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INTRODUCTION 

 

Cancer and the neoplastic cell 

 

Cancer is a class of diseases characterized by the pathological generation 

of abnormal cells.  The cancer begins as a localized growth that may spread 

throughout the body by the circulatory and lymphatic pathways.  The poorly 

regulated cell division is caused by damage to the DNA and to mutations in genes 

that control cell division.  Several mutations are required to turn a cell completely 

neoplastic, meaning that the transition from a normal cell to a cancerous 

(neoplastic) one can be a gradual process sometimes requiring years.  Thus, each 

cancer is the end result of multiple changes within a single cell lineage that have 

taken place during the life of the affected cell or even within the germ line of the 

host.  The critical biological changes within the cell that accompany its neoplastic 

transformation involve an altered response to mechanisms that control cell 

growth, differentiation, and senescence.  Although there are many types of cancer, 

depending on the cell type of origin (connective tissue, hematopoietic tissue, or 

epithelial tissue), each grows and spreads in its own way and causes its own set of 

symptoms.  

Cancer cells have many key behaviors that differentiate them from normal 

cells.  One characteristic of the neoplastic cell is a reduced dependence on signals 

from other cells for its growth, survival, and division. Often, this is because they 

contain mutations in components of the cell signaling pathways through which the 

cells respond to such social cues.  Neoplastic cells also have prolonged survival 

rates and are less prone to kill themselves by apoptosis than non-cancerous cells. 
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This aversion to suicide is often caused by mutations in genes that regulate the 

intracellular death program.  A third characteristic of neoplastic cells is their 

ability to proliferate indefinitely.  Most normal human somatic cells will divide 

only a limited number of times in culture, after which they permanently stop 

because the telomeres on the ends of the chromosomes become too short.  Cancer 

cells typically break through this barrier by reactivating production of the 

telomerase enzyme that maintains telomere length.   

In addition, neoplastic cells are often genetically unstable, because they 

have a greatly increased mutation rate and often have an impaired ability to repair 

damaged DNA.   They can become invasive by changes in cell-adhesion 

molecules that hold normal cells in their proper place, by generating enzymes that 

allow them to invade through tissues, and by acquiring the ability to move.  

Lastly, cancer cells can often survive and proliferate in secondary tissues to form 

metastases, whereas most normal cells do not migrate from their original position 

to other sites in the organism.  

Once cells have converted into the neoplastic phenotype, they can become 

invasive and often even metastatic.  This invasive property allows them to 

penetrate their surrounding normal tissue barriers and move to a new location 

within the body, producing secondary tumors.  This establishment of secondary 

tumors in the body is known as metastasis and proceeds through a clearly defined 

cascade of events.  The first step of the cascade is the enzymatic digestion of the 

basement membrane, which allows the cell access to connective tissue and an 

avenue to detach from the primary tumor (McKinnell et al., 1998).  The ability of 

a cell to detach and move is a fundamental property that malignant cancer cells 

exhibit.  After the cells detach from the primary tumor, they have the ability to 
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move and invade a secondary location.  The invasion of the cell into an adjacent 

tissue depends on the motility of the cell.  Cancer cells can disseminate via 

capillary and lymphatic vessels (McKinnell et al., 1998).  Once inside the 

capillaries, the cancer cells have the ability to adhere to one another, as well as to 

lymphocytes and platelets, forming emboli that can be stabilized by fibrin clotting 

(McKinnell et al., 1998).  The circulating cancer cells can arrest at a secondary 

location and grow at that site completing the dissemination of malignant cells.  

Metastasis of cancer accounts for much of its lethality.  Interruption of any of the 

steps of the cascade has the potential to disrupt the malignant spread and limit the 

malignant pathology.   In cancer, because cell production is not balanced with cell 

loss, the cell population increases in number.   Genetic instability leads to the 

generation of diverse cell variants, some of which may be able to metastasize to 

new locations. The lungs and the liver are the two most common sites for 

metastasis in the human body.  Once in a new site, a cell must again penetrate the 

basement membrane of the blood vessel and establish itself in the new tissue, for 

its own growth and survival. 

 

The Cell Cycle and its Regulation 

 

 The cell cycle is a sequence of duplication and division of the cell.  The 

function of the cycle is to duplicate DNA in the chromosomes and then precisely 

distribute the copies into genetically identical daughter cells. The cell cycle 

includes the manufacturing of DNA synthesis enzymes, the doubling of DNA, the 

synthesis of mitosis proteins, and then mitosis--the cell division. The period 

between one M phase (mitosis and cytokinesis) and the next M phase is called 
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interphase.  Interphase is divided into the remaining three phases of the cell cycle.  

The cycle begins with G
1
 and ends each round with a doubling of the cell.  The G

1
 

phase is the first of the four stages of the cell cycle in which new organelles are 

synthesized and DNA synthesis enzymes are manufactured.  This phase is 

remarkably longer than other phases because the daughter cells remain in G
1
 until 

they receive a stimulus to enter the S phase (Alberts et al., 2004).  The S phase is 

the synthesis stage in which nuclear DNA is replicated.  At the end of this stage, 

the cell contains two complete sets of DNA.  The G
2
 phase follows the S phase 

and is a relatively short, pre-mitotic phase.  Through internal biochemical 

changes, RNA and other specialized proteins are produced that will aid in the 

process of mitosis.  The M phase is the final stage of the cell cycle and is a 

continuous process of cell division.  However, it can be divided into four sub-

phases that are marked by unique events. 
 The first event of mitosis occurs in prophase, in which the chromatin is 

transformed into chromosomes, with each chromosome composed of a pair of 

filaments called chromatids (Alberts et al., 2004).  Also during prophase, the 

nuclear membrane disappears.  During metaphase, the second phase of mitosis, 

the chromosomes align between the centrioles at the equatorial plate.  They are 

positioned in such a way that when the chromatids separate, each daughter cell 

will have a complete set of chromosomes.  Anaphase, the third phase, is marked 

by the separation of the sister chromatids and the formation of two daughter 

chromosomes, in which each chromosome is pulled toward the pole that it faces.  

The contractile ring also assembles during anaphase.  During the final stage of 

mitosis, telophase, the two sets of daughter chromosomes arrive at the poles of the 

spindle, the nuclear membrane reforms, the chromatin expands, and the cytoplasm 
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divides.  It is this stage in the process, when the cytoplasm divides, that is the 

focus of my research.  This step, called cytokinesis, includes the furrowing of the 

cell, in which the contractile ring pinches off to place one nucleus in each cell.  

With the accomplishment of this step, two new daughter cells identical to the 

parent cell have been formed.   

 Progress through the cell cycle is achieved by two different cell cycle 

control mechanisms.  These two mechanisms ensure correct advancement through 

the cell cycle by regulating the cell cycle machinery.  The first type of control 

involves a series of phosphorylations by kinase enzymes and dephosphorylations 

by phosphatases that activate or inactivate proteins and complexes that initiate 

and regulate phases of the cell cycle.  These kinases that participate in 

phosphorylation combine with cyclins to become enzymatically active.  The 

activation/de-activation of these cyclin-kinase complexes trigger and help time 

various cell cycle events (Alberts et al., 2004).     

A second type of cell cycle regulation is checkpoint control.  It is not an 

essential part of the cell cycle, but is more supervisory.  Specific checkpoints 

throughout the cycle sense flaws in critical events of the cycle.  If one of the steps 

is delayed, or a flaw is detected, such as abnormal size, the control system will 

delay the activation of the next steps until the intracellular and extracellular 

conditions are favorable (Collins et al., 1997).  There are two such checkpoints in 

the cell cycle that serve as molecular brakes.  The first checkpoint lies in the G
1
 

phase and detects damage of the DNA.  If the cell arrests in this phase, the cell 

has time to repair the damaged DNA before replicating it in the S phase.  Another 

important cell-cycle checkpoint occurs in mitosis to ensure that all of the 

chromosomes are appropriately attached to the mitotic spindle.  If not all of the 
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chromosomes are attached to the spindle, the cell could proceed through mitosis 

with the chromosomes unevenly segregating to the poles of the cell.  With both of 

these checkpoints in the cell cycle, mutations and potential damage can be 

averted.  Thus, the cell cycle’s control system regulates and monitors the 

completion of critical events and can delay the progression, if necessary.  

There are also additional checkpoints within the cell cycle, independent of 

the regulation of cell cycle machinery, which control such things as the actin 

cytoskeleton.  According to Nakaseko and Yanagida (2001), cells have the ability 

to keep track of their actin cytoskeleton; if it is defective, the mitotic spindle 

during mitosis will become incorrectly oriented and the cell will suppress 

subsequent phases of cell division.  The mitotic spindle, which serves to move the 

duplicated chromosomes apart during mitosis (Alberts et al., 2004), has its own 

separate checkpoint, which has been previously mentioned. Though defects in the 

mitotic spindle are associated with a checkpoint of the actin cytoskeleton, the two 

checkpoints are independent.  What and how the actin cytoskeleton checkpoint 

monitors has not been completely determined.  It is known that this checkpoint 

has the ability to block normal separation of sister chromatids, which can halt 

progression in the cell cycle, until the organization is correct.  However, not much 

is known about the exact mechanism by which actin affects the spindle 

orientation.   It has been proposed that when the actin-based cytoskeleton 

becomes damaged or disorganized, this somehow results in the spindle becoming 

misoriented, which in turn activates the Sty1/Spc1 protein (Nakaseko and 

Yanagida, 2001).  The Sty1/Spc1 protein is a mitogen-activated protein kinase 

that phosphorylates another protein called Atf1, which is involved in a stress-

activated protein kinase pathway.  While the exact mechanism for this is not 
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known, it is clear that this stress-activated pathway is a key component of the 

actin-dependent mitotic checkpoint.  The ultimate result of this pathway is a 

failure to segregate the duplicate chromosomes, which like any other checkpoint, 

delays cell division until the organization becomes corrected.   

Cell volume is additionally regulated and controlled by specific pathways 

and points in the cell cycle.  In eukaryotic cells, growth is regulated by 

extracellular growth factors in both gap phases, G
1
 and G

2
, of the cell cycle.  

While there is no definite cell-size checkpoint, there is a system that regulates and 

maintains cell size that is related to the process of S phase initiation (Cooper, 

2004).  It has been proposed that mammalian cells initiate S phase and DNA 

replication at some relatively constant cell size (initiation mass), coupled with 

relatively invariant S and G
2 
phase times and variant interdivision times.  Thus, 

the cell cycle age at initiation of S phase will occur earlier and earlier within the 

cell cycle as the growth rate of a cell increases (or as the interdivision time 

decreases), because the cell has quickly reached the proposed initiation mass.  

Because of this, faster growing cells will have a relatively short G
1 
phase and 

become larger than average cells, making the faster growing cells divide sooner 

because they reach the initiation mass earlier. In addition, smaller than average 

cells will delay initiation until the initiation mass is achieved.  A cell that initiates 

S phase earlier in the cell cycle will have more time to increase its total mass prior 

to division, and conversely, smaller cells will delay initiation of S phase to allow 

for mass increase before the actual cell division.  According to Cooper, this 

finding suggests that normal cells must operate some sort of checkpoint in order 

to maintain a constant average cell size; the checkpoint ensures that a cell does 

not continue to grow after a certain size, until after division. While this cell-size 
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checkpoint operates to prevent cells from getting progressively bigger and bigger, 

there is presumably another checkpoint that prevents division from occurring 

before the cells have reached an adequate size, in order to prevent them getting 

progressively smaller. 

 

Cytochalasin B 

 

 Cytochalasin B is an alkaloid metabolite of the mold Helminthosporium 

dematiodeum produced by mold to kill off bacteria.  It is known to inhibit a wide 

variety of cellular movements including cytokinesis, cell locomotion, cytoplasmic 

streaming, blood clot retraction, and movements associated with developmental 

processes (Lin et al., 1973).  Brown and Spudich (1981) reported that 

cytochalasins inhibit the rate of actin assembly.  Lin, Santi, and Spudich showed 

earlier that cytochalasin B inhibits actin assembly by causing a decrease in the 

intrinsic viscosity of actin, and an altering in the morphology of the actin 

filaments, as shown in muscle and blood platelets (Lin et al., 1973).  They also 

suggested that there could be a possible cytochalasin B receptor on actin 

microfilaments.  Because they were able to show that there is a concentration 

dependence on binding of cytochalasin B to different types of cells, they 

concluded that there are at least two types of binding site for cytochalasin B, as 

shown by their results using bovine platelets, HeLa cells, bovine red blood cells, 

D. discoideum amoebae, and A. aereogenes cells (Lin et al., 1973).   Lin, Santi, 

and Spudich (1973) named these sites high and low affinity-binding sites.  

Flanagan and Lin next observed that in fact, filamentous actin (F-actin), and not 

globular actin, contained such high affinity cytochalasin B binding sites (Flanagan 
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and Lin, 1980).  This F-actin lies at the end of the filament where assembly takes 

place, blocking the assembly end (Brown and Spudich, 1981).   In our lab, we are 

making use of these observations and the previous research done on cytochalasin 

B to induce U937 leukemia cells into multinucleation.  Multinucleation is the 

process by which the actin microfilaments in cytokinesis are disrupted, resulting 

in a cell accumulating more than one nucleus.  

 

Manipulation of the cell cycle’s regulation: induction into multinucleation 

 

 Normal cells have key checkpoints in the cell cycle that signal the cell to 

either delay progression until any abnormalities are corrected, or to continue 

through the cycle with no interruption.  If cytochalasin B was used on a 

population of normal, non-neoplastic cells, the cells would halt at the second 

checkpoint and direct the cell to stop dividing.  This is due to the fact that 

cytochalasin B prevents normal cells from entering the cell cycle because it 

disrupts the actin microfilament cytoskeleton. The control system of the cell cycle 

will delay the activation of the next steps, and the cell will stop dividing 

mitotically in order to correct the shape and integrity of the actin cytoskeleton 

before allowing entry back into the cell cycle (Law and Reed, 1995).   In some 

neoplastic cells, on the other hand, actin microfilament disruption induced by 

cytochalasin B does not prevent cell cycle entry, but after completion of the cell 

cycle and nuclear replication, the absence of a functional actin cytoskeleton does 

prevent cytokinesis. The neoplastic cells have lost the key mechanism for 

controlling entry into the cell cycle, and multinucleation will result.  The 

neoplastic cell will go into the cell cycle and make DNA, but will not be able to 
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split into separate cells, thus creating multinucleation and enlargement of the 

cells.  Thus while normal cells exit the cell cycle and enter a G
0
 (resting) state, 

neoplastic cells continue nuclear division, become extremely enlarged and heavily 

multinucleated, and are also likely to contain elevated numbers of mitochondria 

per enlarged cell.   

We hypothesize that enlarged cells containing high levels of DNA and 

high mitochondrial contents may enter apoptosis more readily when they 

experience DNA or mitochondrial damage than will cells with normal amounts of 

DNA and mitochondria.  This could occur because the enlarged cells have more 

targets per cell for damage by DNA-directed agents or by agents damaging 

mitochondria. We further hypothesize that enlarged leukemia cells may be more 

susceptible to physical damage than are normal-sized leukemia cells because of 

the increased cytoplasmic volume retained by a plasma membrane with weakened 

internal cytoskeletal support.   In our research, we have found that U937 human 

promyleocytic leukemia cells that have been treated with cytochalasin B become 

heavily multinucleated, containing as many as eight or more nuclei depending on 

the length of treatment time.  U937 leukemia cells were chosen for this study for 

two main reasons.  The first characteristic of these cells that makes them ideal for 

our experiments is the fact that they do not adhere to one another, making them 

easy to count and individually to size.  Also, the U937 leukemia cells have the 

ability to grow in suspension, rather than attached to the plastic culture flask, 

again making them easier to count and size reliably.  With a high number of 

nuclei in one single cell, we think that the internal cytoskeletal support might 

weaken, and propose that sonication of the multinucleated cells may make them 

more susceptible to apoptosis-induction.  
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Ultrasound-induced cavitation 

   

 In medicine, ultrasound has been a widely used and well-established 

diagnostic and therapeutic technique for many years (Liu et al., 1998).  

Ultrasound is commonly used for soft tissue imaging because of its perceived 

safety, noninvasiveness, and low cost (Feril Jr. and Kondo, 2004).  Ultrasonic-

imaging, which uses high-frequency low-intensity ultrasound, is used to scan 

organs and visualize their size and structure.  This type of ultrasound does not 

damage the skin or sonicated organs.  At somewhat greater intensities, ultrasound 

can be used therapeutically to heat tissues deep within the body. On the opposite 

end of the frequency spectrum, low frequency and high intensity focused 

ultrasound is often used in lithotripsy, a procedure used to break up kidney stones 

within the body so that they can pass without the need for surgery (Liu et al., 

1998). 

Medical ultrasound has many other applications, including cancer therapy, 

which involves the process of acoustic cavitation (Feril Jr. and Kondo, 2004).  

Acoustic cavitation is the process by which high intensity acoustic fields in 

liquids lead to the creation and oscillation of cavities or gas bubbles (Liu et al., 

1998).   Acoustic cavitation has been shown to increase the permeability of cell 

membranes.  This form of cavitation has been used to permeabilize cell 

membranes, making it easier for materials to enter the cells without damaging 

them (Lee et al., 2004).  Others have shown that ultrasound transiently disrupts 

cell membranes facilitating the loading of drugs and genes into viable cells 

(Cochran and Prausnitz, 2001).   
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The goal of my laboratory use of ultrasound is not for drug delivery.  

Rather, it is to determine whether there is a sonic sensitivity of cells enlarged by 

treatment with cytochalasin B that might be exploitable as a potential modality in 

leukemia therapy.  Using acoustic cavitation, we have developed procedures with 

the potential to differentially target the enlarged U937 leukemia cells created by 

treatment with cytochalasin B possibly increasing their sonic sensitivity in 

comparison with untreated control cells.  This physical treatment may be 

applicable to enhancing the cytotoxic effects of microfilament agents in treatment 

of leukemia in pre-clinical animal models. 
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METHODS 

 

Cytochalasin B enlargement of U937 leukemia cells 

 
U937 leukemia, a human promyleocytic cell line, was used in this work.  

Cells were seeded at 5.0 x 10
4 
cells/ml in 20% fetal bovine serum in Iscove’s 

medium supplemented with 2% of 10,000 units penicillin and 10 mg 

streptomycin, 0.5% gentamicin sulfate, and 2 mM glutamine.  The cells were 

treated with cytochalasin B at concentrations ranging from 1.25 µM to 2.1 µM 

and were allowed to proliferate and enlarge for thirty-six hours.  After thirty-six 

hours, the cytochalasin B-treated cells were spun down in a 50 ml centrifuge tube.  

The tube consisted of 30 ml of cells placed carefully on top of 20 ml of phosphate 

buffered saline medium (PBS) at 37˚C.  The tube was spun for two and a half 

minutes at 20 G.   The size distribution and cell number of the enlarged, 

multinucleated cells were determined with a hemocytometer using the trypan blue 

dye exclusion test procedure and with a Model Z1 Beckman-Coulter Particle 

Counter for both the supernatant and precipitate.  This procedure is outlined 

below.  Figures 1 and 2 below show (without trypan blue) a population of control 

U937 leukemia cells in a hemocytometer at 100X as well as after treatment with 

cytochalasin B. 
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Figure 1: A population of un-treated control U937 leukemia cells. 

 

 

 

 

 

 

 

 

Figure 2: A population of cytochalasin B treated U937 leukemia cells. 

 
 
Filtration and separation of cells 

 
 The precipitated enlarged CB-treated cells were then filtered through 

nylon mesh sieve to separate the enlarged, multinucleated cells from the 

unenlarged, mononuclear cells.  A 4.5 cm filter was used fitted with 20 µ nylon 

mesh for the sieve.  A 12.5 ml aliquot of cell suspension was added to the sieve 

and was then allowed to filter until the flow of the cell suspension through the 

filter slowed to one drop a minute.  The filtrate was then removed and saved in a 
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25 ml tube to later determine its size distribution.   The trapped cells on the sieve 

were re-suspended and washed in 5 ml of warm equilibrated medium.  Ten ml of 

additional cell suspension was added to the sieve and was filtered as above.  The 

trapped washed cells were re-suspended once again after the second 10 ml was 

filtered.  The filtrate and trapped cells were counted and sized using the 

hemocytometer and Coulter Counter.  Both of these procedures are outlined 

below.     

 Results from this separation procedure (see Results) provided experience 

with ways to improve the separation of the enlarged cells from normal sized cells.    

The filtration procedure was improved based on my results with the 20 µ nylon 

mesh separation.  Dr. Thomas Fondy designed a cell separation procedure to 

better separate the enlarged, multinucleated cells from the mononucleated cells 

for use in the sonication experiment below.  For this separation procedure, U937 

leukemia cells were seeded at 3.4 x 10
4 
cells/ml in 20% fetal bovine serum in 

Iscove’s medium and were treated with cytochalasin B at a concentration of 1.25 

µM and allowed to proliferate and enlarge for thirty-six hours.  Twenty-four ml of 

the cells were centrifuged on top of 30 ml of warm PBS in a 50 ml centrifuge tube 

at 20 G for 3 minutes.  The upper 40 ml were removed and saved and the bottom 

10 ml fraction was saved as the 20G precipitate.   

A 19 µ nickel porated sieve was placed inside a crystallizing dish and cold 

sterile PBS was added to 0.5 cm above the top of the sieve.  The 10 ml fraction 

from the 20G precipitate was added to the sieve and was allowed to settle in a 

refrigerator for 30 minutes.  The upper fraction from the sieve (46 ml of cells in 

PBS suspension) was recovered.  Ten additional ml of PBS was added to the sieve 



 

 

16 

and the 46 ml recovered was re-sieved and allowed to settle in a refrigerator for 

30 minutes.  From atop the sieve, 60 ml was recovered and saved as the trapped 

fraction and 42 ml was recovered from the bottom of the sieve and saved as the 

filtrate.  The trapped fraction was centrifuged in two 50 ml centrifuge tubes at    

20 G for 3 minutes.  The upper 30 ml from each tube was removed, which left 

500 µl in the bottom of the two tubes.  To the 500 µl, 5 ml of 20% FBS in 

Iscove’s medium was added to both tubes and they were combined to give a total 

of 11 ml.  Ten ml was taken to form the final trapped fraction, which was diluted 

with 11 ml of 20% FBS in Iscove’s medium to give 21 ml of 1.95 X 10
4
 viable 

cells/ml for use in the sonication experiment.   

  
 
Ultrasonic disruption 

 
 

Once the cells had been separated through use of the sieve, the cells were 

then subjected to ultrasound.  To create the ultrasound delivering apparatus, an 

Omega pro lab timer was connected to an E/MC model 250 ultrasonic bath 

cleaner with a measured mean output of 0.77 watts (see Appendix E).  The 

ultrasound bath was filled with 250 ml of distilled water at 37˚C.  A ring stand 

was also used to hold the tubes exactly at the focus point of the sonicator.  

Trapped cells were suspended at 2.0 x 10
9
 viable cells/ml in 20% FBS with 

Iscove’s medium.  Two ml aliquots were placed in 8 ml sterile tubes (100 mm x12 

mm).  The tubes were then sonicated at 0, 2, 4, 6, 8, and 10 seconds and were 

done in duplicate.  Un-enlarged and untreated leukemia cells at 2.0 x 10
4
 viable 

cells/ml were used as the control and were sonicated at the same lengths of time 

as the CB-treated trapped fraction, as well as being done in duplicate.  Each tube’s 
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sample was gently re-suspended and was placed in the water so the 2 ml sample 

was completely submerged.  After all of the tubes had been sonicated, samples 

were taken from each tube for hemocytometer counts to determine cell viability 

and re-growth (see procedure below).   

 

Determining cell viability 

 

 Determining cell viability of the U937 population was done using a trypan 

blue dye exclusion test coupled with a hemocytometer.  Trypan blue is one of 

several stains used in this method, which is based upon the principle that viable 

cells do not take up the dye whereas non-viable cells do.  This occurs because 

cells with an intact membrane are able to exclude the dye while cells without an 

intact membrane take up the trypan blue.  Therefore, all cells that exclude the dye 

are scored as viable.  The test was performed by mixing 50 µl of cell suspension 

with an equal amount of 0.4% trypan blue stain in isotonic saline.  After the stain 

was added, the solution was mixed thoroughly and 12 µl of the mixture was 

transferred to each of the two counting chambers of a hemocytometer.    By 

means of a light microscope, the cells were recorded as either small (<20 µ) or big 

(>20 µ) in size using the eyepiece reticle, and whether they were viable or not.  

Using a trypan blue viability form created in Microsoft Excel and developed by 

Dr. Thomas Fondy (see Appendix A), the total percent viability and cell size were 

calculated for the population.  Figure 3 below shows an example of a slide that 

contains both enlarged, multinucleated cells and un-enlarged cells, and that have 

either taken up or excluded the dye. 
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Figure 3: A population of viable and non-viable cytochalasin B treated 

U937 leukemia cells.  

 
 
Measuring cell size 

 

 The size distribution of the cell suspension was determined using the 

Coulter Counter.  The Coulter Counter is an instrument designed to analyze 

particle size by calculating the measurable changes in electrical resistance 

produced by nonconductive particles suspended in an electrolyte.  Using a small 

round-bottomed cuvette, 1 ml of cell suspension was added to 14 ml of isotone for 

a dilution factor of 15.  A blank was also prepared with 15 ml of isotone and was 

run first before the samples to ensure that the background particle count was low.  

The instrument was set at a desired particle threshold to obtain the number of cells 

that are equal to or bigger than the setting (for example, ≥19 µ finds the total 

number of cells that are at least 19 µ.)  The aperture tube was flushed between 

each analysis and the sample was gently stirred with a glass rod to evenly re-
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suspend the cells, but to avoid damaging the cells or getting air bubbles.  A 0.5 ml 

sample was counted.  The cell number per ml was determined by multiplying the 

particle count by 2 and by the dilution factor.  Dr. Thomas Fondy developed 

Coulter Count forms using Microsoft Excel (see Appendix B), which allowed us 

to determine the number of cells at each increasing micron from 10 µ to 30 µ and 

also calculate the percentages of cells of various diameters.   

  
 
Determining nuclear content 
 
 

 The number of nuclei in a cell was determined by DAPI (4', 6-Diamidino-

2-phenylindole) staining techniques.  The DAPI stain was used because it could 

form fluorescent complexes with natural double-stranded DNA.  The procedure 

involved mixing 1 ml of cells at a density of 1x10
5 
cells/ml with 0.5 ml of 10% 

formalin solution. Formalin was used because it has the ability to kill and fix the 

cells so that they would maintain their shape and structure without loss of nuclear 

content.  The cells were left in the formalin overnight, and the next day the 

suspension was centrifuged for 90 seconds at 1,500 RPMs, or 500 G.  Care was 

taken not to exceed 2,100 RPM because this may damage the cellular integrity.  

The cells appeared as a small pellet on the bottom of the microfuge tube.  The 

supernatant was removed and 5 µl of DAPI (concentration 1 µg /µl) was added to 

the pellet.  After being carefully mixed, 5 µl of the cells in the DAPI suspension 

were added to a slide and the slide was sealed with a cover slip.  Under a 

fluorescent microscope, the number of nuclei in each cell was recorded.  Figures 4 
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and 5 show visual differences in the number of nuclei seen in both small, 

mononuclear U937 cells and enlarged, multinucleated U937 cells. 

 

 

 

 

 

 

 

 

 

 

Figure 4: U937 leukemia cells that have been enlarged and multinucleated by 

treatment with cytochalasin B.  
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Control mononucleated U937 leukemia cells. 
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RESULTS  

 

Separation of the enlarged, multinucleated cells 

  

The effectiveness of the separation technique using the 20 µ nylon mesh 

sieve was determined by measuring the percentage of all trapped •19 19 µ cells in 

comparison with the percentage of all •19 19 µ cells in the unseparated population 

and in the nylon mesh filtrate.  The percentages of total cells sieved that were 

recovered in the trapped and filtrate fractions were determined in a recovery 

analysis.   The dye exclusion viability and extent of multinucleation were 

determined for the trapped fraction.  The cell sizing and counting were done using 

a Coulter Counter and hemocytometer (see Methods).  Before the cell suspension 

was sieved, the proportion of cells that were •19 19 µ was 67%, as seen in Table 1 

and Figure 6, and the trypan blue viability was 77%.  After the filtration, the 

proportion of cells •19 19 µ in the filtrate was reduced to 52%.  This population was 

74% of the total sieved.  The trapped cells showed 44% of the cells were •20 20 µ.  A 

Coulter count at 19 µ was not done for the trapped cells.  The trapped portion 

showed 82% trypan blue viability.  Of the viable cells, 93% were enlarged      (•20 20 

µ).  Thirteen percent of the total cells sieved were recovered in the trapped 

fraction.  The total recovery in the filtrate and trapped fractions was 87%.  This 

data can be seen in Table 1 below.           
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Table 1:  20 µµµµ Nylon Mesh Separation of CB-Treated U937 Leukemia Cells 

               (1.0 µM CB, 3 days, 10% FBS Medium) 
 

Fraction Volume 

(ml) 

Total 

Cells/ml 

(in 104 

units) 

Total 

Cells (in 

104 units) 

Recovery       

(%) 

Trypan 

Blue 

Viability 

Cells 15 µµµµ to 

19 µµµµ (% of 

Total) 

Cells >19 

µµµµ (% of 

Total) 

Cells 

>25 µµµµ 

(% of 

Total) 

Unseparated 
 

22.5 1.8 40.5 100 77% 33 67 26 

Filtrate ~30 1.0 30 74.1 ----- 48 52 19 

Sieve 
Trapped 

~13 0.4 5.2 12.8 82% 56 44 37 

 

 The trapped fraction from the sieve contained a higher percentage of the 

biggest cells (>25 µ) than the filtered fraction, as seen in Table 1 and Figure 6.  

Thus, the nylon mesh sieve did preferentially trap the bigger enlarged cells.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Percent of total cells >14 µµµµ of the unseparated CB-treated U937 

leukemia cells and the trapped and filtered fractions after sieve separation. 
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Ultrasonic disruption of the U937 leukemia cells 

 

 To determine whether there was a sonic sensitivity in cells treated with 

cytochalasin B, control U937 cells and CB-treated U937 cells, taken from the  

>19 µ trapped fraction after separation, were exposed in duplicate to ultrasound at 

a power of 0.77 watts for varying lengths of time, specifically, 0, 2, 4, 6, 8, and 10 

seconds (only one tube was exposed to 10 seconds).  The data for the CB-treated 

cells can be seen in Appendix C.  (The controls are not listed.)  Data are shown 

for 0, 2, 4, 6, 9, and 11 days post-sonication; however, both CB-treated tubes 

sonicated at four seconds and the single CB-treated tube sonicated for ten seconds 

could not be counted at 11 days due to mold growth.  In addition, one tube at four 

seconds and one tube at ten seconds for the controls had mold growth by day 9, so 

the data used is only for one tube at day 9.  The controls reached confluency by 

day 6 and the CB-treated cells reached confluency by day 11, so the effect of late-

stage mold growth in these tubes is of minor importance.   

In the regrowth counts for the CB-treated enlarged cells, by day 9, the 

proportion of cells that were >19 µ were between 2% and 14%.  By day 11, no 

viable big cells were seen in the 0, 2, 6, and 8 second tubes, the tubes that had no 

mold growth.  This can be seen in Figure 7. 
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Figure 7: Percent of Big Cells Post Sonication. 

 

As seen in Figure 7 and Appendix C, the percent of the total enlarged, big 

cells for the CB-treated tubes decreased overall as a function of the length of time 

(in days) post-sonication.  As the number of elapsed days after sonication 

increased, the initial viable big cells either died or may have turned into small 

cells due to cell division.  By day 9, the average percent of trypan blue positive 

(dead) enlarged cells was 58%, compared with 11% for day 2.  The few viable big 

cells seen on day 9 could have been mitotic cells that were dinucleated and 

enlarged; normal U937 leukemia cells typically have around 3% of their cells 

enlarged due to mitosis.   

 After the tubes were sonicated at their respective time intervals on day 0, 

the initial day 0 counts were determined as the initial reference point for later 

regrowth counts, and also to determine whether sonication affected cell size 

distribution, especially in the enlarged CB-treated tubes.  As seen in Figure 8, 

there was a fairly consistent effect on the number of big viable cells per milliliter 
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immediately after sonication.  While the number of big cells per milliliter did 

decrease from 0 seconds of sonication (i.e. no sonication) to 6 seconds and they 

increased again from 6 to 10 seconds of sonication, showing no clear trend.  

However, combining all nine sonicated tubes versus the non-sonicated, 0 second 

tubes shows an average of a 71% decrease of big viable cells per milliliter as a 

result of sonication, suggesting that there was an effect. 

   

 

 

 

 

 

 

 

Figure 8: Viable Big Cells Immediately After Bath Sonication. 

 

In addition to decreasing the proportion of big viable cells, sonication also 

affected the subsequent growth rate of the CB-treated cells.  The cell counts at 

day 2, most notably, seem to show that the growth of the viable cells was 

progressively inhibited by increasing the time of sonication.  This can be seen 

more clearly in Table 2, which tabulates the number of cells per milliliter on day 

two as a function of the amount of sonication.  The growth rate of the cells does 

decrease as the amount of sonication is progressively increased, reaching a 

maximum 76% retardation of growth at six seconds.   
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Table 2:  Day 2 Regrowth Counts showing the retardation in the growth rate 

 
 
Amount of Sonication  

(secs) 

Viable cells/ml  

in 10^4 units 

% of 0 secs growth rate 

 

Amount of growth rate  

retardation (%) 

0 6.56 ------- 
-------- 

2 6 91 
9 

4 4.78 73 
27 

6 1.56 24 
76 

8 2 30 
70 

10 3.56 54 
46 

 

Figures 9 and 10 show logarithmic plots of the concentration of viable 

cells from the CB-treated tubes and for the control cells for different amounts of 

sonication.  Comparing the two figures, there seems to be a retardation in growth 

rate for the CB-treated tubes that persisted throughout the period of observation.  

Both the non-sonicated CB-treated cells and the non-sonicated control cells grew 

to confluency, but the control cells reached this point roughly four days earlier 

(day 6) than the CB-treated cells (~day 11).  This delay in reaching confluency 

shows that enlarged purified CB-treated cells retain viability, but have a lower 

growth fraction and/or a longer cycling time than control U937 cells exhibit. This 

is consistent with cloning efficiency determinations by Dr. Thomas Fondy where 

the control U937 cells show 50% cloning efficiency, while the trapped cells show 

a cloning efficiency of 5% to 8%.     
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Figure 9:  Regrowth of the U937 CB-Treated Small Cells after Bath 

Sonication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Regrowth of the U937 Leukemia Control Cells after Bath 

Sonication. 
The most clear cut evidence of a retardation in growth rate related to the 

amount of sonication can be seen by averaging together the means for 0 and 2 
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seconds and comparing these results to the comparable average means for 6 and 8 

seconds.  (Performing these averages improves the statistical significance of the 

result.)  In Figure 11 which plots the growth after sonication of the control 

leukemia cells, there is no statistically significant difference between the average 

of the means of the number of viable cells per milliliter of the 0 and 2 second 

tubes versus the average of the means of the 6 and 8 second tubes.   

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Regrowth after Sonication of Control U937 Leukemia Cells, 

0 & 2 secs vs 6 & 8 secs Tubes. 

 

However, when the same comparison is made with the CB-treated 

leukemia cells in Figure 12, a statistically significant difference can be seen 

between the means of the 0 and 2 second data versus the means of the 6 and 8 

second data, based on t-tests that were performed on the data for each observation 

time.  The differences on days 2 and 6 are statistically significant at  p-value= 
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0.005 and p-value= 0.02, respectively (Day 2 t-statistic=4.09, Day 6 t-

statistic=3.04, df= 6).  Days 4 and 9 are not statistically significant.  Data at day 

11 was not included due to mold growth, which lessened the sample size.   

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 12: Regrowth after Sonication of CB-Treated U937 Leukemia Cells,  

0 & 2 secs vs 6 & 8 secs Tubes. 
 

 

Figure 13 plots the total number of dead control U937 leukemia cells as a 

function of days post-sonication.  Examining this figure, and excluding day 11, 

there seems to be no effect of sonication on the control cells after day 0 since the 

percent of dead cells remains approximately constant as a function of time at all 

levels of sonication.  (On day eleven, all the samples show an elevated count of 

dead cells, perhaps because the cells had been at or near confluency for five days.)  

There does, however, seem to be initial damage on the controls, evident by the 

high percentages of trypan blue positive cells on day 0.  Nevertheless, the highest 

percentages of dead cells are in the 2, 8, and 10 second tubes, which only had 11, 
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20, and 24 cells counted in the hemocytometer for 18 fields each, respectively.  

(On later days, there was not a problem of a small sample size because the counts 

were much larger.)  Thus, sonication might have had an initial effect on the 

control cells, but since the samples are so small, it is hard to tell if the effect is 

real.  If it is, it disappeared by day 2 once the cells began growing toward 

confluency.   

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Percent of Total Dead Control U937 Leukemia Cells as a Function 

of Days Post-Sonication. 
 

The percent of CB-treated dead cells seen in Figure 14 shows a distinct 

difference in the pattern of dead cells compared to the viability of sonicated 

control cells.  Although the CB-treated cells were initially damaged immediately 

after sonication, just as the controls were, beginning at day four, the percent of 

dead CB-treated cells for 8 and 10 seconds of sonication does seem to increase 

and stay relatively higher than the non-sonicated CB-treated cells.  Thus, there 
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does seem to be a slight dose-dependent effect for the sonicated CB-treated cells 

that was not seen in the sonicated control cells.  This higher death rate is also 

consistent with the lower growth rate of the CB-treated cells seen previously in 

Figure 9.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Percent of Total Dead CB-Treated U937 Leukemia Cells as a 

Function of Days Post-Sonication. 
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DISCUSSION AND CONCLUSION 

 

 

Separation of the enlarged, multinucleated cells 
 
 

A great deal has been learned from our separation experiments and we 

have utilized some new ideas to enhance our methods of filtration and purification 

of enlarged multinucleated cells.  In the separation experiment we performed 

using the 20 µ nylon mesh sieve, the trapped fraction contained approximately a 

52:44 ratio of small and big cells, respectively.  Since >50% of the trapped 

fraction was still composed of cells <19 µ, the 20 µ sieve trapped a substantial 

proportion of cells smaller than 20 µ.  This large percentage of small cells trapped 

by the filter may have resulted because big cells blocked the filter holes so the 

small cells could not flow through.  We observed that the cells collected around 

the edges of the mesh filter and were able to obstruct passage.  Some cells larger 

than 20 µ passed through the nylon mesh.  Big cells that were not trapped by the 

filter may have gone through the filter because of its range of hole sizes (20 ± 7 µ) 

or because they were physically forced through it by net hydrodynamic flow.  

Since the big cells have disrupted actin microfilaments, they are likely to be 

deformable.   

The separation technique was a bit more effective for cells that were 

roughly • 25  25 µ since the trapped fraction contained a larger percentage of 25 µ 

cells than the filtrate did, as seen in Figure 6.  The filtration method was most 

effective for the largest of the big cells (30 µ).  Although the trapped fraction only 

contained 44% enlarged and multinucleated cells, the experiment suggested 

modifications to our sieving procedures that were in fact highly effective.  We 
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have modified many different aspects of the method in developing our improved 

procedure (see Methods) to enhance and maximize the purification.   

The first modification we made is probably the most important change in 

regards to how the cells behave during filtration.  We had previously noticed that 

when the cells were added to the filter, the big cells were forced through the filter 

by hydrodynamic flow.  There also seemed to be many holes in the filter that were 

blocked, suggesting occlusion and termination of flow.  We now allow the cells to 

settle through a continuous volume of phosphate buffered saline while filtrating 

with no net hydrodynamic flow, rather than letting them simply drip through the 

filter in a flowing medium.  To do this, we use a crystallizing dish as a holder and 

place the sieve within it.  With a continuous liquid volume around the sieve, no 

cells are forced through and have the chance to settle through the filter on their 

own with no pressure involved.  Before adding the cells, the sieve is submerged in 

PBS until the liquid level is roughly 1 cm above the top of the sieve.  Once the 

cells are added and begin to settle through the medium, there is no net flow 

through the filter and there is less of a chance for the big cells to be pushed 

through by heavier cells above them. We did observe in the microscope that the 

trapped cells bounced up and down above the sieve perforations and did not 

occlude them.   

Following the adaptation to the sieve apparatus, it occurred to us that the 

procedure could be further improved if it were possible to partially separate the 

cells before they were applied to the sieve.  To do this, we began centrifuging the 

cell suspension at different forces and durations to see what combination gave the 

optimal separation of big and small cells in the precipitate and supernatant.  After 

experimenting with centrifugation of the cells, it was determined that a speed of 
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200 RPM, or 20 G, was the ideal force for a period of 2 minutes.  By centrifuging 

the cells before they are added to the filter, we can preferentially leave the small 

cells behind and concentrate the precipitate with big, multinucleated cells.  Once 

the concentrated cell suspension is added to the filter, it would also be easier to 

see the direct effect of the sieve on the multinucleated cells if there were fewer 

small cells present in the initial cell population added to the sieve. 

Another modification to the filtration method we made was unit gravity 

sedimentation of the cells before they are applied to the filter. The cell suspension 

is first added to a syringe attached with a leur lock valve and then room 

temperature PBS is added on top of the suspension to give the cells a medium to 

settle in.   The syringe is then inverted to allow the big cells to settle near the 

plunger, and then the syringe is re-inverted so that the small cells are closest to the 

leur lock valve.  By doing this we can initially separate the cells inside the 

syringe, thus allowing the small cells to come out first after the syringe is re-

inverted and followed by the bigger cells.  We believe that this could help 

improve the efficacy of the separation by allowing the small cells to pass through 

the sieve without being occluded by big cells.  This unit gravity separation using a 

syringe can be used in conjunction with the centrifugation, or by itself, to 

preferentially separate the cells before filtration. 

Another adjustment we made to our procedure was in the filter that was 

used to separate the cells.  The filter originally used was a 20 µ nylon mesh sieve 

followed later with a 20 µ stainless steel mesh sieve.  These filters had margins of 

error of about ± 7 µ.  Thus, there was no guarantee that every perforated hole was 

exactly 20 µ.  Since many of the holes may have been bigger than expected, this 
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could be the reason why some of the big cells were not trapped by the filter.  After 

researching sieves and materials, we found a nickel electroporated sieve that 

promised to give better purification results.  Because the sieve is made by an 

electroporating process that forms uniform holes in a nickel plate, rather than by 

weaving nylon or stainless steel mesh, it has a smaller margin of error (± 2 µ).  

The sieve also has round apertures (round holes) that are not possible with woven 

nylon threads or stainless steel wires.  This provides uniform round perforations 

rather than rectangular openings to enhance purification.      

In addition, we also think that the big cells might have been pushed 

through the filter because the room temperature PBS made the cells’ cytoskeleton 

plastic and allowed the cells to deform without actually rupturing.  To modify this 

and make the cells remain rigid, we now conduct the sieve purification at 4˚C.  

Lastly, we have observed that when adding cold PBS to the sterile sieve, bubbles 

could collect underneath it.  If this happened, many holes of the sieve were 

blocked and unable to let cells flow through them, as evidenced by microscopy. 

We now sterilize the sieve in distilled water to keep it wet.  Before sieving the 

cells, we pour off the water and add cold PBS to the sieve in the crystallizing dish 

tipped to one side.  This prevents any air bubbles from blocking the underside of 

the sieve.  With all these modifications made, our procedure has allowed us to 

produce a population of CB-treated U937 leukemia cells that are 94% •19 19 µ cells.   

 
 
 
Ultrasonic disruption of the U937 leukemia cells 
 
 

In our work, we attempted to exploit the enlarged size, weakened 



 

 

36 

cytoskeleton, and consequent increase in membrane fragility of CB-treated cells 

versus control cells in producing increased sonic damage to CB-treated leukemia 

cells.  Previously, Dr. Thomas Fondy had found that Coulter counts showed a 

shift in size distribution of the CB-treated cells to smaller cells post-sonication 

(see Appendix D).  In the present study, we have observed a similar effect of 

sonication on cell size (Figure 7).  We also found that there was a statistically 

significant inhibition of growth in sonicated CB-treated cells at two and six days 

post-sonication in comparison with CB-treated cells not sonicated or given two 

seconds of sonication.  However, further experiments would need to be completed 

to determine whether the growth inhibition and shift in size distribution found in 

the CB-treated cell population is reproducible and different from the effects of 

sonication on the control U937 leukemia cells. 

Based on t-tests that were performed to assess whether the average means 

of the number of viable cells per milliliter for the combined 0 and 2 seconds data 

were statistically different from the combined 6 and 8 seconds data, we can say 

with 99.5% confidence that the average means of the 0 and 2 second data at day 2 

for the sonicated CB-treated cells were statistically different from the average 

means of the 6 and 8 second data on the same day.  In addition, the difference 

between the average means at day 6 was statistically significant at the 98% 

confidence level.  Although the difference between the two data sets on day 4 was 

not statistically significant (p-value= 0.10), the data shows that there was a true 

retardation effect on the growth rate of the CB-treated cells by the sonication.   

Since there was no statistically significant difference seen on any day for the 

control data, we can be reasonably confident that there is a difference in sonic 

sensitivity of CB-treated enlarged cells in comparison with control U937 
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leukemia cells.   

In addition, we observed that the percent of viable big cells was reduced as 

additional days passed following the sonication, compared to non-sonicated CB-

treated tubes.  Since the percentage of trypan blue positive big cells remained at 

around 10% or higher for up to six days, it is likely that sonication killed some of 

the enlarged CB-treated cells or split them into smaller cells.  Viable enlarged 

cells would be expected to divide in the absence of CB.  This is consistent with 

the reduction in cell size distribution as a function of sonication seen on day 0. 

In our experiment we took data only every second day, and there was a 

three-day interval after day 6.  It would improve the experiment if counts were 

taken at shorter intervals in order to determine when in fact, all the big viable cells 

disappear for each length of time that the tubes were sonicated.   With more 

readings at shorter time intervals, an exact point of complete big cell 

disappearance could be determined, which could make it easier to see if there 

really is a clear effect that correlates with the amount of sonication.  In addition, 

the big cells should be observed individually by microscopic analysis to 

determine the proportion that are dividing and returning to normal-sized leukemia 

cells (i.e. are clonogenic) versus the proportion that have been killed by sonication 

(i.e. are not clonogenic).  With more refined observations of individual cells, we 

could determine what is causing the big cells to be depleted in number.  

The cells from the CB-treated population showed a four-day delay in 

growth compared to the control cells.  It appears, though, that they grew similarly 

to the control cells after that, both reaching a point of confluency, although the 

control cells reached that point roughly four days earlier than the CB-treated cells.  

Despite the shift in growth rate, the small cells seemed to behave like the control 
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cells that were never treated with CB.  Whether they really do resemble control 

cells in other features is not known.  Since the cycle time in 20% FBS medium is 

about 18 hours, a four-day difference in growth rate represents 5.3 doublings.  

This indicates an 80% difference in cell viability or a slower cell cycle time for 

the CB-treated enlarged, purified cells versus the control U937 leukemia cells.   

Other characteristics of these CB-treated small cells would be of interest 

as well.  For instance, do they resist becoming enlarged when treated with a 

second exposure to CB or do they represent a distinct sub-population of U937 

cells with some innate feature that prevents them from enlarging and 

multinucleating?  Even though the leukemia cells all come from the same U937 

human promyleocytic cell line, stable sub-populations could exist that respond 

differently to CB.  U937 leukemia forms several different types of differentiated 

hematopoietic cell clones in agarose that could arise from different cell sub-

populations.  Further experiments into the properties of these cells need to be 

performed in order to fully understand their differences.    

One significant problem that was encountered in the experiment was mold 

contamination in a few tubes at the late stages of regrowth.  If initial mold growth 

began as early as day 6 but did not become evident until day 9, the mold growth 

could affect results in certain tubes showing anomalous growth.  Agarose cloning, 

by Dr. Thomas Fondy, of the 23 tubes showed mold growth in only two of the 

tubes, and this growth appeared 15 days after seeding, demonstrating that mold 

contamination on day 0 was not a problem.  Contamination could have been 

introduced into some regrowth tubes during the process of multiple sampling on 

days 2, 4, 6, and 9.  Without late stage mold contamination in some tubes, the 

experiment could have been followed for additional days.  However, the key 
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observations had already been made by day 9, so late stage mold growth in some 

tubes was apparently only of minor consequence.  

One major limitation of our experiment was that we performed the 

sonication with an ultrasonic bath cleaner designed to clean laboratory 

instruments.  In future experiments, it would be best to use a more reliable source 

of ultrasound that has a power output that can be modulated and can provide 

consistent levels of acoustic cavitation.  We calculated the power output of the 

ultrasound bath using Fourier’s law of thermal conduction based on the 

temperature difference caused by the sonication and the amount of time sonicated 

(see Appendix E).  Using a more precise instrument with a known power output 

and cavitation that can be varied would be costly, but it would make the results 

more reliable and allow us to investigate sonic effects at levels less than 0.77 

watts that were employed in the current experiment. This would permit a test of 

longer sonication times without raising the temperature to the point where thermal 

effects directly destroy the cells.  If the intensity of the ultrasound could be varied 

in a systematic way, it might also be possible to find the threshold intensity for 

immediate disruption of the large cells.  

Overall, the data demonstrate some effects that correlate directly with the 

amount of sonication that was applied to the CB-treated U937 leukemia cells and 

that were not displayed in the control cells.  Two examples are the statistically 

significant inhibited growth rate at days 2 and 6 as well as a difference in the non-

sonicated versus sonicated CB-treated cells with respect to the percent of trypan 

blue dead cells.  One way to definitively demonstrate an effect would be to look 

for a level of sonication that has a clear-cut effect on the controls and compare 
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that to effects on the CB-treated cells.  It is hypothesized that if a strong enough 

amount of sonication is used for a long period of time, all cells would be killed.  

 If a differential effect of sonication on the CB-treated cells in comparison 

with non CB-treated leukemia cells can be confirmed, this could potentially 

introduce ultrasound as a physical modality in leukemia treatment. The sonication 

could be combined with other physical and chemical modalities to potentially 

enhance and increase the cytotoxic effects of microfilament agents in treatment in 

pre-clinical animal models.  For example, we are proposing that sonication may 

have enhanced effects on enlarged CB-treated cells under hyperthermic 

conditions, in hypotonic medium, or if the cells are treated with microtubule-

directed agents that may render the enlarged cells even more sensitive to sonic 

cavitation. 
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Appendix A 

 
 Cell Viability form 
 
 
Trypan Blue Cell 

Counting Form                     

Cell Reading Date:  Raw Correct  Raw Correct  Raw Correct  Raw Correct         

Conditions:  Count/ Count/ Cells/ Count/ Count/ Cells/ Count/ Count/ Cells/ Count/ Count/ Cells/ Total Raw Total Total Total % % 

 Fields Fields Fields 0.1 Fields Fields 0.1 Fields Fields 0.1 Fields Fields 0.1 Raw Cts Correct Cells/ Viable Viable Viable 

 Count Count Count mm3 Count Count mm3 Count Count mm3 Count Count mm3 Cts/ Add Count/ 0.1 Cells/  Cells 

X Cells/0.1mm3 = X 

cellx10E4/ml TB- TB- TB- TB- TB- TB- TB+ TB+ TB+ TB+ TB+ TB+ Fields Check Fields mm3 0.1  Big 

Sample Being 
Counted  Large Large Large Small Small Small Large Large Large Small Small Small Count  Count  mm3   

1                     

2                     

3                     

4                     

5                     

6                     

7                     

8                     

9                     

10                     

11                     

12                     

13                     

14                     

15                     
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Appendix B  
  

   Coulter Count form 
 
 

Coulter 

Gate

Mean 

Isotone 

Counts

Sample 

Counts 

Reading 1

Sample 

Counts 

Reading 2

Sample 

Counts 

Reading 3

Sample 

Mean 

Counts

Cts - 

Isotone

Step - Next 

Step 

% of Cells 

13u or 

greater

Number of 

Cells 

(Count X 2 

X Dilution 

Factor

10 u

12 u

13 u

14 u

15u

16u

17 u

18 u

19 u

20 u

22 u

24 u

26 u

28 u

30 u

Sum 13 u or greater:

Sum 13 to 18 u 

Sum 19 to 28 u

Total Cells 13 u or Greater/ml (in 10E4 units)
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Appendix C  
  

Raw Data for the Sonication of the CB-Treated U937 Leukemia  

Cells taken from 19 µ Steel Mesh Separation (1.25 µM CB, 36 hours, 20% 
FBS Medium) 

 

Tube # of Viable 

Small Cells

% Total Viable 

Big
0 9 3 12 75

2 18 41 59 32

 0 secs 4 17 70 87 20

6 7 125 132 6

9 2 129 131 2

11 0 89 89 0

0 4 10 14 29

2 23 31 54 47

 2 secs 4 10 39 49 22

6 17 94 111 16

9 2 184 186 1

11 0 88 88 0

0 3 4 7 43

2 12 31 43 26

4 secs 4 4 39 43 10

6 6 66 72 9

9 9 202 211 5

11 ----- ----- ----- -----

0 2 5 7 29

2 4 10 14 31

6 secs 4 11 24 35 31

6 4 50 54 6

9 5 188 193 3

11 0 63 63 0

0 5 1 6 75

2 3 15 18 17

8 secs 4 2 20 22 7

6 5 52 57 9

9 6 181 187 3

11 0 95 95 0

0 10 3 13 77

2 5 27 32 15

10 secs 4 14 38 52 27

6 12 128 140 9

9 1 183 184 1

11 ----- ----- ----- -----

Days after 

Sonication

# of Viable Big 

Cells

# of Total 

Viable Cells
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Appendix D  

 
 Distribution of cell sizes post-sonication 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix F 

 
Power Output for the Sonicator Bath 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix E 
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  Power Output for Sonicator Bath 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V
V C T

P
t

ρ ∆
=  

 
 
P= Output power 

ρ=density of water = 1 g/ml 
V=volume in test tube = 2 ml 

Cv = specific heat of the water at constant volume = 4.186 J/(g°C) 
T=temperature difference 
t = time sonicated 

Power Output for Sonicator Bath

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12

Seconds of Sonication

W
a

tt
s 

(±
 S

td
 E

rr
o

r)

n = 5

2 ml Distilled Water in

8 ml in 10 mm Diameter Tube.

250 ml Distilled Water in Bath

Mean for n = 25; 0.768

Range: 0.42 to 1.05

Std Dev: 0.166

Std Error: 0.033
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