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ABSTRACT

The field of wireless systems has long been an active research area with various appli-

cations. Recently much attention has been given to multi-mission wireless systems that

combine capabilities including information sensing, data processing, energy harvesting as

well as the traditional data communication. This dissertation describes our endeavor in ad-

dressing some of the research challenges in multi-mission wireless systems, including the

development of fundamental limits of such multi-mission wireless systems and effective

technologies for improved performance.

The first challenge addressed in this dissertation is how to handle interference, which

is encountered in almost all wireless systems involving multiple nodes, an attribute shared

by most multi-mission systems. To deepen our understanding on the impact of interfer-

ence, we study a class of Gaussian interference channels (GICs) with mixed interference.

A simple coding scheme is proposed based on Sato’s non-naïve frequency division. The

achievable region is shown to be equivalent to that of Costa’s noiseberg region for the

one-sided Gaussian interference channel. This allows for an indirect proof that this simple

achievable rate region is indeed equivalent to the Han-Kobayashi (HK) region with Gaus-

sian input and with time sharing for this class of Gaussian interference channels with mixed

interference.

Optimal power management strategies are then investigated for a remote estimation

system with an energy harvesting sensor. We first establish the asymptotic optimality of

uncoded transmission for such a system under Gaussian assumption. With the aim of mini-

mizing the mean squared error (MSE) at the receiver, optimal power allocation policies are

proposed under various assumptions with regard to the knowledge at the transmitter and the

receiver as well as battery storage capacity. For the case where non-causal side information

(SI) of future harvested energy is available and battery storage is unlimited, it is shown that



the optimal power allocation amounts to a simple ‘staircase-climbing’ procedure, where the

power level follows a non-decreasing staircase function. For the case where battery storage

has a finite capacity, the optimal power allocation policy can also be obtained via standard

convex optimization techniques. Dynamic programming is used to optimize the allocation

policy when causal SI is available. The issue of unknown transmit power at the receiver is

also addressed. Finally, to make the proposed solutions practically more meaningful, two

heuristic schemes are proposed to reduce computational complexity.

Related to the above remote sensing problem, we provide an information theoretic for-

mulation of a multi-functioning radio where communication between nodes involves trans-

mission of both messages and source sequences. The objective is to study the optimal

coding trade-off between the rate for message transmission and the distortion for source

sequence estimation. For point-to-point systems, it is optimal to simply split total capacity

into two components, one for message transmission and one for source transmission. For

the multi-user case, we show that such separation-based scheme leads to a strictly subopti-

mal rate-distortion trade-off by examining the simple problem of sending a common source

sequence and two independent messages through a Gaussian broadcast channel.

Finally we study the design of a practical multi-mission wireless system - the dual-use

of airborne radio frequency (RF) systems. Specifically, airborne multiple-input-multiple-

output (MIMO) communication systems are leveraged for the detection of moving targets

in a typical airborne environment that is characterized by the lack of scatterers. With uni-

form linear arrays (ULAs), angular domain decomposition of channel matrices is utilized

and target detection can be accomplished by detection of change in the resolvable paths

in the angular domain. For both linear and nonlinear arrays, Doppler frequency analysis

can also be applied and the change in frequency components indicates the presence of po-

tential airborne targets. Nonparametric detection of distribution changes is utilized in both

approaches.
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CHAPTER 1

INTRODUCTION

1.1 Background

The field of wireless systems has been one of the most vibrant research areas for over a

century, starting around 1896 when Marconi made the first demonstration of his wireless

telegraph machine for the British government. Since then, many types of wireless systems

have flourished, including but not limited to cellular networks, radar systems, communica-

tion satellites, etc.

Driven by an explosively increasing demand, the research thrust over the past few

decades has led to a richer set of perspectives and tools on how to design wireless systems

that simultaneously perform multiple missions. For example, wireless sensor networks

that integrate the technologies of information sensing, data processing and transmission

are widely applied [1–4]. Some of them operate on energy harvested from the environment

through various sources such as solar cells and vibration absorption devices [5–7]. There

has been an increasing interest in designing systems involving multi-functioning electro-

magnetic nodes as well. For example, passive radars that leverage the existence of radio

waves for communications have attracted much attention in recent years [8–10]. Also, there

have been existing radar systems that have integrated communication capability [11–14].
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Fig. 1.1: A multi-mission wireless system.

Another example is the WiFi positioning systems which provide indoor localization ser-

vice based on measurement of the intensity of the WiFi signals [15–17]. Fig. 1.1 shows

an example of a multi-mission wireless system that combines various functions including

sensing, communication and energy harvesting, etc.

In many of the current wireless systems, interference is inevitable as communication

networks have evolved dramatically in terms of both size and data rate and multiple users

often need to share, hence contend for, a common medium. It is thus essential to under-

stand the impact of interference on system performance and to explore technologies for

effective interference management. In most existing systems, interference is dealt with ei-

ther by interference avoidance where the communication links are orthogonalized in time

or frequency, or by treating interference as noise, often assisted by power control at the

transmitters. These approaches are typically not optimal, and often lead to the loss of de-

grees of freedom.

In Chapter 2, we consider the interference channel (IC) which is a basic model for

studying the theoretical limits of communication rate with interference. It mathemati-
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cally abstracts the situation when multiple transmitters communicate with their intended

receivers while generating interference to unintended receivers. Specifically, we propose a

simple coding scheme for a class of Gaussian interference channels (GICs) with mixed in-

terference and prove that it is equivalent to the Han-Kobayashi (HK) region with Gaussian

input and with time sharing, which is the largest achievable region for the class of GICs.

Another challenge for designing wireless systems has to do with power management.

Recent developments in hardware design have empowered many wireless networks to sup-

port themselves by harvesting energy from nature through various sources such as solar

cells, vibration absorption devices, among others, and store excess energy for future use.

Unlike traditional battery-powered systems, where transmission is often subject to a con-

stant power constraint, the energy available to an energy harvesting system typically fluctu-

ates in time and is often modeled as a random process. This introduces additional difficulty

in system design, and in particular, how to allocate power across time for improved system

performance.

In Chapter 3 we consider a remote estimation system with the transmitter powered by

energy harvesting devices. The central question we try to answer is how to determine

transmit power across time under various assumptions as to what is known at the transmit-

ter and/or receiver: whether the transmitter has non-causal side information (SI) of future

harvested energy, whether the battery has unlimited storage capacity, and whether the re-

ceiver knows the transmit power a priori. The clairvoyant case, namely the transmitter has

non-causal knowledge of future harvested energy, the battery capacity is infinite, and the

receiver knows the exact transmit power, serves as a benchmark for performance compari-

son. We will then replace these idealized assumptions with more realistic ones and provide

solutions to power allocation under each scenario. Performance evaluation will be con-

ducted to identify conditions under which the optimal performance in terms of minimum

mean square error (MMSE) with realistic assumptions is close to that of the clairvoyant

case, therefore providing guidance on system design. Heuristic schemes are also proposed
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to alleviate the computational burden.

Following discussions on interference and power management, we present in Chapter

4 a simple information theoretic formulation for multi-mission wireless systems. Specifi-

cally, we consider communication systems where simultaneous transmission of messages

and source sequences is required. Using primarily Gaussian channels as examples, the cen-

tral question we address is the following: is it optimal to treat the channel as simply a bit

pipe where message and source encoding divide up the bandwidth? For the point to point

system, we show that this is indeed the case. That is, the optimal scheme simply splits the

total channel capacity into two components, one for message communication and the other

for source transmission. The same conclusion, however, no longer holds for multi-user sys-

tems. Using a simple Gaussian broadcast channel example, we show that such a separation

approach will lead to a strictly suboptimal rate-distortion trade-off.

As a practical application of such multi-mission wireless systems, we then consider in-

tegration of sensing capability into airborne multiple-input-multiple-output (MIMO) com-

munication systems. While MIMO communications is known to be the most promising

technologies for improving the spectral efficiency of wireless communications, there ex-

ist significant challenges in adopting MIMO communications in an airborne environment.

Chief among them is the lack of scatterers in airborne RF channels which appears to limit

the potential of MIMO - channel matrices may not support the intended capacity gain where

communication channels are dominated by the line-of-sight (LOS) components. However,

it was pointed out in [18] that the lack of scattering can be largely compensated by the large

aperture of the airborne transceivers. This phenomenon is reminiscent of the distributed an-

tenna arrays in [19, Chapter 7] which lead to significant capacity gain even with only LOS

between antenna elements at the transmitter and the receiver.

The fact that an airborne radio frequency (RF) environment is scarce in scatterers has

actually opened up opportunities for expanding functions of the MIMO RF asset. Specifi-

cally, the presence of an airborne target may alter the transmission channels, as reflected in
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various domains depending on the target characteristics. As such, by prudent processing at

the receiver, one may be able to extract useful information of airborne targets which often

act as strong reflectors/scatterers of the MIMO channel; such expanded functions can often

be accomplished without compromising the communication task at hand. In Chapter 5,

we investigate the dual-use of airborne MIMO and propose target detections methods that

exploit the scarcity of scatterers in an airborne environment.

1.2 Thesis Organization

The main contributions of this dissertation are presented as follows.

In Chapter 2, a simple encoding scheme based on Sato’s non-naïve frequency division

is proposed for a class of Gaussian interference channels with mixed interference. The

achievable region is shown to be equivalent to that of Costa’s noiseberg region for the

one-sided Gaussian interference channel. This allows for an indirect proof that this simple

achievable rate region is indeed equivalent to the Han-Kobayashi (HK) region with Gaus-

sian input and with time sharing for this class of Gaussian interference channels with mixed

interference.

In Chapter 3, optimal transmit power allocation strategies are proposed for a remote

estimation system, where energy can be harvested from the environment and buffered in a

battery for future use. We first establish the optimality of uncoded transmission for such

a system. With the aim of minimizing the mean squared error (MSE) at the receiver, two

types of side information available to the transmitter are considered: causal SI (energy har-

vested in the past) and non-causal SI (energy harvested in the past, present and future). For

the case where non-causal SI is available and battery storage is unlimited, it is shown that

the optimal power allocation amounts to a simple ‘staircase-climbing’ procedure, where the

power level follows a non-decreasing staircase function. For the case where battery storage

has a finite capacity, the optimal power allocation policy can also be obtained via standard
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convex optimization techniques. Dynamic programming is used to optimize the allocation

policy when causal SI is available. The issue of unknown transmit power at the receiver is

also addressed. Finally, to make the proposed solutions practically more meaningful, two

heuristic schemes are proposed to reduce computational complexity.

In Chapter 4, we consider a wireless system with multi-functioning radios: communi-

cation between nodes involve transmissions of both messages and source sequences. For

point-to-point systems, this amounts to a simple trade-off between message transmission

and source transmission: an optimal strategy is to split total capacity into two components,

one for message transmission and one for source transmission as long as the message and

the source sequence are independent of each other. For the multi-user case, we show that

this is no longer the case by examining the simple problem of sending a common source

sequence and two independent messages through a Gaussian broadcast channel.

Chapter 5 investigates the dual-use of airborne MIMO. In addition to communications,

received signals are also used for target detection that exploits the scarcity of scatterers

in an airborne environment. Nonparametric target detection methods are proposed based

on peak detection as well as Euclidean distance between sample observations in transform

domains. For the case of uniform linear arrays, informative statistics are obtained through

estimation of angular domain channel matrix. For the case of nonlinear arrays, parameters

are selected based on Doppler frequency analysis on the received signal.
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CHAPTER 2

THE HAN-KOBAYASHI REGION FOR A

CLASS OF GAUSSIAN INTERFERENCE

CHANNELS

2.1 Channel Model And Literature Review

Interference channel models a scenario where multiple transmitters communicate with their

intended receivers in a shared medium while generating interference to the unintended

receivers. A two-user GIC in its standard form can be represented as

Y1 = X1 + bX2 + Z1,

Y2 = aX1 +X2 + Z2,

(2.1)

where X1 and X2 are the input signals and are subject to respective power constraints P1

and P2; Y1 and Y2 are the received signals; Z1 and Z2 are Gaussian noises of unit variance

and are independent of the inputs X1 and X2. This model is depicted in Fig. 2.1.

Despite decades of intensive research, the characterization of the capacity region for

a two-user interference channel is an open problem except for the strong and very strong
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interference cases [20–22]. To date, the largest achievable rate region is the celebrated Han-

Kobayashi region that employs rate splitting at the transmitters and simultaneous decoding

at the receivers [22]. The general HK region is defined as

RHK = closure of
⋃

Z∈P(Z)

R(Z) (2.2)

where P(Z) is the set of all Z = QU1W1U2W2X1X2Y1Y2 ∈ P(Z) such that

• U1,W1, U2,W2 are conditionally independent given the time sharing random variable

Q, where ‖ Q ‖≤ 11;

• X1 = f1(U1W1|Q), X2 = f2(U2W2|Q) where fi is an arbitrary deterministic func-

tion for i = 1, 2;

• p(y1y2|x1x2) is the channel transition probability.

In Eq. (2.2),R(Z) is the set of all achievable (R1, R2) such that

R1 = S1 + T1

R2 = S2 + T2,

and S1, T1, S2, T2 are defined in [22, Eq. (3.2) - Eq. (3.15)] which are included as follows

S1 ≤ I(U1;Y1|W1W2Q)

T1 ≤ I(W1;Y1|U1W2Q)

T2 ≤ I(W2;Y1|U1W1Q)

S1 + T1 ≤ I(U1W1;Y1|W2Q)

S1 + T2 ≤ I(U1W2;Y1|W1Q)

T1 + T2 ≤ I(W1W2;Y1|U1Q)

S1 + T1 + T2 ≤ I(U1W1W2;Y1|Q)
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S2 ≤ I(U2;Y2|W1W2Q)

T2 ≤ I(W2;Y2|U2W1Q)

T1 ≤ I(W1;Y2|U2W2Q)

S2 + T2 ≤ I(U2W2;Y2|W1Q)

S2 + T1 ≤ I(U2W1;Y2|W2Q)

T1 + T2 ≤ I(W1W2;Y2|U2Q)

S2 + T1 + T2 ≤ I(U2W1W2;Y2|Q).

Not surprisingly, for those ICs whose capacity regions are completely characterized, it

is without an exception that the capacity region coincides with the HK region. However, the

general HK region involves a time sharing variable Q that makes its evaluation intractable.

For the Gaussian interference channel, additional power constraints are imposed on the

distribution of X1 and X2, i.e.,

E(X2
1 ) ≤ P1

E(X2
2 ) ≤ P2.

Besides the time sharing variable, another difficulty for characterization of the HK region

of GICs is the input distribution. While for all the cases where the capacity results are

known for a GIC, the optimal input distribution is invariably Gaussian, it is not yet known

(or proven) that such is the case for the general GIC. In order to describe the HK region

with a Gaussian codebook, denoted by RHK, we first define a region R0(P1, P2, α, β) as
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the collection of all rate pairs (R1, R2) satisfying [23]

R1 ≤ ψ1 = γ

(
P1

1 + bβP2

)

R2 ≤ ψ2 = γ

(
P2

1 + aαP1

)

R1 +R2 ≤ ψ3 = min{ψ31, ψ32, ψ33}

2R1 +R2 ≤ ψ4 = γ

(
P1 + b(1− β)P2

1 + bβP2

)
+ γ

(
αP1

1 + bβP2

)
+ γ

(
βP2 + a(1− α)P1

1 + aαP1

)

R1 + 2R2 ≤ ψ5 = γ

(
P2 + a(1− α)P1

1 + aαP1

)
+ γ

(
βP2

1 + aαP1

)
+ γ

(
αP1 + b(1− β)P2

1 + bβP2

)

where 0 ≤ α, β ≤ 1 and

ψ31 = γ

(
P1 + b(1− β)P2

1 + bβP2

)
+ γ

(
βP2

1 + aαP1

)

ψ32 = γ

(
αP1

1 + bβP2

)
+ γ

(
P2 + a(1− α)P1

1 + aαP1

)

ψ33 = γ

(
βP2 + a(1− α)P1

1 + aαP1

)
+ γ

(
αP1 + b(1− β)P2

1 + bβP2

)

where γ(x) is defined as 1
2

log(1 + x). The region R0(P1, P2, α, β) can be rewritten in a

matrix form

R0(P1, P2, α, β) = {R|AR ≤ Ψ(P1, P2, α, β)}

where

Rt = [R1, R2]

Ψt = [Ψ1,Ψ2,Ψ3,Ψ4,Ψ5]

and

At =




1 0 1 2 1

0 1 1 1 2


 .
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Now the region RHK can be defined as a region obtained from enlarging R0(P1, P2, α, β)

through time sharing, i.e.,

AR ≤
q∑

i=1

λiΨ(P1i, P2i, αi, βi)

where q ∈ N and

q∑

i=1

λiP1i ≤ P1

q∑

i=1

λiP2i ≤ P2

q∑

i=1

λi = 1

λi ≥ 0

for 0 ≤ αi, βi ≤ 1 and i ∈ {1, 2, · · · , q}.

There has been recent progress in obtaining computable subregion of the HK achievable

region using Sato’s non-naïve frequency division [24]. For the one-sided GIC (denoted as

ZGIC) shown in Fig. 2.2(a), Motahari and Khandani established that such a non-naïve

frequency division scheme achieves the HK region with Gaussian input [25]. In this case,

R0 can be represented as all rate pairs (R1, R2) satisfying

R1 ≤ γ(P1)

R2 ≤ γ

(
P2

1 + aαP1

)

R1 +R2 ≤ γ

(
a(1− α)P1 + P2

1 + aαP1

)
+ γ(αP1).

Most recently, Costa introduced the so-called noiseberg scheme which uses water filling

to achieve optimal power sharing between two orthogonal dimensions [26]. It turns out, as

shown in the next section, that this simple noiseberg scheme achieves precisely the same
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X2
Power P2

Z2 ∼ N(0, 1)

Y2

Y1

Z1 ∼ N(0, 1)

X1

Power P1

a

b

Fig. 2.1: Two-user Gaussian interference channel.

HK region with Gaussian input.

This chapter focuses on GICs with mixed interference (MGIC) and with ab ≥ 1, a ≤ 1

and b ≥ 1 (cf. Fig. 2.1 and Eq. (2.1)). We describe a simple coding scheme that com-

bines the noiseberg scheme with that of simultaneous decoding at the receiver experiencing

strong interference. The obtained rate region is subsequently shown to coincide with the

HK region with Gaussian input.

X2
Power P2

Z2 ∼ N(0, 1)

Y2

Y1

Z1 ∼ N(0, 1)

X1

Power P1

a

(a) ZGIC

X′
2

Power
P2
a2

Z′
2 ∼ N(0, 1−a2

a2 )

Y ′
2

Y1

Z1 ∼ N(0, 1)

X1

Power P1

(b) Degraded GIC

Fig. 2.2: One-sided Gaussian interference channel and an equivalent degraded GIC.
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2.2 Noiseberg Region For the ZGIC

In this section we consider the degraded GIC shown in Fig. 2.2(b), which is equivalent to

the ZGIC with a < 1 in Fig. 2.2(a) [27].

The noiseberg region, denoted byRN and introduced by Costa in [26] for a ZGIC with

weak interference (a < 1 in Fig. 2.2(a)) is the set of all nonnegative rate pairs (R1, R2)

satisfying

R1 ≤ λ̄R1λ̄ + λR1λ,

R2 ≤ λ̄R2λ̄,

where

R1λ̄ ≤
1

2
log

(
1 +

P1A

λ̄

)
+

1

2
log

(
1 +

a2 P1C

λ̄

1 + a2 P1A

λ̄
+ P2

λ̄

)
, (2.3)

R2λ̄ ≤
1

2
log

(
1 +

P2

λ̄

1 + a2 P1A

λ̄

)
, (2.4)

R1λ ≤
1

2
log

(
1 +

P1B

λ

)
, (2.5)

and the power limits P1A, P1B and P1C are determined by two parameters h and λ such that

P1A

λ̄
= P1 −

P2λ

a2λ̄
− λmin

{
h,

1− a2

a2

}
−max

{
0, h− 1− a2

a2

}
,

P1B

λ
= P1 +

P2

a2
+ λ̄min

{
h,

1− a2

a2

}
,

P1C

λ̄
= max

{
0, h− 1− a2

a2

}

where 0 ≤ λ ≤ 1 and h ≥ 0.

Costa [26] showed that RN is achievable for the ZGIC with weak interference by a

coding scheme that uses a two-band non-naïve frequency division multiplexing (FDM) with
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water filling for optimal power allocation between the two subbands. The coding scheme,

as well as its achievable region, involves two parameters 0 ≤ λ ≤ 1 and h ≥ 0. They vary

over the admissible region as shown in Fig. 2.3, resulting in different transmission schemes

depending on the values of the parameters. The parameter λ determines how to allocate the

frequency band.

• The λ subband is reserved for the communication between transmitter 1 and receiver

1.

• The λ̄ subband is shared by both transceiver pairs and the corresponding coding

scheme is determined by the other parameter h.

As the noise Z2 does not affect the transmission of X1, water filling allows the overall

power level in the λ-subband to be raised above that of the λ̄-subband, with part of the

noise spectrum ofZ2 floating above the signal level. This phenomenon, i.e., the existence of

difference in heights of power spectrum for the two subbands is referred to as the noiseberg.

The parameter h is defined as the height of total power density in the λ-subband above that

of X2’s power density in the λ̄-subband. Different h values divide the admissible region

for the parameter pairs into two regions, each employing a different coding scheme in the

λ̄-subband:

Multiplex region This corresponds to h ≤ 1−a2

a2 . As shown in Fig. 2.4, Z ′2 prevents user

1’s power from spilling over to the λ̄-band thus no rate-splitting is involved. Receiver 2

decodes W1 first, subtracts it and decodes W2.

Overflow region This corresponds to h > 1−a2

a2 . As shown in Fig. 2.5, water-filling of

user 1’s power occurs as the power spills over from the λ-subband to the λ̄-subband. The

encoding scheme in the λ̄ subband thus involves rate splitting for W1: a common message

W1c with power P1c decoded by both receivers and a private message W1p with power P1A

decoded only by receiver 1. Receiver 2 decodes W1c first, subtracts it, and decodes W2, all

the while treating W1p as noise.
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Fig. 2.3: Admissible region for (λ, h).
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Fig. 2.4: Multiplex region.
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λ̄
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P2
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λ̄

1

λ
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λ
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Fig. 2.5: Overflow region.

It is remarkable that such a simple transmission scheme turns out to achieve precisely

the same HK region with time sharing and with Gaussian input.

Theorem 2.2.1. For the weak ZGIC,RN = RHK.

Proof. Motahari and Khandani showed that for the ZGIC, the non-naïve FDM region, de-

noted byRFDM, is equivalent toRHK, whose boundary points can be characterized by the

optimization problem [25, Eq. (151)]. It suffices to verify the equivalence between RN

andRFDM.

We start by considering water filling in the two-band FDM applied to the degraded GIC

shown in Fig. 2.2(b). First, we split W1 into private message W1p with power constraint

P1p and common message W1c with power constraint P1c such that P1p +P1c = P1. Power

allocation into λ and λ̄ subbands is done in the following order. First, P1p is allocated to

the two subbands in an arbitrary way. On top of that, P2 is allocated to the two subbands

via waterfilling. As Y ′2 sees additional noise Z ′2, P2 is allocated on top of Z ′2 (see, e.g.,

Fig. 2.6(d)). Finally, P1c is allocated to the two subbands, again, using waterfilling.

Depending on P1p and its allocation between the two subbands, there are four possi-

ble power allocation outcomes of this scheme, as shown in Fig. 2.6. Since the scenarios

illustrated in Fig. 2.6(a)(b)(c) are equivalent to noiseberg cases, it remains to argue that
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Fig. 2.6: Possible power allocation outcomes of the two-band non-naïve FDM scheme
with ZGIC.

the power allocation scheme with flat spectrum top as in Fig. 2.6(d) is not optimal. This

is because the achievable rates under such a scheme are formed by convex combinations

of points on the curve of associated broadcast channel capacity, as the flat top requires
P1cλ̄

λ̄
= P1cλ

λ
. As the broadcast channel capacity curve is convex, we can only achieve the

points on the chord, which are dominated by the points on the curve corresponding to the

scheme with no frequency division. Thus they are not optimal.
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Next we generalize this conclusion to three-band FDM. Similarly we argue that the

power-bandwidth allocation schemes with two or more subbands sharing the same flat top

are not optimal. If two subbands are occupied solely by the transmission of X1, they can

be merged into one and this reduces to one of the noiseberg scenarios.

2.3 Achievable Region For a Class of MGIC

For the MGICs with 0 < a ≤ 1, b ≥ 1 and ab ≥ 1, the HK region with Gaussian input can

be simplified to be the set of all rate pairs (R1, R2) satisfying

R1 ≤
q∑

i=1

λi

{
1

2
log(1 + P1i)

}
,

R2 ≤
q∑

i=1

λi

{
1

2
log

(
1 +

P2i

1 + a2αiP1i

)}
,

R1 +R2 ≤
q∑

i=1

λi

{
1

2
log

(
1 +

P2i + a2ᾱiP1i

1 + a2αiP1i

)
+

1

2
log(1 + αiP1i)

}
,

where q ∈ N, i ∈ {1, . . . , q}, 0 ≤ αi ≤ 1, , ᾱi = 1− αi, λi ≥ 0,
q∑
i=1

λi = 1,
q∑
i=1

λiP1i ≤ P1

and
q∑
i=1

λiP2i ≤ P2. We refer to RHK as the above HK region with Gaussian input. The

difficulty in using this region is largely due to the presence of the time sharing variable.

We now describe a simple transmission scheme for a MGIC with ab ≥ 1. The scheme

resembles the noiseberg scheme as it also utilizes the two-band non-naïve FDM. Specifi-

cally, in the λ-subband, only transmitter 1 transmits and receiver 1 decodes W1 with a rate

constraint defined in (2.5).

In the λ̄-subband, transmitter 2 does not use rate splitting. Transmitter 1, on the other

hand, employs two encoding schemes depending on the value of h. The corresponding

decoding schemes are also different. We describe them in details below:

Multiplex region This corresponds to h ≤ 1−a2

a2 . Sequential decoding is used at both
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receivers. Receiver 1 first decodes W2, which leads to the constraint

R2λ̄ ≤
1

2
log

(
1 +

b2P2/λ̄

1 + P1A/λ̄

)
. (2.6)

Subsequently,X2 is subtracted from Y1 andW1 is decoded with constraint (2.3). Receiver 2

decodesW2 with constraint (2.4). Comparing (2.4) and (2.6), we see that (2.6) is redundant.

Therefore sequential decoding in the multiplex region achievesRN .

Overflow region This corresponds to h > 1−a2

a2 . Receiver 1 employs simultaneous decod-

ing while receiver 2 still uses sequential decoding. For receiver 1, let S1, T1 and T2 be,

respectively, the rates of transmitter 1’s private message W1p, common message W1c and

W2. Then R1λ̄ = S1 + T1 and R2λ̄ = T2. Evaluation of error probability will give us

S1 ≤
1

2
log

(
1 +

P1A

λ̄

)
, (2.7)

T1 ≤
1

2
log

(
1 +

P1C

λ̄

)
, (2.8)

T2 ≤
1

2
log

(
1 +

b2P2

λ̄

)
, (2.9)

S1 + T1 ≤
1

2
log

(
1 +

P1A

λ̄
+
P1C

λ̄

)
, (2.10)

S1 + T2 ≤
1

2
log

(
1 +

P1A

λ̄
+
b2P2

λ̄

)
, (2.11)

T1 + T2 ≤
1

2
log

(
1 +

P1C

λ̄
+
b2P2

λ̄

)
, (2.12)

S1 + T1 + T2 ≤
1

2
log

(
1 +

P1A

λ̄
+
P1C

λ̄
+
b2P2

λ̄

)
. (2.13)

As receiver 2 decodes W1C and W2 sequentially, there will be two constraints

T1 ≤
1

2
log

(
1 +

a2 P1C

λ̄

1 + a2 P1A

λ̄
+ P2

λ̄

)
, (2.14)

T2 ≤
1

2
log

(
1 +

P2

λ̄

1 + a2 P1A

λ̄

)
. (2.15)
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Fourier-Motzkin elimination on (2.7)-(2.15) gives us

R1λ̄ ≤
1

2
log

(
1 +

P1A

λ̄
+
P1C

λ̄

)
, (2.16)

R1λ̄ ≤
1

2
log

(
1 +

P1A

λ̄

)
+

1

2
log

(
1 +

a2 P1C

λ̄

1 + a2 P1A

λ̄
+ P2

λ̄

)
, (2.17)

R2λ̄ ≤
1

2
log

(
1 +

P2

λ̄

1 + a2 P1A

λ̄

)
, (2.18)

R1λ̄ +R2λ̄ ≤
1

2
log

(
1 +

P1A

λ̄
+
P1C

λ̄
+
b2P2

λ̄

)
, (2.19)

R1λ̄ +R2λ̄ ≤
1

2
log

(
1 +

P1A

λ̄
+
b2P2

λ̄

)
+

1

2
log

(
1 +

a2 P1C

λ̄

1 + a2 P1A

λ̄
+ P2

λ̄

)
,(2.20)

R1λ̄ + 2R2λ̄ ≤
1

2
log

(
1 +

P1A

λ̄
+
b2P2

λ̄

)
+

1

2
log

(
1 +

P1C

λ̄
+
b2P2

λ̄

)
. (2.21)

Then the achievable rate region in overflow region is

R1 ≤ λ̄R1λ̄ + λR1λ,

R2 ≤ λ̄R2λ̄,

(2.22)

where R1λ̄, R2λ̄ and R1λ satisfy (2.16)-(2.21) and (2.5). Let RO denote this region. In

Appendix A we provide a simplification ofRO and prove that it is equivalent toRN .

Combining the results in both the multiplex and overflow regions, we conclude thatRN

is achievable for the MGICs with ab > 1. Thus we have,

Theorem 2.3.1. For the MGICs with ab > 1, RN associated with the ZGIC obtained by

removing the interfering link with gain b is achievable.

Corollary 1. For the MGICs with ab > 1,RN = RHK.

Proof. On the one hand, with Gaussian input, RHK of the MGIC is a subset of that of the

ZGIC. On the other hand,RN ⊆ RHK for the MGIC in general. But Theorem 1 states that

RN = RHK for the ZGIC. This establishes the equivalence between RN and RHK for the

MGICs with ab > 1.
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This is consistent with [25, Theorem 12] that states for the MGICs with ab > 1, RHK

is equivalent to that of the corresponding ZGIC.

2.4 Summary

This chapter established the equivalence between Costa’s noiseberg region and the HK

region with Gaussian input for the ZGIC. For the MGICs with ab > 1, an achievable

rate region was developed by rate splitting and a mixture of sequential and simultaneous

decoding. By comparing the new region to the noiseberg region of the ZGIC, we proved

that it is a simplification of the HK region for the MGICs with ab > 1 and with Gaussian

codebook.
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CHAPTER 3

OPTIMAL POWER MANAGEMENT FOR

REMOTE ESTIMATION WITH AN

ENERGY HARVESTING SENSOR

3.1 Motivation And Literature Review

Conventional wireless and embedded systems often involve nodes that are powered by bat-

teries. In many situations, however, periodically replacing or recharging batteries may be

inconvenient or even impossible due to various physical restrictions. Thus for applications

where sustainable and autonomous operation is expected, energy supply often becomes a

severe bottleneck. Much effort has been devoted to the design of how to efficiently utilize

the limited battery power to maximize the life span of the system [28–30].

With the recent technological breakthrough in renewable energy, an alternative ap-

proach has emerged that promises to supplement or even supplant the traditional battery

power: harvesting energy from the ambient environment which enables much more sus-

tainable operations [5–7]. There are existing wireless networks that operate solely or pri-

marily on energy harvested from their operating environments through various sources such



23

as solar cells and vibration absorption devices. As hardware advances lead to much more

efficient energy conversion and storage, it is expected that energy harvesting will play an

increasingly important role in many power limited wireless systems.

However, utilizing harvested energy also presents many unique challenges, chief among

them is the fluctuation of the energy level in time as dictated by the characteristics of the

energy source. Further complicating the design issue is the finite energy storage capacity

in most systems. This is in sharp contrast with the traditional power supply that is either

constant over time or has a fixed total amount of energy for battery powered systems. The

problem of particular interest to the present work is to devise optimal power allocation

strategy over time given the unpredictable nature of the energy supply and a finite energy

storage constraint. Additionally, we consider progressively more realistic assumptions to

ensure that the proposed solutions are practically meaningful.

There have been many recent works on power management for energy harvesting com-

munication and estimation systems. In [31–34], optimal transmission power and schedul-

ing were studied for throughput maximization of wireless communication systems. In [35],

throughput optimal power management policies were developed while maintaining the sta-

bility of data queues. Separately, minimizing outage probability instead of maximizing

throughput was used as the design metric for power allocation [36]. In [37], distortion min-

imization for a sensor node communicating over a fading channel with delay constraint was

studied. The problem of energy allocation over source acquisition/compression and trans-

mission was addressed in [38]. The authors in [39] and [40] considered power allocation

in multi-sensor remote estimation systems.

Most closely related to the present work is the remote estimation problem studied in

[41], where an energy harvesting sensor observes and transmits the state of a discrete-

time finite-valued Markov chain or a multi-dimensional Gaussian source. The sensor may

not communicate all the time depending on the currently available energy level and the

estimator relies on messages received from the sensor to produce real-time estimates of the
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source state. Optimal communication scheduling and estimation strategies were developed,

which jointly minimize an expected sum of communication and distortion costs over a

finite time horizon. Invariably, in the absence of non-causal information at the transmitter

about future energy arrival, a key ingredient among all those works is the use of dynamic

programming (DP) [42] for obtaining power allocation.

Transmitter Receiver

Energy Storage

Sj
i

Xj
i

Zj
i

Y j
i

Ŝj
i

Hj Bj

P j

Fig. 3.1: Illustration of an energy harvesting estimation system.

In this work, we consider a remote estimation system with the transmitter powered by

energy harvesting devices. The system is illustrated in Fig. 3.1 where the transmitter ob-

serves the source sequence Sji and has access to energy sourceHj through a storage device.

Both the signals and the additive noises are assumed to be independent and identically dis-

tributed (i.i.d.) Gaussian sequences and are independent of each other. Different from [41]

where each transmission consumes 1 unit of energy and the sensor may choose to stay

silent to save energy for future communication, our model assumes that the uncertainty at

the estimator comes from the channel noise and the time-varying transmit power as dictated

by the power allocation strategy and the energy harvesting sequenceHj . The objective is to

minimize the mean squared error (MSE) at the receiver, averaged over the entire sequence.

A natural transmission scheme for the Gaussian model is an uncoded transmission scheme

where the transmitter simply amplifies the observed the sequence with the receiver imple-

menting MMSE estimator [43] [44]. Indeed, for this remote estimation system and under a

constant power constraint, uncoded transmission is known to be an optimal strategy [54].

The central question we try to answer in the present work is what is the optimal trans-
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mission scheme at the transmitter and the associated power allocation policy over time

under progressively more realistic assumptions with regard to the knowledge at the trans-

mitter and/or the receiver as well as the storage capacity:

• whether the transmitter has non-causal side information (SI) of future harvested en-

ergy;

• whether the receiver knows the transmit power a priori;

• whether the storage device has finite or infinite capacity.

The clairvoyant case, namely the transmitter has non-causal knowledge of future harvested

energy and the receiver knows the exact transmit power and the battery has infinite stor-

age capacity, serves as a benchmark for performance comparison. It is shown that the

optimal power allocation scheme for the clairvoyant case is a ‘staircase-climbing’ proce-

dure, where the power level follows a non-decreasing staircase-like function. We will then

replace these idealized assumptions with progressively more realistic ones and provide so-

lutions to power allocation under each scenario. In particular, with causal side information,

dynamic programming is used to obtain the power allocation scheme that minimizes the

average MSE at the receiver. Heuristic approaches motivated by the structure of the opti-

mal solutions are then developed that incur much less computational complexity compared

with the DP solution. Performance evaluation will be conducted to identify conditions

under which the achieved performance in terms of minimum mean square error (MMSE)

with realistic assumptions is close to that of the clairvoyant case, therefore providing useful

guidance to system design.

3.2 System Model

While the transmission of input sequence occurs ‘instantaneously’ using uncoded trans-

mission (i.e., amplify and forward), we assume that energy harvesting and power alloca-
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tion occur in a block-wise fashion: within each block the transmitter uses a given average

transmit power, and energy harvested at the current block is assumed to be available for

transmission during future blocks. Let the entire sequence consist of K blocks, indexed

by j = 1, 2, · · · , K. The sequence within each block is indexed using i = 1, 2, · · · , N ,

i.e., each block is comprised of N observations. Let Sji denote the ith sample of the jth

block of the observation sequence, which is assumed to be i.i.d. Gaussian with mean zero

and variance σ2
S . Thus, the energy harvested at the end of the jth block will be available

for transmissions at the (j + 1)th block. The energy storage is subject to a capacity limit,

denoted by Bmax.

For estimating an i.i.d. Gaussian sequence over an additive white Gaussian noise

(AWGN) channel, it was known that uncoded transmission is optimal for minimizing the

MSE under an average power constraint [46]. The optimality of such an uncoded transmis-

sion carries over to the case where the transmitter is subject to energy harvesting constraint

where the harvested energy is a stationary ergodic sequence.

Lemma 3.2.1. For estimating an i.i.d Gaussian sequence over an AWGN channel with

Bmax → ∞, uncoded transmission is asymptotically optimal for minimizing the MSE,

where the harvested energy is a stationary ergodic sequence and K →∞.

Proof. See Appendix B.

This optimality, along with its simplicity in implementation and analysis, motivate the

use of uncoded transmission throughout this work; thus the transmitted signal correspond-

ing to Sji is expressed as

Xj
i =

√
P j

σ2
S

Sji , (3.1)

where P j is the average power constraint in block j. The transmitted signal goes through a
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Fig. 3.2: Blockwise energy harvesting.

Gaussian channel with output

Y j
i = Xj

i + Zj
i ,

where Zj
i is an i.i.d. Gaussian noise sequence with mean zero and variance σ2

Z and is

independent of the transmitted signal. The receiver output Ŝji denotes the estimate of the

source sequence Sji .

As shown in Figs. 3.1 and 3.2, the blockwise energy harvesting and the transmission

scheme is modeled by the following parameters:

• P j denotes the average amount of energy to be expended during block j. To ease

our notation, we have implicitly assumed that the energy is normalized by the block

length, thus P j represents both the average power at block j as well as the energy

expended during block j.

• Hj denotes the average amount of energy harvested during block j. We assume that

energy is replenished at the end of each block, hence Hj is not available until the

beginning of block j + 1.

• Bj indicates the energy level available at the beginning of block j. It varies linearly

as long as the storage limit Bmax is not exceeded, i.e.,

Bj+1 = min
(
Bj − P j +Hj, Bmax

)
,

for j = 1, · · · , K − 1.
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We denote the initially stored energy as B1 or H0 and assume

0 ≤ B1 = H0 ≤ Bmax.

This initial energy may come from the traditional battery source or energy harvested prior

to initial transmission. The energy harvesting constraint is imposed on each block in the

sense that the expended energy can not exceed the currently stored energy, i.e.,

P j ≤ Bj,

for any j = 1, · · · , K. The block length N is assumed to be sufficiently large such that the

average power constraint is satisfied.

The objective is to minimize the MSE averaged over the entire sequence

D =
1

KN

K∑

j=1

N∑

i=1

(
Ŝji − S

j
i

)2

. (3.2)

It is thus apparent from the above model that the achievable MSE depends on the a priori

knowledge at both the transmitter and the receiver, i.e., whether the transmitter knows the

non-causal side information about the harvested energy and whether the receiver knows the

transmit power at each block. We start with the case where the transmitter has non-causal

side information about harvested energy.

3.3 Non-Causal SI With Infinite Bmax

Non-causal SI is said to be available if the transmitter has prior knowledge of the entire

harvested energy sequence
{
H0, H1, · · · , HK−1

}
before transmission begins. This corre-

sponds to the idealized assumption of fully predictable environment whose solution gives

a lower bound on the MSE performance under more realistic conditions. To develop more
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insight on the structure of the optimal power allocation scheme, we assume in this section

that the battery storage has unlimited capacity, i.e., Bmax → ∞. The case of finite Bmax

will be studied in Section 3.4.

3.3.1 Transmit Power Known to Receiver

From (3.1), if the receiver knows the transmit power, it can construct the optimal MMSE

estimator

Ŝji =

√
P jσSY

j
i

σ2
Z + P j

, (3.3)

and the corresponding MSE is

E[D] =
1

K

K∑

j=1

σ2
Sσ

2
Z

σ2
Z + P j

4
=

1

K

K∑

j=1

h1(P j), (3.4)

where the expectation is taken with respect to the observation sequence and the channel

noise sequence for a given transmit power sequence {P j, j = 1, · · · , K}. Then the optimal

power allocation can be obtained by solving the following optimization problem

minimize E[D] (3.5)

subject to P j ≥ 0
j∑

k=1

P k −
j−1∑

k=0

Hk ≤ 0, for j = 1, · · · , K. (3.6)

It is easy to verify that the above problem is convex and satisfies the Slater’s condition

[47]. Hence, the Lagrange duality method can be used to obtain the global optimum. The

Lagrangian associated with this problem is

L =
1

K

K∑

j=1

σ2
Sσ

2
Z

σ2
Z + P j

−
K∑

j=1

µjP
j +

K∑

j=1

λj

(
j∑

k=1

P k −
j−1∑

k=0

Hk

)
.
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Using the Karush-Kuhn-Tucker (KKT) conditions

P j ≥ 0,

µj ≥ 0,

µjP
j = 0,

j∑

k=1

P k −
j−1∑

k=0

Hk ≤ 0,

λj ≥ 0, (3.7)

λj

(
j∑

k=1

P k −
j−1∑

k=0

Hk

)
= 0, (3.8)

∂L
∂P j

=
−σ2

Sσ
2
Z

(σ2
Z + P j)2

− µj +
K∑

k=j

λk = 0,

we obtain the optimal solution as

P j = max
(
νj − σ2

Z , 0
)
, (3.9)

where

νj =
σSσZ√∑K
k=j λk

. (3.10)

Comparing (3.9) with the solution to the standard water-filling problem (e.g., Example

5.2 in [47]), one can immediately recognize the similarity except for a time varying water

level in the present problem and a time varying ground level in [47]. Specifically,

• the varying ‘ground level’ in the original water-filling problem becomes flat with

uniform height σ2
Z ;

• the optimal ‘water level’ is not a constant, but changes over blocks.

As we shall see, the solution to equation (3.9) can be interpreted as a staircase climbing
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process (also referred to in [33] as staircase water-filling). Define the following for conve-

nience:

• If the power level changes after block t, i.e., νt 6= νt+1, t = 1, · · · , K, then block t

is defined to be a transition block. From (3.10), it is clear that the change of power

level (i.e., climbing to the next level) occurs only when the corresponding λk > 0.

Block K is also a transition block, as we define νK+1 =∞.

• Let S = {t1, t2, · · · , t|S|} be a sequence that contains all the indices of the transition

blocks. From the assumption νK+1 =∞ it follows that t|S| = K.

• If ti, ti+1 ∈ S, then the blocks indexed by {ti + 1, · · · , ti+1} are collectively referred

to as the ith transition interval.

We can now describe the structure of the optimal power allocation scheme.

• The power level is non-decreasing over the blocks, i.e.,

νt1 ≤ νt2 , if t1 < t2 and t1, t2 ∈ S.

This can be easily seen from (3.7) and (3.10). Given that σ2
Z is a constant, from

(3.9), it is clear that the optimal Pj behaves like staircase climbing: Pj remains con-

stant within each transition interval but increases (climbs to the next level) after each

transition block.

• The available battery storage is depleted at the end of a transition block, i.e.,

P t = Bt and Bt+1 = H t, if t ∈ S.

Thus at the beginning block of each transition interval, the available energy comes

entirely from the energy harvested during the previous block. This can be observed

from the definition of level (3.10) and the complementary slackness condition (3.8).
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Fig. 3.3: Structure of the optimal power allocation structure with non-causal SI and infinite
Bmax.

• The optimal power allocation can be obtained by considering individual transition

intervals separated by transition blocks. Within each interval that consists of blocks

{ti + 1, · · · , ti+1} where ti, ti+1 ∈ S , the entire available energy, i.e.,
∑ti+1−1

j=ti
Hj is

equally allocated to each block. This follows naturally from the previous property

that energy harvested in any transition interval is completely depleted.

Fig. 3.3 illustrates the structure of the optimal power allocation scheme. The curve rep-

resents the amount of energy harvested over the blocks, while the shaded bars correspond

to the transmit power. Even though the amount of harvested energy fluctuates, the optimal

transmit power forms an ascending staircase-like function. Apparently, this is only feasible

when the transmitter knows the entire harvested energy sequence a priori.

Thus the optimal power allocation scheme amounts to identifying all the transition

blocks as power allocation between two neighboring transition blocks can be trivially

solved, i.e., a simple average of all available energy within the transition interval. A

backward-search procedure (Algorithm 2 in [33]) can be implemented to find the optimal
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transition blocks.

3.3.2 Transmit Power Not Known to Receiver

If the transmit power is not readily available, the receiver may use an estimate of the trans-

mit power in the MMSE estimator. Choose the following P̂ j to be the estimate of the

transmit power in block j

P̂ j = max

(
1

N

N∑

i=1

(Y j
i )2 − σ2

Z , 0

)
. (3.11)

The corresponding MSE, denoted by D̃, is easily shown in Appendix C to be

D̃ =
1

K

K∑

j=1

(
P̂ jσ2

Z +
(
σ2
Z + P̂ j −

√
P̂ jP j

)2
)
σ2
S

(σ2
Z + P̂ j)2

4
=

σ2
S

K

K∑

j=1

fj(P̂
j). (3.12)

Thus we now formulate the optimization problem with EP̂ j [D̃] as the objective function

minimize EP̂ j [D̃] (3.13)

subject to P j ≥ 0
j∑

k=1

P k −
j−1∑

k=0

Hk ≤ 0, for j = 1, · · · , K. (3.14)

Since the statistical characterization of P̂ j does not admit a closed-form expression of

EP̂ j [D̃], we consider its approximation which is asymptotically accurate as N becomes

large. To begin, we first replace P̂ j in (3.11) using the following estimate

P̃ j =
1

N

N∑

i=1

(Y j
i )2 − σ2

Z . (3.15)

Notice that as long as P j > 0, P̃ j = P̂ j with probability approaching 1 as N becomes
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large. Define ∆ to be the bias of this estimate, i.e.,

P̃ j = P j + ∆.

It is straightforward to verify that

E[∆] = 0,

E[∆2] =
2

N
(σ2

Z + P j)2.

Then it follows from Taylor series approximation that

EP̃ j [D̃]
.
=

σ2
S

K

K∑

j=1

E
[
fj(P

j) + f ′j(P
j)∆ +

f ′′j (P j)

2
∆2

]

=
σ2
S

K

K∑

j=1

(
fj(P

j) + f ′j(P
j)E[∆] +

f ′′j (P j)

2
E[∆2]

)

=
σ2
S

K

K∑

j=1

(
σ2
Z

σ2
Z + P j

+
(P j)2 + 14P jσ2

Z + σ4
Z

2NP j(σ2
Z + P j)

)
(3.16)

4
=

1

K

K∑

j=1

h2(P j). (3.17)

where f ′j(·) and f ′′j (·) denote the first and second derivatives of fj(·).

Substituting (3.16) into the objective function, we rewrite the optimization problem

(3.13) as

minimize
σ2
S

K

K∑

j=1

(
σ2
Z

σ2
Z + P j

+
(P j)2 + 14P jσ2

Z + σ4
Z

2NP j(σ2
Z + P j)

)
(3.18)

subject to P j ≥ 0 (3.19)
j∑

k=1

P k −
j−1∑

k=0

Hk ≤ 0, for j = 1, · · · , K. (3.20)

It is straightforward to verify that (3.18) is convex in P j by showing that its second or-
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der derivative is positive. Thus the Lagrange duality method can be applied to obtain the

solution. The Lagrangian associated with this problem is

L =
σ2
S

K

K∑

j=1

(
σ2
Z

σ2
Z + P j

+
(P j)2 + 14P jσ2

Z + σ4
Z

2NP j(σ2
Z + P j)

)

−
K∑

j=1

µjP
j +

K∑

j=1

λj

(
j∑

k=1

P k −
j−1∑

k=0

Hk

)
.

and the KKT conditions are

P j ≥ 0

µj ≥ 0

µjP
j = 0

j∑

k=1

P k −
j−1∑

k=0

Hk ≤ 0

λj ≥ 0

λj

(
j∑

k=1

P k −
j−1∑

k=0

Hk

)
= 0

∂L
∂P j

= −σ
2
Sσ

2
Z ((2N + 13)(P j)2 + 2P jσ2

Z + σ4
Z)

2KN(P j)2(P j + σ2
Z)2

− µj +
K∑

k=j

λk = 0.

Since P j appears in the denominator of (3.18), constraint (3.19) can be further tightened as

P j > 0.

Then µj = 0 and we obtain

K∑

k=j

λk =
σ2
Sσ

2
Z

K

(2N + 13)(P j)2 + 2P jσ2
Z + σ4

Z

2N(P j)2(σ2
Z + P j)2

4
= g(P j). (3.21)

From (3.21), it is difficult to compute the inverse of g(·) and solve for P j . However,

the derivatives of both g(·) and its inverse g−1(·) are negative, which means that P j is
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monotonically decreasing in
∑K

k=j λk. Comparing with (3.9) and (3.10) where P j is also a

decreasing function of
∑K

k=j λk, we observe that the optimal power allocation can, again,

be obtained through a staircase climbing procedure, but with a flat bottom of height 0.

3.4 Non-Causal SI With Finite Bmax

We now consider the non-causal SI case with finite Bmax, i.e., the battery storage has a

finite capacity. The infinite Bmax assumption used in the previous section may not be

applicable for some energy harvesting systems, where the battery storage capacity is not

large enough compared with incoming energy.

We first consider the case where the receiver knows the transmit power. With finite

and arbitrary battery storage capacity Bmax, it is possible that in certain blocks harvested

energy exceeds the battery storage limit. In this case, the total transmit power is strictly less

than the total amount of harvested energy over theK blocks, which suggests that the energy

harvesting constraint (3.6) in optimization problem (3.5) is loose. Therefore we replace it

with P j ≤ Bj and reconstruct the optimization problem as follows to find optimal power

allocation

minimize
1

KN

K∑

j=1

N∑

i=1

E[(Ŝji − S
j
i )

2]
4
=

1

K

K∑

j=1

h(P j) (3.22)

subject to 0 ≤ P j ≤ Bj, for j = 1, · · · , K, (3.23)

where h(·) = h1(·) in (3.4) and

Bj =





B1, j = 1,

min (Bj−1 − P j−1 +Hj−1, Bmax) , j = 2, · · · , K.
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The constraints in (3.23) can be decomposed into

P j ≥ 0,
j∑

k=1

P k ≤
j−1∑

k=0

Hk,

j∑

m=j−q

Pm ≤ Bmax +

j−1∑

m=j−q

Hm, (3.24)

for q = 0, · · · , j − 1 and j = 1, · · · , K.

Clearly, the new problem (3.22) is convex. Comparing with the optimization problem

(3.5) formed under infiniteBmax assumption, we observe that the only difference lies in the

additional set of linear constraints in (3.24). Thus the Lagrange duality method can, again,

be applied to obtain the global optimum. The Lagrangian associated with this problem is

L =
1

K

K∑

j=1

σ2
Sσ

2
Z

σ2
Z + P j

−
K∑

j=1

µjP
j +

K∑

j=1

λj

(
j∑

k=1

P k −
j−1∑

k=0

Hk

)

+
K∑

j=1

j−1∑

q=0

γjq

(
j∑

m=j−q

Pm −Bmax −
j−1∑

m=j−q

Hm

)
.
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Using the KKT conditions,

P j ≥ 0

µj ≥ 0

µjP
j = 0

j∑

k=1

P k −
j−1∑

k=0

Hk ≤ 0

λj ≥ 0

λj

(
j∑

k=1

P k −
j−1∑

k=0

Hk

)
= 0

γjq ≥ 0
j∑

m=j−q

Pm −Bmax −
j−1∑

m=j−q

Hm ≤ 0

γjq

(
j∑

m=j−q

Pm −Bmax −
j−1∑

m=j−q

Hm

)
= 0

∂L
∂P j

=
−σ2

Sσ
2
Z

K(σ2
Z + P j)2

− µj +
K∑

k=j

λk +
K∑

k=j

k−1∑

q=0

γkq = 0,

we obtain

P j = max


 σSσZ
√
K
√∑K

k=j λk +
∑K

k=j

∑k−1
q=0 γkq

− σ2
Z , 0


 . (3.25)

Compared with (3.9), we see that the effect of finite Bmax on the solution is only

observed through γkq in (3.25). In particular, if the constraints in (3.24) are strictly satisfied,

the optimal power allocation scheme reduces to the one in (3.9) with the same structure as

described in Section 3.3. This is the case where the energy harvested at any given block

does not result in the breach of the storage limit, thus the solution is equivalent to setting

Bmax to infinity. However, when the constraints in (3.24) are satisfied with equality, the

monotonicity of the power level as well as other properties may no longer hold.

For the case where the receiver does not know the transmit power, suitable forms of
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estimators can be used to replace P j in (3.3) and construct the estimate of the sequence

Sji . For example, if we choose the estimator in (3.15) and apply the same approximation

as proposed in the previous section, the convex problem (3.22) can again be applied to find

the optimal power allocation policy by letting h(·) = h2(·) in (3.17).

3.5 Causal SI

We now consider the more realistic causal SI case, i.e., the transmitter only has knowledge

to energy harvested in the past. The non-causal SI case discussed in the previous section

is often time too idealized to be applicable for a real energy harvesting system where fu-

ture available energy typically fluctuates and is hard to predict. Nevertheless, for most

applications, the available energy from ambient sources does exhibit certain degree of cor-

relation, e.g., solar power supply rarely experiences abrupt changes within a certain time

window. As a crude approximation, we now model the harvested energy Hj as a first-order

stationary Markov process over j, i.e., given H0 = h0,

P
(
HK−1 | H0 = h0

)
=

K−1∏

j=2

P
(
Hj | Hj−1

)
P
(
H1 | H0 = h0

)
.

In addition, we also impose the more realistic assumption that the battery storage capacity

Bmax is finite.

We consider first the case where the receiver knows the transmit power. The following

problem is constructed to find the optimal power allocation

minimize
1

KN

K∑

j=1

N∑

i=1

E[(Ŝji − S
j
i )

2]
4
=

1

K

K∑

j=1

h(P j) (3.26)

subject to 0 ≤ P j ≤ Bj

Bj = min
(
Bj−1 +Hj−1 − P j−1, Bmax

)
, for j = 1, · · · , K,
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where h(·) = h1(·) in (3.4).

In general, this problem cannot be solved by independently minimizing the MSE in

each individual block due to energy harvesting constraints: how much energy dispensed in

the current and previous blocks affects how much energy that is available for future blocks.

As a simple example, consider the case of K = 2. The problem simplifies to

minimize
1

2

(
σ2
Sσ

2
Z

σ2
Z + P 1

+
σ2
Sσ

2
Z

σ2
Z + P 2

)
(3.27)

subject to 0 ≤ P 1 ≤ B1

0 ≤ P 2 ≤ B2

B1 = H0

B2 = min
(
B1 +H1 − P 1, Bmax

)
.

Clearly, when deciding the transmit power P 1 for the first block, we should consider

not only its contribution to the MSE of the first block, but also its impact on the transmit

power P 2, as it affects the stored energy B2 available for the second block. However, at

the beginning of block 1, the other factor that determines B2 - harvested energy H1 - is not

known yet, which makes it impossible to evaluate the precise impact of P 1 on B2. Thus

directly optimizing P 1 at the beginning of block 1 is not feasible. Instead, we can

• first, look for the optimal P 2∗ that minimizes the expected MSE of block 2 given

all possible P 1; in this example, the optimal strategy would be to simply use up the

energy supply available during the second block, i.e., P 2∗ = B2 for any P 1;

• then, optimize P 1 with P 2 replaced by P 2∗ as a function of P 1.

The above procedure is in fact a simple example of dynamic programming. For the

general problem with causal SI, DP can indeed be used to solve for the optimal power

allocation problem. Specifically, given the initial energy storage B1 = H0, the optimal

power allocation policy can be obtained by recursively computing JK , · · · , J1 based on



41

Bellman’s equation [42], where

JK(HK−1, BK) = min
0≤PK≤BK

h(PK) = h(BK), (3.28)

Jj(H
j−1, Bj) = min

0≤P j≤Bj

(
h(P j) + J̄j+1(Hj−1, Bj − P j)

)
, (3.29)

and

J̄j+1(Hj−1, x) = EH̃j

[
Jj+1

(
H̃j,min

(
Bmax, x+ H̃j

))
| Hj−1

]
, (3.30)

for j = 1, · · · , K−1, where H̃j = E[Hj|Hj−1] is the expected harvested energy in the jth

block.

In (3.30), J̄j+1 indicates the expected MSE contributed from blocks {j+1, · · · , K}. As

expected, the solution ensures that all power is depleted at blockK. As for the intermediate

blocks, the optimal power allocation policy can be interpreted as a tradeoff between the

current reward and the future reward and is determined by the past harvested energy and

allocated power. The resulting transmit power P j is no longer a non-decreasing sequence

as in the non-causal SI case.

For the case where the receiver does not have knowledge of the transmit power, we

can again replace P j with suitably constructed estimates. For example, replacing P j with

the same estimator as proposed in Section 3.3, the optimization problem (3.26) can also

be used to solve for the optimal power allocation policy by letting h(·) = h2(·) in (3.17).

Again, DP can be applied to obtain the optimal solution and we omit the details here.

In order to evaluate the complexity of DP, we define ε to be the step size of the search for

optimal transmit power. Then, DP involves roughlyO
(
KB3

max
ε3

)
arithmetic operations [48],

which results in long execution time especially with fine step sizes. This motivates us to

look for heuristic approaches for power allocation that resemble the optimal power alloca-

tion schemes yet with significantly reduced complexity. In addition, the DP formulation

requires backward recursion thus relies on the finite horizon assumption (i.e., K < ∞).
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A perhaps more natural solution would allow infinite horizon operation with reasonable

performance and complexity.

3.6 Heuristic Schemes

In this section, we propose two heuristic schemes for the case where causal SI is available

at the transmitter and the receiver does not have knowledge of the transmit power. Both

schemes have significantly reduced complexity compared with DP. The first one, referred

to as myopic DP, is capable of avoiding the recursive structure introduced by the energy

harvesting constraints in DP. Instead of considering the expected MSE contributed from

all future blocks, it only involves the immediate future reward - expected MSE from the

next block, which significantly alleviates the computational complexity when K is large.

The second scheme, which we simply refer to as an equalizing scheme, is motivated by the

observation that the power allocation profile obtained with non-causal SI is flat within each

transition interval and change only occurs when energy is completely depleted. It works in

a way such that the running average of the total consumed energy is close to the expectation

of the harvested energy per block. Both schemes involve only computations in a forward

manner and thus can be applied to the cases with infinite time horizon, i.e. K → ∞. This

is a significant operational advantage compared with the DP approach that is restricted to a

finite time horizon due to its recursive structure.

3.6.1 Myopic DP

Recall that in the original DP approach, there are two terms in the objective function

(3.29) for block j, j = 1, · · · , K − 1 - current reward h(P j) and future expected reward

J̄j+1(Hj−1, Bj − P j), where J̄ represents the expected MSE contributed from all future

blocks. Such nested structure often requires high computational complexity, which be-

comes a major obstacle in practical implementation. One way to simplify the computation



43

is to replace the J̄ function by

J̄ ′j+1(Hj−1, x) = EH̃j

[
min

0≤P j+1≤Bj+1
h(P j+1) | Hj−1

]
, (3.31)

where

Bj+1 = min
(
Bj − P j + H̃j, Bmax

)
.

In essence, this simplified DP approach takes a myopic view of the future where it only

involves the immediate future payoff (i.e., that of the next block instead of the entire future

blocks). This myopic approach leads to the simplification of (3.31) into the following form

J̄ ′j+1(Hj−1, x) = EH̃j

[
h
(

min
(
Bj − P j + H̃j, Bmax

))
| Hj−1

]
.

This simplification is possible because h(·) is a non-decreasing function hence the op-

timal P j in (23) always takes the maximum possible value, i.e., a greedy strategy for the

energy consumption in the next block. This removes the recursive structure of the program

and greatly eases the computation burden. We note that while this approach determines the

current power consumption by assuming a greedy approach for the next block in terms of

energy consumption, this does not necessarily imply that the actual power allocation will

always result in a greedy approach - the actual power consumed at the next block will be

determined in subsequent steps of the algorithm.

3.6.2 An Equalizing Scheme

This scheme is motivated by the simple observation that for the non-causal SI case, the

optimal power allocation tends to smooth out power distribution to the extent possible -

it is always flat within each transition interval and change only occurs when energy is

completely depleted. For sufficiently large K, it is reasonable to assume that the total
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available energy is approximately KE[Hj], i.e., the average energy consumed for each

block j is approximately E[Hj]. As such, one may strive to determine the transmit power

in a way such that the running average of consumed energy per block up to the current

block, say, block j, is E[Hj], i.e., choose P j such that
∑j

k=1 P
k = jE[Hj] if Bj ≥ P j;

otherwise we choose P j = Bj . While with high probability the power levels at different

blocks are not identical, such a naive scheme leads to an allocation scheme that results in a

rather smooth transmit power profile that exhibits only small fluctuation.

3.7 Numerical Results

In this section, we present some numerical results to compare the performance of all the

previously discussed schemes, namely the staircase climbing algorithm for non-causal SI

case as well as DP and the two heuristic schemes for causal SI case. Denote D1 and

D2 to be the MSE (defined in (3.2)) achieved at the receiver with and without knowledge

of the transmit power, respectively. They serve as indicators of system performance and

are plotted with varying channel noise variance σ2
Z in all the following figures. Another

important parameter is the block length N , as it has a significant impact on the accuracy

of transmit power estimation and therefore on the overall performance. We fix the total

number of blocks K = 12 and choose the harvested energy Hj to be i.i.d. uniformly

distributed on {.1, .2, · · · , .9}, for j = 0, 1, · · · , 11.

In Fig. 3.4, we fix σ2
S = 1 and N = 104 and plot D1 with σ2

Z from −20dB to 20dB

to examine the effect of different battery storage capacity Bmax on the performance with

non-causal SI. While it is apparent that the MSE increases as noise variance increases, the

estimation performance improves with increasing storage capacity. Indeed, with Bmax =

12, the performance is identical to that of the case with infinite storage capacity.

In Fig. 3.5, we fix N = 104 and vary σ2
S ∈ {10, 102, 104} and σ2

Z from −20dB to 20dB

to examine D1, i.e., the corresponding MSE when the receiver knows the transmit power.
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Fig. 3.4: D1 vs σ2
Z with non-causal SI and N = 104, K = 12 and Hj i.i.d. uniformly

distributed on {.1, .2, · · · , .9} for j = 0, 1, · · · , 11.

As expected, the distortion with both causal SI and non-causal SI increases with increasing

noise variance. The MSE with causal SI always dominates that with non-causal SI although

the difference between the two is very small.

Fig. 3.6 shows the performance when the knowledge of transmit power is not available

to the receiver. The signal variance σ2
S is fixed to be 1. It can be seen, again, that D2

increases with increasing channel noise variance σ2
Z and the MSE obtained with causal SI

is always higher than that with non-causal SI. Here we also compare the performance with

two different block lengths, i.e., N = 102 and N = 105. As expected, smaller N results in

larger distortion, since its estimate of the transmit power is less accurate than that of larger

N .

Figs. 3.7-3.9 illustrate the average MSE for the case where the transmitter has only

causal SI of future harvested energy and the receiver does not know the transmit power.

We fix the signal variance σ2
S = 1 and the battery storage capacity Bmax = 1. The D2

curves of DP and the two heuristic schemes in Figs. 3.7-3.9 correspond to the average
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Fig. 3.5: D1 vs σ2
Z with N = 104, K = 12, Bmax = 1 and Hj i.i.d. uniformly distributed

on {.1, .2, · · · , .9} for j = 0, 1, · · · , 11.
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Fig. 3.6: D2 vs σ2
Z with σ2

S = 1, K = 12, Bmax = 1 and Hj i.i.d. uniformly distributed
on {.1, .2, · · · , .9} for j = 0, · · · , 11.

MSE of 100 randomly generated sequences {Hj, j = 0, · · · , 11} for N = 105, N = 100

and N = 10, respectively. We also plot the optimal MSE curves when non-causal SI is
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available as benchmarks for performance comparison. In Fig. 3.7, it can be observed that

both heuristic schemes as well as DP have almost the same MSE whenN = 105; in Fig. 3.8

when N = 100, the curves corresponding to DP and myopic DP still overlap each other

while the performance of the equalizing scheme is considerably worse; when N = 10 in

Fig. 3.9, the MSE of DP is smaller than that of the two heuristic schemes, especially when

σ2
Z is large.

σ
Z
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Fig. 3.7: Average D2 with 100 randomly generated inputs {Hj}, N = 105, K = 12,
Bmax = 1 and Hj i.i.d. uniformly distributed on {.1, .2, · · · , .9} for j = 0, · · · , 11.

Summarizing, the MSE obtained for the case of non-causal SI is always lower than that

with causal SI; for the causal SI case where the receiver does not know the transmit power,

larger block length N results in lower MSE. The performance of heuristic schemes is also

close to that of DP with large N , since the estimation of transmit power is more accurate

with larger block length.
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Fig. 3.8: Average D2 with 100 randomly generated inputs {Hj}, N = 100, K = 12,
Bmax = 1 and Hj i.i.d. uniformly distributed on {.1, .2, · · · , .9} for j = 0, · · · , 11.
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Fig. 3.9: Average D2 with 100 randomly generated inputs {Hj}, N = 10, K = 12,
Bmax = 1 and Hj i.i.d. uniformly distributed on {.1, .2, · · · , .9} for j = 0, · · · , 11.

3.8 Summary

We have studied the power allocation problem for an estimation system where the esti-

mator observes noisy output of the amplified source sequence. The transmitter relies on
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energy harvested from its operating environment and we considered various cases of trans-

mitter and receiver side information: whether the transmitter has non-causal knowledge of

the harvested energy and whether the receiver/estimator has the knowledge of the trans-

mit power. For the clairvoyant case when both transmitter and estimator have complete

side information and the battery storage capacity is infinite, the optimal power allocation is

shown to be reminiscent of a staircase climbing process where energy is evenly distributed

and completely depleted between any neighboring transition blocks. If the battery storage

has a finite capacity, the optimal power allocation can also be obtained via standard con-

vex optimization algorithms. For the case with causal side information at the transmitter,

the optimal power allocation can be solved via dynamic programming for a finite num-

ber of blocks. The case where the receiver does not have knowledge of transmit power is

addressed by resorting to simple estimators that are asymptotically accurate as the block

length increases.

Two heuristic approaches have also been proposed. Besides of greatly reduced compu-

tational complexities, both algorithms can be carried out in a forward manner thus do not

require a finite number of blocks K as is the case for dynamic programming. Numerical

simulations are conducted to compare the performance of the proposed approaches and it

was found that when the block length N is large, the MSE’s obtained with the heuristic

schemes are close to that with DP; when N is small, DP performs considerably better than

the heuristic schemes.
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CHAPTER 4

CAPACITY THEOREMS FOR

MULTI-FUNCTIONING RADIO

4.1 Problem Formulation And Literature Review

This chapter gives a simple information theoretic formulation for multi-functioning ra-

dios. Specifically, we consider communication systems where communication involves

transmission of both messages and source sequences. The objective is to find the optimal

trade-off between the rate of reliable message transmission and the distortion for the source

sequence estimation. Using primarily Gaussian channels as examples, the central question

we address is the following: is it optimal to treat the channel as simply a bit pipe where

message and source encoding divide up the bandwidth? For the point to point system, we

show that this is indeed the case. That is, it is optimal to simply split the channel capacity

into two components and separately code the message and the source sequence. The same

conclusion, however, no longer holds for multi-user systems. Using a simple Gaussian

broadcast channel example, we show that such a separation approach will lead to a strictly

suboptimal rate-distortion trade-off.

We emphasize here that the problem is different from the classic source-channel coding
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problem where source sequences are to be communicated via noisy channels. The model

in the present work involves both source sequences an messages that need to be transmitted

via noisy channels. Closely related to this problem is the problem of state information

transmission over state-dependent channels [49–52]. In [49], Sutivong et al studied the

problem of communication over a state-dependent Gaussian channel where the receiver is

not only interested in decoding the message but also wants to estimate the channel state. It

was shown that the optimal trade-off between the information rate and the mean squared

error (MSE) of state estimation is achieved by a power sharing scheme via Costa’s dirty

paper coding [53] and simple state amplification. This problem was extended to a non-

Gaussian setting in [50] and to Gaussian broadcast channels in [51]. In [52], Choudhuri

et al studied the problem of state information transmission over a state-dependent discrete

memoryless channel, where the state is known strictly causally at the transmitter.

4.2 Point-to-Point Channels

In this section, we consider a communication system shown in Fig. 4.2, where the transmit-

ter wishes to simultaneously send a message W and a source sequence Sn to the receiver

over an additive Gaussian channel.

W

Sn
Encoder

Xn

Zn

Y n

Decoder
Ŵ

Ŝn

Fig. 4.1: Simultaneous transmission of a message and a source sequence over a point-to-
point channel with additive Gaussian noise.

Let Si denote the ith sample of the observation sequence of length n, which is assumed

to be independent and identically distributed (i.i.d.) Gaussian with mean zero and variance

Q. Let W denote the message to be communicated, which is uniformly distributed on
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W

Sn
Encoder

Xn

Zn

Y n

Decoder
Ŵ

Ŝn

Fig. 4.2: Simultaneous transmission of a message and a source sequence over a point-to-
point channel with additive Gaussian noise.

{
1, 2, · · · , 2nR

}
and is independent of Sn. Based on the message indexW and the sequence

Sn, the transmitter choosesXn (W,Sn) subject to an average power constraint P and sends

it through a Gaussian channel with output

Y n = Xn (W,Sn) + Zn

where Zn is an i.i.d. Gaussian noise sequence with mean zero and variance N and is

independent of the transmitted signal. Upon receiving Y n, the receiver decodes the mes-

sage Ŵ (Y n) ∈
{

1, 2, · · · , 2nR
}

and reconstructs the source sequence Ŝn (Y n). The error

probability of message decoding and MSE distortion of sequence estimation are given by

Pe =
1

2nR

2nR∑

m=1

Pr
(
Ŵ (Y n) 6= m|W = m

)

and

d(Sn, Ŝn) =
1

n

n∑

i=1

E
[∣∣∣Ŝi − Si

∣∣∣
2
]

respectively. More formally, the problem is defined as follows.

Definition 1. A (2nR, n) code consists of an encoder map

Xn :
{

1, 2, · · · , 2nR
}
× Rn → Rn
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with codewords satisfying

1

n

n∑

i=1

E
[
X2
i

]
≤ P,

where P is the average power constraint, and decoder maps

Ŵ : Rn →
{

1, 2, · · · , 2nR
}

Ŝn : Rn → Rn.

Definition 2. An (R,D) pair is said to be achievable if there exist a sequence of (2nR, n)

codes such that the probability of error Pe → 0 and the MSE distortion d(Sn, Ŝn) ≤ D for

each block length n.

The objective is to characterize the optimal (R,D) trade-off region, which is given by

the closure of the convex hull of all achievable (R,D) pairs.

Theorem 4.2.1. For the point-to-point channel with additive Gaussian noise, the optimal

(R,D) trade-off region is given by

D ≥ 22R NQ

N + P
(4.1)

where 0 ≤ R ≤ C and C denotes the channel capacity

C =
1

2
log

(
1 +

P

N

)
.

Fig. 4.3 is an illustration of the achievable (R,D) region. Notice that one can equiva-

lently rewrite (4.1) to be

R +
1

2
log

Q

D
≤ C.
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Thus the interpretation is clear: the total channel capacity is divided into two parts, one for

source transmission and the other for message transmission.

R

D

0

NQ
N+P

Q

C

Fig. 4.3: Optimal (R,D) trade-off region for simultaneously transmitting a message and
a source sequence over a Gaussian point-to-point channel.

4.2.1 Proof of Achievability

We propose a simple power sharing scheme that achieves the (R,D) region in (4.1). For

some 0 ≤ λ ≤ 1, the transmitter allocates λP and (1 − λ)P to encode W and Sn. In

particular, rate-distortion code [55] is applied for Sn and the channel input is given by

Xn = Xn
W +Xn

S ,

where Xn
W and Xn

S denote the codewords for W and Sn respectively. The receiver first

recovers the source sequence Sn and subtracts codewordXn
S , and then decodes the message

W , with corresponding (R,D) pair satisfying

R ≤ 1

2
log

(
1 +

λP

N

)
4
= R(λ, P ) (4.2)

D ≥ Q
λP +N

P +N

4
= D(λ, P ). (4.3)
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Eliminating λ, we obtain the achievable region in (4.1). In addition, the above achievable

scheme also implies separation from the operational sense: the two encodings (that of

source and message) are carried out independently and codewords are superimposed at the

transmitter.

Remark 1. The (R,D) region in (4.1) can also be achieved by applying uncoded trans-

mission [54] for the source sequence Sn with

Xn
S =

√
(1− λ)P

Q
Sn

and dirty paper coding [53] for the message W treating Xn
S as state.

4.2.2 Proof of Converse

We now establish the converse by equivalently showing that there exists a 0 ≤ λµ ≤ 1 as a

function of µ such that any achievable (R,D) pair satisfies

R +
µ

2
log

Q

D
≤ R(λµ, P ) +

µ

2
log

Q

D(λµ, P )
(4.4)
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for all µ ≥ 0, where R(λµ, P ) and D(λµ, P ) are defined in (4.2) and (4.3). We start from

showing

1

n
I(Sn;Y n)

=
1

n
(h(Sn)− h(Sn|Y n))

(a)
=

1

n

(
h(Sn)− h(Sn − Ŝn (Y n) |Y n)

)

(b)

≥ 1

n

(
h(Sn)− h(Sn − Ŝn (Y n))

)

(c)
=

1

n

(
n∑

i=1

h(Si)− h(Sn − Ŝn (Y n))

)

(d)

≥ 1

n

n∑

i=1

(
h(Si)− h(Si − Ŝi)

)

=
1

n

n∑

i=1

(
1

2
log(2πeQ)− h(Si − Ŝi)

)

(e)

≥ 1

n

n∑

i=1

(
1

2
log(2πeQ)− 1

2
log
(

2πeE(Si − Ŝi)2
))

(f)

≥ 1

2
log(2πeQ)− 1

2
log

(
2πe

1

n

n∑

i=1

E(Si − Ŝi)2

)

=
1

2
log

Q

D
(4.5)

where

(a) is because Ŝn(Y n) is a function of Y n;

(b) is because conditioning reduces entropy;

(c) follows from chain rule and the i.i.d. assumption of Sn;

(d) follows from chain rule and conditioning reduces entropy;

(e) is because Gaussian distribution maximizes entropy for fixed variance;

(f) is due to Jensen’s inequality.
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Then, we can bound the weighted sum on the left hand side of (??) by

R +
µ

2
log

Q

D

≤ R +
µ

n
I(Sn;Y n)

= µ

(
R +

1

n
I(Sn;Y n)

)
+ (1− µ)R

(a)
=

µ

n
(h(W ) + I(Sn;Y n)) +

1− µ
n

h(W )

(b)
=

µ

n
(h(W |Sn) + I(Sn;Y n)) +

1− µ
n

h(W |Sn)

(c)

≤ µ

n
(I(W ;Y n|Sn) + I(Sn;Y n)) +

1− µ
n

I(W ;Y n|Sn) + εn

(d)

≤ µ

n
(I(Xn;Y n|Sn) + I(Sn;Y n)) +

1− µ
n

I(Xn;Y n|Sn) + εn

=
µ

n
I(Xn, Sn;Y n) +

1− µ
n

I(Xn;Y n|Sn) + εn

=
µ

n
(h(Y n)− h(Y n|Xn, Sn))

+
1− µ
n

(h(Y n|Sn)− h(Y n|Xn, Sn)) + εn

(e)

≤ µ

n

(
n∑

i=1

h(Yi)−
n∑

i=1

h(Yi|Y i−1, Xn, Sn)

)

+
1− µ
n

(
n∑

i=1

h(Yi|Si)−
n∑

i=1

h(Yi|Y i−1, Xn, Sn)

)
+ εn

=
µ

n

n∑

i=1

(h(Yi)− h(Zi)) +
1− µ
n

n∑

i=1

(h(Yi|Si)− h(Zi)) + εn

=
1

n

n∑

i=1

(µh(Yi) + (1− µ)h(Yi|Si)− h(Zi)) + εn (4.6)

where

(a) is because W is uniformly distributed on {1, 2, · · · , 2nR};

(b) is because W and Sn are independent;

(c) follows from Fano’s inequality;

(d) follows from data processing inequality;



58

(e) follows from chain rule and conditioning reduces entropy.

In (4.6), for each i and 0 ≤ µ ≤ 1, the sum of the first two terms can be further bounded in

the following

µh(Yi) + (1− µ)h(Yi|Si)
(a)

≤ µ

2
log
(
2πeEY 2

i

)
+ (1− µ)h(Yi|Si)

=
µ

2
log
(
2πeEY 2

i

)
+ (1− µ)h(Yi − γSi|Si)

(b)

≤ µ

2
log
(
2πeEY 2

i

)
+ (1− µ)h(Yi − γSi)

(c)

≤ µ

2
log
(
2πeEY 2

i

)
+

1− µ
2

log

(
2πe

(
EY 2

i −
(ESiYi)2

ES2
i

))

(d)

≤ µ

2
log (2πe(Pi +N)) +

1− µ
2

log (2πe(λiPi +N))

where

(a) is because Gaussian distribution maximizes differential entropy for fixed variance;

(b) is because conditioning reduces entropy;

(c) is obtained by letting

γ =
ESiYi
ES2

i

and it follows that

E(Yi − γSi)2 = EY 2
i −

(ESiYi)2

ES2
i

;

(d) is because Gaussian distribution maximizes differential entropy. Note that equality

holds when Xi is jointly Gaussian with Si and Zi, i.e., by letting

Xi = XW,i +

√
(1− λi)Pi

Q
Si
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where XW,i ∼ N(0, λiPi) with λi chosen such that the covariance of (Si, Xi, Zi, Yi)

is the same as that in the code.

Then we continue the chain of inequalities from (4.6)

R +
µ

2
log

Q

D

≤ 1

n

n∑

i=1

(
µ

2
log (2πe(Pi +N)) +

1− µ
2

log (2πe(λiPi +N)) −1

2
log (2πeN)

)
+ εn

=
1

n

n∑

i=1

(
1

2
log

(
Pi +N

N

)µ
+

1

2
log

(
λiPi +N

N

)1−µ
)

+ εn

(a)

≤ 1

2
log

(
P +N

N

)µ
+

1

2
log

(
λP +N

N

)1−µ

+ εn

=
1

2
log(1 +

λP

N
) +

µ

2
log

P +N

λP +N
+ εn

(b)

≤ 1

2
log(1 +

λµP

N
) +

µ

2
log

P +N

λµP +N
+ εn

= R(λµ, P ) +
µ

2
log

Q

D(λµ, P )
+ εn

where

(a) is by Jensen’s inequality with λ chosen such that

λP =
1

n

n∑

i=1

λiPi

and it follows that

(1− λ)P =
1

n

n∑

i=1

(1− λi)Pi;

(b) is by choosing λµ that maximizes the expression.

Thus (4.4) is proved and this completes the converse proof.
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4.3 Broadcast channels

(W1,W2)

Sn
Encoder

Xn

Zn
1

Zn
2

Y n
2

Y n
1

Decoder 1

Decoder 2
Ŵ2

Ŝn
2

Ŵ1

Ŝn
1

Fig. 4.4: Simultaneous transmission of two messages and a source sequence over a
Gaussian broadcast channel.

In this section, we study the problem of simultaneously communicating messages and

source sequences via Gaussian broadcast channels. As shown in Fig. 4.4, Sn denotes an

i.i.d. Gaussian source sequence with mean zero and varianceQ. LetW1 ∈ {1, 2, · · · , 2nR1}

andW2 ∈ {1, 2, · · · , 2nR2} denote two independent messages which are assumed to be uni-

formly distributed and independent of Sn. Based on the source sequence Sn and message

indices (W1,W2), the transmitter sends Xn subject to an average power constraint P and

transmits it over a Gaussian broadcast channel with outputs

Y n
k = Xn + Zn

k

for k = 1, 2, where Zn
k is an i.i.d zero-mean Gaussian noise sequence. The variance of Zk is

denoted as Nk, and without loss of generality we assume N1 ≤ N2. Upon observing chan-

nel output Y n
k , receiver k decodes the message Ŵk and reconstructs the source sequence

Ŝnk within certain MSE distortion. Formally, we have the following problem.

Definition 3. A (2nR1 , 2nR2 , n) code consists of an encoder map

Xn :
{

1, 2, · · · , 2nR1
}
×
{

1, 2, · · · , 2nR2
}
× Rn → Rn
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with codewords satisfying

1

n

n∑

i=1

E
[
X2
i

]
≤ P,

where P is the average power constraint, and decoder maps

Ŵk : Rn →
{

1, 2, · · · , 2nRk
}

Ŝnk : Rn → Rn

for k = 1, 2.

Definition 4. A tuple (R1, R2, D1, D2) is said to be achievable if there exist a sequence of

(2nR1 , 2nR2 , n) codes such that for each block length n, the probability of error for message

decoding Pe,k → 0 and the MSE of sequence estimation d(Sn, Ŝnk ) ≤ Dk for k = 1, 2.

Note that the minimum Dk achievable is given by

Dmin
k

4
= Q

Nk

P +Nk

where k = 1, 2 when there is no message transmission involved. On the other hand, if

the distortion requirements at both receivers are relaxed to the variance of the source se-

quence, i.e., D1 > Q and D2 > Q, the transmitter can ignore the source sequence and

the problem reduces to channel coding. Therefore, in the following theorem, we character-

ize the optimal (R1, R2, D1, D2) trade-off region, i.e., the collection of all the achievable

(R1, R2, D1, D2) tuples where Dk ≥ Dmin
k and minkDk ≤ Q for k = 1, 2.

Theorem 4.3.1. For the broadcast channel with additive Gaussian noise, the optimal
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(R1, R2, D1, D2) trade-off region is given by

1

2
log

Q

D1

≤ 1

2
log

(
1 +

βP

(1− α)P +N1

)
(4.7)

1

2
log

Q

D1

+R1 ≤
1

2
log

(
1 +

(1− α + β)P

N1

)
(4.8)

R2 ≤
1

2
log

(
1 +

(α− β)P

(1− α + β)P +N2

)
(4.9)

1

2
log

Q

D2

+R2 ≤
1

2
log

(
1 +

αP

(1− α)P +N2

)
(4.10)

where 0 ≤ β ≤ α ≤ 1.

4.3.1 Proof of Achievability

We describe a power sharing scheme that achieves the (R1, R2, D1, D2) region given by

(4.7) - (4.10). For some 0 ≤ β ≤ α ≤ 1, the transmitter allocates (1− α)P, (α− β)P and

βP to encode W1,W2 and Xn
S , respectively, and the channel input is given by

Xn = Xn
W1

+Xn
W2

+Xn
S .

In particular, an uncoded scheme is used for transmission of Sn with Xn
S =

√
βP
Q
Sn and

dirty paper coding [53] is applied for W1, treating Xn
S as known state. Receiver 2 estimates

Sn and W2 treating Xn
W1

as interference. Receiver 1 first decodes W2 and subtracts Xn
W2

,

and then estimates Sn and W1. By Theorem 4.2.1 we see that the error probability can be

made arbitrarily small and the distortion requirement can be satisfied at both receivers, i.e.,

Pe,k → 0 and d(Sn, Ŝnk ) ≤ Dk for k = 1, 2, if (4.7) - (4.10) hold.

4.3.2 Proof of Converse

We now sketch the proof of converse by showing that there exist 0 ≤ β ≤ α ≤ 1 such

that any achievable (R1, R2, D1, D2) tuple satisfies (4.7) - (4.10). As there is no receiver
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cooperation, we can assume a physically degraded Gaussian broadcast channel.

We start from (4.7). By Fano’s inequality,

1

2
log

Q

D1

≤ 1

n
I(Sn;Y n

1 |W2)

=
1

n
h(Y n

1 |W2)− 1

n
h(Y n

1 |W2, S
n). (4.11)

Since

h(Y n
1 ) ≥ h(Y n

1 |W2) ≥ h(Y n
1 |W2, S

n) = h(Zn
1 ),

there must exist 0 ≤ β ≤ α ≤ 1 such that

h(Y n
1 |W2, S

n) =
n

2
log (2πe((1− α)P +N1)) , (4.12)

h(Y n
1 |W2) =

n

2
log (2πe((1− α + β)P +N1)) . (4.13)

Plugging (4.12) and (4.13) into (4.11), we obtain (4.7).

Next we prove (4.8). By Fano’s inequality,

1

2
log

Q

D1

+R1 ≤
1

n
I(W1, S

n;Y n
1 |W2)

=
1

n
h(Y n

1 |W2)− 1

n
h(Zn

1 ). (4.14)

Plugging (4.13) into (4.14), we obtain (4.8).

For (4.9) and (4.10), by Fano’s inequality we have

R2 ≤
1

n

(n
2

log(2πe(P +N2))− h(Y n
2 |W2)

)
(4.15)

1

2
log

Q

D2

+R2 ≤
1

n

(n
2

log(2πe(P +N2))− h(Y n
2 |W2, S

n)
)
. (4.16)

By the degradedness assumption, we let Y2 = Y1 + Z̃2, where Z̃2 is Gaussian with mean
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zero and variance N2 − N1 and is independent of everything else. Then by the entropy

power inequality [56] [57]

h(Y n
2 |W2) ≥ n

2
log
(

2
2
n
h(Y n1 |W2) + 2

2
n
h(Z̃2|W2)

)

=
n

2
log (2πe((1− α + β)P +N2)) (4.17)

h(Y n
2 |W2, S

n) ≥ n

2
log
(

2
2
n
h(Y n1 |W2,Sn) + 2

2
n
h(Z̃2|W2,Sn)

)

=
n

2
log (2πe((1− α)P +N2)) . (4.18)

Plugging (4.17) into (4.15) and (4.18) into (4.16), we obtain (4.9) and (4.10). Therefore the

converse proof is completed.

4.3.3 Discussions

Clearly, when D1 ≥ D2 the constraint in (4.7) is redundant as receiver 1 sees a better

channel than receiver 2 does.

For the case where D1 < D2, consider a simple separation scheme as follows. Given

that a Gaussian source is successively refinable [58], the transmitter encodes the source

sequence Sn into two parts Xn
S and X ′nS , which are then superimposed with the message

codewords, resulting in the channel input as

Xn = Xn
W1

+X ′nS +Xn
W2

+Xn
S .

Let γP be the fraction of power allocated to Xn
W2

and Xn
S while Xn

W1
and X ′nS share the

rest (1− γ)P , where 0 ≤ γ ≤ 1. Given the above encoding scheme, it is easy to obtain the

following achievable region

1

2
log

D2

D1

+R1 ≤
1

2
log

(
1 +

(1− γ)P

N1

)
4
= C1 (4.19)

1

2
log

Q

D2

+R2 ≤
1

2
log

(
1 +

γP

(1− γ)P +N2

)
4
= C2. (4.20)
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Note that (C1, C2) gives the boundary of the capacity region of Gaussian broadcast

channel [55] by varying γ from 0 to 1. Hence this achievable region can be interpreted as a

separation of two parts - channel coding for the messages and successive refinement coding

of the source sequence. Fig. 4.5 illustrates this approach where separation is in the sense

of dividing up the rate pair (C1, C2) into two parts, one for message transmission and the

other for source transmission.

(C1, C2)

︸ ︷︷ ︸︸ ︷︷ ︸︷
︸︸

︷︷
︸︸

︷

R1
1
2 log

D2
D1

R2

1
2 log Q

D2

Fig. 4.5: Separation approach for simultaneously transmitting two messages and a source
sequence over a Gaussian broadcast channel.

Recall that for the point to point case in Section 4.2, it is optimal to split the total

rate into two parts and separately code the message and the sequence. However, it is easy

to show that the region specified by (4.19) and (4.20) is strictly suboptimal for Gaussian

broadcast channels.

Adding (4.19) and (4.20), we obtain

1

2
log

Q

D1

+R1 +R2 ≤
1

2
log

(
((1− γ)P +N1)(P +N2)

N1((1− γ)P +N2)

)
. (4.21)

On the other hand, Fourier-Motzkin elimination on (4.7) - (4.10) gives

1

2
log

Q

D1

+R1 +R2 ≤
1

2
log

(
((1− α + β)P +N1)(P +N2)

N1((1− α + β)P +N2)

)
. (4.22)

Choose γ = α − β so that (4.21) and (4.22) are identical. Then comparing (4.10) and
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(4.20), it is clear that the separation scheme is suboptimal.

The strict sub-optimality for the above simple scheme can be attributed to the fact that

a digital scheme is not optimal for sending a common Gaussian source through a Gaussian

broadcast channel [59]. On the other hand, the optimal achievable scheme for this simple

model requires a coupling of the channel and source coding through the use of dirty paper

coding. It is clear that a simple superposition scheme (which amounts to operationally a

separation scheme) is not optimal for this case even if one uses analog transmission for the

source sequence.

4.4 Summary

This chapter provided complete solutions for the problems of simultaneously transmitting

messages and source sequences over Gaussian point-to-point and broadcast channels. For

point-to-point channels, rate splitting and separate coding of message and sequence is opti-

mal. The same conclusion is no longer valid for the multi-user system as illustrated using a

simple Gaussian broadcast channel example. Future work will focus on more complicated

model (e.g., sending two independent sequences over a Gaussian broadcast channel) to gain

a better understanding of the potential interplay between source and message transmissions.
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CHAPTER 5

DUAL-USE OF AIRBORNE MIMO

SYSTEMS

5.1 Motivation And Related Technologies

Air target detection has long been an active area of research with various defense and

commercial applications. For example, MIMO radar, which employs multiple orthogonal

transmit waveforms and has the ability to jointly process signals received at multiple anten-

nas, is known to be a promising technology for airborne target detection [60]. Compared

with standard phased-array radars, MIMO radars exploit the spatial and waveform diversity

to provide higher angular resolution and improved target parameter identifiability [61–66].

Another attractive technology is passive radar, which is essentially a receiver-only radar

that uses non-cooperative sources of illumination in the environment [8–10, 67–70]. Com-

pared to active radar systems, passive radars are virtually undetectable to surveillance re-

ceivers and there is no constraint in spectrum allocation. Passive radars that leverage the

existence of radio waves for communications have received much recent attention [8–10].

For example, FM radio, TV broadcast, satellite-borne signals and Global System for Mo-

bile communication (GSM) signals have already been used as radar waveforms.
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In this chapter, we consider yet another alternative: dual-use airborne MIMO systems

where airborne MIMO communications are leveraged for target detection. Different from

the MIMO radar, the primary task of the deployed system is for communications, hence

the waveform at the transmit side is designed for MIMO communications instead of target

detection. On the other hand, such a system differs from passive radars in that one has

a richer knowledge of the transmitted signals that can be leveraged for improved target

detection performance.

Specifically, we consider the dual use of airborne MIMO systems where airborne MIMO

communications are leveraged for target detection. While the change due to the presence

of new airborne targets often manifests itself directly in the change in the channel matrices

(or their estimates), we utilize instead the change of channel characteristics in transform

domains where airborne targets may exhibit distinct features. Two particular transform do-

mains are explored in this chapter: 1) for uniform linear arrays (ULA) [19], angular domain

channel decomposition is utilized - the lack of scattering leads to sparse angular domain

channel representations and the presence of new targets is often manifested as new angular

domain components; 2) for arbitrary array configuration in which directional information

is hard to retrieve, Doppler domain decomposition can be explored as mobility (both of the

airborne targets and of the receiver) induces Doppler components that are often distinct for

different paths.

Different from the traditional MIMO channels that are rich in scattering, airborne MIMO

channels do not admit accurate statistical models. This lack of statistical channel modeling

carries over to the transform domains. As such, we adopt nonparametric approaches in de-

tecting the change in channel realization. Recognizing the complexity of this problem, we

consider offline methods to identify the change points (if present) in a sequence of sample

observations.

In this chapter, we will first introduce a nonparametric offline change detection algo-

rithm which is a special case of the E-divisive method [73]. As it is computationally simple
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and capable of detecting any type of changes in multivariate distributions, we apply this

method to statistics extracted based on peak detection in both angular and Doppler do-

mains. Motivated by this change detector, we develop another change detection method

which is directly applicable to sample observations from the angular and Doppler domain

and thus preserves more information on the possible presence of airborne targets.

5.2 Nonparametric Detection For Distribution Change

Change detection concerns the inference of a change in distribution for a sequence of tem-

porally or spatially ordered observations. We consider the offline version where sample

size is fixed and retrospective analysis of an entire sequence is performed. Specifically,

denote the observations to be Xi ∈ Rp where i = 1, 2, · · · , T . The null hypothesis is that

there is no change and all the observations come from the same multi-variate distribution,

while the alternative hypothesis is that there exists a single change point τ which partitions

the sequence into two sets following different distributions, i.e.,

H0 : Xi ∼ F0, for i = 1, · · · , T,

H1 : Xi ∼ F0, for i = 1, · · · , τ,

Xj ∼ F1, for j = τ + 1, · · · , T.

In general, change detection has been performed in either parametric or nonparametric

settings [74]. Parametric techniques often rely heavily on likelihood functions and thus

require knowledge on the underlying distributions [75–77]. Nonparametric alternatives are

applicable to a wider range of real-world problems as they maintain a desired detection

performance without assuming any knowledge on distribution [78–82].

Although research on distribution-free approaches has increased in recent years, the

majority of existing studies focus on monitoring changes in location or scale parameters
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[80, 81]. As for detection of arbitrary changes in distribution, many methods consider

empirical density functions, which are difficult to generalize to multivariate samples [82].

In this work, we adopt a nonparametric approach which is a special case of the E-

Divisive technique, where inference is performed in a manner that simultaneously identifies

the number and the location of change points based on hierarchical clustering [73]. This

detector is capable of detecting any distributional change within a sequence of independent

multivariate observations and does not make any assumption on the distributions beyond

the existence of the αth moment, for some 0 < α < 2.

Consider the divergence measure E(α) which is based on Euclidean distances

E(α) = 2 ∗ E|X − Y |α − E|X −X ′|α − E|Y − Y ′|α.

It is shown in [83] that if 0 < α < 2, then E(α) ≥ 0 and equality holds if and only if X

and Y are identically distributed. In fact, E(α) is equivalent to another divergence measure

D(α) =

∫
|φ0(t)− φ1(t)|2w(t, α)dt

where φ(·) denote the characteristic function and the weight function is given by

w(t, α) =

(
2πp/2Γ(1− α/2)

α2αΓ((p+ α)/2)
|t|p+α

)−1

if E(|X|α + |Y |α) < ∞ for some 0 < α < 2 [83, Theorem 2]. Furthermore, an empirical

divergence measure Ê(α, τ) converges to E(α) almost surely as the sample size goes to
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infinity [84], where

Ê(α, τ) =
2

τ(T − τ)

τ∑

i=1

T−τ∑

j=τ+1

|Xi −Xj|α

−
(
τ

2

)−1 ∑

1≤i<i′≤τ

|Xi −Xi′ |α

−
(

(T − τ)

2

)−1 ∑

τ+1≤j<j′≤T

|Xj −Xj′|α.

Now we consider a scaled version of the empirical divergence measure which leads to

a consistent estimator of change location [73, Theorem 4]

Q̂(α, τ) =
τ(T − τ)

T
Ê(α).

The most probable change location of a sequence of sample observations can thus be es-

timated by searching for the partition that maximizes the scaled sample divergence of two

sets of sample observations, i.e.,

τ̂ = argmaxτ Q̂(α, τ).

The scaled sample divergence corresponding to the estimated change point is then com-

pared to a threshold γ to determine whether there exists a change point, i.e.,

H0 : Q̂(α, τ̂) ≤ γ,

H1 : Q̂(α, τ̂) > γ.

5.3 Angular Domain Target Detection

In this section, we discuss the selection of informational statistics in the angular domain

for detection of changes caused by airborne targets for uniform linear arrays. We first
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consider peak detection on the estimated angular domain channel matrices and feed the

peak values as input to the nonparametric change detector introduced in Section 5.2. Then

another change detection method is developed based directly on the Euclidean distance of

adjacent angular domain channel matrices. This approach preserves more information on

the possible presence of targets and can be applied to air-to-ground communication when

only side of the communicating parties (either on the transmitter side or on the receiver

side) is a uniform linear array.

5.3.1 Angular Domain Channel Representation

Consider the narrowband MIMO channel

y = Hx + w

where x ∈ Cnt , y ∈ Cnr and w ∼ CN (0, σ2
nInr) denote the transmitted signal, received

signal and white Gaussian noise respectively at a symbol time. The nt transmit and nr

receive antennas are placed in uniform linear arrays of lengths Lt and Lr normalized by

the wavelength λc of the passband transmitted signal. The normalized separation between

transmit and receive antennas are ∆t = Lt/(nt − 1) and ∆r = Lr/(nr − 1). Assume that

in addition to the LOS path there are possibly other scarcely distributed paths reflected by

the airplane itself or targets in the air. The ith path has attenuation ai, angle of departure

φti and angle of arrival φri, for i = 1, · · · , q. The channel matrix H can be modeled as

H =

q∑

i=1

abier(cos(φri))e
∗
t (cos(φti))

where

abi = ai
√
ntnre

− 2πjdi
λc



73

and er(·) and et(·) are the steering vectors at the receiver and the transmitter, defined as

er(Ω) =
1
√
nr




1

e−2πj∆rΩ

...

e−2πj(nr−1)∆rΩ




et(Ω) =
1
√
nt




1

e−2πj∆tΩ

...

e−2πj(nt−1)∆tΩ




.

The distance of path i is denoted as di.

The transmitted and received signals can be transformed into the angular domain

xa = Ut
∗x

ya = Ur
∗y

where Ut and Ur are unitary matrices defined by the transmitted and received unit spatial

signatures

Ut =

(
et(0), et(

1

Lt
), · · · , et(

nt − 1

Lt
)

)

Ur =

(
er(0), er(

1

Lr
), · · · , er(

nr − 1

Lr
)

)
.

Clearly we have an equivalent representation of the channel in the angular domain

ya = Haxa + wa
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where

Ha = Ur
∗HUt

and

wa = Ur
∗w.

Particularly, the (k, l)th element of the angular domain channel matrix is given by

hakl =

q∑

i=1

abi (er(k/Lr)
∗er(cos(φri))) (et(cos(φti))

∗et(l/Lt)) .

We then define the kth bin (k = 1, · · · , nr) at the receiver angular domain to contain all

paths whose receive directional cosine is within a window of width 1/Lr around k/Lr, i.e.,

k−0.5
Lr

< cos(φri) <
k+0.5
Lr

. Similarly, bins can be formed at the transmitter angular domain

labelled with l = 1, · · · , nt [19, Chapter 7].
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Fig. 5.1: An example of Ha with LOS path and a target-reflected path.
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Fig. 5.1 shows an example of an angular domain channel matrix, where the angular

spaces at both the transmitter and the receiver are divided into 12 bins. Each bin contains

the set of all paths that roughly depart from a certain transmit angle and arrive in a certain

receive angle. In this particular case, the channel is modeled by an LOS path plus a reflected

path, thus the matrix demonstrates small angular spreads at both the transmitter and the

receiver.

5.3.2 Peak-Detection-Based Target Detection

Since airborne MIMO communication is scarce of strong scatterers, physical paths may be

resolvable from angular domain representation of the channel. Specifically, each distinct

path may correspond to a distinct peak in the angular domain matrix. Consider a sequence

of estimated angular domain matrices whose amplitudes are denoted as {Ĥa
1, Ĥ

a
2, · · · , Ĥa

T}.

Each physical path corresponds to a distinct peak which either stays in the same position

throughout the sequence, or moves very slowly on the grid. The presence of a target mani-

fests itself as, hence can be detected as a new peak in the estimated angular domain channel

matrices.

Motivated by this observation, we propose a change detection method based on peak

detection over the estimated angular domain channel matrices. The highest p peak values

are constantly monitored and fed to the change detecter as input. Specifically, an element

in an estimated channel matrix is considered to be a peak if its absolute value is greater

than all the 8 neighbors. Note that the first and last rows or columns are also considered

adjacent for peak detection, because the angular space is circular.

5.3.3 Euclidean-Distance-Based Target Detection

Since the onset of airborne targets often introduces new peaks on the estimated angular

domain matrix, it is likely to contribute to increased distance between adjacent frames

in the sequence of channel matrices. We then consider a target detection method based
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directly on the distance. Let |Ĥa
τ − Ĥa

τ−1| denote the Euclidean distance between two

consecutive channel matrices, where | · | is the Frobenius norm.

Note that the movement of an existing peak (caused by the mobility of the airborne

platform) can also contribute to a large distance between two consecutive frames of angu-

lar domain channel matrices. Such movement, however, is usually limited to its immediate

neighbor of the angular domain in between frames. For example, assume channel esti-

mation is carried out every 0.01s. Suppose a target 200m away from a 12-element ULA

is traveling at 500 m/s along a path that is perpendicular to the LOS path between itself

and the ULA. Then the maximum angular domain movement is 0.2 rad which is far below

the angular domain resolution π/6 rad. In order to reduce the distance contributed by the

movement of an existing peak, we smooth out the matrices by replacing each entry with the

average of itself and the adjacent ones. After pre-processing, all peaks are blurred out and

the slow movement of existing peaks will not cause significant changes between adjacent

frames. Denote the pre-processed matrices to be {H̃a
1, H̃

a
2, · · · , H̃a

T}.

Another factor that may affect the Euclidean distance between adjacent frames is the

noise introduced by channel estimation. To reduce it, we consider, instead, the distance

between time-averaged frames, i.e.,

Dw(τ) =

∣∣∣∣∣
1

w

τ+w−1∑

i=τ

H̃a
i −

1

w

τ−1∑

i=τ−w

H̃a
i

∣∣∣∣∣

for τ = w + 1, · · · , T + w − 1, where the window size w is chosen such that the effect

of noise is averaged out while sufficient peak information is preserved. The most probable

change point can then be estimated by searching for the time that maximizes the distance,

i.e.,

τ̂ = argmaxτDw(τ). (5.1)

The distance corresponding to the estimated change point is then compared with a threshold
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γ to determine whether there exists a change, i.e.,

H0 : Dw(τ̂) ≤ γ,

H1 : Dw(τ̂) > γ.

(5.2)

In fact, this method can also be applied to the scenario where there is only one uniform

linear antenna array. Without loss of generality, we assume that the receive antenna is a

ULA while the transmit antenna is nonlinear. In this case, the channel matrix is given by

H =

q∑

i=1

ai
√
nrer(cos(φri))[e

−2πjd1,i/λc , · · · , e−2πjdnt,i/λc ]

where dl,i is the length of the ith physical path from the lth transmit antenna to the receive

antenna array, for l = 1, · · · , nt. Then the angular domain channel matrix can be obtained

by multiplying the Hermitian conjugate of the received unit spatial signature from the left,

i.e.,

Ha = Ur
∗H.

The (k, l)th entry of the angular domain channel matrix Ha is given by

hakl =

q∑

i=1

ai
√
nr (er(k/Lr)

∗er(cos(φri))) e
−2πjdl,i/λc ,

where er(k/Lr)∗er(cos(φri)) is only significant if the receive directional cosine is within a

window of width 1/Lr around k/Lr.

The one-dimensional angular resolution can then be exploited by taking the sum along

the row dimension of every estimated angular domain channel matrix which results in a

sample vector haτ for τ = 1, · · · , T . Denote the distance between adjacent sample observa-
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tions as

D(τ) = |haτ − haτ−1|

where τ = 2, · · · , T . A similar decision rule can be obtained as (5.1) and (5.2).

5.4 Doppler Domain Target Detection

Since it is generally difficult to obtain the steering vector for a nonlinear array, the angular

domain model is not directly applicable. In this section, we consider target detection based

on Doppler frequency analysis. Assume that each path corresponds to a distinct Doppler

frequency ωi. Then the (k, l)th entry of the channel matrix at time n is given by

Hkl[n] =

q∑

i=1

hklie
jωin

where hkli indicates the gain contributed by the ith path between the lth transmit antenna

and the kth receive antenna

hkli = aie
−2πjdkli/λc

and dkli is length of the ith path. Then, the received signal on the kth antenna at time n is

given by

yk[n] =
nt∑

l=1

q∑

i=1

hklie
jωinxl[n] + wk[n]

=

q∑

i=1

(
ejωin

nt∑

l=1

hklixl[n]

)
+ wk[n].

Since the phase of the transmitted signal is known from decoding, it can be compensated at

the receiver. The Doppler frequency components are thus directly reflected in the spectrum
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of the received signal on each antenna. Therefore, target presence can be detected by

identifying change points in the combined the spectrum of the received signals at all the

receive antennas.

Specifically, the entire received sequence on the kth antenna is chopped up into T seg-

ments of the same length. Then fast Fourier transform (FFT) is performed for each segment

and the absolute values of the spectrum of the received signal on each antenna are com-

bined, resulting in a sequence of sample observations {
∑nr

k=1 sk,1, · · · ,
∑nr

k=1 sk,T} where

sk,t denotes the absolute value of the spectrum of the tth segment of the received signal

on the kth antenna, for k = 1, · · ·nr and t = 1, · · · , T . Denote st =
∑nr

k=1 sk,t for

t = 1, · · · , T .

Parallel to the discussions in the previous section, the presence of targets can then be

detected based on

• estimation of change points in the distribution of peak values on the combined spec-

trum;

• distance between adjacent sample observations, i.e.,

D(τ) = |sτ − sτ−1|,

for τ = 2, · · · , T .

5.5 Simulation Results

In this section, we present numerical results to evaluate the performance of the proposed

schemes. We assume that

• without target, there are two paths - LOS and a reflected path by the transmitting

airplane;

• a target introduces up to 3 additional paths.
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The distance between two airplanes is set between 300m and 30000m. Attenuation is

assumed to be proportional to the inverse of the path length with reflection coefficient 0.5.

For simulation involving ULAs, transmit and receive angles are both randomly chosen

between −π and π. Carrier frequency is set at 120MHz and quadrature phase shift keying

(QPSK) is adopted. The parameter settings are summarized in Table 5.1.

Table 5.1: Parameter settings for ULA simulation.

LOS Path Reflected Path

transmit angle φti U(−π, π) U(−π, π)

receive angle φri U(−π, π) U(−π, π)

path length ri U(300, 30000) Calculated from geometry

reflection factor αi 1 0.5

For nonlinear arrays, antenna element locations are set according to [71, Table 1] which

are repeated in Table 5.2. The distance between antenna pairs are calculated based on the

geometry of antenna elements. For example, denote the longitudinal and lateral coordinates

of the kth antenna at the transmitting airplane and the lth antenna at the receiving airplane

are (xk, yk) and (xl, yl), respectively. Then the LOS path length between two elements is

dkl,LOS =
√

(d− xk − xl)2 + (w − yk − yl)2 + h2

where d is the longitudinal separation of the two airplanes, travelling oppositely in the

longitudinal direction. The lateral and height separation of the two airplanes are w and

h respectively. Without loss of generality, we set the position of the transmitting airplane

to be the origin. Clearly, the kth transmit antenna element is placed at (xk, yk, 0) and the

position of lth receive antenna is (d− xl, w − yl, h). Then, the length of the path reflected

by target at (xi, yi, zi) can be obtained as

dkli =
√

(xi − xk)2 + (yi − yk)2 + z2
i +

√
(d− xi − xl)2 + (w − yi − yl)2 + (zi − h)2.
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Table 5.2: Location of antenna elements on the F-35C (m)

element number 1 2 3 4 5 6

longitudinal position x -3.6 -3.18 -2.57 -1.96 -1.36 1.57

lateral position y -6.55 -5.5 -4.45 -3.40 -2.36 -1.31

element number 7 8 9 10 11 12

longitudinal position x 1.57 -1.36 -1.96 -2.57 -3.18 -3.60

lateral position y 1.31 2.36 3.40 4.45 5.5 6.55

For the simulation of angular domain target detection, a total number of 100 channel

matrices are generated for each Monte Carlo run, where a target may appear any time in the

sequence or does not show up at all. Standard least squares (LS) training-based technique

is applied for MIMO channel estimation with orthogonal pilot signals [85, Section II]. The

window size w is empirically chosen to be 3.

For the simulation of Doppler domain target detection, Doppler frequency associated

with any physical path is randomly chosen to be between −π and π. In each Monte Carlo

run, 100 received sequences of length 128 are collected on each antenna and a target may

or may not appear.

Fig. 5.2 illustrates the empirical divergence measure Q̂. In this simulation, 100 channel

matrices are generated for the uniform linear array case where a target is present starting at

the 47th sample. The empirical divergence measure Q̂ is computed based on the proposed

angular domain peak detection method and plotted for each candidate change point with α

set at 1.0 and 1.5. Clearly, Q̂ is maximized at the true change point in both cases. In the

following simulations, we set α to be 1.0.

Fig. 5.3 compares the true change points and estimated ones for the uniform linear

array case using the nonparametric change detector in Section 5.2. The result contains 20

Monte Carlo runs, and in each run, 100 sample sequences are collected and a change point

is randomly set between 10 and 90, so that sufficient data is accumulated both before and
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Fig. 5.2: Empirical divergence measure Q̂ vs candidate change point τ .

after change. As shown in the figure, the estimated change points based on the peak values

in the angular domain matrix (blue curve with circle markers) are very close to the true

change points (black curve with star markers). The estimated change points obtained by

directly feeding the channel matrix to the change detector are also plotted as a benchmark

(red curve with square markers). Clearly, the performance of change point estimation based

on raw data is not as good as that of the proposed method, which is also illustrated using

the ROC curves in Fig. 5.5.

Fig. 5.4 shows the estimation of change points for a nonlinear array using Doppler

information. When signal-to-noise ratio (SNR) is set at 20dB, the estimated change points

(blue curve with circle markers) are very close to the true change points with occasional

instances with large estimation errors. When the SNR drops to 10dB, the estimation is less

accurate.

Fig. 5.5 compares the ROC curves of different target detection methods for uniform

linear arrays in the noisefree case. In the angular domain, the peak-detection-based de-
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Fig. 5.3: Simulation of 20 runs of change detector for a uniform linear array.

tector performs much better than the channel-matrix-based detector which directly inputs

the entire sequence of estimated channel matrices to the nonparametric distribution change

detector. The performance of the Doppler-frequency-based detector is close to that of the

angular domain peak-detection-based detector, as they both depend on peak detection but

in different transform domains.

Fig. 5.6 shows the ROC curves of the proposed Euclidean-distance-based angular do-

main target detection methods under varying signal-to-noise ratio. The solid curves corre-

spond to the cases where both transmit and receive antennas are uniform linear arrays with

12 elements. The dashed curves indicate ULA only on the receiver side. As expected, the

performance increases with the increase of SNR. The performance of the cases with ULAs

on both sides is better than that of ULA on one side, due to the additional dimension of

angular resolution.

Fig. 5.7 compares the ROC curves of the Doppler domain target detection methods

where both transmit and receive antenna arrays are nonlinear. The performance improves
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Fig. 5.4: Simulation of 20 runs of change detector for a non-linear array.

with the increase of SNR. Euclidean-distance-based detectors generally outperform peak-

detection-based ones, because the former preserve more information regarding the targets.

5.6 Summary

This chapter investigated the dual-use of airborne MIMO. In addition to communications,

received signals are also used for target detection that exploits the scarcity of scatterers in

an airborne environment. Nonparametric target detection methods were proposed based on

peak detection as well as Euclidean distance between sample observations. For the case

of uniform linear arrays, informative statistics were obtained through estimation of angular

domain channel matrix. For the case of nonlinear arrays, parameters were selected based

on Doppler frequency analysis on the received signal.
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CHAPTER 6

CONCLUSIONS

In this thesis, we investigated some of the research challenges in multi-mission wireless

systems. We first considered theoretical limits on communication rate when interference

is present. Specifically, a simple coding scheme was developed for a class of Gaussian in-

terference channels with mixed interference. The achievable rate region of such a scheme

was then shown to be equivalent to Costa’s noiseberg region for the weak one-sided Gaus-

sian interference channel. This allows for an indirect proof that this simple coding scheme

results in an achievable rate region that is equivalent to the Han-Kobayashi region with

Gaussian input, which is by far the largest achievable rate region for this class of Gaussian

interference channel with mixed interference.

The power allocation policies for an estimation system was then studied, where a re-

mote sensor observes a Gaussian sequence and sends it through a Gaussian channel. The

remote sensor is powered by energy harvested from the environment, so the energy avail-

able for data transmission typically fluctuates over time. With the aim of minimizing the

mean squared error at the receiver, we developed optimal power management strategies un-

der various conditions using convex optimization techniques and dynamic programming.

The structure of the optimal power allocation schemes was analyzed, which provides in-

sight on the design of heuristic algorithms that are able to simplify the computation and
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extend the operation horizon to infinity.

Related to the remote estimation problem, we gave an information theoretic formu-

lation of a multi-functioning radio where communication and sensing are both required.

Specifically, we considered a remote estimation system where the sensor simultaneously

transmits a source sequence and an independent message. The objective was to study the

optimal coding trade-off between the message rate and sequence estimation. For point-

to-point channels, we showed that a simple separation scheme is optimal, where the total

channel capacity is split into two components, one for message communication and the

other for sequence transmission. The same conclusion, however, does not hold for the

multi-user case - we showed that such separation-based schemes lead to strictly suboptimal

rate-distortion trade-off for the Gaussian broadcast channels. In fact, future work can be fo-

cused on exploring coding schemes for simultaneous transmission of messages and source

sequences under other multi-user scenarios such as Gaussian multiple access channels and

discrete channels.

Finally we investigated the dual-use of airborne MIMO communication systems. Specif-

ically, the lack of scatterers in a typical airborne environment was leveraged for the de-

tection of airborne targets. With uniform linear arrays, angular domain decomposition

of channel matrices was utilized and nonparametric methods were applied to detect the

change in the resolvable paths in the angular domain. Doppler frequency analysis was

utilized for both linear and nonlinear arrays and target detection was accomplished by de-

tection of change in the frequency components. In fact, the use of airborne RF systems

can be extended beyond target detection. For example, one can explore methods for target

localization and tracking, as location and velocity information can be extracted from an-

gular domain channel decomposition and Doppler frequency analysis for airborne MIMO

communication systems.
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APPENDIX A

PROOF OF EQUIVALENCE BETWEEN

RO AND RN

In this appendix, we simplifyRO and prove that it is equivalent withRN .

Comparing this region with RN , we see that (2.17)(2.18) and (2.3)(2.4) are identical.

Then it remains to show that (2.16)(2.19)-(2.21) are redundant given (2.17)(2.18).

Eq. (2.16) is redundant since

1

2
log

(
1 +

P1A

λ̄

)
+

1

2
log

(
1 +

a2 P1C

λ̄

1 + a2 P1A

λ̄
+ P2

λ̄

)
≤ 1

2
log

(
1 +

P1A

λ̄
+
P1C

λ̄

)

⇔ 1 +
P1A

λ̄
+

a2P1C

λ̄+ a2P1A + P2

+
P1A

λ̄
· a2P1C

λ̄+ a2P1A + P2

≤ 1 +
P1A

λ̄
+
P1C

λ̄
(A.1)

⇔ a2P1C

λ̄+ a2P1A + P2

(
1 +

P1A

λ̄

)
≤ P1C

λ̄

⇔ a2λ̄+ a2P1A ≤ λ̄+ a2P1A + P2

⇔ (1− a2)λ̄+ P2 ≥ 0,

which is trivially true.
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Eq. (2.19) is redundant, since it is superseded by (2.17) and (2.18), i.e., we will show

1

2
log
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1 +

P1A

λ̄
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1

2
log
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log
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λ̄

)

≤ 1

2
log
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λ̄
+
b2P2

λ̄

)
,

or, equivalently,

a2P1C

λ̄+ a2P1A + P2

(
1 +

P1A

λ̄

)
+

P2

λ̄+ a2P1A

(
1 +
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+
P2
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(
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P1A

λ̄

)
a2P1C

λ̄+ a2P1A + P2

≤ P1C

λ̄
+
b2P2

λ̄
. (A.2)

In order to prove (A.2), it suffices to show

P2

λ̄+ a2P1A

(
1 +

P1A

λ̄

)
≤ b2P2

λ̄
(A.3)

and

P2

λ̄+ a2P1A

(
1 +

P1A

λ̄

)
a2P1C

λ̄+ a2P1A + P2

+
a2P1C

λ̄+ a2P1A + P2

(
1 +

P1A

λ̄

)
≤ P1C

λ̄
.

(A.4)

Eq. (A.3) is equivalent to

b2

λ̄
≥

1 + P1A

λ̄

λ̄+ a2P1A

⇔ (b2 − 1)λ̄+ (a2b2 − 1)P1A ≥ 0
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which is obviously true. Eq. (A.4) is equivalent to

P1C

λ̄
≥ a2P1C

λ̄+ a2P1A + P2

(
1 +

P1A

λ̄

)(
1 +

P2

λ̄+ a2P1A

)
(A.5)

⇔ λ̄+ a2P1A + P2 ≥ a2(λ̄+ P1A)

(
1 +

P2

λ̄+ a2P1A

)

⇔ λ̄(1− a2)(λ̄+ a2P1A + P2) ≥ 0.

Thus (A.3) and (A.4) are true and (2.19) is redundant.

Comparing (2.17)(2.18) and (2.20), we see that (2.20) being redundant is equivalent to
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which is equivalent to (A.3). Thus (2.20) is redundant.

Comparing (2.17)(2.18) and (2.21), we see that (2.21) being redundant is equivalent to
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Then it is sufficient to show

P2

λ̄+ a2P1A

≤ b2P2

λ̄

and

(
1 +

P2

λ̄+ a2P1A

)
a2P1C

λ̄+ a2P1A + P2

≤ P1C

λ̄
,

which are trivially true from (A.3) and (A.5). Thus (2.21) is redundant given (2.17) and

(2.18).
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APPENDIX B

PROOF OF LEMMA 3.2.1

For the converse, consider the case where all harvested energy
∑K−1

j=0 Hj is available at the

first block. Denote h(·) as the MSE contributed from a single block as a function of the

transmit power, e.g., h(·) = h1(·) in (3.4) if the transmit power is known to the receiver.

Since h(·) is convex, the optimal strategy is to allocate energy evenly to all K blocks and

the corresponding MSE is

D(K) =
1

K

K∑

j=1

h

(
1

K

K−1∑

j=0

Hj

)
. (B.1)

As K →∞, D(K) converges to h (E[H]), i.e.,

lim
K→∞

D(K) = h (E[H]) .

The MSE achievable for the general case is lower bounded by D(K) in (B.1), i.e.,

E [D] ≥ D(K).
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For achievability, by the law of large numbers, for any ε > 0, there exists Kε > 0 such that

P

(
1

K

K−1∑

j=0

Hj > E
[
Hj
]
− ε

)
≥ P

(∣∣∣∣∣
1

K

K−1∑

j=0

Hj − E
[
Hj
]
∣∣∣∣∣ < ε

)
> 1− ε,

for all K > Kε. Consider the following power allocation scheme

P j =





E [Hj]− ε, j > Kε,

0, j ≤ Kε,

with MSE

E [D] =
1

K

(
Kεσ

2
S +

K∑

j=Kε+1

h
(
E
[
Hj
]
− ε
)
)
.

By the continuity of h(·) function, we have

lim
K→∞

E [D] ≤ h (E[H]) + δε, (B.2)

where δε → 0 as ε→ 0.
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APPENDIX C

DERIVATION OF EQUATION (3.12)

From (3.3), the MMSE estimator with P̂ j is

Ŝji =
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(√
P j

σS
Sji + Zj

i

)
.

Thus the corresponding MSE is
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