

1.1 Challenges

There are many technical challenges when designing robust wireless networks. Among these chal-

lenges, we mention the interference created by one or more PUs’ transmissions at one or more

SUs’ receivers. Also, the competition for spectrum between multiple SUs constitutes another chal-

lenge that needs to be addressed. Equivalently, the latter can be described through interference that

the corresponding SU transmitters would create at others’ receivers. Another challenge lies in the

security issues related to the availability of information at one or more SUs’ receivers which, in

turn, can also be interpreted by how much interference the jammer creates at one or more SUs’

receivers. For more details on these challenges in addition to others in general, we refer the readers

to [4, 33, 41, 47, 52, 54, 97, 102].

In Fig. 1.1, we show a general network model that summarizes the aforementioned issues

assuming that the network’s nodes share the same communication medium and frequency bands.
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SU1 Tx

SU1 Rx
PU Tx

PU Rx

Jammer

SU2 Rx

SU2 Tx
PU range

SU1 range

SU2 range

Fig. 1.1: A cognitive radio network with one PU transmitter-receiver pairs and two SU transmitter-receiver
pairs in the presence of a jammer.

Here, the receiver of SU1 may suffer from communication interference created by either PU’s

transmitter or SU2’s transmitter since the former is located within the communication range of

the latter two. Additionally, upon the jammer’s presence, SU1’s receiver may also suffer from

jamming interference. In this respect, SU2’s receiver may suffer from communication interference

created by SU1’s transmitter as it is located within the latter’s communication range.

1.2 State-of-the-art Defense Techniques

Managing interference, including communication and jamming, has been the subject of very active

research up until today. Traditionally, interference prevention and mitigation techniques have been

suggested to prevent the disruption of the network. In fact, several techniques [4,47,57] have been

proposed to either prevent interference from deteriorating the network performance or mitigate it

and still maintain a functional network. In this section, we confine our interest to only a subset of

interference management techniques, for which we next present a brief overview.
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1.2.1 Forward Error-correction Coding

The performance of a wireless system deteriorates significantly more in the presence of interfer-

ence. This is due to the fact that more data may be received in degraded form in this case than

in the usual noisy communication systems and, accordingly, the receiver’s output becomes more

erroneous. When the number of output errors exceeds that number the decoder is capable of cor-

recting, the transmitted data cannot be reconstructed correctly and, as a result, the probability of

bit or symbol error increases. In other words, as the number of errors increases due to the pres-

ence of an interferer, i.e., the signal to interference-plus-noise ratio (SINR) at a particular receiver

decreases, the probability of bit or symbol error increases. Therefore, in its attempt to adapt to

interference that degrades its performance, a transmitter adds some type of controlled redundancy

to its original data through the use of a forward error-correcting code (FEC). This technique is able

to mitigate the impact of interference depending on the error correction capability of the code used.

1.2.2 Re-transmission Protocols

A re-transmission protocol is considered an error-control mechanism that uses acknowledgments

and timeouts to achieve a reliable data transmission over an unreliable service [18]. This tech-

nique ensures accurate delivery of information to the destination despite errors that occur during

transmission. For instance, in a wireless system that employs a stop-and-wait Automatic Repeat

Request (ARQ) protocol, the sender re-transmits the same information until it receives an ac-

knowledgment or exceeds a predefined number of re-transmissions. This is another interference

mitigation technique used as a defense strategy against an interferer.

1.2.3 Power/Frequency Allocation

A power or frequency allocation approach constitutes a feasible technique for managing interfer-

ence. This is because transmissions of multiple transmitters, who are trying to access the spectrum

with fixed power and/or over a fixed frequency band, are expected to severely interfere with each
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other in the overlapping portions of the spectrum. Hence, there is a necessity to efficiently manage

transmissions of multiple transmitters over the same spectrum before sending their messages. In

this respect, power as well as frequency allocation provide potential solutions that the wireless

transmitter can exploit in its transmission strategy in order to mitigate interference.

In a framework where power allocation is employed in either a centralized or a distributed man-

ner, transmitters adapt their transmit power levels over the shared spectrum in order to maximize

some performance metric, e.g., SINR. Furthermore, when frequency allocation is implemented,

transmitters are able to adapt to harmful interference in the environment by selecting, or getting

assigned through a central entity, the best available frequency band that satisfies its quality-of-

service requirements (e.g., minimizes interference at its receiver).

1.3 Major Contributions and Dissertation Outline

The focus of this dissertation is on how to efficiently and effectively manage interference in wire-

less networks. In order to achieve this, we propose different interference management techniques

that are based on Coding theory, Matching theory, and Game theory.

In the case of PUs’ interference at an SU receiver in a CRN, we propose a novel spectrum

underlay approach for SUs in Chapter 2, where PTCs are employed in conjunction with multi-level

FSK signaling in the presence of multiple and dynamic narrowband PUs. Our proposed approach

derives its resilience to the interference caused by PUs and noise disturbances via dispersal of the

information in SU’s messages over multiple frequencies and time intervals. This underlay-design

improves the SU data rate by accumulating a large amount of spectrum from several PUs, while

simultaneously operating at low power to minimize the interference caused at PUs’ receivers. We

evaluate our system performance in terms of bit error rate (BER) and throughput by approximating

the actual BER using properties of the Viterbi decoder and, accordingly, show that the proposed

coded system is robust to heavy interference caused by PUs.

In our attempt to address competition for spectrum between multiple SUs in a CRN, a novel
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spectrum allocation approach is proposed in Chapter 3. Based on a measure of inference perfor-

mance as well as on a measure of quality-of-service, the association between SUs in the network

and frequency bands licensed to PUs is investigated. The problem is formulated as a matching

game between SUs and PUs, where SUs employ hypothesis testing to detect PUs’ signals and rank

them based on the logarithm of the a posteriori probability ratios. A valuation that captures the

ranking metric and rate over the PU-owned frequency bands is proposed to PUs in the form of

credit or rewards by SUs. Using this proposal, a PU evaluates a utility function that it uses to build

its association preferences. Furthermore, a distributed algorithm that allows both SUs and PUs to

interact and self-organize into a stable and optimal matching is presented.

For jamming interference in wireless point-to-point (P2P) communication links with perfect

feedback channels, where transmissions occur over an additive white Gaussian noise channel sub-

ject to Inter-symbol Interference (ISI), we investigate the design and performance of a novel ARQ-

based system in Chapter 4. We define system-latency as the number of transmission attempts at the

transmitter to achieve a successful transfer of a data packet to the receiver. We attempt to minimize

it by modeling this as a constrained optimization problem where the system-latency is minimized

such that the probability of successfully receiving a data packet at the receiver satisfies a prescribed

guarantee. In this respect, a game-theoretic formulation is provided.

For the case of jamming interference in a CRN, the distributed competitive interactions be-

tween a SU transmitter-receiver pair and a jammer are investigated in Chapter 5 using a game-

theoretic framework under physical interference restrictions, power budget constraints, and incom-

plete knowledge of channel gains. In this game, the SU transmitter is expected to choose its power

strategy with the objective of satisfying a minimum SINR at the corresponding receiver. Similarly,

the jammer’s objective is to strategically allocate its power so that the SINR constraint of the SU

is not satisfied. Due to a lack of complete information, this strategic power allocation problem be-

tween the two players is modeled as a Bayesian game for which the self-enforcing strategies of the

SU transmitter-receiver pair and the jammer are analyzed. In this respect, probability distributions

are further employed by the corresponding players to model the incomplete nature of the game.
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Equilibrium analysis is carried out by considering the mixed strategy solution space.

Finally, in Chapter 6, we present a summary of our work in this dissertation along with some

future directions that can be pursued.
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CHAPTER 2

MITIGATION OF PRIMARY USER

INTERFERENCE VIA PERMUTATION

TRELLIS CODES

According to [39], there are three main CRN paradigms1: interweave2, overlay, and underlay.

The SUs in an interweave system opportunistically sense the spectrum looking for spectral holes

to exploit in order to communicate without disrupting other transmissions. An overlay approach

allows the SUs to use sophisticated signal processing and coding to maintain or improve the com-

munication of PUs while also obtaining some additional bandwidth for their own communication.

In underlay systems, SUs operate if the interference they cause to PUs is below a given thresh-

old [19, 32, 51, 93]. However, an important question that remains yet to be answered satisfactorily

is how to deal with the interference that one or more PUs create at SUs’ receivers in an underlay

system.

In this chapter, we investigate the use of Permutation Trellis Codes (PTCs) [34, 88] combined

with multi-level FSK modulation systems in spectrum underlay CRNs where the special challenge
1The authors provide a detailed description on each of the paradigms in [39], including the associated regulatory

policy as well as the underlying assumptions about what channel side information is available, and the practicality of
obtaining such information.

2An interweave system is what Mitola proposed in [59, 60].
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is to guarantee reliable communication by SUs in the presence of intermittent transmissions by

narrowband PUs that stay active for an unknown duration without the need of detecting them.

The emphasis of the proposed PTC based framework in this chapter is on robustness of SU trans-

missions against PUs’ interference, rather than on data rate3 or bandwidth use. The proposed

approach derives its resilience to the interference caused by PUs and noise via dispersal of the

information in SU’s messages over multiple frequencies and time intervals in conjunction with

PTCs. The proposed framework is quite general and is applicable to many systems beyond CRNs

where interference is an issue. For example, the framework has been applied to power line com-

munications [34, 88] where strong interferers are assumed to be always present. Here, we show a

much wider applicability of the PTC based framework as an interference mitigation approach.

2.1 Literature Review

Orthogonal frequency division multiplexing (OFDM) has been suggested as a multi-carrier com-

munication candidate for CR systems where the available spectrum is divided into sub-carriers

each of which carries a low rate data stream [50, 58, 63, 81, 100]. A typical approach for a CR

using OFDM is to sense the PU activity over the sub-carriers and then adjust its communication

parameters accordingly. The goal is to protect PUs as well as intended SU receivers from possi-

ble collisions resulting from the use of the same sub-carriers. Continuous spectrum sensing and

re-formation of wireless links may result in substantial performance degradation for SUs [90]. For

instance, the throughput of the secondary system is affected by the time spent for channel sensing.

When an SU spends more time on spectrum sensing, a smaller number of information bits will be

transmitted over a shorter interval of time resulting in reduced system throughput. On the other

hand, decreasing sensing duration may result in a larger probability of making incorrect decisions,

thereby decreasing the throughput of both SUs and PUs. The authors in [65] numerically ana-

3However, it is important to mention that this underlay design improves the SU data rate by accumulating a large
amount of spectrum from several PUs, while simultaneously operating at low power to minimize the interference
caused at PUs’ receivers.
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lyze the trade-offs between throughput and sensing duration in addition to coding blocklength and

buffer constraints. In [55], the authors study the problem of designing a sensing slot duration to

maximize the achievable throughput for the SUs under the constraint that the PUs are sufficiently

protected.

In [81], it is assumed that an SU transmitter vacates the band once a PU is detected. Due to the

sudden appearance of a PU, rateless codes have been considered to compensate for the packet loss

in SU data which is transmitted through parallel subchannels. The authors in [100] consider the

design of two efficient anti-jamming coding techniques for the recovery of lost transmitted packets

via parallel channels, namely rateless and piecewise coding. Similar to the spectrum model defined

in [81], their performance is compared in terms of throughput and goodput. For an OFDM-based

CRN presented in [50], SU transmitters and receivers continuously sense the spectrum, exchange

information and decide on the available and unavailable portions of the frequency spectrum. De-

pending on frequency availability, an appropriate Reed-Solomon coding scheme is used to retrieve

the bits transmitted over the unavailable portions of the frequency spectrum. The authors in [63]

further explore Low-Density-Parity-Check (LDPC) codes in an OFDM scheme where a switching

model is considered for dynamic and distributed spectrum allocation. They also analyze the effects

of errors during PU detection on channel capacity and system performance. The switch is assumed

to be open for each SU detecting a PU. When the switch is open, the channel is modeled as a binary

erasure channel (BEC) and the SU continues to transmit its message allowing bits to be erroneous

when received. Another major application of the FEC schemes is presented in [80] where the au-

thors study the performance of cooperative relaying in cognitive radio networks using a rateless

coding error-control mechanism. They assume that an SU transmitter participates in PU’s trans-

mission as a relay instead of vacating the band in order to reduce the channel access time by a PU.

Since the use of rateless codes allows an SU receiver to decode data regardless of which packets

it has received as long as enough encoded packets are received, these codes are very suitable for

cooperative schemes. The authors in [9] propose an end-to-end hybrid ARQ scheme in CRNs con-

sisting of unidirectional opportunistic links to reduce the number of re-transmissions with a fixed
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throughput offset. Their error control approach is based on coded cooperation among paths and

amplify-and-forward relaying of packets within a path such that this hybrid ARQ works for CRNs

even if some coded data are missing. The authors implement their scheme using convolutional

codes combined with BPSK modulation.

2.2 Motivation, Novelty, and Contributions

The motivation for approach proposed in this chapter is to overcome the tremendous degrading

effect of multiple PUs’ interference on an SU transmission and to provide a stable level of reliable

information reception regardless of how severe or prolonged the dynamic PUs’ activities are and

without requiring their accurate detection. This is achieved via the dispersion of information in

SU’s messages over multiple frequencies and time intervals. In our model, an SU transmits its own

information using low power concurrently with PUs’ transmissions without the need to relay PUs’

traffic [80] or to vacate the band [81].

Different from [50], we assume that no information exchange or control channel negotiation

takes place between the SU transmitter-receiver pair. Our proposed scheme is different from exist-

ing work where communication sessions are carried out over parallel frequencies [50,63,81,100].

This is due to the fact that our scheme is based on multi-level FSK modulation with PTC using

a single frequency at a time. By using PTC, continuous channel sensing by the SU transmitter-

receiver pair is no longer required, since an appropriate PTC can cope with high levels of PUs’

interference on a given SU link. Thus, SUs no longer suffer from the huge overhead created by

continuous sensing of the spectrum. We consider a similar system model as devised in [34, 88]

and carry out a thorough performance analysis in terms of BERs and throughput for dynamically

varying interference. In [34, 88], the authors were interested in the design of PTCs that miti-

gate the impact of interferences that always exist in power line communications. In their work,

they conducted a simulation study and presented results on the performance of different PTCs

with respect to the probability of an element of the code matrix being in error in the presence of
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different noises on one or more channels. They also investigated the choice of distance increas-

ing/conservative/reducing mappings for a given PTC with respect to narrowband interference that

always exists on one band in the presence of background noise in terms of BER. The authors

in [34, 88] provide a BER performance analysis via simulations and not analytically.

An analytical BER evaluation of a PTC coded M-FSK system is imperative to determine its link

quality which is a useful tool for cross-layer design. Given that the PU stays active once it starts

transmitting, the exact bit error rate (BER) is derived using an exhaustive search in [28]. Hence,

the analytical evaluation of BER becomes computationally prohibitive for large codes. Rather

than using an exhaustive search, in this chapter, we develop an approximation of BER using the

properties of the Viterbi decoder. Also, in [28], a very special case is considered where a PU stays

active once it starts transmission. In this chapter, we consider a more practical scenario where a 2-

state Markov chain is employed to model each of the dynamic PUs’ activities in terms of alternating

On-Off periods. It should be noted that the work in [34] and [88] also considered an extreme

case where the authors assumed that the interference was always present and did not consider

dynamically varying interference. In the more general framework presented in this chapter, the

performance results provided, e.g., BER, are intuitive and more useful in comparison to the worst-

case guaranteed performance presented in [28].

In summary, the main contributions of the chapter are as follows:

• To mitigate interference created by the dynamic PUs, we propose the use of PTC-based

multi-level FSK signaling that incurs no overhead costs for sensing as no channel sensing is

required before SU transmissions.

• We consider a more practical scenario in which we represent each PU’s activity in the net-

work using a dynamic channel occupancy model and investigate the performance of the SU

both analytically and through simulations in terms of BER and throughput for both static

and dynamic activities of multiple PUs.

• Using the proposed PTC based framework, the SU transmissions are shown to achieve ro-
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Fig. 2.1: A simple cognitive radio network with H = 3 independent PU transmitter-receiver pairs and one
SU transmitter-receiver pair.

bustness against the dynamic PUs’ interference and noise disturbances and improved re-

siliency of SU links.

2.3 System Model

We consider a cognitive radio network which consists of H independent PU transmitter-receiver

pairs, each operating on a different licensed frequency band, and an SU transmitter-receiver pair

that may operate on one or more frequencies from the set of all PU-licensed bands F = {1, 2, · · · , H}.

Fig. 2.1 shows an example of this simple network for H = 3.

Let (xPU
Tj

, yPU
Tj

) and (xPU
Rj

, yPU
Rj

), 1 ≤ j ≤ H , denote the location coordinates of PU j’s trans-

mitter and receiver respectively. Similarly, we denote the location coordinates of the SU transmit-

ter and receiver as (xSU
T , ySUT ) and (xSU

R , ySUR ) respectively. Note that the SU pair may be located

within the transmission range of any of the H PUs in the network. The transmission range shown

in Fig. 2.1 is the maximum distance covered by PU j’s transmission such that the SINR at the

corresponding PU receiver equals a minimum threshold value, SINR∗
PUj

. In this model, we as-

sume a free space path loss model and a Line-Of-Sight (LOS) AWGN channel. The power in the
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Fig. 2.2: Block diagram of the Coded multi-level FSK System

transmitted signal is PT , so the received power over frequency fj is given by [40]

PRj
= PT

cj
d2TR

, (2.1)

where cj denotes the power attenuation factor for frequency fj and dTR is the distance between

the transmitter and the receiver. Each PU in the network is licensed to use a single unique fre-

quency in F while SU transmissions occur over all the PU-licensed set of frequencies. One further

assumption made here is that interference, created by an SU, that deteriorates the QoS of PUs is

negligible compared to the received PUs’ powers at their corresponding receivers. This is due to

the fact that the transmission power of each PU is much larger than the transmission power of SU,

i.e., P SU
T ≪ P

PUj

T , ∀j. In our approach, the SINR at PU j’s receiver [29] given in (2.2) satisfies

SINR ≥ SINR∗
PUj

, that is,

SINR =
P PU
Rj

N0 + P SU
Ij

≥ SINR∗
PUj

, (2.2)

where P SU
Ij

is the SU interference at PU j’s receiver and SINR∗
PUj

is the minimum threshold

above which PU j’s transmission is received successfully. It is assumed that the SU transmitter

knows the location of its corresponding receiver possibly by means of extra signaling.

An overview of the signal processing model that combines the PTC scheme with the multi-level

FSK communication system is provided in Fig. 2.2. m information bits are loaded in parallel into

a permutation matrix encoder which, in turn, is composed of a rate R = m
n

convolutional encoder,

e.g., a R = 1
2

with a two-stage shift register and generator 7, 5 (octal) [34], and a mapper that maps
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each of the convolutional coded output symbols to a certain code matrix4 to be transmitted over

both time and frequency. For illustration purposes, we present an example in which the mapped

symbol “213”, that is to be transmitted in both time and frequency domains, results in a 3 × 3 (H

× H) binary code matrix as given below.

Ti =


0 1 0

1 0 0

0 0 1

 , (2.3)

where 1 ≤ i ≤ M , M = 2n denotes the total number of possible n-tuples at the output of the

convolutional encoder, and H defines the number of frequency bands as well as the number of

time steps used in transmitting the outputs of the encoder. In this chapter, we define the PTC-based

multi-level FSK system as the H-FSK system since the PTC-based multi-level FSK modulated

system leads to an H × H binary code matrix. According to (2.3), transmission takes place on

f2, f1, and f3 (first, second and third columns of Ti) corresponding to the time steps Ts, 2Ts, and

3Ts respectively. Tables 2.1 and 2.2 present the symbol (with 1 bit and 2 bits) mappings onto

the corresponding unique permutation code matrices respectively [34]. For mapping tables for

larger values of H , we refer the reader to [34]. For M different symbols, Ti denotes the set of

Table 2.1: Mapping of symbols into permutation code matrices (M = H = 2)

Label Symbol Permutation code matrix
T1 0 12
T2 1 21

4It is important to mention that the Hamming distance between the permutation trellis matrices is lower-bounded
by that of the convolutional coded output symbols used in the mapping procedure provided in [34].
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Table 2.2: Mapping of symbols into permutation code matrices (M = 4, H = 3)

Label Symbol Permutation code matrix
T1 00 123
T2 01 132
T3 10 213
T4 11 231

transmitted code matrices such that Ti ∈ {T1, . . . ,TM} has the following general form:

Ti =


q1,1 . . . q1,H

... . . . ...

qH,1 . . . qH,H

 , (2.4)

where qj,k ∈ {0, 1} denotes the (j, k) binary element in i-th transmitted code matrix, j indicates

the output of the detector for frequency fj at time step k in the code matrix. At the k-th time

step, let j∗ denote the row index for which qj∗,k = 1. Note that qj,k = 0, ∀j∗ ̸= j since PTC is a

permutation matrix. At every time step, each entry in the column of the coded matrix is transmitted

using ON-OFF keying over H parallel frequencies. In other words, a “1" in the j-th row of the

coded matrix is modulated and transmitted over fj , while no signal is transmitted in case of a “0".

At a given time, only one frequency band is used for transmission.

Using the H-FSK scheme, the transmitted signal, assumed to be sufficiently narrowband, over

j-th frequency and k-th time step where j, k ∈ {1, 2, . . . , H}, is given by:

sk(t) = qj∗,k

√
2
Es/H

Ts

· cos(2πfj∗t),

(k − 1)Ts ≤ t ≤ kTs,

fj∗ = f1 +
j∗ − 1

Ts

, (2.5)

where Es denotes the transmitted signal energy per information symbol and Ts is the symbol
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duration. In this model, we assume a strong LOS path between a stationary SU transmitter and

a stationary receiver. Therefore, channel noise is modeled as Additive White Gaussian Noise

(AWGN) with zero-mean and variance N0

2
. Since path loss is a function of the operating frequency,

we need to ensure that the received signal power over the different frequency channels is the same,

P SU
R1

= · · · = P SU
RH

= P SU
R , in order to maintain a fixed signal-to-noise ratio, Es/N0 at the receiver.

Therefore, we adjust each SU’s transmitting power over each frequency, P SU
T (fj), according to the

free space path loss model given in (2.1). This requires the SU transmitter to know the location of

its corresponding receiver or the distance from its corresponding receiver. At the input of the SU

demodulator, the received signal at the k-th time step is given by:

rk(t) = srk(t) +
∑H

j=1 i
PU
j (t) + w(t) ,

where

iPU
j (t) =


√

2
EPU

Ij
/H

Ts
cos(2πfjt+ ϕj), if PU j is active

0, otherwise

and srk(t) = qj∗,k

√
2Er

s/H
Ts

cos(2πfj∗t + θ) where Er
s is defined as the symbol energy at the re-

ceiver. EPU
Ij

, P PU
Ij

Ts and P PU
Ij

are defined as the interference energy per coded symbol and

the interference power due to PU j’s transmitter at the SU receiver, respectively, and w(t) repre-

sents the channel noise at the receiver. It should be mentioned that PUs’ transmitters can employ

any modulation scheme while transmitting their signals and are not limited to the use of FSK-

modulated signals. The fact that PUs’ powers are very high compared to that of the SU implies

that the received signal at the SU receiver is dominated by PUs’ signals which, in turn, determine

the behavior of the system.

In this chapter, we assume perfect synchronization in that each transmission time slot of the

SU is aligned with that of the active PUs. We also assume that the bits to be transmitted in every

PU’s transmission are independent. In this case, the interference caused by PUs can be treated as

being independent for each bit in SU’s transmission. This might not be true when synchronization



20

is not perfect or channel coding is performed by a PU.

At the receiver side, non-coherent detection is employed using a bank of H quadrature receivers

so that each consists of two correlation receivers corresponding to the in-phase and quadrature

components of the signal. The in-phase component of the signal received, rIj,k , is given by:

rIj,k =

 qj,k
Er

s

H
cos θ +

EPU
Ij

H
cosϕj + w, if PU exists on fj at time k;

qj,k
Er

s

H
cos θ + w, otherwise,

(2.6)

where θ and ϕj ∀j are uniformly distributed5 over [0, 2π], i.e., θ, ϕj ∀j ∼ U(0, 2π), and denote the

random phase components of the SU and the PU signals, respectively. The noise term w in (2.6) is

modeled as AWGN, i.e., w ∼ N (0, N0

2
). Er

s is the received symbol energy over a given signaling

interval. Similarly, xQj,k
is the received signal’s quadrature component defined as follows:

rQj,k
=

 qj,k
Er

s

H
sin θ +

EPU
Ij

H
sinϕj + w, if PU exists on fj at time k;

qj,k
Er

s

H
sin θ + w, otherwise.

(2.7)

The envelope of each quadrature receiver over frequency j and time step k, lj,k, is defined as the

square root of the sum of the squared in-phase and quadrature components of the correlator output

as

lj,k =
√
r2Ij,k + r2Qj,k

. (2.8)

At the receiver, a hard decision decoding scheme is used where the envelope value of each

of the H quadrature receivers is compared to a threshold value, lth. In this chapter, we do not

perform formal optimization to find the threshold and instead we perform a sensitivity analysis by

finding BER for different threshold values. We employ the threshold value lth = 0.6
√
Er

s that is

shown to yield excellent performance in terms of BER. This value is the same as that used by the

5In the case of mobile networks, if the motion dynamics of all the transmitting nodes are deterministic and known,
then the expected values of θ and ϕj shift by a fixed quantity. By including these quantities, our analysis can also
handle mobile networks.
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authors in [34]. It would certainly be desirable to determine the optimum value of the threshold

such that the performance of the system is optimized. However, it is a difficult problem which will

be considered in future work.

The received code matrix Ri is of the form,

Ri =


b1,1 b1,2 . . . b1,H

...
... . . . ...

bH,1 bH,2 . . . bH,H

 , (2.9)

where bj,k ∈ {0, 1} and can be determined from,

bj,k =

 1, lj,k ≥ lth,

0, otherwise.
(2.10)

2.4 Bit Error Rate Analysis

We employ BER as the QoS metric to characterize the communication performance for an SU.

We consider the system model presented in Fig. 2.2 and obtain an approximation for BER. This

system model is the same as the one considered in [34, 88] where the PTC encoder includes a

convolutional encoder and the corresponding decoder uses Viterbi algorithm for decoding.

Here, we assume that the PTC encoder uses a rate-1
2

convolutional code whose output is con-

verted to a symbol which, in turn, is mapped onto a permutation matrix to be transmitted. We recall

that the mapping procedure from convolutional coded output symbols onto PTC matrices has to

satisfy the distance preserving property discussed in [34]. In this case, the Hamming distance

between any two PTC matrices is lower-bounded by the Hamming distance between the convolu-

tional coded output symbols used in the mapping procedure. Since the exact BER analysis of the

proposed system is computationally prohibitive, we approximate BER using some properties of

the Viterbi decoder.

The encoder of the binary convolutional code with a given rate is viewed as a finite state ma-
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Fig. 2.3: Finite State Machine of a (R = 1
2 ) convolutional coded PTC system.

chine as shown in Fig. 2.3. This state diagram, corresponding to the PTC shown in Table 2.2,

results in the trellis presented in Fig. 2.4. In order to optimally decode the received information,

we employ the Viterbi algorithm which reconstructs the maximum-likelihood path given the input

information sequence. In this case, an error event may occur if for a transmitted path in the trellis

the overall number of differences with the demodulator outputs is larger than or equal to that of a

competing path. The probability of bit error of a convolutional code is upper-bounded according

to [56, 69] as

Pe ≤
∞∑

d=dfree

adP2(d), (2.11)

where dfree is the free distance of the convolutional code, ad is the number of paths that differ by

d bits from the transmitter codeword, and P2(d) is the probability that the decoded path differs by

d bits from the transmitted codeword. In particular, ad and P2(d) are independent of the transmit-

ted codeword. In fact, they can be calculated assuming that an all-zero codeword is transmitted.

Knowing that all the code matrices to be sent include H non-zero elements, we next obtain a

similar upper-bound for the system given in Fig. 2.2.

Now, let c be a codeword of the convolutional code and P(c) be the corresponding expanded
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a

c

b

d

123(0) 123(0) 123(0) 123(0) 123(0)

213(1) 213(1) 213(1) 213(1) 213(1)

123(0) 123(0) 123(0)

132(0) 132(0) 132(0) 132(0)

231(1) 231(1) 231(1) 231(1)

231(1) 231(1) 231(1)

132(0) 132(0) 132(0)

213(1) 213(1) 213(1)

Fig. 2.4: A (R = 1
2 ) convolutional code trellis for our PTC-based system in which a 0 or a 1 denotes the

input bit and a permutation of symbols 1, 2, and 3 denotes the output symbol as shown next to each arrow.

codeword comprising the permutation code matrices mapped from c. The length of P(c) is (L +

m)H2, where L denotes the size of the packet to be transmitted and L+m the number of branches

in the trellis.

Let Pe(P(c)) denote the probability of a bit error when P(c) is the transmitted codeword.

Knowing that P(c) is a one-to-one mapping from the codeword c, using (2.11), we have

Pe(P(c)) ≤
∞∑

d=d∗free

a
P(c)
d P

P(c)
2 (d), (2.12)

where d∗free is the free distance of the expanded code, and a
P(c)
d and P

P(c)
2 (d) are the number of paths

and the probability that the paths differ by d bits from the transmitted codeword P(c), respectively.

In order to calculate (2.12), we need to prove that the upper-bound given in (2.12) is independent

of the transmitted expanded codeword.

Let dH(Ti,Tj′) denote the number of different corresponding elements in Ti and Tj′ , where

Ti and Tj′ are code matrices defined in (2.4). Furthermore, let Si ∈ S be the corresponding

symbol for Ti such that P(Si) = Ti, where S is the set of all symbols. We define a permutation
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code matrix to be geometrically uniform if the following property is satisfied6.

dH(P(Si ⊕ Sk′),P(Si ⊕ Sj′))

= dH(P(Sk′),P(Sj′)) for all Si,Sj′ ,Sk′ ∈ S. (2.13)

For any Si ∈ S , Si ⊕Sk′ and Si ⊕Sj′ can be evaluated. The result of each Exclusive-Or operation

is then mapped to a unique PTC. As such, it can easily be verified that the Hamming distance of

the mappings is the same for all Si’s. Therefore, the permutation code matrix given in Table 2.2

is geometrically uniform. Under this condition, we have the following proposition in which we

identify the sufficient condition that allows the use of the all-zero codeword (all-123 code matrix)

in calculating the upper bound given in (2.12).

Proposition 2.1. The bound in (2.12) is independent of the transmitted codeword if the permutation

code matrix obtained upon expanding codewords is geometrically uniform.

Proof. We need to prove that

dH(P(ci ⊕ ck′),P(ci ⊕ cj′))

= dH(P(ck′),P(cj′)) for all ci, cj′ , ck′ ∈ C,

where C contains all codewords of the convolutional code. Since the convolutional code is linear,

ci ⊕ ck′ and ci ⊕ cj′ are also codewords in C and

6A general definition of geometrically uniform codes can be found in [36].



25

dH(P(ci ⊕ ck′),P(ci ⊕ cj′))

=
∞∑
ℓ=1

dH(P(c̄i,ℓ ⊕ c̄k′,ℓ),P(c̄i,ℓ ⊕ c̄j′,ℓ)) (2.14)

=
∞∑
ℓ=1

dH(P(Si,ℓ ⊕ Sk′,ℓ),P(Si,ℓ ⊕ Sj′,ℓ)) (2.15)

=
∞∑
ℓ=1

dH(P(Sk′,ℓ),P(Sj′,ℓ)) by (2.13) (2.16)

=
∞∑
ℓ=1

dH(P(c̄k′,ℓ),P(c̄j′,ℓ)) (2.17)

= dH(P(ck′),P(cj′)), (2.18)

where c̄i,ℓ is the ℓ-th branch (stage) output code bits of ci. Both (2.15) and (2.17) are derived from

the fact that the output code bits are the corresponding symbols.

The fact that we have no information regarding the length of the transmitted bits sequence

means that the calculation of the upper bound, in (2.11), involves an infinite sum over all pos-

sible error events which will render the process of evaluating the error bound computationally

prohibitive for applications such as link adaptation. Therefore, it is important to approximate BER

using a suitably selected finite number of trellis paths. It is most likely that the first few error events

(paths) in the trellis dominate all the remaining ones. In this manner, the approximate BER can be

written as

P̂e ≈
d∗free+z∑
d=d∗free

a
P(c)
d P

P(c)
2 (d), (2.19)

where z ∈ N and z +1 denotes the number of paths involved in the BER approximation for which

numerical results are presented in Section 2.6. At this point, it is important to mention that a path

(error event) is composed of V stages. Let T be the concatenation of T1,T2, . . . ,TV and R be

the concatenation of R1,R2, . . . ,RV , where Tu and Ru denote the transmitted and received code

matrices at stage u in the trellis respectively. Furthermore, let Dd be the set of code matrices that
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differ from T in the first d bits. Accordingly, PP(c)
2 (d) can be written as

P
P(c)
2 (d)

=



d∑
dH (R,T)= d+1

2
R∈Dd

V∏
u=1

P (Ru|Tu) , d is odd,

d∑
dH (R,T)= d

2+1

R∈Dd

V∏
u=1

P (Ru|Tu)

+1
2

V∏
u=1

P (Ru|Tu) | dH (R,T)= d
2

R∈Dd

, d is even.

(2.20)

Given the transmitted code matrix at stage u (Tu), the conditional distribution of the received

code matrix Ru solely depends on the noise distribution and PU interference and, therefore, is

independent in both time and frequency domains. Thus, we have

P (Ru|Tu) =
H∏
j=1

H∏
k=1

P
(
buj,k|quj,k

)
=

H∏
j=1

H∏
k=1

[P
(
buj,k|quj,k, PUj

)
P (PUj)

+P
(
buj,k|quj,k, P̄U j

)
P
(
P̄U j

)
], (2.21)

where quj,k and buj,k are the (j, k) binary elements given by (2.4) and (2.9) respectively in the u-th

stage of the trellis and PUj and P̄U j denote the presence and absence of PU activity over channel

fj respectively. Note that the last step in (2.21) is justifiable since the conditional distribution

of the received code matrix Ru solely depends on the noise distribution and interference caused

by multiple PUs given the transmitted code matrix Tu. Here we note that P (PUj) and P (P̄U j)

depend on channel fj’s occupancy model which will be discussed in Section 2.5.1.

At each stage of the trellis, the absence and presence of PU need to be taken into consideration

when computing the likelihoods in (2.21) that also depend on the code matrix to be transmitted.

Next, we compute the likelihoods given in (2.21). We recall that an SU uses an ON-OFF modula-
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tion scheme to transmit its information over each licensed frequency according to (2.5).

2.4.1 Computation of likelihoods in the absence of PU

Suppose there is no PU transmission over frequency band j at time step k. If the SU is transmitting

a bit ‘1’, then the demodulator in-phase component rIj,k ∼ N (
√

Er
s

H
cos θ, N0

2
) and the demodula-

tor quadrature component rQj,k
∼ N (

√
Er

s

H
sin θ, N0

2
). The fact that rIj,k and rQj,k

are statistically

independent random variables with non-zero means, then implies lj,k ∼ Rice(
√

Er
s

H
,
√

N0

2
). Ac-

cordingly, P
(
bj,k = 0|qj,k = 1, P̄U j

)
can be computed as

P
(
bj,k = 0|qj,k = 1, P̄U j

)
= P (lj,k < lth|qj,k = 1, P̄U j)

= FLj,k
(lth)

= 1−Q1

(√
2
Er

s/H

N0

, 0.6

√
2
Er

s

N0

)
, (2.22)

where FLj,k
(lth) is the cumulative distribution function (CDF) of lj,k evaluated at lth, Q1(v, v

′) is

the Marcum’s Q-function defined as [83],

Q1(v, v
′) =

∫ ∞

v′
x exp

{
−x2 + v2

2

}
I0(vx) dx (2.23)

and I0(vx) is the zeroth order modified Bessel function. P
(
bj,k = 1|qj,k = 1, P̄U j

)
, in this case,

is nothing but the complement of (2.22) and is given by

P
(
bj,k = 1|qj,k = 1, P̄U j

)
= P (lj,k ≥ lth|qj,k = 1, P̄U j)

= 1− FLj,k
(lth)

= Q1

(√
2
Er

s/H

N0

, 0.6

√
2
Er

s

N0

)
. (2.24)
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If the SU is transmitting a bit ‘0’ on subchannel j at time step k, then, rIj,k ∼ N (0, N0

2
) and

rQj,k
∼ N (0, N0

2
), and we have lj,k ∼ Rayleigh(

√
N0

2
). Then, P (bj,k = 1|qj,k = 0, P̄U j) and

P (bj,k = 0|qj,k = 0, P̄U j) can be computed as,

P (bj,k = 1|qj,k = 0, P̄U j)

= P (lj,k ≥ lth|qj,k = 0, P̄U j)

= 1− FLj,k
(lth)

= exp

(
− 0.36

Er
s

N0

)
(2.25)

and

P (bj,k = 0|qj,k = 0, P̄U j)

= P (lj,k < lth|qj,k = 0, P̄U j)

= FLj,k
(lth)

= 1− exp

(
− 0.36

Er
s

N0

)
. (2.26)

2.4.2 Computation of likelihoods in the presence of PU

In the presence of PU activity in its licensed frequency fj at time step k during SU’s transmission

of bit ‘1’, the signal received at the input of the demodulator has two significant terms besides

noise. One corresponds to the actual signal energy of the transmitted symbol and the other is

created by the PU activity. It is assumed that the SU transmitting power is sufficiently small so

that QoS of the PU session is maintained. Therefore, the SU signal is negligible as compared to

that of the PU. In this case, rIj,k ∼ N (

√
EPU

Ij

H
cosϕ, N0

2
) and rQj,k

∼ N (

√
EPU

Ij

H
sinϕ, N0

2
). Thus,

lj,k ∼ Rice(

√
EPU

Ij

H
,
√

N0

2
). P (bj,k = 0|qj,k = 1, PUj) and P (bj,k = 1|qj,k = 1, PUj), in this
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scenario, are calculated according to,

P (bj,k = 0|qj,k = 1, PUj)

= P (lj,k < lth|qj,k = 1, PUj)

= FLj,k
(lth)

= 1−Q1

(√
2
EPU

Ij
/H

N0

, 0.6

√
2
Er

s

N0

)
(2.27)

and

P (bj,k = 1|qj,k = 1, PUj)

= P (lj,k ≥ lth|qj,k = 1, PUj)

= 1− FLj,k
(lth)

= Q1

(√
2
EPU

Ij
/H

N0

, 0.6

√
2
Er

s

N0

)
. (2.28)

If the SU transmits a ‘0’ on subchannel j at time step k, the output of the demodulator has

the noisy signal received from the PU. In that case, and similar to the analysis approach fol-

lowed earlier, rIj,k ∼ N (

√
EPU

Ij

H
cosϕ, N0

2
) and rQj,k

∼ N (

√
EPU

Ij

H
sinϕ, N0

2
). Consequently,

lj,k ∼ Rice(

√
EPU

Ij

H
,
√

N0

2
). So, the following probabilities P (bj,k = 0|qj,k = 0, PUj) and P (bj,k =

1|qj,k = 0, PUj) are the same as P (bj,k = 0|qj,k = 1, PUj) and P (bj,k = 1|qj,k = 1, PUj),

respectively.

Once the probabilities presented above are evaluated, we can calculate (2.21) for each stage of

the V stages in the trellis and, eventually, approximate the BER of the proposed scheme as given

in (2.19).
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Off (I) On (B)1− ρj

ρj

ωj

1− ωj

Fig. 2.5: Two-state Markov chain model for a given PU j activity over its licensed frequency.

2.5 Throughput Analysis

So far, we have computed the BER approximately and evaluated the performance of the H-FSK

system in the presence of interference caused by multiple PUs. To further explore the perfor-

mance of the proposed H-FSK communication system and validate its effectiveness, we perform a

throughput analysis based on the approximate BER provided in Section 2.4. Accordingly, an SU,

adopting the proposed H-FSK communication scheme, is expected to provide a level of reliable

information reception which is better than what the SU could achieve otherwise under heavy PU

interference.

2.5.1 Licensed Channel Dynamic Occupancy Model

To characterize the dynamic behavior of a PU, we model each PU’s spectrum usage as a two-state

Markov chain, which is depicted in Fig. 2.5. Note that our model is different from [28] where we

assumed the licensed channel to be always occupied by the PU. In this model, the channel has two

alternative states denoted by On (Busy) and Off (Idle). This assumption is practical in the sense

that the licensed spectrum occupancy will experience alternating On-Off periods rather than the

assumption of the channel being always occupied (a given PU being always present once it starts

transmission during an SU transmission). The periods during which the licensed spectrum’s state

is idle or busy, also known as holding times, are geometrically distributed with known independent

parameters rj and pj as shown in Fig. 2.5. An On state represents the state in which the licensed

band fj is occupied by a PU resulting in degraded BER performance for SU transmissions, while an
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Off (idle) state represents the state in which the primary band is idle. The steady state probabilities

of any primary channel, fj , state being Off or On are given respectively as

POff
chj

=
ωj

ωj + ρj
(2.29)

and

POn
chj

=
ρj

ωj + ρj
. (2.30)

It is important, at this point, to mention that P ( ¯PUj) = POff
chj

and P (PUj) = POn
chj

.

2.5.2 Throughput Analysis

In order to examine the effectiveness of the proposed H-FSK approach, we conduct a throughput

analysis by computing the average throughput of the SU communication session in the presence

of multiple PUs whose activities are modeled as a 2-state Markov chain. It is assumed that the

SU transmitter has no information regarding the presence or absence of PUs in the network. The

expected throughput, in this case, is defined as

The =

(
1− PER

)
×Rp × L, (2.31)

where PER = 1 − (1 − Pe)
L is the packet error rate (PER) at the SU receiver and Rp is the rate

at which information packets are sent. As stated earlier, since the closed-form expression of Pe is

computationally prohibitive, we approximate the expected throughput of the H-FSK communica-

tion scheme as follows, using an approximate value of Pe given in (2.19):

The ≈

(
1− P̂e

)L

×Rp × L. (2.32)

Empirically, we define expected throughput as the average number of correctly received packets

per unit time. For simplicity, we do not consider header and overhead bits when computing the
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Fig. 2.6: BER approximations for PTC with H = 3.

link throughput.

2.6 Numerical Results and Discussion

2.6.1 Approximate BER with Single Permanent PU Interference

For the coded H-FSK communication system shown in Fig. 2.2, the following values of the

physical parameters are assumed. The transmit power of the SU is varied between [25 µW, 4mW ]

and the noise power density is selected as N0 = 2.5 × 10−14. These values are chosen in such

a way so as to not create destructive interference to PUs’ transmissions. We select the lowest

frequency band in the available frequency spectrum, f1, to be 56 MHz, and the bandwidth spacing

between any two subchannels is selected as 6 MHz. Furthermore, cj =
(

λj

4π

)2
where λj is the

signal wavelength defined as the ratio of the speed of light to the center frequency of the band in

operation c
fj

. Among PUs existing in the network, only the PU operating at the licensed frequency

f2 is assumed active and has a total transmitting power of 1 MW. The distances between the PU

transmitter and SU receiver and that between the SU transmitter-receiver pair are selected as 10 m,
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Fig. 2.7: |BER−BERapx| for different PTC (H = 2, 3, and 4) and SNR = 7 dB.

in order to analyze the quality of the SU link under a high interference scenario. The remaining

parameter values used in the simulation are chosen in accordance with the IEEE 802.22 standard

[86].

In Fig. 2.6, we fix H = 3 and compare the simulated BER with its approximations using

different number of paths used in the approximation, i.e., z + 1. It is clear from the figure that

z = 3 approximates BER well for H = 3. At the same time, we observe that the BER curve

surpasses the simulated BER for z ≥ 4. In other words, P̂e serves as an upper-bound in this case.

In Fig. 2.7, we fix SNR = 7 dB and compare the absolute error of the BER approximation

for different values of H . It is again clear that z = 3, i.e., using only z + 1 = 4 paths of the con-

volutional code’s trellis, provides good BER approximation for different sizes of PTC. This is due

to the fact that the first few error events with a few errors in the trellis dominate all the remaining

transitions. This result confirms what we have mentioned earlier regarding the domination of a

small number of paths in the trellis over all the remaining paths that may evolve due to incoming

bits. The approximate BER we provide in the section could be used as a QoS metric in an adaptive

scenario where certain parameters of the system such as H could be adapted in an online manner

using this approximation. In Table 2.3, we present results on the performance based on exhaus-
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tive search7 compared to the proposed approximation approach in this chapter in terms of the time

needed to compute BER for different PTC. As shown in Table 2.3, it takes much shorter time to

Table 2.3: A comparison of the time needed to compute BER between exhaustive search [28] and approxi-
mation approach for different PTC (H = 2, 3, and 4)

PTC Exhaustive Search Approach Approximate Approach
H = 2 0.33s 0.31s
H = 3 42.21s 7.24s
H = 4 26274.99s 245.32s

compute the BER approximately as compared to its exact calculation.

2.6.2 Throughput Analysis of H-FSK

For comparison purposes, we first consider a competing scenario where an SU does not employ

any coding technique in its spectrum interweaved transmission strategy. It is assumed to be based

on M -FSK modulated signals. In this scenario, an SU makes use of the CR channel sensing

feature in order to determine if there is an active PU in the network or not. Depending on the

channel sensing measurements of the licensed spectrum, a decision is made on whether or not

the SU should vacate the band. When the SU detects a white space, it adapts the transmission

parameters to utilize the full spectrum available and achieve the maximum throughput. On the

other hand, when a PU is detected an SU vacates the band and adjusts its transmission parameters

accordingly by employing a modified FSK modulation scheme supporting the transmission of M ′

symbols where M ′ < M . In order to gain more insight regarding the throughput performance

comparison of the PTC-based multi-level FSK with the uncoded-opportunistic (adaptive) M -FSK

system, we assume that packet transmissions take place over an observation window of length T

seconds divided into x time slots. In each time slot, POn
ch can be obtained using the channel’s steady

7Using this technique, decisions on the transmitted code matrices are made by the permutation trellis decoder
which decides in favor of the transmitted code matrix, i.e., among 2m possible code matrices, which has the minimum
Hamming distance with respect to the received one. In order to determine all the decisions for every possible code
matrix, a brute force method is used to compare each possible received code matrix to every code matrix. This method
needs roughly 2H

2+m comparisons [28].
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Fig. 2.8: Throughput Comparison of H-FSK and uncoded opportunistic M -FSK as well as convolutionally
coded BPSK schemes for SNR = 7 dB, packet size = 256 bits, and Rp = 100 packets/sec.

state probabilities. Then, the probability of packet error is evaluated by averaging the results over a

100000 Monte-Carlo runs.8 As a result, the SU’s throughput is computed and analyzed. We further

assume that the available spectrum consists of four frequency bands. With the use of the PTC-based

multi-level FSK approach, an SU does not need to sense the channel or adapt its wireless links.

In the uncoded opportunistic system, an SU senses the licensed frequency band at the beginning

of a time slot. Assuming zero-cost perfect detection of a licensed user’s activity, an SU decides

on which M -FSK modulated signals are to be transmitted. In the case where an SU detects a

spectrum hole, it utilizes the full available spectrum (4 bands) using a 4-FSK modulation scheme.

When a PU is detected, an SU vacates the licensed band and utilizes the remaining spectrum (2

frequency bands out of the 4 bands assumed to comprise the spectrum) using BFSK modulated

signals. Different from [103], the licensed channel can change its state at any instant in a time slot.

In Fig. 2.8, we present the average throughput of H-FSK and that of an uncoded opportunistic

8In each Monte-Carlo run, the channel’s steady state probabilities vary.
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M -FSK system as a function of POn
ch for H = M = 4 where the packet size L = 256 bits, Rp

= 100 packets/sec, and SNR is 7 dB. Fig. 2.8 illustrates that the average throughput in H-FSK

is constant regardless of POn
ch values while the average throughput of the uncoded opportunistic

M -FSK decreases as POn
ch increases and it matches the theoretical approximation given in (2.32).

The throughput of H-FSK is constant because we assume that there is only one frequency over

which the PU interferes with the SU with a probability, POn
ch . Since PTC is a permutation of the

identity matrix, the interfered row in the received coded matrix can be deterministically found

from the other rows. Therefore, we observe a flat throughput response for the proposed PTC-

based communication scheme. As shown, there exists a probability p∗1 ≈ 0.7 such that for POn
ch

≥ p∗1 the H-FSK approach outperforms the uncoded opportunistic scheme in terms of throughput

performance. Thus, the use of the proposed H-FSK communication scheme for values of POn
ch

less than p∗1 is not beneficial because higher throughput values are obtained using the uncoded

opportunistic scheme. In other words, the H-FSK system is effective for situations where the PU

activity is relatively high. In practice, the throughput evaluated for the uncoded M -FSK system

is expected to be lower than what is shown in Fig. 2.8 due to channel sensing intervals. It should

be noted that the proposed H-FSK communication scheme does not need the channel sensing

mechanism that might not be available for some applications.

We also compare the average throughput of the proposed H-FSK scheme to a rate-1
2

convo-

lutionally coded BPSK modulated OFDM system. We assume that the latter transmits a BPSK

modulated signal in parallel over the available frequency bands in a given time window as dis-

cussed above. For a fair comparison, neither scheme carries out sensing, i.e., they transmit at all

times. It is worth noting that the throughput performance of this BPSK OFDM system is inves-

tigated assuming the same transmission bandwidth, power, and time frame as that of the H-FSK

system. As shown in Fig. 2.8, the average throughput of the convolutionally coded BPSK system

also decreases as POn
ch increases. Similar to the previous throughput comparison, there exists a

probability p∗2 ≈ 0.55 such that for POn
ch ≥ p∗2 the H-FSK system outperforms the convolutionally

coded BPSK scheme in terms of SU’s average throughput. Therefore, the use of the proposed
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Fig. 2.9: Approximate BER performance of different PTCs with respect to PUs that are always ON and
transmitting.

Fig. 2.10: Approximate BER versus Simulated BER for a PTC with H = 2, 3, and 4, n = 1, 2, and 3, and
PON
ch = 0.35.

H-FSK communication scheme for values of POn
ch less than p∗2 is not beneficial because higher

throughput values would be obtained using the other coded scheme.
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2.6.3 SU Link’s Resiliency in the Presence of Multiple PUs

In this section, we further carry out our performance analysis and examine the resiliency of the

network (SU’s link) to interference provided by the proposed PTC based framework in the presence

of multiple PUs when i) PUs always transmit and ii) PUs are dynamic and their activities vary

dynamically. It is worth noting here that the PUs are located 10 m away from the SU receiver in

order to analyze the quality of the SU link under a high interference scenario.

Fig. 2.11: Approximate BER performance of a PTC (H = 4) with respect to dynamically varying PUs
activities and PUs that are always ON.

First, we consider multiple PUs that are always active in the network during SU communica-

tion. In Fig. 2.9, we plot the approximate BER performance of the SU link for different PTCs

in the presence of multiple PUs. The results obtained in the presence of multiple PUs that are

always ON are similar to those presented in [34,88]. These results show that the use of larger PTC

(higher value of H) adds more robustness to SU communications, i.e., BER decreases as the value

of H increases. It is also shown that the approximate BER performance of an SU link degrades as

the number of PUs in the network increases. Of course, this is achieved at the expense of larger
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Fig. 2.12: A BER comparison between the proposed PTC scheme with H = 4 and a 1/2 rate
(64800,32400) LDPC encoding with a 4-FSK modulation system with respect to static (POn

ch = 1) and
dynamic (POn

ch = 0.75) activities of a PU.

overhead when larger values of H are used.

The case of static PUs that always transmit is more of a pessimistic scenario as presented

above. In this chapter, as discussed earlier, we have extended the work in [34,88] and have consid-

ered a more practical scenario to model the intermittent dynamic activities of PUs in the network.

Using a 2-state Markov chain to model channels’ occupancy by PUs, we have provided a more

realistic characterization of system performance and verify the approximate BER in the presence

of a dynamically transmitting PU with simulated BER for a given PTC and known parameters of

the channel occupancy model. In Fig. 2.10, we present the approximate BER performance of the

proposed framework as a function of Es

N0
for different PTC schemes, i.e., H = 2, 3, and 4, and

PON
ch = 0.35. Both analytical and simulation results are presented which match each other quite

well.

In addition, in Fig. 2.11, we further examine the approximate BER performance of SU com-

munications for a given PTC, i.e., H = 4, in the presence of one, two, and three PUs that i) are

static in nature and always transmit and ii) dynamic in nature. The results obtained in Fig. 2.11
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clearly show that there exists a gap between the performance of the systems in both cases. Our

analysis based on a more practical occupancy model is able to predict SU communication perfor-

mance more accurately and which is better than the pessimistic case of PUs being always ON. For

example, the approximate BER value in the presence of one dynamic PU is lower than when a

PU is always transmitting. This is intuitive because only a fraction of the transmitted information

packets are affected by interference from the dynamic PU when it is transmitting compared to the

static PU case when all the transmitted information packets experience continuous interference. In

fact, this is also observed for the case of 2 and 3 PUs being active in the network.

Next, for the same energy per information bit, transmission bandwidth, and transmission time,

let us compare the performance of our proposed PTC-based communication system with another

system based on LDPC codes using a simple example where |F| = 4 frequency bands. In the

case of LDPC-based communication system, we construct a coded message using a 1/2 rate

(64800,32400) LDPC code as given in Matlab toolbox. This coded message of length 64800 is

grouped into matrices of size 4 × 4 and transmitted using the same modulation scheme as in the

proposed communication system. Fig. 2.12 illustrates how the proposed PTC-based communica-

tion system outperforms the LDPC-based system for both static and dynamic activities of a PU in

terms of error probability for different SNR values.

2.7 Summary

In this chapter, we employed a PTC based framework to mitigate the impact of PUs modeled using

a practical dynamic channel occupancy model in CRNs. We computed the SU link’s BER approxi-

mately which was shown to be quite accurate. This approximation allows one to use BER as a QoS

metric to determine the link quality of an SU link for applications such as link adaptation. Further-

more, in order to assess the effectiveness of the proposed PTC based multi-level FSK communi-

cation scheme, we compared the performance to that of an uncoded opportunistic M -FSK system,

a coded M -FSK system, a coded BPSK modulated system deploying parallel transmissions, and
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a 1
2
-rate LDPC encoding with an M -FSK modulation system. Based on these comparisons, we

showed that the proposed scheme outperforms the latter two under relatively heavy PU interfer-

ence. We also presented results that exhibit the resiliency of an SU link to interference for PTCs

in the presence of multiple dynamic PUs activities.

In order to mitigate the interference created by multiple intermittent PUs in a CRN, a novel

spectrum underlay design, based on PTCs in conjunction with multi-level FSK signaling, was pre-

sented in this chapter. In the future, we propose to consider a novel spectrum allocation mechanism

to mitigate interference created by multiple SUs in a CRN.
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CHAPTER 3

MITIGATION OF SU INTERFERENCE VIA A

MATCHING-BASED FREQUENCY

ALLOCATION

The proliferation of new wireless technologies has led to an increasing demand for the scarce

radio spectrum resources, thus motivating operators and governmental agencies to rethink the way

in which existing fixed spectrum allocation policies are defined [1].

In order to reap the benefits of CRNs, it is imperative to design smart and agile spectrum alloca-

tion mechanisms that can achieve better management and utilization of spectral resources. In this

chapter, we design a novel and distributed spectrum allocation approach in a CRN when SUs have

non-identical spectrum availability measures. We consider a CRN in which each SU perceives the

availability of the spectrum differently. We formulate a matching game [37] in which the SUs and

PUs are the players that need to rank one another in order to find suitable associations. The key ad-

vantage of the proposed approach lies in the fact that the SU-PU associations are achieved through

distributed decisions at each SU and PU. To solve the proposed matching game, we introduce a

novel distributed algorithm according to which the SUs and PUs self-organize into a stable and

optimal matching.
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3.1 Literature Review

For spectrum allocation in a CRN, two fundamental architectures have recently been studied [5,

45, 72]. One is centralized where a central entity, such as a central controller or spectrum broker,

is in charge of allocating the spectrum or part of it to different SUs [14]. Based on this scheme,

SUs forward their spectrum sensing measurements to a central entity which constructs a spectrum

allocation map. Naturally, a centralized approach can lead to high communication overhead and

is not scalable. Alternatively, a distributed architecture can be adopted, for example, when the

construction of a centralized infrastructure is not possible and/or for quick adaptation to network

dynamics. Therefore, we focus our attention on distributed architectures in this chapter.

Distributed spectrum allocation, in the context of wireless networks, has received considerable

attention recently [16,53,61,82]. The authors in [82] developed a distributed algorithm for multi-

user channel allocation in CRNs that is based on the learning of the behavior of PUs through a

multi-agent learning concept. However, in [82], for the network nodes to learn and take decisions,

they must have precise and timely information such as channel information or interference patterns

that might be hard to gather in a distributed setting. In [16], the authors introduced an adaptive and

distributed local bargaining approach where mobile users self-organize into bargaining groups and

adapt their previous spectrum assignment to approximate a new optimal assignment. Nevertheless,

their approach is highly centralized. The work in [53] studies the problem of channel allocation

in wireless networks using a matching theory-based mechanism that is solved via a variant of

the so-called Gale-Shapley deferred acceptance algorithm [37]. They analyze the performance

of the proposed solution from the user’s perspective and provide tight lower and upper bounds

on both the stable allocation and the optimal centralized allocation performance. In [61], the

authors use matching theory to find a stable multi-channel allocation for each SU assuming the

existence of a central coordinator responding on behalf of the PUs. They investigate cooperative

channel assignments that require direct communication between SUs and prove the existence of an

equilibrium solution. However, in [61], the scheme is not fully distributed and it incurs additional

communication overhead.
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3.2 Motivation, Novelty, and Contributions

Compared to existing works such as [16] and [61], the proposed approach is fully distributed as it

requires no cluster-head to determine the assignment, no central entity to perform bargaining, no

coordinator to control the matching on behalf of the PUs, and no information exchange among SUs.

In contrast to [82], the proposed algorithm neither requires the learning of users in the network nor

timely and precise information about them. In contrast to [53] and [61], we consider that SUs have

different information regarding the activity of PUs over their licensed bands. Compared to [53],

our proposed scheme enables the frequency band licensees in the network to be active players in the

association process and, thus, make better informed spectrum association decisions that maximize

their own payoffs. In addition, the performance analysis we provide is not based on bounds. As

opposed to [61] in which the authors assume the existence of a central coordinator that responds to

offers from all the SUs on behalf of the PUs, we propose a one-to-one stable matching for which

we propose a completely distributed resource allocation algorithm.

To summarize, the main contributions of this work are as follows:

• We design a novel spectrum allocation approach in a CRN in which each SU perceives the

availability of the spectrum differently.

• We devise the use of a measure of inference performance and rate to evaluate SUs’ proposals

which are used by PUs to rank SUs.

• We propose a novel distributed algorithm that enables SUs and PUs to self-organize into a

stable and optimal matching.

3.3 System Model

Consider a single-hop CRN consisting of a set O = {1, · · · , O} of O SU transmitter-receiver pairs

and a set H = {1, · · · , H} of H PU transmitter-receiver pairs, with O > H1. For brevity, we use

1We consider this scenario for illustration purposes only. However, our work can be easily extended to O ≤ H .
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SU pair o′ ∈ O

SU pair o ∈ O

ho′,k

ho,k
PU pair k ∈ H

PU pair k′ ∈ H

ho′,k′

ho,k′

Fig. 3.1: An illustration of the system model. An arrow portrays the sensing mechanism of PUs activities
performed at the transmitter’s side of each SU pair.

the term SUs and PUs to denote, respectively, the SU and PU transmitter-receiver pairs. PUs are

licensed users whose transmission behavior varies slowly over time. Each PU operates over 1 out

of H orthogonal licensed frequency bands over which transmissions are assumed to be collision-

free. At any point in time, a given PU may be active or inactive. However, from the perspective

of any SU o ∈ O, every PU k ∈ H is considered to be active with a probability πo,k. For a given

PU k ∈ H, two distinct SUs o, o′ ∈ O, o ̸= o′ may have a different value of the probability

that k is active, i.e., we may have πo,k ̸= πo′,k, depending on various factors such as the distance

to the PU and the wireless channel state. Let πo = [πo,1 · · · πo,H ] for any o ∈ O. Furthermore,

the wireless channel over which signals are transmitted is assumed to be frequency selective. We

take into account a broad class of channel models which consist of a known distance-independent

frequency selective component, and a deterministic distance-dependent path loss component with

path loss exponent γ [92]. More specifically, let

ho,k =

√
βk

1 +Kdγo,k
(3.1)

be the channel gain over a distance do,k, between the transmitters of SU o and PU k, with a de-

terministic frequency selective coefficient βk and a constant K. Note that, for any two PU-owned

frequency bands k and k′, βk ̸= βk′ . Note that this path loss model is consistent with the one

employed in [64] and it is valid even if do,k is close to or equal to 0.

Furthermore, we let ηo = [ηo,1 · · · ηo,H ] for any o ∈ O denote the rates over the bands in H
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where ηo,k, for k ∈ H, is given by [40]:

ηo,k = log2

(
1 +

PTog
2
o,k

σ2

)
, ∀o, k, (3.2)

where PTo denotes SU o’s transmit power, go,k =

√
β
′
k

1+Kdγo,o
is the channel gain of PU-owned band

k over a distance do,o between SU transmitter-receiver pair o with a known frequency selective

coefficient β ′

k, and σ2 is the additive white Gaussian noise variance, assumed the same for all SUs

over all bands.

In the model studied here, SUs can only communicate with PUs. In other words, there does

not exist any negotiation or information exchange among SUs. We further assume that an SU

is capable of transmitting over a single PU-owned frequency band at a time, but can sense the

activities of all PUs in H. In this chapter, the system is assumed to be slotted where each SU

o ∈ O makes a single observation every time slot and decides on the presence or absence of a PU

k ∈ H on its licensed channel based on this observation.

Local sensing for PU signal detection, done once every time slot, can be formulated as a binary

hypothesis testing problem as follows [3]:

under H0 : xo,k = w,

under H1 : xo,k = ho,ksk + w,

where, at SU o ∈ O over PU-owned frequency band k ∈ H, xo,k denotes the received signal, ho,k

is the k-th channel gain, sk denotes the known signal of PU k, and w is the zero-mean additive

white Gaussian noise. H0 and H1 denote the absence and the presence, respectively, of the PU

signal in the frequency band.

In our model, we consider the above signal detection problem. We compute the logarithm of

the a posteriori probability ratio that captures the inference performance. In other words, the sign

of the logarithm of the a posteriori probability ratio yields the decision on H1 or H0 while its mag-
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nitude determines the confidence regarding a decision on either one of the two hypotheses. More

formally, we present this maximum a posteriori probability decision rule of the aforementioned

binary hypothesis testing problem as follows:

δo,k = log

(
P (H1|xo,k)

P (H0|xo,k)

)
H1

≷
H0

0

= log

(
πo,kp (xo,k|H1)

(1− πo,k) p (xo,k|H0)

)
H1

≷
H0

0, (3.3)

where P (H1|xo,k) and P (H0|xo,k) denote the a posteriori probabilities based on the SUs’ obser-

vations. p (xo,k|H1) and p (xo,k|H0) represent the likelihood functions as computed by the SUs

under H1 and H0 respectively, and, are given by:

p (xo,k|H1) =
1

σ
√
2π

e−
(xo,k−ho,ksk)

2

2σ2 , (3.4)

p (xo,k|H0) =
1

σ
√
2π

e−
(xo,k)

2

2σ2 . (3.5)

We use the logarithm of the a posteriori probability ratio in our model to capture the confidence

regarding the presence or absence of PU activity over a particular band. In fact, this measure

constitutes the SU’s ranking metric which, in turn, is used to order the PU-owned frequency bands

in H. For a given SU o ∈ O and two distinct PU-owned frequency bands k, k′ ∈ H, k ̸= k′

and δo,k < δo,k′ , it prefers k over k′. As a result, the SU would prefer to use PU-owned frequency

band k for its transmissions. It is, however, possible that the same band is the preferred choice of

another SU. Hence, competitions exist among SUs for PU-owned bands and the problem of finding

a stable allocation of each PU-owned band in H to a unique SU in O arises. For any SU o ∈ O

that is looking to transmit over any PU-owned frequency band k ∈ H, we define vo,k, a function of

the ranking metric only, to serve as a measure of SU o’s utility:

vo,k = f1 (δo,k) , (3.6)
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where f1 denotes a monotonically decreasing function of δo,k, where δo,k is the logarithm of the

a posteriori probability ratio computed by SU o over PU k’s licensed band. In other words, f is

chosen such that the utility of an SU decreases as δo,k increases.

In our model, we assume that all the SUs and PUs participate in the association process. The

SUs compute valuations that capture the ranking metric and rate over the licensed frequency bands

as follows.

po,k = f2 (δo,k, ηo,k) , (3.7)

where f2 is a monotonically decreasing function of δo,k (since, an SU prefers a PU who is more

likely to be inactive) and an increasing function of ηo,k (since, SUs seek to obtain good commu-

nication rates). In this game, the SUs propose this valuation to PUs. Using this proposal, a PU

evaluates its utility. Accordingly, we define uk,o as PU k’s utility when associated with SU o. It is

assumed, in this framework, that uk,o is monotonically increasing with po,k for PU k that is inactive

and whose licensed band is available. One possible way of interpreting the aforementioned aspect

is to consider uo,k as a reward or credit that the SU proposes to give to the inactive PU based on the

former’s valuation of the latter’s frequency band in (3.7). However, if PU k is active, we assume

uk,o = 0, ∀o, as it values its own transmission more than all SUs’ proposals and, thus, it does not

associate with any SU. This utility function serves as the incentive for a PU to participate in the

association process and determines its preferences. For instance, a PU that is inactive prefers to

allocate its licensed band to an SU with high valuation, e.g., an SU which is more likely to detect

it as inactive and attains a high rate over the licensed band so that the PU gets a higher reward. An

active PU, on the other hand, prefers to keep the licensed band for its own transmissions.

Here, we note that the PUs in the network do not have information about the SUs’ inference

performance levels as well as their rates. Hence, the valuations of SUs, po,k for all o and k, is

unknown to the PUs initially. In other words, inactive PUs are unable to evaluate their utilities in

the beginning and, therefore, cannot make association decisions that maximize their payoffs. In
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this case, an inactive PU k can choose an SU o to associate with only when it acquires information

on po,k. This is the main reason we require SUs to forward their proposals to PUs in our system

according to their preference lists. Hence, our goal is to obtain a spectrum allocation strategy

according to which each SU is associated with its most preferred PU-owned frequency band and

vice versa. To do this, we formulate the problem as a matching game between PUs and SUs. We

first define the game in Section 3.4 and, then, present the solution concept and propose a distributed

resource allocation algorithm in Section 3.5.

3.4 Spectrum Allocation as a Matching Game

Using classical optimization techniques to solve the frequency allocation problem can yield sig-

nificant overhead. As a matter of fact, it is NP-hard in general [49]. Therefore, the need for

self-organizing solutions in CRNs along with the complexity of centralized optimization methods

necessitate a distributed framework in which SUs and PUs autonomously determine, based on their

individual objectives, the best SU-PU associations. One suitable mechanism for developing such

an autonomous SU-PU associations is given by matching theory [75].

3.4.1 Matching Concepts

A matching is defined as a pairing between SUs in O and PUs in H through a matching ξ: H → O.

We consider the pairing to be one-to-one in nature. In this case, O − H or more SUs will not be

matched. We denote by K the set of available bands where K ⊆ H and K′ is the set of matched

SUs where K′ ⊂ O. More formally, a matching game can be defined as in [37].

Definition 3.1. A matching game is defined by two sets of players (O, H) and two preference

relations ≻o and ≻k. ≻o allows players of set O to evaluate (rank) players of set H, while ≻k

allows players of set H to rank players of set O.

The outcome of a matching game is a one-to-one association function ξ that bilaterally assigns

to each player o ∈ K′, a player k = ξ(o), k ∈ K. Similarly, we have o = ξ(k). To complete the
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definition of the game, we must introduce a preference relation ≻ which is defined as a complete,

reflexive, and transitive binary relation between the players in O and H. Thus, for any SU o ∈ O, a

preference relation ≻o is defined over the set of PUs H such that, for any two PU-owned frequency

bands k, k′ ∈ H, k ̸= k′:

k ≻o k
′ ⇔ δo,k < δo,k′ , (3.8)

where δo,k and δo,k′ denote the logarithm of the a posteriori probability ratio of SU o corresponding

to k and k′ respectively. Similarly, for any available PU-owned frequency band k, a preference

relation ≻k over the set of SUs O is defined as follows, for any two SUs o, o′ ∈ O, o ̸= o′:

o ≻k o
′ ⇔ uk,o (po,k) > uk,o′ (po′,k) , (3.9)

where uk,o and uk,o′ denote PU k’s utility when it is inactive and grants its frequency band to SU o

and o′ respectively.

Next, we show how SUs build their preferences according to the preference relation defined in

(3.8) and, accordingly, evaluate their proposals. Then, in Section 3.4.3, we present how PUs play

an active role in the association process.

3.4.2 Preferences and Proposals of the SUs

So far, the logarithm of the a posteriori probability ratio for each of the SUs in O has been com-

puted according to (3.3), (3.4), and (3.5). Based on the results obtained, an SU o ranks the PU-

owned frequency bands in an increasing order with the largest element being the least preferred.

Accordingly, an SU o obtains a preference list ∆o, which is sorted based on (3.8).

Given ∆o and ηo, an SU o ∈ O is able to better evaluate the benefit from using each of the

PU-owned frequency bands. Intuitively, in addition to ηo, an SU values a frequency band less if

it predicts the band to be occupied by a PU, i.e., δo,k > 0. On the other hand, an SU values a

frequency band more if it predicts the band to have no PU activity on it. In other words, when

δo,k < 0, po,k in (3.7) is higher than when δo,k > 0. Hence, po,k should be defined in a way such
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that the aforementioned properties are satisfied. We, in this chapter, express it as a weighted sum

of the ranking metric and rate without loss of generality. More precisely, an SU o’s valuation that

it proposes to PU k is given by:

po,k = −αoδo,k + (1− αo) ηo,k, (3.10)

where αo is a positive weight chosen by SU o such that 0 ≤ αo ≤ 1.

3.4.3 Preferences of the PUs

Initially, an inactive PU o ∈ K has no known preferences as to which SU it should grant its

licensed band to. It is, however, considered that its corresponding utility function is monotonically

increasing with the valuation of the SU it is associated with. When the matching game starts, only

inactive PUs start to build their preferences based on the proposals they receive from SUs in the

form of their utility functions. In the case where po,k > 0 ∀o, k, every inactive PU will have a

preferred SU while every active PU will keep the licensed band to itself. However, it is possible

for an inactive PU k not to be matched. This happens in the following two scenarios: i) po,k < 0

∀o, or ii) a restriction on the number of SUs’ proposals to be made exists.

Inactive PUs are interested in getting associated with SUs presenting the highest reward. In

this manner, an inactive PU maximizes its utility. In fact, it accepts or rejects SUs’ proposals based

on the preference relation defined in (3.9) and the fact that its utility is a monotonically increasing

function with that of the SU. An active PU, on the other hand, simply rejects all the SUs’ proposals.

We have defined the matching game and presented how SUs build their preferences and propos-

als. We have also shown how PUs adopt their preferences. Next, we present the solution concept

and find a stable and optimal spectrum allocation.
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3.5 Solution Concept and Proposed Algorithm

Having defined the preference relations of the SUs in (3.8) and the inactive PUs in (3.9) and

articulated the modus operandi of active PUs, we study the matching between SUs and PUs next.

First, we characterize the notion of stable spectrum matching in our model.

Definition 3.2. A matching ξ is said to be stable if there does not exist any two pairings (o, k), (o′, k′) ∈

ξ, such that, δo′,k < δo′,k′ and uk,o′ > uk,o.

In order to reach a stable matching in this framework, we propose a novel distributed algo-

rithm shown in Algorithm 3.1. It consists of four main phases: detection of PUs’ signals (Phase

I), building SUs’ preferences and constructing proposals (Phase II), matching evaluation (Phase

III), and finally SU-PU associations (Phase IV). It is important to mention that the novelty of Al-

gorithm 3.1 lies in its ability to address underlying uncertainties structures and lack of a priori

known preferences in matching problems. This clearly distinguishes it from the deferred accep-

tance algorithm of Gale-Shapley [37] where all preferences are known a priori and resources are

available deterministically.

Initially, each SU o computes the logarithm of the a posteriori probability ratio over PU-owned

frequency band k (δo,k, ∀o, k). In the second phase, each SU m obtains its preference vector ∆o

by ranking δo,k based on (3.8) ∀k. Then, using ηo and ∆o, the SU evaluates po,k defined in (3.10)

for all PU-owned frequency bands. In this model, an SU discards all the proposals with a negative

valuation, po,k, from its preference list. That is, an SU in the network does not propose to a PU-

owned frequency band for which po,k < 0. If an SU o is not currently allocated the most preferred

frequency band k, it sends k a matching proposal. Upon receiving a proposal, PU k, if active,

rejects the proposal. Otherwise, PU k updates its utility and accepts the request of the SU either

when it has not been proposed to yet or when the reward is greater than what it gets from another

SU’s request. If the proposal is rejected, SU o proposes to the next PU-owned frequency band in

its preference list. Once the algorithm terminates, a stable matching, that consists of H SU-PU

associations, is reached as long as all PUs are inactive and there does not exist a scenario where,
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Algorithm 3.1 SU-PU Associations Algorithm
Data: Initially, no frequency band is assigned to any SU.
Result: A stable spectrum allocation (matching) ξ.
Phase I - Detection of PUs Signals

• Each SU o computes the logarithm of the a posteriori probability ratio over frequency band k δo,k,
∀o, k.

Phase II - Building SUs Preferences and Proposals

• Each SU o constructs its preference vector ∆o based on δo,k, ∀k. ∆o is sorted based on ≻o.

• Each SU o constructs its proposals, as shown in (3.10) for all k, and keeps it only if po,k > 0.

Phase III - Matching Evaluation
Initially, all PUs have no preferred SU.
repeat

if k ≻o k
′, then

An SU o sends a proposal to PU k.
PU k receives its proposal and, if active, rejects it.
Otherwise, PU k accepts it if it hasn’t been proposed to before.
When PU k ∈ K and it has been proposed to before,

if o ≻k o′ (po,k > po′,k and uk,o(po,k) > uk,o′(po′,k))
PU k rejects o′ proposal and adopts o’s.

else
PU k keeps the proposal he has and rejects the new one.

end
end

until All positive proposals have been made.
Phase IV - Spectrum Allocation

for an inactive PU k, we have po,k < 0 ∀o. Otherwise, the number of associations in the stable

matching is less than H . In this case, there are O − H or more SUs which are not associated

with PUs. Once the proposals have been made, each active PU keeps its licensed band while each

inactive PU remains associated with the most preferred SU and Phase III terminates.

The fundamental nature of the proposed algorithm is summarized in the following theorem:

Theorem 3.1. For any given instance of the spectrum allocation problem, Algorithm 3.1 termi-

nates, and, on termination, the associations between SUs and PUs form a stable matching.

Proof. A PU in K can reject SUs’ proposals only when it is already associated with an SU, and

once it is associated, the PU never becomes dissociated again. In this respect, the rejection of

an SU by the last PU in its preference list would imply that all the PUs were already associated.
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However, since O > H , and no SU can associate with two PU-owned frequency bands, then |K|

SUs would also be associated, which is a contradiction.

Each iteration involves sending one proposal and no SU ever proposes twice to the same PU,

then the total number of iterations cannot exceed O × H . On termination, the associated pairs

specify a matching, ξ. If an SU o′ prefers a PU-owned frequency band k to what it is currently

associated with, then k must have rejected o′ at some point during the execution of the algorithm.

This rejection implies that k became, or was, associated with an SU that it prefers to o′, and any

subsequent change of its association brings it still a better SU. So, k cannot prefer o′ to the SU it is

currently associated with. Therefore, ξ is a stable matching.

The stable matching we obtain based on the aforementioned algorithm is said to be optimal for

SUs and PUs at the same time.

Theorem 3.2. All possible executions of Algorithm 3.1 yield the same stable matching in which

each SU associates with its most preferred PU-owned band, and each PU associates with its best

SU, that each can have in any stable matching.

Proof. Our framework investigates one-to-one SU-PU associations for which we have proved the

existence of a stable matching. Also, note that the convergence of Algorithm 3.1 follows from that

of Phase III.

The order in which SUs propose to PUs is immaterial to the outcome of Algorithm 3.1 as

the stable matching we obtain in this case is unique. Furthermore, this stable matching is said

to be optimal for the SUs because every SU is associated with the best PU that it can possibly

associate with. This observation is clear as a stable matching is always optimal for entities that

propose [37]. Moreover, given the nature of our model where we assume that each PU builds

its preferences based on the proposals it receives from SUs according to (3.9), it is obvious that

a PU also associates with a SU that sends it a better proposal. Hence, it is clear that the stable

matching we obtain is also optimal for the PUs. Therefore, the stable matching is optimal for SUs

and PUs.
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Fig. 3.2: The sum of SUs’ rates with respect to the number of SUs in the network, O, for H = {3, 4}.

3.6 Numerical Results

We consider a CRN having O = 10 SUs and H = 4 PUs that are uniformly deployed in a square

area of 100 m × 100 m. The transmit power of each SU is 13 dBm and of each PU is 17 dBm,

and the noise level is given such that σ2 = −90 dBm. The path loss exponent is set to 3. Without

loss of generality, we assume π1 = · · · = π10 = [.1, .2, .3, .4]. Statistical results are averaged

over a 100000 independent simulation runs. For illustration purposes, we assume that the PUs are

inactive and uk,o(po,k) = 1− e−po,k .

We present results on the performance of Algorithm 3.1 when compared to the algorithm in

[61], the deferred acceptance algorithm [37], and a random channel allocation approach. For the

algorithm in [61], we assume that the coordinator, responsible for responding on behalf of the PUs

in the one-to-one matching process, is a simple but rational entity that expects to be rewarded by

the PUs. For the sake of simplifying the analysis, we assume that the coordinator charges the PUs

a percentage of what is being proposed to them. For the deferred acceptance algorithm (explained

in our context), SUs include all PUs in their preference lists. For the random channel allocation

approach where each SU randomly selects its channel to transmit on, we consider the transmit

power of SUs to be twice as much as that considered in our proposed algorithm, the algorithm
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Fig. 3.3: The number of iterations required for an algorithm to converge with respect to the number of
SUs, O, when H = 4.

in [61], and the deferred acceptance algorithm (assuming that sensing activity in both algorithms

consumes the same amount of power as that needed for transmission).

Fig. 3.2 shows the sum of SUs’ rates as the number of SUs O and PUs H vary. In the random

channel allocation approach, it is possible for a group of SUs to randomly select the same channel

to transmit on, the chances of which increase as O becomes larger than H . As a result, SUs may

interfere with each other. Hence, the sum of rates decreases compared to the ones obtained by

the deferred acceptance algorithm and Algorithm 3.1 where each frequency band is allocated to

a unique SU. In Fig. 3.2, we can see that the proposed algorithm, in terms of the sum of SUs’

rates, clearly outperforms both the deferred acceptance algorithm and random channel allocation

approach when O > H . This is due to the following factors: i) higher number of collisions

among SUs’ transmissions as O increases that is expected to reduce the sum of rates that SUs

achieve by following a random channel allocation, and ii) higher number of proposals (due to

larger preference lists) to take into consideration when evaluating the value that the sum of SUs’

rates converges to when adopting the deferred acceptance algorithm. In the latter case, the sum
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Fig. 3.4: The sum of PUs’ payoffs with respect to the number of SUs in the network, O, for H = 3 and 4.

of SUs’ rates is expected to be higher than that of the deferred acceptance algorithm since SUs,

according to Algorithm 3.1, discard proposals where po,k < 0. Fig. 3.2 also shows that the

proposed algorithm attains up to 20% and 60% improvement in the sum of SUs’ rates relative to

the deferred acceptance algorithm (O = 2 and H = 3) and random channel allocation approach

(O = 10 and H = 4), respectively.

In Fig. 3.3, we show the number of iterations required for the proposed and deferred acceptance

algorithms to converge as O increases for H = 4. It is evident from this figure that our proposed

algorithm outperforms the deferred acceptance algorithm. This is because the latter algorithm

requires more iterations to converge. A similar and clear observation can be made from in Fig. 3.4

where we show the sum of PUs’ payoffs as the number of SUs, O, and PUs, H vary. In Fig. 3.4,

we also observe that the proposed algorithm outperforms the algorithm in [61]. It is important to

mention here that both the proposed algorithm and the algorithm in [61] behave similarly when the

coordinator does not charge PUs.
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3.7 Summary

In this chapter, we introduced a distributed model for the allocation of PU-owned frequency bands

to SUs in a CRN. In the proposed model, SUs sense the licensed spectrum looking for white

spaces. We modeled the problem as a matching game between SUs and PUs. We proposed a

novel distributed algorithm to obtain a stable and optimal matching. Moreover, we compared

our proposed algorithm with the deferred acceptance algorithm and a random channel allocation

approach. Simulation results showed that the proposed algorithm can improve: i) the sum of SUs’

rates by up to 20% and 60% relative to the deferred acceptance algorithm and random channel

allocation approach respectively, and ii) the sum of PUs’ payoffs by up to 25% compared to the

deferred acceptance algorithm. The results also showed an improved convergence time.

A novel and distributed spectrum allocation approach that is based on Matching theory was

proposed in this chapter in order to mitigate the interference created by one or more SUs at each

others’ receivers in a CRN. In future work, we will assume that a jammer is present in the network

and, accordingly, will present a jamming interference mitigation technique that is based on re-

transmision protocols.
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CHAPTER 4

MITIGATION OF JAMMING INTERFERENCE

VIA ARQ PROTOCOLS

Data transmission (communication) is not only susceptible to interference from other transmitting

nodes but is also vulnerable to jamming attacks from malicious users [7,67,76] given the broadcast

nature of the wireless medium. In such adversarial environments, the reliability of communication

further degrades due the destructive interference that a jammer may create at one or more of the

receivers. For such systems, ARQ-based transmission mechanisms can be implemented as an

interference mitigation technique in order to improve reliability in communication sessions.

In this chapter, we focus our attention on delay-sensitive Stop-and-Wait ARQ-based wireless

systems in the presence of disruptions and performance degradation due to jammer’s interference,

Inter-symbol Interference (ISI), and AWGN. We model the framework as a constrained optimiza-

tion problem in which the number of transmission attempts at the transmitter required to achieve

a successful transfer of a data packet to the receiver is minimized such that the probability of

successfully receiving it satisfies a prescribed guarantee.
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4.1 Literature Review

As is well known, ARQ is as an error-control method for data transmission that uses acknowledg-

ments and timeouts to achieve reliable data transmission over unreliable links [17, 20, 42, 48]. In

the past, the authors in [74] and [87] considered ARQ mechanisms in the presence of a jammer,

but failed to model the jammer to be strategic. Moreover, the jamming mechanism considered

in [74] and [87] is limited to a simple ON-OFF model and the analysis provided ignores strate-

gic (game-theoretic) considerations. While [74] focused on selective re-transmissions to improve

communication performance over partial-time jamming channels, [87] discussed the detection and

classification of jamming attacks in 802.11b wireless networks. Furthermore, in [101], the authors

investigated the design of efficient ARQ schemes with anti-jamming coding techniques to improve

the average throughput for secondary users prone to interference (jamming) from primary users in

the network.

4.2 Motivation, Novelty, and Contributions

While [26, 31, 79] have considered a game-theoretic approach for optimal power allocation over

different frequency bands, we, in this chapter, employ ARQ-based transmission mechanisms to

improve the reliability of wireless P2P communication under jamming attacks. We consider both

the transmitter and the jammer to be strategic in nature, thereby necessitating a game-theoretic

analysis in which we first evaluate the probability of successfully receiving a data packet at the

receiver as a function of system-latency1 by formulating the optimal energy allocations at the

transmitter and the jammer as a minimax game. For the sake of tractability, we analyze bounds

on the probability of successfully receiving a data packet at the receiver to find an approximate

optimal solution. Then, we minimize system-latency using approximate energy allocations that

we obtained in the first stage. To the best of our knowledge, our work is the first attempt to

1The number of transmission attempts at the transmitter to achieve a successful transfer of a data packet to the
receiver
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analyze the problem of designing an ARQ-based system in the presence of a jammer within a game-

theoretic framework. In the proposed setting, we provide a more realistic performance analysis of

this re-transmission protocol implemented in the media access control layer of a P2P wireless

communication link.

4.3 System Model and Problem Formulation

We consider a transmitter-receiver pair, with a perfect feedback channel, in the presence of a

jammer as shown in Fig. 4.1. We assume that the transmitter communicates with the receiver by

ηi k

ηJ k

Tx Rx

Jammer

Fig. 4.1: A P2P communication system in the presence of a jammer.

sending a data packet (DATA) through an AWGN channel with perfect feedback in the presence

of ISI. The receiver sends an acknowledgment packet (ACK) upon the reception of an error-free2

DATA. Otherwise, the receiver stays quiet, in which case, the transmitter retransmits the same

packet after a fixed wait-time. In this model, we allow a maximum of T transmission attempts

per data packet, i.e., original transmission and up to T − 1 retransmissions, where the total energy

invested in communicating DATA cannot exceed ET , i.e.,
∑T

i=1ETi
≤ ET . In practice, ACK

packets are typically small in size, and therefore, the time required for an ACK to be received

at the transmitter is negligible compared to the case of large DATA [43]. Therefore, we, in this

chapter, consider jamming of DATA and not ACK.

We consider the communication between the transmitter and the receiver to be successful as

long as the ACK is received within T transmission attempts of DATA. Let ξ denote the number

2In practice, packet errors are detected by verifying the CRC checksums.
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of transmissions attempted by the transmitter before DATA is received successfully. Note that, in

practice, DATA has an upper limit on the number of retransmissions (Time To Live, in short, TTL)

before it is dropped. Therefore, it is critical to study the minimum number of transmission attempts

required for a successful transmission of a data packet. We assume that the transmitter strategi-

cally allocates its energy to minimize T while the probability of successfully receiving DATA at

the receiver satisfies a prescribed guarantee. Note that, consideration of the constraint requires a

game-theoretic analysis of the competition between the transmitter (who wants to maximize the

probability of successfully receiving DATA) and the jammer (that wants to minimize it) for a given

T . In fact, the jammer’s objective lies in impairing the transmitter’s communication session by

injecting interference energy, EJ = [EJ1EJ2 · · ·EJT ]
T , where EJi is the interference at the (i−1)-

th retransmission. Here, we assume the jammer to be powerful in the sense that it has complete

knowledge of the protocol, and therefore, we consider a worst-case scenario in which the jammer

knows precisely when the transmitter sends its information. We also assume that EJ ≥ ET . In

practice, since any jammer is typically energy-constrained, we assume
∑T

i=1EJi ≤ EJ . Thus, the

jammer allocates its energy to ensure that the constraint on the probability of successfully receiv-

ing a data packet at the receiver is not satisfied and, thereby, forces the transmitter to resend DATA

as many times as possible.

4.3.1 Problem Formulation

We explore our problem framework in two stages. First, we investigate the probability of success-

fully receiving a data packet at the receiver as a function of T by evaluating the optimal energy

allocations at the transmitter and the jammer as a minimax game. In the next stage, we minimize

T using the equilibrium solution obtained in the first stage. Formally, we state the problem as

follows. Find T ∗ such that,

min T (4.P1)

subject to: p∗(T ) ≥ 1− δ
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where 1− δ is a prescribed value above which the communication session between the transmitter

and the receiver is considered successful, and, p∗(T ), for a fixed T , is evaluated as follows.

p∗(T ) = min
EJ

max
ET

Pr(ξ ≤ T ) = max
ET

min
EJ

Pr(ξ ≤ T ) (4.P2)

subject to:
T∑
i=1

ETi
≤ ET ,

T∑
i=1

EJi ≤ EJ .

We attempt to solve 4.P1 by first solving 4.P2 and then using the optimal energy allocations ob-

tained to evaluate the optimal number of transmission attempts T ∗.

4.4 Approximate Minimax Energy Allocations for a fixed T

In order to solve 4.P2, we first present insights into the computation of Pr(ξ ≤ T ) which, in turn,

is given by:

Pr(ξ ≤ T ) =
T∑
i=1

Pr (ξ = i) , (4.1)

where Pr (ξ = i) denotes the probability of the (i−1)-th retransmission being successful. Furthermore,

the state diagram, presented in Fig. 4.2, describes the transitions a data packet transmission goes

through before reaching a success or failure state. In Fig. 4.2, we denote by ti and ai the states in

which DATA and ACK packets are to be transmitted at the i-th time respectively. si is the state

in which the (i − 1)-th retransmission of the information packet is successful while state f cor-

responds to the failure of DATA. Note that Pr (si) is equal to Pr (ξ = i) in Equation (4.1). The

fact that the feedback channel is assumed to be perfect in our model, enforces pi to be equal to 0.
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Fig. 4.2: A state diagram showing the transitions of a data packet transmission.

Accordingly, based on the state diagram provided in Fig. 4.2, {Pr (si)}Ti=1 is computed as follows.

Pr (s1) = (1− q1) , (4.2)

{Pr (si)}Ti=2 = {(1− qi)
i−1∏
k=1

qk}Ti=2, (4.3)

where qi denotes the probability of error for the (i−1)-th retransmission of DATA and is a function

of ETi
and Eji . Substituting Equations (4.2) and (4.3) in Equation (4.1) yields the following:

Pr(ξ ≤ T ) = 1−
T∏
i=1

qi. (4.4)

Hence, we write the equivalent of 4.P2 as follows.

1− p∗(T ) = min
ET

max
EJ

T∏
i=1

qi = max
EJ

min
ET

T∏
i=1

qi (4.P2-A)

subject to:
T∑
i=1

ETi
≤ ET ,

T∑
i=1

EJi ≤ EJ .

Intuitively, the probability of error decreases as the signal-to-interference plus noise ratio (SINR)

increases and vice versa. In this respect, qi is monotonically decreasing in ETi
and monotonically

increasing in EJi . It is also true that the multiplication of monotonic non-negative functions pre-
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serves monotonicity. Therefore, we take the natural logarithm of the objective function in 4.P2-A

which reduces to the following minimax formulation.

log (1− p∗(T )) =

min
ET

max
EJ

T∑
i=1

log (qi) = max
EJ

min
ET

T∑
i=1

log (qi) (4.P2-B)

subject to:
T∑
i=1

ETi
≤ ET ,

T∑
i=1

EJi ≤ EJ .

The solution to this minimax game is the Nash Equilibrium, which is a saddle point in the design

metric, qi for all i. Obtaining a closed form expression of qi is intractable in the presence of ISI.

Therefore, we investigate an approximate solution by considering both lower and upper bounds

on 4.P2-B.

In [35], Forney provided an upper and lower bound expressions for the probability of error, qi,

as given below.

K0Q

(
dmin,i

2σi

)
≤ qi ≤ K2Q

(
dmin,i

2σi

)
(4.5)

where d2min,i is the minimum energy of transmitter’s signal, σ2
i is the sum of the AWGN power

spectral density and the energy of the jammer’s signal, K0 and K2 are both constants with respect

to the energy allocations of the transmitter and the jammer respectively. Forney’s bound, not

being restricted to a particular modulation scheme, allows us to analyse 4.P2-B in a very general

sense. Since Q-functions do not have closed-form expressions, 4.P2-B still remains intractable.

Therefore, we approximate 4.P2-B by using well-known bounds on Q
(

dmin,i

2σi

)
[21,68] in order to

devise a tractable problem. Since, we assume EJ ≥ ET , we consider bounds on Q-functions in the

low SINR regime.
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Note that the objectives of the transmitter-receiver pair and the jammer are conflicting. There-

fore, the transmitter is interested in minimizing the upper-bound on
∑T

i=1 log (qi) subject to a total

energy constraint ET . On the other hand, the jammer attempts to maximize the lower-bound. In

other words, the transmitter strategically allocates its energy to improve the worst-case probability

of error performance, while the jammer tries to degrade the best-case probability of error perfor-

mance of the transmitter.

Next, we relate the upper-bound as well as the lower-bound to system parameters to make them

amenable to system design.

4.4.1 Upper-bound

In order to find a tractable problem, we use the following upper bound on the Q-function, which is

relatively tight in the low-SINR regime.

Q

(
dmin,i

2σi

)
≤ 1

2
e
−

dmin,i
2σi . (4.6)

Substituting Equation (4.6) in the right-hand side of Equation (4.5), we have

qi ≤
K2

2
e
−

dmin,i
2σi =

K2

2
e
− 1

2

√
ETi

N0+EJi . (4.7)

Thus, the transmitter’s utility is reduced to the following.

T∑
i=1

log (qi) ≤ T log

(
K2

2

)
︸ ︷︷ ︸

constant

−1

2

T∑
i=1

√
ETi

N0 + EJi

. (4.8)

In this case, the transmitter’s goal, which is to minimize the upper-bound on
∑T

i=1 log (qi), can

be interpreted as the transmitter trying to maximize
∑T

i=1

√
ETi

N0+EJi
by strategically allocating its

energy. In other words, the transmitter reduces 4.P2-B to the following, where the jammer is



67

assumed to play a given strategy, EJi = x for x ∈ [0, EJ ].

max
ET

T∑
i=1

√
ETi

N0 + x
(4.P3-A)

subject to:
T∑
i=1

ETi
≤ ET .

Since this is a standard convex-optimization problem [15], we solve 4.P3-A using Karush-

Kuhn-Tucker (KKT) multipliers method. Given the jammer’s strategy EJi = x, the auxiliary

function, in this case, is given by

LU (ETi
, λ) =

T∑
i=1

√
ETi

N0 + x
+ λ

(
ET −

T∑
i=1

ETi

)
. (4.9)

Therefore, E∗
Ti

satisfies the necessary condition: ∇LU

(
ET

i

)
= 0. On substituting Equation (4.9)

in the necessary condition, we get

E∗
Ti

=
1

4λ2(N0 + x)
, (4.10)

where λ is a constant for all i.

4.4.2 Lower-bound

In contrast to the transmitter’s view on 4.P2-B, the jammer wishes to maximize the lower-bound

on the probability of error. A tight lower-bound on the Gaussian Q-function has been presented in

the form of a single exponential function with parametric order and weight in [21]. In this chapter,

we use this lower-bound to obtain the following:

T∑
i=1

log (qi) ≥ T log

(
e

2π

κ− 1

2κ− 1

)
︸ ︷︷ ︸

constant

−κ

2

T∑
i=1

ETi

N0 + EJi

. (4.11)
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where e = exp(1) and κ ≥ 1. Therefore, the jammer’s goal, which is to maximize the lower-bound

on
∑T

i=1 log (qi), is equivalent to minimizing
∑T

i=1

ETi

N0+EJi
.

Thus, the jammer reduces 4.P2-B to the following, where the transmitter is assumed to play a

given strategy, ETi
= y, for y ∈ [0, ET ].

min
EJ

T∑
i=1

y

N0 + EJi

(4.P3-B)

subject to:
T∑
i=1

EJi ≤ EJ

Here, we also apply the KKT multipliers method to 4.P3-B in order to obtain E∗
Ji

. We have the

following auxiliary function:

LL (EJi , µ) =
T∑
i=1

y

N0 + EJi

− µ

(
EJ −

T∑
i=1

EJi

)
. (4.12)

The necessary condition for a stationary point in 4.P3-B is ∇LL (EJi) = 0, which, in turn, yields

E∗
Ji

=

√
y

µ
−N0, (4.13)

where µ is a constant for all i and the transmitter is playing ETi
= y.

4.4.3 Equilibrium Analysis of Problem 4.P2-B

Intuitively, one may argue that the equilibrium solution to 4.P2-B is reached when both players

uniformly allocate their energy resources. However, in this chapter, we show it formally by formu-

lating the problem as a minimax game.

Theorem 4.1. Given a fixed number of transmission attempts T ,
(ET

T , EJT
)

is the equilibrium strat-

egy of this game in every attempt of the transmitter to retransmit DATA.

Proof. A saddle point is the strategy at which both min-max and max-min solutions (Equations

(4.10) and (4.13) respectively) coincide. In other words, x = E∗
Ji

and y = E∗
Ti

. Therefore, we
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substitute Equation (4.13) in Equation (4.10) in order to obtain the transmitter’s best-response as

follows:

E∗
Ti

=

(
µ

(4λ2)2

) 1
3

. (4.14)

Notice that, in Equation (4.14), E∗
Ti

is a constant and independent of i. Substituting Equation (4.14)

in the transmitter’s energy constraint, we obtain a uniform energy allocation across T transmission

attempts. In other words, we have E∗
Ti

= ET
T for all i. Moreover, given the transmitter’s uniform

energy allocation and µ is a constant for all i, then the jammer also distributes its energy resources

uniformly across all the retransmission attempts. Thus, we have E∗
Ji

= EJ
T for all i. Hence, we

obtain
(ET

T , EJT
)

to be the equilibrium strategy of this simultaneous-move game, described in 4.P3-

A and 4.P3-B, in every attempt of the transmitter to retransmit DATA and the jammer to block

DATA, given a fixed T .

Given that this point,
(ET

T , EJT
)
, is the equilibrium strategy (solution) based on the analysis of

4.P3-A and 4.P3-B provided in Sections 4.4.1 and 4.4.2, we adopt
(ET

T , EJT
)

as an approximate

Nash equilibrium solution to 4.P2-B because of the bounds considered on packet error probability

as was described earlier.

4.4.4 Discussion: Impact of Retransmissions on System-Performance

Note that, at the equilibrium point, the objective functions of 4.P3-A and 4.P3-B are both functions

of the receiver SINR,
E∗

Ti

N0+E∗
Ji

, at the i-th time instant. Upon substituting E∗
Ti

= ET
T and E∗

Ji
= EJ

T ,

the overall receiver’s SINR is given as follows.

T∑
i=1

E∗
Ti

N0 + E∗
Ji

= T
ET
T

N0 +
EJ
T

=
ET

N0 +
EJ
T
. (4.15)

Note that the impact of jammer reduces significantly with increasing number of transmission

attempts, T . As T tends to ∞, the jammer’s energy has no absolute impact on the overall re-
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ceiver’s SINR. Thus, the proposed solution approach can be interpreted as a scheme that mitigates

jamming attacks over time. The cost that the transmitter-receiver pair incurs, as a consequence of

the mitigation scheme, is the latency involved in delivering DATA successfully with high probabil-

ity. Therefore, such analysis when T tends to ∞ is neither realistic nor practical for the transmitter

with a finite energy budget, while simultaneously being interested in guaranteeing a successful data

transfer in as few transmissions attempts as possible. We will investigate this problem, as stated in

4.P1, in Section 4.5.

4.5 Minimization of the Number of Transmission Attempts

for Successful Communication

Having analyzed 4.P2 and obtained the optimal energy allocation adopted by the transmitter and

the jammer in Section 4.4 for a fixed number of transmission attempts, we now investigate 4.P1.

Since the maximum number of allowable transmission attempts, T , is chosen at the transmitter,

we relax p∗(T ) using the upper-bound expression in Equation (4.7), similar to our analysis in

Section 4.4.1. As a result, the relaxed expression is a lower bound on p∗(T ) and it is denoted by

p∗L(T ). Then,

1− δ ≤ p∗L(T ) ≤ p∗(T ) or 1− p∗L(T ) ≤ δ (4.16)

Applying logarithms on both sides, and substituting Equation (4.8), we have

T
√

ET
N0T + EJ

+ 2T log

(
2

K2

)
+ 2 log δ︸ ︷︷ ︸

f(T )

≥ 0. (4.17)
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Taking the first order derivative of f (T ) with respect to T yields the following:

df (T )

dT
=

√
ET

N0T + EJ

(
N0T + 2EJ
2 (N0T + EJ)

)
+2 log

(
2

K2

)
(4.18)

where K2 is a small positive constant less than 1. In this case, we have df(T )
dT ≥ 0. Therefore,

f (T ) is a monotonically increasing function in T . In other words, there exists a unique solution,

T ∗, at which f (T ∗) = 0.

Next, we present simulation results on the optimal energy allocations to be adopted by both

players at equilibrium and numerically find the optimal number of transmission attempts using a

combination of bisection, secant, and inverse quadratic interpolation methods.

4.6 Numerical Results

Fig. 4.3: Energy allocation of the transmit-
ter when T = 3.

Fig. 4.4: Energy allocation of the jammer
when T = 3.

In this section, we assume N0 = .5 J/Hz and a jamming energy budget of 15 J to be efficiently

distributed among T transmission attempts which, in turn, is first assumed to be equal to 3 for

simulation purposes. The transmitter’s attempts to send DATA is also subject to a total energy

budget of 9 J.
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Fig. 4.5: The behavior of f(T ) with respect to
T . Fig. 4.6: The variation of T ∗ with respect to δ.

We numerically verify the saddle point at {(3J,3J,3J),(5J,5J,5J)} as an equilibrium solution by

presenting the contour plots of the transmitter and the jammer energy allocations. This is demon-

strated in Figs. 4.3 and 4.4 respectively, where it is clear that the transmitter adopts a uniform

energy allocation (3J,3J,3J) as an optimal strategy in response to the jammer also uniformly allo-

cating its energy according to (5J,5J,5J).

In our problem formulation, we treat T as the number of transmission attempts of a data packet

(a discrete number). Thus, we denote the optimal solution of the relaxed problem of 4.P1 by ⌈T ∗⌉

for f (⌊T ∗⌋) < 0 where ⌈.⌉ and ⌊.⌋ denote the ceil and floor functions that map a real number to

the smallest following or the largest previous integer, respectively. In order to find the minimum

value of T that satisfies the relaxed constraint in 4.P1, we first numerically plot Equation (4.17)

with respect to increasing values of T to show that f(T ) is a monotonically increasing function

and admits a unique solution at f(T ∗) = 0. This is clearly shown in Fig. 4.5 where the optimal

number of transmission attempts is equal to 7 (⌈T ∗⌉ = 7) for δ = 0.01.

It is known that the number of retransmissions of a data packet decreases as δ increases (1− δ

decreases). This is clearly shown in Fig. 4.6 where we plot the optimal number of transmission

attempts with respect to increasing values of δ. This result is intuitive in the sense that a trans-

mitter requires a lower number of retransmissions when the constraint on probability of successful

reception at the receiver is less stringent and vice versa.
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4.7 Summary

We presented an approximate minimum-latency analysis of ARQ-based wireless P2P communi-

cation links with perfect feedback channels and ISI in the presence of a jammer. We also proved

that the optimal energy allocation is uniform across the transmission attempts. Furthermore, we

provided an algorithmic solution to find the minimum latency that is required in order to guarantee

a prescribed performance at the receiver.

In this chapter, the design and performance of ARQ protocols were investigated in the presence

of a strategic jammer. Motivated by the famous Colonel-Blotto model [73], we propose to investi-

gate another jamming interference mitigation technique using power allocation in future work.
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CHAPTER 5

MITIGATION OF JAMMING INTERFERENCE

VIA A STRATEGIC POWER ALLOCATION

With the open nature of the DSA paradigm, less restrictions are imposed on spectrum access. This

not only results in competition for spectrum among SUs [25], but also makes such networks highly

susceptible to jamming interference created by jammers.

In this chapter, we consider the competitive interactions between an SU transmitter-receiver

pair and a jammer under physical interference restrictions e.g., a minimum SINR, power budget

constraints, and incomplete knowledge of the channel gains. This can be formulated as a power

allocation game between the SU and the jammer, which is considered a game with incomplete

information (i.e., of Bayesian nature according to Harsanyi’s observation [44]). Note that these

interactions between the SU and the jammer over a set of channels are analogous to the interactions

between two colonels over a set of battlefields in a Colonel Blotto game [73].

5.1 Literature Review

There exists vast literature on the design and analysis of dynamic spectrum sharing, some of which

has investigated power allocation games in the presence of a jammer [10,38,46,77,78,94,96,99].
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The authors investigate equilibrium points in the form of pure strategies [10, 46, 77, 78, 99] as well

as mixed strategies [94,96] and examine optimal power allocations that maximize the utility func-

tions defined. Under the assumption of full knowledge of the system, the authors in [10] formulate

a zero-sum power allocation game between a transmitter and a jammer and prove the existence

of pure strategy NE points and characterize them in the form of optimized secrecy capacity in

the presence of a passive eavesdropper. In [99], the authors study a defense strategy against a

jamming attack in which a smart jammer quickly learns the transmission strategy of the user and,

adaptively, adjusts its transmission strategy so as to maximize the damage. The authors model the

problem as a complete and perfect information Stackelberg game where the user behaves like a

foresighted player (leader) and the jammer (follower) plays its optimal strategy given the leader’s

strategy. In [77], the authors consider game theoretic models of wireless medium access control

(MAC) in which each transmitter makes individual decisions regarding their power level or trans-

mission probability. The authors investigate NE points for MAC Bayesian and MAC dynamic

repeated games and consider incomplete information regarding the users’ types. In [78], the au-

thors consider stochastically varying packet traffic and evaluate the effects of traffic uncertainty on

jamming attacks. In order to study the conflicting interests of selfish transmitters and malicious

jammers, they consider a model in which transmitters and jammers play a non-cooperative game

of optimizing their individual performance objectives. The authors evaluate the NE strategies of

the resulting games when different levels of queue state information are available to jammers. The

authors in [46] consider a jamming game in which a malicious user tries to jam the transmissions

of a user over multiple channels with Gaussian fading. Having complete information of the game,

both players allocate power based on the obtained minimax solution to multiple channels with their

total power constraints in order to maximize their utilities.

Different from pure strategy solutions, the authors in [94] investigate an anti-jamming defense

mechanism in a CRN by means of random power allocation while considering SINR constraints

at the receiver. In fact, the authors in [94] formulate the random power allocation problem as

a Colonel Blotto game [73] with perfect and complete information, and derive the equilibrium
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strategy in terms of the probability distribution of allocated power. The defense strategy obtained

in [94] from the equilibrium minimizes the worst-case damage caused by the jammer. In [96],

the authors apply prospect theory to analyze anti-jamming communications in CRNs from a user-

centric viewpoint. As a matter of fact, they formulate the interactions between a smart jammer and

an SU with mixed transmission strategies and apply weighting functions to model the subjectivity

of both players in the transmission. Gao et al. in [38] investigate the interaction between a statisti-

cal multiple-input multiple-output (MIMO) radar and an intelligent target equipped with a jammer.

They consider a two-person zero-sum game and a Bayesian game to model the adversarial interac-

tion where assumptions of complete and incomplete information are considered respectively. The

utility functions are formulated based on the mutual information and the equilibria to these two

games in the form of mixed strategies are derived.

Optimal power control approaches have also been examined using learning mechanisms and

classical optimization techniques instead of using game theory. Wang et al., in [89], consider the

interactions between an adaptive jammer and a user from a non-game theoretical perspective to

study the joint control of transmission power and channel switching. As a matter of fact, the au-

thors adopt an online learning perspective to model the reasoning of the attacker as well as the

defender in order to develop an explicit form of optimal power control when the user is aware

of the type of learning algorithm used by the jammer and when it has no such information and,

thus, also tries to learn the jammer’s strategies. In [84], the authors investigate the design of an

adversary with optimal power allocation for spoofing and jamming under a Rayleigh fading chan-

nel. Assuming that the adversary has full knowledge of the SU system, the authors determine a

worst-case optimal energy allocation for spoofing and jamming that the SU adopts using classical

optimization techniques. Furthermore, Bayram et al. in [11] determine the optimum power allo-

cation policy for an average power constrained jammer operating over an arbitrary additive noisy

channel and fully adaptive receiver. They show that the optimum jamming performance can be

achieved via power randomization between at most two different power levels.
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5.2 Motivation, Novelty, and Contributions

Although numerous aspects of the jamming problem have been investigated when it comes to

power allocation, the authors have considered rather ideal and/or impractical scenarios or even non-

optimal ones by: i) focusing only on games that have a pure strategy solution [10,46,77,78,99], ii)

assuming complete information of the system in their equilibrium analysis [10,46,94,99], iii) con-

sidering a descriptive system model in which it tries to model real-life choices rather than optimal

ones [96], or iv) presenting the jammer as a non-strategic user in the network [11,89]. These draw-

backs, to a large extent, limit the practicality and applicability of any spectrum sharing protocol

that takes the malicious intent of a rational user into consideration. It should also be pointed out

that there exist in the literature works on jamming that study practical problems related to the de-

tection or mitigation of jamming attacks in the context of Bayesian games [23, 91]. However, they

do not investigate the interactions between players in terms of optimal power allocations, which

is an effective technique to mitigate jamming attacks. Specifically, the authors in [91] formulate a

malicious node detection game and a post-detection game to isolate it in wireless networks. Fur-

thermore, in [23], the authors focus on mitigating the jammer’s effect through channel hopping and

power alteration from a predefined set. In this chapter, we address the aforementioned limitations

of past works on power allocation games with regards to: i) the system model, ii) the channel

model, and iii) the level of information available to each player. Therefore, we not only generalize

past works in terms of the solution space we obtain (e.g., pure strategy is a special case of mixed

strategy), but also make it applicable to more practical scenarios.

In a nutshell, the main contributions of this chapter are summarized as follows:

• We formulate the power allocation problem over multiple orthogonal channels at both the

SU and the jammer as one-shot Bayesian games under different channel scenarios, where

both the SU and the jammer have incomplete information regarding channel gains.

• We compute the NE for these Bayesian games by finding the optimal mixed strategy (prob-

ability distributions) power allocations at both the SU and the jammer. In particular, we
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Fig. 5.1: A CRN with one SU Tx-Rx pair in the presence of a jammer.

consider two practical channel models as examples, namely multi-path fading model and the

path-loss model, and study their impact on the NE in order to get practical insights of our

proposed framework.

• We address different incomplete information settings based on the level of knowledge avail-

able at each player, including uncertainties regarding instantaneous channel gains as well

as uncertainties associated with spectrum sensing. Such an analysis spans a wide range of

practical scenarios from worst-case to real-world performance.

• We present simulation results that corroborate our theoretical results as well as provide in-

sights into the dynamics of the strategic power allocation problem and its equilibrium.

5.3 System Model and Problem Formulation

We consider a single-hop CRN model comprising of an SU transmitter-receiver pair and a jammer

as shown in Fig. 5.1. The SU1, equipped with a multi-channel radio consisting of H orthogo-

nal channels that are independent and available2, is subject to a power budget P and is assumed

to transmit different messages over the channels. These messages experience different channel-

independent and channel-dependent physical phenomena that may be deterministic or random

1The term SU is used to denote an SU transmitter-receiver pair.
2This assumption is valid since the Federal Communication Commission (FCC) has mandated the existence of a

database in which all licensed frequency bands are registered. In this respect, through an incorporated geo-location
capability for example, the SU can access this database and acquire information about which frequencies are available
and which are not [Second Memorandum Opinion and Order, 174 FCC (2010)].
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(e.g., propagation losses, fading, and so forth). We write the signal’s received power as follows.

prk = pikηik , (5.1)

where prk is the power received at the intended receiver over a given channel k, pik is the trans-

mitting power of the SU on the k-th channel, and ηik represents the k-th channel gain. The SINR

condition for successful reception at the SU’s receiver is, thus, given by:

pikηik
N0 + pJkηJk

≥ β, (5.2)

where N0 is the variance of the additive noise and assumed to be the same for all the channels, pJk

is the jamming power on the k-th channel, ηJk represents the gain of channel k between the jammer

and the SU’s receiver, and β denotes the minimum required SINR to declare a successful reception

at the SU’s receiver. We model the SU’s payoff per channel as an indicator function whose value

of 1 denotes a successful reception. Accordingly, the SU’s payoff is defined as the number of SU’s

successful receptions over N available channels, i.e.,

Ui =
H∑
k=1

1{ pikηik
N0 + pJkηJk

≥ β}, (5.3)

where 1{.} is the indicator function.

On the other hand, the jammer, with a jamming power budget J , is assumed to be more pow-

erful (J ≥ P ) and is interested in sabotaging the SU’s transmissions over H channels by adopting

a power allocation strategy so that the condition in (5.2) is not satisfied. Hence, we quantify the

jammer’s payoff over channel k as an indicator function whose value of 1 denotes an unsuccessful

SU’s reception and, accordingly, write the attacker’s payoff as:

UJ =
H∑
k=1

1{ pikηik
N0 + pJkηJk

< β}. (5.4)
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From (5.3) and (5.4), it is evident that a player’s payoff is dependent on its own choice of power

and that of the opponent’s over the channels of interest in addition to ηik and ηJk . This is the main

reason we employ game theory as a tool to solve the strategic one-shot power allocation problem

at hand. In this chapter, mixed strategies are investigated. Therefore, both players model the power

to be allocated over each channel (e.g., pik and pJk) as a random variable whose distribution is to

be determined. At this point, it is important to mention that this game is similar to the Colonel

Blotto game in [73] where two colonels distributively allocate their troops in a strategic manner

over a set of battlefields.

Furthermore, knowledge regarding the channel gains, in practice, may vary among users (play-

ers) in the network. A player may have complete or incomplete information of any element of the

game’s characteristic function. In this chapter, we consider a power allocation problem between

the SU transmitter and the jammer in the most general sense in which we assume that both players

have incomplete information.

In this problem formulation, both players are assumed to have incomplete information of the

channel gains in the power allocation game. In other words, the SU is assumed to have incomplete

knowledge of ηJk for all k and, therefore, treats it as a random variable with an arbitrary probability

density function (pdf). Similarly, we assume that the jammer has incomplete knowledge of ηik for

all k and also treats it as a random variable with an arbitrary pdf.

Given this framework, the SU’s expected utility, Ūi, to be maximized is written as follows.

Ūi =
H∑
k=1

∫ ∞

0

Pr

x ≥ β

ηik
(N0 + pJkηJk)︸ ︷︷ ︸

Ik

 dFpik
(x)

=
H∑
k=1

∫ ∞

0

FIk (x) dFpik
(x), (5.5)

where ηJk is the k-th channel gain between the jammer and the SU receiver that is unknown to the

SU transmitter who, in turn, treats it as a random variable with an arbitrary pdf, fηJk . Also, pik and

pJk are two random variables with Fpik
and FpJk

as their corresponding Cumulative Distribution
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Functions (CDFs) respectively. In a similar manner, the jammer’s expected utility is given by:

ŪJ =
H∑
k=1

∫ ∞

βN0

FPk
(I) dFSk

(I), (5.6)

where Pk = pikηik , ηik is the k-th channel gain that is assumed to be unknown to the jammer and

Sk = β(N0 + pJkηJk). The power allocation game, at hand in this case, between the SU and the

jammer involves the solution of two optimization problems – one from the SU’s perspective and

another from the jammer’s perspective.

SU’s Perspective

Find the optimal marginal CDF, Fpik
for all k, such that:

maximize
{Fpik

}Hk=1

H∑
k=1

∫ ∞

0

FIk (x) dFpik
(x)

subject to:
H∑
k=1

∫ ∞

0

xdFpik
(x) ≤ P

(5.P1)

Jammer’s Perspective

Find the optimal marginal CDF, FpJk
for all k, such that:

maximize
{FpJk

}Hk=1

H∑
k=1

∫ ∞

βN0

FPk
(I) dFSk

(I)

subject to:
H∑
k=1

∫ ∞

βN0

IdFSk
(I) ≤ β (HN0 + JηJk)

(5.P2)

The determination of both players’ optimal marginal strategies are dependent on the choice of fηik

and fηJk . Therefore, in order to solve for the equilibria points of this power allocation game, fηik

and fηJk need to be known.

At this point, it is important to mention that other scenarios, that depend on which player the

element of uncertainty arises at, can also be studied. For example, a special case of the aforemen-
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tioned scenario is when both players are assumed to have complete information of channel gains

in the game. This framework was investigated in [94] where the authors studied the attack and

defense strategies of the jammer and the SU respectively in the form of power allocations. They

showed that the strategies of both players should be randomized. They also derived the NE for this

game. For more details on this framework in terms of problem formulation and analysis, we refer

the reader to [94]. There also exists an SU-worst case scenario where only the SU has incomplete

information in the power allocation game [26]. Note that, in this particular case, the equilibrium

analysis and the derivation of the optimal marginal distributions for both players can be derived

from those of the general case we investigate next.

5.4 Equilibrium Analysis: Channels are available

In this section, we consider the general problem framework given in Section 5.3 and analyze the

average performances from the SU’s and the jammer’s perspectives based on their incomplete

knowledge of the channel gains in the power allocation game, ηJk and ηik , respectively.

It is critical, however, to define and characterize the NE of the game to be analyzed in the

form of mixed strategies [62] as a pure strategy NE may not exist in general in games of allocative

strategic mismatch. For example, in Colonel Blotto [73], a pure strategy NE does not exist when

XB

H
< XA ≤ XB where XA and XB denote the troop forces of colonels A and B respectively. It

has also been shown that a pure strategy NE trivially exists only when XA ≤ XB

H
, which means

that Colonel B wins all of the battlefields. In this chapter, we assume that the jammer’s power

budget is larger than the transmitter’s power budget, i.e., P ≤ J . Furthermore, it can be noted that

the scenario when P ≤ J
H

is trivial because any transmitter’s power allocation strategy in this case

is defeated by the jammer, and is thus ignored in this chapter. Hence, we investigate optimal power

allocations in the form of mixed strategy solutions.

At this point, it is important to recall that the reason behind formulating the problem as a

Bayesian game lies in the basic definition of Bayesian games as a model of interactive decision
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situations in which each player has only partial information about the payoff relevant parameters of

a given situation. In this respect, a player who has only partial knowledge about the state of nature

is assumed to have some beliefs, namely prior distributions, about the parameters which he does

not know or he is uncertain about. For more information on Bayesian games and their equilibrium

analysis, we refer the reader to [44, 62].

Definition 5.1 (Bayesian NE). A strategy (Fi, FJ) ∈ S is a Bayesian Nash Equilibrium for the

game if and only if:

Ūi(Fi, FJ) ≥ Ūi(F̂i, FJ),∀F̂i ∈ {S}/Fi

ŪJ(Fi, FJ) ≥ ŪJ(Fi, F̂J), ∀F̂J ∈ {S}/FJ

where (Fi, FJ) =
((

Fpi1
, . . . , FpiH

)
,
(
FpJ1

, . . . , FpJH

))
is a pair of H marginal distributions

that maximize the players’ expected utility function, e.g., Ūi, from which no player can unilaterally

deviate to increase its payoff.

At equilibrium, Fi and FJ respectively denote the SU and the jammer optimal power distri-

butions. In order to solve for these optimal distributions, we recall that the SU is assumed to be

uncertain of ηJk and the jammer to be uncertain of ηik . In this regard, both the SU and the jam-

mer employ probability distributions to model the uncertainties regarding the channel gains and,

eventually, obtain closed form expressions of the marginal distributions.

5.4.1 Solution of 5.P1

In order to maximize the SU’s expected utility, we apply the Karush-Kuhn-Tucker (KKT) method

to the optimization problem, defined in 5.P1 of Section 5.3, according to:

Ūi =
H∑
k=1

∫ ∞

0

(FIk (x)− λix) dFpik
(x) + λiP, (5.7)

where λi is the KKT multiplier involved in maximizing the SU’s expected utility.
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Theorem 5.1. The optimal marginal CDF, FpJk
, of the jammer’s allocated power over channel k

is given by:

FpJk
(y) = λiβ (N0 + yηJk)E

[
1
ηik

]
, (5.8)

for y ∈
[
0,

(
1

βλiE[ 1
ηik

]
−N0

)
/ηJk

]
and k = {1, 2, . . . , H}. FpJk

admits a discontinuity point at

0 with mass point λiβN0E[
1
ηik

].

Proof. The SU’s power per frequency band is lower bounded by βN0

ηik
when the jammer does not

attempt to block SU transmissions and upper bounded by 1/λi knowing FIk(x)− λix ≥ 0. So, in

order for the SU to have a successful communication session, x ∈ [βN0

ηik
, λ−1

i ] as the jammer cannot

allocate a negative power for x < βN0

ηik
. In other words, [βN0

ηik
, λ−1

i ] dominates [0, βN0

ηik
) ∪ (λ−1

i , P ].

Since we are considering the mixed strategy space knowing that a player is indifferent over

choosing an action among its strategies, we have FIk(x)− λix = c where c is a positive constant.

For x = λ−1
i , FIk(λ

−1
i ) = c + 1. Knowing FIk is a CDF admitting a maximum of 1, we have c =

0. Thus, FIk(x) = λix is obtained.

Next, we find the marginal CDF that models the jammer’s allocated power over channel k for a

given realization of the unknown random channel gain between the SU’s transmitter and receiver,

ηik = η.

FpJk
(y|ηik = η) = Pr(Ik ≤

β

η
(N0 + yηJk)|ηik = η)

=
λiβ

η
(N0 + yηJk). (5.9)

Accordingly, the jammer’s strategy is given by,

FpJk
(y|ηik) =

λiβ

ηik
(N0 + yηJk). (5.10)

However, since there is uncertainty regarding the gains, to characterize the jammer’s strategy at
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equilibrium, FpJk
is shown below as

FpJk
(y) =

∫
η

FpJk
(y|ηik = η)fηik (η)dη

= λiβ (N0 + yηJk)E

[
1

ηik

]
, (5.11)

where, in this case, fηik is the pdf that the jammer assumes to govern ηik , y ∈
[
0,

(
1

βλiE[ 1
ηik

]
−N0

)
/ηJk

]
,

and E[.] represents the expectation. Also, FpJk
admits a discontinuity point at 0 with mass point

λiβN0E[
1
ηik

].

5.4.2 Solution of 5.P2

In order to maximize the expected utility of the jammer, the KKT multipliers approach is employed

in 5.P2. In this respect, we write the following:

ŪJ =
H∑
k=1

∫ ∞

βN0

(FPk
(I)− λJI) dFSk

(I)

+λJβ (HN0 + JηJk) , (5.12)

where λJ is the KKT multiplier that is to be determined.

Theorem 5.2. The optimal marginal CDF, Fpik
, of the SU’s allocated power over channel k is

given by:

Fpik
(x) = 1− λJ

(
1
λi

− x
)
ηik , (5.13)

for x ∈ [βN0

ηik
, λ−1

i ] for k = {1, 2, . . . , H}. Fpik
admits a discontinuity point at βN0

ηik
with mass point

λJβN0 + 1− λJλ
−1
i ηik .

Proof. The interference power per frequency band, Sk = β(N0 + pJkηJk) is lower bounded by

βN0 when the jammer does not attempt to block SU transmissions and, otherwise, upper bounded

by 1/λJ knowing the expected utility is a positive quantity.
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FPk
(I) − λJI = c in the range over which I is defined and c is a positive constant. This is

because the player is indifferent over choosing any of its strategies over the range of I . At the same

time, FPk
(I) − λJI ̸= 0 for the value of FPk

(I) − λJI is influenced by the relation between the

upper limits of both random variables Pk and Sk, ηikλ
−1
i and λ−1

J respectively. In this framework,

we assume that the jammer is superior to the SU in terms of power at the receiver side. In other

words, we assume 1
λJ

≥ ηik
λi

. In this case, it is obvious that FPk
(ηikλ

−1
i ) − λJηikλ

−1
i = c. Then,

c = 1− λJηikλ
−1
i . Accordingly, we write FPk

(I) = λJI +1− λJηikλ
−1
i . With a simple change of

notation x = I , we have FPk
(x) = λJx+ 1− λJηikλ

−1
i .

Accordingly, we obtain the optimal marginal CDF that models the SU allocated power over

channel k as follows:

Fpik
(x) = Pr(Pk ≤ xηik)

= FPk
(xηik)

= λJxηik + 1− λJηikλ
−1
i

= 1− λJ

(
1

λi

− x

)
ηik , (5.14)

where x ∈ [βN0

ηik
, λ−1

i ] for k = {1, 2, . . . , N}. Note that Fpik
admits a discontinuity point at βN0

ηik

with mass point λJβN0 + 1− λJλ
−1
i ηik .

5.5 Optimal Power Allocation for Different Instantiations

and Knowledge Level

So far, the optimal marginal CDFs have been derived for both players given their power budget

constraints as presented earlier in 5.P1 and 5.P2. However, they are dependent on KKT multipliers

which, in turn, depend on the probability distributions that the players assume to model their

incomplete information and need to be evaluated.

At this point, it is important to mention that the KKT multipliers are computed by substituting
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pi 1

pi 2

P

Pa b

a

b

Fig. 5.2: [a, b] presents the support over which the marginal CDFs of the SU are defined when H = 2 in
the absence of a power budget. The red-shaded region denotes all power allocations of the SU that satisfy a
power budget P , if it exists. The blue region, on the other hand, corresponds to those allocations that don’t.
Solving for KKT multipliers in the power budget will guarantee the existence of a power allocation strategy
that always lies in the red shaded region.

each player’s optimal marginals, obtained in Section 5.4, in the corresponding power budgets. This

will guarantee that a player’s power allocation strategy will satisfy its power budget constraint on

an average. Hence, the marginal distributions we obtain for each player from solving the corre-

sponding optimization problem constitute its equilibrium strategy.

For the sake of illustration, we consider a specific example of the scenario in Section 5.3 where

we study the competitive interactions between the SU and the jammer over two independent and

orthogonal channels, i.e., H = 2. In this case,
((
Fpi1

, Fpi2

)
,
(
FpJ1

, FpJ2

))
is a pair of 2 marginal

distributions that maximize each player’s expected utility function. This represents our mixed

strategy NE as long as the power budget constraint for each player is satisfied. In order to clarify

our point, we pictorially illustrate this observation in Fig. 5.2.

Next, we consider two different instantiations of the channel gains for the general scenario

analyzed earlier in this chapter and the SU-worst case scenario where the jammer is put at an

advantage. Depending on the probability distributions that players in the game of each scenario as-

sume to model their uncertainties regarding the gains of the channels, we compute KKT multipliers

and evaluate equilibrium solutions accordingly.
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5.5.1 Multi-path Fading Model with Incomplete Knowledge of Chan-

nel Gains

In a wireless communication system, a signal can travel from the transmitter to receiver over multi-

ple reflective paths; this phenomenon is referred to as multi-path propagation. The effect can cause

fluctuations in the received signal’s amplitude, phase, and angle of arrival, causing multi-path fad-

ing. In this case, ηik in (5.1) is given by:

ηik = h2
k, (5.15)

where hk is a real value that denotes the fading gain of the k-th channel between the SU transmitter

and its receiver. Similarly, we write ηJk according to:

ηJk = g2k, (5.16)

where gk is a real value that denotes the fading gain of the k-th channel between the jammer and

the SU receiver. Note that the gains of the channels need not necessarily be real in general.

In this subsection, the jammer is assumed to have incomplete knowledge of hk for all k and,

therefore, treats it as a random variable with an arbitrary pdf fhk
. Similarly, we assume that the SU

has incomplete knowledge of gk for all k and treats it as a random variable with an arbitrary pdf

fgk . Accordingly, we rewrite the jammer’s marginal distribution at equilibrium according to:

FpJk
(y) = λiβ

(
N0 + yg2k

)
E
[
h−2
k

]
, (5.17)

where, in this particular case, the range over which y varies is
[
0,

(
1

βλiE[h−2
k ]

−N0

)
/g2k

]
. Note

that FpJk
admits a discontinuity point with mass point λiβN0E

[
h−2
k

]
at 0. In a similar fashion, the

SU’s marginal distribution at equilibrium is written as follows:

Fpik
(x) = 1− λJ

(
1

λi

− x

)
h2
k. (5.18)
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where, in this case, x is defined over [βN0

h2
k
, λ−1

i ]. Also, note that Fpik
admits a discontinuity point

at βN0

h2
k

with mass point λJβN0 + 1− λJλ
−1
i h2

k.

The evaluation of KKT parameters is provided next for a given fhk
and fgk .

In this subsection, we highlight the analysis and the results of the power allocation game pre-

sented earlier by evaluating the KKT parameters. Without loss of generality, we consider a particu-

lar example in which we assume that hk ∼ Rayleigh (σ1) and gk ∼ Rayleigh (σ2) where σ1 and σ2

are the scale parameters of the distributions and they are strictly positive. Accordingly, we obtain

h−2
k and g−2

k and observe that they follow an inverse Gamma distribution for which the means are

not defined. Thus, for the sake of making the problem tractable, we use Jensen’s Inequality to

write E[ 1
h2
k
] ≥ 1

E[h2
k]
= 1

2σ2
1

and obtain a lower bound on the jammer’s optimal power strategy. That

said, we rewrite (5.17) as follows:

FpJk
(y) =

λiβ

2σ2
1

(
N0 + yg2k

)
. (5.19)

Lemma 5.1. Given hk and gk follow Rayleigh distributions with σ1 and σ2 respectively, then the

KKT parameters are given as follows:

λi =
2βN0 +

2
H
βg2kJ −

√[
2
H
βg2kJ

] [
4βN0 +

2
H
βg2kJ

]
(βN0)2

σ2
1

, (5.20)

and

λJ =
P
H

βN0

h2
k
+

h2
k

2

(
( 1
λi
)2 − (βN0

2σ2
1
)2
) . (5.21)

Proof. The necessary slackness condition of the KKT multiplier method with positive parameters

results in
∑H

k=1

∫
y
ydFpJk

(y) = J . In order to find λi, solving the latter yields the following

quadratic equation,

(βN0)
2

2σ2
1

λ2
i − [2βN0 +

2

H
βg2kJ ]λi + 2σ2

1 = 0, (5.22)
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with a discriminant ∆ =
[
2
H
βg2kJ

] [
4βN0 +

2
H
βg2kJ

]
. It is clear that ∆ > 0. Therefore, (5.22)

admits two real roots, λi1,2 , such that:

λi1,2 =
2βN0 +

2
H
βg2kJ ±

√
∆

(βN0)2

σ2
1

. (5.23)

But, we need 1
λi

≥ βN0

2σ2
1

, then

λi =
2βN0 +

2
H
βg2kJ −

√
∆

(βN0)2

σ2
1

. (5.24)

In a similar fashion, we find λJ according to:

λJ =
P
H

βN0

h2
k
+

h2
k

2

(
( 1
λi
)2 − (βN0

2σ2
1
)2
) , (5.25)

where, due to the SU incomplete knowledge of gk, λi in (5.25) is given by:

λi =
2βN0 +

4
H
βσ2

2J −
√[

4
H
βσ2

2J
] [

4βN0 +
4
H
βσ2

2J
]

2 (βN0)2

h2
k

. (5.26)

5.5.2 Simplified Path-Loss Model and Incomplete Knowledge of dJi

In this model, channel gains are a function of distance only. For the sake of simplicity, we use

ηik = d−γ
ii and ηJk = d−γ

Ji where dii is the distance between the SU’s transmitter and receiver, dJi

is the distance between the SU’s receiver and the jammer, and γ is the path-loss exponent.

In this subsection, the SU is assumed to have an incomplete knowledge of dJi and, therefore,

treats it as a random variable with an arbitrary pdf fdJi
. The jammer in this model is assumed

to have complete knowledge of the system model. That said, we rewrite the jammer’s marginal
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distribution at equilibrium according to:

FpJk
(y) = λiβd

γ
ii

(
N0 + yd−γ

ji

)
, (5.27)

where, in this case, y ∈
[
0,
(

1
βλid

γ
ii
−N0

)
/d−γ

Ji

]
and FpJk

admits a discontinuity point at 0 with

mass point λiβN0d
γ
ii.

Similarly, we can write the SU’s marginal distribution at equilibrium as follows:

Fpik
(x) = 1− λJ

(
1

λi

− x

)
(5.28)

where x ∈ [βN0d
γ
ii, λ

−1
i ] for all k. Fpik

admits a discontinuity point at βN0d
γ
ii with mass point

λJβN0d
γ
ii + 1− λJ/λi.

As assumed earlier, the SU transmitter has incomplete knowledge of the distance between the

jammer and the SU receiver. Accordingly, the SU transmitter treats this distance as a random

variable with an arbitrary pdf fdJi
. In this subsection, we consider a particular pdf that is described

by:

fdJi
(d) =

2d

R2
, for 0 ≤ d ≤ R, (5.29)

where R is the maximum distance that a jammer can be located at.

By substituting (5.29) in (5.27), we evaluate the expected value of d−γ
Ji and, thereby, compute

SU’s view on the CDF that governs the jammer’s power over a given channel k, ∀k, according to:

F ′
pJk

(y) = λiβd
γ
ii

(
N0 +

2R−γ

|2− γ|
y

)
, (5.30)

where γ ̸= 2 and |.| is used to ensure the increasing monotonicity of FpJk
for γ > 2. Note that the

aforementioned condition and the closed-form expression of the averaged jammer’s marginal by

the SU transmitter are a result of the particular pdf we are considering.
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So far, we have analyzed the game and derived closed form expressions for both players’

optimal marginal CDFs modeling their power allocation schemes. In order to find these strategies

and, eventually, evaluate the expected utility of each player, we need to find the KKT parameters

(λi and λJ ) which, in our model, are dependent on fdJi
due to the lack of complete knowledge at

the SU transmitter’s side.

Lemma 5.2. Given fdJi
is provided by (5.29), the KKT multipliers are evaluated as follows,

λi =
βN0d

−γ
ii +

βJd−γ
Ji

dγiiH

(βN0)2

−

√[
βJd−γ

Ji

dγiiH

] [
βJd−γ

Ji

dγiiH
+ 2βN0d

−γ
ii

]
(βN0)2

, (5.31)

and

λJ =
P
H

βN0d
γ
ii +

1
2

(
( 1
λi
)2 − (βN0d

γ
ii)

2
) . (5.32)

Proof. The necessary slackness condition of the KKT multiplier method for λJ > 0 implies that∑H
k=1

∫
I′
I ′dFI′

k
(I ′) = βdγii

(
HN0 + Jd−γ

Ji

)
which is equivalent to

∑H
k=1

∫
y
ydFpJk

(y) = J . Solv-

ing this yields the following quadratic equation,

(βN0)
2λ2

i − [2βN0d
−γ
ii +

2βJd−γ
Ji

dγiiH
]λi + d−2γ

ii = 0, (5.33)

with a discriminant ∆ =
[
2βJd−γ

Ji

dγiiH

] [
2βJd−γ

Ji

dγiiH
+ 4βN0d

−γ
ii

]
. It is clear that ∆ > 0. Therefore, (5.33)

admits two real roots, λi1,2 , such that:

λi1,2 =
βN0d

−γ
ii +

βJd−γ
Ji

dγiiH
± 0.5

√
∆

(βN0)2
. (5.34)
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But, we need 1
λi

≥ βN0d
γ
ii, then

λi =
βN0d

−γ
ii +

βJd−γ
Ji

dγiiH
− 0.5

√
∆

(βN0)2
. (5.35)

In order to evaluate λJ , the necessary slackness condition of the KKT multiplier method for λi >

0, applied to the utility function in (5.7) yields
∑H

k=1

∫
x
xdFpik

(x) = P from which we obtain

λJ =
P
H

βN0d
γ
ii+

1
2

(
( 1
λi

)2−(βN0d
γ
ii)

2
) , where λi, due to SU’s incomplete knowledge about the jammer’s

location in this case, is given by

λi =
βN0d

−γ
ii + 2βJR−γ

|2−γ|dγiiH

(βN0)2

−
0.5

√
16
[

βJR−γ

|2−γ|dγiiH

] [
βJR−γ

|2−γ|dγiiH
+ βN0d

−γ
ii

]
(βN0)2

. (5.36)

5.6 Sensing-based Spectrum Access

So far, we have investigated the scenario where both the SU and the jammer strategically allocate

their powers over H orthogonal channels which are assumed available.

5.6.1 Problem Formulation

In this section, we no longer assume that the set of N channels are always available. In other

words, we consider each of these channels to be licensed to a unique PU whose activity is inter-

mittent and follows an On-Off model [27]. In Fig. 5.3, we show a set of H PUs and a single-hop

CRN comprising of the SU transmitter-receiver pair and the jammer. We assume that the SU’s

transmitter performs spectrum sensing on each frequency band and makes a decision on the ab-

sence or presence of the corresponding PU. Therefore, the following scenarios arise for every PU
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Fig. 5.3: A set of H PUs and a single-hop CRN with one SU Tx-Rx pair in the presence of a jammer.

channel: i) the PU is inactive and the SU infers the same, ii) the PU is inactive and the SU infers

the opposite, iii) the PU is active and the SU infers the opposite, and iv) the PU is active and the

SU infers the same. We denote the probabilities of each of the aforementioned scenarios by q00k ,

q01k , q10k , and q11k respectively corresponding to the k-th PU-owned channel. Furthermore, we, in

this chapter, assume that the PU transmit power is sufficiently large so that the SU’s payoff is zero

whenever a collision takes place. Therefore, the SU’s payoff is defined as follows:

Ui =
∑
k∈K

q00k1{
pikηik

N0 + pJkηJk
≥ β}, (5.37)

where K is the set of frequency bands deemed available by the SU transmitter.

On the other hand, the jammer is assumed to be aware of SU’s sensing decisions, e.g., the

jammer is of reactive type [98] or it simply listens to the transmitter-receiver pair handshake pro-

cess on which channels to tune to [4, 6, 13]. In other words, it acquires full knowledge of the

set of frequency bands that are deemed available by the SU and their corresponding information

regarding PUs’ activities and, thereby, is interested in disrupting SU’s transmissions over each of

these channels by adopting a power allocation strategy so that the condition in (5.2) is not satisfied.

Accordingly, we write the jammer’s payoff as:

UJ =
∑
k∈K

q00k1{
pikηik

N0 + pJkηJk
< β}+ q10k . (5.38)

In this respect, note that the jammer does not allocate power over k if k /∈ K. Note also that
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the jammer’s payoff on channel k, when the PU is active and SU’s inference on its activity is the

opposite, is equal to q10k given the large PU interference at the SU receiver that is sufficiently high

so that (5.2) is not satisfied.

In this section, not only the jammer is assumed to have incomplete information of ηik , but also

ηJk . Following a similar reasoning to that discussed in Section 5.3, the power allocation game, at

hand in this case, between the SU and the jammer also involves solving two optimization problems

– one from the SU’s perspective and another from the jammer’s perspective.

SU’s Perspective

Find the optimal marginal CDF, Fpik
for all k, such that:

maximize
{Fpik

}k∈K

∑
k∈K

q00k

∫ ∞

0

FIk (x) dFpik
(x)

subject to:
∑
k∈K

πk

∫ ∞

0

xdFpik
(x) ≤ P,

(5.P3)

where πk = q00k + q10k is the probability of Scenarios i or iii occurring.

Jammer’s Perspective

Find the optimal marginal CDF, FpJk
for all k, such that:

maximize
{FpJk

}k∈K

∑
k∈K

q00k

(∫
η

∫ ∞

βN0

FPk
(I) dFSk

(I)fηdη

)
+ q10k

subject to:∑
k∈K

πk

∫
η

∫ ∞

βN0

IdFSk
(I)fηdη ≤ β

(
|K|N0 + J

∫
η

ηfηdη

)
,

(5.P4)

where, in this case, Sk = β(N0 + pJkη), |K| is the cardinality of K, and η ∼ fη.
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5.6.2 Equilibrium Analysis

The SU and the jammer need to employ probability distributions to model the uncertainties regard-

ing the channel gains in order to solve for the optimal marginal distributions.

Solution of 5.P3

In order to maximize the SU’s expected utility in this case, we apply the KKT method to the

optimization problem, defined in 5.P3, according to:

Ūi =
∑
k∈K

∫ ∞

0

(q00kFIk (x)− λiπkx) dFpik
(x) + λiP. (5.39)

Theorem 5.3. The optimal marginal CDF, FpJk
, of the jammer’s allocated power over channel k,

∀k ∈ K, is given by:

FpJk
(y) = λiβ

αk
E[ 1

ηik
] (N0 + yE[ηJk ]) , (5.40)

where αk =
q00k
πk

and y ∈
[
0,

(
αk

βλiE[ 1
ηik

]
−N0

)
/E[ηJk ]

]
. FpJk

admits a discontinuity point at 0

with mass point λiβN0E[
1
ηik

].

Proof. For brevity, we omit the proof since it similar to that of Theorem 5.1.

Solution of 5.P4

The KKT multipliers approach is employed in 5.P4 in order to maximize the expected utility of

the jammer. In this respect, we write the following:

ŪJ =
∑
k∈K

∫
η

∫ ∞

βN0

(q00kFPk
(I)− λJπkI) dFSk

(I)fηdη

+
∑
k∈K

q10k + λJβ

(
|K|N0 + J

∫
η

ηfηdη

)
. (5.41)
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Fig. 5.4: Marginal CDFs of both players under incomplete knowledge of the jammer’s location.

Theorem 5.4. The optimal marginal CDF, Fpik
, of the SU’s allocated power over channel k,

∀k ∈ K, is given by:

Fpik
(x) = 1− λJ

(
αk

λi
− x
)
ηik , (5.42)

for x ∈ [βN0

ηik
, αk

λi
]. Fpik

admits a discontinuity point at βN0

ηik
with mass point λJβN0 +1−λJ

αk

λi
ηik .

Proof. For brevity, we also omit the proof here since it is similar to that of Theorem 5.2.

Note that the evaluation of λi and λJ is dependent on the specific prior distribution that each

player assumes to model its uncertainty.

5.7 Numerical Results

In this section, we present numerical results to illustrate the game-theoretic equilibrium analysis

presented in the chapter. For simplicity, we assume that both players have equal power budgets to

be strategically distributed among H = 20 channels. In this respect, we consider P = J = 40

dBm. The SU transmissions subject to an SINR constraint, e.g., β = −20 dB, are assumed to
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Fig. 5.5: SU’s Marginal CDFs with complete and incomplete knowledge of channels’ fading gains, gk for
all k.

undergo propagation losses and reduction in power based on: i) a multi-path fading channel model,

and ii) a simplified path-loss channel model with a path-loss exponent, e.g., γ = 1.8. In the former

model, we consider the channel coefficients to be Rayleigh-distributed. Without loss of generality,

we assume that h = h1 = · · · = hH and g = g1 = · · · = gH , while σ1 = 0.5 and σ2 = 1 in fhk
and

fgk respectively. Furthermore, in the latter model, we set the distance between the SU transmitter

and its corresponding receiver, dii, to be equal to 200 m, and R in (5.29) to be equal to 250 m.

In Fig. 5.4, we plot the marginal CDFs of both players based on the closed form expressions

obtained in our equilibrium analysis. We verify our theoretical results by comparing them to the

ones obtained via simulations. It is clear in this figure that the results corroborate each other.

In Figs. 5.5 and 5.6, we consider the players’ behaviors in the system given complete and

incomplete information of the channel gains and, accordingly, plot the SU’s and the jammer’s

marginal CDFs respectively. Fig. 5.5 portrays the advantage, characterized by higher expected

utility of the SU, that our proposed power allocation approach has over complete knowledge of

the channel gains. This is intuitive as the SU is expected to randomize its power over a larger

range when it has incomplete information of the system. This incomplete level of knowledge also
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Fig. 5.6: Jammer’s Marginal CDFs with complete and incomplete knowledge of the jammer’s location.

imposes another advantage in terms of the probability of successful reception at the SU receiver.

In Fig. 5.6, we plot the jammer’s marginal CDF for the scenario where only the SU has incomplete

information of the channel gains. In this case, the jammer tends to randomize its power over

a larger power range as dJi increases in order to enhance its chances of bringing down the SU

transmissions. The results obtained are intuitive as more resources are required by the jammer to

block the SU transmissions when the jammer is farther apart from the SU receiver. It is also shown

in this figure that the jammer randomizes its power over a smaller power range for R = 250 m

when the SU receiver follows a Bayesian approach to model dJi. In fact, the jammer needs less

power resources to block the SU transmissions since the jammer, on an average, is located at a

distance that is less than what we consider in the other two cases where the SU exactly knows dJi.

In Figs. 5.7 and 5.8, we plot the SU’s expected utility with respect to increasing values of P for

different instantiations of the channel gains as explained in Sections 5.5.1 and 5.5.2 respectively.

Intuitively, the expected utility of the SU increases when its power budget increases. This is due to

the increase in the available power resources to be strategically distributed. The results obtained in

both figures match our intuition. For the scenario in Section 5.5.1, we, in Fig. 5.7, also compare
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Fig. 5.7: SU’s expected utility with respect to P and different power allocation schemes.

the performance of our proposed power allocation scheme with the power distribution described

in [95] and a simple equal-power distribution given complete information of the channel gains.

The SU’s expected utility, evaluated in [94], is smaller than what we would obtain in the proposed

power allocation scheme since the authors in [94] investigated the worst-case damage caused by

the jammer. At the same time, the simple equal-power distribution is also expected to present

a weaker performance unless the SU increases its transmit power so that the SINR constraint is

satisfied. Fig. 5.7 corroborates the same intuition stated earlier. For the scenario in Section 5.5.2,

the SU is expected to obtain a larger payoff when it assumes that the average location of the jammer

is farther away. This is clearly shown in Fig. 5.8. It is also evident in Fig. 5.8 that the value of R

chosen by the SU in (5.29) determines its payoff. For example, the SU, for R = 200 m, is expected

to obtain a payoff that is smaller than what it gets when it either exactly knows the location of the

jammer (dJi = 200 m) or R > 200 m.

The expected utility of the SU is presented in Figs. 5.9 and 5.10 versus increasing values of the

SINR threshold β above which an SU transmission is declared successful. Intuitively, it is known

that the SU’s expected utility decreases as β increases since more power resources are required
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Fig. 5.8: SU’s expected utility versus P under complete and incomplete knowledge of jammer’s location.

to guarantee a successful communication session in this case. The results obtained corroborate

our observation as smaller expected utility is presented in both figures. In Fig. 5.9, we further

compare the performance of our proposed power allocation scheme with the power distribution

described in [94] and the simple equal-power distribution presented earlier. It is clear in this

figure that the SU’s expected utility evaluated according to the proposed power allocation scheme

outperforms the other two schemes. This is mainly because the jammer is considered to have

incomplete information about channel gains and, accordingly, the opponent player is expected to

achieve a better payoff than when the jammer exactly knows the game. Furthermore, in Fig. 5.10,

we notice that the SU obtains a higher expected utility when the jammer, on an average, is farther

away (or as R increases).

In Fig. 5.11, we plot the behavior of SU’s expected utility with respect to increasing values of

the jammer’s power budget and compare it to that of [94] and the simple equal-power distribution.

It is clear in Fig. 5.11 that smaller expected utility is obtained for all three allocation strategies

when the jammer becomes more powerful (e.g., J increases). In addition, a similar observation is

made from the results in Figs. 5.7 and 5.9 as the expected utility of the SU evaluated based on our
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Fig. 5.9: SU’s expected utility with respect to increasing values of β and different power allocation
schemes.

proposed approach is greater than that in [94] and the equal-power strategies. Also, note that the

equal power allocation outperforms the other two schemes when J = 15 dBm. This is intuitive

because the SINR constraint at SU’s receiver is satisfied for such value of J .

So far, we have presented simulation results for the case where the SU assumes that all H

channel are available for it to transmit on. For the case where the SU senses these channels before

it transmits, we set qk = 0.1 and πk = 0.25 for all k for simplicity. If active, the PU transmitting

power over each channel is chosen to be equal to 90 dBm, i.e., it is sufficiently high so that (5.2)

is not satisfied. In Fig. 5.12, we present the SU’s expected utility versus αk which, in turn, varies

with q10k given qk = 0.1 and q10k = [0, 0.1, 0.2, 0.3, 0.4, 0.5]. It is intuitive to say that the expected

utility of the SU increases when the probability of SU’s transmissions colliding with PUs gets

smaller or q10k decreases (i.e., αk increases in this case), and vice-versa. It is clear in this figure

that our intuition matches our simulation results.

At this point, it is, however, essential to mention that ignoring the channel imperfections in the

signal propagation model [94] is not realistic. Therefore, our proposed Bayesian NE strategies are
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Fig. 5.10: SU’s expected utility versus β for different values of R.

more practical and rewarding for the players than the other two schemes’ strategies, and, therefore,

the SU has to choose its as the optimal power allocation strategy (i.e., defense strategy) against the

malicious jammer.

5.8 Summary

In this chapter, we considered the problem of competitive communications of a SU in the presence

of a jammer with incomplete knowledge of the gains of the channels. In our work, the SU chooses

its transmission strategy with the intention of satisfying the SINR constraint at the intended re-

ceiver. On the other hand, the jammer tries to sabotage the SU transmissions by strategically

adopting a power allocation strategy. We further assumed that both players consider probability

distributions to model the incomplete information in the framework and, hence, treat the power al-

location game as imperfect. Furthermore, we investigated the mixed strategy solution space under

two instantiations of the channel gains. Specifically, as the mixed strategy solution, we provided

the marginal distributions of the SU and the jammer according to which they would select their
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transmission powers in equilibrium.

Motivated by the famous Colonel-Blotto game [73], we presented a novel strategic power allo-

cation game with different levels of uncertainties between the SU transmitter and the jammer. We

next summarize the dissertation and present few work directions that can be pursued in the future.
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CHAPTER 6

CONCLUSION

6.1 Summary

We presented four different interference mitigation techniques to deal with communication and

jamming interference in this dissertation. For communication interference, we presented two tech-

niques. In order to make SU transmissions resilient to PUs’ interference, the first technique ex-

ploited PTC combined with M -ary frequency shift keying. The other one utilized a novel frequency

allocation approach using Matching theory in an attempt to mitigate SU interference. Furthermore,

two jamming interference mitigation techniques were investigated. One technique exploited ARQ

protocols and adopted a uniform energy allocation strategy to mitigate the jammer’s effect. The

other one was based on a game-theoretic framework where we employed a defense strategy against

jamming using a strategic power allocation.

In Chapter 2, we employed a PTC based framework to mitigate the impact of PUs modeled

using a practical dynamic channel occupancy model in CRNs. We computed the SU link’s BER

approximately which was shown to be quite accurate. This approximation allows one to use BER

as a QoS metric to determine the link quality of an SU link for applications such as link adap-

tation. Furthermore, in order to assess the effectiveness of the proposed PTC based multi-level

FSK communication scheme, we compared the performance to that of an uncoded opportunistic
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M -FSK system, a coded M -FSK system, a coded BPSK modulated system deploying parallel

transmissions, and a 1
2
-rate LDPC encoding with an M -FSK modulation system. Based on the

comparisons described in Section 2.6, we showed that the proposed scheme outperforms the latter

two under relatively heavy PU interference. We also presented results that exhibit the resiliency of

an SU link to interference for PTCs in the presence of multiple dynamic PUs activities.

We introduced a distributed model in Chapter 3 for the allocation of PU-owned frequency

bands to SUs in a CRN. In the proposed model, SUs sense the licensed spectrum looking for

white spaces. We modeled the problem as a matching game between SUs and PUs. We proposed

a novel distributed algorithm to obtain a stable and optimal matching. Moreover, we compared

our proposed algorithm with the deferred acceptance algorithm and a random channel allocation

approach and showed the superior performance of our approach.

In Chapter 4, we investigated the design and performance analysis of a stop-and-wait ARQ

protocol with a perfect feedback channel in the presence of jammer interference and ISI. We de-

fined system-latency as the maximum number of transmission attempts required at the transmitter

to achieve successful reception of a data packet and attempted to minimize it by modeling our

framework as a constrained optimization problem in which system-latency is to be minimized such

that the probability of successfully receiving a data packet satisfies a prescribed quality-of-service.

Furthermore, a game-theoretic formulation was taken into account in the form of a minimax game

between the transmitter and the strategic jammer. An NE solution was provided in the form of

uniform energy allocations for both the transmitter and the jammer which, in turn, were used to

minimize system-latency.

In Chapter 5, we considered the problem of competitive communications of a SU in the pres-

ence of a jammer with incomplete knowledge of the gains of the channels. In this work, the SU

chooses its transmission strategy with the intention of satisfying the SINR constraint at the intended

receiver. On the other hand, the jammer tries to sabotage the SU transmissions by strategically

adopting a power allocation strategy. We further assumed that both players consider probability

distributions to model the incomplete information in the framework and, hence, treat the power al-
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location game as imperfect. Furthermore, we investigated the mixed strategy solution space under

two instantiations of the channel gains. Specifically, as the mixed strategy solution, we provided

the marginal distributions of the SU and the jammer according to which they would select their

transmission powers in equilibrium. We showed that our approach outperforms a scenario em-

ploying an equal-power allocation with complete information of the system. We also showed that

the proposed approach relatively lags behind in performance when compared with a similar ap-

proach with complete information. It is important to mention here that our proposed Bayesian NE

strategies are more practical and rewarding for the players because ignoring the channel imperfec-

tions in the signal propagation model or assuming complete information is available to players are

not realistic.

6.2 Future Work

In the modulation scheme proposed in Chapter 2, when the ON-OFF keying is replaced with anti-

podal signaling, we have a coded-OFDM framework at hand. This can be combined together

with state-of-the-art OFDM-based spectrum overlay techniques in order to design hybrid cogni-

tive radio networks and improve spectrum efficiency and the overall network throughput. One can

analyze the aforementioned system design in future work. Furthermore, in the case of multiple

SUs, PTCs employed at different SUs may interfere with each other. This motivates future inves-

tigation of PTCs that minimally interfere with each other when employed by spatially distributed

SUs. One can also investigate optimal threshold selection in the case of hard-decision decoding

and soft-decision decoding as a more effective decoding technique. Based on the promising results

we obtained in a CRN, generalizing the proposed scheme to tackle wireless networks subject to

jamming attacks and malicious nodes’ activities is an interesting direction to pursue in future work.

Exploring SUs’ extreme selfishness is a compelling extension of the problem investigated in

Chapter 3. In this case, an SU can send untruthful valuations in order to increase its chances in

matching to the most preferred frequency bands. At the same time, generalizing the scheme to
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include other matching forms constitutes another future work direction to pursue.

A similar design and performance analysis to what we provided in Chapter 4 for more practi-

cal re-transmission protocols, e.g., HARQ-RR and HARQ-IR protocols, and system models, e.g.,

energy harvesting capabilities at the transmitter and the jammer, can be pursued in future work.

Another interesting direction to pursue includes the design of the analyzed system while consider-

ing some other performance metrics, e.g., average delay of a data packet, that relate directly to the

type of application.

An interesting extension of the problem that is highlighted in Chapter 5 lies in studying the

interactions between the SU and the jammer in a repeated Bayesian game setting where both

players converge to the NE in an online manner. Considering the scenario where a jammer is

capable of jamming SU’s sensing block as well as transmissions is also another exciting direction

that can be pursued.
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