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ESSAYS ON SUPPLY CHAIN ANALYTICS: INVESTMENT AND 
CAPACITY PLANNING UNDER UNCERTAINTY 

ABSTRACT 

In this dissertation, we study a firm’s investment and capacity planning strategies in the 

presence of different types of supply uncertainties and risks. Both essays in this dissertation 

benefit from empirical analysis as the analytical models build on the findings and observations 

from the corresponding empirical investigation. Each essay shows the benefits from utilizing 

flexible options that are deemed to be less preferable before conducting the analysis. Wine 

futures investment represents the flexible option (due to its liquidity) in the first essay, however, 

it exhibits greater uncertainty in price than the traditional bottled wine. We find in our empirical 

analysis that both weather and market fluctuations influence the evolution of the price in wine 

futures, and thus, despite being the flexible option, it also represents the riskier investment. On 

the other hand, capacity expansion at a geographically remote facility represents the flexible 

option (due to its greater backup capabilities) in the second essay, however, it is a more costly 

backup alternative than a nearby facility. As a result, both essays examine the trade-offs between 

these flexible, yet risker and/or costlier, alternatives, and shed light on the risk-reward structure 

of these various operational levers.  
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CHAPTER 1: INTRODUCTION 

In this dissertation, we study a firm’s investment and capacity planning strategies in the 

presence of different types of supply uncertainties and risks. Both essays in this dissertation 

benefit from empirical analysis as the analytical models build on the findings and observations 

from the corresponding empirical investigation. Each essay shows the benefits from utilizing 

flexible options that are deemed to be less preferable before conducting the analysis. Wine 

futures investment represents the flexible option (due to its liquidity) in the first essay, however, 

it exhibits greater uncertainty in price than the traditional bottled wine. We find in our empirical 

analysis that both weather and market fluctuations influence the evolution of the price in wine 

futures, and thus, despite being the flexible option, it also represents the riskier investment. On 

the other hand, capacity expansion at a geographically remote facility represents the flexible 

option (due to its greater backup capabilities) in the second essay, however, it is a more costly 

backup alternative than a nearby facility. As a result, both essays examine the trade-offs between 

these flexible, yet risker and/or costlier, alternatives, and shed light on the risk-reward structure 

of these various operational levers.  

1.1. Overview of Essay 1 

We examine a risk-averse distributor’s decision in selecting between bottled wine and wine 

futures under weather and market uncertainty. At the beginning of every summer, a fine wine 

distributor has to choose between purchasing bottled wine made from the harvest collected two 

years ago and wine futures of wine still aging in the barrel from the harvest of the previous year. 

At the end of the summer, after realizing weather and market fluctuations, the distributor can 

adjust her allocation by trading futures and bottles.  
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Using comprehensive data obtained from Liv-ex that is an online trading platform for 

registered wine merchants, we empirically show how young wine prices can be explained 

through weather and market fluctuations. We then build an optimization model based on our 

empirical findings to examine the distributor’s investment decisions in wine futures and bottled 

wine. Our analytical model employs a two-stage stochastic program with recourse under budget 

and value-at-risk constraints. 

The paper makes three contributions. First, we develop an analytical model in order to 

determine the optimal selection of bottled wine and wine futures under weather and market 

uncertainty. Our model is built on an empirical foundation in which the functional forms 

describing the evolution of futures and bottle prices are derived from comprehensive data 

associated with the most influential Bordeaux winemakers. Second, we develop structural 

properties of optimal decisions. We show that a wine distributor should always invest in wine 

futures because it increases the expected profit in spite of being a riskier asset than bottled wine. 

We characterize the influence of variation in various uncertainties in the problem. Third, our 

study empirically demonstrates the financial benefits from using our model for a large 

distributor. The average profit improvement is significant at over 22%, and its value is higher 

under risk aversion. The analysis is beneficial for fine wine distributors as it provides insights 

into how to improve their selection in order to make financially healthier allocations. 

1.2. Overview of Essay 2 

The second essay helps a firm determine its capacity expansion decisions as a mitigation 

strategy against disruptions in a delivery supply chain. The delivery supply chain involves 

fulfillment centers that are responsible for delivering orders within the next day. The operations 

at a fulfillment center (e.g., sorting, bundling, and wrapping) require agility and flexibility since 
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each customer order consists of a unique combination of multiple products. If any of these 

operations halt due to a disruption, that facility cannot serve its customers while the disruption 

lasts. As a result, the firm might not be able to comply with its next-day delivery promise. 

We formulate the firm’s capacity planning problem using a two-stage model. The firm 

determines the capacity expansion amount in each fulfillment center in stage 1. If a disruption 

occurs in stage 2, then the firm determines the optimal allocation of the backup capacity in order 

to satisfy the orders arriving at the disrupted fulfillment center. We consider the length of 

disruption as random, and the firm operates under a value-at-risk measure for satisfying its 

customer orders arriving at the disrupted fulfillment center. 

This essay makes five main contributions. First, we use capacity planning, rather than 

inventory planning, as a proactive measure against supply chain disruptions. Unlike inventory 

planning, capacity planning adds agility and flexibility to a delivery supply chain. Second, our 

work incorporates two types of disruptions that are (1) low-impact and high-likelihood 

disruptions, and (2) high-impact and low-likelihood disruptions. This provides a better 

representation of the set of disruptions a firm would face in its daily operations. Third, we show 

that geographic proximity does not necessarily serve as an anchor when determining the location 

of capacity expansion, i.e., the firm may be economically better off by adding capacity at a 

remotely located facility, even though providing backup from that facility would cost more than 

providing from a closer facility in case of a disruption. Fourth, we find that the capacity 

expansion decisions at the remote facility and the nearby facility may be substitutes. Fifth, as a 

further consequence of the substitution effect, we find that, as risk aversion increases, the total 

capacity expansion may first decrease, then stabilize, and then increase. This type of non-

monotone behavior is a result of the flexibility of the remote facility.   
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CHAPTER 2: WINE ANALYTICS: FINE WINE PRICING AND SELECTION UNDER 

WEATHER AND MARKET UNCERTAINTY 

2.1. Introduction 

This paper examines a wine distributor’s annual decision regarding the selection of bottled 

wine and wine futures under weather and market uncertainty. At the end of each summer, a 

winemaker harvests grapes, crushes them in order to produce wine. A fine wine goes through a 

long aging process ranging between 18 to 24 months. The wine can be sold in advance in the 

form of wine futures, often referred to as “en primeur” due to the popular futures campaign for 

Bordeaux wines. Wine futures begin to trade before the first summer following the harvest 

(approximately eight months after harvest). The wine gets bottled in the second summer and is 

sold for retail and distribution; those who purchased this wine in the form of futures also receive 

their wine shipment.  

To understand the difference between bottled wine and wine futures, let us consider the 2013 

vintage of a fine wine as an example provided in Figure 2.1. The 2013 vintage of this wine is 

made from the grapes harvested in September 2013; its futures are sold in May 2014, and the 

wine is bottled and sold in May 2015. Similarly, the 2014 vintage is produced from the grapes 

harvested in September 2014, and its futures come out in May 2015. As a result, the distributor 

has two products in May 2015 from the same fine wine producer: (1) The 2013 vintage in the 

form of bottled wine, and (2) the 2014 vintage in the form of wine futures (a contract to take the 

possession of the 2014 vintage wine in May 2016). Thus, in May 2015, a fine wine distributor 

has to select the amounts of bottled wine from the 2013 vintage and wine futures of the 2014 

vintage. A distributor’s business involves buying the wine from the winemaker and immediately 

pushing it downstream to the wholesalers and retail stores. Thus, its profits are based on quick 

movement of wine, rather than opportunistic sale based on wine prices. Our paper assists wine 
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distributors by developing an analytical model to determine the allocation decisions between 

bottled wine and wine futures under weather and market uncertainty. The model relies on an 

empirical foundation that describes the price evolution of futures and bottles. The empirical 

analysis provides the justification for the functional forms describing the impact of weather and 

market conditions on prices.  

 

 
Figure 2.1. The timeline of futures and bottle trade in wine production. 

 

Quality of a fine wine is greatly influenced by weather conditions during the grape growing 

season; often higher temperatures lead to better quality of grapes and wine. Due to differences in 

weather conditions from one year to the other, two consecutive vintages of the same wine may 

have very different quality, and hence, price. A striking example regarding the impact of weather 

on wine futures prices can be seen from the Bordeaux region where the summer of 2005 was 

very hot and dry, resulting in one of the finest vintages in recent years. Prior to the growing 

season in 2005, the wine futures for the 2004 vintage of Troplong Mondot was released to the 

market at the price of $62/bottle. The impact of superior weather in the summer of 2005 was so 

big that the wine futures price for the 2005 Troplong Mondot jumped to $233/bottle, 

corresponding to a 276% increase when compared with the futures price of the previous vintage. 

This is an example of the improved weather conditions from 2004 to 2005, and its impact on 

wine futures prices. Moreover, the positive weather during the summer of 2005 negatively 
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impacted the 2004 vintage wine, and caused the bottle price of the 2004 vintage to go down to 

$54 per bottle, resulting in a 13% reduction from its futures price from the prior year. This is an 

example where the growing weather condition not only influences the wine futures price of its 

vintage but also the evolution of a futures price to the bottle price in the previous vintage.  

In addition to weather fluctuations, changes in the market conditions also drive fine wine 

prices. All fine wine futures and bottles are traded in London International Vintner’s Exchange 

(Liv-ex) with standardized contracts. We use Liv-ex 100 index, composed of 100 most sought-

after wines, in order to describe the fine wine market conditions. This index is declared as the 

“fine wine industry’s leading benchmark” by Reuters. When Liv-ex 100 index decreased by 

17.17% in 2008 (in comparison to 2007), the top Bordeaux winemakers priced their 2008 vintage 

wines 16.66% less than their 2007 vintage wines on average despite the highly similar weather 

conditions between the two growing seasons. Our analysis combines the impact of weather and 

market fluctuations in explaining the price evolution of wine futures and bottled wine. These 

price evolution functions are utilized in developing an analytical model to help the distributor’s 

selection between wine futures and bottled wine.  

Wine distribution is an important business around the world. In the US alone, the wine 

industry generates $37.6 billion each year with a projected 8.2% growth in the upcoming years. 

Under the presence of drastic changes in vintage prices depending on weather and market 

conditions, a wine distributor is often puzzled with whether to invest in wine futures of the 

previous year’s vintage or buy recently bottled wine from two vintages ago. While wine futures 

exhibit a greater uncertainty as future weather conditions can negatively influence the bottle 

price as in the example of the 2004 Troplong Mondot, it also allows the distributor to lock up 

limited supply at lower prices. Moreover, futures can be easily traded in Liv-ex, the exchange 
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platform for fine wine without having to make physical shipments and comply with legal 

restrictions. Thus, wine futures are highly liquid in comparison to bottled wine. Purchasing 

bottles can be perceived as a safer bet upfront as the bottle prices are revealed. However, market 

conditions continue to influence these prices. The distributor can observe the summer weather 

conditions getting comparative indications as to how the futures price is going to evolve to the 

bottle price. Moreover, the distributor can later change its allocation through buying additional or 

selling existing futures with limited ability to move its bottled wine inventory.  

When should a wine distributor engage in futures? Our work finds motivation from 

conversations with the executives at the largest wine distributor in the US and in the world that 

does not invest in wine futures due to the lack of knowledge about futures prices and their 

evolution to bottle prices. Earlier research (Ashenfelter et al. 1995 and Ashenfelter 2008) has 

shown that mature Bordeaux wine prices can be predicted accurately using growing season 

weather conditions, but these studies conclude that young wine prices (i.e., futures prices and 

prices for the recently released bottled wines) cannot be predicted using weather conditions. Our 

empirical analysis provides an explanation for the impact of weather and market changes in 

young wine prices. It serves as a foundation for our analytical model, and enables us to estimate 

the distributor’s economic benefit from investing in a combination of wine futures and bottled 

wine (when compared with a distributor that invests only in bottled wine).  

Wine futures are often perceived to be a riskier alternative than bottled wine. Our empirical 

analysis confirms this perception as it shows that wine futures prices are influenced by both 

weather and market fluctuations, whereas bottled wine prices are influenced only by the changes 

in market conditions. Thus, a distributor would not be encouraged to make investments in 

futures. Rather, the distributor would spend its money in physical bottles where the price is 
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already evolved and has smaller uncertainty. Indeed, this has been the practice at some of the 

distributors as they invest solely in bottled wine, bypassing the futures alternative. Our analytical 

model shows, however, that a distributor should always make some investment in futures. This 

finding is confirmed through a numerical analysis using comprehensive data.  

Our paper makes three main contributions. First, we develop an analytical model in order to 

determine the optimal selection of bottled wine and wine futures under weather and market 

uncertainty. The model is built on an empirical foundation that guides the functional forms 

describing the evolution of futures and bottle prices. Our empirical analysis shows how futures 

and bottle prices evolve through changes in weather and market conditions: (1) futures price of a 

vintage is negatively influenced by a warmer growing season for the upcoming vintage, leading 

to a lower bottle price; (2) bottle prices are not influenced by weather conditions; and, (3) 

improving market conditions lead to increases in futures and bottle prices. Second, we describe 

the optimal selection of bottled wine and wine futures with a limited budget and using a time-

consistent value-at-risk measure under weather and market uncertainty. We develop the 

structural properties of the optimal decisions and we show that a distributor should always invest 

in wine futures because it increases expected profit despite being a riskier asset than bottled 

wine. Third, our study demonstrates the financial benefits from using our analytical model based 

on the empirical findings. The average profit improvement is 22.78%, and the benefit is higher 

under risk aversion. Our analysis provides insights into how to improve the distributor’s 

selection and make financially healthier allocations between futures and bottled wine. 

The remainder of the paper is organized as follows. Section 2.2 reviews the relevant literature 

from economics, operations and supply chain management, and demonstrates how our work 

differs from earlier publications. Section 2.3 develops an analytical model to help a distributor 
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determine the allocation decisions between wine futures and bottled wine. Section 2.4 presents 

the economic benefit from our proposed model using comprehensive data from the most 

influential Bordeaux winemakers. Section 2.5 presents our conclusions and managerial insights. 

All proofs and derivations, and the details of our empirical analysis are presented in the appendix 

(Section 2.6). 

2.2. Literature Review 

The economics literature has shown significant interest in understanding, explaining, and 

predicting wine prices. Ashenfelter et al. (1995) and Ashenfelter (2008) are the two seminal 

papers showing that mature Bordeaux wine prices can be predicted using weather and age with 

accuracy, however, they both conclude that their models fail to explain young wine prices. For a 

wine distributor, however, most trade takes place when the wine is young, and therefore, it is 

important to understanding the evolution of young wine prices. Our work examines how young 

wine prices are impacted by the fluctuations in weather and market conditions. While we 

complete this analysis in order to build an analytical model that determines the optimal selection 

of wine futures and bottled wine, our empirical findings complement earlier publications by 

providing an explanation for the evolution of young wine prices.  

Jones and Storchmann (2001), Lecocq and Visser (2006), Ali and Nauges (2007), Ali et al. 

(2008), and Ashenfelter and Jones (2013) also address the price prediction of Bordeaux wines 

based on weather conditions and/or tasting scores. Byron and Ashenfelter (1995) and Wood and 

Anderson (2006) extend this stream to Australian wines while Haeger and Storchmann (2006) 

and Ashenfelter and Storchmann (2010) examine American wines and German wines, 

respectively. However, none of these papers focus on young wine pricing nor have a selection 

analysis that can benefit distributors. 
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Noparumpa et al. (2015) investigate the impact of tasting scores on young wine prices, and 

then provide a model for winemakers to determine the optimal amount of wine to be sold in the 

form of futures and the optimal amount that should be sold after the wine is bottled. Their work 

concludes that wine futures help a winemaker collect her revenues in advance while passing the 

risk of having a poor quality vintage to the distributor. They estimate that selling wine in 

advance in the form of futures increases Bordeaux winemakers’ profits by 10% on average. If 

winemakers are the clear winners of futures trade, then one asks what is in it for the wine 

distributors. Our paper sheds light on this question by providing an analytical model which 

incorporates the advantages (i.e., being easily tradable through the Liv-ex platform) and the 

disadvantages (i.e., bearing a greater price uncertainty) of wine futures for distributors. We 

utilize weather and market fluctuations instead of tasting scores (correlated with weather) to 

explain futures prices; this leads to considerably higher explaining power with greater adjusted 

R2 values in a larger sample featuring the leading Bordeaux winemakers. Moreover, our 

explanation of the evolution of a futures price into bottle price is a unique aspect of our study. 

Wine futures is a form of advance selling and purchasing, and recent publications advocate 

the use of advance selling in various settings. Xie and Shugan (2001) exemplify the benefits in 

electronic tickets and online platforms. Cho and Tang (2013) examine the influence of supply 

and demand uncertainty, and Tang and Lim (2013) investigate the influence of speculators in 

advance selling. Boyacı and Özer (2010) demonstrate the advantages of advance selling in 

capacity planning. Our work departs from these studies in three features: (1) The wine distributor 

has to choose between advance purchase of an upcoming product in replacement of the present 

product; (2) as the price evolves through revelations of uncertainty, the distributor has the ability 
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to adjust its selection between the two product offerings; (3) the sources of uncertainty in our 

problem are weather and market fluctuations differentiating our problem setting.  

Wine futures depart from the commodity futures described in Fama and French (1987) and 

Geman (2005). In commodity markets (e.g., corn, soybean, cocoa), a settlement in a futures 

contract means that the agricultural product delivered to the buyer can be produced by any 

farmer. In fine wine, however, if a buyer is asking for a bottle of 2008 Lafite Rothschild, the 

seller cannot substitute it with a bottle of 2007 Lafite Rothschild, or a bottle of 2008 Troplong 

Mondot. Thus, fine wine cannot be substituted across producers or vintages, and therefore, is not 

a commodity. Moreover, in traditional commodities, futures contracts and spot purchases occur 

simultaneously for the commodity product. However, spot purchases of bottled fine wine do not 

begin until the completion of the futures trade of the same wine.  

Fine wines are also treated as a long-term investment. Storchmann (2012) provides a 

comprehensive review about wine economics, and covers the use of wine as an investment 

option. Dimson et al. (2014) find that young Bordeaux wines yield greater returns than the 

mature ones. This finding further amplifies the importance of explaining the evolution of young 

wine prices. Jaeger (1981), Burton and Jacobsen (2001), and Masset and Weisskopf (2010) also 

examine the return on wines as a long-term investment. Jaeger (1981), Burton and Jacobsen 

(2001), and Dimson et al. (2014) conclude that wines can yield greater returns than treasury bills, 

but less than equities. Masset and Weisskopf (2010), on the other hand, demonstrate that fine 

wines can outperform equities during a financial crisis when financial assets are highly 

correlated. While these studies consider wine as a long-term investment, our paper focuses on the 

benefits as a short-term investment from a distributor’s perspective who buys the recently 

released young wines from winemakers and sells to the wholesalers and retailers shortly after. 
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Supply uncertainty is another related stream as quality and price may vary dramatically 

across different vintages of the same wine depending on weather and market conditions. Yano 

and Lee (1995) provide a comprehensive review of the literature that focuses on supply 

uncertainty as a consequence of yield fluctuations. Jones et al. (2001) examine the impact of 

yield uncertainty in the corn seed industry for a firm that utilizes farmland in two opposing 

hemispheres, and develop a two-stage production scheme to better match supply and demand.  

Kazaz (2004) introduces the impact of yield fluctuations into what he defines as the yield-

dependent cost and price structures in the olive oil industry. Kazaz and Webster (2011) add a 

price-setting capability, and show how yield fluctuations influence a firm’s pricing decisions. 

Their study also demonstrates the benefits of using fruit futures (if existed) in mitigating supply 

uncertainty. Boyabatli et al. (2011) and Boyabatli (2015) examine the purchasing contracts for 

fixed-proportion technology products in the presence of random spot prices. Kazaz and Webster 

(2015) develop optimal price and quantity decisions under supply and demand uncertainty and 

under risk aversion. Tomlin and Wang (2008) develop price and quantity decisions in a co-

production setting that results from random yield in the split of two distinct products. Li and Huh 

(2011) also develop price and quantity decisions for multiple products using a multinomial logit 

model. Departing from these papers, we define supply uncertainty in the form of variation in 

quality due to growing season weather; hence, wine futures have a quality-dependent price 

structure. Moreover, the secondary (emergency) investment option utilized in some of these 

papers becomes available in the second stage whereas, in our model, both wine futures and 

bottled wines are simultaneously available at the beginning. 

Weather and market realizations provide signals to the wine industry, and the impact of 

similar signals, in particular for estimating demand, is examined widely in the operations 
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management literature. Gümüş (2014), for example, investigates the impact of forecast as a 

signal for demand. Our work departs from this body of literature as we study signals that 

influence the evolution of price over time.  

2.3. The Model and its Analysis 

This section develops and analyzes a model that helps the wine distributor determine the 

investment allocation between wine futures and bottled wine. The prices of wines futures and 

bottled wine are influenced by the randomness in weather and market conditions after these 

decisions take place. In this model, the functional forms describing the evolution of futures and 

bottle prices rely on an empirical foundation.  

In each May, a risk-averse wine distributor has to select between wine futures (of new 

vintage) and bottled wine (of previous vintage) of a winemaker. Specifically, in May of calendar 

year t, the distributor has to determine the amount of money to be invested in wine futures from 

vintage t – 1 and bottled wine from vintage t – 2.  

2.3.1. Empirical Foundation for the Model 

In this section, we present an empirical analysis that serves as a foundation for our 

mathematical model that will be presented in Section 2.3.2. We begin our discussion with the 

specification of functional forms that will be used in the description of the price evolution of 

young wines as functions of weather and market random variables.  

Figure 2.2 illustrates the notation we employ in order to describe futures and bottled wine 

prices as functions of weather and market random variables. In May of calendar year t, futures 

for vintage t – 1 are released at the price of f1. We express the futures price of the same vintage in 

September of calendar year t as f2, and in May of calendar year t + 1 as f3. In May of calendar 

year t, bottled wine from vintage t – 2 is also released, and we express this bottle price as b1. We 
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denote the bottle price of vintage t – 2 in September of calendar year t with b2, and in May of 

calendar year t + 1 with b3.  

 

 

Figure 2.2. The evolution of futures and bottled wine prices under weather and market 
uncertainty. 

 

After the wine distributor makes investments in futures of vintage t – 1 and bottled wine of 

vintage t – 2 in May of calendar year t, a new summer weather information becomes available in 

calendar year t. This new summer weather information, which is fully observed by September of 

calendar year t, provides a relative comparison to the wines that are from vintages t – 1 and t – 2. 

For the case of wine futures of vintage t – 1, the new weather information from May–September 

period of year t compared to the growing season of grapes (i.e., May–September period of year t 

– 1) can play a role. Thus both f2 and f3 can be influenced by the new weather information. For 

the case of bottled wine of vintage t – 2, the new weather information from May–September 

period of year t compared to the growing season of grapes (i.e., May–September period of year t 

– 2) can also influence the values of b2 and b3. Similarly, market conditions change from May to 

September of year t. As a consequence, the weather and market information observed at the end 

of summer in calendar year t can have an impact of the values of f2, f3, b2, and b3. 

We next examine the impact of weather and market on the evolution of wine futures and 

bottled wine prices. Let us denote weather fluctuations with random variable w  and its 

realization with w, and we denote market fluctuations with random variable m  and its 
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realization with m. Specifically, we provide justification for the description of f2, f3, b2, and b3 as 

functions of w and m. The detailed explanation of our data and the empirical models are provided 

in Appendix B (Section 2.6.2). 

We begin our discussion with wine futures. Table 2.1 provides the regression analysis of the 

impact of new summer weather and market information on the price evolution of futures with f2 

(in Model 1A) and f3 (in Model 1B). The analysis in Table 2.1 provides three results. First, better 

weather of the upcoming vintage (i.e., higher value of w) has a negative impact on the evolution 

of futures price from f1 to f2. This weather effect is statistically significant at 1% level. This can 

be easily understood as the upcoming vintage had better weather conditions than the vintage of 

futures, and therefore, the price of wine futures would decrease. Second, better weather of the 

upcoming vintage (i.e., higher value of w) has a continued negative impact (statistically 

significant at 1%) on the evolution of futures price from f2 to f3. Thus, this implies that the new 

weather information is not completely priced in the futures as of September of calendar year t. A 

similar observation is made in Ashenfelter (2008). Moreover, the negative coefficient 

representing the impact of weather in the evolution of futures price from f2 to f3 is greater in 

absolute value than that of f1 to f2. Therefore, we define the functional form of the futures price 

evolution as ∂f3()/∂w < ∂f2()/∂w < 0. Third, improving market conditions during the summer of 

calendar year t (with a higher value of m) has a positive impact on the evolution of futures price 

both from f1 to f2 and from f2 to f3. This market effect is statistically significant at 1% level. 

Moreover, the positive coefficient representing the impact of market conditions in the evolution 

of futures price from f2 to f3 is greater than that of f1 to f2. Therefore, we define the functional 

form of the futures price evolution as ∂f3()/∂m > ∂f2()/∂m > 0. As a consequence of these 

findings, we describe the futures prices as f2(w, m) and f3(w, m).  
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 Model 1A: f2 – f1 Model 1B: f3 – f2 

Parameter Coefficient t-stat Coefficient t-stat 

Intercept 0.0296 2.85*** 0.0788 4.45*** 

w -0.0501 -4.58*** -0.1281 -6.88*** 

m 0.0079 5.47*** 0.0223 9.01*** 

Adjusted R2 0.19  0.37  

Observations 220  220  

Table 2.1. Linear regression results demonstrating the impact of weather and market conditions 
on the evolution of futures prices. *** denotes statistical significance at 1%. 

 

Table 2.2 provides the regression analysis of the impact of new summer weather and market 

information on the evolution of bottle prices described as b2 (in Model 2A) and b3 (in Model 2B). 

The analysis in Table 2.2 provides three results. First, weather conditions of the upcoming 

vintage (i.e., the value of w) does not have a statistically significant effect on the evolution of 

bottle prices, neither from b1 to b2, nor from b2 to b3. Second, improving market conditions 

during the summer of calendar year t (with a higher value of m) has a positive impact on the 

evolution of bottle prices both from b1 to b2 and from b2 to b3. This market effect is statistically 

significant at 5% level in Model 2A and 1% level in Model 2B. Moreover, the positive 

coefficient representing the impact of market conditions in the evolution of futures price from b2 

to b3 is greater than that of b1 to b2. Therefore, we define the functional form of the bottle price 

evolution as ∂b3()/∂m > ∂b2()/∂m > 0. As a consequence of these findings, we describe the 

futures prices as b2(m) and b3(m).  
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 Model 2A: b2 – b1 Model 2B: b3 – b2 

Parameter Coefficient t-stat Coefficient t-stat 

Intercept 0.0248 1.52 0.0187 0.53 

w -0.0082 -0.59 0.0245 0.82 

m 0.0059 2.19** 0.0255 4.43*** 

Adjusted R2 0.01  0.12  

Observations 220  220  

Table 2.2. Linear regression results demonstrating the impact of weather and market conditions 
on the evolution of bottle prices. ** and *** denote statistical significance at 5% and 1%, 

respectively. 

 

2.3.2. The Model 

We formulate the distributor’s problem using a two-stage stochastic program with recourse. 

In stage 1 (May of year t), the distributor determines the investment in futures of vintage t – 1 

(denoted x1) and bottles of vintage t – 2 (denoted y1) of a single winemaker, respectively, with a 

limited budget (denoted B) and a value-at-risk (VaR) constraint. Distributors have a well-

specified budget for each fine winemaker, and executives describe their risk tolerance in the 

form of a VaR constraint. Recall that f1 and b1 are the unit price of futures and bottles in stage 1. 

For notational simplicity in this section, we normalize f1 = b1 = 1 without loss of generality. At 

the end of stage 1 (September of year t), the distributor observes the realization (w, m) of weather 

and market random variables. We normalize the means to zero, i.e., E[ w ] = E[ m ] = 0. The 

probability density functions (pdf) of w  and m  are denoted ϕw(w) and ϕm(m) on respective 

support [wL, wH] and [mL, mH]. We let  = [wL, wH]  [mL, mH]. 

At the beginning of stage 2 (September of year t), the distributor determines the amount of 

futures to buy or sell (denoted x2) at price f2(w, m), and the amount of bottles to purchase 

(denoted y2) at price b2(m). The distributor can easily buy or sell futures by transferring the 
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ownership rights through Liv-ex; the transaction does not require any physical flow of good and 

is not subject to any legal requirements. However, while the distributor can purchase bottles from 

the winemaker, the selling of bottles faces logistical and legal constraints. First, Bordeaux 

winemakers prefer shipping the bottled wine in the winter months to prevent any deterioration 

during transportation. Consequently, the bottles purchased in May of year t (stage 1) are not in 

distributor’s possession as of September of year t (stage 2). Hence, she cannot sell those bottles 

immediately at the beginning of stage 2. Second, selling a bottle to a different owner has legal 

constraints in the US where the sale of the bottle from one distributor located in another state can 

be considered as illegal movement of spirits. The combination of these two facts restrict the 

distributor from selling the bottled wine in September of year t (stage 2); these bottles are 

directly sold to the customers of the distributor (wholesalers, liquor stores, and consumers) at the 

end of stage 2. However, the distributor can buy additional bottles from the winemaker using 

either the cash leftover from stage 1 or from the sale of futures.  

At the end of stage 2, the distributor collects revenues from futures (that are bottled by then) 

and bottles. Futures and bottle prices at the end of stage 2 are also uncertain. The uncertainty in 

futures price between September of year t and May of year t + 1 is captured by random variable 

fz . The realized futures price is f3(w, m) + zf. The uncertainty in bottle price between September 

of year t and May of year t + 1 is captured by random variable bz . The realized bottle price is 

b3(m) + zb. We assume that ( , )f bz z   is independent of ( , )w m  , and have a mean of zero, i.e., E[

fz ] = E[ bz ] = 0. Thus, E[f3(w, m) + fz ] = f3(w, m) and E[b3(m) + bz ] = b3(m). By examining our 

price data, we observe that if futures (bottle) price moves in one direction when it evolves from f1 

to f2(w, m) (from b1 to b2(m)), then a wide majority of realized futures (bottle) prices at the end of 
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stage 2 also move in the same direction when they evolve from f2(w, m) to f3(w, m) + zf (from 

b2(m) to b3(m) + zb). We insert the following assumptions that comply with this observation: 

If f2(w, m)  f1 , then E[f3(w, m) + fz ]  f2(w, m) for all   {>, =, <} and for all (w, m). (2.1) 

If b2(m)  b1 , then E[b3(m) + bz ]  b2(m) for all   {>, =, <} and for all m.         (2.2) 

All price functions, f2(w, m), f3(w, m), b2(m) and b3(m), are linear in their arguments. Prices 

f2, f3, b2, and b3 are net of transaction, shipping, and other costs, i.e., the prices reflect the net 

revenues in these two stages. Thus, the realized profit at the end of stage 2 can be expressed as 

follows: 

(x1, y1, w, m, x2, y2, zf, zb)  

= – x1 – y1 – f2(w, m)x2 – b2(m)y2 + [f3(w, m) + zf](x1 + x2) + [b3(m) + zb](y1 + y2). (2.3) 

At the beginning of stage 2, the distributor selects x2 and y2 to maximize expected recourse 

profit subject to budget and VaR constraints given the initial investments in futures and bottles 

(x1, y1) and the realized values of weather and market random variables (w, m):  

 
2 2

1 1 2 2
,

max , , , , , , ,f b
x y

E x y w m x y z z           (2.4) 

subject to 

f2(w, m)x2 + b2(m)y2 ≤ B – x1 – y1        (2.5) 

 1 1 2 2, , , , , , ,f bx y w m x y zP z                 (2.6) 

x2 ≥ ‒ x1           (2.7) 

y2 ≥ 0.            (2.8) 

Inequality (2.5) is the second-stage budget constraint; the distributor can use the remaining 

budget from stage 1 in addition to the money generated through the sale of futures in stage 2 

(when x2 < 0). Inequality (2.6) is the second-stage VaR constraint; the distributor requires that 
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the probability of loss more than   (< B) is no more than . Alternatively said, the probability of 

realized profit less than –  should not exceed α. Inequality (2.7) indicates that the distributor 

cannot sell more futures in stage 2 than the amount purchased in stage 1. For given x1, y1, w, m, 

we let (x2
*, y2

*) denote the optimal solution, i.e.,  

    * *
2 1 1 2 1 1, , , , , , , , ,x x y w m y x y w m  =  

2 2

1 1
,

2 2, , , , ,ar ,g max , f
y

b
x

x y w m x yE z z     s.t. (2.5) – (2.8). 

Let zf and zb denote the realizations of fz  and bz  at fractile , i.e., P[ fz ≤ zf] = P[ bz ≤ zb] 

= . We assume that zf < 0 and zb < 0, i.e., the fractile parameter is such that the risk-averse 

decision maker in September of year t is concerned about profit realizations in May of year t + 1 

that are below expectation. We also assume that the VaR constraint is satisfied in the event the 

distributor invests the entire budget in bottles, i.e.,  

(1 – b3(mL) – zbα)B < .        (2.9) 

This assumption is consistent with the practice of distributors who invest solely in bottled wine. 

At the beginning of stage 1, the distributor selects x1 and y1 to maximize expected profit at 

the end of stage 2 subject to budget and VaR constraints:  

    
1 1

* *
1 1 2 1 1 2 1 1

, 0
max , , , , , , , , , , , , ,f b
x y

E x y w m x x y w m y x y w m z z


                    (2.10) 

subject to 

x1 + y1 ≤ B                (2.11) 

    * *
1 1 2 1 1 2 1 1, , , , , , , , , , , , ,f bP x y w m x x y w m y x y w m z z          for all (w, m)    (2.12) 

Inequality (2.11) states that the distributor’s initial investment in futures and bottles cannot 

exceed the allotted budget B. Inequality (2.12) is the VaR constraint under a time-consistent risk 

measure (e.g., see Boda and Filar 2006 or Devalkar et al. 2015). Some first-stage decisions (x1, 

y1) can satisfy the VaR constraint in stage 1 but may not comply with the VaR constraint in stage 
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2; such decisions lead to time-inconsistency and are not feasible in our model. To assure that risk 

aversion is time consistent over the planning horizon, the distributor must account for the VaR 

constraint in stage 2, and in particular, the choice of (x1, y1) must be such that there exists a 

solution to the stage-2 problem that satisfies the stage-2 VaR constraint for any realization (w, m) 

of ( , )w m  . 

We focus on understanding how investment in futures and bottles affect performance ceteris 

paribus, and therefore, we assume equal and positive expected returns at the end of stage 2, i.e., 

E[f3( ,w m  ) + fz ] = E[b3( m ) + bz ] > 1.      (2.13) 

We relax this assumption in Section 2.4. 

2.3.3. Analysis 

We begin our analysis by partitioning the support  into three sets that identify realizations 

of  ,w m   where the distributor would improve expected profit at the end of stage 2 by (1) selling 

futures, (2) buying futures, and (3) selling futures and buying bottles. 

Ω0 = {(w, m)   : f3(w, m)/f2(w, m) = b3(m)/b2(m) = 1} 

Ω1 = {(w, m)   : f3(w, m)/f2(w, m) < 1 and b3(m)/b2(m) < 1} 

Ω2 = {(w, m)   : f3(w, m)/f2(w, m)  max{b3(m)/b2(m), 1} \ Ω0} 

Ω3 = {(w, m)   : b3(m)/b2(m) ≥ max{f3(w, m)]/f2(w, m), 1}  Ω0}. 

We define m as b3(m)/b2(m) = 1 and f3(0, m)/f2(0, m) = 1, and w(m) as f3(w(m), m)/f2(w(m), 

m) = 1 for m  m. Let w
- = w(mL). Note that  

m < 0, w(m) < 0 for all m < m, and w(m) = 0        (2.14) 

(follows from (2.1), (2.2), (2.13)). In our analysis, we assume that  

m > mL and w(mL) > wL.             (2.15) 
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Note that the set 1 defines realizations where the expected return on futures and bottles over 

stage 2 is negative. A reversal of m > mL in (2.15) eliminates 1, which is advantageous to any 

decision-maker regardless of whether she is risk-averse or risk-neutral. A reversal of w(mL) > wL 

in (2.15) (while keeping E[ w ] = 0) implies a reduced weather uncertainty on behalf of wine 

futures, reducing the riskiness of this asset. As a consequence, (2.15) represents a riskier 

condition, and thus, our results remain intact when (2.15) does not hold. Figure 2.3 illustrates the 

above notation.  

 

 
Figure 2.3. Illustration of sets 1 – 3. Function w(m) is the line connecting points (w

-, wm) 
and (0, m). 

 

We make use of expressions that rely on the solution to the stage-2 problem with the VaR 

constraint (2.6) relaxed, which we denote as (x2
0, y2

0), i.e.,   

(x2
0(x1, y1, w, m), y2

0(x1, y1, w, m)) =  
2 2

1 1
,

2 2, , , , ,ar ,g max , f
y

b
x

x y w m x yE z z     s.t (2.5),(2.7),(2.8). 

From the structure illustrated in Figure 2.3, it is clear that (x2
0, y2

0) is given as follows: 

 0 0
2 2,x y =

   
      

       

1

1 1 2

1 1 1 2 1 2

,0                                                      if , 1

, ,0                       if , 2

, ,   if , 3

x w m

B x y f w m w m

x B x y f w m x b m w m

  
   

    

,  (2.16) 
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(see Lemma 2.A1 in the appendix for its derivation). Throughout our analysis we assume that, 

compared to no investment at the beginning of stage 1 (i.e., x1 = y1 = 0), an investment in some 

bottles increases expected profit:  

 
   1 1

0 0
1 1 2 2 1

, 0,0
, , , , , , ,f b

x y
E x y w m x y z z y


        > 0.       (2.17) 

In practice, (2.17) is likely to hold; otherwise, a distributor would not operate in this business. 

Inequality (2.17) implies that bottles command a higher expected return than holding cash in 

stage 1 as evidenced by purchases of bottles that occur each spring at the distributor motivating 

our study. 

Proposition 2.1. For any (x1, y1), 

 0 0
1 1 2 2

1

, , , , , , ,f bE x y w m x y z z

x

   


   
≥

 0 0
1 1 2 2

1

, , , , , , ,f bE x y w m x y z z

y

   


   
 > 0.  (2.18) 

Proposition 2.1 states that, at the beginning of stage 1 and for any current investment level, 

additional investment in futures is more profitable than additional investment in bottles for a 

risk-neutral distributor, and that both investment alternatives are more profitable than holding 

cash. The result hints that futures offer an inherent advantage over bottles. This advantage stems 

from the additional flexibilities of liquidity (i.e., being able to sell futures after observing 

weather and market random variables) and swapping (i.e., the ability to sell futures and buy 

bottles). As shown below the value from these flexibilities can be quantified.  

The distributor has the flexibility to sell futures after observing the upcoming vintage’s 

weather conditions. We denote the value created from the futures liquidation option with Vl. The 

liquidation flexibility is not present in the bottles asset. In order to derive Vl, we first partition Ω3 

into the following two sets:  

Ω3A = {(w, m): b3(m)/b2(m) ≥ 1 > f3(w, m)/f2(w, m)}, 
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Ω3B = {(w, m): b3(m)/b2(m) ≥ f3(w, m)/f2(w, m) ≥ 1}. 

Futures do not provide a profitable return in Ω3A, and continue to be profitable but dominated by 

the returns from bottles in Ω3B. The distributor would sell futures in weather and market 

realizations in sets Ω1 and Ω3A in order to avoid any further losses. The value created from the 

liquidity of futures can then be expressed as follows: 

        2 3

1 3

, ,
A

l w mV f w m f w m w m dwdm 
 

   ≥ 0.        (2.19) 

The distributor also benefits from the ability to swap futures, even if they are still profitable, 

with bottles after observing the weather conditions of the upcoming vintage. This occurs in Ω3B 

when the weather turns out to be better than the previous summer in combination with improved 

market conditions. In Ω3B, futures continue to be profitable, but bottles are preferable to futures. 

In set Ω3A futures are not profitable, and the distributor sells them and swaps them with bottles. 

We denote the value created from the swapping flexibility with Vs, can express it as follows:  

   
       3

2 3
23

, ,s w m

b m
V f w m f w m w m dwdm

b m
 



 
   

 
  ≥ 0.        (2.20) 

The liquidation and swapping flexibilities make futures a more desirable asset than bottles. 

We describe the value gained in stage 2 from liquidation and swapping with Vls. Note that the 

distributor benefits from both liquidating and swapping in set Ω3A; thus, the value expression 

needs to discount the double counting:  

        2 3

3

, ,
A

l s l s w mV V V f w m f w m w m dwdm 


    ≥ 0.       (2.21) 

The distributor can benefit from holding cash in stage 1. This money can be used to purchase 

futures in Ω2 and bottles in Ω3. The value from holding cash in stage 1, denoted Vc, can be 

described as:  
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 
 

 
 

3 3

2 22 3

,
1 ( ) ( ) 1 ( ) ( )

,c w m w m

f w m b m
V w m dwdm w m dwdm

f w m b m
   

 

   
         

   
   ≥ 0.     (2.22) 

Using this notation, we can open up the expressions that appear in Proposition 2.1 (see the proof 

of Proposition 2.1 for supporting detail): 

 0 0
1 1 2 2

1

, , , , , , ,f bE x y w m x y z z

y

   


   
=  3 1b cE b m z V        

 0 0
1 1 2 2

1

, , , , , , ,f bE x y w m x y z z

x

   


   
=  3 , 1f c l sE f w m z V V          

  =
 0 0

1 1 2 2

1

, , , , , , ,f b

l s

E x y w m x y z z
V

y 

    


   
.  

We next examine the impact of increasing variation in uncertainty both in weather and 

market random variables (denoted σw
2 and σm

2, respectively) on an investment strategy in stage 1. 

Due to the linearity of the futures and bottle price functions, the expected prices  2 ,E f w m    , 

 3 , fE f w m z     ,  2E b m   , and  3 bE b m z     do not change with different values of σw
2 

and σm
2. Moreover, in the absence of a recourse flexibility that enables a wine distributor to 

change her futures and bottle positions, the expected profit would not change with increasing 

values of σw
2 and σm

2. However, the values from liquidity, swapping, and combination 

flexibilities, and cash, denoted Vl, Vs, Vls, and Vc in (2.19) – (2.22) change with higher values of 

σw
2 and σm

2. Under symmetric pdfs for weather and market random variables, i.e., ϕw(w) = ϕw(– 

w) with wH = – wL and ϕm(m) = ϕm(– m) with mH = – mL, the following proposition establishes 

their behavior with respect to σw
2 and σm

2. 

Proposition 2.2. When ϕw(w) and ϕm(m) follow symmetric pdf, (a) the value from liquidity Vl in 

(2.19) increases in σw
2 and σm

2; (b) the value from cash Vc in (2.22) increases in σw
2 and σm

2; (c) 
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the value from swapping Vs in (2.20) increases in σm
2; (d) the value from the combination of 

liquidity and swapping Vls in (2.21) increases in σm
2. 

The above proposition shows that the values from liquidity and cash flexibilities increase 

with higher degrees of variation in both weather and market random variables. An increasing 

value from cash as a consequence of higher degrees of variance in weather and market leads to a 

higher threshold for justifying investment in bottles in stage 1. As a result, higher variation in 

these two random variables make bottle investment less attractive. The values from swapping 

and the combination of liquidity and swapping also increase with higher degrees of market 

uncertainty. Increasing values from liquidity and the combination of liquidity and swapping as a 

consequence of a higher degree of market variation makes futures more attractive than bottles in 

stage 1. However, these two flexibilities can show both an increasing and a decreasing behavior 

with higher degrees of weather uncertainty. When a higher degree of weather variation causes a 

reduction in the values of liquidity and the combination from liquidity and swapping, it makes 

the purchase of futures less attractive in stage 1. Roughly speaking, if the increase in the 

variation of weather uncertainty causes a greater expansion of region Ω3A than region Ω3B, then 

Vs and Vls exhibit a decreasing behavior in σw
2. 

Proposition 2.3. When ϕw(w) and ϕm(m) follow symmetric pdf,  

(a)  0 0
1 1 2 2, , , , , , ,f bE x y w m x y z z       increases in σm

2; (b)  0 0
1 1 2 2, , , , , , ,f bE x y w m x y z z       

increases in σw
2 if Vls/σw

2 > 0.  

Proposition 2.3 shows that, for symmetric distributions, the expected profit increases in σm
2, 

however, it may increase or decrease in σw
2. Profit improvement from higher variation in market 

and weather uncertainty is enabled because of the recourse flexibility that allows the distributor 

to change its futures and bottles position based on the realization of the two random variables. 
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When the value from the combination of liquidity and swapping increases in the variation in 

weather, then the expected profit also increases with higher degrees of weather uncertainty.  

The preceding analysis has focused on the stage-1 profit function for a risk-neutral 

distributor. We build on this analysis in our derivation of the optimal solution to the risk-averse 

distributor problem defined in (2.4) – (2.12) in Proposition 2.4 below. The proposition makes use 

of the following notation and inequalities: 

 x1
+ = /[1 – f2(wH, mL)] 

 x1
V = [ + zb B]/([1 – f2(wH, mτ)][1 + zb]) 

 y1
V = [ – [1 – f2(wH, mL)]x1

V]/[1 – b3(mL) – zb] 

 x1
s = ( – B[1 – b3(mL) – zb])/[b3(mL) + zb – f2(wH, mL)]  

 y1
s = (B[1 – f2(wH, mL)] – )/[b3(mL) + zb – f2(wH, mL)] 

– zfα < /B             (2.23) 

 
   

 
   

1 1

1 1
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, 0,0

, , , , , , , /

, , , , , , , /

f b
x y

f b
x y

E x y w m x y z z y

E x y w m x y z z x





    

    

   

   
 <

 
 

3

2

1

1 ,
L b

H L

b m z

f w m
 


.         (2.24) 

The value of x1
+ is the number of futures that cause constraint (2.12) to be binding (i.e., 

satisfied exactly) at point (wH, mL) given that y1 = 0. The value of x1
V is the number of futures 

that cause constraint (2.12) to be binding (i.e., satisfied exactly) at point (wH, mτ), which is 

independent of the value of y1. The value of y1
V is the number of bottles that cause constraint 

(2.12) to be binding (i.e., satisfied exactly) at point (wH, mL) given that x1 = x1
V. The values of x1

s 

and y1
s are the number of futures and bottles, respectively, that cause constraint (2.12) at point 

(wH, mL) to be intersecting with the budget constraint (2.11). The value of x1
s is strictly smaller 

than x1
+ when x1

+ < B. 
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Inequality (2.23) restricts the variation in the randomness in futures at the end of stage 2. It 

implies that having the entire budget invested in futures in stage 2 at point (w-, mL) does not 

violate the VaR constraint (2.6). Note that at point (w-, mL), the risk-neutral distributor would 

keep all futures, and purchase additional futures if the budget allows. Inequality (2.23) is a rather 

mild condition. Recall (2.9), which says the VaR constraint is not violated if the distributor uses 

the entire budget to purchase bottles at the beginning of stage 1 (a condition supported by 

observed practice), i.e., – zbα < /B – [1 – b3(mL)] < /B. A comparison of (2.23) with (2.9) shows 

that our model allows for greater uncertainty in the randomness in futures prices than that in 

bottle prices. Unlike (2.9), inequality (2.23) does not mean that investing the entire budget in 

futures in stage 1 would not violate the VaR constraint (2.12). Rather, investing the entire budget 

in futures in stage 1 under (2.23) may violate the VaR constraint (2.12) at (wH, m) and (wH, mL). 

Inequality (2.24) is used as a condition in characterizing the optimal solution. It compares the 

ratio of marginal returns from bottles to futures with the ratio of worst loss from bottles at α-

fractile (i.e., 1 – b3(mL) – zb) to futures (1 – f2(wH, mL)) because the distributor can liquidate 

futures at the worst weather and market realization (wH, mL). When (2.24) holds, the firm prefers 

futures more than bottles even at the worst realizations of weather and market random variables; 

when the opposite of (2.24) holds, the firm prefers bottles over futures. 

The following proposition characterizes the optimal solution in both stages.  

Proposition 2.4. When (2.23) holds and  ,f bz z   follow a bivariate normal distribution, 

(a) If {x1
+, x1

V}  B, then (x1
*, y1

*) = (B, 0) and (x2
*, y2

*) = (x2
0, y2

0);  

(b) If x1
V < B ≤ x1

+, then (x1
*, y1

*) = (x1
V, B – x1

V) and (x2
*, y2

*) = (x2
0, y2

0); 

(c) If x1
+ < {x1

V, B}, then  

(i) if (2.24) holds, then (x1
*, y1

*) = (x1
+, 0) and (x2

*, y2
*) = (x2

0, y2
0); 
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(ii) if (2.24) does not hold, then (x1
*, y1

*) = (x1
s, y1

s) and (x2
*, y2

*) = (x2
0, y2

0); 

(d) If x1
s < x1

V ≤ x1
+ < B, then 

(i) if (2.24) holds, then (x1
*, y1

*) = (x1
V, y1

V) and (x2
*, y2

*) = (x2
0, y2

0); 

(ii) if (2.24) does not hold, then (x1
*, y1

*) = (x1
s, y1

s) and (x2
*, y2

*) = (x2
0, y2

0); 

(e) If x1
V ≤ x1

s < x1
+ < B, then (x1

*, y1
*) = (x1

V, B – x1
V) and (x2

*, y2
*) = (x2

0, y2
0). 

Proposition 2.4 leads to our main conclusion: It is always optimal to invest in at least some 

futures because *
1x > 0 in all conditions (see the proof). While it is optimal to invest in futures, it 

is not necessarily to do so in bottles as in the conditions designated in Proposition 2.4(a) and 

2.4(c)(i). This result holds true in spite of the additional uncertainty from weather that is present 

in futures which is not present in bottles. It should also be noted here that Propositions 2.4(a) and 

2.4(c)(i) do not require that  ,f bz z   follow a bivariate Normal distribution. 

The preceding analysis has built the second-stage results using the fact that the firm can 

invest its entire budget in futures in stage 2, i.e., when (2.23) holds. However, when (2.23) does 

not hold, the optimal second-stage decisions can be restricted by the VaR constraint (2.6); thus, 

x2
* can be less than x2

0. The next proposition shows that the firm should invest a positive amount 

of money in futures even if the second-stage decisions are limited by the VaR constraint (2.6).  

Proposition 2.5. When ϕw(w) follows a symmetric pdf and  ,f bz z   follow a bivariate normal 

distribution, 

 * *
1 1 2 2

1

, , , , , , ,f bE x y w m x y z z

x

   


   
≥

 * *
1 1 2 2

1

, , , , , , ,f bE x y w m x y z z

y

   


   
 > 0.     (2.25) 

In conclusion, combining the results of propositions 2.4 and 2.5, our analysis shows that the 

firm should always make a positive investment in wine futures despite the fact that they are 
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tagged as the riskier asset when compared to bottled wine. This is a robust result because it holds 

under various general conditions, regardless of whether (2.23) holds or not.  

2.4. Financial Benefits from Our Proposed Model 

Our work is motivated by the world’s largest wine distributor that does not invest in wine 

futures due to lack of knowledge about futures prices and their evolution to bottle prices. How 

significant is the economic benefit from investing in wine futures? This section demonstrates the 

financial benefits from using our model and trading futures compared with a benchmark of a 

distributor that trades only bottled wine. 

We use actual futures and bottle prices (f1 and b1, respectively) from our data, and compute 

the evolution of prices {f2(w, m), f3(w, m), b2(m), and b3(m)} and the distribution of ( ,f bz z  ) for 

each winemaker by using the coefficient estimates of weather and market variables from our 

empirical analysis. Our estimation of coefficients is based on the futures and bottle prices that are 

released in May of calendar year t  {2008, 2009, 2010}. We use our analytical model to solve 

the distributor’s problem of allocating budget between the futures of vintage t – 1 and the bottles 

of vintage t – 2 for a single winemaker j in May of Year t where t  {2011, 2012}. Let 

E[Π1
j,t(x1

*, y1
*)] denote the optimal profit coming from winemaker j in year t, and let E[Π1

j,t(0, 

y1
**)] describe the expected profit from the distributor’s current practice of investing only in 

bottled wine with no investment in futures, i.e., (x1, x2) = (0, 0). We define the financial benefit 

from using our model as follows: 

Δj,t = (E[Π1
j,t(x1

*, y1
*)] – E[Π1

j,t(0, y1
**)])/E[Π1

j,t(0, y1
**)]             (2.26) 

We simulate 25 equally likely scenarios where weather and market variables take values from 

the historical observations.  
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Table 2.3 summarizes the benefits from using our model of investing in futures, bottles and 

leaving cash under a budget and a VaR constraint described in (2.4) – (2.12). It presents the 

average benefit from the two vintages examined in this study as j = (1/2)∑t(Δj,t) for each of the 

Bordeaux winemakers at different levels of risk aversion using tighter requirements regarding the 

probability of loss (). 

These results show that even the largest distributors, which can be assumed to be risk neutral, 

would significantly benefit from investing in wine futures. The average expected profit 

improvement from these 44 Bordeaux wineries is 22.78% where the largest average 

improvement is observed at 66.99% at Mission Haut Brion. The improvement might disappear in 

very rare occasions, as seen at Gruaud Larose and Lagrange St Julien; this is the case when E[f3(

,w m  ) + fz ]/f1 is significantly smaller than E[b3( m ) + bz ]/b1 (recall that (2.13) is relaxed in this 

section). 

Table 2.3 also demonstrates that our model leads to greater benefits in the presence of risk 

aversion. Keeping the distributor’s tolerated loss at  = 2000, by reducing the distributor’s 

tolerated VaR probability to  = 0.20 and then to  = 0.10 (with stronger risk aversion), we 

observe that the average profit improvement goes up to 28.69% and 34.46%, respectively. In 

effect, the introduction of risk aversion on the benchmark case may force the distributor to hold 

excess cash, i.e., y1
** < B/b1. However, the flexibility of futures leads to a greater total investment 

in stage 1 (i.e., f1x1
* + b1y1

* > b1y1
**) that translates into greater average improvement than that 

for a risk-neutral distributor where f1x1
* + b1y1

* = b1y1
** = B. This also indicates that relaxing 

(2.9) makes the benefits of our model even more profound. Therefore, we can conclude that our 

model advocating the trading of wine futures is generally more beneficial for risk-averse 

distributors. 
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Winemaker (j) 

Risk 
Neutral 

j  

Low Risk  
Aversion 

j  

High Risk  
Aversion 

j  Winemaker (j) 

Risk 
Neutral 

j  

Low Risk  
Aversion 

j  

High Risk  
Aversion 

j  

Angelus 11.47% 17.23% 22.45% Lagrange St Julien 0.00% 4.28% 4.60% 

Ausone 39.12% 43.76% 50.68% Latour 39.56% 45.18% 53.38% 

Beychevelle 0.98% 4.20% 9.84% Leoville Barton 18.65% 22.84% 28.58% 

Calon Segur 6.01% 12.72% 17.52% Leoville Las Cases 33.55% 45.42% 52.21% 

Carruades de Lafite 33.40% 38.29% 45.72% Leoville Poyferre 24.86% 37.68% 44.08% 

Cheval Blanc 24.05% 28.83% 33.63% Lynch Bages 19.35% 22.48% 29.23% 

Clos Fourtet 13.92% 18.51% 24.32% Margaux 26.35% 33.61% 40.75% 

Conseillante 42.58% 51.27% 57.85% Mission Haut Brion 66.99% 69.88% 76.93% 

Cos d'Estournel 24.85% 37.18% 43.62% Montrose 27.11% 35.93% 42.38% 

Ducru Beaucaillou 43.78% 52.74% 59.19% Mouton Rothschild 27.77% 32.79% 40.31% 

Duhart Milon 13.56% 18.46% 25.12% Palmer 6.50% 11.56% 16.12% 

Eglise Clinet 56.39% 63.74% 71.74% Pavie 21.82% 24.42% 28.88% 

Evangile 24.35% 37.30% 43.65% Pavillon Rouge 14.93% 14.93% 20.67% 

Figeac 33.88% 43.68% 50.43% Petit Mouton 2.41% 6.23% 8.85% 

Fleur Petrus 9.34% 10.44% 15.42% Petrus 14.29% 22.07% 27.13% 

Forts Latour 11.73% 13.66% 19.55% Pichon Baron 31.83% 32.33% 36.78% 

Grand Puy Lacoste 17.44% 19.12% 23.99% Pichon Lalande 25.41% 34.06% 39.71% 

Gruaud Larose 0.00% 5.00% 6.90% Pin 19.44% 29.00% 35.40% 

Haut Bailly 22.34% 26.71% 33.47% Pontet Canet 15.50% 19.61% 25.22% 

Haut Brion 26.86% 35.54% 41.44% Talbot 7.93% 11.41% 15.19% 

Lafite Rothschild 27.05% 35.06% 42.18% Troplong Mondot 16.10% 21.83% 27.14% 

Lafleur 29.97% 36.17% 43.03% Vieux Chateau Certan 28.74% 35.24% 41.15% 
Risk Neutral       Low Risk Aversion      High Risk Aversion 

                                                                                                            

                        Average          22.78%                      28.69%                       34.46% 

Table 2.3. The average financial benefit 44j

j
    where j is the average profit 

improvement for winemaker j, B = 10000 and β = 2000; and, α = {1, 0.20, 0.10} for risk neutral, 
low risk aversion, and high risk aversion, respectively. 

 

The financial benefits reported in Table 2.3 have significant implications for the wine 

industry as it complements the discussion regarding the need to establish a wine futures market 

in the US. Noparumpa et al. (2015) has shown that Bordeaux winemakers improve their profits 
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by approximately 10% due to the wine futures market, and small and artisanal winemakers in the 

US can increase their profits by approximately 15%. Their study shows the positive effect 

through the use of tasting expert opinions. Table 2.3 shows that winemakers are not the only 

constituent benefiting from the wine futures market, and more importantly, wine distributors can 

benefit significantly when price evolutions can be predicted and a wine futures market is 

established in the US. In our finding, we utilize a different information, weather and market 

fluctuations, in demonstrating the financial benefits for distributors. 

2.5. Conclusions 

We have examined a wine distributor’s problem that arises in May of every year, involving 

the selection between wine futures of the previous year’s vintage and bottled wine made from 

grapes harvested two years ago.  

Our paper makes three significant contributions. First, we develop an analytical model in 

order to determine the optimal selection of bottled wine and wine futures under weather and 

market uncertainty. The model is built on an empirical foundation where we explain the price 

evolution of futures and bottles based on the weather of the upcoming vintage and changes in 

market conditions. The analytical model employs the following information from the empirical 

analysis that uses a comprehensive data set regarding the trade of 44 most influential Bordeaux 

winemakers: (1) Futures price of a vintage is negatively influenced by a warmer growing season 

for the upcoming vintage, leading to a lower bottle price; (2) bottle prices are not influenced by 

weather conditions; and, (3) improving market conditions lead to increases in futures and bottle 

prices. We describe the market fluctuations through the changes in the Liv-ex 100 index. In this 

end, the identification of the Liv-ex 100 index as an explaining variable of the fluctuations in 

young wine prices also constitutes another contribution to the literature. 



34 
 

 
 

Second, we describe the optimal selection of bottled wine and wine futures with a limited 

budget and using a value-at-risk measure under weather and market uncertainty. We develop the 

structural properties of the optimal decisions. We conclude that a distributor should always 

invest in wine futures because it increases expected profit despite being a riskier asset than 

bottled wine.  

Third, we demonstrate the financial benefits from using our analytical model through the 

numerical illustration using the same data for a large wine distributor. The average profit 

improvement is a significant 22.78%. Moreover, the average profit improvement is higher under 

risk aversion. Considering the wine distributor with a revenue of $11.4 Billion that motivated our 

study, our analysis constitutes a significant economic benefit from our proposed model.  

In addition to these three main findings, we also demonstrate the impact of variation in 

weather and market uncertainty on the distributor’s profitability. We show that higher variation 

in market uncertainty increases the expected profit, however, higher variation in weather can 

cause both an increase and a decrease in expected profit.  

Our findings have significant implications for the wine industry as it is likely to encourage 

wine distributors to invest in wine futures with better information and expectation. Moreover, it 

is likely to increase the trading volume in the financial platform Liv-ex, resulting in even better 

information than what our sample provides.  

While the motivation for our empirical and analytical work stems from the wine industry, our 

modeling perspective applies to a wide range of products and services. In the wine industry, the 

weather information for the upcoming vintage can be perceived as an information signal that 

causes a re-evaluation of the quality perception in the eyes of the consumers. There are various 

industries that have similar structures. In the technology industry, for example, the information 
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regarding the release of new products often negatively influences the price of the current 

products. This is similar to the consequences of observing an improved weather condition during 

the growing season of the upcoming vintage. What is unique in our study, however, is that the 

upcoming vintage’s weather information, when it is a relatively colder summer, can lead to an 

increase in the price of the current vintage. This kind of price increase cannot be observed in the 

technology industry through new information regarding the upcoming products.  The increase in 

prices are only observed after a significant amount of time as in valuable antiques. However, the 

price increase in our study occurs without having to wait for a long period of time. Thus, the 

problem investigated here has unique features as it combines similar characteristics of 

information signaling from various industries for a single product and in a short span of time.  

Our study has some limitations. Longer time series data can be used to test and enrich the 

price evolution of wine futures and bottled wine. Our study employs data only from the most 

popular Bordeaux winemakers and ignores fine wine producers from other regions. Our work 

also sheds light into future research directions. A longer time series data can help develop 

models that predict the price of wine futures and bottled wine. Such prediction models can help 

other parties, e.g. restaurateurs and investors who engage in the trade of wine. Our model can be 

expanded to consider other financing options such as debts and loans in order to increase the 

distributor’s budget allocation. Our study, along with Noparumpa et al. (2015), lead to an 

elevated desire to establish a futures market in the US. Future research needs to address 

regulatory policies and legal requirements in order to arrive at an economically healthy futures 

market.  
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2.6. Appendix 

Appendix A presents the proofs and derivations, and Appendix B explains the details of the 

empirical foundation.  

2.6.1. Appendix A – Proofs and Derivations 

Lemma 2.A1.     0 0
2 1 1 2 1 1, , , , , , ,x x y w m y x y w m =  

2 2

1 1
,

2 2, , , , ,ar ,g max , f
y

b
x

x y w m x yE z z      

s.t. (2.5), (2.7), (2.8); where

    
   
      

       

1

0 0
2 1 1 2 1 1 1 1 2

1 1 1 2 1 2

,0                                                      if , 1

, , , , , , , , ,0                       if , 2

, ,   if , 3

x w m

x x y w m y x y w m B x y f w m w m

x B x y f w m x b m w m

  
   

    

. 

Proof of Lemma 2.A1. 

The first derivatives of the stage-2 objective function (2.4) are 

∂E[  1 1 2 2, , , , , , ,f bx y w m x y z z   ]/∂x2 = f3(w, m) – f2(w, m)     (2.27) 

∂E[  1 1 2 2, , , , , , ,f bx y w m x y z z   ]/∂y2 = b3(m) – b2(m).    (2.28) 

We see that the decision that maximizes expected profit simply depends on the relative 

profitability of futures and bottles for a given (w, m). In Ω1, both (2.27) and (2.28) are negative 

(neither futures nor bottles are profitable on expectation) which leads to 0
2x  = – x1 and 0

2y  = 0 

due to (2.7) and (2.8). In Ω2, (2.27) is nonnegative and greater than (2.28) (futures are more 

profitable on expectation) which leads to 0
2x  = [B – x1 – y1]/f2(w, m) and 0

2y  = 0 due to (2.5) and 

(2.8). In Ω3, (2.28) is nonnegative and no smaller than (2.27) (bottles are more profitable on 

expectation) which leads to 0
2x  = – x1 and 0

2y  = [B + (f2(w, m) – 1)x1 – y1]/b2(m) due to (2.5) and 

(2.7).  
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Proof of Proposition 2.1. 

Using (x2
0, y2

0) (see Lemma 2.A1), we have 

∂E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂y1  

= E[b3( m ) + bz ]
1

( ) ( )w mw m dwdm 


  

    3 2

2

, , ( ) ( )w mf w m f w m w m dwdm 


     3 2

3

( ) ( )w mb m b m w m dwdm 


   

 = E[b3( m ) + bz ] – 1 – Vc                (2.29) 

where  

 
 

 
 

3 3

2 22 3

,
1 ( ) ( ) 1 ( ) ( )

,c w m w m

f w m b m
V w m dwdm w m dwdm

f w m b m
   

 

   
         

   
   

which is nonnegative because both integrands are nonnegative by definitions of Ω2 and Ω3. 

Also, we have 

∂E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂x1  

= E[f3( ,w m  ) + fz ]
1

( ) ( )w mw m dwdm 


  

    3 2

2

, , ( ) ( )w mf w m f w m w m dwdm 


     3 2

3

( ) ( )w mb m b m w m dwdm 


  

        2 3

1

, , w mf w m f w m w m dwdm 


    

   
       3

2 3
23

, , w m

b m
f w m f w m w m dwdm

b m
 



 
   

 
     

= E[f3( ,w m  ) + fz ] – 1 – Vc  + Vls                (2.30) 

where  
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        

   
       

2 3

1

3
2 3

23

, ,

, ,

l s w m

w m

V f w m f w m w m dwdm

b m
f w m f w m w m dwdm

b m

 

 






 

 
   

 




 

which is nonnegative because both integrands are nonnegative by definitions of Ω1 and Ω3. 

Note that E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )] is linear in x1 and y1. As a consequence, (2.29) is 

positive for any (x1, y1) following from (2.17). Moreover, following from (2.13), 

∂E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂x1 – ∂E[( 0 0

1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂y1 = Vls 

which is nonnegative for any (x1, y1).  

Proof of Proposition 2.2. 

Recall that E[f3(w, m) + fz ] = f3(w, m) and E[b3(m) + bz ] = b3(m). The price evolution of 

futures is already described as ∂f3(w, m)/∂w < ∂f2(w, m)/∂w < 0 and ∂f3(w, m)/∂m > ∂f2(w, m)/∂m 

> 0, and bottles as ∂b3(m)/∂m > ∂b2(m)/∂m > 0.  

(a) With higher values of σw
2 for a symmetric pdf for ϕw(w), regions 1 and 3A expand. 

Because ∂f3(w, m)/∂w < ∂f2(w, m)/∂w < 0, Vl in (2.19) would be adding increasing values of f2(w, 

m) – f3(w, m) at each increment of wH. Thus, Vl in (2.19) increases in σw
2. Similarly, with higher 

values of σm
2 for a symmetric pdf for ϕm(m), region 1 expands. Because ∂f3(w, m)/∂m > ∂f2(w, 

m)/∂m > 0, Vl in (2.19) would be adding increasing values of f2(w, m) – f3(w, m) at each reduction 

in mL. Thus, Vl in (2.19) increases in σm
2.  

(b) Increasing σw
2 for a symmetric pdf for ϕw(w) implies expanding region 2 by reducing wL 

where f3(w, m)/f2(w, m) > 1 by definition of the set. Because ∂f3(w, m)/∂w < ∂f2(w, m)/∂w < 0, we 

would be adding increasing values of [(f3(w, m)/f2(w, m)) – 1]. Similarly, increasing σw
2 for a 

symmetric pdf for ϕw(w) implies expanding region 3 by increasing wH where b3(m)/b2(m) > 1 



39 
 

 
 

by definition of the set. Because ∂b3(m)/∂w = ∂b2(m)/∂w = 0 and we would not be changing the 

second term of Vc in (2.22). The changes region 2 is positive, and therefore, Vc in (2.22) 

increases in σw
2. A similar proof follows for the impact of σm

2. Increasing σm
2 for a symmetric 

pdf for ϕm(m) implies expanding region 2 by reducing mL and increasing mH where f3(w, 

m)/f2(w, m) > 1 by definition of the set. Because ∂f3(w, m)/∂m > ∂f2(w, m)/∂m > 0, we would be 

adding increasing values of [(f3(w, m)/f2(w, m)) – 1]. Similarly, increasing σm
2 for a symmetric 

pdf for ϕm(m) implies expanding region 3 by increasing mH where b3(m)/b2(m) > 1 by definition 

of the set. Because ∂b3(m)/∂m > ∂b2(m)/∂m > 0, we would be adding increasing values of 

[(b3(m)/b2(m)) – 1] to the second term of Vc in (2.22). The changes in region 2 and 3 are 

positive, and therefore, Vc in (2.22) increases in σm
2.  

(c) The value from swapping Vs in (2.20) is defined in 3. Increasing σm
2 for a symmetric 

pdf for ϕm(m) implies expanding 1 (by reducing mL) and 3 (by increasing mH). In 3, 

b3(m)/b2(m) > 1, and its value is increasing due to ∂b3(m)/∂m > ∂b2(m)/∂m > 0. At the new 

market realization greater than mH, we know that f2(w, m)[b3(m)/b2(m)] – f3(w, m) > 0 because of 

the definition of 3 (so that the firm swaps futures with a more profitable bottle investment). 

Thus, expanding the support beyond mH adds value and expanding the lower support below mL 

does not cause any loss; therefore, Vs in (2.20) is increasing in σm
2.  

(d) The proof follows from the proofs of parts (a) and (c).  

Proof of Proposition 2.3. 

(a) Increasing σm
2 for a symmetric pdf for ϕm(m) implies reducing mL and increasing mH. 

Reducing mL to mL –  (where  > 0) and increasing mH to mH +  leads to three cases for 

investigation.  



40 
 

 
 

Case 1: (w, mL – )  Ω1 and (w, mH + )  Ω3: Because ∂f3(w, m)/∂m > ∂f2(w, m)/∂m > 0 

and because bottles are even more profitable than futures in Ω3, the losses from the futures 

investment at (w, mL – )  Ω1 are smaller in absolute value than the gains (w, mH + )  Ω3, 

and thus, the expected profit increases.  

Case 2: (w, mL – )  Ω1 and (w, mH + )  Ω2: If (w, mL – )  Ω1, then because ∂f3(w, 

m)/∂m > ∂f2(w, m)/∂m > 0, the losses from the futures investment at (w, mL – )  Ω1 are smaller 

in absolute value than the gains (w, mH + )  Ω2, and thus, the expected profit increases.  

Case 3: (w, mL – )  Ω2 and (w, mH + )  Ω2: If (w, mL – )  Ω2, the losses from the 

futures investment at (w, mL – )  Ω2 are recovered by the gains at (w, mH + )  Ω2 due to 

symmetry, and thus, the expected profit does not change. Combining the results from these three 

cases, the expected profit increases with higher levels of σm
2.  

(b) Using the proof of Proposition 2.1, the expected profit for any (x1, y1) pair can be written 

as follows:  

E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )]  

= [E[f3( ,w m  ) + fz ] – 1 – Vc  + Vls]x1 + [E[b3( m ) + bz ] – 1 – Vc]y1 + B Vc 

= [E[f3( ,w m  ) + fz ] – 1 + Vls]x1 + [E[b3( m ) + bz ] – 1]y1 + (B – x1 – y1)Vc. 

Increasing σw
2 does not change E[f3( ,w m  ) + fz ] and E[b3( m ) + bz ]. Proposition 2.2(a) has 

shown that Vc is increasing in σw
2. Thus, it is sufficient to observe that  

∂E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂σw

2 > 0 if ∂Vls/∂σw
2 > 0.  
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Lemma 2.A2. [∂E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂y1 |(x1, y1) = (0,0)]/[∂E[( 0 0

1 1 2 2, , , , , , ,f bx y w m x y z z   

)]/∂x1 |(x1, y1) = (0,0)] equals to [∂E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂y1]/[∂E[( 0 0

1 1 2 2, , , , , , ,f bx y w m x y z z   

)]/∂x1] for any (x1, y1). 

Proof of Lemma 2.A2. 

Follows from the linearity of E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )] in x1 and y1, as shown in the 

proof of proposition 2.1.  

Development of the proof of Proposition 2.4 

We first define the following boundary sets 

2E = {(w, m) ∈ 2: m < m, w = w(m)} and 3E = {(w, m) ∈ 3: m = m}. 

In the following analysis we examine the value of profit function (x1, y1, w, m, x2
0, y2

0, zfα, 

zbα) at three points, and use this analysis in the proof of Proposition 2.4. The three points 

identified in Figure 2.4 correspond the realizations of ( , )w m  that yields low values of (x1, y1, w, 

m, x2
0, y2

0, zfα, zbα). 

 

 
Figure 2.4. Points (1) – (3) are candidates for the minimum value of (x1, y1, w, m, x2

0, y2
0, zfα, 

zbα). 

 

Lemma 2.A3. If (2.23), then (x1, y1, w
-, mL, x2

0, y2
0, zfα, zbα) ≥ – β for any (x1, y1). 



42 
 

 
 

Proof of Lemma 2.A3. 

Note that (w
-, mL) ∈ Ω2E. This implies f3(w

-, mL)/f2(w
-, mL) = 1 by definition of set. Thus, 

the realized profit at (zfα, zbα) is 

(x1, y1, w
-, mL, x2

0, y2
0, zfα, zbα) = [b3(mL) + zbα – 1]y1 + zfα[B – y1].         (2.31) 

Note first that (2.31) independent of x1; because f3(w
-, mL)/f2(w

-, mL) = 1 and (2.1) imply that 

f3(w
-, mL) = f2(w

-, mL) = 1. Because mL < m, it follows that b3(mL)/b2(mL) < 1, and thus from 

(2.2) it follows that b3(mL) < b2(mL) < 1. Combined with zbα < 0 (by assumption), they imply 

b3(mL) + zbα – 1 < 0. Following from (2.9), we have [b3(mL) + zbα – 1]y1 > – β for any 0 ≤ y1 ≤ B. 

Furthermore, following from (2.23), we have zfα[B – y1] > – β for any 0 ≤ y1 ≤ B.  

Lemma 2.A4. If (2.23), then (x1, y1, w, m, x2
0, y2

0, zfα, zbα) ≥ – β for all (w, m) ∈ Ω2 for any (x1, 

y1). 

Proof of Lemma 2.A4. 

We first focus on (w, m) ∈ Ω2E, for which f3(w, m)/f2(w, m) = 1, which in turn implies f3(w, 

m) = f2(w, m) = 1 for all (w, m) ∈ Ω2E (see (2.1)). Thus, for any (w, m) ∈ Ω2E, 

(x1, y1, w, m, x2
0, y2

0, zfα, zbα | (w, m) ∈ Ω2E) = [b3(m) + zbα – 1]y1 + zfα[B – y1] 

              ≥ [b3(mL) + zbα – 1]y1 + zfα[B – y1] 

              = (x1, y1, w
-, mL, x2

0, y2
0, zfα, zbα) ≥ – β    

where the first inequality follows from b3(m) increasing in m, and the last inequality follows 

from Lemma 2.A3. 

Note that the expression above is independent of x1 because f3(w, m) = f2(w, m) = 1 for all (w, 

m) ∈ Ω2E. For any (w, m) ∈	Ω2\Ω2E, we have f3(w, m)/f2(w, m) > 1 (by the definition of Ω2). 

This implies that f3(w, m) > f2(w, m) > 1 (see (2.1)). Hence, the realized profit (x1, y1, w, m, x2
0, 
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y2
0, zfα, zbα) is increasing in x1 for any (w, m) ∈	Ω2\Ω2E, and thus (x1, y1, w, m, x2

0, y2
0, zfα, zbα) ≥ 

– β for all (w, m) ∈ Ω2.  

Note that the profit at point (wH, mL) ∈ Ω1 is  

(x1, y1, wH, mL, x2
0, y2

0, zfα, zbα) = [f2(wH, mL) – 1]x1 + [b3(mL) + zbα – 1]y1.  (2.32) 

We define x1
H(y1) which satisfies 1(x1

H(y1), y1, wH, mL, x2
0, y2

0, zfα, zbα) = – β for a given y1, i.e.,  

x1
H(y1) = [ – [1 – b3(mL) – zbα]y1]/[1 – f2(wH, mL)].      (2.33) 

Lemma 2.A5. (x1, y1, wH, mL, x2
0, y2

0, zfα, zbα) ≥ – β for any y1 ≤ B and x1 ≤ x1
H(y1). 

Proof of Lemma 2.A5. 

We know that f2(wH, mL) < 1 and b3(mL) < 1 (follows from (wH, mL) ∈ Ω1, (2.1), and (2.2)). 

Also, zbα < 0 by assumption. Therefore, (x1, y1, wH, mL, x2
0, y2

0, zfα, zbα) in (2.32) is decreasing 

in x1 and y1. This also implies that x1
H(y1) in (2.33) is decreasing in y1. For any y1  B (due to 

(2.9)) and x1  x1
H(y1), (x1, y1, wH, mL, x2

0, y2
0, zfα, zbα) ≥ (x1

H(y1), y1, wH, mL, x2
0, y2

0, zfα, zbα) = 

– β.  

Lemma 2.A6. (x1, y1, w, m, x2
0, y2

0, zfα, zbα) ≥ – β for all (w, m) ∈ Ω1 for any y1 ≤ B and x1 ≤ 

x1
H(y1). 

Proof of Lemma 2.A6. 

Since f2(w, m) and b3(m) are increasing in m, and f2(w, m) is decreasing in w, 

(x1, y1, w, m, x2
0, y2

0, zfα, zbα | (w, m) ∈ Ω1) = [f2(w, m) – 1]x1 + [b3(m) + zbα – 1]y1 

       ≥ [f2(wH, mL) – 1]x1 + [b3(mL) + zbα – 1]y1 

       = (x1, y1, wH, mL, x2
0, y2

0, zfα, zbα) ≥ – β 

where the last inequality follows from Lemma 2.A5.  

Lemma 2.A7. (x1, y1, wH, m, x2
0, y2

0, zfα, zbα) ≥ – β for any x1 ≤ x1
V. 
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Proof of Lemma 2.A7. 

Note that (wH, m) ∈ Ω3E implies b3(m)/b2(m) = 1. This further implies b3(m) = b2(m) = 1 

(due to (2.2)). Thus,  

(x1, y1, wH, m, x2
0, y2

0, zfα, zbα) = [f2(wH, m) – 1][1 + zbα]x1 + zbαB.  (2.34) 

Note that the expression above is independent of y1. It is decreasing in x1 for two reasons: First, 

(wH, m) ∉ Ω2 implies that f3(wH, m)/f2(wH, m) < 1 which further implies f3(wH, m) < f2(wH, m) 

< 1 (due to (2.1)), and second, 1 + zbα > 0 (due to (2.9) and β < B). 

We define x1
V which satisfies (x1

V, y1, wH, m, x2
0, y2

0, zfα, zbα) = – β for any y1, i.e., 

x1
V = [ + zb B]/([1 – f2(wH, mτ)][1 + zb]).       (2.35) 

Therefore, (x1, y1, wH, m, x2
0, y2

0, zfα, zbα) ≥ (x1
V, y1, wH, m, x2

0, y2
0, zfα, zbα) = – β for any x1 ≤ 

x1
V.  

Lemma 2.A8. (x1, y1, w, m, x2
0, y2

0, zfα, zbα) ≥ – β for all (w, m) ∈ Ω3 for any x1 ≤ x1
V. 

Proof of Lemma 2.A8. 

We first focus on (w, m) ∈ Ω3E, for which b3(m) = b2(m) = 1 (follows from the definition 

of Ω3E and (2.2)). The realized profit can be expressed as 

(x1, y1, w, m, x2
0, y2

0, zfα, zbα | (w, m) ∈ Ω3E) = [f2(w, m) – 1][1 + zbα]x1 + zbαB   

         ≥ [f2(wH, m) – 1][1 + zbα]x1 + zbαB 

         = (x1, y1, wH, m, x2
0, y2

0, zfα, zbα) ≥ – β 

where the first inequality follows from f2(w, m) decreasing in w, and the last inequality follows 

from Lemma 2.A7. 

Note that the expression above is independent of y1 because b3(m) = b2(m) = 1 for all (w, 

m) ∈ Ω3E. For any (w, m) ∈ Ω3\Ω3E, b3(m)/b2(m) > 1 by the definition of Ω3. This further 
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implies that b3(m) > b2(m) > 1 (due to (2.2)). Hence, the realized profit at (zf, zb) increases in y1 

for any (w, m) ∈ Ω3\Ω3E. Therefore, (x1, y1, w, m, x2
0, y2

0, zfα, zbα | (w, m) ∈ Ω3\Ω3E) ≥ – β.  

Lemma 2.A9. Suppose that (2.23) holds. Then (x1, y1, w, m, x2
0, y2

0, zfα, zbα) ≥ – β for all (w, m) 

∈ Ω for any y1 ≤ B and x1 ≤ min{x1
H(y1), x1

V}. 

Proof of Lemma 2.A9. 

Follows from lemmas 2.A4, 2.A6, and 2.A8.  

Lemma 2.A10. Suppose that (2.23) holds. Then P[(x1, 0, w, m, x2
0, y2

0, ,f bz z  ) < – β] ≤ α for all 

(w, m) ∈ Ω for any x1 ≤ min{x1
H(0), x1

V}. This means that (x2
0, y2

0) and (x1, 0) decisions such 

that x1 ≤ min{x1
H(0), x1

V} satisfy both (2.6) and (2.12). 

Proof of Lemma 2.A10. 

(x1, 0, w, m, x2
0, y2

0, ,f bz z  | (w, m) ∈ Ω1) has neither fz  nor bz  term. (x1, 0, w, m, x2
0, y2

0,

,f bz z  | (w, m) ∈ Ω2) has only fz , and (x1, 0, w, m, x2
0, y2

0, ,f bz z  | (w, m) ∈ Ω3) has only bz . 

We also know from Lemma 2.A9 that (x1, 0, w, m, x2
0, y2

0, zfα, zbα) ≥ – β for all (w, m) ∈ Ω for 

any x1 ≤ min{x1
H(0), x1

V} when y1 = 0. Combined with f fP z z    =  b bP z z  = , they 

imply that P[(x1, 0, w, m, x2
0, y2

0, ,f bz z  ) < – β] ≤ α for all (w, m) ∈ Ω for any x1 ≤ min{x1
H(0), 

x1
V}. As a consequence, VaR constraints (2.6) and (2.12) are satisfied by (x2

0, y2
0) and (x1, 0) 

decisions for x1 ≤ min{x1
H(0), x1

V}.  

Lemma 2.A11. Suppose that (2.23) holds, and  ,f bz z   follow a bivariate normal distribution. 

Then P[(x1, y1, w, m, x2
0, y2

0, ,f bz z  ) < – β] ≤ α for all (w, m) ∈ Ω for any 0 < y1 < B and x1 ≤ 

min{x1
H(y1), x1

V}. This means that (x2
0, y2

0) and (x1, y1) decisions such that 0 < y1 < B and x1 ≤ 

min{x1
H(y1), x1

V} satisfy both (2.6) and (2.12). 
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Proof of Lemma 2.A11. 

Note first that y1 ≠ 0. (x1, y1, w, m, x2
0, y2

0, ,f bz z  | (w, m) ∈ Ω1Ω3) has only bz  term. 

Combined with  b bP z z  = , and lemmas 2.A6 and 2.A8, it follows that P[(x1, y1, w, m, x2
0, 

y2
0, ,f bz z  ) < – β] ≤ α for all (w, m) ∈ Ω1Ω3 for any 0 < y1 < B and x1 ≤ min{x1

H(y1), x1
V}. 

(x1, y1, w, m, x2
0, y2

0, ,f bz z  | (w, m) ∈ Ω2) has both fz  and bz  terms. We first consider the 

case where fz  and bz  are perfectly positively correlated, i.e., fz = k bz  where k > 0. This implies  

P[ fz ≤ zfα & bz ≤ zbα] = P[k bz ≤ kzbα & bz ≤ zbα] = P[ bz ≤ zbα] = α. 

Together with Lemma 2.A4, it follows that  

P[(x1, y1, w, m, x2
0, y2

0, ,f bz z  ) < – β] ≤ α         (2.36) 

for all (w, m) ∈ Ω2 for any (x1, y1). We then consider the less-than-perfect positive correlation 

case where ( ,f bz z  ) follow a bivariate normal distribution. The randomness in profit can be 

expressed as 

Z
 = (x1 + x2

0) fz + (y1 + y2
0) bz  

where ρ is the correlation coefficient for ( ,f bz z  ). As a consequence of bivariate normal 

distribution, Z
 , which is the sum of normal random variables, is a normal random variable with  

E[ Z
 ] = 0 and V Z  

 =    2 20 2 0 2
1 2 1 2 2

f b f bz z z zx x y y          . 

From E[ fz ] = E[ bz ] = 0 and {zfα, zbα} < 0, it follows that α ≤ 0.5. Therefore, 

P[(x1, y1, w, m, x2
0, y2

0, ,f bz z  ) < – β] = P[ Z
 < – β – (x1, y1, w, m, x2

0, y2
0, 0, 0)] 

          P[ 1Z < – β – (x1, y1, w, m, x2
0, y2

0, 0, 0)] 

      ≤ α 
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for all (w, m) ∈ Ω2 for any (x1, y1). The first inequality follows from α ≤ 0.5 and the fact that 

variance is increasing in . The second inequality follows from (2.36), i.e., the case of perfect 

positive correlation.  

As a consequence, VaR constraints (2.6) and (2.12) are satisfied by (x2
0, y2

0) and (x1, y1) 

decisions such that 0 < y1 < B and x1 ≤ min{x1
H(y1), x1

V}.  

Proof of Proposition 2.4. 

We begin with relaxing (2.6), i.e., (x2, y2) = (x2
0, y2

0) is feasible. We then show that, when 

(2.23) holds, constraint (2.6) is nonbinding at the optimal solution to the problem defined in (2.4) 

– (2.12). From Proposition 2.1, we know that (x1, y1) = (0, 0) cannot be optimal. Moreover, x1
+ = 

x1
H(0) > 0 (see (2.33)) due to β > 0 and 1 > f2(wH, mL) (follows from (wH, mL) ∈ Ω1 and (2.1)). 

Part (a): When B ≤ min{x1
+, x1

V}, then (x2, y2) = (x2
0, y2

0) and (x1, y1) = (B, 0) satisfy both 

(2.6) and (2.12) following from Lemma 2.A10. This implies that (x2
*, y2

*) = (x2
0, y2

0) by 

definition of (x2
0, y2

0). It follows from Proposition 2.1 that (x1
*, y1

*) = (B, 0). 

Part (b): Note that x1
V < x1

H(B – x1
V) when x1

V < B ≤ x1
+. Proposition 2.1 and Lemma 2.A11 

imply that (x2
*, y2

*) = (x2
0, y2

0) and (x1
*, y1

*) = (x1
V, B – x1

V). 

Part (c): Note that x1
H(y1) is linearly decreasing in y1 (see (2.33)). As a consequence, when 

x1
+ < x1

V, we have x1
H(y1) < x1

V for any y1 ≥ 0. Moreover, E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )] is linear 

in x1 and y1 (see proof of Proposition 2.1). Therefore, 

dE[(x1
H(y1), 0 0

1 2 2, , , , , ,f by w m x y z z    )]/dy1 = ∂E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂y1 

–
 
 

3

2

1

1 ,
L b

H L

b m z

f w m
  

  
∂E[( 0 0

1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂x1. 

Part (c)(i): dE[(x1
H(y1), 0 0

1 2 2, , , , , ,f by w m x y z z    )]/dy1 < 0 due to (2.24) and Lemma 2.A2. 

Following from Lemma 2.A10, (x2, y2) = (x2
0, y2

0) and (x1, y1) = (x1
+, 0) satisfy both (2.6) and 
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(2.12). Moreover, (2.11) is satisfied due to x1
+ < B. Therefore, together with Proposition 2.1, it 

follows that (x2
*, y2

*) = (x2
0, y2

0) and (x1
*, y1

*) = (x1
+, 0). 

Part (c)(ii): dE[(x1
H(y1), 0 0

1 2 2, , , , , ,f by w m x y z z    )]/dy1 ≥ 0 due to the reversal of (2.24), and 

Lemma 2.A2. Note that x1
H(B) > 0 (see (2.9) and (2.33)). Together with x1

+ < B and the linearity 

of x1
H(y1) in y1, it follows that the VaR constraint (2.12) at (wH, mL) crosses the budget constraint 

at a single point, i.e.,  

y1
s + x1

H(y1
s) = B  

such that 

 
   

2
1

3 2

1 ,

,
H Ls

L b H L

B f w m
y

b m z f w m

   
   

 and    
   

3
1 1 1

3 2

1

,
L bs H s

L b H L

B b m z
x x y

b m z f w m




      
   

 

where {x1
s, y1

s} > 0 following from x1
+ < B and (2.9). Note also that x1

s < x1
+. Following from 

Lemma 2.A11, (x2, y2) = (x2
0, y2

0) and (x1, y1) = (x1
s, y1

s) satisfy both (2.6) and (2.12). Therefore, 

together with Proposition 2.1, it follows that (x2
*, y2

*) = (x2
0, y2

0) and (x1
*, y1

*) = (x1
s, y1

s). 

Part (d): We now examine the case when x1
s < x1

V ≤ x1
+ < B. 

Part (d)(i): When x1
V = x1

+, it follows from the proof of part (c)(i). When x1
V < x1

+, x1
H(y1) 

linearly decreasing in y1 implies that there exists a single y1
V, i.e., 

x1
H(y1

V) = x1
V such that 

 
 

 
 

 

2

2
1

3

1 ,

1 1 ,

1

H Lb

b HV

L b

f w mz B

z f w m
y

b m z



 






   
   
   

 

where x1
V + y1

V < B (i.e., (2.11) is satisfied) due to x1
s < x1

V, x1
+ < B, and (2.9).    

dE[(x1
H(y1), 0 0

1 2 2, , , , , ,f by w m x y z z    )]/dy1 < 0 due to (2.24) and Lemma 2.A2. Together with 

Proposition 2.1 and Lemma 2.A11, it follows that (x2
*, y2

*) = (x2
0, y2

0) and (x1
*, y1

*) = (x1
V, y1

V). 

Part (d)(ii): Since x1
s < x1

V, it follows from the proof of part (c)(ii). 
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Part (e): Note that x1
V ≤ x1

H(B – x1
V) when x1

V ≤ x1
s. Proposition 2.1 and Lemma 2.A11 imply 

that (x2
*, y2

*) = (x2
0, y2

0) and (x1
*, y1

*) = (x1
V, B – x1

V).  

Proof of Proposition 2.5. 

Relaxing (2.23) does not affect the feasibility of (x2
0, y2

0) in Ω1 and Ω3 (see lemmas 2.A6 

and 2.A8). However, (x2
0, y2

0) may no longer be feasible in Ω2 (see Lemma 2.A4). From (2.3), 

the realized profit at -fractile is 

(x1, y1, w, m, x2, y2, zfα, zbα)  

= – x1 – y1 – f2(w, m)x2 – b2(m)y2 + [f3(w, m) + zfα](x1 + x2) + [b3(m) + zbα](y1 + y2) 

which is linear in zfα. Following from (2.7), ∂(x1, y1, w, m, x2, y2, zfα, zbα)/∂zfα ≥ 0. Therefore, it 

is sufficient to show that Proposition 2.5 holds at the extreme case such that zfα → – ∞. The result 

naturally extends to any other zfα, which may or may not satisfy (2.23). 

zfα → – ∞ implies that x2
* = – x1; otherwise, lim zfα → – ∞ (x1, y1, w, m, x2, y2, zfα, zbα) = – ∞. 

We partition Ω2 into the following two sets:  

Ω2A = {(w, m): f3(w, m)/f2(w, m) ≥ 1 > b3(m)/b2(m)}, 

Ω2B = {(w, m): f3(w, m)/f2(w, m) > b3(m)/b2(m) ≥ 1}. 

In Ω2A, y2
* = 0 due to 1 > b3(m)/b2(m). Thus, 

(x1, y1, w, m, x2
*, y2

*, zfα, zbα | (w, m) ∈ Ω2A) = [f2(w, m) – 1]x1 + [b3(m) + zbα – 1]y1 

         ≥ [f2(wH, mL) – 1]x1 + [b3(mL) + zbα – 1]y1 

         = (x1, y1, wH, mL, x2
0, y2

0, zfα, zbα) ≥ – β  (2.37) 

where the first inequality follows from the fact that f2(wH, mL) and b3(mL) are the worst price 

realizations for f2(w, m) and b3(m), respectively, and the last inequality follows from Lemma 

2.A5. 

We next show that y2
* = [B – x1 – y1 + f2(w, m)x1]/b2(m) given that that x2

* = – x1 in Ω2B: 
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(x1, y1, w, m, x2
*, y2

*, zfα, zbα | (w, m) ∈ Ω2B) = [f2(w, m) – 1][1 + [b3(m) + zbα – b2(m)]/b2(m)]x1 

  + [b3(m) + zbα – 1]y1  

  + [[b3(m) + zbα – b2(m)]/b2(m)][B – y1] 

where  

[f2(w, m) – 1][1 + [b3(m) + zbα – b2(m)]/b2(m)]x1 ≥ 0      (2.38) 

following from x1 ≥ 0, f2(w, m) > 1 (due to the definition of Ω2B and (2.1)), and [b3(m) + zbα – 

b2(m)]/b2(m) > – β/B > – 1 (due to the definition of Ω2B, β < B, zbα < 0, (2.9)); 

[b3(m) + zbα – 1]y1 > – β         (2.39) 

following from y1 ≤ B and (2.9); and 

[[b3(m) + zbα – b2(m)]/b2(m)][B – y1] > – β        (2.40) 

following from y1 ≤ B and [b3(m) + zbα – b2(m)]/b2(m) > – β/B > – 1 (due to the definition of Ω2B, 

β < B, zbα < 0, (2.9)). Inequalities (2.38), (2.39) and (2.40) together imply that  

(x1, y1, w, m, x2
*, y2

*, zfα, zbα | (w, m) ∈ Ω2B) > – β       (2.41) 

where x2
* = – x1 and y2

* = [B – x1 – y1 + f2(w, m)x1]/b2(m).  

Following from (2.37), (2.41), and lemmas 2.A6 and 2.A8,  

    
   

       
1* *

2 1 1 2 1 1

1 1 1 2 1 2

,0                                                      if , 1 2
, , , , , , ,

, ,   if , 3 2

A

B

x w m
x x y w m y x y w m

x B x y f w m x b m w m

   
     

. 

Thus, ∂E[( * *
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂y1 = E[b3( m ) + bz ]  

        
1 2

( ) ( )
A

w mw m dwdm 
 

   

            3 2

3 2

( ) ( )
B

w mb m b m w m dwdm 
 

     

              = E[b3( m ) + bz ] – 1 – Vc′     (2.42) 

where  
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 
 

3

23 2

1 ( ) ( )
B

c w m

b m
V w m dwdm

b m
 

 

     
 

  

which is nonnegative because the integrand is nonnegative by definitions of Ω2B and Ω3. Also, 

we have 

∂E[( * *
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂x1  

= E[f3( ,w m  ) + fz ]
1 2

( ) ( )
A

w mw m dwdm 
 

 

     3 2

3 2

( ) ( )
B

w mb m b m w m dwdm 
 

 

         2 3

1 2

, ,
A

w mf w m f w m w m dwdm 
 

   

   
       3

2 3
23 2

, ,
B

w m

b m
f w m f w m w m dwdm

b m
 

 

 
   

 
  

= E[f3( ,w m  ) + fz ] – 1 – Vc′  + Vls′                     (2.43) 

where  

        2 3

1 2

, ,
A

l s w mV f w m f w m w m dwdm 
 

    

      
       3

2 3
23 2

, ,
B

w m

b m
f w m f w m w m dwdm

b m
 

 

 
   

 
 . 

Following from the definitions of Ω2B and Ω3, w(m) = 0 (see (2.14)), E[ w ] = 0, and the 

symmetry in w(w), we have 

   
       3

2 3
23 2

, , 0
B

w m

b m
f w m f w m w m dwdm

b m
 

 

 
   

 
 . 
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Following from the definitions of Ω1 and Ω2A, w(m) < 0 for all m < m (see (2.14)), E[ w ] = 0, 

and the symmetry in w(w), we have 

        2 3

1 2

, , 0
A

w mf w m f w m w m dwdm 
 

  . 

Thus, Vls′ ≥ 0. Following from (2.13),  

∂E[( * *
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂x1 – ∂E[( * *

1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂y1 = Vls′ ≥ 0. 

Moreover, following from the definitions of Ω2 and Ω3, Vc′ ≤ Vc (see (2.22)). Recall that (2.17) 

implies (2.29) is positive (see the proof of Proposition 2.1). Thus, Vc′ ≤ Vc implies that (2.42) is 

positive, i.e.,  

∂E[( * *
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂y1 > 0.  

2.6.2. Appendix B – Details of Empirical Foundation 

Data Collection and Sample Selection 

Wine price data is collected from Liv-ex (www.liv-ex.com) which is an online trading 

platform for licensed members, and the world’s largest database for fine wine prices. Our sample 

is composed of five vintages of wine futures (2007 to 2011) and five vintages of bottled wine 

(2006 to 2010) of 44 Bordeaux wines that aggregates the price data of 43,837 transactions 

(10,451 via wine futures) corresponding to a total trade volume of 520,133 bottles. 

We refer to the Liv-ex Bordeaux 500 index (shortly, Liv-ex 500) when determining the wines 

to be examined. This index is composed of the 10 most recent bottled vintages of 50 leading 

Bordeaux wines. Among those 50 wines, sweet Sauternes wines (Yquem, Climens, Coutet, 

Suduiraut, and Rieussec) are excluded from the sample since their production process and 

timeline are different than the traditional Bordeaux wines. Another wine, Bahans/Clarence Haut 
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Brion, is also excluded from the analysis due to missing price data. Therefore, the final sample is 

composed of 44 of the 50 leading Bordeaux winemakers that make up the Liv-ex 500 index. 

The weather information is gathered for the Merignac station serving as the main weather 

station for Bordeaux from TuTiempo.net. Daily maximum temperatures are collected for each 

growing season (i.e., May 1 – August 31) for the years from 2006 to 2012. We then calculate the 

average growing season temperature for every year. 

The effects of market fluctuations on fine wine prices are captured through the Live-ex Fine 

Wine 100 index (shortly, Liv-ex 100). The percentage change in Liv-ex 100 index over each 

growing season (i.e., May 1 – August 31) is obtained for the years from 2008 to 2012. It is 

important to note that the 100 most sought-after wines belong to older vintages than the vintages 

used in our sample, and therefore, there is no overlap of wines with our sample. 

One might intuit that our Liv-ex 100 index can be replaced with another market variable 

describing the movements in financial markets. However, we find Liv-ex 100 to be a strong 

indicator that is distinct from traditional financial indices. This can be seen from the correlation 

coefficients between the Liv-ex 100 index and the three popular financial indicators during same 

time period with our data involving futures and bottle prices between 2007 and 2014: The 

correlation coefficient with the Standard & Poor 500 index is –0.03, with the Financial Times 

100 index is 0.11, with the Dow Jones index is 0.04 whereas the correlation coefficients between 

these three financial indices range from 0.92 to 0.99. The details of this correlation analysis can 

be seen in Table 2.4. Thus, Liv-ex 100 is not an arbitrarily chosen market indicator. 
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  Liv-ex 100 S&P 500 FTSE 100 Dow Jones 

Liv-ex 100 1    

S&P 500 -0.0316 1   

FTSE 100 0.1054 0.9178 1  

Dow Jones 0.0368 0.9932 0.9221 1 

 
Table 2.4. Correlation coefficients among Liv-ex 100, S&P 500, FTSE 100, and Dow Jones 

between 2007 and 2014. 

 

Models 1A and 1B: Futures Price Evolution 

We describe the futures price of vintage t – 1 for winemaker j in May of year t (stage 1), in 

September of year t (beginning of stage 2), and in May of year t + 1 (end of stage 2) with f1
j,t–1

, 

f2
j,t–1

, and f3
j,t–1

, respectively. As in Noparumpa et al. (2015), we strip out the variations in price 

levels across different winemakers (i.e., some wines are always sold at much higher prices) and 

use the standardized prices expressed as , 1ˆ j t
if

 = (fi
j,t–1

 – j
if )/σfi

j where j
if  and σfi

j represent the 

mean and the standard deviation of the futures price of winemaker j in stage i = {1, 2, 3}. 

For the futures of vintage t – 1, we denote the average temperature difference between the 

new growing season (of calendar year t) and the wine’s own growing season by wt. A positive 

(negative) wt implies that the new growing season is relatively warmer (colder) than the growing 

season of the futures. 

Our choice of an absolute weather change measure (as opposed to percentage change) is 

consistent with Ashenfelter (2008) who uses an absolute measure of weather in his analysis. 

Unlike temperature, which conforms to a range that is relatively universal over each season, 

market indices may grow and shrink significantly over time, and thus percentage change is a 

more meaningful indicator than absolute change. We denote the percentage change in Liv-ex 100 
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index over the new growing season (of calendar year t) by mt. A positive (negative) mt implies 

that the market conditions are improved (worsened) over the new growing season.  

We develop the following linear regression models designated as Model 1A and Model 1B, 

respectively, where t = {2008, 2009, 2010, 2011, 2012} and j = {1, 2, …, 44}: 

( , 1
2

ˆ j tf   – , 1
1
ˆ j tf  ) = γ0 + γ1wt + γ2mt + εj,t                (2.44) 

( , 1
3
ˆ j tf   – , 1

2
ˆ j tf  ) = η0 + η1wt + η2mt + εj,t.         (2.45) 

The results are tabulated in Table 2.1 in section 2.3.1. When presenting the results in section 

2.3.1, we drop the superscripts from the futures prices and the subscripts from w and m for 

notational simplicity because the analytical model given in section 2.3.2 examines the 

distributor’s investment decision in futures of vintage t – 1 of a single winemaker (i.e., an 

arbitrary j) in May of an arbitrary year t. Therefore, the subscripts/superscripts j and t are not 

necessary in the presentation of the analytical model in section 2.3.2. 

Models 2A and 2B: Bottle Price Evolution 

We describe the bottle price of vintage t – 2 for winemaker j in May of year t (stage 1), in 

September of year t (beginning of stage 2), and in May of year t + 1 (end of stage 2) with b1
j,t–2

, 

b2
j,t–2

, and b3
j,t–2

, respectively. As in Noparumpa et al. (2015), we strip out the variations in price 

levels across different winemakers (i.e., some wines are always sold at much higher prices) and 

use the standardized prices expressed as , 2ˆ j t
ib  = (bi

j,t–2
 – j

ib )/σbi
j where j

ib  and σbi
j represent the 

mean and the standard deviation of the bottle price of winemaker j in stage i = {1, 2, 3}. 

For the bottles of vintage t – 2, we denote the average temperature difference between the 

new growing season (of calendar year t) and the wine’s own growing season by wt. A positive 
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(negative) wt implies that the new growing season is relatively warmer (colder) than the growing 

season of the bottles. 

We denote the percentage change in Liv-ex 100 index over the new growing season (of 

calendar year t) by mt. A positive (negative) mt implies that the market conditions are improved 

(worsened) over the new growing season. 

We develop the following linear regression models designated as Model 2A and Model 2B, 

respectively, where t = {2008, 2009, 2010, 2011, 2012} and j = {1, 2, …, 44}: 

( , 2
2

ˆ j tb   – , 2
1
ˆ j tb  ) = θ0 + θ1wt + θ2mt + εj,t                (2.46) 

( , 2
3

ˆ j tb   – , 2
2

ˆ j tb  ) = λ0 + λ1wt + λ2mt + εj,t.         (2.47) 

The results are tabulated in Table 2.2 in section 2.3.1. When presenting the results in section 

2.3.1, we drop the superscripts from the bottle prices and the subscripts from w and m for 

notational simplicity because the analytical model given in section 2.3.2 examines the 

distributor’s investment decision in bottles of vintage t – 2 of a single winemaker (i.e., an 

arbitrary j) in May of an arbitrary year t. Therefore, the subscripts/superscripts j and t are not 

necessary in the presentation of the analytical model in section 2.3.2. 
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CHAPTER 3: CAPACITY PLANNING AS A BUFFER AGAINST SUPPLY CHAIN 

DISRUPTIONS 

3.1. Introduction 

This essay examines a firm’s capacity planning decisions as a mitigation strategy against 

supply chain disruptions. Our work is motivated by a risk assessment project conducted at the 

world’s largest office supplies firm. Business customers constitute the largest portion of the 

firm’s revenues, and the firm operates a delivery supply chain to serve its business customers. 

Figure 3.1 illustrates the firm’s delivery supply chain. There are 31 fulfillment centers located in 

the US, and they are responsible for delivering orders within the next business day. Specifically, 

orders placed before 5:00pm (in regional time) are delivered the next day before 5:00pm. Thus, 

the firm utilizes quick delivery as its winning criterion in competition with other office supply 

providers (e.g. Amazon.com). Fulfillment centers carry approximately 80,000 different products 

(SKUs), but delivers a total of more than 2 million products through its vendor shipments. These 

products are sorted, bundled, and wrapped at the fulfillment centers before being shipped out to 

the customers. If a disruption affects operations at a fulfillment center, that facility temporarily 

loses its capability to serve its customers until it recovers from the disruption. As a consequence, 

the firm might fail to deliver the orders the next day. 

For a firm standing out with the next-day delivery promise, late deliveries may cause 

significant consequences. Therefore, the firm needs to react quickly, and divert the orders of the 

disrupted facility to the functional facilities. However, this kind of a reactive approach proves 

useful in preventing late deliveries only if the functional facilities have sufficient excess capacity 

to serve as the backup. Therefore, the firm should take a proactive approach by determining its 

capacity needs in advance before a disruption occurs.  
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Figure 3.1. Illustration of the delivery supply chain. 

 

We formulate the capacity planning problem for the delivery supply chain of the above-

mentioned office supplies company using a two-stage model. The firm determines the capacity 

expansion amount in each fulfillment center (FC) in stage 1. After observing the disruption, 

corresponding to stage 2 of our model, the firm determines how best to allocate backup capacity 

in order to deliver the orders arriving at the disrupted FC. In stage 2, our model considers the 

length of disruption as random, and the firm complies with a chance constraint that limits the 

probability of late deliveries exceeding a threshold to be less than a tolerable probability.  

Our study utilizes capacity planning, rather than inventory planning, as a proactive measure 

because of the characteristics of a delivery supply chain. The operations at a fulfillment center 

(e.g., sorting, bundling, and wrapping) require agility and flexibility since each customer order 

consists of a unique combination of multiple products. Therefore, satisfying those unique 

combinations through the safety stock (inventory planning) is not practically possible when the 
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operations at a fulfillment center are disrupted. As a result, the firms needs to utilize the excess 

capacity of its functional facilities to satisfy the orders of the disrupted facility. Therefore, 

capacity planning serves as a buffer against disruptions in a delivery supply chain unlike 

inventory planning, which may serve as a buffer in a manufacturing supply chain. 

 

 
Figure 3.2. Heat map for the disruption categorization. 

 

Our work focuses on two types of disruptions: (1) Low impact and high likelihood (we will 

refer to these disruptions shortly as low-impact disruptions) and (2) high impact and low 

likelihood (we refer to these disruptions as high-impact disruptions). Figure 3.2 provides the heat 

map that we developed for our motivating firm when categorizing multiple disruptions. We 

understand from our conversations with the executives at firm that their contingency backup 

plans primarily account for low-impact disruptions (power outage, gas leak, etc.). Typically, 

fulfillment centers are paired based on geographic distance to serve each other as primary backup 

in case of a disruption. However, several of those paired facilities are located very close to each 



60 
 

 
 

other, thus, it is possible that they both can be affected by a high-impact disruption occurring in 

the region (e.g., earthquake, hurricane, etc.). When such nearby facilities become nonfunctional 

at the same time, our model utilizes a third fulfillment center, which is located far away from the 

paired (nearby) facilities, to satisfy the orders. Thus, our work sheds light on the commonly 

ignored effects of high-impact disruptions.  

One might expect that geographic proximity should anchor the decision on where to add 

capacity, i.e., the firm should be economically better off by adding more capacity at the paired 

facilities, which are located in closer proximity, rather than adding capacity at the distant facility. 

However, our work suggests the opposite under several conditions, and characterizes those 

conditions. This is an important result because it would motivate establishing an omni-channel 

backup system for a firm operating multiple channels that are not linked to each other. For 

example, our motivating firm operates a second distribution network that is called the retail 

supply chain where the distribution centers are responsible for serving the retail stores alone. 

Even though the distribution centers have greater amounts of excess capacity, they currently do 

not communicate with the fulfillment centers. However, our work provides the motivation for 

establishing a backup link between these two channels by justifying that the readily available 

excess capacity at a distribution center can be used to back up a fulfillment center even if these 

facilities are not located close to each other. 

Our work shows how capacity planning is influenced by risk aversion. Since the firm has a 

next-day delivery promise, late deliveries may have a greater impact in the long-run than the 

immediate financial loss observed. Thus, we incorporate a chance constraint (similar to a value-

at-risk measure) to capture the likelihood of late deliveries exceeding a tolerable amount under 

the presence of disruption length uncertainty. When a disruption occurs, its duration is typically 
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uncertain, and a disruption lasting longer may lead to more late deliveries. One might intuit that, 

as risk aversion increases, the firm should increase its total capacity expansion. However, our 

work shows that there can be a substitution effect between the capacity decisions as risk aversion 

increases such that increasing capacity at the distant facility may lead to a decrease in the 

capacity at one or both of the paired (nearby) facilities. As a further consequence of the 

substitution effect, we find that the firm’s total capacity expansion may decrease as risk aversion 

increases. This rather surprising result stems from the flexibility of the distant facility as it can 

serve both of the paired (nearby) facilities. 

In sum, this essay makes five main contributions. First, our work utilizes capacity planning 

(rather than inventory planning) as a buffer against disruptions in a delivery supply chain. 

Second, our work examines both low-impact and high-impact disruptions together where the 

latter is commonly overlooked. Third, we find that geographic proximity may not anchor the 

decision on where to expand capacity. Fourth, we find that, as risk aversion increases, there may 

be a substitution effect between the capacity decisions at the distant facility and the paired 

(nearby) facilities. Fifth, we show that the firm’s total capacity expansion may decrease as risk 

aversion increases. 

The reminder of the essay is organized as follows. Section 3.2 reviews the relevant literature. 

Section 3.3 presents the two-stage model, and it is analyzed in Section 3.4. Section 3.5 presents 

our conclusions and managerial insights.  

3.2. Literature Review 

Earlier literature mainly focuses on two types of levers against supply chain disruptions: (1) 

Inventory, and (2) flexible sourcing. There are many papers that examine the use of inventory as 

a mitigation strategy (Xia et al. 2004, Qi et al. 2009, Yang et al. 2009 and 2012, Atan and Snyder 



62 
 

 
 

2012, Dong and Tomlin 2012, DeCroix 2013, Tang et al. 2014, Dong et al. 2015). These studies 

consider manufacturing supply chains. The firm typically determines the inventory level, and 

then utilizes the safety stock if operations at the manufacturing facility are disrupted. Inventory 

planning proves useful in a manufacturing setting because manufacturing operations are identical 

across multiple customer orders for the same product. This enables the firm to accumulate some 

safety stock to be used in case of a disruption. We differ from these papers as our work focuses 

on a delivery supply chain where the operations (e.g. sorting, bundling, and wrapping) are rather 

unique across customer orders. Thus, increasing inventory levels at a fulfillment center does not 

protect the firm if the disruption halts the operations. 

Flexible sourcing is another strategy in order to mitigate the supply chain disruptions. 

Sourcing from multiple locations are examined in various settings by Gurler and Parlar (1997), 

Berger et al. (2004), Tomlin and Wang (2005), Berger and Zeng (2006), Tomlin (2006), Tang 

(2006), Ruiz-Torres and Mahmoodi (2007), Yan and Liu (2009), Meena et al. (2011), Qi (2013). 

Ang et al. (2016) add a multi-tier structure to aforementioned papers. Their work studies the 

sourcing decisions in a supply network where the tier 2 suppliers are prone to disruption. These 

papers often focus on the coordination of multiple vendors. Our work also features an example of 

flexible sourcing which is the vendor shipment that is exercised when the backup capacity is not 

sufficient to recover the entire demand. However, vendor shipment is not a preferable alternative 

for our motivating firm as it puts emphasis on the next-day delivery. In addition to being highly 

costly, vendor shipments cannot satisfy the delivery commitments of the firm. 

Chen and Graves (2014) and Acimovic and Graves (2015) examine the decisions made at the 

fulfillment centers of an online retailer. The former focuses on a transportation problem where a 

sparsity constraint exists. The latter focuses on minimizing the outbound transportation cost 
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through a proactive approach. However, neither paper features any sort of disruption risk. Our 

work employs a proactive capacity planning approach at fulfillment centers in the presence of 

disruption risk, and these decisions are coupled with a reactive contingency transportation 

planning. 

Serpa and Krishnan (2016) study the strategic role of insurance in a multi-firm setting in the 

presence of operational failures. The likelihood of these operational failures can be controlled by 

the firms’ efforts. They show that insurance can be used as a commitment mechanism to improve 

the firms’ efforts, reducing the likelihood of the operational failures. In our work, disruptions are 

not stemming from operational failures at the firm, thus, the disruption likelihood is considered 

to be exogenous. 

Simchi-Levi et al. (2015) make an important practical contribution in addition to the 

aforementioned analytical papers. Their work examines the financial impact of a generic 

disruption (i.e., low likelihood and high impact) at different nodes of an automotive supply 

chain. However, the scope of mitigation strategy is the use of inventory like the previous studies. 

We depart from this paper in several aspects: (1) Our work focuses on a delivery supply chain 

(where the nodes can serve each other as backup without featuring a precedence relationship) 

instead of a manufacturing supply chain (where the nodes cannot backup each other due to 

precedence relationships); (2) our work uses mitigation through capacity planning instead of 

inventory planning; (3) our model addresses a low-impact disruption in addition to a high-impact 

disruption; (4) Length of disruption is a static parameter in Simchi-Levi et al. (2015) whereas our 

model introduces randomness into the length of disrupted operations; (6) Simchi-Levi et al. 

(2015) study the impact when the disruption occurs, and thus, focuses on reactive operations; our 
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work, on the other hand, examines the expected impact before the disruption actually occurs, and 

can be perceived as a proactive approach. 

3.3. The Model 

The firm’s problem is formulated using a two-stage program under disruption risk. The 

objective in stage 1 is to minimize the sum of the two costs:  The capacity expansion cost and the 

expected cost from executing a contingency plan over the next one-year period (by determining 

the capacity expansion decisions). A contingency plan is implemented in stage 2 if a disruption 

occurs; the objective in stage 2 is to minimize the cost of executing the contingency plan (by 

determining the backup allocation decisions that are capped by stage-1 decisions). 

Stage-1 capacity decisions are made under disruption risk that would halt operations at 

fulfillment centers (from here on we refer to as FCs). The disruption risks are classified as 

follows: (1) low impact and high likelihood (we will refer to these disruptions shortly as low-

impact disruptions), and (2) high impact and low likelihood (we refer to these disruptions as 

high-impact disruptions). We develop a stylized model that examines three FCs such that FC1 

and FC2 are located close to each other, and FC3 is located far away from FC1 and FC2. 

Because FC1 and FC2 are located in closer proximity, one serves the other as the primary 

backup facility in case of a low-impact disruption (e.g., gas leak). The implication of serving as a 

backup facility is that the demand at the nonfunctional FC is diverted to the functional FC. The 

probability of a low-impact disruption occurring at FC1 (FC2) over the one-year period is 

denoted by pL,1 (pL,2). The probability of a low-impact disruption occurring at FC1 and FC2 at 

the same time is assumed to be negligible. However, a high-impact disruption (e.g., earthquake, 

hurricane) may affect both FC1 and FC2 because of their geographic proximity; thus, we assume 

that both FC1 and FC2 become nonfunctional at the same time due to a high-impact disruption 
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with a probability of pH over the one-year period. It is important to note that {pL,1, pL,2} > pH in 

light of the disruption definitions (i.e., high vs. low likelihood). In case of a high-impact 

disruption, the demand of FC1 and FC2 are diverted to FC3, which is assumed to be out of the 

impact region due to the fact that it is sufficiently far away from FC1 and FC2. Furthermore, 

FC3 is capable of serving FC1 (FC2) as the secondary backup facility in case of a low-impact 

disruption if the primary backup FC2 (FC1) does not have sufficient excess capacity to recover 

the entire demand of FC1 (FC2).  

In stage 1, the firm determines the amount of capacity expansion, denoted Ki, at fulfillment 

center i (shortly, FC i) where i  {1, 2, 3}. The unit cost of capacity expansion (amortized per 

year) is denoted by cK. Each FC is primarily responsible for serving its own customer demand, 

denoted Di, and has a beginning capacity Ki
0 such that Di ≤ Ki

0 (i.e., each FC has a sufficient 

initial capacity to satisfy its own customer demand). In order to eliminate several trivial 

scenarios, we assume that the primary backup facility does not have sufficient excess capacity at 

the beginning (i.e., the beginning capacity net of its own demand) to recover the entire demand 

of the nearby facility, i.e., {K1
0, K2

0} < D1 + D2. Similarly, we assume that FC3 does not have 

sufficient excess capacity at the beginning to recover the entire demand of FC1 and FC2 at the 

same time, i.e., K3
0 < D1 + D2 + D3. Note that {Ki , Ki

0, Di} represent the daily amounts. 

In stage 2, one of the following four events occurs, and the firm determines the allocation of 

daily backup capacity, limited with the capacity expansion decisions made in stage 1, at the 

functional FC(s) in order to fulfill the demand at the nonfunctional FC(s): 

Event 1: A low-impact disruption hits FC1 for a random duration Lt  (in days) with an 

expectation of E[ Lt ] = Lt . The firm determines the daily backup amount Bi,1 from FC i to 

recover the daily demand at FC1 at a unit cost of ci,1 where i  {2, 3}. Note that c2,1 < c3,1 
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due to the fact that FC2 is closer than FC3. The goal is to minimize the expected cost of 

implementing the contingency plan, denoted ψL,1(∙), subject to a chance constraint that 

limits the probability of late deliveries exceeding a threshold to be less than a tolerable 

probability.   

Event 2: A low-impact disruption hits FC2 for a random duration Lt  (in days) with an 

expectation of E[ Lt ] = Lt . The firm determines the daily backup amount Bi,2 from FC i to 

recover the daily demand at FC2 at a unit cost of ci,2 where i  {1, 3}. Note that c1,2 < c3,2 

since FC1 is closer than FC3. The goal is to minimize the expected cost of implementing 

the contingency plan, denoted ψL,2(∙), subject to a chance constraint that limits the 

probability of late deliveries exceeding a threshold to be less than a tolerable probability.  

Event 3: A high-impact disruption hits both FC1 and FC2 for a random duration Ht  (in 

days) with an expectation of E[ Ht ] = Ht . Note that Ht  has first-order stochastic 

dominance over Lt  in light of the disruption definitions (i.e., high vs. low impact). The 

firm determines the daily backup amount B3,j from FC3 to recover the daily demand at 

FC j at a unit cost of c3,j where j  {1, 2}. The goal is to minimize the expected cost of 

implementing the contingency plan, denoted ψH(∙), subject to a chance constraint that 

limits the probability of late deliveries exceeding a threshold to be less than a tolerable 

probability.  

Event 4: No disruption occurs with a probability of 1 – pL,1 – pL,2 – pH. A contingency 

plan is not needed; thus, it has zero cost in stage 2. As a result, this event is simply 

excluded from the analysis.  

The cost of implementing the contingency plan involves three types of costs: (1) Additional 

transportation cost stemming from on-time delivery through the use of backup fulfillment 
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centers; (2) the cost of late deliveries associated with the firm’s promise of delivering within the 

next business day; and, (3) the cost of satisfying demand through vendor shipments. We next 

describe each cost individually.  

A firm’s capability of executing a contingency backup plan may be restricted by its level of 

preparedness. If a firm is not well prepared in advance for a disruption (e.g., absence of a 

rigorous plan to execute the contingency actions), the backup capacity may not be effectively 

utilized. This may cause late deliveries even if the firm has sufficient excess capacity. We denote 

the firm’s level of preparedness as T. The preparedness affects the on-time delivery performance 

of the backup actions, i.e., T portion of the backup allocation is delivered on-time, and 1 – T 

portion is delivered late where 0 ≤ T ≤ 1. For every unit of late delivery, the firm incurs an 

additional cost of cL. The cost of on-time deliveries is denoted by OC(∙), and the cost of late 

deliveries is denoted by LC(∙).   

If the firm’s maximum backup capacity, which is capped by stage-1 decisions, is not 

sufficient to recover the entire demand of the nonfunctional FC(s), then the remaining demand is 

fulfilled through a vendor. Vendor deliveries are late, and incur a unit cost of cV + cL. The cost of 

vendor deliveries is denoted by VC(∙). As a result, the cost of contingency plan is composed of 

three terms: (1) the cost of on-time deliveries OC(∙), (2) the cost of late deliveries LC(∙), and (3) 

the cost of vendor deliveries VC(∙). It is defined that {c2,1, c1,2, c3,1, c3,2} < cV since vendor 

shipment is the most costly backup alternative. 

The firm’s risk consideration is modeled using a chance constraint similar to a value-at-risk 

measure in stage 2. According to this risk constraint, the firm limits the probability of late 

deliveries exceeding a tolerable threshold when a disruption occurs. The tolerable thresholds βL 

and βH are defined for low-impact disruptions (Events 1 and 2) and high-impact disruptions 
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(Event 3), respectively. Furthermore, we define βL ≤ βH implying that the firm may have a 

greater tolerance to a high-impact disruption due to the fact that customers might regret less 

about the late deliveries due to a natural disaster. The tolerable probability is denoted by α. In the 

firm motivating our problem, the values of βL, βH and α come strictly from the firm’s promises to 

its business customers.  

The model is mathematically expressed as follows:  

Stage 1: 

1 2 3, ,
min

K K K
 Ψ(K1, K2, K3) = cK(K1 + K2 + K3)  

+ pL,1ψL,1(B2,1, B3,1 | K2, K3) + pL,2ψL,2(B1,2, B3,2 | K1, K3) + pHψH(B3,1, B3,2 | K3) (3.1) 

subject to 

{K1, K2, K3} ≥ 0              (3.2) 

Stage 2:  

Event 1: A low-impact disruption occurs at FC1 

2,1 3,1{ , } 0
min

B B 
 ψL,1(B2,1, B3,1 | K2, K3) = [OC(B2,1, B3,1) + LC(B2,1, B3,1) + VC(B2,1, B3,1)]E[ Lt ] (3.3) 

subject to  

B2,1 ≤ min{K2
0 + K2 – D2, D1}            (3.4) 

B3,1 ≤ min{K3
0 + K3 – D3, D1}            (3.5) 

P[[(B2,1 + B3,1)(1 – T) + (D1 – B2,1 – B3,1)+] Lt  > βL] ≤ α         (3.6) 

where 

OC(B2,1, B3,1) = (c2,1B2,1 + c3,1B3,1)T              (3.7) 

LC(B2,1, B3,1) = [(c2,1 + cL)B2,1 + (c3,1 + cL)B3,1](1 – T)           (3.8) 

VC(B2,1, B3,1) = (cV + cL)(D1 – B2,1 – B3,1)+              (3.9) 
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Event 2: A low-impact disruption occurs at FC2 

1,2 3,2{ , } 0
min

B B 
 ψL,2(B1,2, B3,2 | K1, K3) = [OC(B1,2, B3,2) + LC(B1,2, B3,2) + VC(B1,2, B3,2)]E[ Lt ] (3.10) 

subject to  

B1,2 ≤ min{K1
0 + K1 – D1, D2}          (3.11) 

B3,2 ≤ min{K3
0 + K3 – D3, D2}         (3.12) 

P[[(B1,2 + B3,2)(1 – T) + (D2 – B1,2 – B3,2)+] Lt  > βL] ≤ α       (3.13) 

where 

OC(B1,2, B3,2) = (c1,2B1,2 + c3,2B3,2)T            (3.14) 

LC(B1,2, B3,2) = [(c1,2 + cL)B1,2 + (c3,2 + cL)B3,2](1 – T)         (3.15) 

VC(B1,2, B3,2) = (cV + cL)(D2 – B1,2 – B3,2)+          (3.16) 

Event 3: A high-impact disruption occurs at FC1 and FC2 

3,1 3,2{ , } 0
min

B B 
 ψH(B3,1, B3,2 | K3) = [OC(B3,1, B3,2) + LC(B3,1, B3,2) + VC(B3,1, B3,2)]E[ Ht ]      (3.17) 

subject to 

B3,1 ≤ min{K3
0 + K3 – D3, D1}         (3.18) 

B3,2 ≤ min{K3
0 + K3 – D3, D2}         (3.19) 

B3,1 + B3,2 ≤ K3
0 + K3 – D3           (3.20) 

P[[(B3,1 + B3,2)(1 – T) + (D1 + D2 – B3,1 – B3,2)+] Ht  > βH] ≤ α      (3.21) 

where 

OC(B3,1, B3,2) = (c3,1B3,1 + c3,2B3,2)T           (3.22) 

LC(B3,1, B3,2) = [(c3,1 + cL)B3,1 + (c3,2 + cL)B3,2](1 – T)       (3.23) 

VC(B3,1, B3,2) = (cV + cL)(D1 + D2 – B3,1 – B3,2)+        (3.24) 
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The unit backup cost between the nearby facilities (i.e., FC1 and FC2) is assumed to be equal 

in both directions, and are therefore, relabeled as c12, i.e., c12 = c1,2 = c2,1 in the remaining part of 

the analysis. The unit backup cost from the distant facility (i.e., FC3) to FC1 is assumed to be 

equal to that to FC2, and is relabeled as c3, i.e., c3 = c3,1 = c3,2 in the remaining part of the 

analysis. Furthermore, it is assumed that c3 – c12 < cV – c3; this implies that the marginal benefit 

of recovering one order from the vendor to the distant FC (i.e., FC3) is greater than that from the 

distant FC to the nearby FC (i.e., FC1 or FC2). Finally, it is assumed that the probability of a 

low-impact disruption at FC1 is equal to that at FC2; thus, the probability of a low-impact 

disruption is relabeled as pL, i.e., pL = pL,1 = pL,2 in the remaining part of the analysis. It is 

important to note that c3 – c12 < cV – c3 and pL,1 = pL,2 are useful for eliminating several redundant 

scenarios in the mathematical analysis that do not bring additional insight.  

3.4. Analysis 

This section presents the analytical results obtained from the model presented in Section 3.3. 

3.4.1. Optimal Stage-2 Policies 

The cost structure defined in the model section (i.e., c12 < c3 < cV) prioritizes the backup 

shipment alternatives in the following order: (1) the nearby FC, (2) the distant FC, and (3) the 

vendor. Note that the nearby FC alternative is not available in case of a high-impact disruption 

(Event 3). On the other hand, the distant FC and the vendor alternatives are available in each 

disruption (Events 1, 2, and 3). 

Stage 2 is composed of three events, and the optimal policy for each event is presented in the 

following proposition. 

Proposition 3.1. For given (K1, K2, K3),  

(a) if Event 1 occurs in stage 2, then 
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(i) if K2
0 + K2 – D2 > D1, then (B2,1

*, B3,1
*) = (D1, 0); 

(ii) if K2
0 + K2 – D2 ≤ D1, then B2,1

* = K2
0 + K2 – D2, and   

(1) if K3
0 + K3 – D3 > D1 – K2

0 – K2 + D2, then B3,1
* = D1 – K2

0 – K2 + D2; 

(2) if K3
0 + K3 – D3 ≤ D1 – K2

0 – K2 + D2, then B3,1
* = K3

0 + K3 – D3; 

(b) if Event 2 occurs in stage 2, then 

(i) if K1
0 + K1 – D1 > D2, then (B1,2

*, B3,2
*) = (D2, 0); 

(ii) if K1
0 + K1 – D1 ≤ D2, then B1,2

* = K1
0 + K1 – D1, and   

(1) if K3
0 + K3 – D3 > D2 – K1

0 – K1 + D1, then B3,2
* = D2 – K1

0 – K1 + D1; 

(2) if K3
0 + K3 – D3 ≤ D2 – K1

0 – K1 + D1, then B3,2
* = K3

0 + K3 – D3; 

(c) if Event 3 occurs in stage 2, then 

(i) if K3
0 + K3 – D3 > D1 + D2, then (B3,1

*, B3,2
*) = (D1, D2); 

(ii) if K3
0 + K3 – D3 ≤ D1 + D2, then (B3,1

*, B3,2
*)  {(B3,1, B3,2): B3,1 + B3,2 = K3

0 + K3 – D3}. 

In Proposition 3.1(a)(ii)(2), 3.1(b)(ii)(2), and 3.1(c)(ii), the total backup capacity is not 

sufficient to recover the entire demand at the nonfunctional FC(s). Therefore, the remaining 

portion of the demand is fulfilled through the vendor. However, in the other conditions, the entire 

demand can be backed up without any vendor shipment. 

3.4.2. Optimal Stage-1 Policies – Risk Neutral 

We begin the analysis by characterizing the first-order conditions. The next proposition 

makes use of the following notation to denote the expected marginal benefits of capacity 

expansion: 

NS = pL Lt (c3 – c12) 

NL = pL Lt (cV – c12 + cLT) 

FS = pH Ht (cV – c3 + cLT) 
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FM = (pL Lt  + pH Ht )(cV – c3 + cLT) 

FL = (2pL Lt  + pH Ht )(cV – c3 + cLT) 

where NS and NL (such that NS < NL) represent the small and large benefit, respectively, of 

capacity expansion at the nearby functional FC in case of a low-impact disruption (either Event 1 

or Event 2). The value of NS is the expected benefit of recovering one order from the distant FC 

to the nearby FC. The value of NL is the expected benefit of recovering one order from the 

vendor to the nearby FC. On the other hand, FS, FM, and FL (such that FS < FM < FL) represent 

the small, moderate, and large benefit, respectively, of capacity expansion at the distant FC. 

Expanding capacity at the distant FC recovers the orders from the vendor. The value of FS is the 

expected benefit in Event 3 only. The value of FM is the expected benefit in either Event 1 or 

Event 2 in addition to Event 3. The value of FL is the expected benefit in all three events.  

Proposition 3.2. The first-order conditions for K1, K2, and K3 are as follows: 

Ψ(K1, K2, K3)/K1 =  cK          if  D1 + D2 – K1
0 < K1     

cK – NS  if  D1 + D2 + D3 – K3
0 – K1

0 – K3 < K1 ≤ D1 + D2 – K1
0 

cK – NL  if  K1 ≤ D1 + D2 + D3 – K3
0 – K1

0 – K3   

Ψ(K1, K2, K3)/K2 =  cK          if  D1 + D2 – K2
0 < K2     

cK – NS  if  D1 + D2 + D3 – K3
0 – K2

0 – K3 < K2 ≤ D1 + D2 – K2
0 

cK – NL  if  K2 ≤ D1 + D2 + D3 – K3
0 – K2

0 – K3   

Ψ(K1, K2, K3)/K3 =  cK          if  D1 + D2 + D3 – K3
0 < K3   

cK – FS  if  max{D1 + D2 + D3 – K3
0 – K1

0 – K1, D1 + D2 + D3 – K3
0 – K2

0 – 
K2} < K3 ≤ D1 + D2 + D3 – K3

0  
cK – FM  if  min{D1 + D2 + D3 – K3

0 – K1
0 – K1, D1 + D2 + D3 – K3

0 – K2
0 – 

K2} < K3 ≤ max{D1 + D2 + D3 – K3
0 – K1

0 – K1, D1 + D2 + D3 – 
K3

0 – K2
0 – K2} 

cK – FL  if  K3 ≤ min{D1 + D2 + D3 – K3
0 – K1

0 – K1, D1 + D2 + D3 – K3
0 – 

K2
0 – K2}.  

The above proposition states that the capacity expansion decisions have a piecewise linear 

impact on the stage-1 objective function. Let us first consider the effect of K1. FC1 serves as a 

primary backup if FC2 gets disrupted (Event 2). In case of Event 2, FC3 can also serve FC2 as a 
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secondary backup. If the combined excess capacity at FC1 and FC3 is not sufficient to fulfill the 

entire demand at FC2, then increasing K1 has a marginal benefit of NL (i.e., the third region of 

Ψ(∙)/K1) as it recovers from the vendor. Otherwise, increasing K1 has a marginal benefit of NS 

(i.e., the second region of Ψ(∙)/K1) as it recovers from the distant FC. However, if K1 is very 

large, then FC1 can back up the entire demand by itself (i.e., the first region of Ψ(∙)/K1); thus, 

the marginal benefit of any further expansion becomes zero.  

Similar interpretations apply to the effect of K2. Let us now consider the effect of K3. FC3 

can serve as a primary backup (in case of Event 3) as well as a secondary backup (in cases of 

Event 1 and Event 2). If the combined capacity at FC3 and the nearby functional facility is not 

sufficient to fulfill the entire demand at the nonfunctional FC in both Event 1 and Event 2, then 

increasing K3 has a marginal benefit of FL (i.e., the fourth region of Ψ(∙)/K3) as it recovers 

from the vendor in both events in addition to Event 3. If the combined capacity at FC3 and the 

nearby functional facility is not sufficient to fulfill the entire demand at the nonfunctional FC in 

either Event 1 or Event 2, then increasing K3 has a marginal benefit of FM (i.e., the third region 

of Ψ(∙)/K3) as it recovers from the vendor in one of those events in addition to Event 3. 

Otherwise, increasing K3 has a marginal benefit of FS (i.e., the second region of Ψ(∙)/K3) as it 

recovers from the vendor in Event 3 only. However, if K3 is very large, then FC3 can back up the 

entire demand (D1 + D2) in Event 3 (i.e., the first region of Ψ(∙)/K3); thus, the marginal benefit 

of any further expansion becomes zero. 

It is important to note that the second and third conditions for both Ψ(∙)/K1 and Ψ(∙)/K2 

depend on K3. Similarly, the second, third, and fourth conditions for Ψ(∙)/K3 depend on both 

K1 and K2. Therefore, the optimal stage-1 decisions depend on the ranking of {NS, NL, FS, FM, FL, 

cK}. 
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Lemma 3.1. The marginal benefits {NS, NL, FS, FM, FL} can be ranked as follows: 

(a) FS ≤ NS < FM ≤ NL < FL; (b) NS < FS ≤ NL < FM < FL; (c) NS < NL < FS < FM < FL.  

In order to solve the generalized version of this problem, we introduce two new conditions: 

(K1
0 – D1) + (K3

0 – D3) < D2 and (K2
0 – D2) + (K3

0 – D3) < D1. These conditions imply that, at the 

beginning, e.g., (K1, K2, K3) = (0, 0, 0), the functional FCs do not have sufficient excess capacity 

to fulfill the entire demand at the nonfunctional FC in either Event 1 or Event 2. A similar 

condition for Event 3 is already introduced in Section 3.3, i.e., K3
0 – D3 < D1 + D2. In the 

absence of these conditions, the regions where we observe {NL, FM, FL} may disappear; thus, the 

problem would become a sub-problem of the current version of our main problem. 

The following proposition characterizes the optimal stage-1 decisions. 

Proposition 3.3. For a risk-neutral firm, the optimal stage-1 decisions (K1
N, K2

N, K3
N) are:  

(a) if {NS, NL, FS, FM, FL} < cK, then 

(K1
N, K2

N, K3
N) = (0, 0, 0); 

(b) if {NS, NL, FS, FM} < cK ≤ FL, then  

(K1
N, K2

N, K3
N) = (0, 0, min{D1 + D2 + D3 – K3

0 – K1
0, D1 + D2 + D3 – K3

0 – K2
0});  

(c) if FS ≤ NS < {FM, cK} ≤ NL < FL, then 

(i) if FL + cK > 2NL and K1
0 > K2

0, then   

(K1
N, K2

N, K3
N) = (0, K1

0 – K2
0, D1 + D2 + D3 – K3

0 – K1
0);  

(ii) if FL + cK > 2NL and K1
0 ≤ K2

0, then   

(K1
N, K2

N, K3
N) = (K2

0 – K1
0, 0, D1 + D2 + D3 – K3

0 – K2
0);   

(iii) if FL + cK ≤ 2NL, then   

(K1
N, K2

N, K3
N) = (D1 + D2 + D3 – K3

0 – K1
0, D1 + D2 + D3 – K3

0 – K2
0, 0);   

(d) if NS < {NL, FS} < cK ≤ FM < FL or NS < FS ≤ cK ≤ NL < FM < FL, then      
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(K1
N, K2

N, K3
N) = (0, 0, max{D1 + D2 + D3 – K3

0 – K1
0, D1 + D2 + D3 – K3

0 – K2
0}); 

(e) if NS < NL < cK ≤ FS < FM < FL or NS < cK ≤ {NL, FS} < FM < FL, then    

(K1
N, K2

N, K3
N) = (0, 0, D1 + D2 + D3 – K3

0);  

(f) if FS ≤ cK ≤ NS < FM ≤ NL < FL, then     

(K1
N, K2

N, K3
N) = (D1 + D2 – K1

0, D1 + D2 – K2
0, 0);  

(g) if cK ≤ {NS, NL, FS, FM, FL}, then   

  (K1
N, K2

N, K3
N) = (D1 + D2 – K1

0, D1 + D2 – K2
0, D1 + D2 + D3 – K3

0).  

Proposition 3.3(a) indicates that the firm does not invest in any additional capacity when its 

marginal cost is greater than the marginal benefits. Thus, vendor shipment is needed in all three 

events. 

Proposition 3.3(b) indicates that the firm buys additional capacity at FC3 up to an amount 

such that the functional FCs have sufficient total excess capacity to fulfill the entire demand at 

the nonfunctional FC in either Event 1 or Event 2 (i.e., vendor shipment is not needed in one of 

these two events). Note that vendor shipment is still needed in Event 3. 

Before proceeding with the results given in Proposition 3.3(c), we explain the implication of 

the condition FL + cK > 2NL. Recall that the excess capacities at FC2 and FC3 are utilized in 

Event 1, the excess capacities at FC1 and FC3 are utilized in Event 2, and the excess capacity at 

FC3 is utilized in Event 3. Thus, the first unit invested in K3 recovers one order from the vendor 

to the distant FC in all three events with a net benefit of FL – cK. Alternatively, the firm may 

invest one unit in K1 and one unit in K2; this investment recovers one order from the vendor to 

the nearby FC in events 1 and 2 with a net benefit of 2(NL – cK). Thus, the tradeoff is between (1) 

recovering one order from the vendor to the distant FC in three events, and (2) recovering one 

order from the vendor to the nearby FC in two events. If FL + cK > 2NL holds, it means that the 
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firms is better off with the first alternative, thus, invests in K3 up to the point where the region of 

FL disappears. Otherwise, the firm is better off with the second alternative, thus, invests in K1 

and K2 up to the point where the region of NL disappears. 

When FL + cK > 2NL holds, propositions 3.3(c)(i) and 3.3(c)(ii) show that the firm invests in 

the same amount of capacity at FC3 as in Proposition 3.3(b); furthermore, the firms buys 

capacity at either FC1 or FC2 up to an amount such that the functional FCs have sufficient total 

excess capacity to fulfill the entire demand at the nonfunctional FC in both Event 1 and Event 2 

(i.e., vendor shipment is not needed in these two events). However, when FL + cK > 2NL does not 

hold, the firm invests in K1 and K2 as seen in Proposition 3.3(c)(iii). Similar to Proposition 

3.3(c)(i) and 3.3(c)(ii), vendor shipment is not needed in Event 1 or Event 2. However, the total 

capacity expansion given in Proposition 3.3(c)(iii) is greater than that in propositions 3.3(c)(i) 

and 3.3(c)(ii). 

Proposition 3.3(d) presents the same amount of total capacity expansion as in propositions 

3.3(c)(i) and 3.3(c)(ii). Thus, vendor shipment is not needed in Event 1 or Event 2. However, 

unlike proposition 3.3(c)(i) and 3.3(c)(ii), the firm invests in capacity only at FC3. Note that 

vendor shipment is still needed in Event 3. 

Proposition 3.3(e) states that the firm buys capacity at FC3 up to an amount such that FC3 

has sufficient excess capacity to fulfill the total demand at FC1 and FC2 in Event 3 (i.e., vendor 

shipment is not needed in Event 3). This also implies that vendor shipment is not needed in 

Event 1 or Event 2.  

Proposition 3.3(f) states that the firm buys capacity at FC1 and FC2 up to amounts such that 

one can completely recover the demand at the other FC. Thus, vendor shipment is not needed in 

Event 1 or Event 2. However, vendor shipment is still needed in Event 3 since K3
N = 0.  
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Proposition 3.3(g) indicates that the firm makes a maximum amount of capacity investment 

when the cost is less than the marginal benefits. This means that FC1 and FC2 can recover each 

other completely in Event 1 and Event 2, whereas FC3 can recover the total demand at FC1 and 

FC2 completely in Event 3. Thus, no vendor shipment is needed in any event under this 

condition. 

Proposition 3.3 implies that geographic proximity does not anchor the decision on where to 

add capacity when K3
N > 0. In those conditions, the firm is economically better off by adding 

capacity at the distant facilities rather than at a nearby facility.  

3.4.3. Optimal Stage-1 Policies under Risk Aversion 

The risk constraints in stage 2 (see equations (3.6), (3.13), and (3.21)) measure the 

probability of late deliveries exceeding the tolerable amount (βL in Events 1 and 2, and βH in 

Events 3). Late delivery is caused by two factors: (1) the (1 – T) portion of the backup allocation 

from the functional FC(s); and, (2) the vendor shipments. Vendor shipments can be eliminated in 

all events through capacity expansion decisions (i.e., K3 = D1 + D2 + D3 – K3
0 as in propositions 

3.3(e) and 3.3(g)). However, the (1 – T) portion of the backup allocation remains to be late, thus, 

cannot be eliminated through capacity expansion decisions unless T = 1. As a consequence, 

depending on the values of several parameters (e.g. low values of T), the problem may be 

infeasible. The following lemma shows the necessary conditions to guarantee that the problem is 

feasible. The conditions given in this lemma are assumed to hold in the rest of the analysis. The 

values of tL,1–α and tH,1–α denote the realizations of Lt  and Ht  at fractile 1 – α, i.e., P[ Lt  > tL,1–α] = 

P[ Ht  > tH,1–α] = α.   

Lemma 3.2. When K3 = D1 + D2 + D3 – K3
0, (a) Equation (3.6) in Event 1 is satisfied if and only 

if D1(1 – T)tL,1–α/βL ≤ 1 holds; (b) Equation (3.13) in Event 2 is satisfied if and only if D2(1 – 
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T)tL,1–α/βL ≤ 1 holds; (c) Equation (3.21) in Event 3 is satisfied if and only if (D1 + D2)(1 – T)tH,1–

α/βH ≤ 1 holds. Therefore, when these three conditions hold, the problem is feasible.  

From the above lemma, it follows that the risk constraints are never binding when the risk-

neutral stage-1 decisions (K1
N, K2

N, K3
N) can recover all the vendor shipments in all events as in 

propositions 3.3(e) and 3.3(g). Thus, the optimal risk-averse stage-1 decisions (K1
A, K2

A, K3
A) are 

the same as the risk-neutral decisions for the conditions presented in propositions 3.3(e) and 

3.3(g). The remark below summarizes this result. 

Remark 3.1. (K1
A, K2

A, K3
A) = (K1

N, K2
N, K3

N) if NS < NL < cK ≤ FS < FM < FL or NS < cK ≤ {NL, 

FS} < FM < FL or cK ≤ {NS, NL, FS, FM, FL}.   

For the remaining risk-neutral decisions, at least one of the risk constraints may be violated. 

The following proposition identifies the conditions under which each risk constraint is violated. 

Note that Ri,j denotes jth condition for Event i.  

Proposition 3.4. Given the optimal risk-neutral stage-1 decisions (K1
N, K2

N, K3
N):  

(a) The risk constraint (3.6) in Event 1 is violated when   

(i) (K2
N, K3

N) = (0, 0) and R1,1 = [D1 – (K2
0 – D2 + K3

0 – D3)T]tL,1–α/βL > 1; or 

(ii) (K2
N, K3

N) = (0, D1 + D2 + D3 – K3
0 – K1

0) and K1
0 > K2

0 and  

R1,2 = [D1(1 – T) + (K1
0 – K2

0)T]tL,1–α/βL > 1;  

(b) The risk constraint (3.13) in Event 2 is violated when   

(i) (K1
N, K3

N) = (0, 0) and R2,1 = [D2 – (K1
0 – D1 + K3

0 – D3)T]tL,1–α/βL > 1; or 

(ii) (K1
N, K3

N) = (0, D1 + D2 + D3 – K3
0 – K2

0) and K1
0 ≤ K2

0 and  

R2,2 = [D2(1 – T) + (K2
0 – K1

0)T]tL,1–α/βL > 1;  

(c) The risk constraint (3.21) in Event 3 is violated when   

(i) K3
N = 0 and R3,1 = [D1 + D2 – (K3

0 – D3)T]tH,1–α/βH > 1; or 
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(ii) K3
N = D1 + D2 + D3 – K3

0 – K1
0 and R3,2 = [(D1 + D2)(1 – T) + K1

0T]tH,1–α/βH > 1; or 

(iii) K3
N = D1 + D2 + D3 – K3

0 – K2
0 and R3,3 = [(D1 + D2)(1 – T) + K2

0T]tH,1–α/βH > 1.  

If the risk-neutral decisions violate at least one of the risk constraints, then the firm should 

increase at least one of the capacity decisions compared to the risk-neutral benchmark in order to 

comply with the violated risk constraint(s). The following proposition characterizes the capacity 

expansion decisions that are required to comply with the risk constraints. We denote KR,i as the 

minimum total capacity expansion required to comply with the risk constraint in Event i.  

Proposition 3.5. (a) If the risk constraint (3.6) in Event 1 is violated, then the optimal risk-

averse stage-1 decisions (K2
A, K3

A) must satisfy that  

K2
A + K3

A ≥ KR,1 = [1/T][D1 – βL/tL,1–α] – (K2
0 – D2 + K3

0 – D3);  

(b) If the risk constraint (3.13) in Event 2 is violated, then the optimal risk-averse stage-1 

decisions (K1
A, K3

A) must satisfy that  

K1
A + K3

A ≥ KR,2 = [1/T][D2 – βL/tL,1–α] – (K1
0 – D1 + K3

0 – D3);  

(c) If the risk constraint (3.21) in Event 3 is violated, then the optimal risk-averse stage-1 

decision K3
A must satisfy that  

K3
A ≥ KR,3 = [1/T][D1 + D2 – βH/tH,1–α] – (K3

0 – D3).  

In order to keep the analysis focused, we consider the case when the firm uses a single 

tolerable loss amount β such that β = βL = βH. This leads to the result presented in the following 

lemma. 

Lemma 3.3. If βL = βH, then (a) {R1,1, R2,1} < R3,1, R1,2 < R3,2, and R2,2 < R3,3;  

(b) {KR,1, KR,2} < KR,3. 

Lemma 3.3(a) states that the risk constraint (3.21) in Event 3 is the governing risk constraint. 

Lemma 3.3(b) states that the firm’s minimum total capacity expansion required to comply with 
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the risk constraint (3.21) in Event 3 is greater than that to comply with the risk constraints in 

events 1 and 2. Thus, the risk-averse firm should determine the capacity expansion decisions 

based on the governing risk constraint, which is (3.21) in Event 3.  

The following proposition characterizes the optimal risk-averse stage-1 decisions.  

Proposition 3.6. For a risk-averse firm, the optimal stage-1 decisions (K1
A, K2

A, K3
A) are: 

(a) if {NS, NL, FS, FM, FL} < cK, then 

(i) if R3,1 ≤ 1, then (K1
A, K2

A, K3
A) = (K1

N, K2
N, K3

N) = (0, 0, 0); 

(ii) if R3,1 > 1, then (K1
A, K2

A, K3
A) = (0, 0, KR,3);  

(b) if {NS, NL, FS, FM} < cK ≤ FL, then  

(i) if max{R3,2, R3,3} ≤ 1, then  

(K1
A, K2

A, K3
A) = (K1

N, K2
N, K3

N)  
= (0, 0, min{D1 + D2 + D3 – K3

0 – K1
0, D1 + D2 + D3 – K3

0 – K2
0});  

(ii) if max{R3,2, R3,3} > 1, then (K1
A, K2

A, K3
A) = (0, 0, KR,3);    

(c) if FS ≤ NS < {FM, cK} ≤ NL < FL, then 

(i) if FL + cK > 2NL and K1
0 > K2

0, then  

(1) if R3,2 ≤ 1, then (K1
A, K2

A, K3
A) = (K1

N, K2
N, K3

N)  
= (0, K1

0 – K2
0, D1 + D2 + D3 – K3

0 – K1
0); 

(2) if R3,2 > 1, then  

(2.1) if KR,3 ≤ D1 + D2 + D3 – K3
0 – K2

0, then   

(K1
A, K2

A, K3
A) = (0, D1 + D2 + D3 – K3

0 – K2
0 – KR,3, KR,3); 

(2.2) if KR,3 > D1 + D2 + D3 – K3
0 – K2

0, then (K1
A, K2

A, K3
A) = (0, 0, KR,3); 

(ii) if FL + cK > 2NL and K1
0 ≤ K2

0, then  

(1) if R3,3 ≤ 1, then (K1
A, K2

A, K3
A) = (K1

N, K2
N, K3

N)  
= (K2

0 – K1
0, 0, D1 + D2 + D3 – K3

0 – K2
0); 

(2) if R3,3 > 1, then  
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(2.1) if KR,3 ≤ D1 + D2 + D3 – K3
0 – K1

0, then   

(K1
A, K2

A, K3
A) = (D1 + D2 + D3 – K3

0 – K1
0 – KR,3, 0, KR,3); 

(2.2) if KR,3 > D1 + D2 + D3 – K3
0 – K1

0, then (K1
A, K2

A, K3
A) = (0, 0, KR,3);  

(iii) if FL + cK ≤ 2NL, then   

(1) if R3,1 ≤ 1, then  

(K1
A, K2

A, K3
A) = (K1

N, K2
N, K3

N)  
= (D1 + D2 + D3 – K3

0 – K1
0, D1 + D2 + D3 – K3

0 – K2
0, 0); 

(2) if R3,1 > 1, then   

(2.1) if KR,3 ≤ {D1 + D2 + D3 – K3
0 – K1

0, D1 + D2 + D3 – K3
0 – K2

0}, then   

(K1
A, K2

A, K3
A) =  

(D1 + D2 + D3 – K3
0 – K1

0 – KR,3, D1 + D2 + D3 – K3
0 – K2

0 – KR,3, KR,3);   

(2.2) if D1 + D2 + D3 – K3
0 – K1

0 < KR,3 ≤ D1 + D2 + D3 – K3
0 – K2

0, then  

(K1
A, K2

A, K3
A) = (0, D1 + D2 + D3 – K3

0 – K2
0 – KR,3, KR,3);  

(2.3) if D1 + D2 + D3 – K3
0 – K2

0 < KR,3 ≤ D1 + D2 + D3 – K3
0 – K1

0, then  

(K1
A, K2

A, K3
A) = (D1 + D2 + D3 – K3

0 – K1
0 – KR,3, 0, KR,3);  

(2.4) if KR,3 > {D1 + D2 + D3 – K3
0 – K1

0, D1 + D2 + D3 – K3
0 – K2

0}, then  

(K1
A, K2

A, K3
A) = (0, 0, KR,3);    

(d) if NS < {NL, FS} < cK ≤ FM < FL or NS < FS ≤ cK ≤ NL < FM < FL, then      

(i) if min{R3,2, R3,3} ≤ 1, then  

(K1
A, K2

A, K3
A) = (K1

N, K2
N, K3

N)  
= (0, 0, max{D1 + D2 + D3 – K3

0 – K1
0, D1 + D2 + D3 – K3

0 – K2
0}); 

(ii) if min{R3,2, R3,3} > 1, then (K1
A, K2

A, K3
A) = (0, 0, KR,3); 

(e) if NS < NL < cK ≤ FS < FM < FL or NS < cK ≤ {NL, FS} < FM < FL, then  

(K1
A, K2

A, K3
A) = (K1

N, K2
N, K3

N) = (0, 0, D1 + D2 + D3 – K3
0);  

(f) if FS ≤ cK ≤ NS < FM ≤ NL < FL, then     
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(i) if R3,1 ≤ 1, then (K1
A, K2

A, K3
A) = (K1

N, K2
N, K3

N) = (D1 + D2 – K1
0, D1 + D2 – K2

0, 0);  

(ii) if R3,1 > 1, then (K1
A, K2

A, K3
A) = (D1 + D2 – K1

0, D1 + D2 – K2
0, KR,3);  

(g) if cK ≤ {NS, NL, FS, FM, FL}, then   

  (K1
A, K2

A, K3
A) = (K1

N, K2
N, K3

N)  
= (D1 + D2 – K1

0, D1 + D2 – K2
0, D1 + D2 + D3 – K3

0).  

In propositions 3.6(e) and 3.6(g), the governing risk constraint (3.21) never becomes binding, 

and thus, the optimal decisions are the same as the risk-neutral ones (recall Remark 3.1).  

When R3,j ≤ 1 for j  {1, 2, 3}, the governing risk constraint (3.21) is not violated by the risk-

neutral decisions, the risk-neutral decisions remain intact (see Proposition 3.4(c)). This 

corresponds to the conditions given in propositions 3.6(a)(i), 3.6(b)(i), 3.6(c)(i)(1), 3.6(c)(ii)(1), 

3.6(c)(iii)(1), 3.6(d)(i), and 3.6(f)(i). 

In the remaining parts of this proposition, the risk-neutral decisions violate the governing risk 

constraint (3.21), and therefore, the firm needs to set K3
A = KR,3 (> K3

N) in order to comply with 

the risk aversion. Note that, as risk aversion increases (i.e., lower β and/or α), the value of KR,3 

increases. This implies that the firm increases the capacity expansion at FC3 as risk aversion 

increases. One might intuit that the firm should not change the capacity expansion decisions at 

FC1 and FC2 as they are not directly affected by the governing risk constraint (see Proposition 

3.5(c)), and thus, the total capacity expansion should increase as the risk aversion increases. 

However, the following proposition presents the conditions where this intuition is not valid.  

Proposition 3.7. As risk aversion increases, for every unit of increase in FC3 capacity 

expansion, (a) the firm decreases the capacity expansion by one unit at both FC1 and FC2 in 

Proposition 3.6(c)(iii)(2.1); (b) the firm decreases the capacity expansion by one unit at either 

FC1 or FC2 in propositions 3.6(c)(i)(2.1), 3.6(c)(ii)(2.1), 3.6(c)(iii)(2.2), and 3.6(c)(iii)(2.3).  
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The above proposition identifies the conditions where we observe a substitution effect, i.e., 

increasing capacity investment at the farther FC (i.e., FC3) leads to a decrease in capacity 

investment at the nearby FC(s) (i.e., FC1 and FC2). Increasing capacity at FC3 by one unit 

brings a benefit through recovering one unit of vendor shipment by FC3. However, this 

diminishes the benefit provided by the last unit of capacity added at FC1 and FC2, causing an 

overinvestment. Therefore, the firm is economically better off by taking back that expansion at 

FC1 and/or FC2. Mathematically, increasing K3 by one unit decreases the marginal benefit of the 

last unit in K1 and K2 from NL to NS (see Proposition 3.2). Since NS < cK ≤ NL holds in 

Proposition 3.6(c), the firm is better off by taking back the last unit in K1 and K2 for every unit of 

increase in K3 until K1 and K2 reach zero. For the conditions given in Proposition 3.7(a), the rate 

of substitution is two units because both K1
A > 0 and K2

A > 0. For the conditions given in 

Proposition 3.7(b), the rate of substitution is one unit because either K1
A = 0 or K2

A = 0.  

Proposition 3.8. As risk aversion increases, the total capacity expansion (i.e., K1
A + K2

A + K3
A) 

(a) decreases under Proposition 3.7(a); (b) remains the same under Proposition 3.7(b).  

The above proposition describes an intriguing result that increasing the degree of risk 

aversion may lead to a decrease in total capacity expansion. This is highlighted in Proposition 

3.8(a), and the finding relies on the substitution effect described in Proposition 3.7. Let us 

consider the case when the firm prefers making a capacity expansion at both FC1 and FC2 (K1
N 

> 0 and K2
N > 0) but not at FC3 (K3

N = 0) in the risk neutral setting. At a low degree of risk 

aversion, the firm has to make a small amount of investment at FC3 (K3
A = KR,3) to comply with 

the governing risk constraint. However, the firm has to deduct the same amount from the 

investment at both FC1 and FC2 due to the substitution effect. As a consequence, the total 

capacity expansion decreases as risk aversion increases until the investment at either FC1 or FC2 
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drops to zero (either K1
A = 0 or K2

A = 0). At a moderate degree of risk aversion, the firm 

increases investment at FC3 while decreasing investment at FC1 or FC2 (whichever has a 

positive investment amount) as risk aversion increases. At a high degree of risk aversion, the 

firm takes back the entire investments at FC1 and FC2 (K1
A = 0 and K2

A = 0). Thus, increasing 

risk aversion only leads to an increase in investment at FC3. This leads to a non-monotone 

impact on the total capacity expansion in Proposition 3.6(c)(iii)(2): Increasing risk aversion 

(equivalent to increasing KR,3) causes a decrease in the total capacity expansion at low risk 

aversion (i.e., Proposition 3.6(c)(iii)(2.1)), does not affect the total capacity expansion at 

moderate risk aversion (i.e., Proposition 3.6(c)(iii)(2.2) or 3.6(c)(iii)(2.3)), and causes an 

increase in the total capacity expansion at high risk aversion (i.e., Proposition 3.6(c)(iii)(2.4)).  

3.5. Conclusions 

We have examined a firm’s capacity expansion decisions in a delivery supply chain to 

mitigate the negative effects of disruptions. The firm’s risk preference is modeled with a chance 

constraint in the presence of disruption length uncertainty.  

Our work makes five main contributions. First, this study uses capacity planning as a 

proactive measure against supply chain disruptions. Unlike inventory planning which may help 

overcoming some production failures in a manufacturing chain, capacity planning brings agility 

and flexibility to the delivery supply chain. Therefore, it serves as buffer against disruptions.  

Second, our work captures different disruption characteristics by incorporating (1) low-

impact and high-likelihood disruptions, and (2) high-impact and low-likelihood disruptions. This 

provides a more comprehensive analysis of supply chain disruptions.  

Third, we show that geographic proximity does not necessarily serve as an anchor when 

determining the location of capacity expansion. This is an important result because it would 
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motivate establishing an omni-channel backup system for a firm operating multiple channels that 

are not linked to each other.  

Fourth, our work shows that there can be a substitution effect between the capacity decisions 

at the distant facility and the nearby facilities. We characterize the conditions where this effect is 

observed. Furthermore, we find that the rate of substitution decreases as risk aversion increases.  

Fifth, as a further consequence of the substitution effect, we find that the firm’s total capacity 

expansion may decrease as risk aversion increases around low risk aversion. After an initial 

decrease, the total capacity expansion may remain the same at moderate risk aversion that is 

followed by an increase at high risk aversion. This type of non-monotone impact stems from the 

flexibility of the distant facility.  

Our findings have significant implications for our motivating firm as our contingency backup 

recommendations based on an extended version of our stylized model are being implemented at 

the firm. Furthermore, the firm shows interest in initiating an omni-channel backup structure as 

we show that geographic proximity is not necessarily the anchor.  

3.6. Appendix 

Proof of Proposition 3.1.  

(a) ψL,1(B2,1, B3,1 | K2, K3)/B2,1 ≥ 0 and ψL,1(B2,1, B3,1 | K2, K3)/B3,1 ≥ 0 when (D1 – B2,1 – 

B3,1)+ = 0. However, when (D1 – B2,1 – B3,1)+ > 0, we have ψL,1(B2,1, B3,1 | K2, K3)/B2,1 < 

ψL,1(B2,1, B3,1 | K2, K3)/B3,1 < 0 following from c12 < c3 < cV. Thus, the firm first uses B2,1, and 

then B3,1 until (D1 – B2,1 – B3,1)+ = 0 or until the constraints (3.4) and (3.5) become binding.  

(b) ψL,2(B1,2, B3,2 | K1, K3)/B1,2 ≥ 0 and ψL,2(B1,2, B3,2 | K1, K3)/B3,2 ≥ 0 when (D2 – B1,2 – 

B3,2)+ = 0. However, when (D2 – B1,2 – B3,2)+ > 0, we have ψL,2(B1,2, B3,2 | K1, K3)/B1,2 < 
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ψL,2(B1,2, B3,2 | K1, K3)/B3,2 < 0 following from c12 < c3 < cV. Thus, the firm first uses B1,2, and 

then B3,2 until (D2 – B1,2 – B3,2)+ = 0 or until the constraints (3.11) and (3.12) become binding.  

(c) ψH(B3,1, B3,2 | K3)/B3,1 ≥ 0 and ψH(B3,1, B3,2 | K3)/B3,2 ≥ 0 when (D1 + D2 – B3,1 – B3,2)+ 

= 0. However, when (D1 + D2 – B3,1 – B3,2)+ > 0, we have ψH(B3,1, B3,2 | K3)/B3,1 = ψH(B3,1, 

B3,2 | K3)/B3,2 < 0 following from c3 = c3,1 = c3,2 < cV. Thus, the firm uses B3,1 and B3,2 

indifferently until (D1 + D2 – B3,1 – B3,2)+ = 0 or until the constraints (3.18), (3.19), and (3.20) 

become binding.   

Proof of Proposition 3.2. 

The first-order conditions are developed using the optimal stage-2 decisions given in 

Proposition 3.1. Ψ(K1, K2, K3)/K1 = cK follows from Proposition 3.1(b)(i). Ψ(K1, K2, K3)/K1 

= cK – NS follows from Proposition 3.1(b)(ii)(1). Ψ(K1, K2, K3)/K1 = cK – NL follows from 

Proposition 3.1(b)(ii)(2).  

Ψ(K1, K2, K3)/K2 = cK follows from Proposition 3.1(a)(i). Ψ(K1, K2, K3)/K2 = cK – NS 

follows from Proposition 3.1(a)(ii)(1). Ψ(K1, K2, K3)/K2 = cK – NL follows from Proposition 

3.1(a)(ii)(2). 

Ψ(K1, K2, K3)/K3 = cK follows from Proposition 3.1(c)(i). Ψ(K1, K2, K3)/K3 = cK – FS 

follows from propositions 3.1(c)(ii), 3.1(a)(ii)(1) and 3.1(b)(ii)(1). Ψ(K1, K2, K3)/K3 = cK – FM 

follows from one of the following two combinations: (1) Propositions 3.1(a)(ii)(1) and 

3.1(b)(ii)(2); or (2) propositions 3.1(a)(ii)(2) and 3.1(b)(ii)(1). Ψ(K1, K2, K3)/K3 = cK – FL 

follows from propositions 3.1(a)(ii)(2) and 3.1(b)(ii)(2).   

Proof of Lemma 3.1. 

It is trivial that NS < NL and FS < FM < FL. Furthermore, NL < FL and NS < FM following from 

c3 – c12 < cV – c3. Note that NS  FS if and only if NL  FM  where   {>, =, <}. Thus, if NS ≥ FS, 
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then we have FS ≤ NS < FM ≤ NL < FL as presented in part (a). Otherwise, we have NS < {FS, NL} 

< FM < FL as presented in parts (b) and (c).   

Proof of Proposition 3.3. 

(a) {Ψ(K1, K2, K3)/K1, Ψ(K1, K2, K3)/K2, Ψ(K1, K2, K3)/K3} > 0. Thus, (K1
N, K2

N, K3
N) 

= (0, 0, 0).  

(b) Following from Proposition 3.2, for K3 ≤ min{D1 + D2 + D3 – K3
0 – K1

0 – K1, D1 + D2 + 

D3 – K3
0 – K2

0 – K2}, we have Ψ(K1, K2, K3)/K3 = cK – FL ≤ 0. Thus, K3
N = min{D1 + D2 + D3 – 

K3
0 – K1

0 – K1, D1 + D2 + D3 – K3
0 – K2

0 – K2} whereas (K1
N, K2

N) = (0, 0). 

(c) Since we have cK ≤ NL < FL in this condition, the optimal decision depends on whether 

one unit of K3 with a net benefit of FL – cK is more beneficial than that of one unit of K1 and K2 

together with a net benefit of 2(NL – cK). Let us first consider the case when FL + cK > 2NL as in 

parts (i) and (ii), i.e., the firm prefers one unit of K3 over two units of K1 and K2. 

(c)(i) Following from Proposition 3.2, for K3 ≤ min{D1 + D2 + D3 – K3
0 – K1

0 – K1, D1 + D2 + 

D3 – K3
0 – K2

0 – K2}, we have Ψ(K1, K2, K3)/K3 = cK – FL < 0. Thus, K3
N = D1 + D2 + D3 – K3

0 

– K1
0 – K1 since K1

0 > K2
0. Similarly, following from Proposition 3.2, for K2 ≤ D1 + D2 + D3 – 

K3
0 – K2

0 – K3
N = K1

0 – K2
0, we have we have Ψ(K1, K2, K3)/K2 = cK – NL ≤ 0. Thus, K2

N = K1
0 

– K2
0. Consequently, K1

N = 0. 

(c)(ii) Symmetric to part (c)(i) with K1
0 ≤ K2

0. 

(c)(iii) We now consider the case when FL + cK ≤ 2NL, i.e., the firm prefers two units of K1 

and K2 over one unit of K3. Following from Proposition 3.2, for K1 ≤ D1 + D2 + D3 – K3
0 – K1

0 – 

K3
N = D1 + D2 + D3 – K3

0 – K1
0, we have Ψ(K1, K2, K3)/K1 = cK – NL ≤ 0. Similarly, for K2 ≤ D1 

+ D2 + D3 – K3
0 – K2

0 – K3
N = D1 + D2 + D3 – K3

0 – K2
0, we have Ψ(K1, K2, K3)/K2 = cK – NL ≤ 

0. Thus, (K1
N, K2

N) = (D1 + D2 + D3 – K3
0 – K1

0, D1 + D2 + D3 – K3
0 – K2

0) whereas K3
N = 0.   
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(d) First, note that FL + cK > 2NL is always satisfied due to the ranking given in this part. 

Furthermore, we have NL < FM in this condition. This implies that the firm prefers one unit of K3 

over one unit of K1 or K2. Following from cK ≤ FM < FL and Proposition 3.2, for K3 ≤ max{D1 + 

D2 + D3 – K3
0 – K1

0 – K1, D1 + D2 + D3 – K3
0 – K2

0 – K2}, we have Ψ(K1, K2, K3)/K3  {cK – 

FM, cK – FL} ≤ 0. Thus, K3
N = max{D1 + D2 + D3 – K3

0 – K1
0 – K1, D1 + D2 + D3 – K3

0 – K2
0 – 

K2} whereas (K1
N, K2

N) = (0, 0). 

(e) First, note that FL + cK > 2NL is always satisfied due to the ranking given in this part. 

Furthermore, we have NL < FM in this condition. This implies that the firm prefers one unit of K3 

over one unit of K1 or K2. Following from cK ≤ FS < FM < FL and Proposition 3.2, for K3 ≤ D1 + 

D2 + D3 – K3
0, we have Ψ(K1, K2, K3)/K3  {cK – FS, cK – FM, cK – FL} ≤ 0. Thus, K3

N = D1 + 

D2 + D3 – K3
0 whereas (K1

N, K2
N) = (0, 0).        

 (f) We have FM ≤ NL in this condition. This implies that the firm prefers one unit of K1 or K2 

over one unit of K3. Following from cK ≤ NS < NL and Proposition 3.2, for K1 ≤ D1 + D2 – K1
0, we 

have Ψ(K1, K2, K3)/K1  {cK – NS, cK – NL} ≤ 0. Similarly, for K2 ≤ D1 + D2 – K2
0, we have 

Ψ(K1, K2, K3)/K2  {cK – NS, cK – NL} ≤ 0. Thus, (K1
N, K2

N) = (D1 + D2 – K1
0, D1 + D2 – K2

0) 

whereas K3
N = 0.    

(g) Following from cK ≤ {NS, NL, FS, FM, FL} and Proposition 3.2, we have Ψ(K1, K2, 

K3)/K1 ≤ 0 for K1 ≤ D1 + D2 – K1
0; Ψ(K1, K2, K3)/K2 ≤ 0 for K2 ≤ D1 + D2 – K2

0; and Ψ(K1, 

K2, K3)/K3 ≤ 0 for K1 ≤ D1 + D2 + D3 – K3
0. Thus, (K1

N, K2
N, K3

N) = (D1 + D2 – K1
0, D1 + D2 – 

K2
0, D1 + D2 + D3 – K3

0).   
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Proof of Lemma 3.2. 

(a) When K3 = D1 + D2 + D3 – K3
0, we have B2,1

* + B3,1
* = D1 following from Proposition 3.1. 

As a consequence, Equation (3.6) becomes P[D1(1 – T)
Lt  > βL] ≤ α. This is satisfied if and only 

if D1(1 – T)tL,1–α/βL ≤ 1 holds.  

(b) When K3 = D1 + D2 + D3 – K3
0, we have B1,2

* + B3,2
* = D2 following from Proposition 3.1. 

As a consequence, Equation (3.13) becomes P[D2(1 – T)
Lt  > βL] ≤ α. This is satisfied if and 

only if D2(1 – T)tL,1–α/βL ≤ 1 holds.  

(c) When K3 = D1 + D2 + D3 – K3
0, we have B3,1

* + B3,2
* = D1 + D2 following from 

Proposition 3.1. As a consequence, Equation (3.21) becomes P[(D1 + D2)(1 – T)
Ht  > βH] ≤ α. 

This is satisfied if and only if (D1 + D2)(1 – T)tH,1–α/βH ≤ 1 holds.    

Proof of Remark 3.1. 

When NS < NL < cK ≤ FS < FM < FL or NS < cK ≤ {NL, FS} < FM < FL holds, it follows from 

Proposition 3.3(e) that K3
N = D1 + D2 + D3 – K3

0. Similarly, when cK ≤ {NS, NL, FS, FM, FL} 

holds, it follows from Proposition 3.3(g) that K3
N = D1 + D2 + D3 – K3

0. The rest follows from the 

proof of Lemma 3.2.   

Proof of Proposition 3.4. 

(a)(i) When (K2
N, K3

N) = (0, 0), we have B2,1
* = K2

0 – D2 and B3,1
* = K3

0 – D3 following from 

Proposition 3.1. As a consequence, Equation (3.6) is violated if P[[(K2
0 – D2 + K3

0 – D3)(1 – T) + 

(D1 + D2 + D3 – K3
0 – K2

0)]
Lt  > βL] > α. This is equivalent to [D1 – (K2

0 – D2 + K3
0 – D3)T]tL,1–

α/βL > 1. 

(a)(ii) When (K2
N, K3

N) = (0, D1 + D2 + D3 – K3
0 – K1

0) and K1
0 > K2

0, we have B2,1
* = K2

0 – 

D2 and B3,1
* = D1 + D2 – K1

0 following from Proposition 3.1. As a consequence, Equation (3.6) is 



90 
 

 
 

violated if P[[(D1 – K1
0 + K2

0)(1 – T) + (K1
0 – K2

0)]
Lt  > βL] > α. This is equivalent to [D1(1 – T) 

+ (K1
0 – K2

0)T]tL,1–α/βL > 1. 

(b) This is symmetric to Part (a). 

(c)(i) When K3
N = 0, we have B3,1

* + B3,2
* = K3

0 – D3 following from Proposition 3.1. As a 

consequence, Equation (3.21) is violated if P[[(K3
0 – D3)(1 – T) + (D1 + D2 + D3 – K3

0)]
Ht  > βH] 

> α. This is equivalent to [D1 + D2 – (K3
0 – D3)T]tH,1–α/βH > 1. 

(c)(ii) When K3
N = D1 + D2 + D3 – K3

0 – K1
0, we have B3,1

* + B3,2
* = D1 + D2 – K1

0 following 

from Proposition 3.1. As a consequence, Equation (3.21) is violated if P[[(D1 + D2 – K1
0)(1 – T) 

+ K1
0]

Ht  > βH] > α. This is equivalent to [(D1 + D2)(1 – T) + K1
0T]tH,1–α/βH > 1.  

(c)(iii) This is symmetric to part (c)(ii).    

Proof of Proposition 3.5. 

(a) Violating the risk constraint (3.6) implies that D1 – B2,1
* – B3,1

* > 0. Thus, following from 

Proposition 3.1, we have B2,1
* = K2

0 + K2 – D2 and B3,1
* = K3

0 + K3 – D3. In order to comply with 

the risk constraint (3.6), (K2
A, K3

A) must satisfy that 

P[[(K2
0 + K2

A – D2 + K3
0 + K3

A – D3)(1 – T) + (D1 + D2 + D3 – K3
0 – K2

0 – K3
A – K2

A)]
Lt  >βL]≤ α     

which is equivalent to K2
A + K3

A ≥ KR,1 = [1/T][D1 – βL/tL,1–α] – (K2
0 – D2 + K3

0 – D3). 

(b) This is symmetric to part (a).   

(c) Violating the risk constraint (3.21) implies that D1 + D2 – B3,1
* – B3,2

* > 0. Thus, 

following from Proposition 3.1, we have B3,1
* + B3,2

* = K3
0 + K3 – D3. In order to comply with 

the risk constraint (3.21), K3
A must satisfy that 

P[[(K3
0 + K3

A – D3)(1 – T) + (D1 + D2 + D3 – K3
0 – K3

A)]
Ht  > βH] ≤ α 

which is equivalent to K3
A ≥ KR,3 = [1/T][D1 + D2 – βH/tH,1–α] – (K3

0 – D3).   
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Proof of Lemma 3.3. 

The proof follows immediately from βL = βH. Also, note that tH,1–α > tL,1–α due to the first-

order stochastic dominance.   

Proof of Proposition 3.6. 

In parts (e) and (g), (K1
A, K2

A, K3
A) = (K1

N, K2
N, K3

N) following from Remark 3.1. In parts 

(a)(i), (b)(i), (c)(i)(1), (c)(ii)(1), (c)(iii)(1), (d)(i), and (f)(i), (K1
A, K2

A, K3
A) = (K1

N, K2
N, K3

N) 

following from Proposition 3.4(c) and Lemma 3.3. 

In parts (a)(ii) and (b)(ii), K3
A = KR,3 > K3

N following from propositions 3.4(c), 3.5(c) and 

Lemma 3.3. Furthermore, (K1
A, K2

A) = (K1
N, K2

N) = (0, 0) since {NS, NL} < cK.  

In part (c)(i)(2), K3
A = KR,3 > K3

N following propositions 3.4(c), 3.5(c) and Lemma 3.3. 

However, K2
A < K2

N because increasing K3 by one unit shifts Ψ(K1, K2, K3)/K2 from cK – NL ≤ 

0 to cK – NS > 0 for one unit of K2 (see Proposition 3.2). Thus, in part (c)(i)(2.1), K2
A is such that 

K2
A + K3

A = K2
N + K3

N. In part (c)(i)(2.2), however, K2
A reaches zero, and thus, K2

A + K3
A > K2

N + 

K3
N. Note that K1

A = K1
N = 0. Part (c)(ii)(2) is symmetric to part (c)(i)(2). 

In part (c)(iii)(2), K3
A = KR,3 > K3

N following propositions 3.4(c), 3.5(c) and Lemma 3.3. 

However, K1
A < K1

N and K2
A < K2

N because increasing K3 by one unit shifts Ψ(K1, K2, K3)/K1 

from cK – NL ≤ 0 to cK – NS > 0 for one unit of K1, and shifts Ψ(K1, K2, K3)/K2 from cK – NL ≤ 0 

to cK – NS > 0 for one unit of K2 (see Proposition 3.2). Thus, in part (c)(iii)(2.1), K1
A and K2

A are 

such that K1
A + K2

A + K3
A < K1

N + K2
N + K3

N. In parts (c)(iii)(2.2) and (c)(iii)(2.3), either K1
A or 

K2
A reaches zero. In part (c)(iii)(2.4), both K1

A and K2
A reach zero. 

In part (d)(ii), K3
A = KR,3 > K3

N following propositions 3.4(c), 3.5(c) and Lemma 3.3. 

Furthermore, (K1
A, K2

A) = (K1
N, K2

N) = (0, 0) due to NL < FM. 
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In part (f)(ii), K3
A = KR,3 > K3

N following propositions 3.4(c), 3.5(c) and Lemma 3.3. 

Furthermore, (K1
A, K2

A) = (K1
N, K2

N) = (D1 + D2 – K1
0, D1 + D2 – K2

0) due to cK ≤ NS < NL.   

Proof of Proposition 3.7. 

Risk aversion increases by decreasing α and/or β. Decreasing α and/or β lead to an increase 

in K3
A = KR,3. When we have NS < cK ≤ NL, increasing K3 by one unit shifts Ψ(K1, K2, K3)/K1 

from cK – NL ≤ 0 to cK – NS > 0 for one unit of K1, and shifts Ψ(K1, K2, K3)/K2 from cK – NL ≤ 0 

to cK – NS > 0 for one unit of K2 (see Proposition 3.2). Thus, 

(a) when both K1
A > 0 and K2

A > 0, increasing K3
A by one unit leads to one unit decrease in 

K1
A and K2

A each. This corresponds to the case presented in Proposition 3.6(c)(iii)(2.1);  

(b) when either K1
A > 0 or K2

A > 0, increasing K3
A by one unit leads to one unit decrease in 

K1
A or K2

A. This corresponds to the cases presented in propositions 3.6(c)(i)(2.1), 3.6(c)(ii)(2.1), 

3.6(c)(iii)(2.2), and 3.6(c)(iii)(2.3).   

Proof of Proposition 3.8. 

The proof follows immediately from the proof of Proposition 3.7.   
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