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Abstract

Rapid growth in the use of wireless services coupled with inefficient utilization of scarce spec-

trum resources has led to the analysis and development of cognitive radio systems. Cognitive

radio systems provide dynamic and more efficient utilization of the available spectrum by

allowing unlicensed users (i.e., cognitive or secondary users) to access the frequency bands

allocated to the licensed users (i.e., primary users) without causing harmful interference to

the primary user transmissions. The central goal of this thesis is to conduct a performance

analysis and obtain throughput- and energy-efficient optimal resource allocation strategies

for cognitive radio systems. Cognitive radio systems, which employ spectrum sensing mech-

anisms to learn the channel occupancy by primary users, generally operate under sensing

uncertainty arising due to false alarms and miss-detections. This thesis analyzes the perfor-

mance of cognitive radio systems in a practical setting with imperfect spectrum sensing.

In the first part of the thesis, optimal power adaptation schemes that maximize the

achievable rates of cognitive users with arbitrary input distributions in underlay cognitive

radio systems subject to transmit and interference power constraints are studied. Simpler

approximations of optimal power control policies in the low-power regime are determined.

Low-complexity optimal power control algorithms are proposed.

Next, energy efficiency is considered as the performance metric and power allocation

strategies that maximize the energy efficiency of cognitive users in the presence of time-

slotted primary users are identified. The impact of different levels of channel knowledge

regarding the transmission link between the secondary transmitter and secondary receiver,



and the interference link between the secondary transmitter and primary receiver on the

optimal power allocation is addressed. In practice, the primary user may change its status

during the transmission phase of the secondary users. In such cases, the assumption of time-

slotted primary user transmission no longer holds. With this motivation, the spectral and

energy efficiency in cognitive radio systems with unslotted primary users are analyzed and

the optimal frame duration and energy-efficient optimal power control schemes subject to a

collision constraint are jointly determined.

The second line of research in this thesis focuses on symbol error rate performance of

cognitive radio transmissions in the presence of imperfect sensing decisions. General formu-

lations for the optimal decision rule and error probabilities for arbitrary modulation schemes

are provided. The optimal decision rule for rectangular quadrature amplitude modulation

(QAM) is characterized, and closed-form expressions for the average symbol error probability

attained with the optimal detector under both transmit power and interference constraints

are derived.

Furthermore, throughput of cognitive radio systems for both fixed-rate and variable-rate

transmissions in the finite-blocklength regime is studied. The maximum constant arrival

rates that the cognitive radio channel can support with finite blocklength codes while sat-

isfying statistical quality of service (QoS) constraints imposed as limitations on the buffer

violation probability are characterized.

In the final part of the thesis, performance analysis in the presence of QoS requirements

is extended to general wireless systems, and energy efficiency and throughput optimization

with arbitrary input signaling are studied when statistical QoS constraints are imposed as

limitations on the buffer violation probability. Effective capacity is chosen as the perfor-

mance metric to characterize the maximum throughput subject to such buffer constraints

by capturing the asymptotic decay-rate of buffer occupancy. Initially, constant-rate source

is considered and subsequently random arrivals are taken into account.
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Chapter 1

Introduction

1.1 Cognitive Radio Systems

It has been predicted that the number of wireless devices will reach around 100 billion by

2025 [1]. This explosive growth in wireless devices and new wireless applications prompts

unprecedented demand on the radio spectrum. Indeed, the radio spectrum is a finite natural

resource and the prime portion of the RF spectrum (e.g., between 30 MHz to 3 GHz) has

already been allocated to specific applications or services. On the other hand, the Spectrum-

Policy Task Force of the Federal Communications Commission (FCC) [2] reported that

several portions of the spectrum are inefficiently used and hence are underutilized.

In light of this fact, cognitive radio has been proposed as an innovative technology to

improve the efficiency in the use of limited, temporally and spatially underutilized licensed

radio frequency spectrum. Cognitive radio was first introduced by Mitola in [3] as a smart

wireless device that senses the environment, learns and automatically adapts its transmission

parameters without changing any hardware structure. Through such cognition and the

reconfigurability features, cognitive radio systems enable the unlicensed users (i.e., cognitive

or secondary users) to access the licensed spectrum without causing harmful interference

to the licensed users (i.e., primary users). Hence, this technology provides bright prospects
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for implementing flexible spectrum allocation strategies and opening up bandwidth for new

wireless services.

The cognitive radio technology has become more mature for commercial use over the

years. In this regard, standardization activities, such as by IEEE 802.22 [4] for unlicensed

access in VHF/UHF TV broadcast bands between 54 MHz and 790 MHz, IEEE 802.11af

(also referred to as White-Fi) [5] for WiFi technology over unused TV bands and IEEE

SCC41 [6], and regulations such as by the FCC [7] in the US and other regulatory bodies in

different countries, facilitate widespread operational adoption of this promising technology.

Beyond TV white spaces, cognitive radio systems find applications to improve the spectrum

utilization in cellular systems, wireless LANs, machine-to-machine communications, vehicle-

to-vehicle networks, wireless e-health services, and public safety services [8], [9].

Three communication models for cognitive radio have been proposed depending on how

a cognitive user accesses the licensed channel: (i) underlay transmission scheme [10], (ii)

opportunistic spectrum access (OSA) scheme [11] and sensing-based spectrum sharing (SSS)

scheme [12]. Specifically, in the underlay transmission scheme, cognitive users transmit only

if the interference at the primary receivers is kept below a certain threshold. In the SSS

scheme, cognitive users initially perform channel sensing to detect primary user activity

and then start transmission in the channel as long as they control the interference inflicted

on the primary user by adapting the transmission power according to the channel sensing

results. In particular, secondary users transmit at two different power levels depending on

whether the channel is detected to be occupied and not occupied by the primary users. In

the OSA scheme, cognitive users are allowed to transmit data only if no primary user activity

is detected, and hence secondary users exploit only the silent periods in the transmissions of

primary users, called as spectrum opportunities.
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1.2 State of the Art and Gap in the Literature

1.2.1 Power allocation strategies in underlay cognitive radio sys-

tems

Power adaptation strategies have been extensively studied in order to enhance the per-

formance of underlay cognitive radio systems while providing sufficient protection for the

primary users. In this regard, the authors in [13] considered power allocation policies for

truncated channel inversion with fixed rate (TIFR) and truncated optimum rate allocation

(ORA) transmission schemes to maximize the ergodic capacity of the secondary user subject

to average or peak transmit power constraints together with interference power constraints

in such a way that the minimum rate requirement for the primary receiver is satisfied with

a certain probability. The authors in [14] obtained optimal power allocation strategies that

maximize the ergodic capacity of the secondary user under either peak or average transmit

power constraints together with a constraint on the outage capacity of the primary user.

In addition, the work in [15] mainly focused on the optimal power control strategies that

maximize the ergodic capacity of the secondary user subject to peak/average transmit power

constraints together with an upper bound on the outage capacity loss of the primary user due

to secondary user transmission. In [16], optimal power allocation schemes that maximize the

achievable rates of an orthogonal frequency-division multiplexing (OFDM)-based cognitive

radio system were determined. In addition to ergodic capacity, the work in [17] considered

the TIFR scheme to maximize the outage capacity of the secondary user subject to both peak

and average interference power constraints. Also, the authors in [18] obtained the optimal

power allocation strategies for the ergodic capacity, delay-limited capacity and the outage

capacity of cognitive radio channels subject to peak/average transmit and peak/average

interference constraints.

In all of the aforementioned studies, the implicit assumption was that the input signal

follows a Gaussian distribution, leading to elegant closed-form expressions for the optimal
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power allocation schemes. However, it may not be easy to realize Gaussian inputs in prac-

tice, and correspondingly inputs chosen from discrete constellations such as pulse amplitude

modulation (PAM), quadrature amplitude modulation (QAM) and phase shift keying (PSK)

are frequently employed in practical applications. Therefore, it is of great importance to ob-

tain the power allocation strategies achieved with finite discrete constellations in cognitive

radio systems.

1.2.2 Energy efficiency in cognitive radio sytems

Energy efficiency in cognitive radio systems has been recently addressed. For instance, the

study in [19] mainly focused on spectral efficiency and energy efficiency of cognitive cellular

networks in 5G mobile communication systems. The authors in [20] studied the optimal

power allocation and power splitting at the secondary transmitter that maximize the energy

efficiency of the secondary user as long as a minimum secrecy rate for the primary user

is satisfied. Also, the authors in [21] designed energy-efficient optimal sensing strategies

and optimal sequential sensing order in multichannel cognitive radio networks. In addition,

the sensing time and transmission duration were jointly optimized in [22]. Several recent

studies investigated power allocation/control to maximize the energy efficiency in different

settings. The authors in [23] studied the optimal subcarrier assignment and power allocation

to maximize either minimum energy efficiency among all secondary users or average energy

efficiency in an OFDM-based cognitive radio network. Moreover, an optimal power loading

algorithm was proposed in [24] to maximize the energy efficiency of an OFDM-based cognitive

radio system in the presence of imperfect channel side information (CSI) of transmission link

between secondary transmitter and secondary receiver. In the energy efficiency analysis of

aforementioned works, secondary users are assumed to transmit only when the channel is

sensed as idle. The work in [25] mainly focused on optimal power allocation to achieve the

maximum energy efficiency of OFDM-based cognitive radio networks. Also, energy-efficient

optimal power allocation in cognitive multiple input and multiple output (MIMO) broadcast
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channel was studied in [26]. The authors in [27] proposed iterative algorithms to find the

power allocation maximizing the sum energy efficiency of secondary users in heterogeneous

cognitive two-tier networks. In these works, secondary users always share the spectrum with

primary users without performing channel sensing.

The work in [28] mainly focused on the design of the optimal sensing duration and

sensing decision threshold to maximize the weighted sum of the energy efficiency and spectral

efficiency. The authors in [29] analyzed the optimal sensing duration that maximizes the

energy efficiency of secondary user subject to a constraint on the detection probability.

The work in [30] studied the optimal power control scheme that maximizes sum of energy

efficiencies of the cognitive femto users for 5G communications. In these works, it is assumed

that primary users transmit in a time-slotted fashion, i.e., the activity of the primary users

(e.g., active or inactive) remains the same during the entire frame duration. In practice,

primary and secondary user transmissions may not necessarily be synchronized. In this

case, it is of significant interest to consider unslotted primary user in the analysis of energy

efficiency of cognitive radio systems.

1.2.3 Error rate performance of cognitive radio transmissions

Several recent studies incorporate error rates in cognitive radio analysis. For instance, the

authors in [31] characterized the optimal constellation size of M -QAM and the optimal power

allocation scheme that maximize the channel capacity of secondary users for a given target

bit error rate (BER), interference and peak power constraints. In [32], the opportunistic

scheduling in multiuser underlay cognitive radio systems was studied in terms of link re-

liability. The work in [33] mainly focused on the power allocation scheme minimizing the

upper bound on the symbol error probability of phase shift keying (PSK) in multiple antenna

transmissions of secondary users. The authors in [34] proposed a channel switching algorithm

for secondary users by exploiting the multichannel diversity to maximize the received SNR

at the secondary receiver and evaluated the transmission performance in terms of average
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symbol error probability. The optimal antenna selection that minimizes the symbol error

probability in underlay cognitive radio systems was investigated in [35]. Moreover, the recent

work in [36] analyzed the minimum BER of a cognitive transmission subject to both average

transmit power and interference power constraints. In their model, the secondary trans-

mitter is equipped with multiple antennas among which only one antenna that maximizes

the weighted difference between the channel gains of transmission link from the secondary

transmitter to the secondary receiver and interference link from the secondary transmitter to

the primary receiver is selected for transmission. The authors in [37] obtained a closed-form

BER expression under the assumption that the interference limit of the primary receiver is

very high. Also, the work in [38] focused on the optimal power allocation that minimizes the

average BER subject to peak/average transmit power and peak/average interference power

constraints while the interference on the secondary users caused by primary users is omitted.

In the error rate analysis of these studies, channel sensing errors are not taken into

consideration. Practical cognitive radio systems, which employ spectrum sensing mechanisms

to learn the channel occupancy by primary users, generally operate under sensing uncertainty

arising due to false alarms and miss-detections.

1.2.4 The performance of cognitive radio sytems under QoS con-

straints

One of the most important consideration for cognitive radio systems especially supporting

streaming and interactive multimedia applications is to satisfy quality-of-service (QoS) re-

quirements of secondary users in terms of buffer or delay constraints. In this respect, by

incorporating the notion of the effective capacity, the authors in [39] obtained the optimal

rate and power allocation strategy for secondary users in Nakagami fading channels under

statistical delay QoS constraints. Moreover, the recent work in [40] mainly focused on the

impact of adaptive M -QAM modulation on the effective capacity of secondary users under

interference power and delay-QoS constraints. Notably, in most studies, it is implicitly as-
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sumed that channel codes with arbitrarily long codewords can be used for transmission and

consequently the well-known logarithmic channel capacity expressions of Gaussian channels

are employed for analysis. On the other hand, the performance of cognitive radio systems

operating under QoS constraints in the flinite-blocklength regime has not been sufficiently

addressed.

1.2.5 Throughput- and energy-efficient transmission strategies un-

der QoS constraints

The analysis and application of effective capacity in wireless systems have attracted growing

interest in recent years. For instance, the authors in [41] first proposed the optimal power

and rate adaptation schemes that maximize the effective capacity of a point-to-point wireless

communication link. Then, they considered multichannel communications and derived the

optimal power control policy for multicarrier and MIMO systems in [42]. In [43], the energy

efficiency was formulated as the ratio of effective capacity to the total power consumption

including circuit power and the optimal power allocation for multicarrier systems over a

frequency-selective fading channel was determined. The work in [44] mainly focused on an

energy-efficient power allocation scheme for delay-sensitive multimedia traffic in both low-

and high-signal-to-noise ratio (SNR) regimes. Recently, the authors in [45] determined the

QoS-driven optimal power control policy in closed-form to maximize the effective capacity

subject to a minimum required energy efficiency level. The authors in [46] employed the

notion of effective capacity and analyzed the energy efficiency under QoS constraints in the

low-power and wideband regimes by characterizing the minimum energy per bit and wide-

band slope. Also, in [47], the minimum energy per bit and the wideband slope region for the

dirty paper coding (DPC) and time division multiple access (TDMA) schemes under hetero-

geneous QoS constraints were characterized. Additionally, the authors in [48] obtained the

effective capacity of correlated multiple input single output (MISO) channels and further

analyzed the performance in low- and high-SNR regimes. Moreover, the asymptotic expres-
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sion of the effective capacity in the low power regime for a Nakagami-m fading channel was

derived in [49].

The resource allocation schemes of these studies are determined under the assumption of

Gaussian input. Rather, practical applications often resort to simple discrete constellations.

Hence, it is important and practically appealing to derive more general QoS-driven power

allocation schemes for achieving the maximum energy efficiency when the input does not

necessarily follow a Gaussian distribution.

1.3 Main Contributions

We summarize the main contributions of the thesis below:

• In Chapter 3, we identify the optimal power control policies that maximize the achiev-

able rates of secondary users with arbitrary input signaling in underlay cognitive radio

systems subject to peak/average transmit power constraints along with peak/average

interference power constraints. We propose low-complexity optimal power control al-

gorithms which do not impose any restrictions on the input distribution. Therefore,

the proposed algorithms are applicable to more realistic and practical settings and are

not restricted to the Gaussian input. We analyze the optimal power control policies in

the low-power regime.

• In Chapter 4, we obtain the optimal power allocation strategies that maximize the

energy efficiency of secondary users under the assumption that primary and secondary

transmissions are synchronized. We assume different levels of CSI regarding the trans-

mission and interference links, namely perfect CSI of both transmission and interfer-

ence links, perfect CSI of the transmission link and imperfect CSI of the interference

link, imperfect CSI of both links, or statistical CSI of both links. We develop a low-

complexity algorithm based on Dinkelbach’s method to iteratively solve the power

allocation problem.
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• In Chapter 5, we consider the case in which the primary changes its status during the

transmission phase of the secondary users, and hence primary and secondary trans-

missions are not synchronized. Under this assumption, we derive, in closed-form, the

optimal power control policy that maximizes the energy efficiency of the secondary

users subject to transmit power, interference power and collision constraints in the

presence of sensing errors. We do not impose any limitations on the number of tran-

sitions of the primary user activity. In order to consider the energy efficiency and

spectral efficiency requirements of the secondary users jointly, we obtain the optimal

power control scheme that maximizes the average throughput of the secondary users

while satisfying the minimum required energy efficiency. We propose low-complexity

algorithms for jointly finding the optimal power control policy and frame duration.

• In Chapter 6, we investigate the error rate performance of cognitive radio transmissions

in the presence of imperfect sensing results and primary users interference, which is

modeled to have a Gaussian mixture probability density function (which includes pure

Gaussian distribution as a special case). We derive, for both sensing-based spectrum

sensing and opportunistic spectrum access schemes, the optimal detector structure,

and then we present a closed-form expression of the average symbol error probability

under constraints on the transmit power and interference.

• In Chapter 7, we characterize the throughput of cognitive radio systems under buffer

constraints in the finite blocklength regime by making use of the effective capacity.

We assume that finite blocklength codes are used by the cognitive secondary users for

sending messages. Hence, in our setup, transmission rates are possibly less than the

channel capacity and errors can occur leading to retransmission requests. We consider

the availability of channel side information at only the secondary transmitter, and at

both the secondary transmitter and secondary receiver.

• In Chapter 8, we analyze the effective capacity achieved with arbitrarily distributed
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signals under statistical QoS constraints (imposed as limitations on buffer overflow

probabilities) in the presence of constant-rate sources. We derive the optimal power

adaptation scheme that maximizes the effective capacity with arbitrary input signal-

ing subject to an average transmit power constraint. We analyze the proposed op-

timal power policy under extremely stringent QoS constraints and also looser QoS

constraints. Also, we analyze the energy efficiency performance with arbitrary input

signaling in the low power regime. We analyze the tradeoff between the effective ca-

pacity and energy efficiency achieved with arbitrarily distributed signals. Then, we

consider random sources and incorporate more general random arrival models, assum-

ing arbitrary distributions for the transmitted signals, and analyze the optimal power

control policies accordingly.

1.4 Outline of Thesis

Thesis mainly focuses on performance analysis of cognitive radio systems and throughput-

and energy-efficient resource allocation schemes. The remainder of the thesis is organized

as follows: Chapter 2 provides the necessary preliminary background on topics studied in

the subsequent chapters of the thesis. Chapter 3 presents the optimal power control policies

for underlay cognitive radio systems with arbitrary input distributions. Chapter 4 mainly

characterizes energy efficient transmission strategies for cognitive users in the presence of

imperfect sensing results under the assumption that the primary user adopts a time-slotted

transmission scheme. In Chapter 5, the optimal power control policies that maximize the

energy efficiency or average throughput of secondary users operating with unslotted primary

users are derived. In Chapter 6, error rate performance of cognitive radio systems with

channel sensing errors is analyzed. In Chapter 7, throughput of cognitive users with finite

blocklength codes under QoS constraints is characterized. In Chapter 8, throughput- and

energy- efficient power allocation schemes with arbitrary input signaling for general wire-
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less systems operating subject to QoS constraints are identified for both constant-rate and

random arrivals. Chapter 9 concludes this thesis and discusses future research directions.
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Chapter 2

Background and Preliminary

Concepts

2.1 Spectrum Sensing

Cognitive radio systems employ spectrum sensing mechanisms to learn the channel occu-

pancy by primary users. In particular, spectrum sensing can be formulated as a hypothesis

testing problem in which there are two hypotheses based on whether primary users are active

or inactive over the channel, denoted by H0 and H1, respectively. Many spectrum sensing

methods have been studied in the literature (see e.g., [50], [51] and references therein) includ-

ing matched filter detection, energy detection and cyclostationary feature detection. Each

method has its own advantages and disadvantages. However, all sensing methods are in-

evitably subject to errors in the form of false alarms and miss detections due to possibly low

signal-to-noise ratio (SNR) levels of primary users, noise uncertainty, multipath fading and

shadowing in wireless channels. Spectrum sensing is performed imperfectly with possible

errors, and sensing performance depends on the sensing method only through detection and

false alarm probabilities. As a result, any sensing method can be employed in the rest of

the analysis in this thesis. Let Ĥ1 and Ĥ0 denote the sensing decisions that the channel is
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occupied and not occupied by the primary users, respectively. Hence, by conditioning on

the true hypotheses, the detection and false-alarm probabilities are defined, respectively, as

follows:

Pd = Pr{Ĥ1|H1}, (2.1)

Pf = Pr{Ĥ1|H0}. (2.2)

Then, the conditional probabilities of idle sensing decision given the true hypotheses can be

expressed as

Pr{Ĥ0|H1} = 1−Pd, (2.3)

Pr{Ĥ0|H0} = 1−Pf . (2.4)

2.2 Relation between Minimum Mean Square Error

and Mutual Information

The input-output relation over a flat-fading channel is expressed as

y[i] = h[i]x[i] + n[i] i = 1, 2, . . . (2.5)

where x[i] and y[i] denote the transmitted and received signals, respectively, and n[i] is a

zero-mean, circularly symmetric, complex Gaussian random variable with variance N0. It

is assumed that noise samples {n[i]} form an independent and identically distributed (i.i.d)

sequence. Also, h[i] represents the channel fading coefficient. We omit the time index i

for notational brevity and we express the transmitted signal x in terms of a normalized

unit-power arbitrarily distributed input signal s. Now, the received signal can be expressed
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as

y =
√
ρs+ w, (2.6)

where ρ = Pz, where P denotes the transmission power and z represents the channel power

gain between the transmitter and receiver (i.e., z = |h|2), and w is the normalized Gaussian

noise with unit variance. Let us define the input-output mutual information I(ρ) as

I
(
ρ
)

= I
(
s;
√
ρs+ w

)
. (2.7)

In the case of Gaussian-distributed s, I(ρ) = log2(1 + ρ). On the other hand, for any

arbitrarily distributed equiprobable signal s with a constellation X , we have [52]

I(ρ) = log2 |X | −
1

π|X |
∑
s∈X

∫
log2

(∑
s′∈X

e−ρ|s−s
′|2−2

√
ρR{(s−s′)∗w}

)
e−|w|

2

dw (2.8)

where |X | denotes the size of the constellation X , and the integration is carried out on the

complex plane. The relation between the mutual information and the minimum mean-square

error (MMSE) is given by [53]

İ(ρ) = MMSE(ρ) log2 e (2.9)

where İ(·) denotes the first derivative of the mutual information, I(ρ), with respect to ρ.

The above relation is a key factor in deriving the power control policy in independent and

parallel channels [52]. The MMSE estimate of s is expressed as

ŝ(y, ρ) = E{s | √ρs+ w}. (2.10)
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Then, the corresponding MMSE is

MMSE(ρ) = E{|s− ŝ(y, ρ)|2}. (2.11)

It should be noted that MMSE(·) ∈ [0, 1]. When the input signal s is Gaussian, MMSE(ρ) =

1
1+ρ

. On the other hand, for any equiprobable input signal s belonging to the constellation

X , we have [52]

MMSE(ρ)=1− 1

π|X |

∫ ∣∣∑
s∈X se

2
√
ρR{ys∗}−ρ|s|2

∣∣2∑
s∈X e2

√
ρR{ys∗}−ρ|s|2 e−|y|

2

dy. (2.12)

The above MMSE expression can be explicitly determined for specific constellations such as

binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK) as follows: [52]

MMSEBPSK(ρ) = 1−
∫ ∞
−∞

tanh(2
√
ρφ)

e−(φ−√ρ)2

√
π

dφ, (2.13)

MMSEQPSK(ρ) = MMSEBPSK
(ρ

2

)
. (2.14)

In addition, MMSE for 4-pulse amplitude modulation (4-PAM) is given by

MMSE4-PAM(ρ) = 1−
∫ ∞
−∞

(
e−8ρ/5 sinh

(
6
√

ρ
5
φ
)

+ sinh
(
2
√

ρ
5
φ
))2

e−8ρ/5 cosh
(
6
√

ρ
5
φ
)

+ cosh
(
2
√

ρ
5
φ
) e−φ

2−ρ/5

10
√
π
dφ (2.15)

Exploiting the MMSE expression of 4-PAM in (2.15), we can easily find the MMSE for

16-quadrature amplitude modulation (16-QAM) can easily follows:

MMSE16-QAM(ρ) = MMSE4-PAM
(ρ

2

)
. (2.16)

For other constellations, the MMSE expression in (2.12) and the mutual information in (2.8)

can easily be computed by first expressing them as double integrals and then applying the

Gauss-Hermite quadrature rules [54].
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2.3 Throughput under Statistical Queueing Limitations

Many important wireless applications (e.g. mobile streaming/interactive video, voice over

IP (VoIP), interactive gaming and mobile TV) require certain QoS guarantees for acceptable

performance levels at the end-user. In [55], a link-layer channel model called the effective

capacity, is proposed to serve as a suitable metric to quantify the performance of wireless

systems under statistical QoS constraints. In particular, Wu and Negi in [55] defined the

effective capacity as the maximum constant arrival rate that a given service process can sup-

port in order to guarantee a statistical QoS requirement characterized by the QoS exponent

θ. If we define Q as the stationary queue length, then θ is the decay rate of the tail of the

distribution of the queue length Q:

lim
q→∞

logP (Q ≥ q)

q
= −θ. (2.17)

Therefore, for large qmax, the buffer overflow probability can be approximated as exponen-

tially decaying at the rate θ:

P (Q ≥ qmax) ≈ e−θqmax . (2.18)

It should be also noted that larger values of θ impose faster decay rate, hence implying

stricter queueing or QoS constraints. On the other hand, smaller θ values indicate looser

constraints. The effective capacity, which quantifies the throughput under a buffer constraint

in the form of (2.18), is given by ([55], [56])

RE = − lim
t→∞

1

θt
loge E{e−θS[t]} , −Λ(−θ)

θ
(2.19)

where Λ(θ) = limt→∞
1
t

loge E{eθS[t]}, S[t] =
∑t

i=1 ri is the time-accumulated service process

and {ri, i = 1, 2, . . .} denotes the discrete-time stationary and ergodic stochastic service

process.
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Chapter 3

Optimal Power Control for Underlay

Cognitive Radio Systems with

Arbitrary Input Distributions

This chapter studies optimal power control policies that maximize the achievable rates of

underlay cognitive radio systems with arbitrary input distributions under both peak/average

transmit power and peak/average interference power constraints for general fading distribu-

tions. Low-complexity optimal power control algorithms are proposed. Simpler approxima-

tions of optimal power control policies in the low-power regime are determined. The impact

of the fading severity of both interference and transmission links and transmit power and

interference power constraints on the maximum achievable rate of the cognitive user for

different practical constellations and Gaussian signals are investigated.

The remainder of the chapter is organized as follows: Section 3.1 introduces the system

model. In Section 3.2, optimal power control policies that maximize the achievable rate of

the secondary user with arbitrary input distributions subject to different combinations of

transmit power and interference power constraints are determined and the optimal power

control algorithms are provided. Subsequently, the low-power analysis is conducted in Sec-
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tion 3.3, where approximations to the optimal power control policies and the corresponding

closed-form second-order achievable rate expressions are obtained. Numerical results are

presented and discussed in Section 3.4.

3.1 System Model

We consider an underlay cognitive radio system in which the secondary users coexist with the

licensed primary users while satisfying certain interference constraints. The instantaneous

channel power gains of the transmission link between the secondary transmitter and the

secondary receiver and of the interference link between the secondary transmitter and the

primary receiver are denoted by zs and zsp, respectively as illustrated in Figure 3.1. The

secondary transmitter is assumed to have perfect knowledge of zs and zsp. In particular,

the secondary receiver can estimate zs and then send it back to the secondary transmitter

through an error-free feedback link. Also, the knowledge of interference channel power gain

zsp can be obtained by several methods: direct channel feedback from the primary receiver

to the secondary transmitter [57], indirect feedback from a third party such as band manager

[58], or periodic sensing of a pilot symbol sent from the primary receiver by assuming channel

reciprocity [59].

Figure 3.1: Underlay cognitive radio system model.

The channel between the secondary transmitter and the secondary receiver is assumed

to be flat-fading. Hence, under these assumptions, the discrete-time channel input-output
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relation is given by

y[i] = hs[i]x[i] + nw[i] + np[i] i = 1, 2, . . . (3.1)

where i represents the time index, x[i] and y[i] denote the transmitted and received signals,

respectively, nw[i] is a zero-mean, circularly symmetric, additive complex Gaussian noise at

secondary receiver, i.e., nw ∼ CN (0, σ2
w) and np[i] is the interference at secondary receiver due

to primary user transmission. It is further assumed that np[i] follows a Gaussian distribution,

i.e., nw ∼ CN (0, σ2
p). Thus, nw+np ∼ CN (0, σ2

w+σ2
p). Without loss of generality, the variance

σ2
w+σ2

p is assumed to be 1. Also, {nw[i]} and {np[i]} are assumed to form an independent and

identically distributed (i.i.d) sequence. In the above expression, hs[i] represents the channel

fading coefficient between the secondary transmitter and the secondary receiver, and hence

the channel power gain is zs[i] = |hs[i]|2.

Hereafter, time index i is omitted for brevity of notation. We express the transmitted

signal x as

x =
√
P (zs, zsp)s (3.2)

where s is a unit-power arbitrarily-distributed input signal and P (zs, zsp) denotes the instan-

taneous transmission power, which is a function of the channel gains zs and zsp. Then, by

also assuming that the channel phase rotations are offset at the receiver with the knowledge

of the phase of the fading coefficient hs, the received signal in (3.1) can be rewritten as

y =
√
P (zs, zsp)zss+ w. (3.3)
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3.2 Optimal Power Control

In this section, we derive the optimal power control policies that maximize the achievable

rates of the secondary user with arbitrary input distributions subject to transmit power and

interference power constraints. For a given power control policy P (zs, zsp), the achievable

rate of the secondary user is expressed as

E{I(P (zs, zsp)zs)} =

∫
zs>0

∫
zsp>0

I(P (zs, zsp)zs)fzs(zs)fzsp(zsp)dzsdzsp (3.4)

where I(.) denotes the input-output mutual information, fzs(·) and fzsp(·) represent the

probability density functions (PDFs) of the channel gains of the transmission link between

the secondary transmitter and the secondary receiver and of the interference link between

the secondary transmitter and the primary receiver, respectively. With this characterization,

the optimal power adaptation problem can be formulated as

P ∗(zs, zsp) = arg max
P (zs,zsp)∈P

E{I(P (zs, zsp)zs)} (3.5)

where P ∗(zs, zsp) denotes the optimal power control strategy and P is the set of feasible

power control schemes with which the transmit power and interference power constraints are

satisfied. In the following subsections, the optimization problem in (3.5) is studied under four

scenarios, where different combinations of peak/average transmit power and peak/average

interference power constraints are imposed.

22



3.2.1 Peak transmit power and peak interference power constraints

In this case, peak constraints are imposed on the transmission and interference powers, and

hence the optimization problem in (3.5) is subject to

P (zs, zsp) ≤ Ppk, (3.6)

P (zs, zsp)zsp ≤ Qpk, (3.7)

where Ppk denotes the peak transmit power limit of the secondary transmitter due to hard-

ware and battery constraints, and Qpk represents the peak limit on the received interfer-

ence power at the primary receiver, which is imposed to satisfy short-term QoS require-

ments of the primary users. The above constraints can be more concisely expressed as

P (zs, zsp) ≤ min
(
Ppk,

Qpk

zsp

)
. Moreover, the objective function in (3.5) is strictly concave

[52]. Hence, the maximum rate is achieved when the secondary user transmits at the maxi-

mum available instantaneous power. Therefore, the optimal power control is given by

P ∗(zsp) = min
(
Ppk,

Qpk

zsp

)
(3.8)

which can further be written as

P ∗(zsp) =


Qpk

zsp
, zsp ≥ Qpk

Ppk

Ppk, zsp <
Qpk

Ppk

. (3.9)

It should be noted that P ∗(zsp) becomes independent of the channel power gain of the

transmission link zs and the input distribution, and depends only on the channel power gain

of the interference link, zsp.
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3.2.2 Peak transmit power and average interference power con-

straints

In this case, the constraints are given by

P (zs, zsp) ≤ Ppk, (3.10)

E{P (zs, zsp)zsp} ≤ Qavg, (3.11)

where Qavg represents the average received interference power limit at the primary receiver,

which is imposed to satisfy the long-term QoS requirements of the primary users. In the

following result, we identify the optimal power adaptation strategy for this case.

Theorem 3.2.1 The optimal power control policy under the constraints in (3.10) and (3.11)

is given by

P ∗(zs, zsp) = min
{ 1

zs
MMSE−1

(
min

{
1,

λzsp
log2 e zs

})
, Ppk

}
(3.12)

where MMSE−1(·) ∈ [0,∞) denotes inverse MMSE function and λ is the Lagrange multiplier,

which can be determined by satisfying the average interference power constraint in (3.11) with

equality.

Proof : See Appendix A.

The projected subgradient method is employed to numerically find the value of λ. In this

method, λ is updated iteratively in the direction of a negative subgradient of the Lagrangian

L(P (zs, zsp) given in (A.1) in Appendix A until convergence as follows:

λ(n+1)=
(
λ(n)−t

(
Qavg− E{P ∗(zs, zsp)zsp}

))+

(3.13)

where (x)+ = max{0, x}, n is the iteration index and t is the step size. For a constant t, it

was shown that convergence to the optimal λ value is guaranteed within a small range [60].
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From (3.12), it is observed that the optimal power control policy depends on the input

distribution through the inverse MMSE function. In real-time systems, MMSE−1(.) can be

precomputed and stored in memory for the constellation of interest. Alternatively, by using

the fact that MMSE is a monotonically decreasing function, P ∗(zs, zsp) can be efficiently

determined by first computing the MMSE in (2.12) for the corresponding input constellation

and then solving for the condition in (A.5) in Appendix A with numerical root finding

methods, e.g., bisection method. The optimal power control algorithm for this scenario is

given in Table 3.1.

The authors in [52] proposed the optimal power allocation scheme called mercury/waterfilling

for parallel channels with arbitrary input distributions subject to an average power con-

straint in a non-cognitive context. Different from [52], [61], the proposed optimal power

control policy in (3.12) is a function of the channel power gains of both transmission and

interference links, zs and zsp, respectively. Therefore, we call this power control scheme as

two-dimensional truncated mercury/waterfilling.

Remark 3.2.1 When the input signal is Gaussian, we have MMSE−1(ρ) = 1
ρ
− 1. Substi-

tuting this expression into (3.12), we can see that the optimal power control policy becomes

P ∗(zs, zsp) = min

{(
log2 e

λzsp
− 1

zs

)+

, Ppk

}
(3.14)

which is in agreement with the result obtained in [18]. It is also seen that the above power

adaptation is in the form of truncated waterfilling with water level log2 e
λzsp

, which depends on

the channel power gain of the interference link, zsp.
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Table 3.1: The optimal power control algorithm that maximizes the achievable rate of the
secondary user under peak transmit power and average interference power constraints

Algorithm 1

1: Initialize Ph(zs, zsp) = Ph,init, Pl(zs, zsp) = Pl,init, ε > 0, δ > 0, t > 0, λ(0) = λinit,
µ(0) = µinit

2: n← 0
3: If the average interference constraint in (3.11) is satisfied when P ∗(zs, zsp) = Ppk, then

stop.
4: repeat
5: if log2 e zs

zsp
≤ λ(n) then

6: P ∗(zs, zsp) = 0
7: else
8: repeat
9: update P ∗(zs, zsp) = 1

2

(
Ph(zs, zsp) + Pl(zs, zsp)

)
10: if g(P ∗(zs, zsp))g(Ph(zs, zsp)) < 0 (where g(.) is defined in (A.5)), then
11: Pl(zs, zsp)← P ∗(zs, zsp)
12: else if g(P ∗(zs, zsp))g(Pl(zs, zsp)) < 0, then
13: Ph(zs, zsp)← P ∗(zs, zsp)
14: end if
15: until |g(P ∗(zs, zsp))| < ε
16: end if
17: P ∗(zs, zsp) = min

(
Ppk, P

∗(zs, zsp)
)

18: update λ using the projected subgradient method as follows
19: λ(n+1) =

(
λ(n) − t(Qavg − E{P ∗(zs, zsp)zsp})

)+

20: n← n+ 1
21: until |λ(n)(Qavg − E{P ∗(zs, zsp)zsp})| ≤ δ
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Table 3.2: The optimal power control algorithm that maximizes the achievable rate of the
secondary user under average transmit power and peak interference power constraints

Algorithm 2

1: Initialize Ph(zs, zsp) = Ph,init, Pl(zs, zsp) = Pl,init, ε > 0, δ > 0, t > 0, λ(0) = λinit,
µ(0) = µinit

2: n← 0
3: If the average transmit power constraint in (3.15) is satisfied when P ∗(zs, zsp) =

Qpk

zsp
,

then stop.
4: repeat
5: if log2 e zs ≤ µ(n) then
6: P ∗(zs, zsp) = 0
7: else
8: Find P ∗(zs, zsp) by bisection method as done in Algorithm 1 where g(.) is replaced

by h(.) given in (B.2).
9: end if

10: P ∗(zs, zsp) = min
(
Qpk

zsp
, P ∗(zs, zsp)

)
11: update µ using the projected subgradient method as follows
12: µ(n+1) =

(
µ(n) − t(Pavg − E{P ∗(zs, zsp)})

)+

13: n← n+ 1
14: until |µ(n)(Pavg − E{P ∗(zs, zsp)})| ≤ δ
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Table 3.3: The optimal power control algorithm that maximizes the achievable rate of the
secondary user under average transmit power and average interference power constraints

Algorithm 3

1: Initialize Ph(zs, zsp) = Ph,init, Pl(zs, zsp) = Pl,init, ε > 0, δ > 0, t > 0, λ(0) = λinit,
µ(0) = µinit

2: n← 0
3: repeat
4: if log2 e zs − λ(n)zsp ≤ µ(n) then
5: P ∗(zs, zsp) = 0
6: else
7: Find P ∗(zs, zsp) by bisection method as done in Algorithm 1 where g(.) is replaced

by η(.) given in (C.2).
8: end if
9: update µ and λ using the projected subgradient method as follows

10: µ(n+1) =
(
µ(n) − t(Pavg − E{P ∗(zs, zsp)})

)+

11: λ(n+1) =
(
λ(n) − t(Qavg − E{P ∗(zs, zsp)zsp})

)+

12: n← n+ 1
13: until |µ(n)(Pavg − E{P ∗(zs, zsp)})| ≤ δ and |λ(n)(Qavg − E{P ∗(zs, zsp)zsp})| ≤ δ

3.2.3 Average transmit power and peak interference power con-

straints

In this case, we have the following two constraints for the optimization problem given in

(3.5):

E{P (zs, zsp)} ≤ Pavg, (3.15)

P (zs, zsp)zsp ≤ Qpk, (3.16)

where Pavg denotes the average transmit power limit at the secondary transmitter. Under

these constraints, the optimal power control scheme is determined as in the following result.

Theorem 3.2.2 The optimal power control policy subject to the constraints in (3.15) and

28



(3.16) is obtained as

P ∗(zs, zsp) = min
{ 1

zs
MMSE−1

(
min

{
1,

µ

log2 e zs

})
,
Qpk

zsp

}
(3.17)

Above, the Lagrange multiplier µ is chosen such that the average transmit power constraint

in (3.15) is satisfied with equality.

Proof : See Appendix B.

Again, the power control algorithm for this case is detailed in Table 3.2.

Remark 3.2.2 Inserting MMSE−1(ρ) = 1
ρ
− 1 into (3.17), the optimal power control policy

becomes the truncated waterfilling scheme for Gaussian inputs as follows

P ∗(zs, zsp) = min

{(
log2 e

µ
− 1

zs

)+

,
Qpk

zsp

}
(3.18)

which has the same structure as given in [18].

3.2.4 Average transmit power and average interference power con-

straints

Finally, we consider the case in which the secondary transmitter operates under both average

transmit and average interference power constraints expressed as

E{P (zs, zsp)} ≤ Pavg, (3.19)

E{P (zs, zsp)zsp} ≤ Qavg. (3.20)

The main characterization is as follows with the power control algorithm provided in Table

3.3:

Theorem 3.2.3 The optimal power control policy under the constraints in (3.19) and (3.20)
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is determined as

P ∗(zs, zsp) =
1

zs
MMSE−1

(
min

{
1,
µ+ λzsp
log2 e zs

})
(3.21)

where µ and λ are the Lagrange multipliers, which can be jointly obtained by inserting the

above optimal power expression into the constraints given in (3.19) and (3.20).

Proof : See Appendix C.

Remark 3.2.3 When the input signal is Gaussian, we have

P ∗(zs, zsp) =

(
log2 e

µ+ λzsp
− 1

zs

)+

(3.22)

which is again consistent with the power allocation scheme given in [18].

Overall, our results throughout this section can be regarded as the generalization of

the optimal power control strategies characterized for only Gaussian inputs to arbitrarily

distributed inputs, including frequently-used finite constellations such as BPSK, QPSK, and

QAM.

3.3 Low-Power Regime Analysis

In this section, we characterize the optimal power control policies that maximize the achiev-

able rates of the secondary user with arbitrary input distributions in the low-power regime.

We note that operating at low power levels is of interest in cognitive radio systems due to the

facts that less interference is inflicted on the primary users and energy efficiency of cognitive

secondary users is generally improved in this regime.

Similarly as in the previous section, the proposed optimal power expressions are derived

for general fading distributions. In special cases, we further provide closed-form approxi-

mations of the maximum achievable rates in the low-power regime. In determining these
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expressions, we consider unit-mean Nakagami-m fading, which is analytically tractable and

widely used to model urban and indoor multipath propagation. By changing the parame-

ter m ∈ [0.5,∞), the Nakagami-m fading covers different models describing the statistical

behavior of the radio propagation environment. More specifically, in the case of m = 0.5,

the Nakagami-m distribution specializes to the one-sided Gaussian distribution, which cor-

responds to the most severe fading. For m = 1, the Nakagami-m distribution becomes the

Rayleigh fading, which is used to model multipath fading with no direct line-of-sight (LOS)

component. As m goes to infinity, the Nakagami-m fading channel converges to a nonfading

additive white Gaussian noise (AWGN) channel. Under the assumption of the Nakagami-m

fading, the channel power gains of the transmission link, zs, and interference link, zsp, follow

gamma distributions with PDFs given, respectively, as

fzs(zs;ms) =
mms
s zms−1

s

Γ(ms)
e−mszs zs ≥ 0,ms ≥ 0.5, (3.23)

fzsp(zsp;msp) =
m
msp
sp z

msp−1
sp

Γ(msp)
e−mspzsp zsp ≥ 0,msp ≥ 0.5 (3.24)

where Γ(.) is the gamma function [62, eq. 6.1.1] and ms and msp control the severity of the

amplitude fading of the transmission link and the interference link, respectively.

3.3.1 Peak transmit power and peak interference power constraints

The optimal power policy in the low power regime subject to the constraints in (3.6) and (3.7)

is the same as in (3.8). Next, we find a closed-form expression for the maximum achievable

rate of the secondary user attained with the optimal power control policy in (3.8).

We first express the mutual information achieved with arbitrary input distributions in

the low-power regime as follows:

I(ρ) = İ(0)ρ log2 e +
Ï(0)

2
ρ2 log2 e + o(ρ2) (3.25)
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where ρ = P (zs, zsp)zs and İ(0) = 1 [52]. Substituting the optimal power control policy in

(3.8) into the above mutual information expression and taking the expectation with respect

to fading, the maximum achievable rate can be found as

Ropt(Ppk, Qpk) =

∫ Qpk
Ppk

0

∫ ∞
0

(
Ppkzs +

Ï(0)P 2
pkz

2
s

2

)
log2 e fzs(zs)fzsp(zsp)dzsdzsp

+

∫ ∞
Qpk
Ppk

∫ ∞
0

(
Qpkzs
zsp

+
Ï(0)Q2

pk

2

z2
s

z2
sp

)
log2 e fzs(zs)fzsp(zsp)dzsdzsp.

(3.26)

Evaluating the integrals in (3.26) gives the closed-form expression for the maximum achiev-

able rate as follows:

Ropt(Ppk, Qpk) =

(
Ppk

Γ(ms + 1)

Γ(ms)ms
+ Ï(0)

P 2
pk

2

Γ(ms + 2)

Γ(ms)m2
s

)(
1−

Γ(msp,
mspQpk

Ppk
)

Γ(msp)

)
log2 e

+Qpk
msp

ms

Γ(ms + 1)

Γ(ms)

Γ(msp − 1,
mspQpk

Ppk
)

Γ(msp)
log2 e + Ï(0)

Q2
pk

2

(msp

ms

)2 Γ(ms + 2)

Γ(ms)

×
Γ(msp − 2,

mspQpk

Ppk
)

Γ(msp)
log2 e for msp > 2,

(3.27)

where Γ(a, b) is the incomplete gamma function [62, eq. 6.5.3].

In addition, if the power allocation problem is only constrained by peak transmit power

constraint Ppk, the achievable rate can be computed as

Ropt(Ppk) =

∫ ∞
0

∫ ∞
0

(
Ppkzs +

Ï(0)P 2
pkz

2
s

2

)
log2 e fzs(zs)fzsp(zsp)dzsdzsp. (3.28)

Evaluating the above integral yields the closed-form achievable rate expression under only

Ppk constraint in the following:

Ropt(Ppk) =

(
Ppk

Γ(ms + 1)

Γ(ms)ms

+Ï(0)
P 2
pk

2

Γ(ms + 2)

Γ(ms)m2
s

)
log2 e. (3.29)

Moreover, if the power allocation problem is only constrained by peak interference power
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constraint Qpk, the achievable rate can be expressed as

Ropt(Qpk) =

∫ ∞
0

∫ ∞
0

(
Qpkzs
zsp

+
Ï(0)Q2

pk

2

z2
s

z2
sp

)
log2 e fzs(zs)fzsp(zsp)dzsdzsp. (3.30)

By performing above integration, a closed-form achievable rate expression subject to only

Qpk constraint can be found as

Ropt(Qpk) = Qpk

(msp

ms

)Γ(ms + 1)Γ(msp − 1)

Γ(msp)Γ(ms)
log2 e +

Q2
pk

2
Ï(0)

(msp

ms

)2 Γ(ms + 2)Γ(msp − 2)

Γ(msp)Γ(ms)
log2 e.

(3.31)

3.3.2 Peak transmit power and average interference power con-

straints

In this case, by using the low-power expansion of MMSE in terms of the first and second

derivatives of the mutual information, we can simplify the optimal power control policy in

the low power regime as in the following result.

Theorem 3.3.1 The optimal power control policy that maximizes the achievable rate of the

secondary user in the low-power regime, i.e., as Ppk → 0 and Qavg → 0, with arbitrary input

distributions belonging to discrete constellations under the constraints in (3.10) and (3.11)

can be approximated as

P ∗(zs, zsp) = min

{( λzsp
log2 e

− zs
Ï(0)z2

s

)+

, Ppk

}
(3.32)

where Ï(0) denotes the second derivative of mutual information evaluated at SNR = 0 and λ

is the Lagrange multiplier associated with the average interference power constraint in (3.11).

Proof : See Appendix D.

We immediately see that the resulting optimal power control policy in (3.32) is simpler

and depends on the input distribution through Ï(0) rather than MMSE−1(·). In particular,
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for quadrature symmetric constellations such as QPSK, 8-PSK or 16-QAM, we have Ï(0) =

−1 while real valued constellations such as BPSK and m-PAM have Ï(0) = −2 [52]. It

should also be noted that we can obtain the low power behavior of MMSE for the Gaussian

input by setting Ï(0) = −1 in (D.1). Hence, inserting Ï(0) = −1 in (3.32), the optimal

power expressions for Gaussian input can readily be obtained.

3.3.3 Average transmit power and peak interference power con-

straints

Similarly as in the previous subsection, we first identify the optimal power adaptation strat-

egy in the low-power regime.

Theorem 3.3.2 In the low-power regime, the optimal power control policy subject to the

constraints in (3.15) and (3.16) is approximated by

P ∗(zs, zsp) = min

{(
µ

log2 e
− zs

Ï(0)z2
s

)+

,
Qpk

zsp

}
. (3.33)

Since similar procedures as in the proof of Theorem 3.3.1 are employed, the proof is omitted.

Inserting the above optimal power policy into (3.25) and taking the expectation with respect

to channel power gains zs and zsp do not yield a closed-form maximum achievable rate

expression. Hence, we provide closed-form expressions under only an average transmit power

constraint.

If only an average power constraint is imposed (or if the interference constraint is loose),

the optimal power control has the same formulation as in (3.33) with
Qpk

zsp
eliminated. Hence,

in this setting, the maximum achievable rate can be found as

Ropt(Pavg)=

∫ ∞
µ

log2 e

1

2Ï(0)

(( µ

log2 e zs

)2

− 1

)
log2 e fzs(zs)dzs (3.34)

and the above integration yields the following closed-form maximum achievable rate expres-

34



sion:

Ropt(Pavg) =
µ2m2

s

2Ï(0) log2 e

(
Γ(ms − 2, msµ

log2 e
)

Γ(ms)

)
− log2 e

2Ï(0)

(
Γ(ms,

msµ
log2 e

)

Γ(ms)

)
. (3.35)

If the average transmit power constraint in (3.15) is satisfied with strict inequality, then µ

is zero. Otherwise, µ is determined by satisfying the constraint in (3.15) with equality or

equivalently by solving

µm2
s

Ï(0) log2 e

(
Γ(ms − 2, msµ

log2 e
)

Γ(ms)

)
− ms

Ï(0)

(
Γ(ms − 1, msµ

log2 e
)

Γ(ms)

)
=Pavg. (3.36)

It should be noted that the expressions in (3.35) and (3.36) are in terms of the incomplete

gamma function, which can easily be computed via numerical tools. In order to obtain

further simplified achievable rate expressions free of the Lagrange multiplier µ, we further

approximate and simplify the formulations in (3.35) and (3.36) at asymptotically low power

levels by using the fact that

lim
Pavg→0

µ(Pavg) =∞ (3.37)

which can be shown by following the approach below. Let us first define the function H(x)

for x ∈ (0,∞) as follows:

H(x) = E
[

1

zs
MMSE−1

(
min

{
1,

x

log2 e zs

})]
(3.38)

which is continuous, takes nonnegative values by definition, and strictly monotonically de-

creasing since it is the inverse of the MMSE function, which is also strictly monotonically

decreasing in its argument. Hence, the function H(x) is invertible by construction. The La-

grange multiplier µ(Pavg) is a function of Pavg and can be found by setting H(µ(Pavg)) = Pavg.

Taking the limits of both sides as Pavg goes to zero and using the above-mentioned properties
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of the function H(x), the relation in (3.37) is obtained.

Consequently, we perform series expansion for expressions in (3.35) and (3.36) as µ(Pavg)→

∞ as follows:

Ropt(Pavg) =
2−msµµms

2Ï(0)Γ(ms)

(
− 2mms−2

s log(2)ms−3

µ2
+ o
( 1

µ

)3
)

(3.39)

Pavg =
2−msµµms

Ï(0)Γ(ms)

(
− mms−2

s log(2)ms−3

µ3
+ o
( 1

µ

)4
)
. (3.40)

By combining the above expressions, we can rewrite Ropt(Pavg) in terms of Pavg as

Ropt(Pavg) = Pavgµ(Pavg). (3.41)

By solving the expression in (3.40), µ(Pavg) can be found as

µ(Pavg) =
3−ms

ms log(2)
W−1

(
β
( 1

Pavg

) 1
3−ms

)
(3.42)

where ms > 3, β = 1
3−ms

(
ms

−Ï(0)Γ(ms)

) 1
3−ms

, which depends on the input distribution through

Ï(0), and W−1(.) represents the lower branch of the Lambert function [63]. Hence, inserting

µ(Pavg) in (3.42) into (3.41) gives

Ropt(Pavg) =
3−ms

ms log(2)
PavgW−1

(
β
( 1

Pavg

) 1
3−ms

)
. (3.43)

By substituting Ï(0) = −1 into the above rate expression, the result can readily be specialized

to the Gaussian input, which is obtained in [64], where the unit of the achievable rate is

chosen as nats per channel use.
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3.3.4 Average transmit power and average interference power con-

straints

Finally, we address the case in which average constraints are imposed on the transmission

and interference powers, and obtain the following result on the low-power approximation of

the optimal power control strategy. Again the proof is omitted for brevity.

Theorem 3.3.3 In the low-power regime, the optimal power control policy subject to the

constraints in (3.19) and (3.20) is approximated by

P ∗(zs, zsp) =

( µ+λzsp
log2 e

− zs
Ï(0)z2

s

)+

, (3.44)

where µ and λ are the Lagrange multipliers corresponding to the constraints given in (3.19)

and (3.20), respectively.

3.4 Numerical Results

In this section, we first provide numerical results to identify the impact of transmit power and

interference power constraints, input distributions, and fading severity on the achievable rates

attained with optimal power control. Subsequently, we analyze the optimal power control

in the low-power regime. In the optimization algorithm, unless mentioned explicitly, we set

ε = 0.00001, δ = 0.0001, t = 0.01 in the iterations. In the numerical results, we consider

Nakagami-m fading.

3.4.1 Optimal Power Control

In Fig. 3.2, we plot the instantaneous power levels as a function of the channel power gains

of the transmission link zs and of the interference link zsp, respectively, for the Gaussian

signal (left subfigure) and BPSK signal (right subfigure). Peak transmit power and average

interference power constraints are imposed with Ppk = 10 dB and Qavg = 6 dB.
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Figure 3.2: Instantaneous power level vs. channel power gains zs and zsp under peak transmit
and average interference power constraints. Ppk = 10 dB and Qavg = 6 dB. Left and right
subfigures are for the Gaussian and BPSK inputs, respectively.

When the input is Gaussian, it is seen that more power is assigned to the stronger channel

(i.e., higher values of zs) opportunistically while the power level generally diminishes as the

fading power of the interference link, zsp, increases. In contrast to the power adaptation

scheme for the Gaussian input, it is observed that instantaneous power for BPSK signal

first increases and then decreases with the channel power gain of the transmission link,

zs. In other words, when the channel gain is higher than a threshold, the transmission

power is lowered with increasing channel gain. This is due to the fact that increasing the

power beyond a certain level is not very beneficial because BPSK mutual information is

upper bounded by 2 bits/symbol and gets saturated eventually. Hence, the strategy of

performing channel inversion at very high channel gains and allocating more power to the

weaker channel conditions turns out to be the optimal one. Note that this strategy has

implications on interference management, highlighting the importance of addressing power

control for practical input distributions in cognitive radio settings.

In Fig. 3.3, we plot the maximum achievable rates in bits per channel use as a function

of the peak transmit power constraint Ppk for Gaussian, BPSK and QPSK inputs and for

different values of ms and msp (i.e., different fading severity) in the transmission and inter-

ference links. In this figure, we consider that a peak interference constraint is also imposed
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Figure 3.3: Maximum achievable rate vs. peak transmit power constraint, Ppk, for BPSK,
QPSK, and Gaussian inputs under different fading severity. Qpk = −1 dB.

and Qpk is chosen as −1 dB. It is seen that as Ppk increases, maximum achievable rates

initially increase and then stay constant for all inputs because the transmission power is

eventually limited by the interference power constraint, Qpk. It is observed that Gaussian

inputs always achieve higher rates compared to QPSK and BPSK inputs in the high power

regime while the performances of Gaussian, QPSK and BPSK inputs approach each other

in the low power regime. Another observation is that if the transmission link experiences

less severe fading or the fading in the interference link is more severe, the achievable rates

become higher. We also note that as the fading in the interference link becomes more severe,

the increase in the maximum achievable rate of Gaussian inputs is higher than the increase

in the maximum achievable rates of QPSK and BPSK inputs.

In Fig 3.4, we again display the maximum achievable rates as a function of the peak

transmit power limit, Ppk for Gaussian, BPSK and QPSK inputs. It is assumed that Qpk =

−1 dB. In this figure, we consider two cases regarding the availability of the channel side

information (CSI). When the CSI of the interference link zsp is available at the transmitter,

optimal transmission power is given in (3.9). On the other hand, in the lack of the knowledge

of zsp, it is assumed that the interference outage constraint Pr(P zsp > Qpk) ≤ ε is imposed,

i.e., the probability that the received power exceeds the peak interference level is limited by
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Figure 3.4: Maximum achievable rate vs. peak transmit power constraint, Ppk, for BPSK,
QPSK, and Gaussian inputs with or without the CSI of the interference link. Qpk = −1 dB.

ε. Hence, under this setting, the transmit power is given by P = min
{
Ppk,

Qpk

F−1
zsp (1−ε)

}
where

F−1
zsp denotes the inverse cumulative distribution function (CDF) of zsp. It is assumed that

ε = 0.1. It is seen that small gains are possible at low values of Ppk in the absence of the CSI

of the interference link. This is due to allowing the violation of the peak interference level

with some small probability. Note that violations are not tolerated when zsp is perfectly

known. The possible gains diminish if stricter outage constraints are imposed. On the other

hand, when Ppk is relatively large, we notice that having CSI and adapting the power level

benefits the secondary users. This is also beneficial to the primary users as their interference

constraints are satisfied all the time. In the figure, it is also interesting to note that the

throughput gains due to the availability of CSI of interference link zsp is the highest for the

Gaussian input, and throughput gain increases as the modulation size increases.

In Fig. 3.5, we plot the maximum achievable rates as a function of the average interference

power constraint, Qavg for Gaussian, 16-QAM, QPSK and BPSK inputs. In the left subfigure,

peak transmit power constraint is not imposed whereas Ppk is set to 6 dB in the right

subfigure. It is assumed that ms = msp = 1. We both consider the achievable rates of

non-Gaussian inputs (i.e.,16-QAM, QPSK and BPSK inputs) achieved with optimal power

control assuming Gaussian input signaling and with the proposed power control considering
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Figure 3.5: Maximum achievable rate vs. average interference power constraint, Qavg, for
BPSK, QPSK, 16-QAM and Gaussian inputs. While only an average interference power
constraint is considered in the left subfigure, an additional peak transmit constraint with
Ppk = 6 dB is imposed in the right subfigure.

the non-Gaussian signaling. When there is no peak transmit power constraint, maximum

achievable rate with Gaussian input increases as Qavg increases while maximum achievable

rates of 16-QAM, QPSK and BPSK inputs increase first and then saturate at 4, 2 and 1

bit per channel use, respectively, due to being finite constellations. When the peak transmit

power constraint is imposed, maximum achievable rates for all inputs increase initially with

increasing Qavg and then start saturating due to the presence of Ppk as seen in the right

subfigure. It is also observed that the achievable rates of 16-QAM, QPSK and BPSK inputs

obtained with the power control assuming Gaussian input signaling are lower than that

obtained under the proposed optimal power control considering non-Gaussian signaling since

the power control under the assumption of Gaussian input signaling is suboptimal for these

non-Gaussian inputs. Therefore, it is concluded that if the actual signal input distribution

is not taken into account, considerable performance loss occurs for systems optimized under

the Gaussian input assumption.

In Fig. 3.6, we plot the maximum achievable rates as a function of the average transmit
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Figure 3.6: Maximum achievable rate vs. average transmit power constraint, Pavg, for BPSK,
QPSK, and Gaussian inputs under either average or peak interference constraints, and con-
stant power scheme.

power constraint, Pavg for Gaussian, QPSK and BPSK inputs under either peak interference

power constraint Qpk or average interference power constraint, Qavg. It is assumed that

Qpk = Qavg = 6 dB. In order to highlight the gains achieved with power control, we also plot

the rates attained with constant power transmissions when Qavg is imposed. Expectedly,

higher achievable rates are observed under average interference constraints compared to that

attained under peak interference constraints for all inputs since power adaptation under

average interference power constraints is more flexible than that under peak interference

power constraints. It is observed that the highest rate is achieved with the Gaussian input

and there is substantial throughput difference between Gaussian input and BPSK, QPSK

inputs. Hence if the system performance is predicted under the assumption of Gaussian

input and the inputs are chosen from discrete constellations in actual applications, it is seen

that there would be considerable performance loss in terms of achievable rates. It is also

observed that optimal power control policy always outperforms constant power scheme for

all inputs, but the highest throughput gain is achieved with Gaussian input.
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3.4.2 Low-Power Analysis

Fig. 3.7 shows the maximum achievable rates vs. peak transmit power constraint, Ppk

for Gaussian, BPSK and QPSK inputs. It is assumed that ms = 1,msp = 3. In this

figure, a low-power scenario is considered. As before, it is again observed that the maximum

achievable rates increase with increasing Ppk and then become limited by peak interference

power constraint, Qpk. It is seen that low-power approximation in (3.27) matches well with

the exact rates, confirming the accuracy of the approximation at low power levels. It is also

seen that Gaussian and QPSK inputs exhibit nearly the same performance in the low power

regime. Therefore, QPSK input can be efficiently used in practical systems rather than the

Gaussian input which is difficult to implement.
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Figure 3.7: Maximum achievable rate vs. peak transmit power constraint, Ppk. Qpk = −20
dB.

In Fig. 3.8, we display the maximum achievable rates vs. peak interference power

constraint, Qpk for Gaussian, BPSK and QPSK inputs in the low-power regime. It is again

assumed that ms = 1,msp = 3. The maximum achievable rates increase with increasing

Qpk for all inputs. The gap between the closed-form maximum achievable rate expression

in (3.31) and the exact maximum achievable rate evaluated by inserting the corresponding

optimal transmission power into (2.8) is relatively small in the low-power regime.

Fig. 3.9 depicts the maximum achievable rates as a function of average interference
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Figure 3.9: Maximum achievable rate vs. average interference power constraint, Qavg. Ppk =
−20 dB.

power constraint, Qavg for Gaussian, BPSK and QPSK inputs. Again, a low-power scenario

is addressed. We consider peak constraint on the transmit power, i.e., Ppk = −20 dB. It is

assumed that ms = msp = 1. As Qavg increases, the maximum achievable rates increase and

get saturated for all inputs due to limitations on the peak transmit power, Ppk. It is seen

that the low-power approximation (3.32) of the optimal power control leads to similar per-

formance in terms of the achievable rates compared with the optimal power control scheme,

demonstrating the accuracy of (3.32).

In Fig. 3.10, we illustrate the maximum achievable rates vs. average transmit power
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Figure 3.10: Maximum achievable rate vs. average transmit power constraint, Pavg.

constraint, Pavg for Gaussian, BPSK and QPSK inputs. We consider that ms = 4, msp = 1.

As Pavg increases, maximum achievable rates increase. It is seen that for low power values,

the closed-form maximum achievable rate expression in (3.43) matches well with the exact

maximum achievable rate achieved with the corresponding optimal transmission power in

(3.33) without a constraint on the peak interference power. This is in agreement with our

analysis in Section 3.3.3.

Figure 3.11: Maximum achievable rate vs. average interference power constraint, Qavg.
Pavg = −20 dB

In Fig. 3.11, we display the maximum achievable rates vs. average interference power

constraint, Qavg for Gaussian, BPSK and QPSK inputs under optimal power control and

constant power schemes. We setms = msp to 1 and Pavg = −20 dB. The maximum achievable
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rates increase with increasing Qavg and then capped due to the presence of Pavg. It is seen

that substantially higher rates are achieved with optimal power control policy compared to

constant power scheme. It is observed from the figure that QPSK and Gaussian inputs show

nearly the same throughput gain whereas BPSK has the smallest throughput gain when the

optimal power control is applied.
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Chapter 4

Energy Efficiency in Cognitive Radio

Systems with Channel Sensing Errors

– Time-slotted Primary Users

This chapter presents energy-efficient power allocation schemes for secondary users in sensing-

based spectrum sharing cognitive radio systems with time-slotted primary users. The optimal

power levels are identified in the presence of different levels of CSI regarding the transmission

and interference links at the secondary transmitter, namely perfect CSI of both transmis-

sion and interference links, perfect CSI of the transmission link and imperfect CSI of the

interference link, imperfect CSI of both links or only statistical CSI of both links.

Section 4.1 introduces the system model and defines the energy efficiency of secondary

users in the presence of imperfect sensing results. In Section 4.2, energy efficiency maximiza-

tion problems subject to peak/average transmit power constraints and average interference

constraint in the presence of imperfect sensing results and different levels of CSI regarding

the transmission and interference links are formulated and the corresponding optimal power

allocation schemes are derived. Subsequently, numerical results are presented and discussed

in Section 4.3.
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4.1 System Model

We consider a sensing-based spectrum sharing cognitive radio system in which a secondary

transmitter-receiver pair utilizes the spectrum holes in the licensed bands of the primary

users. The term “spectrum holes” denotes underutilized frequency intervals at a particular

time and certain location. In order to detect the spectrum holes, secondary users initially

perform channel sensing over a duration of τ symbols. It is assumed that secondary users em-

ploy frames of T symbols. Hence, data transmission is performed in the remaining duration

of T − τ symbols.

The channel is considered to be block flat-fading channel in which the fading coefficients

stay the same in one frame duration and vary independently from one frame to another.

Secondary users are assumed to transmit under both idle and busy sensing decisions. There-

fore, by considering the true nature of the primary user activity together with the channel

sensing decisions, the four possible channel input-output relations betw energy efficiencyn

the secondary transmitter-receiver pair can be expressed as follows:

yi =



hx0,i + ni if (H0, Ĥ0)

hx1,i + ni if (H0, Ĥ1)

hx0,i + ni + si if (H1, Ĥ0)

hx1,i + ni + si if (H1, Ĥ1),

(4.1)

where i = 1, . . . , T − τ . Above, x and y are the transmitted and received signals, respec-

tively and h is the channel fading coefficient of the transmission link between the secondary

transmitter and the secondary receiver, which is assumed to be Gaussian distributed with

mean zero and variance σ2
h. In addition, ni and si denote the additive noise and the primary

users’ received faded signal. Both {ni} and {si} are assumed to be independent and identi-

cally distributed circularly-symmetric, zero-mean Gaussian sequences with variances N0 and

σ2
s , respectively. Moreover, the subscripts 0 and 1 in the transmitted signal indicate the
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transmission power levels of the secondary users. More specifically, the average power level

is P0(g, h) if the channel is detected to be idle while it is P1(g, h) if the channel is detected

to be busy. Also, g denotes the channel fading coefficient of the interference link between

the secondary transmitter and the primary receiver. System model is depicted in Fig. 4.1.

Figure 4.1: System model.

Based on the input-output relation in (4.1), the additive disturbance is given by

wi =


ni if H0 is true

ni + si if H1 is true

. (4.2)

The achievable rate of secondary users is given by

RG =
T − τ
T

Pr(Ĥ0)
[
h(y|h, Ĥ0)− h(y|x0, h, Ĥ0)

]
+
T − τ
T

Pr(Ĥ1)(h(y|h, Ĥ1)− h(y|x1, h, Ĥ1)),

=
T − τ
T

Pr(Ĥ0)
[
h(y|h, Ĥ0)− h(w|h, Ĥ0)

]
+
T − τ
T

Pr(Ĥ1)
[
h(y|h, Ĥ1)− h(w|h, Ĥ1)

]
,

where h(.) denotes the differential entropy. Due to imperfect sensing results, the additive

disturbance, w follows Gaussian mixture distribution and the differential entropy of Gaussian

mixture density does not admit closed-form expression. However, a closed-form lower bound

on the achievable rate expression of secondary users can be obtained in the following result.

Proposition 4.1.1 The lower bound on the achievable rate of secondary users in the pres-
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ence of imperfect sensing decisions is given by

Ra = Eg,h
{
R
(
P0(g, h), P1(g, h)

)}
=
T − τ
T

1∑
k=0

Pr(Ĥk)Eg,h

{
log

(
1 +

Pk(g, h)|h|2

N0 + Pr(H1|Ĥk)σ2
s

)}
,

(4.3)

where k ∈ {0, 1} and E{.} denotes expectation operation. Also, Pr{Ĥ1} and Pr{Ĥ0} denote

the probabilities of channel being detected as busy and idle, respectively, and can be expressed

as

Pr{Ĥ1} = Pr{H0}Pf + Pr{H1}Pd, (4.4)

Pr{Ĥ0} = Pr{H0}(1−Pf) + Pr{H1}(1−Pd). (4.5)

Proof: See Appendix E.

Theorem 4.1.1 The difference between (RG −Ra) is upper bounded by

RG −Ra ≤
(T − τ

T

)[
Eg,h

{
2∑

k=1

log

( ∑2
i=1

Pr(Hi|Ĥk)
ci(

1 + Pk(g,h)|h|2
N0+Pr(H1|Ĥk)σ2

s

)∑2
i=1

Pr(Hi|Ĥk)
ci+|h|2Pk(g,h)

)}

−
2∑

k=1

Pr(Ĥk)

(
N0 + Pr(H1|Ĥk)σ

2
s

N0 + σ2
s

)
+

2∑
k=1

Pr(Ĥk)Eg,h
{

1 +
Pr(Hi|Ĥk)σ

2
s

N0 + |h|2Pk(g, h)

}]
(4.6)

where c1 = N0 + σ2
s and c2 = N0.

Proof: See Appendix F.

In Fig. 4.2, we plot the difference between (RG − Ra) as a function of noise variance,

N0. We assume that Pd = 0.8,Pf = 0.1 and σ2
s = 1. It is seen that as noise variance,

N0, increases, the difference approaches zero, hence the lower bound on the achievable rate

expression becomes tighter.

With the characterization of the achievable rate in (4.3), we now define the energy effi-
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Figure 4.2: Achievable energy efficiency ηEE vs. achievable rate Ra.

ciency as the ratio of the achievable rate to the total power consumption in the following:

ηEE =
Eg,h

{
R
(
P0(g, h), P1(g, h)

)}
Eg,h{Pr{Ĥ0}P0(g, h) + Pr{Ĥ1}P1(g, h)}+ Pc

. (4.7)

Above, the total power consists of average transmission power and circuit power, denoted by

Pc. In practical systems, the circuit power accounts for a part of the total power consumption.

Accurate circuit power consumption formulation of the transceiver was given in [65], [66],

where the circuit power includes power consumption of signal processing and active circuit

blocks such as mixers, frequency synthesizers, active filters and digital-to-analog converter.

This portion of power consumption excludes that of the power amplifier and is independent of

the transmission rate. Practical cognitive radio transceivers are built on similar circuit blocks

[67]. Considering these facts, we assume that the transmit power is used for reliable data

transmission while circuit power represents the average power consumed by the electronic

circuits, and is independent of the transmission state.

The achievable energy efficiency expression in (4.7) can serve as a lower bound since

the lower bound on achievable rate Ra in (4.3) is employed. The usefulness of this energy

efficiency expression is due to its being an explicit function of sensing performance.

In Fig. 4.3, we plot the energy efficiency expression in (4.7) (indicated as the lower bound)
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and the exact energy efficiency, in which we use Gaussian input and consider Gaussian

mixture noise in the mutual information, as a function of achievable rate for both perfect

sensing (i.e., Pd = 1 and Pf = 0) and imperfect sensing (i.e., Pd = 0.8 and Pf = 0.2). The

graph is displayed in logarithmic scale to highlight the difference between the exact energy

efficiency and the lower bound on energy efficiency. In order to evaluate the exact energy

efficiency achieved with Gaussian input, we performed Monte Carlo simulations with 2×106

samples. In the case of perfect sensing, the lower bound and simulation result perfectly match

as expected since in this case additive disturbance has Gaussian distribution rather than a

Gaussian mixture. In the case of imperfect sensing, it is seen that the gap between the lower

bound and exact energy efficiency decreases as N0 increases, which matches with Theorem

4.1.1. Additionally, since circuit power is taken into consideration with value Pc = 0.1,

energy efficiency vs. achievable rate curve is bell-shaped and is also quasiconcave [68]. It is

observed that maximum energy efficiency is achieved at nearly the same achievable rate for

both lower bound and exact energy efficiency expressions.

In the following section, we derive power allocation schemes that maximize the energy

efficiency of the secondary users in the presence of sensing errors, different combinations

of transmit power and average interference power constraints, and different levels of CSI

regarding the transmission and interference links.
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4.2 Optimal Power Allocation

4.2.1 Average Transmit Power Constraint and Average Interfer-

ence Power Constraint

Now, we obtain the optimal power allocation strategies to maximize the energy efficiency

of secondary users under average transmit power and average interference power constraints

in the presence of different levels of CSI regarding the transmission and interference links,

namely perfect CSI of both transmission and interference links, perfect CSI of the transmis-

sion link and imperfect CSI of the interference link, imperfect CSI of both links, or statistical

CSI of both links.

4.2.1.1 Perfect CSI of both transmission and interference links

In this case, it is assumed that CSI of both transmission and interference links is perfectly

known by the secondary transmitter. In this setting, the maximum energy efficiency under

both average transmit power and interference power constraints can be found by solving the

following optimization problem:

max
P0(g,h)
P1(g,h)

ηEE =
Eg,h

{
R
(
P0(g, h), P1(g, h)

)}
Eg,h{Pr{Ĥ0}P0(g, h)+Pr{Ĥ1}P1(g, h)}+Pc

(4.8)

subject to Eg,h{Pr{Ĥ0}P0(g, h) + Pr{Ĥ1}P1(g, h)} ≤ Pavg (4.9)

Eg,h{
[
(1−Pd)P0(g, h) + Pd P1(g, h)

]
|g|2} ≤ Qavg (4.10)

P0(g, h) ≥ 0, P1(g, h) ≥ 0, (4.11)

where Pavg denotes the maximum average transmission power of the secondary transmitter

and Qavg represents the maximum allowed average interference power at the primary receiver.

In particular, average transmit power constraint in (4.9) is chosen to satisfy the long-term

power budget of the secondary users and average interference power constraint in (4.10) is
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imposed to limit the interference, and hence to protect the primary user transmission. In

this setting, the optimal power allocation strategy that maximizes the energy efficiency of

secondary users is determined in the following result.

Theorem 4.2.1 The optimal power allocation under the constraints in (4.9) and (4.10) is

given by

P ∗0 (g,h) =

[
T−τ
T

Pr{Ĥ0} log2 e

(λ1+α) Pr{Ĥ0}+ ν1|g|2(1−Pd)
− N0+Pr(H1|Ĥ0)σ2

s

|h|2

]+

(4.12)

P ∗1 (g,h) =

[
T−τ
T

Pr{Ĥ1} log2 e

(λ1 + α) Pr{Ĥ1}+ ν1|g|2Pd

− N0 + Pr(H1|Ĥ1)σ2
s

|h|2

]+

, (4.13)

where [x]+ denotes max(x, 0), α is a nonnegative parameter, and λ1 and ν1 are nonnegative

Lagrange multipliers.

Proof: See Appendix G.

Above, the Lagrange multipliers λ1 and ν1 can be jointly obtained by inserting the optimal

power allocation schemes (4.12) and (4.13) into the constraints (4.9) and (4.10). However,

solving these constraints does not give closed-form expressions for λ1 and ν1. Therefore,

we employ the subgradient method, i.e., λ1 and ν1 are updated iteratively according to the

subgradient direction until convergence as follows:

λ
(n+1)
1 =

[
λ

(n)
1 − t

(
Pavg − Eg,h{Pr{Ĥ0}P (n)

0 (g,h) + Pr{Ĥ1}P (n)
1 (g, h)}

)]+

(4.14)

ν
(n+1)
1 =

[
ν

(n)
1 − t

(
Qavg − Eg,h{

[
(1−Pd)P

(n)
0 (g, h) + Pd P

(n)
1 (g, h)

]
|g|2}

)]+

, (4.15)

where n and t denote the iteration index and the step size, respectively. When the step

size is chosen to be constant, it was shown that the subgradient method is guaranteed to

converge to the optimal value within a small range [60].

For a given value of α, the optimal power levels in (4.12), (4.13) can be found until

F (α) ≤ ε is satisfied. Dinkelbach’s method converges to the optimal solution at a superlinear
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convergence rate. The detailed proof of convergence can be found in [69]. In the case of

F (α) = 0 in (G.5), the solution is optimal otherwise ε-optimal solution is obtained. In the

following table, Dinkelbach method-based iterative power allocation algorithm for energy

efficiency maximization under imperfect sensing is summarized.

Algorithm 4 Dinkelbach method-based power allocation that maximizes energy efficiency
of cognitive radio systems under both average transmit power and interference constraints

1: Initialization: Pd = Pd,init, Pf = Pf,init, ε > 0, δ > 0, t > 0, α(0) = αinit, λ
(0)
1 = λ1,init,

ν
(0)
1 = ν1,init

2: n← 0
3: repeat
4: calculate P ∗0 (g, h) and P ∗1 (g, h) using (4.12) and (4.13), respectively;
5: update λ1 and ν1 using subgradient method as follows:
6: k ← 0
7: repeat

8: λ
(k+1)
1 =

[
λ

(k)
1 − t

(
Pavg − Eg,h{Pr{Ĥ0}P (k)

0 (g, h) + Pr{Ĥ1}P (k)
1 (g, h)}

)]+

9: ν
(k+1)
1 =

[
ν

(k)
1 − t

(
Qavg − Eg,h{[(1−Pd)P

(k)
0 (g, h)+PdP

(k)
1 (g, h)]|g|2}

)]+

10: k ← k + 1
11: until |ν(k)

1

(
Qavg − Eg,h{[(1−Pd)P

(k)
0 (g, h) + PdP

(k)
1 (g, h)]|g|2}

)
|≤ δ and |λ(k)

1

(
Pavg −

E{Pr{Ĥ0}P (k)
0 (g,h) + Pr{Ĥ1}P (k)

1 (g, h)}
)
| ≤ δ

12: α(n+1) =
Eg,h
{
R
(
P ∗0 (g,h),P ∗1 (g,h)

)}
Eg,h{Pr{Ĥ0}P ∗0 (g,h)+Pr{Ĥ1}P ∗1 (g,h)}+Pc

13: n← n+ 1
14: until |F (α(n))| ≤ ε

Note that in the case of α = 0, energy efficiency maximization problem is equivalent to

spectral efficiency maximization. Therefore, setting α = 0 in (4.12) and (4.13) provides the

optimal power allocation strategies that maximize the average achievable rate of secondary

users. In addition, if the circuit power in the total power consumption model is assumed to be

rate-dependent rather than constant, the optimization problem is shown to be quasiconcave

[70]. Hence, similar technique as in the proof of Theorem 4.2.1 can be used to derive the

optimal power control strategy in the case of rate-dependent circuit power.

Remark 4.2.1 The power allocation schemes in (4.12) and (4.13) have the structure of

water-filling policy with respect to channel power gain |h|2 between the secondary transmitter
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and secondary receiver, but average transmit and average interference power constraints are

not necessarily satisfied with equality in constrast to to the case of throughput maximization.

In addition, the water level in this policy depends on the interference channel power gain

|g|2 between the secondary transmitter and the primary receiver, i.e., less power is allocated

when the interference link has a higher channel gain.

Remark 4.2.2 The proposed power allocation schemes in (4.12) and (4.13) depend on the

sensing performance through detection and false alarm probabilities, Pd and Pf , respectively.

When both perfect sensing, i.e., Pd = 1 and Pf = 0, and spectral efficiency maximization

are considered, i.e., α is set to 0, the power allocation schemes become similar to that given

in [18]. However, in our analysis the secondary users have two power allocation schemes

depending on the presence or absence of active primary users.

4.2.1.2 Perfect CSI of transmission link and imperfect CSI of interference link

In practice, it may be difficult to obtain perfect CSI of the interference link due to the lack of

cooperation between secondary and primary users. In this case, the channel fading coefficient

of the interference link can be expressed as

g = ĝ + g̃, (4.16)

where ĝ denotes the estimate of the channel fading coefficient and g̃ represents the corre-

sponding estimate error. It is assumed that ĝ and g̃ follow independent, circularly symmetric

complex Gaussian distributions with mean zero and variances 1 − σ2
g and σ2

g , respectively,

i.e., ĝ ∼ N (0, 1 − σ2
g) and g̃ ∼ N (0, σ2

g). Under this assumption, the average interference
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constraint can be written as

Qavg ≥ Eg,ĝ,h{
[
(1−Pd)P0(ĝ, h) + PdP1(ĝ, h)

]
|g|2}

= Eĝ,h{
[
(1−Pd)P0(ĝ, h) + PdP1(ĝ, h)

]
(|ĝ|2 + |g̃|2)}

= Eĝ,h{
[
(1−Pd)P0(ĝ, h) + PdP1(ĝ, h)

]
(|ĝ|2 + σ2

g)},

(4.17)

where the power levels P0 and P1 are now expressed as functions of the estimate ĝ. Now, the

optimal power allocation problem under the assumptions of perfect instantaneous CSI of the

transmission link and imperfect instantaneous CSI of the interfence link can be formulated

as follows:

max
P0(ĝ,h)
P1(ĝ,h)

ηEE =
Eĝ,h

{
R
(
P0(ĝ, h), P1(ĝ, h)

)}
Eĝ,h{Pr{Ĥ0}P0(ĝ, h)+Pr{Ĥ1}P1(ĝ, h)}+Pc

(4.18)

subject to Eĝ,h{Pr{Ĥ0}P0(ĝ, h) + Pr{Ĥ1}P1(ĝ, h)} ≤ Pavg (4.19)

Eĝ,h{
[
(1−Pd)P0(ĝ, h) + Pd P1(ĝ, h)

]
(|ĝ|2 + σ2

g)} ≤ Qavg (4.20)

P0(ĝ, h) ≥ 0, P1(ĝ, h) ≥ 0 (4.21)

In the following result, we determine the optimal power allocation strategy in closed-form

for this case.

Theorem 4.2.2 The optimal power allocation subject to the constraints in (4.19) and (4.20)

is obtained as

P ∗0 (ĝ, h) =

[
T−τ
T

Pr{Ĥ0} log2 e

(λ2 + α) Pr{Ĥ0}+ ν2(1−Pd)(|ĝ|2 + σ2
g)
− N0 + Pr(H1|Ĥ0)σ2

s

|h|2

]+

(4.22)

P ∗1 (ĝ, h) =

[
T−τ
T

Pr{Ĥ1} log2 e

(λ2 + α) Pr{Ĥ1}+ ν2Pd(|ĝ|2 + σ2
g)
− N0 + Pr(H1|Ĥ1)σ2

s

|h|2

]+

, (4.23)

where λ2 and ν2 are nonnegative Lagrange multipliers associated with the average transmit

power in (4.19) and average interference power constraints in (4.20), respectively.
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Proof: We mainly follow the same steps as in the proof of Theorem 4.2.1, but with several

modifications due to imperfect knowledge of the interference link. More specifically, the

KKT conditions now become

T−τ
T

Pr{Ĥ0}|h|2 log2 e

N0 + Pr(H1|Ĥ0)σ2
s + P ∗0 (ĝ, h)|h|2

− (λ2 + α) Pr{Ĥ0} − ν2(|ĝ|2 + σ2
g)(1−Pd) = 0 (4.24)

T−τ
T

Pr{Ĥ1}|h|2 log2 e

N0 + Pr(H1|Ĥ1)σ2
s + P ∗1 (g,h)|h|2

− (λ2 + α) Pr{Ĥ1} − ν2(|ĝ|2 + σ2
g)Pd = 0 (4.25)

λ2(Eĝ,h{Pr{Ĥ0}P ∗0 (ĝ, h) + Pr{Ĥ1}P ∗1 (ĝ, h)} − Pavg) = 0 (4.26)

ν2(Eĝ,h{
[
(1−Pd)P ∗0 (ĝ, h) + Pd P

∗
1 (ĝ, h)

]
(|ĝ|2 + σ2

g)} −Qavg) = 0 (4.27)

λ2 ≥ 0, ν2 ≥ 0. (4.28)

Solving for P ∗0 (ĝ, h) in (4.24) and P ∗1 (ĝ, h) in (4.25) lead to the optimal power values in (4.22)

and (4.23), respectively. �

Remark 4.2.3 We note that the optimal power levels in (4.22) and (4.23) now depend on

the channel estimation error of the interference link, σ2
g . More specifically, the water level

is also determined by σ2
g , i.e., inaccurate estimation with higher channel estimation error

results in lower water levels, hence lower transmission powers.

Remark 4.2.4 We can readily obtain the power allocation schemes under perfect sensing by

setting Pd = 1 and Pf = 0 in (4.22) and (4.23). In addition, the proposed power schemes

capture the power levels under perfect CSI of the interference link as a special case when

σ2
g = 0.

4.2.1.3 Imperfect CSI of both transmission and interference links

In this case, we assume that in addition to the imperfect knowledge of the interference link,

the secondary transmitter has imperfect CSI of the transmission link. The channel fading
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coefficient of the transmission link is written as

h = ĥ+ h̃. (4.29)

Above, ĥ is the estimate of the channel fading coefficient of the transmission link and h̃ is

the corresponding estimation error. It is assumed that ĥ and h̃ are independent, circularly

symmetric complex Gaussian distributed with zero mean and variances 1 − σ2
h and σ2

h, re-

spectively, i.e., ĥ ∼ N (0, 1 − σ2
h) and h̃ ∼ N (0, σ2

h). In this case, by taking into account

imperfect CSI of both links, the achievable rate of secondary users is given by

Ra = Eĝ,ĥ,h
{
R
(
P0(ĝ, ĥ), P1(ĝ, ĥ)

)}
=
T − τ
T

1∑
k=0

Pr(Ĥk)

∫
ĝ

(∫
ĥ

(∫
|h|2

log

(
1 +

Pk(η, ζ)γ

N0 + Pr(H1|Ĥk)σ2
s

)
f|h|2|ĥ(γ | ĥ)dγ

)
fĥ(ζ)dζ

)
fĝ(η)dη,

(4.30)

where f|h|2|ĥ(γ | ĥ) denotes the probability density function (pdf) of |h|2 conditioned on ĥ,

and in the case of Rayleigh fading, the corresponding pdf is given by

f|h|2|ĥ(γ | ĥ) =
1

α2
h

e
− γ+|ĥ|2

α2
h I0

(
2

α2
h

√
|ĥ|2γ

)
, (4.31)

where I0(.) represents the modified Bessel function of the first kind [62]. Consequently, the

optimal power allocation problem can be expressed as

max
P0(ĝ,ĥ)

P1(ĝ,ĥ)

ηEE =
Eĝ,ĥ,h

{
R
(
P0(ĝ, ĥ), P1(ĝ, ĥ)

)}
Eĝ,ĥ,h{Pr{Ĥ0}P0(ĝ, ĥ)+Pr{Ĥ1}P1(ĝ, ĥ)}+Pc

(4.32)

subject to Eĝ,ĥ,h{Pr{Ĥ0}P0(ĝ, ĥ) + Pr{Ĥ1}P1(ĝ, ĥ)} ≤ Pavg (4.33)

Eĝ,ĥ,h{
[
(1−Pd)P0(ĝ, ĥ) + Pd P1(ĝ, ĥ)

]
(|ĝ|2 + σ2

g)} ≤ Qavg (4.34)

P0(ĝ, ĥ) ≥ 0, P1(ĝ, ĥ) ≥ 0 (4.35)
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We obtain the following result for the optimal power allocation scheme.

Theorem 4.2.3 The optimal power allocation subject to the constraints in (4.33) and (4.34)

is obtained as

P ∗0 (ĝ, ĥ) = P̄0(ĝ, ĥ) (4.36)

P ∗1 (ĝ, ĥ) = P̄1(ĝ, ĥ), (4.37)

where P̄0(ĝ, ĥ) and P̄1(ĝ, ĥ) are the solutions to the following equations, respectively

∫ ∞
0

(
T−τ
T

)
Pr{Ĥ0} log2 eγ

N0 + Pr{Ĥ0}σ2
s + P̄0(ĝ, ĥ)γ

f|h|2|ĥ(γ, ĥ)dγ = (λ3 + α) Pr{Ĥ0}+ ν3(1−Pd)(|ĝ|2 + σ2
g)

(4.38)∫ ∞
0

(
T−τ
T

)
Pr{Ĥ1} log2 eγ

N0 + Pr{Ĥ1}σ2
s + P̄1(ĝ, ĥ)γ

f|h|2|ĥ(γ, ĥ)dγ = (λ3 + α) Pr{Ĥ1}+ ν3Pd(|ĝ|2 + σ2
g).

(4.39)

If there are no positive solutions for (4.38) and (4.39) given the values of ĝ and ĥ, the

instantaneous power levels are set to zero, i.e., P ∗0 (ĝ, ĥ) = 0 and P ∗1 (ĝ, ĥ) = 0.

Proof: Similar to the proof of Theorem 4.2.1, we first express the optimization problem

in a subtractive form, which is a concave function of transmission power levels, and then

define the Lagrangian as

L(P0, P1, λ3, ν3, α) = Eĝ,ĥ,h
{
R
(
P0(ĝ, ĥ), P1(ĝ, ĥ)

)}
− α(Eĝ,ĥ,h{Pr{Ĥ0}P0(ĝ, ĥ) + Pr{Ĥ1}P1(ĝ, ĥ)}+Pc)

− λ3(Eĝ,ĥ,h{Pr{Ĥ0}P0(ĝ, ĥ) + Pr{Ĥ1}P1(ĝ, ĥ)} − Pavg)− ν3(Eĝ,ĥ,h{
[
(1−Pd)P0(ĝ, ĥ) + Pd P1(ĝ, ĥ)

]
× (|ĝ|2 + σ2

g)} −Qavg).

(4.40)

Setting the derivatives of the Lagrangian in (4.40) with respect to P ∗0 (ĝ, ĥ) and P ∗1 (ĝ, ĥ) to

zero and arranging the terms yield the desired results in (4.38) and (4.39), respectively. �

Remark 4.2.5 Let f0(P0(ĝ, ĥ)) and f1(P1(ĝ, ĥ)) denote the left-hand sides of (4.38) and
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(4.39), respectively, as a function of the transmission powers and let ω0 and ω1 denote the

right-hand sides of (4.38) and (4.39), respectively. For given values of ĝ and ĥ, f0(P0(ĝ, ĥ))

and f1(P1(ĝ, ĥ)) are positive decreasing functions of transmission powers with their maximum

values f0(0) and f1(0) obtained at P0(ĝ, ĥ) = 0 and P1(ĝ, ĥ) = 0, respectively. Hence, the

optimal solutions P ∗0 and P ∗1 can be characterized as

P ∗0 =


f−1

0 (ω0) 0 < ω0 < f0(0)

0 ω0 ≥ f0(0)

(4.41)

P ∗1 =


f−1

1 (ω1) 0 < ω1 < f1(0)

0 ω1 ≥ f1(0).

(4.42)

It is seen from the above expressions that we allocate power only when f0(0) > ω0 and f1(0) >

ω1, otherwise power levels are zero. Also, the average transmission powers attained with the

proposed above optimal power levels are decreasing functions of ω1 and ω2, respectively since

f−1
0 (ω0) and f−1

1 (ω1) are decreasing in ω0 and ω1, respectively. Hence, in that sense, the

optimal power allocation can be interpreted again as water-filling policy.

Remark 4.2.6 The proposed power levels in (4.36) and (4.37) are functions of the variance

of the estimation error of the transmission link, σ2
h and interference link, σ2

g . Hence, Theorem

4.2.3 can be seen as a generalization of the power allocation schemes attained under perfect

CSI of transmission link and interference links, i.e., this case can be recovered by setting

σ2
h = 0 and σ2

g = 0.

4.2.1.4 Statistical CSI of both transmission and interference links

In this case, the secondary transmitter has only statistical CSI of both transmission and in-

terference links, i.e., knows only the fading distribution of both transmission and interference
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links. Under this assumption, the power allocation problem is formulated as follows:

max
P0,P1

ηEE =
R(P0, P1)

E{Pr{Ĥ0}P0+Pr{Ĥ1}P1}+Pc

(4.43)

subject to E{Pr{Ĥ0}P0 + Pr{Ĥ1}P1} ≤ Pavg (4.44)

E{
[
(1−Pd)P0 + Pd P1

]
|g|2} ≤ Qavg (4.45)

P0 ≥ 0, P1 ≥ 0 (4.46)

Note that transmission power levels P0 and P1 are no longer functions of g and h. There are

no closed-form expressions for the optimal power levels P ∗0 and P ∗1 . However, we can solve

(4.43) numerically by transforming the optimization problem into an equivalent parametrized

concave form and using convex optimization tools.

4.2.2 Peak Transmit Power Constraint and Average Interference

Power Constraint

Next, we assume that peak transmit power constraints are imposed rather than average power

constraints. Interference is still controlled via average interference constraints. Peak transmit

power constraint is imposed to limit the instantaneous transmit power of the secondary users,

and hence corresponds to a stricter constraint compared to the average transmit power

constraint.
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4.2.2.1 Perfect CSI of both transmission and interference links

Energy-efficient power allocation under the assumption of perfect CSI of both transmission

and interference links can be obtained by solving the following problem:

max
P0(g,h)
P1(g,h)

ηEE =
Eg,h

{
R
(
P0(g, h), P1(g, h)

)}
Eg,h{Pr{Ĥ0}P0(g, h)+Pr{Ĥ1}P1(g, h)}+Pc

(4.47)

subject to P0(g, h) ≤ Ppk,0 (4.48)

P1(g, h) ≤ Ppk,1 (4.49)

Eg,h{
[
(1−Pd)P0(g, h) + Pd P1(g, h)

]
|g|2} ≤ Qavg (4.50)

P0(g, h) ≥ 0, P1(g, h) ≥ 0, (4.51)

where Ppk,0 and Ppk,1 denote the peak transmit power limits when the channel is detected

as idle and busy, respectively. Under the above constraints, the optimal power allocation

strategy is determined in the following result.

Theorem 4.2.4 The optimal power allocation scheme that maximizes the EE of the sec-

ondary users subject to the constraints in (4.48), (4.49) and (4.50) is given by

P ∗0 (g,h)=


0, |g|2 ≥ ǧ1,0

T−τ
T

Pr{Ĥ0} log2 e

ν4|g|2(1−Pd)+αPr{Ĥ0}
−N0+Pr(H1|Ĥ0)σ2

s

|h|2 , ǧ1,0> |g|2>ǧ2,0

Ppk,0, |g|2 ≤ ǧ2,0

(4.52)

P ∗1 (g,h)=


0, |g|2 ≥ ǧ1,1

T−τ
T

Pr{Ĥ1} log2 e

ν4|g|2Pd+αPr{Ĥ1}
−N0+Pr(H1|Ĥ1)σ2

s

|h|2 , ǧ1,1> |g|2>ǧ2,1

Ppk,1, |g|2 ≤ ǧ2,1

(4.53)
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where

ǧ1,j =
1

ν4ρj

( T−τ
T

Pr{Ĥj} log2 e|h|2

N0 + Pr(H1|Ĥj)σ2
s

− αPr{Ĥj}
)
, (4.54)

ǧ2,j =
1

ν4ρj

( T−τ
T

Pr{Ĥj} log2 e|h|2

Ppk,j|h|2 +N0 + Pr(H1|Ĥj)σ2
s

− αPr{Ĥj}
)
. (4.55)

In the above expressions, j ∈ {0, 1}, ρ0 = 1−Pd and ρ1 = Pd.

Proof: By transforming the above optimization problem into an equivalent parametrized

concave form and following the same steps as in the proof of Theorem 4.2.1 with peak

transmit power constraints instead of average transmit power constraint, we can readily

obtain the optimal power allocation schemes as in (4.52) and (4.53), respectively.

Remark 4.2.7 Different from Theorem 4.2.1, the optimal power levels are limited by Ppk,0

and Ppk,1, respectively, when the channel fading coefficient of the interference link is less

than a certain threshold, which is mainly determined by the sensing performance through the

detection and false-alarm probabilities.

Remark 4.2.8 By setting α = 0, Pd = 1 and Pf = 0 in (4.52) and (4.53), we can see that

the power allocation schemes in (4.52) and (4.53) have similar structures as those in [18] in

the case of throughput maximization where average interference power constraint is satisfied

with equality. However, this constraint is not necessarily satistifed with equality in energy

efficiency maximization.

Algorithm 1 can be modified to maximize the energy efficiency subject to peak power

constraints and average interference constraint in such a way that P ∗0 (g, h) and P ∗1 (g, h) are

computed using (4.52) and (4.53), respectively and only Lagrange multiplier ν4 is updated

according to (4.15).
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4.2.2.2 Perfect CSI of the transmission link and imperfect CSI of the interfer-

ence link

In the presence of perfect CSI of the transmission link and imperfect CSI of the interference

link, the optimization problem in (4.18) is subject to

P0(ĝ, h) ≤ Ppk,0 (4.56)

P1(ĝ, h) ≤ Ppk,1 (4.57)

Eĝ,h{
[
(1−Pd)P0(ĝ, h) + Pd P1(ĝ, h)

]
(|ĝ|2 + σ2

g)} ≤ Qavg (4.58)

The main characterization for the optimal power allocation is as follows:

Theorem 4.2.5 The optimal power allocation scheme under the constraints in (4.56), (4.57)

and (4.58) is obtained as

P ∗0 (ĝ,h)=


0, |ĝ|2 ≥ ĝ1,0

T−τ
T

Pr{Ĥ0} log2 e

ν5(|ĝ|2+σ2
g)(1−Pd)+αPr{Ĥ0}

−N0+Pr(H1|Ĥ0)σ2
s

|h|2 , ĝ1,0>|ĝ|2>ĝ2,0

Ppk,0, |ĝ|2 ≤ ĝ2,0

(4.59)

P ∗1 (ĝ,h)=


0, |ĝ|2 ≥ ĝ1,1

T−τ
T

Pr{Ĥ1} log2 e

ν5(|ĝ|2+σ2
g)Pd+αPr{Ĥ1}

−N0+Pr(H1|Ĥ1)σ2
s

|h|2 , ĝ1,1> |ĝ|2>ĝ2,1

Ppk,1, |ĝ|2 ≤ ĝ2,1.

(4.60)

Above,

ĝ1,j =
1

ν5ρj

( T−τ
T Pr{Ĥj} log2 e|h|2

N0 + Pr(H1|Ĥj)σ2
s

− αPr{Ĥj}
)
− σ2

g , (4.61)

ĝ2,j =
1

ν5ρj

( T−τ
T Pr{Ĥj} log2 e|h|2

Ppk,j|h|2 +N0 + Pr(H1|Ĥj)σ2
s

− αPr{Ĥj}
)
− σ2

g . (4.62)

Since similar steps as in the proof of Theorem 4.2.1 are followed, the proof is omitted.
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Remark 4.2.9 In the optimal power allocation schemes given in (4.59) and (4.60), the cut-

off values, ĝ1,j and ĝ2,j for the estimated channel power gain of the interference link depend

on the channel estimation error variance of the interference link as different from the results

in Theorem 4.2.4.

4.2.2.3 Imperfect CSI of both transmission and interference links

We again have peak transmit power and average interference power constraints. However,

different from the previous cases, the transmission link is imperfectly known at the secondary

transmitter. Therefore, the power levels are functions of ĝ and ĥ. We derive the following

result for the optimal power allocation schemes that maximize the energy efficiency of the

secondary users. Again the proof is omitted for brevity.

Theorem 4.2.6 The optimal power allocation under peak transmit power and average in-

terference power constraints is given by

P ∗0 (ĝ, ĥ) = min
(
Ppk,0, P̄0(ĝ, ĥ)

)
(4.63)

P ∗1 (ĝ, ĥ) = min
(
Ppk,1, P̄1(ĝ, ĥ)

)
, (4.64)

where P̄0(ĝ, ĥ) is solution to

∫ ∞
0

(
T−τ
T

)
Pr{Ĥ0} log2 eγ

N0 + Pr{Ĥ0}σ2
s + P̄0(ĝ, ĥ)γ

f|h|2|ĥ(γ, ĥ)dγ = αPr{Ĥ0}+ ν6(1−Pd)(|ĝ|2 + σ2
g) (4.65)

and P̄1(ĝ, ĥ) is solution to

∫ ∞
0

(
T−τ
T

)
Pr{Ĥ1} log2 eγ

N0 + Pr{Ĥ1}σ2
s + P̄1(ĝ, ĥ)γ

f|h|2|ĥ(γ, ĥ)dγ = αPr{Ĥ1}+ ν6Pd(|ĝ|2 + σ2
g). (4.66)
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4.2.2.4 Statistical CSI of both transmission and interference links

In this case, the optimal power allocation problem is subject to peak transmit and average

interference power constraints under the assumption of the availability of only statistical

CSI of both transmission and interference links. The optimal values of P ∗0 and P ∗1 can be

found numerically by converting the optimization problem into an equivalent parametrized

concave form and employing convex optimization tools.

4.2.3 Average Transmit Power Constraint and Peak Interference

Power Constraint

Finally, we consider the case in which the secondary transmitter operates under average

transmit power constraint and peak interference power constraints, which are imposed to

satisfy short-term QoS requirements of the primary users.

4.2.3.1 Perfect CSI of both transmission and interference links

In this case, the objective function in (4.8) is subject to the following constraints:

Eg,h{Pr{Ĥ0}P0(g, h) + Pr{Ĥ1}P1(g, h)} ≤ Pavg (4.67)

P0(g, h)|g|2 ≤ Qpk,0 (4.68)

P1(g, h)|g|2 ≤ Qpk,1 (4.69)

where Qpk,k for k ∈ {0, 1} represents the peak limit on the received interference power at the

primary receiver. Under these constraints, we derive the optimal power allocation scheme

as follows:

Theorem 4.2.7 The optimal power allocation strategy under average transmit power in

67



(4.67) and peak interference power constraints in (4.68) and (4.69) is obtained as

P ∗0 (g,h) = min

([
T−τ
T

log2 e

(λ4 + α)
−N0+Pr(H1|Ĥ0)σ2

s

|h|2

]+

,
Qpk,0

|g|2

)
(4.70)

P ∗1 (g,h) = min

([
T−τ
T

log2 e

(λ4 + α)
−N0+Pr(H1|Ĥ1)σ2

s

|h|2

]+

,
Qpk,1

|g|2

)
(4.71)

Above, λ4 is the Lagrange multiplier associated with the average transmit power in (4.67).

Proof: The optimization problem is first expressed in terms of an equivalent concave form.

Then, the similar steps as in the proof of Theorem 4.2.1 are followed. However, peak in-

terference power constraints are imposed instead of average interference power constraint.

Therefore, in this case the optimal powers are limited by peak interference power constraints,

Qpk,k for k ∈ {0, 1}.

4.2.3.2 Perfect CSI of the transmission link and imperfect CSI of the interfer-

ence link

We have the following constraints for the optimization problem in (4.18) given as

Eg,h{Pr{Ĥ0}P0(g, h) + Pr{Ĥ1}P1(g, h)} ≤ Pavg (4.72)

Pr(P0(g, h)|g|2 ≥ Qpk,0|ĝ) ≤ ξ0 (4.73)

Pr(P1(g, h)|g|2 ≥ Qpk,1|ĝ) ≤ ξ1 (4.74)

where ξk for k ∈ {0, 1} denotes the outage threshold. The constraints in (4.73) and (4.74)

can be further expressed as [71]

P0(g, h) ≤ Qpk,0

F−1
|g|2|ĝ(1− ξ0, ĝ)

(4.75)

P1(g, h) ≤ Qpk,1

F−1
|g|2|ĝ(1− ξ1, ĝ)

. (4.76)
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Above, F−1
|g|2|ĝ(., ĝ) represents the inverse cumulative density function of |g|2 given ĝ. In this

setting, the main characterization is given as follows:

Theorem 4.2.8 The optimal power allocation strategy under the constraints in (4.73) and

(4.74) is given by

P ∗0 (ĝ,h) = min

([
T−τ
T

log2 e

(λ5 + α)
−N0+Pr(H1|Ĥ0)σ2

s

|h|2

]+

,
Qpk,0

F−1
|g|2|ĝ(1− ξ0, ĝ)

)
(4.77)

P ∗1 (ĝ,h) = min

([
T−τ
T

log2 e

(λ5 + α)
−N0+Pr(H1|Ĥ1)σ2

s

|h|2

]+

,
Qpk,1

F−1
|g|2|ĝ(1− ξ1, ĝ)

)
(4.78)

Above, λ5 is the Lagrange multiplier.

The proof is omitted for brevity.

4.2.3.3 Imperfect CSI of both transmission and interference links

It is assumed that the secondary users operate under the constraints below:

Eg,h{Pr{Ĥ0}P0(g, h) + Pr{Ĥ1}P1(g, h)} ≤ Pavg (4.79)

P0(g, h) ≤ Qpk,0

F−1
|g|2|ĝ(1− ξ0, ĝ)

(4.80)

P1(g, h) ≤ Qpk,1

F−1
|g|2|ĝ(1− ξ1, ĝ)

. (4.81)

In the following result, we derive the optimal power allocation scheme for this case.

Theorem 4.2.9 The optimal power allocation strategy under average transmit power in

(4.79) and peak interference power constraints in (4.80) and (4.81) is obtained as

P ∗0 (ĝ, ĥ) = min

(
Qpk,0

F−1
|g|2|ĝ(1− ξ0, ĝ)

, P̄0(ĝ, ĥ)

)
, (4.82)

P ∗1 (ĝ, ĥ) = min

(
Qpk,1

F−1
|g|2|ĝ(1− ξ1, ĝ)

, P̄1(ĝ, ĥ)

)
(4.83)

69



where P̄0(ĝ, ĥ) is solution to

∫ ∞
0

(
T−τ
T

)
Pr{Ĥ0} log2 eγ

N0 + Pr{Ĥ0}σ2
s + P̄0(ĝ, ĥ)γ

f|h|2|ĥ(γ, ĥ)dγ = (λ6 + α) Pr{Ĥ0} (4.84)

and P̄1(ĝ, ĥ) is solution to

∫ ∞
0

(
T−τ
T

)
Pr{Ĥ1} log2 eγ

N0 + Pr{Ĥ1}σ2
s + P̄1(ĝ, ĥ)γ

f|h|2|ĥ(γ, ĥ)dγ = (λ6 + α) Pr{Ĥ1}. (4.85)

Again, the proof is omitted for the sake of brevity.

4.3 Numerical Results

In this section, we present numerical results to illustrate the energy efficiency of secondary

users attained with the proposed energy efficiency maximizing power allocation methods in

the presence of imperfect sensing results and different levels of CSI regarding the transmission

and interference links. Unless mentioned explicitly, it is assumed that noise variance is

N0 = 0.1, the variance of primary user signal is σ2
s = 1. Also, the prior probabilities are

Pr{H0} = 0.4 and Pr{H1} = 0.6. The frame duration T and sensing duration τ are set to

100 and 10, respectively. The circuit power is Pc = 0.1. The step sizes λ and ν are set to

0.1 and tolerance ε is chosen as 10−6.

In Fig. 4.4, we display maximum energy efficiency as a function of peak/average transmit

power constraints for perfect sensing (i.e., Pd = 1 and Pf = 0) and imperfect sensing (i.e.,

Pd = 0.8 and Pf = 0.1). It is assumed that Qavg = −8 dB. Optimal power allocation is

performed by assuming perfect instantaneous CSI at the secondary transmitter. It is seen

that perfect detection of the primary user activity results in higher energy efficiency compared

to the case with imperfect sensing decisions. In particular, the probabilities Pr(H1|Ĥ0) and

Pr(H0|Ĥ1) are zero due to perfect spectrum sensing and hence, the secondary users do

not experience additive disturbance from primary users, which leads to higher achievable
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Figure 4.4: Maximum energy efficiency ηEE vs. peak/average transmit power constraints.

rates, and hence higher energy efficiency compared to imperfect sensing case. It is also

observed that maximum energy efficiency increases with increasing peak/average transmit

power constraints. When peak/average transmit power constraints become sufficiently large

compared toQavg, maximum energy efficiency stays constant since the power is determined by

average interference constraint, Qavg rather than peak/average transmit power constraints.

Moreover, higher energy efficiency is obtained under average transmit power constraint since

the optimal power allocation under average transmit power constraint is more flexible than

that under peak transmit power constraint.
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Figure 4.5: Maximum energy efficiency ηEE vs. average transmit power constraint.

In Fig. 4.5, we plot maximum energy efficiency attained with the proposed optimal power
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allocation schemes as a function of the average transmit power constraint under perfect

sensing with Pd = 1 and Pf = 0) and imperfect sensing with Pd = 0.8 and Pf =

0.1. We assume the availability of either perfect instantaneous CSI or statistical CSI of

both transmission and interference links at the secondary transmitter. Qavg is set to −25

dB. It is observed from the figure that when the optimal power allocation with perfect

instantaneous CSI is applied, higher energy efficiency is achieved compared to the optimal

power allocation with statistical CSI. More specifically, the power allocation scheme assuming

perfect instantaneous CSI can exploit favorable channel conditions and higher transmission

power is allocated to better channel, and hence a secondary user’s power budget is more

efficiently utilized compared to the power allocation scheme assuming statistical CSI in

which the power levels do not change according to channel conditions. It is also seen that

imperfect sensing decisions significantly affect the performance of secondary users, resulting

in lower energy efficiency under both optimal power allocation strategies.
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Figure 4.6: (a) Maximum achievable energy efficiency, ηEE vs. probability of detection, Pd; (b)
achievable rate maximizing energy efficiency, Ra vs. Pd; (c) optimal total transmission power, Ptot

and P0, P1 vs. Pd.

In Fig. 4.6, we display maximum energy efficiency, achievable rate Ra, and optimal

powers, Ptot, P0 and P1 as a function of detection probability, Pd. It is assumed that

peak transmit power constraints are Ppk,0 = Ppk,1 = −4 dB and average interference power

constraint is Qavg = −25 dB. In addition, probability of false alarm, Pf is set to 0.1. We

consider the power allocation schemes for the following four cases: (1) perfect CSI of both

transmission and interference links; (2) perfect CSI of the transmission link and imperfect
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Figure 4.7: (a) Maximum energy efficiency, ηEE vs. probability of false alarm, Pf ; (b) achievable
rate maximizing energy efficiency, Ra vs. Pf ; (c) optimal total transmission power, Ptot and P0,
P1 vs. Pf .

CSI of the interference link; (3) imperfect CSI of both transmission and interference links;

and (4) only statistical CSI of both transmission and interference links. We only plot optimal

powers, Ptot, P0 and P1 for the optimal power allocation with perfect instantaneous CSI of

both links since the same trend is observed under the assumption of other CSI levels. As Pd

increases, secondary users have more reliable sensing performance. Hence, secondary users

experience miss detection events less frequently, which results in increased achievable rate.

The transmission power under idle sensing decision, P0 increases with increasing Pd while

transmission power under busy sensing decision, P1 decreases with increasing Pd. Since

achievable rate increases and total transmission power slightly increases, maximum energy

efficiency of secondary users increases as sensing performance improves. It is also seen that

the power allocation scheme with perfect instantaneous CSI of both links outperforms the

other proposed power allocation strategies. Moreover, the performance of secondary users

in terms of throughput and energy efficiency degrades gradually as we have less and less

information regarding the transmission and interference links at the secondary transmitter.

Fig. 4.7 shows maximum energy efficiency, achievable rate, Ra and optimal powers, Ptot,

P0 and P1 as a function of false alarm probability, Pf . We consider the same setting as in

the previous figure. It is again assumed that Ppk,0 = Ppk,1 = −4 dB and Qavg = −8 dB. Since

optimal powers maximizing energy efficiency show similiar trends as a function of Pf , we

only plot the optimal power levels under the assumption of perfect instantaneous CSI of both
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transmission and interference links in Fig. 4.7 (c). Probability of detection, Pd is chosen as

0.8. As Pf increases, channel sensing performance deteriorates. In this case, secondary users

detect the channel as busy more frequently even if the channel is idle. Total transmission

power maximizing energy efficiency slightly decreases with increasing Pf . In addition, since

the available channel is not utilized efficiently, secondary users have smaller achievable rate,

which leads to lower achievable energy efficiency. Again, the power allocation scheme with

perfect instantaneous CSI of both links gives the best performance in terms of throughput

and energy efficiency.
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Figure 4.8: Maximum energy efficiency ηEE vs. channel estimation error variance of the
interference link, σ)g2.

In Fig. 4.8, we display maximum energy efficiency as a function of channel estimation

error variance of the interference link. Power allocation is employed by perfect CSI of trans-

mission link and imperfect CSI of interference link, and imperfect CSI of both links with

σ2
h = 0.3 and σ2

h = 0.5. We assume that Ppk,0 = Ppk,1 = −4 dB and Qavg = −25 dB, and

sensing is imperfect with Pd = 0.8 and Pf = 0.1. The energy efficiency attained with the

optimal power allocation assuming perfect CSI of both links is displayed as a baseline to

compare the performance loss due to imperfect CSI of either interference link or of both

transmission and interference links at the secondary transmitter. It is observed that energy

efficiency of secondary users decreases as the variance of the channel estimation error in the
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interference link, σ2
g , increases and hence the channel estimate becomes less accurate. The

secondary users even have lower energy efficiency when CSI of both links are imperfectly

known. Therefore, accurate estimation of both transmission and interference links is crucial

in order to achieve better energy efficiency.

Peak transmit power constraints, P
pk,0

=P
pk,1
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Figure 4.9: Maximum energy efficiency ηEE vs. peak transmit power constraints, Ppk,0 =
Ppk,1.

Fig. 4.9 shows maximum energy efficiency as a function of the peak transmit power

constraints, Ppk,0 = Ppk,1 under imperfect sensing result (i.e., when Pd = 0.8 and Pf = 0.1).

We consider the optimal power allocation schemes assuming either perfect CSI of both links

or imperfect CSI of both links with σ2
h = 0.1 and σ2

g = 0.2, σ2
h = 0.1 and σ2

g = 0.5,

and σ2
h = 0.3 and σ2

g = 0.2. Average interference constraint, Qavg is set to −10 dB. When

channel estimation error of the transmission link increases from 0.1 and 0.3 keeping σ2
g = 0.2,

energy efficiency of secondary users decreases more compared to the case when the channel

estimation error of the interference link increases from 0.2 to 0.5 while σ2
h = 0.1 since

the average interference constraint is loose, and imperfect CSI of the interference link only

slightly affects the performance. Also, as Ppk increases, energy efficiency of secondary users

first increases and then stays constant since average transmission power reaches to the value

that maximizes energy efficiency. Therefore, further increasing Ppk does not provide any

energy efficiency improvement.
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Peak interference constraints, Q
pk,0

=Q
pk,1
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Figure 4.10: Maximum energy efficiency ηEE vs. peak interference power constraints, Qpk,0 =
Qpk,1.

In Fig. 4.10, we plot maximum energy efficiency as a function of the peak interference

power constraints, Qpk,0 = Qpk,1. It is assumed that Pd = 0.8 and Pf = 0.1. We consider

that either perfect instantaneous CSI of both links or perfect CSI of transmission link and

imperfect CSI of interference link is available at the secondary transmitter. We set Pavg to

−10 dB, outage thresholds ξ0 = ξ1 to 0.1 and σ2
g = 0.1. It is seen that energy efficiency

under both cases first increases with increasing interference power constraints, and then get

constant and approach the same value due to average transmit power constraint. Also, the

availability of imperfect CSI of interference link deterioates the system performance and

leads to lower energy efficiency compared to that of perfect CSI of interference link.
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Chapter 5

Energy Efficiency in Cognitive Radio

Systems with Channel Sensing Errors

– Unslotted Primary Users

In the previous chapter, we consider the primary and secondary transmission are synchro-

nized in which the primary user activity does not change during the transmission duration of

the secondary users. In this chapter, we assume that the primary user transmits in an unslot-

ted fashion, i.e., the activity of the primary users can change during the frame duration of the

secondary users, and we do not impose any limitations on the number of transitions of the

primary user activity. This chapter mainly focuses on energy efficiency and average through-

put maximization for cognitive radio systems in the presence of unslotted primary users. The

optimal power control policy which maximizes the energy efficiency of the secondary users

or maximizes the average throughput while satisfying a minimum required energy efficiency

under average/peak transmit power and average interference power constraints are derived.

Section 5.1 introduces the primary user activity model, opportunistic spectrum access

scheme and collision constraint. In Section 5.2 and Section 5.3, the optimal power control

schemes that maximize the energy efficiency of the secondary users and the average through-
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put under a minimum energy efficiency constraint are derived, respectively. The algorithms

for jointly determining the optimal power control and frame duration are also developed.

Numerical results are provided and discussed in Section 5.4.

5.1 System Model

We consider a cognitive radio system consisting of a pair of primary transmitter and receiver,

and a pair of secondary transmitter and receiver. Secondary users opportunistically access

the channel licensed to the primary users. In the following subsections, we describe the

primary user activity model, opportunistic spectrum access policy of the secondary users,

and the formulation of the collision constraint imposed for the protection of the primary

users.

5.1.1 Primary User Activity Model

Differing from the majority of the studies (which assume that the primary users adopt a

time-slotted transmission scheme), we consider a continuous, i.e., unslotted transmission

structure as shown in Figure 5.1.

Figure 5.1: Frame structure of the primary and secondary users.

We assume that the primary user activity follows a semi-Markov process with ON and

OFF states, which is shown to be a good model for primary user traffic based on measure-

ments and simulations [72], [73]. In this model, the ON state indicates that the primary

user is transmitting while the OFF state represents that the channel is not occupied by the

primary user. Such a process is also known as an alternating renewal process. The durations
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of ON and OFF periods are independent of each other and are exponentially distributed

with means λ0 and λ1, respectively, and therefore have probability density functions

fON(t) =
1

λ0

e
− t
λ0 , and fOFF(t) =

1

λ1

e
− t
λ1 . (5.1)

Hence, the prior probabilities of channel being vacant or occupied by the primary user can

be expressed, respectively, as

Pr{H0} =
λ0

λ0 + λ1

, Pr{H1} =
λ1

λ0 + λ1

. (5.2)

5.1.2 Opportunistic Spectrum Access by the Secondary Users

Secondary users employ frames of duration Tf . In the initial duration of τ seconds, secondary

users perform channel sensing and monitor the primary user activity. Subsequently, data

transmission starts in the remaining frame duration of Tf−τ seconds only if the primary user

activity is not detected, the event of which is denoted by Ĥ0. Spectrum sensing is modeled

as a simple binary hypothesis testing problem with two hypotheses H0 and H1 corresponding

to the absence and presence of the primary user signal, respectively. Many spectrum sensing

methods have been proposed [51], and the corresponding sensing performance is characterized

by two parameters, namely the probabilities of detection and false alarm, which are defined

as

Pd = Pr{Ĥ1|H1}, Pf = Pr{Ĥ1|H0}, (5.3)

where Ĥ1 denotes the event that the primary user activity is detected. We note that any

sensing method can be employed in the rest of the analysis since the results depend on the

sensing performance only through the probabilities of detection and false alarm, and the

sensing duration.
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5.1.3 Collision Constraints

We first describe the secondary users’ collisions with the primary users, which can lead to

considerable performance degradation in the primary user communication. Subsequently,

we impose a constraint on the ratio of the average collision duration to the transmission

duration in order to protect the primary users. Depending on the true nature of the primary

user activity at the beginning of the frame, collisions between the primary and secondary

users can occur in the following two cases:

• Case 1: The channel is not occupied by the primary user and is correctly detected as

idle at the beginning of the frame. Even if the primary user is not actually transmitting

initially, it is possible for the primary user to start data transmission at any time during

the current frame, which results in a collision event. By conditioning on the correct

detection of the initial absence of the primary user, the ratio of the average collision

duration to data transmission duration, which is called the collision duration ratio, can

be expressed as

Pc,0 =
E{Tc|H0,Ĥ0

}
Tf − τ

, (5.4)

where E{·} denotes the expectation, and Tc|H0,Ĥ0
is a random variable representing the

collision duration between the secondary and primary users given that the primary user

is inactive initially at the beginning of the frame (event H0) and the sensing decision is

idle (event Ĥ0). Assuming that the primary user is in the OFF state at first and taking

into account the possible multiple transitions between ON and OFF states, E{Tc|H0,Ĥ0
}

can be found by following a similar analysis as in [74, Theorem 2]. Hence, Pc,0 is given

by

Pc,0 = Pr{H1} −
λ0 Pr{H1}2

Tf − τ

(
1− e

− Tf−τ
λ0 Pr{H1}

)
. (5.5)
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• Case 2: The primary user is actually present in the channel at the beginning of the

frame, however the secondary user miss-detects the primary user activity, resulting in

a collision right away due to sensing error. Multiple collisions can also occur if the

primary user turns OFF and then back ON in a single frame once or multiple times.

Similar to the first case, by conditioning on the miss detection event, the collision

duration ratio can be found as

Pc,1 =
E{Tc|H1,Ĥ0

}
Tf − τ

(5.6)

= Pr{H1}+
λ1 Pr{H0}2

Tf − τ

(
1−e

− Tf−τ
λ0 Pr{H1}

)
(5.7)

where Tc|H1,Ĥ0
is a random variable describing the collision duration between the sec-

ondary and primary users given that the primary user is active at the beginning of the

frame but sensing decision is incorrectly an idle channel.

Based on the above two cases, the collision duration ratio averaged over the true nature of

the primary user activity given the idle sensing decision Ĥ0 can be expressed as

Pc = Pr{H0|Ĥ0}Pc,0 + Pr{H1|Ĥ0}Pc,1 (5.8)

where Pr{H0|Ĥ0} and Pr{H1|Ĥ0} denote the conditional probabilities of the primary user

being active or inactive given the idle sensing decision, respectively, which can be written in

terms of Pd and Pf as

Pr{H0|Ĥ0} =
Pr{H0}(1− Pf)

Pr{H0}(1− Pf) + Pr{H1}(1− Pd)
, (5.9)

Pr{H1|Ĥ0} =
Pr{H1}(1− Pd)

Pr{H0}(1− Pf) + Pr{H1}(1− Pd)
. (5.10)

In the following, we provide two key properties of Pc.

Proposition 5.1.1 The average collision duration ratio Pc under idle sensing decision has
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the following properties:

• It is an increasing function of the frame duration Tf for Pf < Pd and a decreasing

function for Pf > Pd.

• It takes values between Pr{H1|Ĥ0} and Pr{H1}.

Proof: See Appendix H.

Figure 5.2: Average collision duration vs. frame duration Tf in the cases of imperfect sensing
and perfect sensing.

In Fig. 5.2, we illustrate Pc as a function of the frame duration Tf when Pf < Pd, i.e.,

correct detection probability is greater than the false alarm probability. Note that this is

generally the desired case in practice in which the probability of detection is expected to

be greater than 0.5 and the probability of false alarm be less than 0.5 for reliable sensing

performance. In the figure, both imperfect sensing and perfect sensing are considered. For

the case of imperfect sensing, Pc takes values between Pr{H1|Ĥ0} and Pr{H1}. For perfect

sensing, Pc is first 0 since Pr{H1|Ĥ0} = 0, which corresponds to no collision event initially,

as expected, and then Pc starts to increase with increasing Tf as it becomes more likely that

the primary user initiates a transmission and secondary users collide with the primary users.
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5.2 Energy-Efficient Optimal Power Control and Frame

Duration

5.2.1 Average Transmit Power and Average Interference Power

Constraints

In this subsection, we determine the optimal power control policy and frame duration that

maximize the EE of the secondary users operating subject to average transmit power, aver-

age interference power and collision constraints in the presence of sensing uncertainty and

unslotted primary users. The optimization problem can be formulated as

max
Tf ,P (g,h)

ηEE =
Ravg(

Tf−τ
Tf

)
P (Ĥ0)E{P (g, h)}+ Pcr

(5.11)

subject to Pc ≤Pc,max (5.12)(Tf − τ
Tf

)
Pr{Ĥ0}E

{
P (g, h)

}
≤ Pavg (5.13)(Tf − τ

Tf

)
Pc Pr{Ĥ0}E

{
P (g, h)|g|2

}
≤ Qavg (5.14)

P (g, h) ≥ 0 (5.15)

Tf ≥ τ, (5.16)

where the EE in the objective function is defined as the ratio of average throughput of the

secondary users to the total power consumption, including average transmission power and

circuit power, denoted by Pcr . Above, P (g, h) denotes the instantaneous transmission power

as a function of the channel fading coefficient g of the interference link between the secondary

transmitter and the primary receiver, and the channel fading coefficient h of the transmission

link between the secondary transmitter and the secondary receiver. The average transmission
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rate expression, Ravg is given by

Ravg =
(Tf − τ

Tf

)
E
{

Pr{H0}(1− Pf)
[

log2

(
1 +

P (g, h)|h|2

N0

)
(1−Pc,0) + log2

(
1 +

P (g, h)|h|2

N0 + σ2
s

)
Pc,0

]
+ Pr{H1}(1− Pd)

[
log2

(
1 +

P (g, h)|h|2

N0

)
(1−Pc,1) + log2

(
1 +

P (g, h)|h|2

N0 + σ2
s

)
Pc,1

]}
,

(5.17)

where N0 and σ2
s represent the variances of the additive Gaussian noise and primary user’s

received faded signal, respectively. It is assumed that the secondary transmitter has perfect

channel side information (CSI), i.e., perfectly knows the values of g and h. While the

assumption of perfect CSI is idealistic, channel knowledge can be obtained rather accurately if

the mobility in the environment and channel variations are relatively slow. More specifically,

secondary transmitter can acquire channel knowledge once the secondary receiver learns the

channel and sends this information via an error-free feedback link. Also, the knowledge of the

interference link, g, can be obtained through direct feedback from the primary receiver [57],

indirect feedback from a third party such as a band manager [58] or by periodically sensing

the pilot symbols sent by the primary receiver under the assumption of channel reciprocity

[59].

In (5.12), Pc,max denotes the maximum tolerable collision duration ratio, which needs

to be greater than P (H1|Ĥ0) based on Proposition 5.1.1 because, otherwise, the constraint

cannot be satisfied. Since Pc is an increasing function of Tf when Pf < Pd, the collision

constraint in (5.12) provides an upper bound on the frame duration Tf as follows:

Tf ≤P−1
c (Pc,max). (5.18)

Above, P−1
c (.) is the inverse function of Pc. In addition to the collision constraint in (5.12),

we consider an average transmit power constraint in (5.13), where Pavg denotes the maximum

average transmit power of the secondary transmitter. Also, in order to satisfy the long-term

QoS requirements of the primary users, we further impose an interference power constraint

in (5.14), where Qavg represents the average received interference power limit at the primary
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receiver.

As the frame duration increases, the secondary users have more time for data transmis-

sion, which leads to higher throughput, consequently higher EE. On the other hand, the

primary user is more likely to become active with increasing transmission duration. In this

case, the secondary users may collide with the primary transmission more frequently, which

reduces the throughput, and hence EE. Therefore, there indeed exists an optimal frame du-

ration that achieves the best tradeoff between the EE of the secondary users and collisions

with the primary users. It can be easily verified that the EE is not a concave function of

the frame duration Tf since the second derivative of the EE with respect Tf is less than,

greater than or equal to zero depending on the values of the sensing parameters and prior

probabilities of primary user being active and idle. However, the optimal frame duration

which maximizes the EE can easily be obtained using a one-dimensional exhaustive search

within the interval (τ,P−1
c (Pc,max)]. For a given frame duration, we derive the optimal

power control policy in the following result.

Theorem 5.2.1 The optimal power control that maximizes the EE of the secondary users

operating subject to the average transmit power constraint in (5.13) and average interference

power constraint in (5.14) in the presence of sensing errors and unslotted primary users is

given by

Popt(g, h) =

[
A0 +

√
∆0

2

]+

(5.19)

where A0 =
log2(e)

(α + λ) + νPc|g|2
− 2N0 + σ2

s

|h|2
(5.20)

∆0 =A2
0−

4

|h|2

(
N0(N0+σ2

s)

|h|2
− log2(e)(N0 + (1−Pc)σ

2
s)

(α + λ) + νPc|g|2

)
. (5.21)

Above, (x)+ = max{0, x} and α is a nonnegative parameter. Morever, λ and ν are the La-

grange multipliers which can be jointly obtained by inserting the above optimal power control

into the constraints in (5.13) and (5.14), respectively.
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Table 5.1

Algorithm 5 The optimal power control and frame duration algorithm that maximizes the
EE of the secondary users under the average transmit power, average interference power,
and collision constraints

1: Initialize Pd = Pd,init, Pf = Pf,init, ε > 0, δ > 0, t > 0, α(0) = αinit, λ
(0) = λinit,

ν(0) = νinit,Pc,max = Pc,max,init

2: if Pc,max < Pr{H1|Ĥ0} then
3: Tf,opt = 0, Popt(g, h) = 0
4: else
5: k ← 0
6: repeat
7: n← 0
8: repeat
9: calculate Popt(g, h) using (8.31);

10: update λ and ν using subgradient method as follows:

11: λ(n+1) =
(
λ(n)− t

(
Pavg −

(
Tf−τ
Tf

)
Pr{Ĥ0}E

{
Popt(g, h)

}))+
12: ν(n+1)=

(
ν(n)− t

(
Qavg −

(
Tf−τ
Tf

)
PcPr{Ĥ0}E

{
Popt(g,h)|g|2

}))+
13: n← n+ 1

14: until
∣∣∣λ(n)(Pavg −

(
Tf−τ
Tf

)
Pr{Ĥ0}E

{
Popt(g, h)

})∣∣∣ ≤ δ and
∣∣∣ν(n)

(
Qavg −(

Tf−τ
Tf

)
Pc Pr{Ĥ0}E

{
Popt(g, h)|g|2

})∣∣∣ ≤ δ

15: α(k+1) = Ravg(
Tf−τ
Tf

)
Pr{Ĥ0}E{Popt(g,h)}+Pcr

16: k ← k + 1
17: until |F (α(k))| ≤ ε
18: ηEE = α(k)

19: Tf,opt = arg max ηEE by bisection search
20: P ∗opt(g, h) = [Popt(g, h)]Tf=Tf,opt

21: end if

Proof: See Appendix I.

The values of λ and ν can be obtained numerically via the projected subgradient method.

In this method, λ and ν are updated iteratively in the direction of a negative subgradient of

the Lagrangian function L(P (g, h), λ, ν, α) (given in (I.5) in Appendix I) until convergence
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as follows:

λ(n+1) =
(
λ(n) − t

(
Pavg −

(Tf − τ
Tf

)
Pr{Ĥ0}E

{
P (g, h)

}))+

(5.22)

ν(n+1) =
(
ν(n) − t

(
Qavg −

(Tf − τ
Tf

)
Pc Pr{Ĥ0}E

{
P (g, h)|g|2

}))+

, (5.23)

where n is the iteration index and t is the step size. For a constant t, λ and ν are shown to

converge to the optimal values within a small range [60].

In Table 5.1, we provide our low-complexity algorithm for jointly finding the optimal

power control policy and frame duration, which maximize the EE of the secondary users in

the presence of unslotted primary users and imperfect sensing decisions. In the table, for a

given value of α and frame duration Tf , the optimal power control is obtained when F (α) ≤ ε

is satisfied, where F (α) is defined in (I.4) in Appendix I and α is a nonnegative parameter.

The solution is optimal if F (α) = 0, otherwise ε-optimal solution is obtained.

Remark 5.2.1 The optimal power control policy in (8.31) is a decreasing function of average

collision duration ratio, Pc. In particular, when the secondary users have higher Pc, less

power is allocated in order to limit the interference inflicted on the primary user transmission.

Also, the proposed power control policy depends on sensing performance through Pc, which

is a function of detection and false alarm probabilities, Pd and Pf , respectively.

Remark 5.2.2 By setting α = 0 in (I.1) in Appendix I, the optimization problem becomes

max
P (g,h)≥0

Ravg (5.24)

which corresponds to the throughput maximization problem. Therefore, solving the above

optimization problem or equivalently inserting α = 0 into the proposed scheme in (8.31), we

can readily obtain the optimal power control strategy that maximizes the average throughput

of secondary users in the presence of unslotted primary users.

Remark 5.2.3 By inserting α = 0, Pc,0 = 0 and Pc,1 = 1 into (8.31), we can see that
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the optimal power control scheme has a similar structure to the scheme that maximizes the

throughput of secondary users operating over a single frequency band given in [75, eq. (36)],

where it is assumed that the primary users do not change their activity during the entire

frame duration of the secondary users, i.e., a time-slotted transmission scheme. Hence, our

results can be specialized to the time-slotted case by setting Pc,0 and Pc,1 equal to 0 and 1,

respectively.

5.2.2 Peak Transmit Power and Average Interference Power Con-

straints

In this subsection, we consider that the secondary user transmission is subject to peak

transmit power and average interference power constraints. Under these assumptions, the

optimization problem can be expressed as

max
Tf ,P (g,h)

ηEE =
Ravg(

Tf−τ
Tf

)
Pr{Ĥ0}E{P (g, h)}+ Pcr

(5.25)

subject to Pc ≤Pc,max (5.26)

P (g, h) ≤ Ppk (5.27)(Tf − τ
Tf

)
Pc Pr{Ĥ0}E

{
P (g, h)|g|2

}
≤ Qavg (5.28)

P (g, h) ≥ 0 (5.29)

Tf ≥ τ, (5.30)

where Ppk represents the peak transmit power limit at the secondary transmitter. Subse-

quently, the optimal power control policy is determined in the following result.

Theorem 5.2.2 For a given frame duration Tf , the optimal power control scheme subject to
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the constraints in (5.27) – (5.30) is obtained as

Popt(g, h) = min

{[
A1 +

√
∆1

2

]+

, Ppk

}
(5.31)

where A1 =
log2(e)

α + µPc|g|2
− 2N0 + σ2

s

|h|2
(5.32)

∆1 =A2
1−

4

|h|2

(
N0(N0+σ2

s)

|h|2
− log2(e)(N0 + (1−Pc)σ

2
s)

α + µPc|g|2

)
. (5.33)

Above, µ is the Lagrange multiplier associated with the average interference power constraint

in (5.28).

Since we follow similar steps as in the proof of Theorem 5.2.1, the proof is omitted for the

sake of brevity.

Remark 5.2.4 Different from the optimal power control strategy in Theorem 5.2.1, the in-

stantaneous transmission power level in (5.31) is limited by Ppk due to the peak transmit

power constraint, which imposes stricter limitations than the average transmit power con-

straint.

Remark 5.2.5 Setting α = 0 in (5.31), we obtain the optimal power control strategy which

maximizes the throughput of secondary users with unslotted primary users, which is in agree-

ment with the result derived in [76].

Algorithm 1 can be easily modified to maximize the EE of the secondary users under

peak transmit power and average interference constraints by calculating the power level,

Popt(g, h) through the expression in (5.31) and updating the Lagrange multiplier µ similarly

as in (5.23).
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5.3 Spectrally-Efficient Optimal Power Control and Frame

Duration with a Minimum EE Constraint

5.3.1 Average Transmit Power and Average Interference Power

Constraints

In this subsection, we analyze the EE-SE tradeoff by formulating the optimal power control

problem to maximize the average throughput of the secondary users subject to a minimum

EE constraint, and average transmit power, average interference power and collision con-

straints. The optimization problem is formulated as follows:

max
Tf≥τ,P (g,h)≥0

Ravg (5.34)

subject to Pc ≤Pc,max (5.35)

Ravg(
Tf−τ
Tf

)
Pr{Ĥ0}E{P (g, h)}+ Pcr

≥ EEmin (5.36)

(Tf − τ
Tf

)
Pc Pr{Ĥ0}E

{
P (g, h)|g|2

}
≤ Qavg (5.37)(Tf − τ

Tf

)
Pr{Ĥ0}E

{
P (g, h)

}
≤ Pavg, (5.38)

where EEmin denotes the minimum required EE. The optimal power control is determined

in two steps. In the first step, we determine the average power level at which the required

minimum EE is achieved. In the second step, we optimally allocate the transmission power

in order to maximize the average throughput of the secondary users by combining the power

level obtained in the first step under average transmit power and average interference power

constraints. In this regard, we first provide the following result.

Proposition 5.3.1 For a given frame duration Tf , the average power level that satisfies the
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minimum required EE can be obtained as

P ∗avg =
(Tf − τ

Tf

)
Pr{Ĥ0}E

{
P ∗(g, h)

}
(5.39)

and P ∗(g, h) is given by

P ∗(g, h) =

[
A3 +

√
∆3

2

]+

, (5.40)

where A3 =
(1 + η) log2(e)

ηEEmin

− 2N0 + σ2
s

|h|2
(5.41)

∆3 =A2
3−

4

|h|2

(
N0(N0+σ2

s)

|h|2
− (1+η) log2(e)(N0+(1−Pr{Ĥ0}Pc)σ

2
s)

ηEEmin

)
. (5.42)

The optimal value of η can be found by solving the equation below:

Ravg + η

((Tf − τ
Tf

)
Pr{Ĥ0}E

{
P ∗(g, h)

})
= 0. (5.43)

Proof: See Appendix J.

Using the results in Proposition 5.3.1, the throughput optimization problem subject to

the minimum EE constraint is equivalent to the throughput maximization under an average

power constraint with the power limit, P ∗avg, which achieves the minimum required EE. By

combining this power limit with the average transmit power constraint in (5.38), we define

the operating average transmission power as follows:

Pop =



P ∗avg if Pavg ≥ P ∗avg

Pavg if Pavg < P ∗avg

and ηEE|s.t.(5.13) and (5.14) ≥ EEmin

0 if Pavg < P ∗avg

and ηEE|s.t.(5.13) and (5.14) < EEmin

(5.44)
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Figure 5.3: The operating average transmission power for three cases.

The operating average transmission power is determined according to three cases as

illustrated in Fig. 5.3.

Case (i): When Pavg is larger than P ∗avg, average transmit power constraint Pavg is loose.

Since operating at average transmission power level greater than P ∗avg violates the minimum

required EE constraint, we set Pop = P ∗avg and the optimal transmission power control policy

is obtained by satisfying P ∗avg with equality. This case is illustrated in Fig. 5.3.(i).

Case (ii): As shown in Fig. 5.3.(ii), when Pavg is less than P ∗avg and the EE achieved at Pavg

is greater than EEmin, average transmit power constraint Pavg is dominant. Since average

transmission power is limited by Pavg, we set Pop = Pavg and the optimal transmission power

control policy is found when Pavg is satisfied with equality.

Case (iii): As demonstrated in Fig. 5.3.(iii), when Pavg < P ∗avg and the EE achieved at

Pavg is less than EEmin, there is no feasible solution, and hence we set Pop = 0

In the following result, we identify the optimal power control strategy.

Theorem 5.3.1 For a given frame duration Tf , if Pavg < P ∗avg and the maximum EE subject

to the constraints in (5.13) and (5.14) is less than EEmin, the power level is set to zero, i.e.,

P ∗0 (g, h) = 0, otherwise we allocate the power according to

Popt(g, h) =

[
A4 +

√
∆4

2

]+

(5.45)
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Table 5.2

Algorithm 6 The optimal power control and frame duration algorithm that maximizes the
average throughput of the secondary users under the minimum EE, average transmit power,
average interference power, and collision constraints

1: For a given Pd, Pf , Pc,max, EEmin, initialize η(0) = ηinit, ϑ
(0) = ϑinit, ϕ

(0) = ϕinit

2: if Pc,max < Pr{H1|Ĥ0} then
3: Tf,opt = 0, Popt(g, h) = 0
4: else
5: Find the optimal value of η that solves (5.43) by using a root-finding function.

6: Calculate P ∗avg =
(
Tf−τ
Tf

)
P (Ĥ0)E

{
P ∗(g, h)

}
where P ∗(g, h) is given in (5.40).

7: if Pavg < P ∗avg and ηEE|s.t.(5.13) and (5.14) < EEmin then
8: Popt(g, h) = 0
9: else

10: Pop = min(Pavg, P
∗
avg) and calculate Popt(g, h) using (5.45)

11: Update ϑ and ϕ using subgradient method
12: end if
13: Calculate Ravg using (5.17)
14: Tf,opt = arg maxRavg by bisection search
15: P ∗opt(g, h) = [Popt(g, h)]Tf=Tf,opt

16: end if

where A4 =
log2(e)

ϑ+ ϕPc|g|2
− 2N0 + σ2

s

|h|2
(5.46)

∆4 =A2
4−

4

|h|2

(
N0(N0+σ2

s)

|h|2
− log2(e)(N0 + (1−Pc)σ

2
s)

ϑ+ ϕPc|g|2

)
. (5.47)

Above, ϑ and ϕ are the Lagrange multipliers associated with the average transmit power

constraint, min(Pavg, P
∗
avg) and interference power constraint in (5.37), respectively.

Proof: See Appendix K.

In Table 5.2, we provide the details of an algorithm for jointly finding the optimal power

control policy and frame duration that maximize the average throughput of the secondary

users subject to constraints on collision duration ratio, the minimum required EE, average

transmit power and interference power in the presence of unslotted primary users.
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5.3.2 Peak Transmit Power and Average Interference Power Con-

straints

In this subsection, we consider that the objective function in (5.34) is subject to the con-

straints in (5.35)- (5.37) and the peak transmit power constraint P (g, h) < Ppk instead of

the average transmit power constraint. In this case, we derive the optimal power control as

follows:

Theorem 5.3.2 The average power level at which the minimum required EE is achieved can

be determined by inserting the power control given below in (5.48) into (8.50):

P ∗(g, h) =

{[
A3 +

√
∆3

2

]+

, Ppk

}
, (5.48)

where A3 and ∆3 are given in (5.41) and (5.42), respectively. If the maximum EE at Ppk

is less than EEmin, the power level is set to zero, i.e., Popt(g, h) = 0, otherwise the optimal

power control can be found as

Popt(g, h) = min

{[
A4 +

√
∆4

2

]+

, Ppk

}
(5.49)

Above, A4 and ∆4 are given in (5.46) and (5.47), respectively.

Proof: We follow similar steps as in the proof of Proposition 5.3.1 and Theorem 4.2.3 with

peak transmit power constraint in consideration. Therefore, the power levels are limited by

Ppk in this case. �

5.4 Numerical Results

In this section, we present and discuss the numerical results for the optimal power control and

frame duration, which maximize the EE or throughput of the secondary users, and analyze

the resulting collisions with the unslotted primary users. Unless mentioned explicitly, the
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noise variance is N0 = 0.01 and the variance of primary user’s received signal is σ2
s = 0.1.

Also, the mean values of the durations of ON and OFF periods, denoted by λ0 and λ1, are

set to 650 ms and 352 ms, respectively so that Pr{H0} ≈ 0.65, corresponding to the setting

in the voice over Internet protocol (VoIP) traffic [77], [78]. The step size t and tolerance ε

are chosen as 0.1 and 10−5, respectively. The circuit power Pcr is set to 1. We consider a

Rayleigh fading environment, and hence the channel power gains of the transmission link

and interference link are exponentially distributed with unit mean.

It is assumed that the secondary users employ energy detection scheme for spectrum

sensing, and hence the probabilities of detection and false alarm are expressed, respectively

as [79]

Pd = Q
(( ε

N0

− σ2
s − 1

)√ τfs
2σ2 + 1

)
(5.50)

Pf = Q
(( ε

N0

− 1
)√

τfs

)
, (5.51)

where Q(x) =
∫∞
x

1√
2π

e−t
2/2dt is the Gaussian Q-function, ε represents the decision threshold

and fs denotes the sampling frequency. The decision threshold ε can be chosen to satisfy

the target detection and false alarm probabilities, denoted by P̄d and P̄f , respectively and

the resulting sensing duration τ is expressed as

τ =
1

fs

(
Q−1(P̄f)−

√
2σ2

s + 1Q−1(P̄d)

σ2
s

)2

. (5.52)

In the numerical computations, fs is set to 100 kHz.

In Fig. 5.4, we plot the average throughput of the secondary users, Ravg, as a function

of the frame duration Tf for Ppk = 10 dB and different average power constraints, namely

Qavg = −15 dB, Qavg = −10 dB and Qavg = 0 dB. We consider target detection probability

P̄d = 0.9 and false alarm probability P̄f = 0.1, and hence τ becomes 7.21 ms. Transmis-

sion power level is chosen according to min
{
Ppk,

(
Tf

Tf−τ

)
Qavg

Pr{H0,Ĥ0}Pc,0+Pr{H1,Ĥ0}Pc,1

}
. In this
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Figure 5.4: Average throughput of the secondary users, Ravg vs. frame duration, Tf .

setting, average throughput formulation in (5.17) is also verified through Monte Carlo simu-

lations with 100000 runs. It is seen that Ravg initially increases with increasing transmission

duration. After reaching a peak value, Ravg begins to diminish as the secondary user starts

colliding with primary user transmissions more frequently, degrading the performance. It is

also observed that as the interference power constraint gets looser, i.e., as Qavg changes from

−15 to 0 dB, higher throughput is achieved since secondary user transmits at higher power

levels. As illustrated in the figure, Ravg is not a concave function of Tf . However, Ravg curves

are seen to exhibit a quasiconcave property and there exists an optimal frame duration that

maximizes the throughput.
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Figure 5.5: (a) Maximum EE of the secondary users vs. the probability of detection, Pd (b)
Average collision duration ratio, Pc vs. Pd (c) Optimal frame duration, Tf,opt vs. Pd.

In Fig. 5.5, we display the maximum EE ηEE, average collision duration ratio Pc, and
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Figure 5.6: (a) Maximum EE of the secondary users vs. the probability of false alarm, Pf (b)
Average collision duration ratio, Pc vs. Pf (c) Optimal frame duration, Tf,opt vs. Pf .

the optimal frame duration Tf,opt as functions of the probability of detection Pd. We set the

maximum collision limit as Pc,max = 0.2. It is assumed that the average transmit power

constraint is Pavg = 10 dB and average interference power constraint is Qavg = −20 dB. We

consider both the transmission with the optimal power control policy and constant-power

transmission. For the constant power case, power is not adaptively varied with respect to

the channel power gains of the transmission link and interference link. On the other hand,

optimal power control derived in (8.31) is a function of both h and g. As P̄d increases while

keeping P̄f fixed at 0.1 and hence sensing performance improves, secondary user has a higher

EE and lower collision duration ratio. For Pd values less than 0.585, collision constraint

is not satisfied for any value of the frame duration Tf , and therefore the secondary user

throughput is 0. When Pd takes values between 0.585 and 0.6, maximum EE is achieved

at the maximum collision limit, i.e, when Pc = 0.2. It is also observed that the optimal

power control leads transmissons with a larger frame duration while satisfying the maximum

allowed collision limit and achieving a higher EE compared to constant-power transmissions.

In Fig. 5.6, we plot the maximum EE ηEE, average collision duration ratio Pc, and the

optimal frame duration Tf,opt as functions of the probability of false alarm Pf . We consider

the same setting as in the previous figure. It is seen that as Pf increases while keeping

Pd fixed at 0.9, sensing performance degrades and secondary users experience more false

alarm events, which leads to more collisions with the primary user transmission. Therefore,
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secondary user has a lower EE in both cases of optimal power control and constant power.

We also notice in Fig. 5.6(a) that the optimal power control outperforms constant-power

transmissions.
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Figure 5.7: Maximum EE of the secondary users, ηEE vs. peak/average transmit power
constraints.

The maximum EE, ηEE, as a function of peak/average transmit power constraints is illus-

trated in Fig. 5.7. Regarding the average interference constraint, we consider two scenarios:

Qavg = −10 dB and Qavg = −20 dB. Target probabilities of detection and false alarm are

set to 0.8 and 0.1, respectively, for which the corresponding sensing duration is 4.85 ms.

In addition, the frame duration is selected to maximize the EE. It can be seen from the

figure that for low values of Pavg and Ppk, average interference power constraints are loose,

and hence the power is determined by either the average or peak transmit power constraint,

which results in the same EE regardless of whether Qavg = −10 dB or Qavg = −20 dB.

The EE of the secondary users increases with increasing peak/average transmit power levels.

As expected, peak transmit power constraint yields lower EE compared to that achieved

under the average transmit power constraint since the instantaneous transmission power is

limited by Ppk under the peak transmit power constraint, which imposes stricter limitations

than the average transmit power constraint. As the constraints become less stringent and

the peak and average transmit power levels are further increased, the maximum EE levels

off and becomes the same under peak/average transmit power constraints since the power
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starts being allocated according to only the average interference constraint, Qavg, due to this

constraint being the dominant one.
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Figure 5.8: Maximum average throughput vs. EE gain.

In Fig. 5.8, we display the maximum average throughput as a function of the EE gain

in percentage for different levels of primary traffic. More specifically, we consider a normal

traffic load, i.e., VOIP traffic with λ0 = 650 ms and λ1 = 352 ms as assumed before,

and also heavy traffic load with λ0 = 350 ms and λ1 = 650 ms so that Pr{H0} ≈ 0.37.

It is assumed that Pc,max = 0.3, average transmit power constraint is Pavg = 0 dB and

average interference power constraint is Qavg = 10 dB, and P̄d = 0.8, P̄f = 0.1, and hence

τ = 4.85 ms. The frame duration for normal traffic and heavy traffic are chosen optimally

as Tf = 125 ms and Tf = 36 ms, respectively, in order to maximize the EE in each traffic

model. The EE gain is calculated as the ratio of the minimum required EE, EEmin, to the

maximum EE achieved with the proposed power control in (8.31). It is seen that a tradeoff

between the EE and SE indeed exists, i.e., as the EE gain increases, the maximum average

throughput of the secondary users decreases. We also note that the primary user with a

heavy traffic load occupies the channel more often, and hence the secondary users have less

opportunity to access the channel. In this heavy-load scenario, secondary users experience

more frequent collisions with the primary user transmission. As a result, secondary users

have lower throughput in the presence of heavy primary-user traffic compared to the case
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with a normal primary-user traffic.
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Figure 5.9: Maximum average throughput vs. average interference power constraint, Qavg

under a minimum EE constraint.

In Fig. 5.9, we display the maximum average throughput as a function of the average

interference power constraint, Qavg, under a minimum EE constraint, namely EEmin = 1

bit/joule in the presence of primary users with normal and heavy traffic loads. The frame

duration is selected to maximize the system performance for each case. We assume imperfect

spectrum sensing with Pd = 0.8 and set Pf = 0.1 and Pavg = Ppk = 4 dB, Pc,max = 0.3.

As Qavg increases, the secondary users transmit with higher power levels, resulting in higher

throughput. However, increasing Qavg further than a certain threshold does not provide

performance improvements since the power starts being limited by either Pavg or Ppk. In

addition, secondary users have higher throughput with longer transmission duration when

the primary user has a normal traffic load rather than a heavy one.
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Chapter 6

Error Rate Analysis of Cognitive

Radio Transmissions with Imperfect

Channel Sensing

In this chapter, we analyze the symbol error rate performance of cognitive radio transmis-

sions with channel sensing errors in the presence of Gaussian mixture distributed primary

user’s interference (which includes pure Gaussian as a special case). Two different trans-

mission schemes, namely sensing-based spectrum sharing (SSS) and opportunistic spectrum

access (OSA), are considered. Initially, for both transmission schemes, general formulations

for the optimal decision rule and error probabilities are provided for arbitrary modulation

schemes under the assumptions that the receiver is equipped with the sensing decision and

perfect knowledge of the channel fading, and the primary user’s received faded signals at the

secondary receiver has a Gaussian mixture distribution. Subsequently, the general approach

is specialized to rectangular quadrature amplitude modulation (QAM).

Section 6.1 introduces the system model. In Section 6.2, general formulations for the

optimal detection rule and average symbol error probability in the presence of channel sensing

errors are provided for SSS and OSA schemes. In Section 6.3, closed-form average symbol
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error probability expressions for specific modulation types, i.e., arbitrary rectangular QAM

and PAM are derived subject to both transmit power and interference constraints under

the assumptions of Gaussian-mixture-distributed primary user faded signal and imperfect

channel sensing decisions. Numerical results are provided and discussed in Section 6.4.

6.1 System Model

We consider a cognitive radio system consisting of a pair of secondary transmitter-receiver

and a pair of primary transmitter-receiver1. The secondary user initially performs channel

sensing to detect the primary user activity.

6.1.1 Power and Interference Constraints

Following channel sensing, the secondary transmitter performs data transmission over a flat-

fading channel. In the SSS scheme, the average transmission power is selected depending

on the channel sensing decision. More specifically, the average transmission power is P1

if primary user activity is detected in the channel (denoted by the event Ĥ1) whereas the

average power is P0 if no primary user transmissions are sensed (denoted by the event Ĥ0).

We assume that there is a peak constraint on these average power levels, i.e., we have

P0 ≤ Ppk and P1 ≤ Ppk, (6.1)

where Ppk denotes the peak transmit power limit. We further impose an average interference

constraint in the following form:

(1−Pd)P0 E{|g|2}+ Pd P1 E{|g|2} ≤ Qavg (6.2)

1The analysis in the this work can be extended to account for more than one primary transmitter-
receiver pair by 1) slightly modifying the interference constraints to limit the worst-case interference on
multiple primary receivers and 2) selecting a Gaussian mixture density that reflects the distribution of the
received faded sum signal of multiple primary transmitters.
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where Pd is the detection probability and g is the channel fading coefficient between the

secondary transmitter and the primary receiver. Note that with probability Pd, primary

user activity is correctly detected and primary receiver experiences average interference pro-

portional to P1E{|g|2}. On the other hand, with probability (1−Pd), miss-detections occur,

secondary user transmits with power P0, and primary receiver experiences average interfer-

ence proportional to P0E{|g|2}. Therefore, Qavg can be regarded as a constraint on the

average interference inflicted on the primary user2.

In the OSA scheme, no transmission is allowed when the channel is detected as busy and

hence, we set P1 = 0. Now with the peak power and average interference constraints, we

have

P0 ≤ Ppk and (1−Pd)P0 E{|g|2} ≤ Qavg (6.3)

which can be combined to write

P0 ≤ min

{
Ppk,

Qavg

(1−Pd)E{|g|2}

}
. (6.4)

Above, we have introduced the average interference constraint. However, if the instan-

taneous value of the fading coefficient g is known at the secondary transmitter, then a peak

interference constraint in the form

Pi|g|2 ≤ Qpk (6.5)

for i = 0, 1 can be imposed. Note that transmission power P0 in an idle-sensed channel is

also required to satisfy the interference constraint due to sensing uncertainty (i.e., due to the

consideration of miss-detection events). Hence, a rather strict form of interference control is

2Note that the rest of the analysis can easily be extended to the case of M primary receivers by replacing
the constraint in (6.2) with (1 −Pd)P0 max1≤i≤M E{|gi|2} + PdP1 max1≤i≤M E{|gi|2} ≤ Qavg, where gi
is the channel fading coefficient between the secondary transmitter and the ith primary receiver. In this
setting, Qavg effectively becomes a constraint on the worst-case average interference.
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being addressed under these limitations. Now, including the peak power constraint, we have

Pi ≤ min

{
Ppk,

Qpk

|g|2

}
(6.6)

for i = 0, 1 (while keeping P1 = 0 in the OSA scheme). Above, Qpk denotes the peak received

power limit at the primary receiver.

6.1.2 Cognitive Channel Model

As a result of channel sensing decisions and the true nature of primary user activity, we have

four possible cases which are described below together with corresponding input-output

relationships:

• Case (I): A busy channel is sensed as busy, denoted by the joint event (H1, Ĥ1).

(Correct detection) y = hs+ n+ w. (6.7)

• Case (II): A busy channel is sensed as idle, denoted by the joint event (H1, Ĥ0).

(Miss-detection) y = hs+ n+ w. (6.8)

• Case (III): An idle channel is sensed as busy, denoted by the joint event (H0, Ĥ1).

(False alarm) y = hs+ n. (6.9)

• Case (IV): An idle channel is sensed as idle, denoted by the joint event (H0, Ĥ0).

(Correct detection) y = hs+ n. (6.10)
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In the above expressions, s is the transmitted signal, y is the received signal, and h denotes

zero-mean, circularly-symmetric complex fading coefficient between the secondary transmit-

ter and the secondary receiver with variance σ2
h. n is the circularly-symmetric complex

Gaussian noise with mean zero and variance E{|n|2} = σ2
n, and hence has the pdf

fn(n) =
1

2πσ2
n

e
− |n|

2

2σ2
n =

1

2πσ2
n

e
−n

2
r+n2

i
2σ2
n . (6.11)

The active primary user’s received faded signal at the secondary receiver is denoted by w.

Notice that if the primary users are active and hence the hypothesis H1 is true as in cases (I)

and (II), the secondary receiver experiences interference from the primary user’s transmission

in the form of w. We assume that w has a Gaussian mixture distribution, i.e., its pdf is

a weighted sum of p complex Gaussian distributions with zero mean and variance σ2
l for

1 ≤ l ≤ p:

fw(w) =

p∑
l=1

λl
2πσ2

l

e
− |w|

2

2σ2
l (6.12)

where the weights λl satisfy
∑p

l=1 λl = 1 with λl ≥ 0 for all l.

Remark 6.1.1 Primary user’s received faded signal has a Gaussian mixture distribution, if

we, for instance, have

w = hpsu (6.13)

where hps, which is the channel fading coefficient between the primary transmitter and the

secondary receiver, is a circularly symmetric, complex, zero-mean, Gaussian random vari-

able, and u is the primary user’s modulated digital signal. Note that w is conditionally

Gaussian given u. Now, assuming that the modulated signal u can take p different values

with prior probabilities given by λl for 1 ≤ l ≤ p, w has a Gaussian mixture distribution as
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in (6.12). In the case of multiple primary transmitters for which we have

w =
∑
i

hps,iui, (6.14)

the above argument can easily be extended if all channel fading coefficients {hps,i} are zero-

mean Gaussian distributed.

Remark 6.1.2 Gaussian mixture model is generally rich enough to accurately approximate

a wide variety of density functions [80, Section 3.2]. This fact indicates that the applicability

of our results can be extended to various other settings in which w has a distribution included

in this class of densities. Additionally, in the special case of p = 1, the Gaussian mixture

distribution becomes the pure complex Gaussian distribution. Hence, the results obtained for

the Gaussian mixture distribution can readily be specialized to derive those for the Gaussian

distributed w as well.

As observed from the input-output relationships in (6.7)–(6.10), when the true state of

the primary users is idle, corresponding to the cases (III) and (IV), the additive disturbance

is simply the background noise n. On the other hand, in cases (I) and (II) in which the

channel is actually busy, the additive disturbance becomes

z = n+ w if H1 is true (6.15)

whose distribution can be obtained through the convolution of density functions of the

background Gaussian noise n and the primary user’s received faded signal w. Using the

result of Gaussian convolution of Gaussian mixture given by [81], the distribution of z can

be obtained as

fz(z) =

p∑
l=1

λl
2π(σ2

l + σ2
n)

e
− |z|2

2(σ2
l

+σ2
n) . (6.16)
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Note that z also has a Gaussian mixture distribution. Note further that the pdf of z can be

expressed in terms of its real and imaginary components as

fzr,zi(zr, zi) =

p∑
l=1

λl
2π(σ2

l + σ2
n)

e
− (zr+zi)

2

2(σ2
l

+σ2
n) . (6.17)

Moreover, the marginal distributions of each component are given by

fzr(zr) =

p∑
l=1

λl√
2π(σ2

l + σ2
n)

e
− z2r

2(σ2
l

+σ2
n) , (6.18)

fzi(zi) =

p∑
l=1

λl√
2π(σ2

l + σ2
n)

e
− z2i

2(σ2
l

+σ2
n) . (6.19)

It is easily seen that the pdf of z in (6.17) cannot be factorized into the product of the

marginal pdf’s of its real and imaginary parts fzr(zr)fzi(zi), given in (6.18) and (6.19),

respectively. Therefore, the real and imaginary parts of the additive disturbance z are de-

pendent. When p = 1, i.e., in the case of a pure Gaussian distribution, the joint distribution

can written as a product of its real and imaginary components since they are independent.

6.2 General Formulations for the Optimal Decision Rule

and Error Probabilities

In this section, we present the optimal decision rule and the average symbol error probability

for the cognitive radio system in the presence of channel sensing errors. We provide general

formulations applicable to any modulation type under SSS and OSA schemes. More specific

analysis for arbitrary rectangular QAM and PAM is conducted in Section 6.3.

6.2.1 The Optimal Decision Rule

In the cognitive radio setting considered in this work, the optimal maximum a posteriori

probability (MAP) decision rule given the sensing decision Ĥk and the channel fading coef-
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ficient h can be formulated for any arbitrary M -ary digital modulation as follows:

ŝ = arg max
0≤m≤M−1

Pr{sm|y, h, Ĥk} (6.20)

= arg max
0≤m≤M−1

pmf(y|sm, h, Ĥk) (6.21)

= arg max
0≤m≤M−1

pm
(

Pr{H0|Ĥk}f(y|sm, h, Ĥk,H0)

+ Pr{H1|Ĥk}f(y|sm, h, Ĥk,H1)
)
, (6.22)

where pm is the prior probability of signal constellation point sm and k ∈ {0, 1}. Above,

(6.21) follows from Bayes’ rule and (6.22) is obtained by conditioning the density function

on the hypotheses H0 and H1. Note that f(y|sm, h, Ĥk,Hj) in (6.22) is the conditional

distribution of the received real signal y given the transmitted signal sm, channel fading

coefficient h, channel sensing decision Ĥk, and true state of the channel Hj, and can be

expressed as

f(y|sm, h, Ĥk,Hj) =


1

2πσ2
n
e
− |y−smh|

2

2σ2
n , j = 0∑p

l=1
λl

2π(σ2
l +σ2

n)
e
− |y−smh|

2

2(σ2
l

+σ2
n) , j = 1

(6.23)

for m = 0, . . . ,M−1. Note that the sensing decision Ĥk affects the density function through

the power of the transmitted signal sm. Moreover, the conditional probabilities in (6.22) can

be expressed as

Pr{Hj|Ĥk} =
Pr{Hj}Pr{Ĥk|Hj}∑1
j=0 Pr{Hj}Pr{Ĥk|Hj}

j, k ∈ {0, 1},

where Pr{H0} and Pr{H1} are the prior probabilities of the channel being idle and busy,

respectively, and the conditional probabilities in the form Pr{Ĥk|Hj} depend on the channel

sensing performance, Pd = Pr{Ĥ1|H1} is the detection probability and Pf = Pr{Ĥ1|H0} is

the false alarm probability. From these formulations, we see that the optimal decision rule
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in general depends on the sensing reliability.

6.2.2 Average Symbol Error Probability

The average symbol error probability (SEP) for the MAP decision rule in (6.20) in the SSS

scheme can be computed as

SEP = 1−
M−1∑
m=0

pm Pr{ŝ = sm|sm}

= 1−
M−1∑
m=0

1∑
k=0

pm Pr{Ĥk}Pr{ŝ = sm|sm, Ĥk}

= 1−
M−1∑
m=0

1∑
j,k=0

pm Pr{Ĥk}Pr{Hj|Ĥk}Pr{ŝ = sm|sm, Ĥk,Hj}.

(6.24)

The above average symbol error probability can further be expressed as

SEP = 1−
M−1∑
m=0

pm

[
Pr{Ĥ0}

(
Pr{H1|Ĥ0}

∫
Dm,0

f(y|sm, h, Ĥ0,H1) dy

+ Pr{H0|Ĥ0}
∫
Dm,0

f(y|sm, h, Ĥ0,H0) dy

)
+ Pr{Ĥ1}

(
Pr{H1|Ĥ1}

∫
Dm,1

f(y|sm, h, Ĥ1,H1) dy

+ Pr{H0|Ĥ1}
∫
Dm,1

f(y|sm, h, Ĥ1,H0) dy

)]
,

(6.25)

where Dm,0 and Dm,1 are the decision regions of each signal constellation point sm for 0 ≤

m ≤M − 1 when the channel is sensed to be idle and busy, respectively.

If cognitive user transmission is not allowed in the case of the channel being sensed as

occupied by the primary users, we have the OSA scheme for which the average probability
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of error can be expressed as

SEP = 1−
M−1∑
m=0

1∑
j=0

pm

(
Pr{Hj|Ĥ0}Pr{ŝ = sm|sm, Ĥ0,Hj}

)

= 1−
M−1∑
m=0

1∑
j=0

pm

(
Pr{Hj|Ĥ0}

∫
Dm,0

f(y|sm, h, Ĥ0,Hj)

)
.

(6.26)

6.3 Error Rate Analysis for M-ary Rectangular QAM

In this section, we conduct a more detailed analysis by considering rectangular QAM trans-

missions to demonstrate the key tradeoffs in a lucid setting. Correspondingly, we determine

the optimal decision regions by taking channel sensing errors into consideration and identify

the error rates for SSS and OSA schemes. We derive closed-form minimum average symbol

error probability expressions under the transmit power and interference constraints. Note

that the results for QAM can readily be specialized for PAM, QPSK, and BPSK transmis-

sions.

6.3.1 Optimal decision regions under channel sensing uncertainty

The signal constellation point sn,q in MI ×MQ rectangular QAM signaling can be expressed

in terms of its real and imaginary parts, respectively, as

sn,q = sn + jsq, (6.27)

where the amplitude level of each component is given by

sn = (2n+ 1−MI)
dmin,k

2
for n = 0, . . . ,MI − 1, (6.28)

sq = (2q + 1−MQ)
dmin,k

2
for q = 0, . . . ,MQ − 1. (6.29)
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Above, MI and MQ are the modulation size on the in-phase and quadrature components,

respectively, and dmin,k denotes the minimum distance between the signal constellation points

and is given by

dmin,k =

√
12Pk

M2
I +M2

Q − 2
k ∈ {0, 1} (6.30)

where Pk is the transmission power under sensing decision Ĥk.

It is assumed that the fading realizations are perfectly known at the receiver. In this

case, phase rotations caused by the fading can be offset by multiplying the channel output

y with e−jθh where θh is the phase of the fading coefficient h. Hence, the modified received

signal can be written in terms of its real and imaginary parts as follows:

ȳ = ȳr + jȳi = ye−jθh =


sn|h|+ n̄r + j(sq|h|+ n̄i), under H0

sn|h|+ n̄r + w̄r + j(sq|h|+ n̄i + w̄i), under H1

where the subscripts r and i are used to denote the real and imaginary components of the

signal, respectively. Note that n̄ = n̄r + jn̄i and w̄ = w̄r + jw̄i have the same statistics as

n and w, respectively, due to their property of being circularly symmetric. Hence, given the

transmitted signal constellation point sn,q, the distribution of the modified received signal ȳ

is given by

fȳr,ȳi(ȳr, ȳi|sn,q, h, Ĥk,Hj) =


1

2πσ2
n
e
− (ȳr−sn|h|)2+(ȳi−sq |h|)

2

2σ2
n , j = 0∑p

l=1
λl

2π(σ2
l +σ2

n)
e
− (ȳr−sn|h|)2+(ȳi−sq |h|)

2

2(σ2
l

+σ2
n) , j = 1

. (6.31)

Moreover, the real and imaginary parts of noise, i.e., n̄r and n̄i are independent zero-mean

Gaussian random variables, and the real and imaginary parts of primary users’ faded signal,

i.e., w̄r and w̄i, are Gaussian mixture distributed random variables.

In the following, we characterize the decision regions of the optimal detection rule for

111



equiprobable QAM signaling in the presence of sensing uncertainty.

Proposition 6.3.1 For cognitive radio transmissions with equiprobable rectangular M-

QAM modulation (with constellation points expressed as in (6.27)–(6.29)) under channel

sensing uncertainty in both SSS and OSA schemes, the optimal detection thresholds under

any channel sensing decision are located midway between the received signal points. Hence,

the optimal detector structure does not depend on the sensing decision.

Proof : See Appendix L.

6.3.2 The average symbol error probability under channel sensing

uncertainty

We present closed-form average symbol error probability expressions under both transmit

power and interference constraints for SSS and OSA schemes. Initially, we express the error

probabilities for a given value of the fading coefficient h. Subsequently, we address averaging

over fading and also incorporate power and interference constraints. We note that in the

presence of peak interference constraints, the transmitted power level depends on the fading

coefficient g experienced in the channel between the secondary and primary users as seen

in (6.6). Therefore, we in this case consider an additional averaging of the error rates with

respect to g.

6.3.2.1 Sensing-based spectrum sharing (SSS) scheme

Under the optimal decision rule given in the previous subsection, the average symbol error

probability of equiprobable signals for a given fading coefficient h can be expressed as

SEP(P, h) =
M∑
m=1

1∑
j,k=0

Pr{Ĥk}
M

Pr{Hj|Ĥk}Pr{e|sn,q, h, Ĥk,Hj}, (6.32)
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where Pr{e|sn,q, h,Hj, Ĥk} denotes the conditional error probability given the transmitted

signal sn,q, channel fading h, sensing decision Ĥk, and true state of the channel Hj.

We can group the error patterns of rectangular M -QAM modulation into three categories.

Specifically, the probability of error for the signal constellation points on the corners is equal

due to the symmetry in signaling and detection. The same is also true for the points on the

sides and the inner points.

The symbol error probability for the four corner points is given by

SEP1,k(P, h) = 1−
∫ ∞
a1

∫ ∞
a1

(
Pr{H0|Ĥk}fnr,ni(nr,ni)dnrdni

+ Pr{H1|Ĥk}fzr,zi(zr, zi)dzrdzi
) (6.33)

where a1 = −dmin,k|h|
2

and k ∈ {0, 1}. The distributions of the Gaussian noise fnr,ni(nr, ni)

and the primary user’s interference signal plus noise fzr,zi(zr, zi) are given in (6.11) and

(6.17), respectively. After evaluating the integrals, the above expression becomes

SEP1,k(P, h) = Pr{H0|Ĥk}

{
2Q

(√
d2
min,k|h|2

4σ2
n

)
−Q2

(√
d2
min,k|h|2

4σ2
n

)}

+ Pr{H1|Ĥk}
p∑
l=1

λl

{
2Q

(√
d2
min,k|h|2

4(σ2
l + σ2

n)

)
−Q2

(√
d2
min,k|h|2

4(σ2
l + σ2

n)

)} (6.34)

where Q(x) =
∫∞
x

1√
2π
e−t

2/2dt is the Gaussian Q-function. For the 2(MI + MQ − 4) points

on the sides, except the corner points, the symbol error probability is

SEP2,k(P, h) = 1−
∫ ∞
a1

∫ a2

a1

(
Pr{H0|Ĥk}fnr,ni(nr, ni)dnrdni

+ Pr{H1|Ĥk}fzr,zi(zr, zi)dzrdzi
) (6.35)

where a2 =
dmin,k|h|

2
. After performing the integrations, we can express SEP2,k(P, h) as

SEP2,k(P, h) = Pr{H0|Ĥk}

{
3Q

(√
d2
min,k|h|2

4σ2
n

)
− 2Q2

(√
d2
min,k|h|2

4σ2
n

)}

+ Pr{H1|Ĥk}
p∑
l=1

λl

{
3Q

(√
d2
min,k|h|2

4(σ2
l + σ2

n)

)
− 2Q2

(√
d2
min,k|h|2

4(σ2
l +σ2

n)

)}
.

(6.36)
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Finally, the symbol error probability for M − 2(MI +MQ) + 4 inner points is obtained from

SEP3,k(P, h) = 1−
∫ a2

a1

∫ a2

a1

(
Pr{H0|Ĥk}fnr,ni(nr, ni)dnrdni

+ Pr{H1|Ĥk}fzr,zi(zr, zi)dzrdzi
) (6.37)

which can be evaluated to obtain

SEP3,k(P, h) = Pr{H0|Ĥk}

{
4Q

(√
d2
min,k|h|2

4σ2
n

)
− 4Q2

(√
d2
min,k|h|2

4σ2
n

)}

+ Pr{H1|Ĥk}
p∑
l=1

λl

{
4Q

(√
d2
min,k|h|2

4(σ2
l + σ2

n)

)
− 4Q2

(√
d2
min,k|h|2

4(σ2
l + σ2

n)

)}
.

(6.38)

Overall, we can express SEP(P, h) in (6.32) by combining SEP1,k(P, h), SEP2,k(P, h) and

SEP3,k(P, h) as follows

SEP(P, h) =
1∑

k=0

Pr{Ĥk}
M

(
4 SEP1,k(P, h) + 2(MI +MQ − 4)SEP2,k(P, h)

+ (M − 2(MI +MQ) + 4)SEP3,k(P, h)
)
.

(6.39)

After rearranging the terms, the final expression for the average symbol error probability

SEP(P, h) is given by

SEP(P, h) =
1∑

k=0

Pr{Ĥk}

{
Pr{H0|Ĥk}

[
2

(
2− 1

MI
− 1

MQ

)
Q

(√
d2
min,k|h|2

4σ2
n

)

− 4

(
1− 1

MI

)(
1− 1

MQ

)
Q2

(√
d2
min,k|h|2

4σ2
n

)]

+ Pr{H1|Ĥk}

[
2

(
2− 1

MI
− 1

MQ

) p∑
l=1

λlQ

(√
d2
min,k|h|2

4(σ2
l + σ2

n)

)

− 4

(
1− 1

MI

)(
1− 1

MQ

) p∑
l=1

λlQ
2

(√
d2
min,k|h|2

4(σ2
l + σ2

n)

)]}
.

(6.40)

This expression can be specialized to square QAM signaling by setting MI = MQ =
√
M .

We observe above that while the optimal decision rule does not depend on the sensing

decisions, the error rates are functions of detection and false alarm probabilities. Note also
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that the expressions above are for a given value of fading. The unconditional symbol error

probability averaged over fading can be evaluated from

SEP(P ) =

∫ ∞
0

SEP(P, x)f|h|2(x)dx. (6.41)

In the special case of a Rayleigh fading model for which the fading power has an exponential

distribution with unit mean, i.e., f|h|2(x) = e−x, the above integral can be evaluated by

adopting the same approach as in [82] and using the indefinite integral form of the Gaussian

Q-function [83] and square of the Gaussian Q-function [84], given, respectively, by

Q(x) =
1

π

∫ π
2

0

e

(
− x2

2sin2φ

)
dφ, (6.42)

Q2(x) =
1

π

∫ π
4

0

e

(
− x2

2sin2φ

)
dφ for x ≥ 0. (6.43)

The resulting unconditional average symbol error probability over Rayleigh fading is given

by

SEP(P ) =
1∑

k=0

Pr{Ĥk}

{
Pr{H0|Ĥk}

[(
2− 1

MI
− 1

MQ

)(
1− 1

β0,k

)

− 2

(
1− 1

MI

)(
1− 1

MQ

)(
2

π

1

β0,k
tan−1

(
1

β0,k

)
− 1

β0,k
+

1

2

)]

+ Pr{H1|Ĥk}

[(
2− 1

MI
− 1

MQ

) p∑
l=1

λl

(
1− 1

β1,k

)

− 2

(
1− 1

MI

)(
1− 1

MQ

) p∑
l=1

λl

(
2

π

1

β1,k
tan−1

(
1

β1,k

)
− 1

β1,k
+

1

2

)]}
.

(6.44)

Above, β0,k =
√

1 + 2
3Pk

(MI
2 +MQ

2 − 2)σ2
n and β1,k =

√
1 + 2

3Pk
(MI

2 +MQ
2 − 2)(σ2

l + σ2
n)

for 1 ≤ l ≤ p. The average symbol error probability for rectangular QAM signaling in

the presence of Gaussian-distributed w can readily be obtained by letting l = 1 in (6.44).

Although the SEP expression in (6.44) seems complicated, it is in fact very simple to evaluate.
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Furthermore, this SEP(P ) can be upper bounded as

SEP(P )≤
(

2− 1

MI
− 1

MQ

) 1∑
k=0

Pr{Ĥk}

{
Pr{H0|Ĥk}

(
1− 1

β0,k

)
+ Pr{H1|Ĥk}

p∑
l=1

λl

(
1− 1

β1,k

)}
.

(6.45)

This upper bound follows by removing the negative terms that include Q2(·) on the right-

hand side of (6.40) and then integrating with respect to fading distribution. Note also that

the upper bound in (6.45) with MQ = 1 is the exact symbol error probability for PAM

modulation.

Note further that the SEP expression in (6.44) is a function of the transmission powers

P0 and P1. The optimal choice of the power levels under peak power and average interference

constraints given in (6.1) and (6.2) and the resulting error rates can be determined by solving

SEP(Ppk, Qavg) = min
P0≤Ppk, P1≤Ppk

(1−Pd)P0 E{|g|2}+Pd P1 E{|g|2}≤Qavg

SEP(P0, P1). (6.46)

If the fading coefficient g between the secondary transmitter and the primary receiver

is known and peak interference constraints are imposed, then the maximum transmission

power is given by

P ∗i = min

{
Ppk,

Qpk

|g|2

}
for i = 0, 1. (6.47)

After inserting these P ∗0 and P ∗1 into the SEP upper bound in (6.45) and evaluating the

expectation over the fading coefficient g, we obtain

SEP ≤
∫ b1

0
SEPu(Ppeak)f|g|2(y)dy +

∫ ∞
b1

SEPu

(
Qpk

y

)
f|g|2(y)dy (6.48)

where b1 =
Qpk

Ppk
and SEPu denotes the upper bound in (6.45). If |g|2 is exponentially

distributed with unit mean, then by using the identity in [85, eq. 3.362.2], we can evaluate
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the second integral on the right-hand side of (6.48) and express the upper bound as

SEP ≤ (1− e−b1)SEP(Ppk) +

(
2− 1

MI
− 1

MQ

) 1∑
k=0

Pr{Ĥk}

×

{
Pr{H0|Ĥk}

[
eb1 − 2

√
γ0πeγ0Q

(√
2(b1 + γ0)

)]

+ Pr{H1|Ĥk}
p∑
l=1

λl

[
eb1 − 2

√
γ1πeγ1Q

(√
2(b1 + γ1)

)]}
,

(6.49)

where γ0 =
3b1Ppk

2(M2
I+M2

Q−2)σ2
n
, γ1 =

3b1Ppk

2(M2
I+M2

Q−2)(σ2
l +σ2

n)
.

It should be noted that we can easily obtain the exact symbol error probability expressions

for PAM modulation by replacing MI = M and MQ = 1 in (6.40), (6.44), (6.49).

6.3.2.2 Opportunistic spectrum access (OSA) scheme

In the OSA scheme, secondary users are not allowed to transmit when the primary user

activity is sensed in the channel. Therefore, we only consider error patterns under Ĥ0 given

in (6.34), (6.36), (6.38). Hence, following the same approach adopted in SSS scheme, the

average symbol error probability under the OSA scheme is obtained as

SEP(P0) = Pr{H0|Ĥ0}

[(
2− 1

MI
− 1

MQ

)(
1− 1

β0,0

)

− 2

(
1− 1

MI

)(
1− 1

MQ

)(
2

π

1

β0,0
tan−1

(
1

β0,0

)
− 1

β0,0
+

1

2

)]

+ Pr{H1|Ĥ0}

[(
2− 1

MI
− 1

MQ

) p∑
l=1

λl

(
1− 1

β1,0

)

− 2

(
1− 1

MI

)(
1− 1

MQ

) p∑
l=1

λl

(
2

π

1

β1,0
tan−1

(
1

β1,0

)
− 1

β1,0
+

1

2

)]
.

(6.50)

Similarly, the SEP upper bound becomes

SEP(P ) ≤
(

2− 1

MI
− 1

MQ

){
Pr{H0|Ĥ0}

(
1− 1

β0,0

)
+ Pr{H1|Ĥ0}

p∑
l=1

λl

(
1− 1

β1,0

)}
. (6.51)

Note that under average interference constraints, the maximum allowed transmission power

in an idle-sensed channel is given by

P ∗0 = min

{
Ppk,

Qavg

(1−Pd)E{|g|2}

}
. (6.52)
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On the other hand, if the peak interference power constraint is imposed, the maximum

allowed transmission power is

P ∗0 = min

{
Ppk,

Qpk

|g|2

}
. (6.53)

After inserting this P ∗0 into (6.51), assuming again that |g|2 is exponentially distributed with

unit mean, and evaluating the integration in a similar fashion as in SSS scheme, an upper

bound on the average symbol error probability can be obtained as

SEP ≤

(
1− e

Qpk
Ppk

)
SEP(Ppk) +

(
2− 1

MI
− 1

MQ

)

×

{
Pr{H0|Ĥ0}

[
e
Qpk
Ppk − 2

√
ψ0πeψ0Q

(√
2

(
Qpk

Ppk
+ ψ0

))]

+ Pr{H1|Ĥ0}
p∑
l=1

λl

[
e
Qpk
Ppk − 2

√
ψ1πeψ1Q

(√
2

(
Qpk

Ppk
+ ψ1

))]}
,

(6.54)

where ψ0 =
3Qpk

2(M2
I+M2

Q−2)σ2
n

and ψ1 =
3Qpk

2(M2
I+M2

Q−2)(σ2
l +σ2

n)
.

6.4 Numerical Results

In this section, we present numerical results to demonstrate the error performance of a

cognitive radio system in the presence of channel sensing uncertainty for both SSS and OSA

schemes. More specifically, we numerically investigate the impact of sensing performance

(e.g., detection and false-alarm probabilities), different levels of peak transmission power

and average and peak interference constraints on cognitive transmissions in terms of symbol

error probability. Theoretical results are validated through Monte Carlo simulations. Unless

mentioned explicitly, the following parameters are employed in the numerical computations.

It is assumed that the variance of the background noise is σ2
n = 0.01. When the primary user

signal is assumed to be Gaussian, its variance, σ2
w is set to 0.5. On the other hand, in the case

of primary user’s received signal w distributed according to the Gaussian mixture model, we

assume that p = 4, i.e., there are four components in the mixture, λl = 0.25 for all 1 ≤ l ≤ 4,
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Figure 6.1: Average symbol error probability SEP, and transmission powers P0 and P1 vs. average
interference constraint, Qavg in SSS scheme.

and the variance is still σ2
w = 0.5. Also, the primary user is active over the channel with a

probability of 0.4, hence Pr{H1} = 0.4 and Pr{H0} = 0.6. Finally, we consider a Rayleigh

fading channel between the secondary users with fading power pdf given by f|h|2(x) = e−x

for x ≥ 0, and also assume that the fading power |g|2 in the channel between the secondary

transmitter and primary receiver is exponentially distributed with E{|g|2} = 1.

6.4.1 SEP under Average Interference Constraints

We initially consider peak transmit and average interference constraints as given in (6.1) and

(6.2), respectively. In the following numerical results, for the SSS scheme, we plot the error

probabilities and optimal transmission power levels obtained by solving (6.46). In the case

of OSA, we plot the average error probability expressed in (6.50) with maximum allowed

power P ∗0 given in (6.52).

In Fig. 6.1, we display the average symbol error probability (SEP) and optimal trans-
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Figure 6.2: Average symbol error probability SEP and transmission powers P0 vs. average inter-
ference constraint, Qavg in OSA scheme.

mission powers P0 and P1 as a function of the average interference constraint, Qavg, in the

SSS scheme. Pd and Pf are set to 0.9 and 0.05, respectively. The peak transmission power

is Ppk = 4 dB. We assume that the secondary users employ 2-PAM, 4-QAM, 8-PAM and

8 × 2-QAM modulation schemes for data transmission. We have considered both Gaussian

and Gaussian-mixture distributed w. In addition to the analytical results obtained by using

(6.44) and solving (6.46), we performed Monte Carlo simulations to determine the SEP. We

notice in the figure that analytical and simulation results agree perfectly. Additionally, it is

seen that for all modulation types, error rate performance of secondary users improves as

average interference constraint becomes looser (i.e., as Qavg increases), allowing transmission

power levels P0 and P1 to become higher as illustrated in the lower subfigures. Saturation

seen in the plot of P0 is due to the peak constraint Ppk. Other observations are as follows. As

the modulation size increases, SEP increases as expected. It is also interesting to note that

lower SEP is attained in the presence of Gaussian-mixture distributed w when compared

with the performance when w has a pure Gaussian density with the same variance.

In Fig. 6.2, average SEP and transmission power P0 are plotted as a function of the

average interference constraint, Qavg, for the OSA scheme. We again set Ppk = 4 dB,

Pd = 0.9 and Pf = 0.05, and consider 2-PAM, 4-QAM, 8-PAM and 8×2-QAM schemes. It

is observed from the figure that as Qavg increases, error probabilities initially decrease and
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Figure 6.3: Average symbol error probability SEP of 4-QAM (left subfigure) and 8-PAM (right
subfigure) signaling vs. detection probability Pd for SSS and OSA schemes.

then remain constant due to the fact that the secondary users can initially afford to transmit

with higher transmission power P0 as the interference constraint becomes less strict, but then

get limited by the peak transmission power constraint and send data at the fixed power level

of Ppk. Again, we observe that lower error probabilities are attained when the primary user’s

received signal w follows a Gaussian mixture distribution.

In Fig. 6.3, the average SEPs of 4-QAM (in the left subfigure) and 8-PAM signaling

(in the lower subfigure) are plotted as a function of the detection probability Pd. Pf is

set to 0.05. We consider both SSS and OSA schemes. It is assumed that Ppk = 4 dB

and Qavg = −10 dB. We observe that SEP for both modulation types in both SSS and OSA

schemes decreases as Pd increases. Hence, performance improves with more reliable sensing.

In this case, the primary reason is that more reliable detection enables the secondary users

transmit with higher power in an idle-sensed channel. For instance, if Pd = 1, then the

transmission power P0 is only limited by Ppk in both SSS and OSA. In the figure, we also

notice that lower SEP is achieved in the OSA scheme, when compared with the SSS scheme,

due to the fact that OSA avoids transmission over a busy-channel in which interference from

the primary user’s transmission results in a more noisy channel and consequently higher

error rates are experienced. At the same time, it is important to note that not transmitting

in a busy-sensed channel as in OSA potentially reduces data rates.
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Figure 6.4: Average symbol error probability SEP of 4-QAM (left subfigure) and 8-PAM (right
subfigure) signaling vs. probability of false alarm Pf for SSS and OSA schemes.

In Fig. 6.4, the average SEPs of 4-QAM and 8-PAM signaling are plotted as a function

of the false alarm probability Pf for both SSS and OSA. It is assumed that Pd = 0.9. It

is further assumed that Ppk = 4 dB and Qavg = −10 dB, again corresponding to the case

in which average interference power constraint is dominant compared to the peak transmit

power constraint. In both schemes, SEP increases with increasing false alarm probability

Pf . Hence, degradation in sensing reliability leads to performance loss in terms of error

probabilities. In OSA, the transmission power P0 = min
{
Ppk,

Qavg

(1−Pd)E{|g|2}

}
does not depend

on Pf and hence is fixed in the figure. The increase in the error rates can be attributed to

the fact that secondary users more frequently experience interference from primary user’s

transmissions due to sensing uncertainty. For instance, in the extreme case in which Pf = 1,

the probability terms in (6.50) become Pr{H0|Ĥ0} = 0 and Pr{H1|Ĥ0} = 1, indicating

that although the channel is sensed as idle, it is actually busy with probability one and the

additive disturbance in OSA transmissions always includes w. In the SSS scheme, higher

Pf leads to more frequent transmissions with power P1 which is generally smaller than P0

in order to limit the interference on the primary users. Transmission with smaller power

expectedly increases the error probabilities. On the other hand, we interestingly note that

as Pf approaches 1, P1 becomes higher than P0 when (6.46) is solved, resulting in a slight

decrease in SEP when Pf exceeds around 0.9.
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6.4.2 SEP under Peak Interference Constraints

We now address the peak interference constraints by assuming that the transmission powers

are limited as in (6.6). In this subsection, analytical error probability curves are plotted

using the upper bounds in (6.49) in the case of SSS and in (6.54) in the case of OSA since

we only have closed-form expressions for the error probability upper bounds when we need

to evaluate an additional expectation with respect to |g|2. Note that these upper bounds

provide exact error probabilities when PAM is considered. Additionally, the discrepancy in

QAM is generally small as demonstrated through comparisons with Monte Carlo simulations

which provide the exact error rates in the figures.

Figure 6.5: Average symbol error probability SEP vs. peak transmission power Ppk in dB for
SSS scheme when the primary user signal is modeled by Gaussian distribution (left subfigure) and
Gaussian mixture distribution (right subfigure).

In Fig. 6.5, we plot the average SEP as a function of the peak transmission power, Ppk, for

the SSS scheme in the presence of Gaussian distributed and Gaussian-mixture distributed

primary user’s received faded signal w in the left and right subfigures, respectively. The

secondary users again employ 2-PAM, 4-QAM, 8-PAM and 8× 2-QAM schemes. The peak

interference power constraint, Qpk is set to 4 dB. It is seen that Monte Carlo simulations

match with the analytical results for PAM and are slightly lower than the analytical upper

bounds for QAM. As expected, the average SEP initially decreases with increasing Ppk and

a higher modulation size leads to higher error rates at the same transmission power level.
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We again observe that lower error rates are experienced when w has a Gaussian mixture

distribution rather than a Gaussian distribution with the same variance. It is also seen

that as Ppk increases, the SEP curves in all cases approach some error floor at which point

interference constraints become the limiting factor.

Another interesting observation is the following. In Fig. 6.5, SEPs are plotted for two

different pairs of detection and false alarm probabilities. In the first scenario, channel sensing

is perfect, i.e., Pd = 1 and Pf = 0. In the second scenario, we have Pd = 0.9 and Pf = 0.05.

In both scenarios, we observe the same error rate performance. This is because the same

transmission power is used regardless of whether the channel is detected as idle or busy, i.e.,

P ∗i = min
{
Ppk,

Qpk

|g|2

}
for both i = 0, 1. The interference constraints are very strict. Hence,

averaging over channel sensing decisions becomes averaging over the prior probabilities of

channel occupancy, which does not depend on the probabilities of detection and false alarm.

Indeed, spectrum sensing can be altogether omitted under these constraints.

Figure 6.6: Average symbol error probability SEP vs. peak transmission power Ppk in dB for OSA
scheme in the presence of Gaussian and Gaussian mixture primary user’s interference signal under
imperfect sensing result (left subfigure) and perfect sensing result (right subfigure).

In Fig. 6.6, we plot the average SEP as a function of Ppk for the OSA scheme. As

before, 2-PAM, 4-QAM, 8-PAM and 8 × 2-QAM are considered. Imperfect sensing with

Pd = 0.9 and Pf = 0.05 is considered in the left subfigure whereas perfect sensing (i.e.,

Pd = 1 and Pf = 0) is assumed in the lower subfigure. In both subfigures, it is seen
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that increasing Ppk initially reduces SEP which then hits an error floor as the interference

constraints start to dominate. It is also observed that perfect channel sensing improves the

error rate performance of cognitive users. Note that if sensing is perfect, secondary users

transmit only if the channel is actually idle and experience only the background noise n. On

the other hand, under imperfect sensing, secondary users transmit in miss-detection scenarios

as well, in which they are affected by both the background noise and primary user interference

w, leading to higher error rates. Cognitive radio transmission impaired by Gaussian mixture

distributed w again results in lower SEP compared to Gaussian distributed w. But, of course,

this distinction disappears with perfect sensing in the lower subfigure since the secondary

users experience only the Gaussian background noise n as noted above. Finally, the gap

between the analytical and simulation results for QAM is due to the use of upper bounds in

the analytical error curves as discussed before.

Figure 6.7: Average symbol error probability SEP of 4-QAM (left subfigure) and 8-PAM (right
subfigure) signaling vs. detection probability Pd for SSS and OSA schemes.

In Fig. 6.7, we display the average SEP of 4-QAM and 8-PAM signaling as a function of

the detection probability Pd. Pf is set to 0.05. Both SSS and OSA schemes are considered.

Here, we also assume that Ppk = 4 dB, Qpk = 0 dB. It is seen that error rate performances

for SSS scheme for both modulation types do not depend on detection probability because

of the same reasoning explained in the discussion of Fig. 6.5. On the other hand, the error

rate performance for the OSA scheme improves with increasing detection probability since
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the secondary user experiences less interference from the primary user activity. It is also

seen that OSA scheme outperforms SSS scheme.

Figure 6.8: Average symbol error probability SEP of 4-QAM (left subfigure) and 8-PAM (right
subfigure) signaling vs. probability of false alarm Pf for SSS and OSA schemes.

In Fig. 6.8, we analyze the average SEP of 4-QAM and 8-PAM signaling as a function

of the false alarm probability Pf . Detection probability is Pd = 0.9. Similarly as before,

Ppk = 4 dB and Qpk = 0 dB. Again, error rate performance does not depend on Pf in the

SSS scheme. It is observed that SEP in OSA scheme increases with increasing false alarm

probability. Hence, degradation in the sensing performance in terms of increased false alarm

probabilities leads to degradation in the error performance. Deterioration in the performance

is due to more frequent exposure to interference from primary user’s transmissions in the

form of w.
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Chapter 7

Throughput of Cognitive Radio

Systems with Finite Blocklength

Codes and QoS Constraints

In this chapter, throughput achieved in cognitive radio channels with finite blocklength codes

under buffer limitations is studied. It is assumed that finite blocklength codes are employed

in the data transmission phase. Hence, errors can occur in reception and retransmissions can

be required. In the absence of CSI at the transmitter, fixed-rate transmission is performed

whereas under perfect CSI knowledge, for a given target error probability, the transmitter

varies the rate according to the channel conditions. Under these assumptions, throughput

in the presence of buffer constraints is determined by characterizing the maximum constant

arrival rates that can be supported by the cognitive radio channel while satisfying certain

limits on buffer violation probabilities.

We introduce the system model in Section 7.1. Section 7.2 gives an overview of the

channel capacity with finite blocklength codes. In Section 7.3, we study effective throughput

under the following two assumptions: CSI is known perfectly by either the receiver only or

both the transmitter and receiver. The numerical results are illustrated in Section 7.4.
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7.1 System Model

In the cognitive radio model we consider, secondary users first determine the channel status

(i.e., idle or busy) through spectrum sensing and then enter into data transmission phase with

rate and power that depend on the sensing decision. Secondary users are allowed to coexist

with primary users in the channel as long as their interference level does not deteriorate the

performance of primary users. We also assume that channel sensing and data transmission

are performed in frames of T seconds. Duration of first N seconds is allocated to channel

sensing in which the secondary users observe either primary users’ faded sum signal plus

Gaussian background noise or just Gaussian background noise, and make a decision on

primary user activity. In the remaining T − N seconds, data transmission is performed

over a flat-fading channel with additive Gaussian background noise and possibly additive

interference arising due to transmissions from active primary users.

7.1.1 Markov Model for Primary User Activity

It is assumed that the primary users’ activity in the channel remains the same during the

frame duration of T seconds. On the other hand, activity from one frame to another or

equivalently the channel being busy or idle is modeled as a two-state Markov chain depicted

in Figure 7.1. The busy state indicates that primary users are active in the channel whereas

idle state represents no primary user activity. In Fig. 7.1, Pi,j, with i, j ∈ {I, B}, denotes

the transition probability from state i to state j, satisfying
∑
j

Pi,j = 1. Note that we set

PB,I = s and PI,B = q.

Figure 7.1: Two-state Markov chain to model the primary user activity.
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Given the above two-state Markov chain, we can easily determine the prior probabilities

that the channel is busy and idle, denoted by Pr(H1) and Pr(H0), respectively, as follows:

Pr(H1) =
PI,B

PI,B + PB,B
=

q

q + s
, Pr(H0) =

PB,I
PB,I + PI,I

=
s

s+ q
(7.1)

with notations H0 and H1 described below.

7.1.2 Channel Sensing

Channel sensing is performed in the first N seconds. The remaining duration of T − N

seconds is reserved for data transmission. As in [86], we formulate channel sensing as a

binary hypothesis testing problem:

H0 : yi = ni i = 1, 2, . . . , NB

H1 : yi = si + ni i = 1, 2, . . . , NB
(7.2)

where ni denotes complex circularly symmetric background Gaussian noise samples with

mean zero and variance E{|ni|2} = σ2
n, i.e., n ∼ CN (0, σ2

n). si denotes the primary users’

faded sum signal at the cognitive secondary receiver and can, for instance, be expressed as

si =
K∑
j=1

gps,j uj (7.3)

whereK is the number of active primary transmitters, uj is the jth primary user’s transmitted

signal and gps,j denotes the fading coefficient between the jth primary transmitter and the

secondary receiver. Therefore, hypothesisH0 above corresponds to the case in which primary

users are inactive in the channel whereas hypothesisH1 models the presence of active primary

users. Above, B denotes the bandwidth of the system and therefore we have NB complex

signal samples in the sensing duration of N seconds.

We further assume that {si} is an independent and identically distributed (i.i.d.) se-

quence of circularly symmetric, complex Gaussian random variables with mean zero and
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variance E{|si|2} = σ2
s , i.e., s ∼ CN (0, σ2

s). The optimal Neyman-Pearson energy detector is

employed for channel sensing, and under the above-mentioned statistical assumptions, the

test statistic is the total energy gathered in N seconds, which is compared with a threshold

λ:

T (y) =
1

NB

NB∑
i=1

|yi|2 ≷H1
H0
λ. (7.4)

Above, T (y) is the sum of NB independent χ2-distributed complex random variables and

hence is itself χ2-distributed with 2NB degrees of freedom. With this characterization, the

false alarm and detection probabilities can be expressed as

Pf = Pr{T (y) > λ|H0} = Pr(Ĥ1|H0) = 1− P
(
NBλ

σ2
n

, NB

)
, (7.5)

Pd = Pr{T (y) > λ|H1} = Pr(Ĥ1|H1) = 1− P
(

NBλ

σ2
n + σ2

s

, NB

)
(7.6)

where P (s, x) = γ(s,x)
Γ(s)

is the regularized Gamma function [62, eq. 6.5.1], γ(s, x) is the lower

incomplete Gamma function [62, eq. 6.5.2], and Γ(s) is the Gamma function [62, eq. 6.1.1].

Additionally, Ĥ1 and Ĥ0 denote busy and idle sensing decisions, respectively. We further

express the rest of the conditional probabilities of channel sensing decisions given channel

true states, i.e., Pr(Ĥi|Hj), in terms of Pd and Pf , as follows:

Pr(Ĥi|Hj) =


1−Pd if j = 1, i = 0

1−Pf if j = 0, i = 0

. (7.7)

Combining (7.5) – (7.7) and applying the Bayes’ rule, we can obtain the probabilities of

channel being sensed to be busy and idle as

Pr(Ĥ1) =
q

q + s
Pd +

s

s+ q
Pf , (7.8)

Pr(Ĥ0) =
q

q + s
(1−Pd) +

s

s+ q
(1−Pf). (7.9)

Finally, we would like to note that channel sensing can be performed by either the secondary
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receiver or transmitter, and we have implicitly assumed that the secondary receiver performs

this task. In such a case, we further assume that the binary sensing decision made by the

secondary receiver is reliably fed back to the secondary transmitter through a low-rate control

channel.

7.1.3 Data Transmission Parameters, Interference Management,

and Channel Model

Following channel sensing, secondary users initiate the data transmission phase in the re-

maining T −N seconds. They adapt transmission rates and power levels depending on the

channel sensing decision and availability of channel side information (CSI). More specifically,

in the absence of CSI at the secondary transmitter, fixed-rate transmission is performed with

constant power level while in the presence of perfect CSI, data is sent at a variable rate. Ad-

ditionally, the average power is P 1 and transmission rate is r1 in the case of channel being

sensed to be busy, and average power is P 2 and transmission rate is r2 in the case of channel

being sensed to be idle.

The two-level transmission scheme described above is adopted to limit the interference

inflicted on the primary users. Therefore, we in general have P 1 ≤ P 2. If cognitive users are

not allowed to transmit when the primary user activity is detected in the channel, then we

set P 1 = 0. In general, power P 1 should be below a certain threshold in order to limit the

interference inflicted on the primary users. Note that when the transmission power is P 1,

the average interference experienced by a primary user is P 1E{|gsp|2} where gsp is the fading

coefficient of the channel between the secondary transmitter and primary receiver. Then, an

upper bound on the transmission power P 1 can be expressed as

P 1 ≤
I0

maxj E{|gsp,j|2}
(7.10)

where I0 is the maximum average interference power that the primary users can tolerate and
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|gsp,j|2 is the channel gain between the secondary transmitter the and jth primary receiver.

However, this may not provide sufficient protection in the presence of sensing errors since

primary receivers are disturbed with average transmission power of P 2 in the case of miss-

detections. Therefore, as an additional mechanism to control the interference, an upper

bound on the probability of miss detection or equivalently a lower bound on the detection

probability should be imposed in cognitive radio systems so that miss-detections occur rarely.

Yet, another method to limit the average interference power experienced by the primary

users is to impose the following constraint on the transmission powers:

PdP 1 + (1−Pd)P 2 ≤
I0

maxj E{|gsp,j|2}
(7.11)

together with possibly peak constraints P 1 ≤ P peak,1 and P 2 ≤ P peak,2. Above, Pd is

the detection probability in channel sensing. Note that primary receiver is disturbed with

transmissions of power P 1 and P 2 with probabilities Pd and (1−Pd), respectively, which are

the probabilities of correct detection and miss-detection events. Hence, average interference

power is proportional to PdP 1 + (1 −Pd)P 2. We note that such an average interference

power constraint was, for instance, considered in [15].

Finally, we remark that the analysis in Section 7.3 is conducted for given average power

constraints and given signal-to-noise ratios. Therefore, any of the interference constraints

discussed above can be easily be accommodated in the subsequent throughput analysis.

Next, we describe the channel model. The channel between the secondary users is as-

sumed to experience flat fading. We also consider the block-fading assumption in which the

fading coefficients are constant within the frame of T seconds and change independently be-

tween the frames. Under these assumptions, the complex input-complex output relationship
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is

y =


hx + n in the absence of primary user activity,

hx + n + s in the presence of primary user activity.

(7.12)

Above, h is the circularly-symmetric complex fading coefficient with a finite variance, i.e.,

E{|h|2} < ∞. x and y are the (T − N)B–dimensional complex channel input and output

vectors, respectively. Since we assume that transmissions are power constrained by P 1 or P 2,

the average energy available in the data transmission period of (T −N) seconds is (T −N)P i

for i = 1, 2, and hence E{‖x‖2} = (T − N)P i. With energy uniformly distributed across

input symbols, the average energy per symbol becomes E{|xi|2} = P i
B

1.

In (7.12), n denotes the vector of i.i.d. noise samples that are circularly symmetric, Gaus-

sian random variables with mean zero and variance E{|n|2} = σ2
n, and s again represents the

vector of active primary users’ faded sum signal received at the secondary receiver similarly

as in (7.3). We again assume that the components of s are i.i.d. Gaussian random variables

with mean zero and variance E{|s|2} = σ2
s .

7.2 Transmission Rate in the Finite Blocklength Regime

In [87], Polyanskiy, Poor and Verdú studied the channel coding rate achieved with finite

blocklength codes and identified a second-order expression for the channel capacity of the

real additive white Gaussian noise (AWGN) channel in terms of the coding blocklength

(T − N)B, error probability ε, and signal-to-noise ratio (SNR). As done in [88], this result

can be slightly modified to obtain the following approximate expression for the instantaneous

channel capacity of a flat-fading channel attained in the data transmission duration of (T −
1Alternatively, if an average energy constraint of E{‖x‖2} = P iT is imposed in the data transmission

period rather than an average power constraint, the average energy per symbol becomes E{|xi|2} = TP i

(T−N)B .

This leads to the scaling of the signal-to-noise ratio by a factor of T
T−N . Since the analysis in Section 7.3

is conducted for given signal-to-noise ratio expressions, an average energy constraint given as above can be
incorporated into the analysis easily.
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N)B symbols2:

r = log2(1+SNR|h|2)−

√
1

(T −N)B

(
1− 1

(SNR|h|2 + 1)2

)
Q−1(ε) log2 e (7.13)

where Q(x) =
∫∞
x

1√
2π
e−t

2/2dt is the Gaussian Q-function and SNR denotes the signal-to-noise

ratio which can be expressed as average energy per symbol normalized by the variance of the

noise random variable. The above expression provides the rate that can be achieved with

error probability ε for a given fading coefficient h and signal-to-noise ratio SNR. Note that

as the blocklength (T −N)B grows without bound, the second term on the right-hand side

of (7.13) vanishes and transmission rate r approaches the instantaneous channel capacity

log2(1 + SNR|h|2) for any arbitrarily small ε > 0.

Equivalently, we can also conclude from (7.13) that transmission with a given fixed rate

r can be supported with error probability

ε|h|2 = Q

 log2(1 + SNR|h|2)− r√
1

(T−N)B

(
1− 1

(SNR|h|2+1)2

)
log2 e

 (7.14)

where the dependence of the error probability on fading is made explicit by expressing ε with

subscript |h|2.

In order to observe the effect of finite-length codewords on the reliability of transmissions,

in Fig. 7.2 we display the error probability vs. transmission rate when the transmitter is

assumed to employ finite-length codewords together with the asymptotical behavior as the

codeword length grows without bound. According to the Shannon capacity limit, when

the codeword length increases without bound, we can achieve reliable transmission with no

decoding errors (i.e., ε = 0) for any transmission rate less than the instantaneous channel

capacity, i.e., r < C = log2(1 + SNR|h|2), whereas reliable communication is not possible

when r ≥ C. Indeed, as noted in [89], by the strong converse, when r > C, probability

of error goes exponentially to 1 as the blocklength increases. Therefore, we have the sharp

2For (7.13) to hold, we assume that (T −N)B is sufficiently large but finite.
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Figure 7.2: Error probability vs. transmission rate for infinite-length and finite-length code-
words, SNR = 3, |h|2 = 1, and C = log2(1 + SNR|h|2) = 2.

cutoff at the instantaneous capacity in Fig. 7.2 for the asymptotic scenario of codewords

of infinite length. Close inspection of (7.14) leads to the same conclusion as well. Let

r > log2(1 + SNR|h|2). Then, as the blocklength (T − N)B increases to infinity, the term√
1

(T−N)B

(
1− 1

(SNR|h|2+1)2

)
vanishes and in the limit, we have ε|h|2 = Q(−∞) = 1. If

r < log2(1 + SNR|h|2), we asymptotically have ε|h|2 = Q(∞) = 0.

On the other hand, for finite-length codewords, when we plot (7.14), we see that we

have a relatively smooth transition. This behavior indicates that for transmissions with

rates less than the instantaneous capacity, we can still have errors, albeit with relatively

small probabilities, while transmission rates above the instantaneous capacity can lead to

successful transmissions but again only with small probability.

7.3 State Transition Model for the Cognitive Radio

Channel and Effective Throughput

Before a detailed analysis, we first briefly describe the impact of considering finite-blocklength

regime in the throughput analysis of cognitive radio channels in the presence of buffer con-
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straints. The critical difference from the studies with infinite-blocklength codes is that we

now have non-zero error probabilities even if the transmission rates are less than the instan-

taneous capacity. Moreover, we observe from (7.14) that error probabilities, for fixed-rate

transmissions, fluctuate depending on the channel conditions. In general, such error events

will be reflected in the subsequent analysis by the presence of OFF states in which reliable

communication is not achieved due to errors and consequently retransmissions are required.

This potentially has significant impact in buffer-limited systems as frequent communication

failures and retransmission requests can easily lead to buffer overflows. Therefore, coding

rates and error probabilities in the finite-blocklength regime should be judiciously analyzed

and optimal transmission parameters should be identified. Situation is further exacerbated

in cognitive radio systems in which channel sensing is performed imperfectly and interference

constraints are imposed. Firstly, time allocated to channel sensing results in reduced trans-

mission duration, leading to reduced codeword blocklength with consequences on both the

rates and error probabilities. Additionally, false-alarms and miss-detections, experienced

due to imperfect sensing, cause over- or underestimations of the channel, and resulting

mismatches cause transmission rates and/or error probabilities to exceed or be lower than

required or target levels.

In this section, we first construct an eight-state Markov chain in order to model the

cognitive radio channel, and then derive the corresponding state transition probabilities when

CSI is assumed to be perfectly known either at the receiver only or at both the receiver and

transmitter. Subsequently, we analyze the throughput achieved with finite blocklength codes

in the presence of buffer constraints under these two assumptions.

7.3.1 Perfect CSI at the Receiver Only

It is assumed that perfect knowledge of fading realizations is available at the secondary

receiver, but not at the secondary transmitter. Therefore, the transmitter performs data

transmission with constant rate of r1 or r2 based on the sensing decision about the channel
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occupancy by the primary users.

7.3.1.1 State Transition Model

Before analyzing the throughput achieved by the secondary users with finite blocklength

codes under buffer constraints, we construct a state transition model for the cognitive radio

channel. First, we list the four possible scenarios, together with corresponding signal-to-

noise ratio expressions, arising as a result of different channel sensing decisions and the true

nature of primary users’ activity:

• Scenario I (Correct-detection denoted by joint event (H1, Ĥ1)):

Busy channel is sensed as busy and SNR1 = P 1

B(σ2
n+σ2

s)
.

• Scenario II (Miss-detection denoted by (H1, Ĥ0)):

Busy channel is sensed as idle and SNR2 = P 2

B(σ2
n+σ2

s)
.

• Scenario III (False-alarm denoted by (H0, Ĥ1)):

Idle channel is sensed as busy and SNR3 = P 1

Bσ2
n
.

• Scenario IV (Correct-detection denoted by (H0, Ĥ0)):

Idle channel is sensed as idle and SNR4 = P 2

Bσ2
n
.

Additionally, transmission rate is r1 bits/s/Hz in scenarios 1 and 3 above, and is r2

bits/s/Hz in scenarios 2 and 4. When codewords of length (T − N)B are used to send the

data at these fixed rates, we know from the discussion in Section 7.2 that information is

received reliably with probability (1− ε|h|2) while errors occur and retransmission is needed

with probability ε|h|2 as formulated in (7.14). More specifically, the error probabilities in

scenarios 1 and 3 are

εd(|h|2) = Q

 log2(1 + SNRd|h|2)− r1√
1

(T−N)B

(
1− 1

(SNRd|h|2+1)2

)
log2 e

 (7.15)
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for d = 1 and 3, respectively. Similarly, we have

εl(|h|2) = Q

 log2(1 + SNRl|h|2)− r2√
1

(T−N)B

(
1− 1

(SNRl|h|2+1)2

)
log2 e

 (7.16)

in scenarios 2 and 4 for l = 2 and 4, respectively. Above, we see that error probability is a

function of the fading coefficient |h| and SNR. From this discussion, we conclude that the

channel can be either in the ON state (in which information is reliably received) or the OFF

state (in which erroneous reception occurs) in each scenario. Hence, we have eight states in

total in the Markov model for the cognitive radio channel as depicted in Fig. 7.3. Note that

Figure 7.3: The state-transition model for the cognitive radio channel with eight possible
states.

since reliable communication cannot be achieved in the OFF states, the transmission rate is

effectively zero and the data has to be retransmitted in these states. Therefore, the service
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rates (in bits/frame) in four scenarios can be expressed, respectively, as

Rd =


0 with probability εd(|h|2)

(T −N)Br1 with probability (1− εd(|h|2))

(7.17)

Rl =


0 with probability εl(|h|2)

(T −N)Br2 with probability (1− εl(|h|2))

(7.18)

for d = 1, 3 and l = 2, 4.

Next, we identify the transition probabilities from state i to state k denoted by pik in

the eight state transition model of the cognitive radio channel. We initially analyze in detail

p11, the probability of staying in the topmost ON state.

We can first express p11 as follows:

p11 = Pr

 Channel is busy and detected as busy

and channel is ON in the ith frame

∣∣∣ Channel was busy and detected as busy

and channel was ON in the (i− 1)th frame


(7.19)

= Pr

 Channel is busy

in the ith frame

∣∣∣ Channel was busy

in the (i− 1)th frame

 (7.20)

× Pr

 Channel is detected as busy

in the ith frame

∣∣∣ Channel is busy

in the ith frame


× Pr(Channel is ON in the ith frame) (7.21)

=(1− s)Pd(1− ε1(|h|2). (7.22)

Subsequently, we can write (7.20) by noting that channel being actually busy in the current

frame depends on its state in the previous frame due to the two-state Markov chain, and

channel being detected as busy in the ith frame depends only on the true state of the channel
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being busy or idle in the ith frame and not on previous true states and sensing decisions

since channel sensing is performed in each frame independently. Moreover, channel being

ON does not depend on the sensing decisions and channel being ON or OFF in the previous

frames due to the block-fading assumption. Finally, we have (7.22) by observing that the

first probability in (7.20) is PB,B = 1 − s in the Markov chain, the second probability is

the correct detection probability Pd in channel sensing, and channel is ON with probability

(1− ε1(|h|2)) as discussed above.

By following the same steps, transition probabilities from all eight states to state 1 can be

found as

pi1 = p11 = p21 = p31 = p41 = (1− s)Pd(1− ε1(|h|2)),

pk1 = p51 = p61 = p71 = p81 = qPd(1− ε1(|h|2)).

(7.23)

The channel is busy in the first four states and we see that the transition probabilities from

these four states to the first state are the same. The channel is idle in the last four states

and similarly their transition probabilities are equal. Hence, (7.23) shows that we can group

the transition probabilities into two with respect to the true nature of the channel, i.e., busy

or idle. The rest of the transition probabilities between each state can be derived in a similar

fashion and the overall result can be listed as follows for i = 1, 2, 3, 4 and k = 5, 6, 7, 8:

pi2 =(1−s)Pdε1(|h|2) pk2 =qPdε1(|h|2),

pi3 =(1−s)(1−Pd)(1−ε2(|h|2)) pk3 =q(1−Pd)(1−ε2(|h|2)),

pi4 =(1−s)(1−Pd)ε2(|h|2) pk4 =q(1−Pd)ε2(|h|2),

pi5 =sPf(1−ε3(|h|2)) pk5 =(1−q)Pf(1−ε3(|h|2)),

pi6 =sPfε3(|h|2) pk6 =(1−q)Pfε3(|h|2),

pi7 =s(1−Pf)(1−ε4(|h|2)) pk7 =(1−q)(1−Pf)(1−ε4(|h|2)),

pi8 =s(1−Pf)ε4(|h|2) pk8 =(1−q)(1−Pf)ε4(|h|2).

(7.24)

The set of transition probabilities is expressed in an 8 × 8 state transition matrix given

in (7.25) on the next page. Note that the rank of R is 2 since it has only two linearly

140



R =


p1,1 p1,2 . . . p1,8

. . . . . .
p4,1 p4,2 . . . p4,8

p5,1 p5,2 . . . p5,8

. . . . . .
p8,1 p8,2 . . . p8,8

=


pi1 . . pi8
. . . .
pi1 . . pi8
pk1 . . pk8

. . . .
pk1 . . pk8

 . (7.25)

independent column vectors.

7.3.1.2 Throughput Under Buffer Limitations

Now, we determine the throughput achieved with finite blocklength codes subject to buffer

constraints by obtaining the effective rate of the cognitive radio channel with the state-

transition model constructed in the case of perfect CSI at the receiver only. The approach

and techniques in this section closely follow [86] with the difference that we now consider

performance in the finite blocklength regime. In [90, Chap. 7, Example 7.2.7], it is shown

for Markov modulated processes that

Λ(θ)

θ
=

1

θ
loge sp(φ(θ)R) (7.26)

where Λ(θ) is defined underneath (2.19), sp(φ(θ)R) is the spectral radius or the maximum of

the absolute values of the eigenvalues of the matrix φ(θ)R, R is the transition matrix of the

underlying Markov process, and φ(θ) = diag(φ1(θ), . . . , φM(θ)) is a diagonal matrix whose

components are the moment generating functions of the processes in M states (M = 8 in

our model). In our case, we have

φ(θ) = diag{eθ(T−N)Br1 , 1, eθ(T−N)Br2 , 1, eθ(T−N)Br1 , 1, eθ(T−N)Br2 , 1}, and (7.27)
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φ(θ)R =



eθ(T−N)Br1pi1 . . . eθ(T−N)Br1pi8

pi1 . . . pi8

eθ(T−N)Br2pi1 . . . eθ(T−N)Br2pi8

pi1 . . . pi8

eθ(T−N)Br1pk1 . . . eθ(T−N)Br1pk8

pk1 . . . pk8

eθ(T−N)Br2pk1 . . . eθ(T−N)Br2pk8

pk1 . . . pk8



. (7.28)

Note that φ(θ)R is a rank-2 matrix as well. As the n-rowed (n ≥ 3) principal minors of

φ(θ)R are zero, the coefficients of the characteristic polynomial of the matrix φ(θ)R can be

found in terms of adding only the 1-rowed and 2-rowed principal minors, then the maximum

root of this polynomial gives the spectral radius sp(φ(θ)R), which is expressed in

sp(φ(θ)R) =
1

2

[
φ1(θ)pi1 + · · ·+ φ4(θ)pi4 + φ5(θ)pk5 + · · ·+ φ8(θ)pk8

]
+

1

2

{[
φ1(θ)pi1 + · · ·+ φ4(θ)pi4 − φ5(θ)pk5 − · · · − φ8(θ)pk8

]2

+ 4(φ1(θ)pk1 + · · ·+ φ4(θ)pk4)× (φ5(θ)pi5 + · · ·+ φ8(θ)pi8)

} 1
2

.

(7.29)

Now, combining (2.19), (7.26), and (7.29), we can easily express the effective rate of the
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cognitive channel in the following:

RE(SNR, θ) = max
r1,r2≥0

− 1

θTB
loge E|h|2

(
1

2

[
(pi1 + pk5)e−θ(T−N)Br1

+ (pi3 + pk7)e−θ(T−N)Br2 + pi2 + pi4 + pk6 + pk8

]
+

1

2

{[
(pi1 − pk5)e−θ(T−N)Br1 + (pi3 − pk7)e−θ(T−N)Br2 + pi2 + pi4 − pk6 − pk8

]2

+ 4(pk1e
−θ(T−N)Br1 + pk2 + pk3e

−θ(T−N)Br2 + pk4)

× (pi5e
−θ(T−N)Br1 + pi6 + pi7e

−θ(T−N)Br2 + pi8)
} 1

2

)
.

(7.30)

Note that RE(SNR, θ) in (7.30) characterizes the maximum constant arrival rates that the

cognitive radio channel can support in the finite blocklength regime under buffer limita-

tions characterized by the QoS exponent θ. Note that this throughput is maximized over

transmission rates r1 and r2.

Throughput in the absence of any buffer constraints, which can be easily determined by

letting θ → 0 in RE(SNR, θ), is given by

RE(SNR, 0) = max
r1,r2≥0

(T −N)r1Pd

2T (s+ q)

(
(1− s)(3q − s) + 4sq

)
(1− E|h|2{ε1(|h|2)})

+
(T −N)r2(1−Pd)

2T (s+ q)

(
(1− s)(3q − s) + 4sq

)
(1− E|h|2{ε2(|h|2)})

+
(T −N)r1Pf

2T (s+ q)

(
(1− s)(3s− q) + 4sq

)
(1− E|h|2{ε3(|h|2)})

+
(T −N)r2(1−Pf)

2T (s+ q)

(
(1− s)(3s− q) + 4sq

)
(1− E|h|2{ε4(|h|2)})

(7.31)

7.3.2 Perfect CSI at both the Receiver and Transmitter

Instead of CSI known by the receiver only, we in this subsection consider that both the

secondary transmitter and receiver have access to perfect CSI. Therefore, the secondary
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transmitter can adapt its transmission scheme by varying the rate depending on the instan-

taneous values of the fading coefficient |h|.

7.3.2.1 State Transition Model

Under the assumption of perfect CSI at the transmitter, the eight-state Markov model for

the cognitive radio channel with four possible scenarios and ON/OFF states is unchanged as

we defined in the case of perfect CSI at the receiver only. Additionally, the SNR expressions

in each scenario are still the same. In contrast to fixed-rate transmission schemes, for a given

fixed target error probability ε, the secondary transmitter now varies its transmission rate

according to the channel conditions and channel sensing decision. More specifically, in the

case of channel being sensed as busy, the secondary transmitter initiates data transmission

with rate

r1(SNR1, |h|2) = log2(1 + SNR1|h|2)−

√
1

(T −N)B

(
1− 1

(SNR1|h|2 + 1)2

)
Q−1(ε) log2 e. (7.32)

On the other hand, if no primary user activity is sensed in the channel, we have the following

transmission rate

r2(SNR4, |h|2) = log2(1 + SNR4|h|2)−

√
1

(T −N)B

(
1− 1

(SNR4|h|2 + 1)2

)
Q−1(ε) log2 e. (7.33)

Before specifying the transition probabilities of the cognitive radio channel, we initially

determine the error probabilities in each scenario that are associated with the transmission

rates r1(SNR1, |h|2) or r2(SNR4, |h|2):

• In scenario 1, the fixed target error probability ε is attained with the transmission rate

r1(SNR1, |h|2) defined above.

• In scenario 2 (in which we have missed detection), due to the primary user activity

and the resulting interference on secondary users, the actual channel rate associated

with error probability ε is

log2(1 + SNR2|h|2)−

√
1

(T −N)B

(
1− 1

(SNR2|h|2 + 1)2

)
Q−1(ε) log2 e. (7.34)
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However, the secondary users do not know the true state of the channel, and they only

have the imperfect channel sensing result. In this case, the channel is detected as idle

even if the primary users are active. Hence, for the given target error probability ε,

the secondary users send data with rate r2(SNR4, |h|2), which is obviously higher than

the actual rate in (7.34) that the channel actually supports with error probability ε.

As a result, we have in fact higher error probability ε′′|h|2 (compared to the given target

error probability ε) when the transmission rate is r2(SNR4, |h|2). Equating the transmis-

sion rate r2(SNR4, |h|2) to that in (7.34), and rearraging the terms, the final expression

of the actual error probability ε′′|h|2 can be found as

ε′′|h|2 = Q

 log2(1+SNR2|h|2
1+SNR4|h|2 ) +

√
1

(T−N)B

(
1− 1

(SNR4|h|2+1)2

)
Q−1(ε) log2 e√

1
(T−N)B

(
1− 1

(SNR2|h|2+1)2

)
log2 e

 . (7.35)

In this case, due to the sensing error, we are subject to more transmission errors

resulting in lower reliability in data transmission. We also see that error probability

ε′′|h|2 in (7.35) that can be achieved with transmission rate r2(SNR4, |h|2) is a function of

the fading coefficient |h|.

• In scenario 3 (in which we have false alarm), for a given error probability ε, the channel

supports the rate

log2(1 + SNR3|h|2)−

√
1

(T −N)B

(
1− 1

(SNR3|h|2 + 1)2

)
Q−1(ε) log2 e (7.36)

which is higher than the rate r1(SNR1, |h|2) because there is actually no interference

from the primary users, i.e, SNR1 < SNR3. Therefore, the error probability that can be

attained with this transmission rate is less than the given fixed target error probability

ε. Following the same approach adopted in scenario 2, the actual error probability ε′|h|2
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can be expressed as

ε′|h|2 = Q

 log2(1+SNR3|h|2
1+SNR1|h|2 ) +

√
1

(T−N)B

(
1− 1

(SNR1|h|2+1)2

)
Q−1(ε) log2 e√

1
(T−N)B

(
1− 1

(SNR3|h|2+1)2

)
log2 e

 . (7.37)

Note that, the error probability ε′|h|2 again varies with the fading coefficient |h|.

• In scenario 4, the constant error probability ε is attained with rate r2(SNR4, |h|2).

By combining the above error probability expressions, the average probability of error for

variable-rate transmissions is given by

εavg = Pr(H1, Ĥ1)ε+ Pr(H1, Ĥ0)E|h|2{ε′′|h|2}+ Pr(H0, Ĥ1)E|h|2{ε′|h|2}+ Pr(H0, Ĥ0)ε. (7.38)

We can further express εavg by using the prior probabilities of the channel state given in

(7.1) and the probabilities of channel sensing decisions in (7.5) – (7.7) as follows:

εavg = Pr(H1) Pr(Ĥ1|H1)ε+ Pr(H1) Pr(Ĥ0|H1)E|h|2{ε′′|h|2}

+ Pr(H0) Pr(Ĥ1|H0)E|h|2{ε′|h|2}+ Pr(H0) Pr(Ĥ0|H0)ε

=
q

q + s
Pdε+

q

q + s
(1−Pd)E|h|2{ε′′|h|2}+

s

s+ q
PfE|h|2{ε′|h|2}+

s

s+ q
(1−Pf)ε.

(7.39)
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Now we can obtain the transition probabilities for i = 1, 2, 3, 4 and k = 5, 6, 7, 8 in a similar

fashion as in the case of perfect CSI only at the receiver

pi1 = (1− s)Pd(1− ε) pk1 = qPd(1− ε),

pi2 = (1− s)Pdε pk2 = qPdε,

pi3 = (1− s)(1−Pd)(1− ε′′|h|2) pk3 = q(1−Pd)(1− ε′′|h|2),

pi4 = (1− s)(1−Pd)ε′′|h|2 pk4 = q(1−Pd)ε′′|h|2 ,

pi5 = sPf(1− ε′|h|2) pk5 = (1− q)Pf(1− ε′|h|2),

pi6 = sPfε
′
|h|2 pk6 = (1− q)Pfε

′
|h|2 ,

pi7 = s(1−Pf)(1− ε) pk7 = (1− q)(1−Pf)(1− ε),

pi8 = s(1−Pf)ε pk8 = (1− q)(1−Pf)ε,

(7.40)

where the transition probabilities to states 1, 2, 7 and 8 are constant while the rest of the

transition probabilities depend on the fading coefficient |h|.

7.3.2.2 Throughput Under Buffer Limitations

We will use the same techniques described in the case of perfect CSI at the receiver only. Since

service rates in ON states are functions of the fading coefficient in variable-rate transmission,

the only difference comes from the moment generating functions of the processes in ON states

as follows:

φ(θ) = diag
{
E|h|2{eθ(T−N)Br1(SNR1,|h|2)}, 1,E|h|2{e−θ(T−N)Br2(SNR4,|h|2)}, 1,

E|h|2{eθ(T−N)Br1(SNR1,|h|2)}, 1,E|h|2{e−θ(T−N)Br2(SNR4,|h|2)}, 1
}
.

(7.41)
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Then, the approach given in the case of perfect CSI only at the receiver, can be applied to

obtain the effective rate under QoS constraints as

RE(SNR, θ) = max
ε≥0
− 1

θTB
loge E|h|2

(
1

2

[
(pi1 + pk5)E|h|2{e−θ(T−N)Br1(SNR1,|h|2)}

+ (pi3 + pk7)E|h|2{e−θ(T−N)Br2(SNR4,|h|2)}+ pi2 + pi4 + pk6 + pk8

]
+

1

2

{[
(pi1 − pk5)E|h|2{e−θ(T−N)Br1(SNR1,|h|2)}+ (pi3 − pk7)E|h|2{e−θ(T−N)Br2(SNR4,|h|2)}

+ pi2 + pi4 − pk6 − pk8

]2
+ 4(pk1E|h|2{e−θ(T−N)Br1(SNR1,|h|2)}+ pk2 + pk3E|h|2{e−θ(T−N)Br2(SNR4,|h|2)}

+ pk4)× (pi5E|h|2{e−θ(T−N)Br1(SNR1,|h|2)}+ pi6 + pi7E|h|2{e−θ(T−N)Br2(SNR4,|h|2)}+ pi8)
} 1

2

)
(7.42)

The target error probability ε can be optimized to maximize the effective throughput.

When the cognitive radio channel is not subject to any buffer constraints, hence QoS expo-

nent θ → 0, we have the effective rate expression given by

RE(SNR, 0) = max
ε≥0

(T −N)E|h|2{r1(SNR1, |h|2)}Pd

2T (s+ q)

(
(1− s)(3q − s) + 4sq

)
(1− ε)

+
(T −N)E|h|2{r2(SNR4, |h|2)}(1−Pd)

2T (s+ q)

(
(1− s)(3q − s) + 4sq

)
(1− E|h|2{ε′′|h|2})

+
(T −N)E|h|2{r1(SNR1, |h|2)}Pf

2T (s+ q)

(
(1− s)(3s− q) + 4sq

)
(1− E|h|2{ε′|h|2})

+
(T −N)E|h|2{r2(SNR4, |h|2)}(1−Pf

2T (s+ q)

(
(1− s)(3s− q) + 4sq

)
(1− ε)

(7.43)

7.4 Numerical Results

In this section, the results of numerical computations are illustrated. More specifically, we

numerically investigate optimal transmission parameters such as optimal fixed transmission

rates and optimal target error probabilities in variable-rate transmissions. Furthermore, we

analyze the impact sensing parameters and performance (e.g., sensing duration and thresh-

old, and detection and false-alarm probabilities), different levels of QoS constraints, and

codeword blocklengths on the throughput in cognitive radio systems. Numerically, we pro-
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vide characterizations for key tradeoffs.

In the simulations, we consider Rayleigh fading channel with exponentially distributed

fading power with unit mean, i.e., f|h|2(|h|2) = e−|h|
2
. It is assumed that the channel band-

width B = 10 kHz, noise power σ2
n = 0.05, interference power σ2

s = 0.12 and E{|gsp,j|2} = 1.

In the two state Markov model, the transition probabilities from busy to idle state PB,I = s

and from idle to busy state PI,B = q are set to 0.6 and 0.2, respectively. The average power

values are P 1 = 0 dB and P 2 = 10 dB in the cases of channel being sensed to be busy and

idle, respectively. Sensing threshold λ is chosen as 0.1 in order to have reasonable probabili-

ties of false alarm and detection. In this case, we have Pd ≈ 0.863 and Pf ≈ 0.005. Unless

mentioned explicitly, frame duration T is 100 ms, sensing duration N is 1 ms, and hence

data transmission is performed with (T −N)B = 990 complex signal samples.

7.4.1 Fixed-Rate Transmissions

Figure 7.4: The effective rate RE vs. fixed transmission rates r1 and r2 in the Rayleigh
fading environment. The code blocklength is (T −N)B = 990.

In Fig. 7.4, the effective rate RE is plotted as a function of fixed transmission rates r1

and r2. The QoS exponent θ is set to 0.001. We see that effective rate is maximized at

unique r1 and r2 values.
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Figure 7.5: The effective rate RE, the probabilities of false alarm Pf and detection Pd, the
probability of idle detection Pr(Ĥ0) vs. sensing duration N in fixed-rate transmission.

We analyze the tradeoff between the sensing duration N and the effective rate RE. Hence,

in Fig. 7.5, we plot the effective rate, the probabilities of false alarm and detection, the

probability of idle detection Pr(Ĥ0) as a function of the channel sensing duration N for

λ = 0.05, 0.1 and 0.2. The QoS exponent θ is set to 0.001. Again, fixed-rate transmissions

are considered and the effective rate is maximized over transmission rates. For λ = 0.05,

the false alarm and detection probabilities increase to 1 and approximately 0.5, respectively

with increasing N . Since the false alarm probability is higher, we have lower probability

of detecting channel as idle as seen in the lower right figure. Hence, the channel is not

efficiently utilized by cognitive users due to imperfect channel sensing decisions. Therefore,

the effective rate is small. On the other hand, when λ = 0.2, we have lower false alarm

and detection probabilities since the threshold level in hypothesis testing is higher. The

probabilities of false alarm and detection diminish to 0 as N increases. Thus, the secondary

user senses the channel as idle more frequently and performs data transmission with higher

average power level, which leads to higher effective rate. But, this comes at the expense

of higher interference on the primary users, which may be prohibitive since primary users’

transmission cannot be sufficiently protected. If we impose the average interference power

constraint in (7.11) with I0
maxj E{|gsp,j |2} = 7 dB, and peak transmission power constraints 0
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dB and 10 dB for P 1 and P 2, respectively, the power level is limited by the interference

constraint for lower values of detection probability. Hence, we have lower effective rate

with power control imposed through the constraint in (7.11) when λ = 0.2. As a result,

we provide effective protection for primary users. In the case of λ = 0.1, reliable channel

sensing is achieved since the probabilities of false alarm and detection approach 0 and 1,

respectively. The effective rate increases until a certain threshold due to reliable channel

sensing. However, after that threshold, the effective rate decreases with increasing channel

sensing duration. The reason is that as channel sensing takes more time, less time is available

for data transmission. Additionally, shorter coding blocklength for data transmission further

affects adversely, leading to lower effective throughput. Thus, there is a more intricate

tradeoff between channel sensing duration and throughput in the finite blocklength regime.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

2

4

6

8

10

Threshold λ

E
ff
e
c
ti
v
e
ra
te
R
E
(b
it
s
/s
/H
z
)

Fixed−power

Power control

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Threshold λD
e
te
c
ti
o
n
,
fa
ls
e
a
la
rm

p
ro
b
a
b
ili
ti
e
s

P
d

P
f

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Threshold λ

Id
le
,
b
u
s
y
d
e
te
c
ti
o
n
p
ro
b
a
b
ili
ti
e
s

Pr(H
0
)

Pr(H
1
)

θ=0

θ=10
−4

θ=5x10
−5

Figure 7.6: The effective rate RE, the probabilities of detection and false alarm, probabilities
of idle and busy detection vs. sensing threshold λ in fixed-rate transmissions.

In order to analyze the impact of the choice of the sensing threshold on the effective rate,

in Fig. 7.6, we plot the effective rate, probabilities of false alarm and detection, probabilities

of idle and busy detection vs. sensing threshold λ for the values of QoS exponent θ = 0,

5 × 10−5 and 10−4 in the fixed-rate transmission case. Since the channel sensing method

is independent of θ, we display the behavior of the above-mentioned probabilities without

any buffer limitations in the lower subfigures. The effective rate is again maximized with
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respect to transmission rates. Initially, as λ increases, the probability of false alarm starts

to diminish. This improves the detection performance, and hence secondary users obtain

more accurate channel sensing results. Therefore, the effective rate starts increasing. As

λ continues to increase, the false alarm probability approaches 0 and the probability of

detection starts to decrease as well. Hence, the cognitive users fail to detect the primary users’

activity even if they are active in the channel (i.e., we have higher miss detection probability),

and use the channel more frequently by transmitting data with higher average power level,

which explains the second increase in the effective rate. However, experiencing significant

interference can deteriorate the primary users’ data transmission. To avoid this harmful

interference caused by the secondary user, the lower bound on the detection probability can

be imposed, i.e., Pd ≥ 0.6. Also, the transmission power P 2 can be limited by the average

interference constraint in (7.11) with I0
maxj E{|gsp,j |2} = 7 dB , which leads to decreasing effective

rate as the secondary users fail to detect the primary users’ activity. In the figure, we also

see that effective rate decreases with increasing θ. Thus, the effective rate takes the highest

values in the absence of QoS constraints, i.e., when θ = 0.

7.4.2 Variable-Rate Transmissions

In Fig. 7.7, we consider variable-rate transmissions, and display numerical results for the

effective rate as a function of the target error probability ε for θ = 0, 0.01 and 0.1. As larger

values of the error probability ε indicate that cognitive users’ data transmission is subject

to more errors, they enter into OFF states frequently, where rate of reliable transmission is

effectively zero. Therefore, effective rate decreases as ε increases beyond a threshold. We also

observe that effective rate is maximized at a unique optimal error probability ε. Moreover,

effective rate decreases as QoS constraints become more stringent (i.e., for larger values of

θ).

The tradeoff between the blocklength and effective rate in variable-rate transmission is

analyzed. Hence, in Fig. 7.8, we display the behavior of the optimized error probability and
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Figure 7.7: The effective rate RE vs the probability of error ε for different values of QoS
exponent θ in variable-rate transmission.
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Figure 7.8: The effective rate RE and the probability of error ε vs. blocklength (T − N)B
in variable-rate transmission.

effective rate as a function of the code blocklength (T −N)B for θ = 0, 0.001, 0.005, 0.01. In

the lower subfigure we see that as the code blocklength increases, the optimal error probabil-

ity, which maximizes the effective rate, decreases for given θ values. In the upper subfigure,

we observe that if there is no such buffer limitation, effective rate increases with increasing

blocklength. However, under buffer constraints with θ = 0.005 and 0.01, as code block-

length increases until a certain threshold, data transmission is performed with decreasing

error probability ε, which improves the system performance because longer codewords are

transmitted more reliably. On the other hand, the effective rate starts to decrease after the
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threshold. This is due to our assumption that fading stays constant over the frame of T

seconds. As the blocklength and hence the value of T increase, cognitive users experience

slower fading. Therefore, possible unfavorable deep fading lasts longer, leading to degrada-

tion in performance. In order to avoid buffer overflows, secondary transmitter becomes more

conservative and supports only smaller arrival rates.
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Figure 7.9: The average error probability εavg and probabilities of false-alarm, detection vs.
sensing threshold λ.

In Fig. 7.9, we plot the average error probability εavg, which maximizes the effective rate

in variable-rate transmission and the probabilities of detection and false alarm vs. sensing

threshold λ for sensing duration of N = 6 ms and 10 ms. In the presence of CSI knowledge at

the transmitter, secondary transmitter performs variable-rate data transmission with given

fixed target error probability ε = 0.001 and θ = 0.001. As we know from the analysis

in the case of perfect CSI at both the receiver and transmitter, error probability does not

stay fixed at the target level of ε in scenarios 2, 3 where busy channel is sensed as idle

and idle channel is sensed as busy, respectively. As λ increases, the probability of false

alarm starts decreasing. Hence, average error probability decreases. When the probability

of detection and the probability of false alarm approach 1 and 0, respectively (in the case

of perfect channel sensing), the average error probability is equal to the fixed target error

probability ε = 0.001. As λ continues to increase, the detection probability diminishes and
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miss detection (scenario 2) occurs more frequently, resulting in error probabilities greater

than ε. Cognitive users can experience frequent errors in miss detections with variable error

probability ε′|h|2 , which is larger than the fixed target error probability of ε. Therefore, we

have higher average error probability. We can see that channel sensing plays a critical role on

the average error probability in variable-rate transmissions. Finally we note that as sensing

duration increases, the probabilities of false alarm and detection decrease with higher slopes

as threshold increases. We also note that lower average error probability is achieved with

larger N values when 0.05 < λ ≤ 0.14.
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Figure 7.10: The average error probability εavg and probabilities of false-alarm, detection vs.
channel sensing duration N .

Next, we analyze the tradeoff between the reliability of the variable-rate transmission and

the sensing duration. In Fig. 7.10, the average probability of error εavg, which achieves the

highest effective rate, the probabilities of detection and false alarm are given as a function of

sensing duration N for λ = 0.05, 0.1 and 0.2. The target error probability ε is fixed to 0.001.

When λ = 0.05, the detection probability approaches 1 and the false alarm probability ap-

proaches 0.5 as sensing duration increases. Thus, cognitive users detect the channel as busy

more and transmit data with fixed error probability ε or variable error probability ε′|h|2 (sce-

nario 1 and scenario 3, respectively). The average error probability decreases when channel

sensing takes more time and approaches approximately ε. For λ = 0.1, cognitive users almost
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perfectly sense the channel with false alarm and detection probabilities approaching 0 and 1,

respectively with increasing sensing duration. Thus, average error probability decreases and

approaches ε = 0.001. Therefore, data transmission is performed at the target error rate. If

λ is chosen as 0.2, error probability increases until a certain threshold since we have lower

false alarm and detection probabilities and the channel is detected as idle even though it is

occupied by primary users, where cognitive users’ transmission rate is achieved with error

rate ε′′|h|2 that is much bigger than the target error probability ε. After that threshold, less

time is allocated for data transmission. Therefore, lower transmission rates are supported,

yielding more reliable data transmission, and hence decreasing the average error probability.

7.4.3 Fixed-Rate vs. Variable-Rate Transmissions

In this subsection, we compare the effective rate achieved under fixed-rate and variable-rate

transmission schemes.
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Figure 7.11: The effective rate RE vs. QoS exponent θ for fixed-rate and variable-rate
transmission for different T values.

In Fig. 7.11, we display numerical results for the effective rate vs. QoS exponent θ in

fixed-rate and variable-rate transmissions for T = 200 ms, N = 1 ms and T = 1 s, N = 1

ms. Larger values of θ indicate that data transmission is performed under more strict QoS

constraints. We see that increasing θ diminishes the effective rate RE for both transmission
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schemes. The variable-rate transmission achieves better performance when T = 1 s, N = 1

ms for all values of θ. On the other hand, fixed-rate transmission outperforms for low values

of θ when T = 200 ms, N = 1 ms. Under more strict buffer limitations (higher values of

θ), cognitive users send data with lower rates. Thus, the reliability of transmission becomes

more important. Therefore, instead of sending data at constant rates, transmitter benefits

more by varying the rate.
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Figure 7.12: The effective rate RE vs. blocklength (T −N)B for fixed-rate and variable-rate
transmission, θ = 1.

Effective rateRE is given as a function of blocklength (T−N)B for fixed-rate and variable-

rate transmissions in Fig. 7.12. We previously observed that effective rate increases until a

certain threshold with increasing code blocklength. After that threshold, effective rate starts

to diminish. The reason of this trend is explained in Fig. 7.8 for variable-rate transmission.

In this figure, we also see that the same behavior is observed for fixed-rate transmission.

We interestingly note that transmitting with constant rates leads to higher effective rate

compared to varying the rate based on channel conditions when code blocklength is less

than 1500 complex signal samples. When (T − N)B is increased beyond 1500 complex

signal samples, keeping the error probability constant and performing data transmission

with variable rate result in better performance.
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Chapter 8

Throughput and Energy Efficiency

Optimization with QoS Constraints

and Arbitrary Input Distributions

This chapter mainly studies energy-efficiency and throughput optimization in the presence

of QoS constraints. The optimal power control policies maximizing the energy efficiency or

maximizing the throughput with arbitrary input signaling for general fading distributions

are obtained. Section 8.1 considers constant-rate arrivals while random arrivals are taken

into account in Section 8.2.

8.1 QoS-Driven Power Control Schemes for a Constant-

Rate Source

In this section, the optimal power control scheme that maximizes the effective capacity

or energy efficiency for constant-rate sources and arbitrary input distributions subject to

an average power constraint and QoS requirements are presented. The analysis leads to

simplified expressions for the optimal power control strategies in two limiting cases, i.e.,
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extremely stringent QoS constraints and looser QoS constraints. Also, tradeoff between the

effective capacity and energy efficiency is studied.

Section 8.1.1 introduces the system model. In Section 8.1.2, the optimal power control

policy maximizing the effective capacity achieved with arbitrary input distribtions is derived.

In Section 8.1.3, the optimal power control in limiting cases is analyzed. Section 8.1.4

provides low power regime analysis of the effective capacity attained with constant power

scheme and the optimal power control. Section 8.1.5 provides energy-efficient power control

scheme with arbitrarily distributed signals. Two limiting cases of the corresponding power

control scheme are analyzed in Section 8.1.6. Before presenting the numerical results in

Section 8.1.8, the optimal power control that maximizes the effective capacity subject to a

minimum energy efficiency constraint is obtained in Section 8.1.7.

8.1.1 System Model

We consider a point-to-point wireless communication link between the transmitter and the

receiver over a flat fading channel. Hence, the received signal is given by

y[i] = h[i]x[i] + n[i] i = 1, 2, . . . (8.1)

where x[i] and y[i] denote the transmitted and received signals, respectively, and n[i] is a

zero-mean, circularly symmetric, complex Gaussian random variable with variance N0. It is

assumed that noise samples {n[i]} form an independent and identically distributed (i.i.d.)

sequence. Also, h[i] represents the channel fading coefficient, and the channel power gain is

denoted by z[i] = |h[i]|2.

If the transmitter perfectly knows the instantaneous values of {h[i]}, it can adapt its

transmission power according to the channel conditions. Let P [i] denote the power allocated

in the ith symbol duration. Then, the instantenous received signal-to-noise ratio, SNR can

be expressed as γ = P [i]z[i]
N0B

where B is the system total bandwidth. The transmission
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power is constrained by P̄ , i.e., E{P [i]} ≤ P̄ , which is equivalent to E{µ[i]} ≤ SNR, where

µ[i] = P [i]
N0B

and SNR = P̄
N0B

. In the rest of the analysis, we omit the time index i for notational

brevity. We express the transmitted signal x in terms of a normalized unit-power arbitrarily

distributed input signal s. Now, the received signal can be expressed as

ŷ =
√
ρs+ n̂, (8.2)

where ρ = µz, jointly representing the channel gain and transmission and noise powers,

and n̂ is the normalized Gaussian noise with unit variance. In this setting, the delay-bound

violation probability is characterized to decay exponentially and can be approximated as [91]

Pr{D ≥ Dth} ≈ ϕe−θCE(SNR)Dth , (8.3)

where D denotes the steady state queueing delay, Dth represents the delay threshold, ϕ =

Pr{Q > 0} is the probability that the buffer is nonempty, which can be approximated by

the ratio of the average arrival rate to the average service rate [56].

When the service process {R[j]} is i.i.d., the effective capacity simplifies to

CE(SNR) = −1

θ
loge(E{eθR[j]}). (8.4)

8.1.2 Throughput-Efficient Optimal Power Control

Our goal is to derive the optimal power control policy that maximizes the effective capacity

achieved with an arbitrary input distribution, which can be found by solving the following

optimization problem

Copt
E (SNR) = max

µ(θ,z)
− 1

θTB
log(E

{
e−θTBI(µ(θ,z)z)

}
) (8.5)

subject to E{µ(θ, z)} ≤ SNR, (8.6)

160



where the expectation E{.} is taken with respect to the channel power gain z. Above,

Copt
E (SNR) denotes the maximum effective capacity attained with the optimal power control

scheme and µ(θ, z) represents the instantaneous transmission power as a function of both

the QoS exponent θ and channel power gain z. We first have the following characterization.

Theorem 8.1.1 The optimal power control, denoted by µopt(θ, z), which maximizes the ef-

fective capacity in (8.5), is given by

µopt(θ, z) =


0, z ≤ α,

µ∗(θ, z), z > α,

(8.7)

where µ∗(θ, z) is solution to

e−θTBI(µ∗(θ,z)z)MMSE(µ∗(θ, z)z)z = α (8.8)

and α satisfies

∫ ∞
α

µ∗(θ, z)f(z)dz = SNR. (8.9)

Above, f(z) is the probability density function (PDF) of the channel power gain z.

Proof: See Appendix M.

Solving the equation in (8.8) does not result in a closed form expression for µ∗(θ, z). We

next show that the equation in (8.8) has at most one solution, denoted by µ∗(θ, z). Hence

numerical root finding methods, e.g., bisection method, can efficiently determine µ∗(θ, z)

[92].

Proposition 8.1.1 The optimization problem in (8.5) has at most one solution.

Proof: See Appendix N.
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Table 8.1

Algorithm 7 Proposed power control algorithm for the effective capacity maximization
with arbitrarily distributed inputs under an average power constraint

1: Initialization: µh(θ, z) = µh,init, µl(θ, z) = µl,init, ε > 0, δ > 0, t > 0, α(0) = αinit

2: repeat
3: n← 0
4: repeat
5: update µ∗(θ, z) = 1

2
(µh(θ, z) + µl(θ, z))

6: if g(µ∗(θ, z))g(µh(θ, z)) < 0 (where g(.) is defined in (N.1)), then
7: µl(θ, z)← µ∗(θ, z)
8: else if g(µ∗(θ, z))g(µl(θ, z)) < 0, then
9: µh(θ, z)← µ∗(θ, z)

10: end if
11: until |g(µ∗(θ, z))| < ε
12: update α using the projection subgradient method as follows
13: α(n+1) =

[
α(n) − t(SNR− E{µ∗(θ, z)})

]+
14: n← n+ 1
15: until |α(n)(SNR− E{µ∗(θ, z)})| ≤ δ

In Table 8.1, the proposed power control algorithm that maximizes the effective capacity

with an arbitrary input distribution subject to an average power constraint is summarized,

where α in (8.8) is determined by using the projected subgradient method. In this method,

α is updated iteratively according to the subgradient direction until convergence as follows:

α(n+1)=
[
α(n)−t

(
SNR−E{µ∗(θ, z)}

)]+

(8.10)

where [x]+ = max{0, x}, n is the iteration index and t is the step size. When t is chosen

to be constant, it was shown that the subgradient method is guaranteed to converge to the

optimal value within a small range [60].

Remark 8.1.1 When the input signal is Gaussian, we have MMSE(ρ) = 1
1+ρ

and I(ρ) =

log2(1 + ρ). Substituting these expressions into (8.8), we can see that the optimal power
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control policy reduces to

µopt(θ, z) =


0 z ≤ α,

1

α
1

β+1 z
β
β+1

− 1
z

z > α,

(8.11)

which has exactly the same structure as given in [41].

8.1.3 Throughput-Efficient Optimal Power Control in Limiting

Cases

In this section, we analyze two limiting cases of the proposed optimal power control, in

particular, when the system is subject to extremely stringent QoS constraints (i.e., as θ →∞)

and looser QoS constraints (i.e., as θ → 0), respectively.

8.1.3.1 Optimal Power Control under Extremely Stringent QoS Constraints

Asymptotically, when θ →∞, the system is subject to increasingly stringent QoS constraints

and hence it cannot tolerate any delay. In this case, the transmitter maintains a fixed

transmission rate and the optimal power control converges to total channel inversion scheme

as follows:

µopt(z) =
C
z
, (8.12)

where the constant C can be found by satisfying the average transmit power constraint with

equality. In particular,

∫ ∞
0

C
z
f(z)dz = SNR.
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In Nakagami-m fading channel, the channel power gain is distributed according to the

Gamma distribution

f(z) =
zm−1

Γ(m)

(m
Ω

)m
e−

m
Ω
z for m ≥ 0.5, (8.13)

where m is the fading parameter, Ω is the average fading power and Γ(x) is the Gamma

function [85, eq. 8.310.1]. In this case, C is given by

C = SNRE
{1

z

}
=


SNRm
Ω(m−1)

m > 1

0 m ≤ 1

. (8.14)

It should be noted that Nakagami-m fading can model different fading conditions, e.g. in-

cluding Rayleigh fading (i.e., m = 1) and one-sided Gaussian fading (i.e., m = 0.5) as special

cases. Also, Nakagami-m fading distribution is commonly used to characterize the received

signal in urban radio [93] and indoor-mobile multipath propagation environments [94].

Remark 8.1.2 The power control policy under very stringent QoS constraints in (8.12) is

the same regardless of the signaling distribution while the effective capacity depends on the

input distribution through mutual information expression in (8.4).

8.1.3.2 Optimal Power Control under Loose QoS Constraints

As θ → 0, QoS constraints become looser and eventually vanish, and hence the system can

tolerate arbitrarily long delays. In this case, the effective capacity is equivalent to the achiev-

able (mutual information) rate with finite discrete inputs. Subsequently, the optimization

problem is expressed as

min
µ(z)

E{I(µ(θ, z))} (8.15)

subject to E{µ(θ, z)} ≤ SNR. (8.16)
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By following similar steps as in the proof of Theorem 8.1.1, the optimal power control policy

is given by

µopt(z) =
1

z
MMSE−1

(
min

{
1,

η

log2(e)z

})
. (8.17)

Above, MMSE−1(.) ∈ [0,∞) denotes the inverse MMSE function and the Lagrange multi-

plier, η can be found by inserting the proposed power control into the power constraint in

(8.16) and satisfying this constraint with equality as follows:

∫ ∞
η

log2(e)

µopt(z)f(z)dz = SNR. (8.18)

Remark 8.1.3 The power control policy in the absence of QoS constraints in (8.42) has the

same structure of mercury/water-filling [52]. It is seen that the power level depends on the

input distribution through the expression of inverse MMSE.

8.1.4 Low-Power Regime Analysis

In this section, we study, in the low-power regime, the effective capacity achieved with

arbitrary input distributions depending on the availability of CSI at the transmitter. In

particular, we study constant-power transmission in addition to the analysis of the optimal

power control in this regime.

8.1.4.1 Constant Power

Here, we assume that only the receiver has perfect CSI, and hence the signal is sent with

constant power. In the low-power regime, EE can be characterized by the minimum energy
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per bit Eb
N0 min

and wideband slope S0 [95]. First, energy per bit is defined as

Eb
N0

=
SNR

CE(SNR)
. (8.19)

Consequently, the minimum energy per bit required for reliable communication under QoS

constraints is obtained from

Eb
N0 min

= lim
SNR→0

SNR

CE(SNR)
=

1

ĊE(0)
, (8.20)

where ĊE(0) denotes the first derivative of the effective capacity CE(SNR) with respect to

SNR in the limit as SNR vanishes. Correspondingly, at Eb
N0 min

, S0 represents the growth of the

spectral efficiency with respect to Eb
N0

(in dB), which is obtained from

S0 =
−2(ĊE(0))2

C̈E(0)
loge 2. (8.21)

Above, C̈E(0) denotes the second derivative of CE(SNR) with respect to SNR in the limit as

SNR approaches zero. By using the minimum energy per bit in (8.20) and wideband slope

expression in (8.21), throughput can be approximated as a linear function of the energy per

bit (in dB) as follows:

R =
S0

10 log10(2)

(
Eb
N0 dB

− Eb
N0 min,dB

)
+ o

(
Eb
N0 dB

− Eb
N0 min,dB

)
, (8.22)

where Eb
N0 dB

= 10 log10
Eb
N0

which denotes the energy per bit in dB. We provide the following

characterization.

Theorem 8.1.2 The minimum energy per bit and wideband slope with arbitrary input dis-

tributions under QoS constraints for general fading distributions are given, respectively, by

Eb
N0 min

=
log 2

E{z}
and S0 =

2

(−Ï(0) + β) E{z2}
(E{z})2 − β

, (8.23)
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where Ï(0) denotes the second derivative of mutual information evaluated at SNR = 0.

Proof: See Appendix O.

From the above result, we immediately see that the same minimum energy per bit is

achieved regardless of the signaling distribution and QoS constraints. On the other hand,

the wideband slope depends on both the input distribution through Ï(0), and the QoS

exponent, θ. More speficially, for quadrature symmetric constellations such as QPSK, 8-

PSK or 16-QAM, we have Ï(0) = −1 while real valued constellations such as BPSK and

m-PAM have Ï(0) = −2 [52]. Hence, even though they have the same minimum energy

per bit, quadrature symmetric constellations have higher wideband slopes compared to real

valued constellations, yielding higher EE.

It should also be noted that we obtain the low power behavior of the mutual informa-

tion exhibited by the Gaussian input by setting Ï(0) = −1 in (O.1). Hence, substituting

Ï(0) = −1 in (8.23), the minimum energy per bit and wideband slope expressions can be

specialized to the case of Gaussian input, which leads the same formulations as in [46] under

the assumption of perfect CSI only at the receiver.

Remark 8.1.4 For a Nakagami-m fading channel, E{z} = Ω and E{z2} = Ω2
(
1 + 1

m

)
.

Inserting these expressions into (8.23), the minimum energy per bit and wideband slope for

a Nakagami-m fading channel can be found, respectively, as

Eb
N0 min

=
loge(2)

Ω
, and S0 =

2

−
(
1 + 1

m

)
Ï(0) + β

m

. (8.24)

We note that while the minimum bit energy depends only on the average fading power, Ω, the

wideband slope is a function of Nakagami-m fading parameter, input distribution and QoS

exponent, θ.

When there exists a dominant line of sight component along the propagation path, the

Rician fading channel is an accurate model. This type of fading typically occurs in microcel-

lular (e.g., suburban land-mobile radio communication) [96] and picocellular environments
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(e.g., indoor communication) [97]. In this case, the pdf of the channel power gain is given

by

f(z) =
(1 +K)e−K

Ω
e−

(K+1)z
Ω I0

(
2

√
K(K + 1)z

Ω

)
for K,Ω ≥ 0, (8.25)

where K denotes the Rician K-factor and I0(x) represents the zero-th order modified Bessel

function of the first kind [85, eq. 8.405.1].

Remark 8.1.5 By substituting E{z} = Ω and E{z2} = (2+4K+K2)Ω
(K+1)2 into (8.23), we obtain

the minimum energy per bit and wideband slope for Rician fading channel as follows:

Eb
N0 min

=
loge(2)

Ω
and S0 =

2(K + 1)2

−(2 + 4K +K2)Ï(0) + (2K + 1)β
. (8.26)

It can be easily verified that the wideband slope is an increasing function of the Rician K-

factor. Also, similar to Nakagami-m fading channel, the minimum energy per bit for Rician

fading channel depends only on the average fading power, Ω.

8.1.4.2 Optimal Power Control

Now, we assume that both the transmitter and receiver have perfect CSI. Below, we identify

the optimal power control policy in the low-power regime.

Theorem 8.1.3 he optimal power policy that maximizes the effective capacity with arbitrary

input distributions in the low power regime is given by

µ∗opt(θ, z) =
z − α(

β − Ï(0)
)
z2
. (8.27)

Proof: See Appendix P.
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For Nakagami-m fading channel, α can be determined as the solution of

−m2αΓ(m− 2, mα
Ω

) + ΩmΓ(m− 1, mα
Ω

)

Ω2Γ(m)
=
(
β − Ï(0)

)
SNR, (8.28)

where Γ(a, x) denotes the upper incomplete gamma function [85, eq. 8.350.2].

8.1.5 Energy-Efficient Optimal Power Control

In this subsection, we derive the optimal power control scheme that maximizes the energy

efficiency achieved with finite discrete inputs, which is defined as the ratio of the effective

capacity to the total power consumption, i.e.,

EE(θ) =
CE(SNR)

Pc + 1
ε
E{P (θ, z)}

. (8.29)

Above, the total power consumption includes average transmission power and circuit power

denoted by Pc, which corresponds to the average power consumption of the transmitter

circuitry (i.e., by filters, mixers, frequency synthesizers, etc.). Also, ε denotes the power

amplifier efficiency, i.e., ε ∈ [0, 1] and E{.} represents the expectation operator with respect

to the channel power gain, z.

By using the effective capacity expression in (8.4) and normalizing the system perfor-

mance with respect to TB, the optimization problem can now be formulated as

EEopt(θ) = max
Pn(θ,z)≥0

− 1
θTB

log
(
E{e−θTBI(Pn(θ,z)z)}

)
N0B(Pcn + 1

ε
E{Pn(θ, z)})

(8.30)

Above, Pcn = Pc
N0B

is the scaled circuit power, EEopt(θ) represents the maximum energy effi-

ciency attained with the optimal power control scheme, and Pn(θ, z) = P (θ,z)
N0B

. Respectively,

the optimal power control strategy is determined in the following result.

Theorem 8.1.4 The optimal power control policy, denoted by P opt
n (θ, z), which maximizes
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energy efficiency for finite discrete inputs under QoS constraints, is given by

P opt
n (θ, z) =


0, z ≤ γ1,

P ∗(θ, z), z > γ1

(8.31)

where P ∗(θ, z) is solution to

e−θTBI(P ∗(θ,z)z)MMSE(P ∗(θ, z)z)z = γ1 (8.32)

with

γ1 =
λE{e−θTBI(P ∗(θ,z)z)}

εθTB log2(e)
. (8.33)

The optimal value of λ can be found by solving the equation below:

log
(
E
{

e−θTBI(P opt
n (θ,z)z)

})
+ λ
(
Pcn +

1

ε
E
{
P opt
n (θ, z)

})
= 0. (8.34)

Proof: See Appendix Q.

It should be noted that Theorem 8.1.4 does not address any average power constraints.

If an average power constraint, E{P (θ, z)} ≤ Pavg, where Pavg denotes the average transmit

power limit at the transmitter, is imposed and the optimal power constraint in (8.31) satisfies

this constraint, then the average transmit power constraint does not have any effect on the

maximum energy efficiency. On the other hand, when E{P (θ, z)} > Pavg, in which the

average transmit power constraint is violated, the optimal power control that maximizes

energy efficiency is no longer valid. In such a case, the energy efficiency maximization

problem reduces to effective capacity maximization for finite discrete inputs subject to an

average transmit power constraint, and the optimal power control strategy is given by [98].

Remark 8.1.6 For Gaussian input signal, we have MMSE(ρ) = 1
1+ρ

and I(ρ) = log2(1+ρ).
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Inserting these expressions into (8.32), the optimal power control policy becomes

P opt
n (θ, z) =


0 z ≤ γ2

α
,

α
1

1+α

γ
1

1+α
2 z

α
1+α

− 1
z

z > γ2

α

(8.35)

which has the same structure as given in [41]. Above, α = θTB log2(e) is the normalized

QoS exponent and γ2 = λ
ε
E{(1 + P opt

n (θz)z)−α} where the optimal value of λ is determined

by solving the following equation:

log
(
E
{

(1 + P opt
n (θ, z)z)−α

})
+λ
(
Pcn+

1

ε
E
{
P opt
n (θ, z)

})
=0 (8.36)

8.1.6 Energy-Efficient Optimal Power Control in Limiting Cases

In this subsection, we analyze the optimal power control strategies which maximize the en-

ergy efficiency for finite discrete inputs in two limiting cases, which are that the system is

operating under extremely stringent QoS constraints (i.e., θ → ∞) and looser QoS con-

straints (i.e., θ → 0), respectively.

8.1.6.1 Optimal Power Control under Extremely Stringent QoS Constraints

When QoS constraints become stringent, i.e., θ → ∞, the optimal power control policy

converges to the total channel inversion as follows:

µopt(z) =
C
z
, (8.37)

where the constant C can be found by maximizing the energy efficiency, which can be ex-

pressed as

EEopt(θ) =
I(C)

N0B(Pcn + 1
ε
CE{1

z
})
. (8.38)
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The above energy efficiency is strictly quasi-concave function in C since the mutual infor-

mation is strictly concave in C [99] and the denominator is both affine and positive, and

hence the level sets Sβ = {C : EEopt(θ) ≥ β} = {β(N0B(Pcn + 1
ε
CE{1

z
})) − I(C) ≤ 0} are

strictly convex for any β ∈ R. Therefore, the energy efficiency in (8.38) has a unique global

maximum, which can be found by solving the equation below:

dEEopt(θ)

dC
= 0⇒ (8.39)

MMSE(C) log2(e)(Pcn + 1
ε
CE{1

z
})− I(C)1

ε
E{1

z
}

N0B(Pcn + 1
ε
CE{1

z
})2

= 0, (8.40)

where the optimal value of C can be found numerically using a bisection method.

Remark 8.1.7 From the above result, it is seen that the power control scheme under strin-

gent QoS constraints is the total channel inversion regardless of the signaling distribution.

On the other hand, the value of C depends on the input distribution through MMSE and

mutual information expressions in (8.40).

8.1.6.2 Optimal Power Control under Looser QoS Constraints

Here, we analyze the power control scheme maximizing the energy efficiency in the presence

of looser QoS constraints, which correspond to θ → 0. In this case, the effective capacity is

equivalent to the achievable rate with finite discrete inputs. Specifically, the energy efficiency

now becomes

EE(θ) =
E{I(Pn(θ, z)z)}

N0B
(
Pcn + 1

ε
E{Pn(θ, z)}

) . (8.41)

By following similar steps as in the proof of Theorem 8.1.4, the optimal power control policy

is obtained as

P opt
n (θ, z) =

1

z
MMSE−1

(
min

{
1,

λ1

ε log2(e)z

})
, (8.42)
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where MMSE−1(.) ∈ [0,∞) indicates the inverse MMSE function and the Lagrange multi-

plier, λ1 can be determined by solving the following equation:

E{I(P opt
n (θ, z)z)} − λ1

(
Pcn +

1

ε
E{P opt

n (θ, z)}
)

= 0. (8.43)

Remark 8.1.8 The power control policy in (8.42) has the structure of mercury/water-filling

[52]. However, the water level in this policy is determined to maximize the energy efficiency,

and average power constraint is not necessarily satisfied with equality in contrast to the case

of achievable rate maximization.

8.1.7 Optimal Power Control under a Minimum Energy Efficiency

Constraint

In this section, we analyze the tradeoff between the EE and the effective capacity achieved

with finite discrete inputs by formulating the optimization problem to maximize the effective

capacity subject to minimum EE and average transmit power constraints. More specifically,

the optimization problem is expressed as

Copt
E (SNR) = max

µ(θ,z)
− 1

θTB
logE

{
e−θTBI(µ(θ,z)z)

}
(8.44)

subject to
− 1
θTB

logE
{

e−θTBI(µ(θ,z)z)
}

N0B(1
ε
E{µ(θ, z)}+ Pcn)

≥ EEmin (8.45)

E{µ(θ, z)} ≤ SNR, (8.46)

where Pcn represents the normalized circuit power, EEmin denotes the minimum required

EE. In the following, we first derive the optimal power control subject to a minimum EE

constraint in (8.45) and then address the average power constraint given in (8.46).
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Theorem 8.1.5 The optimal power control policy maximizing the effective capacity with

finite discrete inputs subject to a minimum EE constraint is obtained as

µopt(θ, z) = µ∗(θ, z), (8.47)

where µ∗(θ, z) is solution to the equation below:

e−θTBI(µ∗(θ,z)z)MMSE(µ∗(θ, z)z)z =
νEEminN0BE{e−θTBI(µ(θ,z)z)}

ε(1 + ν) log2(e)
. (8.48)

Above, the Lagrange multiplier, ν can be found by solving the equation below:

− 1

θTB
logE

{
e−θTBI(µopt(θ,z)z)

}
− EEminN0B

(1

ε
E{µopt(θ, z)}+ Pcn

)
= 0. (8.49)

Consequently, the average transmit power that satisfies the required minimum EE is calculated

as

P̄ ∗ = N0BE{µopt(θ, z)}. (8.50)

Proof: See Appendix R.

Now, we incorporate the average transmit power constraint in (8.46) into the proposed

power control in (8.47). More specifically, if P̄ < P̄ ∗ and the maximum EE subject to average

power constraint, P̄ is less than EEmin, then the optimization problem is not feasible and

the the power level is set to zero, i.e., µ∗(θ, z) = 0. Otherwise the optimal power control is

found considering the following two cases:

• if P̄ ≥ P̄ ∗, average transmit power constraint is loose. In this case, the optimal power

control is given by (8.47) where the minimum EE constraint is satisfied with equality.

• if P̄ < P̄ ∗ and the maximum EE subject to average power constraint, P̄ is greater than

EEmin, the minimum EE constraint does not have any effect on the maximum effective
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capacity. In this case, the optimal power control is determined by (8.31) where the

average transmit power constraint, P̄ is satisfied with equality.

Remark 8.1.9 Inserting MMSE(ρ) = 1
1+ρ

and I(ρ) = log2(1 + ρ) into (8.48), the optimal

power control scheme for Gaussian distributed signal becomes

µ∗(θ, z) =


0 z ≤ γ1

1

γ
1

1+β
1 z

β
1+β

− 1
z

z > γ1

, (8.51)

which is in agreement with the result obtained in [45]. Above, γ1 = νEEminN0BE{e−θTBI(µ(θ,z)z)}
ε(1+ν) log2(e)

is the scaled Lagrange multiplier, which can be found by inserting the above power control

into (8.48) and solving the corresponding equation for γ1.

8.1.8 Numerical Results

In this section, we present numerical results to illustrate the proposed optimal power control

policies and the corresponding performance levels. Unless mentioned explicitly, we consider

Nakagami-m fading channel with m = 1 (which corresponds to Rayleigh fading) in the

simulations, and it is assumed that N0B = 1, TB = 1, Ω = 1 and average transmit power

constraint, P̄ = 0 dB. In the iterations, t is chosen as 0.1, ε and δ are set to 10−5.

In Fig. 8.1, we plot the instaneous power level as a function of the channel power gain

z and the QoS exponent θ for both Gaussian and BPSK signals. As θ decreases, QoS

constraint becomes looser. In this case, the power control for BPSK input has the structure

of mercury/water-filling policy. In particular, the power is allocated to the better channel up

to capacity saturation and then extra power is assigned to the worse channel. When the input

is Gaussian, the power adaptation policy becomes the water-filling scheme, with which more

power is assigned to the better channel opportunistically, deviating from the mercury/water-

filling policy. When θ increases and hence stricter QoS constraints are imposed, the optimal

power control policy becomes channel inversion for both inputs.
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Figure 8.1: The instantaneous transmission power as a function of channel power gain, z
and QoS exponent, θ for (a) Gaussian input; (b) BPSK input .

QoS exponent, θ
10

-3
10

-2
10

-1
10

0
10

1

M
a

x
im

u
m

 e
ff

e
c
ti
v
e

 c
a

p
a

c
it
y
, 

C
Eo

p
t  (

S
N

R
)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Gaussian
BPSK
QPSK
16-QAM

Figure 8.2: Maximum effective capacity Copt
E (SNR) vs. QoS exponent θ for Gaussian, BPSK,

QPSK and 16-QAM inputs.

In Fig. 8.2, we display the effective capacity Copt
E (SNR) as a function of the QoS exponent

θ for Gaussian, BPSK, QPSK and 16-QAM inputs. It is observed that as θ increases, the

effective capacity for all inputs decreases since the transmitter is subject to more stringent

QoS constraints, which results in lower arrival rates hence lower effective capacity. It is

also seen that Gaussian inputs always achieve higher effective capacity. For large θ values,

Gaussian input and QPSK exhibit nearly the same performance. Therefore, under strict

QoS constraints, QPSK can be efficiently used in practical systems rather than the Gaussian

input which is difficult to implement.
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Figure 8.3: Maximum effective capacity Copt
E (SNR) vs. average transmit power constraint,

P̄ for QPSK input.

In Fig. 8.3, we plot maximum effective capacity Copt
E (SNR) as a function of average

transmit power constraint, P̄ for QPSK input. QoS exponent, θ is set to 0.1. We compare

the performances of the constant-power scheme, power control assuming Gaussian input and

power control assuming QPSK input. It is observed that as P̄ increases, the effective capacity

increases and then saturates due to being fact that the input is generated from a finite discrete

modulation. It is seen that the power control considering the true input distribution, in this

case QPSK, achieves the highest effective capacity since the power control assuming Gaussian

input is not the optimal policy for the QPSK input and constant-power transmission strategy

does not take advantage of favorable channel conditions. In addition, the performance gap

between the optimal power control considering the discrete constallation and power control

assuming Gaussian input increases at moderate SNR levels.

In Fig. 8.4, maximum effective capacity Copt
E (SNR) as a function of QoS exponent, θ for

QPSK input is illustrated. We again consider the constant-power scheme, power control

assuming Gaussian input and power control assuming QPSK input. The constant-power

scheme has the worst performance with the lowest effective capacity for all values of θ.

It is also interesting to note that the performance gap between the power control policies

assuming Gaussian input and QPSK input decreases as θ increases. This is mainly due to
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Figure 8.4: Maximum effective capacity Copt
E (SNR) vs. QoS exponent, θ for QPSK input.

the fact that for higher values of θ, the power control scheme does not depend on the input

distribution and becomes total channel inversion.
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(b)

Figure 8.5: Effective capacity vs. energy per bit, Eb
N0 dB

for Gaussian, BPSK, QPSK and

16-QAM inputs (a) θ = 0.01 and (b) θ = 1.

In Fig. 8.5, we plot the effective capacity as a function of energy per bit, Eb
N0 dB

for constant-

power transmission when θ = 0.01 and θ = 1. We compare the performances of Gaussian,

BPSK, QPSK and 16-QAM inputs in the low power regime by analyzing the minimum energy

per bit and wideband slope values. It is observed that all inputs achieve the same minimum

energy per bit of −1.59 dB while the wideband slope for BPSK is smaller than those of

Gaussian, QPSK and 16-QAM inputs, which indicates lower EE for BPSK. Gaussian input
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achieves the highest EE among the inputs. We also consider the linear approximation for the

effective capacity in the low power regime given in (8.22) and the exact analytical effective

capacity expression in (8.4). It is seen that the linear approximation for all inputs is tight

at low SNR values or equivalently low values of Eb/N0 (dB). Additionally, when we compare

Fig. 5a with Fig.5b, we readily observe that the minimum energy per bit remains the same

as QoS exponent, θ changes from 0.01 to 1. On the other hand, wideband slope decreases

with increasing θ, which confirms the result in (8.24).
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Figure 8.6: Effective capacity vs. energy per bit, Eb
N0 dB

for QPSK input in Rician fading
channel.

In Fig. 8.6, we display effective capacity as a function of energy per bit, Eb
N0 dB

for QPSK

input. We consider Rician fading channel with different values of Rician K-factor (i.e.,

K = 0 dB and K = 5 dB). It is again observed that the linear approximation for the effective

capacity in (8.22) and the exact analytical effective capacity expression in (8.4) matches well

at low SNR values. Minimum energy per bit does not get affected by the Rician K-factor.

However, as K increases, EE increases as evidenced by the increased wideband slope. This

observation is in agreement with the minimum energy per bit and wideband slope expressions

in (8.26).

In Fig. 8.7, we plot effective capacity as a function of average transmit power constraint,

P̄ for Gaussian, BPSK, QPSK and 16-QAM inputs. We consider the proposed power control
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Figure 8.7: Effective capacity vs. average transmit power constraint, P̄ for Gaussian, BPSK,
QPSK and 16-QAM inputs.

in (8.31) and low-power approximation for the power control in (8.27). The figure validates

the accuracy of the approximation at low power levels. Also, decreasing P̄ leads to lower

effective capacity for all inputs.
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Figure 8.8: The energy efficiency vs the effective capacity for Gaussian, BPSK, QPSK and
16-QAM inputs.

In Fig. 8.8, we display the energy efficiency as a function of the effective capacity for

Gaussian, BPSK, QPSK and 16-QAM inputs. QoS exponent, θ is set to 0.001. It is seen that

the energy efficiency vs. effective capacity relation has a bell-shaped curve due to account-

ing for circuit power consumption in the total power expenditure. Also, Gaussian inputs

always have higher energy efficiency compared to BPSK, QPSK and 16-QAM inputs. It is
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observed from the figure that if the signal constellation size is small, there is a considerable

performance gap in terms of energy efficiency achieved with the proposed optimal power con-

trol assuming the true distribution of the input and that with the power control assuming

Gaussian distributed input. The reason is that the power control assuming Gaussian input

signaling is suboptimal for finite discrete inputs (i.e., BPSK, QPSK and 16-QAM inputs).

On the other hand, the performance gap decreases for larger constellation size, i.e., when we

have 16-QAM.
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Figure 8.9: The maximum achievable energy efficiency vs. QoS exponent, θ.

In Fig. 8.9, we plot the maximum achievable energy efficiency as a function of QoS

exponent, θ for Gaussian, BPSK, QPSK and 16-QAM inputs. We observe that the energy

efficiency for all inputs decreases and energy efficiencies get closer to each other as θ increases

because QoS requirement becomes more stringent. In the limiting case in which θ grows,

the transmitter adopts the total channel inversion scheme and supports lower transmission

rates. On the other hand, the maximum achievable energy efficiency of Gaussian, BPSK,

QPSK and 16-QAM inputs increases when QoS constraints get looser, and the performance

gap among the inputs is pronounced at low values of θ.

We analyze the tradeoff between effective capacity and EE. In particular, we display

effective capacity as a function of EE gain (%) for Gaussian, BPSK, QPSK and 16-QAM

inputs in Fig. 8.10. We assume that QoS exponent, θ = 0.1 and average transmit power
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Figure 8.10: Effective capacity gain vs. EE gain for Gaussian, BPSK, QPSK and 16-QAM
inputs.

constraint, P̄ = 6 dB. The EE gain is determined as the ratio of the minimum required

EE denoted by EEmin to the maximum achievable EE. It is seen that the effective capacity

decreases with increasing EE gain for all inputs. Again, Gaussian input achieves the highest

effective capacity.

8.2 QoS-Driven Power Control Schemes for Random

Sources

In the previous section, we consider constant-rate arrivals. However, other types of traffic

such as video or voice can be modeled using Markovian process. Therefore, proper choice of

source traffic models should be taken into account for effective QoS provisioning. To address

this issue, we incorporate more general random arrival models (e.g., discrete-time Markov

and Markov fluid sources, and discrete-time and continuous-time Markov modulated Poisson

(MMP) sources) and analyze the optimal power control policies that maximize the energy

efficiency and throughput with arbitrary input signaling under QoS constraints accordingly.

Section 8.2.1 introduces the channel model. In Section 8.2.2, we present effective band-

width of Markovian arrivals. In Section 8.2.3, throughput of wireless fading channels for

Markovian arrival models is provided. In Section 8.2.4, we derive the optimal power adap-

182



tation policy maximizing the energy efficiency with arbitrary input signaling. Section 8.2.5

determines the optimal power control scheme that maximizes the throughput subject to a

constraint on the minimum required energy efficiency. In Section 8.2.6, numerical results are

illustrated.

8.2.1 Channel Model

We consider a wireless communication link in which a transmitter is sending data to a receiver

over a flat fading channel. Thus, the channel input-output relation can be expressed as

yi = hixi + ni for i = 1, 2, . . . (8.52)

where xi and yi are the transmitted and received signals, respectively, and hi denotes

the channel fading coefficient and the channel power gain is represented by zi = |hi|2.

Also, ni denotes the zero-mean, circularly-symmetric, complex Gaussian noise with vari-

ance E{|ni|2} = N0.

We assume that the transmitter is equipped with perfect channel side information (CSI)

and hence performs power control. Let P(θ, zi) denote the transmission power as a function

of zi and θ, which is the QoS exponent described in the following section. We consider a

block-fading model and assume that the realizations of the fading coefficients stay fixed for

a block of symbols and change independently for the next block. Also, fading coefficients

are assumed to be identically distributed having arbitrary marginal distributions with finite

variances.

The time index i is omitted in the sequel for notational brevity. We express the trans-

mitted signal x in terms of a normalized unit-power arbitrarily distributed input signal s.

Hence, the normalized received signal can be written as

ŷ =
√
ρs+ n̂, (8.53)
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where ρ = P(θ,z)
N0

z including both the channel gain, transmission and noise powers, and n̂ is

the normalized Gaussian noise with unit variance.

8.2.2 Effective Bandwidth of Markov Arrivals

We assume that the data to be sent is generated by Markovian sources and is initially stored

in a buffer prior to transmission. Statistical QoS constraints are imposed in the form of

limitations on the buffer overflow probability. We mainly focus on Markovian sources with

two states (ON-OFF), namely discrete-time Markov and Markov fluid sources, and discrete-

time and continuous-time MMP sources. For these sources, we briefly describe below the

effective bandwidth, which characterizes the minimum constant transmission (or service)

rate required to support the given time-varying data arrivals while satisfying the statistical

QoS guarantees described in (2.17).

8.2.2.1 Discrete-time Markov Source

In this case, data arrivals are modeled as a discrete-time Markov process having a transition

probability matrix J with two states: an ON state in which r bits arrive (i.e., the arrival

rate is r bits/block), and an OFF state in which there are no arrivals. For this model, the

state transition probability matrix is

J =

p11 p12

p21 p22

 . (8.54)

Consequently, the effective bandwidth of this ON-OFF Markov model with transition prob-

ability J can be found as [100]

a(θ) =
1

θ
log

(
p11+ p22erθ+

√
(p11+ p22erθ)2−4(p11 + p22 − 1)erθ

2

)
. (8.55)
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Above p11 and p22 denote the probabilities of staying in the OFF state and ON state, re-

spectively. Hence, the transition probabilities from one state to a different one are denoted

by p21 = 1− p22 and p12 = 1− p11.

8.2.2.2 Markov Fluid Source

In this case, data arrivals are modeled as a continuous-time Markov process with a generating

matrix G, which is defined for two states (ON-OFF) as follows:

G =

−α α

β −β

 (8.56)

where α and β are the transition rates from OFF state to ON state and vice-versa, respec-

tively. In particular, there is no arrival in the OFF state while the arrival rate is r bits/block

in the ON state. Given the above generating matrix, the effective bandwidth of this ON-OFF

Markov model is expressed as [101]

a(θ) =
1

2θ

[
θr − (α + β) +

√
(θr − (α + β))2 + 4αθr

]
. (8.57)

8.2.2.3 Discrete-time Markov Modulated Poisson (MMP) Source

In this case, the data source is modeled as a Poisson process whose intensity varies according

to a discrete-time Markov chain. For the two-state model, the intensity of the Poisson arrival

process is r bits/block in the ON state whereas the intensity is 0 in the OFF state. Let the

Markov chain have the transition probability matrix J given in (8.54). Then, the effective

bandwidth is given by [56]

a(θ) =
1

θ
log

(
p11 + p22er(e

θ−1) +
√

[p11 + p22er(eθ−1)]2 − 4(p11 + p22 − 1)er(eθ−1)

2

)
. (8.58)
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8.2.2.4 Continuous-time Markov Modulated Poisson (MMP) Source

In this case, the data arrival is again modeled as a Poisson process but now the Poisson arrival

intensity is controlled by a continuous-time Markov chain. As in the previous subsubsection,

we consider that the intensities of the Poisson arrival process are r bits/block and 0 in the

ON and OFF states, respectively. Given the generating matrix G as in (8.56), the effective

bandwidth of this source is written as [101]

a(θ) =
1

2θ
[(eθ − 1)r − (α + β)] +

1

2θ

√
[(eθ − 1)r − (α + β)]2 + 4α(eθ − 1)r. (8.59)

8.2.2.5 Effective Capacity in Fading Channels

Effective capacity, as a dual concept to effective bandwidth, identifies the maximum constant

arrival rate that can be supported by a given time-varying service process while satisfying

(2.17). Under the block-fading assumption, the effective capacity can be expressed as [102]

CE(θ, z) = −1

θ
logE

{
e−θI(ρ)

}
, (8.60)

where I(ρ) indicates the input-output mutual information.

8.2.3 Throughput with Markovian Source Models

In this subsection, we seek to formulate the throughput of wireless fading channels for Marko-

vian arrival models by incorporating the effective bandwidth expressions and the notion of

effective capacity introduced in Section 8.2.2. Since we consider two-state Markov arrival

models with arrival rates r and 0 in the ON and OFF states, respectively, the average arrival

rate simply becomes

ravg = PONr, (8.61)
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which is equal to the average departure rate when the queue is in steady state [103]. Above,

PON denotes the probability of source being in the ON state.

Now, the throughput can be determined by identifying the maximum average arrival rate

that can be supported by the fading channel while satisfying the statistical QoS limitations

given in the form in (2.17). As shown in [103, Theorem 2.1], (2.17) is satisfied, i.e., buffer

overflow probability decays exponentially fast with rate controlled by the QoS exponent θ, if

the effective bandwidth of the arrival process is equal to the effective capacity of the service

process, i.e.,

a(θ) = CE(θ). (8.62)

By solving the above equation in (8.62), we obtain closed-form expressions of the maximum

average arrival rates r∗avg(θ) for discrete-time Markov and Markov fluid sources, and discrete-

time and continuous-time MMP sources with ON-OFF states in the following subsubsections.

The derivations below are similar to that in [104] and are provided here as well briefly for

the sake of completeness.

8.2.3.1 Discrete-time Markov Source

Inserting the effective bandwidth expression of the discrete-time Markov source in (8.55)

into (8.62), we can further simplify and express (8.62) in the following equivalent form:

(
p11+ p22erθ− 2eθCE

)2
= (p11+ p22erθ)2− 4(p11+ p22 − 1)erθ. (8.63)

After solving the equation for r, we obtain the maximum ON-state arrival rate as

r∗(θ) =
1

θ
loge

(
e2θCE(θ) − p11eθCE(θ)

(1−p11−p22)+p22eθCE(θ)

)
(8.64)
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and hence, the maximum average arrival rate can be expressed in terms of CE(θ) as

r∗avg(θ)=
PON

θ
loge

(
e2θCE(θ) − p11eθCE(θ)

(1−p11−p22)+p22eθCE(θ)

)
, (8.65)

where the probability of being in the ON state, PON, is given by

PON =
1− p11

2− p11 − p22

. (8.66)

8.2.3.2 Markov Fluid Source

Incorporating the effective bandwidth expression of Markov fluid source in (8.57) into (8.62)

and performing straightforward simplifications, we can rewrite (8.62) in the form of

(θr − (α + β)− 2θCE)2 = (θr − (α + β))2 + 4αθr. (8.67)

Solving the above equation yields the maximum average arrival rate in terms of CE(θ) as

r∗avg(SNR, θ) = PON
θCE(θ) + α + β

θCE(θ) + α
CE(θ). (8.68)

Above, PON is given by

PON =
α

α + β
. (8.69)

8.2.3.3 Discrete-time Markov Modulated Poisson (MMP) Source

We first combine the effective bandwidth expression in (8.58) with (8.62) and express (8.62)

in the following simplified form:

(
p11+p22er(e

θ−1) − 2eθCE(θ)
)2

=
(
p11 + p22er(e

θ−1)
)2 − 4(p11 + p22 − 1)er(e

θ−1). (8.70)
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Then, we solve for the maximum ON-state Poisson arrival intensity, r. Following this char-

acterization, the maximum average arrival rate for the two-state discrete-time MMP source

model is obtained in terms of CE(θ) as follows:

r∗avg(SNR, θ) =
PON

(eθ − 1)

[
log

(
e2θCE(θ) − p11eθCE(θ)

(1− p11 − p22) + p22eθCE(θ)

)]
. (8.71)

8.2.3.4 Continuous-time Markov Modulated Poisson (MMP) Source

Following similar steps as in the previous subsubsection, we simplify and express the equality

in (8.62) by incorporating (8.59) as

[(eθ − 1)r − (α + β)− 2θCE(θ)]2 = [(eθ − 1)r − (α + β)]2 + 4α(eθ − 1)r. (8.72)

After solving for r, the maximum average arrival rate for the two-state continuous-time MMP

source model can be found as

r∗avg(SNR, θ) = PON

( θ

eθ − 1

)θCE(θ) + α + β

θCE(θ) + α
CE(θ). (8.73)

8.2.4 Energy-Efficient Power Adaptation

In this subsection, we characterize and determine the optimal power control policy that

maximizes the energy efficiency, which is defined as the ratio of the maximum average arrival

rate to the total power. The optimization problem can be formulated as

EEopt(θ) = max
P(θ,z)≥0

r∗avg(θ)
1
ε
E {P(θ, z)}+ Pc

, (8.74)

where the expectation E {·} is taken with respect to the channel power gain z. Above, Pc

denotes the average power consumption of the electronic circuits such as amplifiers, mixers,

filters, and ε represents the power amplifier efficiency. In addition, EEopt(θ) represents

the maximum energy efficiency achieved with the optimal power control. In the following
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subsections, we derive the optimal power control policies for different Markovian arrival

models.

8.2.4.1 Discrete-Time Markov Source

First, we consider discrete-time Markov sources. Inserting the maximum average rate ex-

pression in (8.65) into (8.74), the optimization problem in (8.74) becomes

EEopt(θ) = max
P(θ,z)≥0

PON

θ
log
(

e2θCE(θ)−p11eθCE(θ)

(1−p11−p22)+p22eθCE(θ)

)
1
ε
E {P(θ, z)}+ Pc

. (8.75)

In the following result, we identify the optimal power control strategy for this case.

Proposition 8.2.1 The optimal power control policy, denoted by Popt(θ, z), which maxi-

mizes the energy efficiency for discrete-time Markov sources with arbitrary input signaling,

is given by

Popt(θ, z) =


0 z ≤ γ,

P∗(θ, z) z > γ

. (8.76)

Above, P∗(θ, z) is solution to

e−θI(P∗(θ,z)z)MMSE
(
P∗(θ, z)z

)
z = γ (8.77)

where

γ =
λ((1− p11 − p22)e−θCE(θ) + p22)(1− p11e−θCE(θ))

ε log2(e)θ(
(
2− p11e−θCE(θ))(1− p11 − p22) + p22eθCE(θ)

) . (8.78)

The optimal value of λ can be found by solving the equation below:

− log

(
e2θCE(θ) − p11eθCE(θ)

(1− p11 − p22) + p22eθCE(θ)

)
+ λ
(1

ε
E {P(θ, z)}+ Pc

)
= 0. (8.79)
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Proof: See Appendix S.
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Figure 8.11: Popt(θ, z) vs. channel power gain, z for (a) BPSK, θ = 0.0001; (b) Gaussian,
θ = 0.0001, (c) BPSK, θ = 1, (d) Gaussian, θ = 1.

In Fig. 8.11, we plot the instantaneous transmission power levels, Popt(θ, z), as a function

of channel power gain, z, for BPSK and Gaussian inputs under different QoS constraints,

e.g., θ = 0.0001 and θ = 1. We consider discrete-time Markov source with different transition

probabilities. It is observed that transmission power level depends on the QoS exponent, θ

and the source burstiness. In particular, when the system is subject to looser QoS constraints,

e.g., θ = 0.0001, the power control policy follows the water-filling scheme for Gaussian

inputs, i.e., more power is assigned as the channel power gain increases. However, for BPSK

inputs, the power is distributed according to the mercury/water-filling policy, i.e., the power

is allocated to better channel up to capacity saturation and then extra power is assigned
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to weaker channel. When θ = 1 corresponding the system is operating under strict QoS

constraints, the transmission power first increases and then diminishes as the channel power

gain increases for both inputs. It is also seen that less power is allocated for a given channel

power gain z as PON decreases and hence the source burstiness increases. Conversely, highest

instantaneous transmission power levels are achieved with the constant-rate source (with

p22 = 1 and p11 = 0, and hence PON = 1), which does not exhibit any burstiness. We also

notice from the upper figures that the impact of the source burstiness diminishes at low

values of θ as reflected by all curves being very close. In summary, source characteristics,

input types, and QoS requirements are critical factors affecting the optimal power control

policies.

Remark 8.2.1 When the input signal is Gaussian, we have MMSE(ρ) = 1
1+ρ

and I(ρ) =

log2(1 + ρ). Inserting these expressions in (8.76), the optimal power control policy reduces

to

Popt(θ, z) =


0 z ≤ γ

1

γ
1
η+1 z

η
η+1
− 1

z
z > γ

, (8.80)

where η = θ log2(e) and γ is again defined in (8.78), which is a function of the Lagrange

multiplier λ.

In the case of Rayleigh fading, a closed-form expression for finding λ is obtained by

evaluating the integrals in (8.79) as follows:

− log
( g(θ)2 − p11g(θ)

(1− p11 − p22) + p22g(θ)

)
+ λ
[1

ε

((1

γ

) 1
1+η

Γ
( 1

1 + η
, γ
)

+ Ei(−γ)

)
+ Pc

]
= 0,

where

g(θ) =
1

γ
η
η+1 Γ

(
1

1+η
, γ
)

+ 1− e−γ
. (8.81)
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Above, Γ(s, w) denotes the upper incomplete gamma function [54, eq. 6.5.3], and Ei(w)

represents the exponential integral [85, eq. 8.211.1].

8.2.4.2 Markov Fluid Source

Now, we consider Markov fluid sources. Incorporating the maximum average rate expression

in (8.68), the objective function in (8.74) can be written as

EEopt(θ) = max
P(θ,z)≥0

PON
θCE(θ)+α+β
θCE(θ)+α

CE(θ)
1
ε
E {P(θ, z)}+ Pc

. (8.82)

In this case, the optimal power control policy is determined in the following result.

Proposition 8.2.2 The optimal power control policy that maximizes the energy efficiency

for Markov fluid sources with arbitrary input signaling is obtained as

Popt(θ, z) =


0 z ≤ γ

P∗(θ, z) z > γ

. (8.83)

Above, P∗(θ, z) is solution to

e−θI(P∗(θ,z)z)MMSE
(
P∗(θ, z)z

)
z = γ, (8.84)

where

γ =
λe−θCE(θ)

ε log2(e)
(

αβ
(θCE(θ)+α)2 + 1

) . (8.85)

The optimal value of λ can be calculated by solving the following equation:

−θCE(θ) + α + β

θCE(θ) + α
CE(θ) + λ

(1

ε
E {P(θ, z)}+ Pc

)
= 0. (8.86)

Proof: See Appendix T.
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Remark 8.2.2 We note that the optimal power control policy in (8.83) depends on statistical

queueing constraints through the QoS exponent, θ, and on the Markov source characteristics

through the transition rates α and β. Similar conclusions also apply for the discrete-time

Markov source. Hence,subject to a minimum energy efficiency constraint is given by in gen-

eral, the optimal energy-efficient power adaptation varies for different sources and different

QoS requirements.

Remark 8.2.3 Optimal power control also varies with the input distribution as seen from

its dependence on the mutual information and MMSE in (8.84). For Gaussian distributed

input signal, we have the closed-form expression below:

Popt(θ, z) =


0 z ≤ γ

1

γ
1
η+1 z

η
η+1
− 1

z
z > γ

, (8.87)

where γ is defined in (8.85) and is a function of the Lagrange multiplier λ.

8.2.4.3 Discrete-time and Continuous-time Markov Modulated Poisson (MMP)

Sources

The throughput expressions of discrete-time Markov and Markov fluid sources have simi-

larities to discrete-time and continuous-time MMP sources, respectively. More specifically,

there is an additional multiplicative factor θ
eθ−1

for discrete-time and continuous-time MMP

sources. The presence of this factor does not affect the solution of the optimization problem

since it is only a function of θ and it does not depend on power levels, and hence it can be

omitted during optimization. Therefore, the optimal power control policies for discrete-time

and continuous-time MMP sources are the same as in the cases of discrete-time Markov and

Markov fluid sources.
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8.2.5 Power Adaptation with a Minimum Energy Efficiency Con-

straint

In this subsection, we identify the optimal power control policy that maximizes the through-

put in the presence of random arrivals under a constraint on the minimum required energy

efficiency. In this regard, the optimization problem can be written as

r∗avg,opt(θ) = max
P(θ,z)≥0

r∗avg(θ) (8.88)

subject to

r∗avg(θ)
1
ε
E {P(θ, z)}+ Pc

≥ EEmin(θ), (8.89)

where EEmin(θ) denotes the minimum required energy efficiency. In the following subsections,

we identify the optimal power control policies for Markovian arrival models, i.e., for discrete-

time Markov and Markov fluid sources, and discrete-time and continuous-time MMP sources.

8.2.5.1 Discrete-Time Markov Source

The main characterization for the optimal power control with the discrete-time Markov

source is given as follows:

Proposition 8.2.3 The optimal power control policy that maximizes the throughput achieved

with arbitrary input signaling in the presence of discrete-time Markov source subject to a

minimum energy efficiency constraint is given by

Popt(θ, z) = max{0,P∗(θ, z)}, (8.90)

where P∗(θ, z) is obtained by solving

e−θI(P∗(θ,z)z)MMSE
(
P∗(θ, z)z

)
z = µ. (8.91)
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Above, µ is a function of the Lagrange multiplier, λ, and is given by

µ =
λEEmin(θ)

(1 + λ)PON log2(e)ε

[
(1− p11e−θCE(θ))((1− p11 − p22)e−θCE(θ) + p22)

(2− p11e−θCE(θ))((1− p11 − p22) + p22eθCE(θ))

]
. (8.92)

Consequently, the optimal value of λ can be found by solving the following equation:

PON

θ
log

(
e2θCE(θ) − p11eθCE(θ)

(1− p11 − p22) + p22eθCE(θ)

)
− EEmin

(1

ε
E {P∗(θ, z)}+ Pc

)
= 0. (8.93)

Proof: See Appendix U.

Remark 8.2.4 The optimal power control scheme in (8.90) depends on the state transition

probabilities, QoS exponent θ and the minimum energy efficiency requirement. In particular,

the optimal average transmission power in this policy satisfies the minimum energy efficiency

with equality.

Remark 8.2.5 When the input signal is Gaussian distributed, the optimal power control

specializes to

Popt(θ, z) = max

{
0,

1

µ
1
η+1 z

η
η+1

− 1

z

}
, (8.94)

where µ is defined in (8.92).

8.2.5.2 Markov Fluid Source

The optimal power control scheme for the Markov fluid source is determined in the following

result:

Proposition 8.2.4 The optimal power control policy that maximizes the throughput with

arbitrary input signaling and Markov fluid source subject to a minimum energy efficiency
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constraint is

Popt(θ, z) = max{0,P∗(θ, z)}, (8.95)

where P∗(θ, z) is obtained by solving

e−θI(P∗(θ,z)z)MMSE
(
P∗(θ, z)z

)
z = µ. (8.96)

Above, µ is given by

µ =
λEEmin(θ)

(1 + λ)PON log2(e)ε

[
e−θCE(θ)

( αβ
(θCE(θ)+α)2 + 1

)], (8.97)

and the optimal value of λ can be found by solving the following equation:

PON
θCE(θ) + α + β

θCE(θ) + α
CE(θ)− EEmin

(1

ε
E {P∗(θ, z)}+ Pc

)
= 0.

Since similar steps as in the proof of Proposition 8.2.3 are followed, the proof is omitted for

brevity.

Remark 8.2.6 Generally, we do not have closed-form expressions for the optimal power

control policies due to not having simple expressions for the mutual information and MMSE

for any given input distribution. The exception is again the case of the Gaussian input.

Substituting the expressions MMSE(ρ) = 1
1+ρ

and I(ρ) = log2(1+ρ) into the general charac-

terization in (8.95), we can obtain, as a special case, the optimal power control for Gaussian

signaling as

Popt(θ, z) = max

{
0,

1

µ
1
η+1 z

η
η+1

− 1

z

}
, (8.98)

where µ is given in (8.97).
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8.2.5.3 Discrete-time Markov Modulated Poisson (MMP) Source

The optimal power control that maximizes the throughput in the presence of discrete-time

MMP source has the same formulation as that obtained for the discrete-time Markov source

in (8.90). The only modifications are in µ and λ. In particular, multiplying the expression

in (8.92) with the term eθ−1
θ

yields µ as

µ =
λEEmin(θ)(eθ − 1)

(1 + λ)θPON log2(e)ε

[
(1− p11e−θCE(θ))((1− p11 − p22)e−θCE(θ) + p22)

(2− p11e−θCE(θ))((1− p11 − p22) + p22eθCE(θ))

]
. (8.99)

Also, the optimal value of λ can be found by solving

PON

eθ − 1
log

(
e2θCE(θ) − p11eθCE(θ)

(1− p11 − p22) + p22eθCE(θ)

)
− EEmin

(1

ε
E {P∗(θ, z)}+ Pc

)
= 0. (8.100)

8.2.5.4 Continuous-time Markov Modulated Poisson (MMP) Source

Similarly, the optimal power control scheme for the continuous-time MMP source is the same

as that obtained for the Markov fluid source in (8.95) but with slightly modified µ and λ.

More specifically, multiplying the expression in (8.97) with eθ−1
θ

, we get

µ =
λEEmin(θ)(eθ − 1)

(1 + λ)θPON log2(e)ε

[
e−θCE(θ)

( αβ
(θCE(θ)+α)2 + 1

)], (8.101)

which is a function of λ. Subsequently, the optimal value of λ can be obtained from

PON

( θ

eθ − 1

)θCE(θ)+α+β

θCE(θ) + α
CE(θ)−EEmin

(1

ε
E {P∗(θ, z)}+ Pc

)
= 0. (8.102)

8.2.6 Numerical Results

In this subsection, we present more detailed numerical results to analyze the impact of input

distributions, source burstiness and QoS constraints on the maximum energy efficiency and

maximum throughput achieved with the obtained optimal power control schemes. Unless
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mentioned explicitly, we assume that the channel power gain z = |h|2 follows an exponential

distribution with unit mean and ε is set to 1.
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Figure 8.12: Energy efficiency vs. the maximum average arrival rate ravg for Gaussian,
BPSK, QPSK and 16-QAM.

In Fig. 8.12, we plot the energy efficiency as a function of the maximum average arrival

rate, ravg for Gaussian, BPSK, QPSK and 16-QAM. Discrete-time Markov source with tran-

sition probabilities p11 = p22 = 0.5 is considered. θ is set to 0.01. Since the circuit power is

taken into account, energy efficiency vs. maximum average arrival rate is a bell shaped curve.

We consider the energy efficiency of non-Gaussian inputs (i.e., 16-QAM, QPSK, BPSK) at-

tained with the power control optimized under the assumption of Gaussian distributed input

and also with the optimal power control, which takes into account the true distribution of the

input. It is seen from the figure that the energy efficiencies of 16-QAM, QPSK and BPSK

achieved with the power control designed for a Gaussian input are lower than those achieved

with the optimal power control considering the discrete constellations and distributions, since

the power control obtained under the assumption of Gaussian input is suboptimal for these

non-Gaussian inputs. Therefore, it is concluded that if the power control is optimized under

the assumption of Gaussian distributed input and the inputs are chosen from discrete con-

stellations in actual applications, considerable performance degradation in terms of energy

efficiency would occur especially if the constellation size is small. On the other hand, we
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notice that the gap is smaller for 16-QAM, which has more signals. Hence, constellations

with relatively large number of signals may experience less severe degradations.
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Figure 8.13: Maximum energy efficiency attained under the proposed power control vs. QoS
exponent θ for Gaussian, BPSK, QPSK and 16-QAM inputs.

In Fig. 8.13, we display the maximum energy efficiency achieved with the optimal power

control as a function of the QoS exponent θ for Gaussian, BPSK, QPSK and 16-QAM. We

again consider a discrete-time Markov source but with transition probabilities p11 = 0.8 and

p22 = 0.2. It is observed that the energy efficiency for all inputs decreases as θ increases

since the transmitter is subject to more stringent QoS constraints, which result in lower

transmission rates at given power levels and hence lower energy efficiency. It is seen that

Gaussian signaling always achieves higher energy efficiency compared to BPSK, QPSK and

16-QAM. At low θ values, there is a performance gap in terms of energy efficiency between

Gaussian, BPSK, QPSK and 16-QAM. On the other hand, at high θ values, the performances

of Gaussian, BPSK, QPSK and 16-QAM inputs converge, indicating the near-optimality of

even simple modulation schemes under stringent QoS constraints.

In Fig. 8.14, we plot the energy efficiency achieved with different power control schemes as

a function of the QoS exponent θ for QPSK in the presence of a discrete-time Markov source

with transition probabilities p11 = 0.8 and p22 = 0.2. We compare the energy efficiencies

attained with the optimal power control considering the actual signal distribution, power

200



10
-3

10
-2

10
-1

10
0

10
1

QoS exponent, θ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

M
a
x
im

u
m

 E
E

The proposed optimal power control scheme
assuming true input distribution
The optimal power control scheme
assuming Gaussian input
The constant power scheme

Figure 8.14: Maximum energy efficiency vs. QoS exponent θ for QPSK with different power
control schemes.

control assuming Gaussian input, and the constant-power scheme. It is observed that the

optimal power control outperforms both the power control strategy assuming Gaussian input

and the constant-power scheme.
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Figure 8.15: Maximum energy efficiency vs. QoS exponent θ for QPSK with different source
burstiness.

In Fig. 8.15, we display the energy efficiency attained with the optimal power control as

a function of the QoS exponent θ for QPSK when the source has different levels of burstiness.

We consider a Markov fluid source with transition rates α = 20, β = 80, and α = β = 50 (for

which PON = α
α+β

= 0.2 and PON = 0.5, respectively), and also α = 100, β = 0 (for which

PON = 1, indicating essentially a constant-rate source). We set the sum of α and β to 100 as
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shown in the figure. Hence, the burstiness of the source depends on the probability of being

in the ON state, PON = α
α+β

. More specifically, lower values of ON state probability, PON,

correspond to a more bursty source. It is seen that the burstiness of the source has negligible

impact on the energy efficiency for looser QoS constraints, i.e., for lower values of θ. On

the other hand, energy efficiency decreases with decreasing PON when the QoS constraints

become more stringent, i.e., as θ increases.
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Figure 8.16: Maximum average arrival vs. QoS exponent θ for Gaussian, BPSK, QPSK and
16-QAM signaling, considering MMP sources.

In Fig. 8.16, we plot the maximum average arrival rate obtained with the optimal power

control as a function of the QoS exponent θ for Gaussian, BPSK, QPSK and 16-QAM inputs.

We consider continuous-time MMP source with transition rates α = 50 and β = 50. We

set EEmin(θ) = 0.8× EEmax(θ). It is seen that there is again a performance gap in terms of

the maximum throughput supported by Gaussian, BPSK, QPSK and 16 QAM signaling for

lower θ values, and Gaussian input always achieves the best performance. Also, high values

of θ yield lower arrival rates under all signaling schemes.

In Fig 8.17, we plot the maximum average arrival rate gain in percentage vs. the energy

efficiency gain in percentage for QPSK in the presence of a Markov fluid source with different

transition rates. We set θ = 10. The energy efficiency gain is calculated as the ratio of the

minimum required energy efficiency, denoted by EEmin(θ) to the maximum energy efficiency
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Figure 8.17: The maximum average arrival rate gain in percentage vs. the energy efficiency
gain in percentage for QPSK, considering a Markov fluid source.

obtained with the proposed power control in (8.83). Similarly, the maximum average arrival

rate gain is determined as the ratio of r∗avg(θ) attained under a constraint on the minimum

required energy efficiency to the corresponding r∗avg(θ) achieved with the power control in

(8.83). It is seen that the maximum average arrival rate gain increases as energy efficiency

gain decreases. More specifically, a small reduction in energy efficiency gain leads to a

significant gain in the maximum average arrival rate. For instance, when the energy efficiency

gain is reduced from 100% to 85%, the maximum average arrival rate gain increases by 71%

when α = 20 and β = 80 (for which PON = 0.2). It is also observed that the maximum

average arrival rate gain decreases with increasing source burstiness (i.e., with smaller value

of PON).
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Figure 8.18: The maximum average arrival rate gain in percentage vs. the energy efficiency
gain in percentage for Gaussian, BPSK, QPSK and 16-QAM, considering a Markov fluid
source.

In Fig 8.18, we display the maximum average arrival rate gain in percentage vs. the

energy efficiency gain in percentage for Gaussian, BPSK, QPSK, 16-QAM signaling. We

consider a Markov fluid source with transition rates α = β = 50. It is assumed that θ = 10.

We observe that Gaussian distributed input achieves higher maximum average arrival rate

gain compared to non-Gaussian inputs (i.e.,16-QAM, QPSK and BPSK inputs). In addition,

there is considerable difference in terms of the maximum average arrival rate gain between

the input distributions as the energy efficiency gain decreases.
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Chapter 9

Conclusion

9.1 Summary

In this thesis, performance of cognitive radio systems has been studied in terms of through-

put, error rate and energy efficiency, and throughput- and energy-efficient optimal resource

allocation schemes for both cognitive radio systems and general wireless systems operating

subject to statistical QoS constraints have been determined. Specifically, the contributions

of this thesis are summarized below.

In Chapter 3, we obtained the optimal power control policies for underlay cognitive

radio systems with arbitrary input signaling subject to peak/average transmit power and

peak/average interference power constraints for general fading distributions. We provided

low-complexity power control algorithms. In addition, we analyzed the optimal power control

policy in the low-power regime. Numerical results reveal that Gaussian input expectedly

results in higher achievable rates at high power levels while Gaussian inputs and QPSK

provide nearly the same performance in the low-power regime. Therefore, QPSK input can

be efficiently used in practical systems rather than the Gaussian input which is not easy to

realize. It is also shown that there can be considerable performance degradation if the system

is designed under the assumption of Gaussian input and the inputs are chosen from discrete
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constellations at moderate and high power levels. We observed that power control provides

significant improvements in performance when compared with that achieved with constant

power transmissions. We demonstrated that simpler low-power approximations of the power

control strategies and achievable rates provide very accurate results when compared to exact

expressions.

In Chapter 4, we determined the energy-efficient power allocation schemes for cognitive

radio systems subject to peak/average transmit power constraints and peak/average interfer-

ence power constraint in the presence of sensing errors and different levels of CSI regarding

the transmission and interference links. It is assumed that the primary user transmits in

a time-slotted fashion (i.e., the activity of the primary user remains the same during the

transmission phase of secondary users). A low-complexity algorithm based on Dinkelbach’s

method was proposed to iteratively solve the power allocation that maximizes energy effi-

ciency. It was shown that power allocation schemes depend on sensing performance through

detection and false alarm probabilities, transmission link between secondary transmitter and

secondary receiver, and interference link between the secondary transmitter and the primary

receiver. Throughput numerical results, it was shown that maximum achievable energy ef-

ficiency increases with increasing detection probability and decreases with increasing false

alarm probability. Imperfect CSI of the transmission and interference links significantly de-

grades the performance of secondary users in terms of energy efficiency. Therefore, accurate

estimation of the transmission and interference links is of great importance in order to obtain

higher energy efficiency. Moreover, under the same average interference constraint, secondary

users’ transmission subject to peak transmit constraint achieves smaller achievable energy

efficiency than that under average transmit power constraint.

In Chapter 5, we obtained the optimal power control policies that maximize the energy

efficiency or maximize the average throughput of the secondary users while satisfying a

minimum required energy efficiency level, operating with unslotted primary users subject

to peak/average transmit power, average interference power and collision constraints in the
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presence of sensing errors. We provided low-complexity algorithms to jointly optimize the

transmission power and frame duration. Numerical results reveal important relations and

tradeoffs between the energy efficiency and throughput performance of the secondary users.

We have addressed how secondary user’s energy efficiency, collisions with the primary user

transmissions, and the optimal frame duration vary as a function of the probabilities of

detection and false alarm. It was also shown that optimal power control policy significantly

enhances the system performance compared to constant power scheme. The impact of the

primary traffic on the system performance was analyzed. In particular, we observed that

secondary users achieve smaller throughput when the primary user has a heavy traffic load.

In Chapter 6, we studied the error rate performance of cognitive radio transmissions

in both sensing based spectrum sharing and opportunistic access schemes in the presence

of transmit and interference power constraints, sensing uncertainty, and Gaussian mixture

distributed interference from primary user transmissions. In this setting, we proved that

the midpoints between the signals are optimal thresholds for the detection of equiprobable

rectangular QAM signals. We have first obtained exact symbol error probability expressions

for given fading realizations and then derived closed-form average symbol error probability

expressions for the Rayleigh fading channel. We provided upper bounds on the error prob-

abilities averaged over the fading between the secondary transmitter and primary receiver

under the peak interference constraint. In the numerical results, we have had several inter-

esting observations. We have seen that, when compared to sensing based spectrum sharing,

lower error rates are generally attained in the opportunistic spectrum access scheme. Also,

better error performance is achieved in the presence of Gaussian-mixture distributed pri-

mary user signal in comparison to that achieved when it is Gaussian distributed with the

same variance. We demonstrated that symbol error probabilities are in general dependent

on sensing performance through the detection and false alarm probabilities. For instance,

we have observed that as the detection probability increases, the error rate performance

under both schemes improves in interference-limited environments. Similarly, symbol error

207



probability is shown to decrease with decreasing false-alarm probability. Hence, we conclude

that sensing performance is tightly linked to error performance and improved sensing leads

to lower error rates.

In Chapter 7, we analyzed the throughput of cognitive radio systems in the finite block-

length regime under buffer constraints. We first focused on the scenario in which the CSI of

the secondary link is assumed to be perfectly known at the secondary receiver only. In this

case, the secondary transmitter sends the data at two different constant rate levels, which

depend on the channel sensing decision, and error rates vary with the channel conditions. In

the second scenario, perfect CSI is available at both the secondary transmitter and receiver.

Under this assumption, the secondary transmitter, considering a target error rate level, varies

its transmission rate according to the time-varying channel conditions. For both scenarios,

we determined the throughput as a function of state transition probabilities of the cognitive

radio channel, prior probabilities of idle/busy state of primary users, sensing decisions and

reliability, the block error probability, QoS exponent, frame and sensing durations. Through

the numerical results, we observed that highly inaccurate sensing can either lead to ineffi-

cient use of resources and low throughput or cause possibly high interference on the primary

users. We also noted that sensing-throughput tradeoff is more involved since increasing the

sensing duration for improved sensing performance not only decreases the time allocated to

data transmission but also results in shorter codewords being sent, lowering the transmission

reliability. Additionally, we observed in the case of variable transmission-rate that average

error probability can deviate significantly from the target error rate due to imperfect sensing.

Moreover, we remarked that throughput generally decreases as the QoS exponent θ increases

(i.e., as QoS constraints become more stringent), and variable-rate transmissions have better

performance under more strict QoS restrictions while fixed-rate transmissions lead to higher

throughput under looser QoS constraints.

In Chapter 8, we derived the optimal power control policies, maximizing the energy effi-

ciency of wireless transmissions with arbitrary input signaling under QoS constraints when
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the data arrival is constant or random modeled by Markovian processes, or more specifically

by discrete-time Markov and Markov fluid processes, and discrete-time and continuous-time

MMP processes. Also, we determined the optimal power adaptation scheme that maximizes

the average arrival rate (or equivalently throughput) under a minimum energy efficiency

constraint in this setting. We analyzed two limiting cases of the optimal power control for

constant sources. In particular, when QoS constraints are looser, the optimal power allo-

cation strategy converges to mercury/water-filling for finite discrete inputs and water-filling

for Gaussian input, respectively. When QoS constraints are extremely stringent, the power

control becomes the total channel inversion and no longer depends on the input distribution.

We determined the optimal power control policy in the low-power regime and analyzed the

performance with arbitrary signal constellations at low spectral efficiencies by characterizing

the minimum energy per bit and wideband slope for general fading distributions and con-

stant arrivals. We showed that while the minimum energy per bit does not get affected by

the input distribution, the wideband slope depends on both the QoS exponent, the input

distribution and the fading parameter. Through numerical results, we observed that there

is a significant performance gap in terms of energy efficiency and throughput attained with

Gaussian, 16-QAM, QPSK and BPSK signaling when QoS constraints are relatively loose.

On the other hand, Gaussian input and QPSK achieve nearly the same energy efficiency

and throughput under strict QoS constraints. Moreover, energy efficiency decreases with

increasing source burstiness, especially under strict QoS constraints in the case of random

arrivals.

209



9.2 Future Research Directions

9.2.1 Resource Allocation in Cognitive Radio Systems with Un-

slotted Primary Users under QoS Constaints

In Chapter 5, we studied throughput-efficient power control schemes for cognitive users in

the presence of unslotted primary users. We assumed the data traffic of the secondary users

as delay insensitive, and hence considered ergodic capacity as the performance metric. It is of

interest to determine the corresponding power allocation scheme, optimal frame duration for

delay-sensitive data traffic and to analyze the interactions among the primary user activity

patterns, sensing performance and the resulting collisions with the primary user.

9.2.2 Cognitive Radio for 5G Networks

Cognitive radio technology has high degree of potential to improve the performance and

address the key tradeoffs among interference management, resource allocation, spectral effi-

ciency, and energy efficiency. Therefore, adaptive and intelligent transmission strategies us-

ing cognitive radio techniques can be developed to enhance the overall efficiency of Machine-

to-Machine (M2M) and Device-to-Device (D2D) communication systems and heterogeneous

networks (HetNets) by allowing opportunistic and shared spectrum access.

210



Appendix A

Proof of Theorem 3.2.1

The objective function in (3.5) is strictly concave since it follows from the relation in (2.9)

that the first derivative of the mutual information is MMSE, which is a strictly decreasing

function [52] . Also, the optimization problem is subject to affine inequality constraints given

in (3.10) and (3.11). Hence, the optimal power can be obtained by using the Lagrangian

optimization approach as follows:

L(P (zs, zsp), λ) =E{I(P (zs, zsp)zs)}+ λ(Qavg − E{P (zs, zsp)zsp}) (A.1)

=E{I(P (zs, zsp)zs)− λP (zs, zsp)zsp}+ λQavg. (A.2)

Above, λ denotes the nonnegative Lagrange multiplier. The Lagrange dual problem is defined

as

min
λ≥0

max
0≤P (zs,zsp)≤Ppk

L(P (zs, zsp), λ). (A.3)

For a fixed λ and each fading state, the subproblem is expressed, by applying the Lagrange

dual decomposition method [105], as

max
0≤P (zs,zsp)≤Ppk

I(P (zs, zsp)zs)− λP (zs, zsp)zsp. (A.4)
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According to the Karush-Kuhn-Tucker (KKT) conditions, the optimal power control P ∗(zs, zsp)

must satisfy the following:

g(P (zs, zsp)) = MMSE(P (zs, zsp)zs)zs log2 e− λzsp = 0, (A.5)

λ(E{P (zs, zsp)zsp} −Qavg) = 0, (A.6)

λ ≥ 0, (A.7)

E{P (zs, zsp)zsp} −Qavg ≤ 0. (A.8)

In (A.5), we have used the relation between the mutual information and MMSE given in

(2.9). It is observed from the constraint in (3.10), and the conditions in (A.6), (A.7), (A.8)

that if E{zsp} ≤ Qavg

Ppk
, then the average interference power constraint in (3.11) is loose.

Therefore, λ = 0 and P ∗(zsp, zs) = Ppk. If E{zsp} > Qavg

Ppk
, then λ > 0. Hence, by solving

(A.5), the optimal transmit power can be obtained as

P ∗(zsp, zs) =
1

zs
MMSE−1

( λzsp
log2 e zs

)
. (A.9)

Incorporating the nonnegativity of the transmit power, noting that MMSE−1(1) = 0, and

combining (A.9) with (3.10) yield the desired result in (3.12). �
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Appendix B

Proof of Theorem 3.2.2

It is easy to show that the optimization problem is a concave maximization problem. Hence,

following the same approach adopted in the proof of Theorem 1, the original problem reduces

to solving a series of subproblems one for each fading state as follows:

max
0≤P (zs,zsp)≤

Qpk
zsp

I(P (zs, zsp)zs)− µP (zs, zsp). (B.1)

Applying the KKT conditions leads to the following set of equations and inequalities:

h(P (zs, zsp)) = MMSE(P (zs, zsp)zs)zs log2 e− µ = 0, (B.2)

µ(E{P (zs, zsp)} − Pavg) = 0, (B.3)

µ ≥ 0, (B.4)

E{P (zs, zsp)} − Pavg ≤ 0 (B.5)

It is observed from the constraint in (3.16), and the conditions in (B.3), (B.4), and (B.5)

that if E{Qpk

zsp
} ≤ Ppk, then the average power constraint in (3.15) is loose. Therefore, µ = 0

and P ∗(zsp, zs) =
Qpk

zsp
. If E{Qpk

zsp
} > Ppk, then µ > 0. Hence, the optimal transmit power can
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be obtained as follows by solving (B.2):

P ∗(zsp, zs) =
1

zs
MMSE−1

( µ

log2 e zs

)
. (B.6)

Hence, we can obtain the closed-form optimal power policy in (3.17) by combining (B.6),

(3.16) and the nonnegativity of the transmit power. �
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Appendix C

Proof of Theorem 3.2.3

The Lagrangian is expressed as

L(P (zs, zsp), λ, µ) = E{I(P (zs, zsp)zs)} − µ(E{P (zs, zsp)} − Pavg)− λ(E{P (zs, zsp)zsp} −Qavg).

(C.1)

Applying the KKT conditions results in the following equation, we have

η(P (zs, zsp))=MMSE(P (zs, zsp)zs)zs log2 e−µ−λzsp = 0. (C.2)

Solving the above equation gives the desired result in (3.21).
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Appendix D

Proof of Theorem 3.3.1

In the low power regime, MMSE behaves as [52]

MMSE(ρ) = İ(0) + Ï(0)ρ+ o(ρ2) (D.1)

where İ(0) = 1 [52]. Incorporating the above second-order approximation into (A.5), we

obtain

(
1 + Ï(0)P (zs, zsp)zs

)
zs log2 e− λzsp = 0. (D.2)

Solving the above equation, and then combining the corresponding result with the peak

transmit power constraint in (3.10) and the nonnegativity of the transmission power provides

the optimal power policy in (3.32). �
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Appendix E

Proof of Proposition 4.1.1

We first write the achievable rate of secondary users in terms of mutual information between

the received and transmitted signals given the sensing decision in the following:

RGM =
T − τ
T

I(x; y|h, Ĥ) =
T − τ
T

[
Pr{Ĥ0}I(x0; y|h, Ĥ0) + Pr{Ĥ1}I(x1; y|h, Ĥ1)

]
, (E.1)

where I(xk; y|h, Ĥk) for k ∈ {0, 1} can be further expressed as

I(xk; y|h, Ĥk) = Exk,y,g,h
{

log

(
f(y|xk, h, Ĥk)

f(y|h, Ĥk)

)}
. (E.2)

The above conditional distribution, f(y|xk, h, Ĥk), is determined through the input-output

relation in (4.1) as follows:

f(y|xk, h, Ĥk) =
Pr{H0|Ĥk}

πN0

e
− |y−hxk|

2

N0 +
Pr{H1|Ĥk}
π(N0 + σ2

s)
e
− |y−hxk|

2

N0+σ2
s (E.3)

with variance

E{|y|2|xk, h, Ĥk} = N0 + Pr{H1|Ĥk}σ2
s . (E.4)
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Also, the conditional distribution, f(y|h, Ĥk) in (E.2) is given by

f(y|h, Ĥk) =
Pr{H0|Ĥk}

π(N0 + Pk(g, h)|h|2)
e
− |y|2

N0+Pk(g,h)|h|2 +
Pr{H1|Ĥk}

π(N0 + Pk(g, h)|h|2 + σ2
s)

e
− |y|2

N0+Pk(g,h)|h|2+σ2
s

(E.5)

with variance

E{|y|2|h, Ĥk} = N0 + Pk(g, h)|h|2 + Pr{H1|Ĥk}σ2
s . (E.6)

Above, it is seen that the conditional distributions of the received signal y given sensing de-

cisions become a mixture of Gaussian distributions due to channel sensing errors. Therefore,

there is no closed form expression for mutual information in (E.2). However, we can still find

a closed-form lower bound for the achievable rate expression by following the steps in [106,

pp. 938-939] and replacing the additive disturbance w in (4.2) with the worst-case Gaussian

noise with the same variance as follows:

I(xk; y|h, Ĥk) ≥ Eg,h
{

log

(
1 +

Pk(g, h)|h|2

E{|w|2|Ĥk}

)}
(E.7)

where

E{|w|2|Ĥk} = N0 + Pr{H1|Ĥk}σ2
s . (E.8)

Inserting these lower bounds into (E.1), we have obtained the achievable rate expression in

(4.3). �
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Appendix F

Proof of Theorem 4.1.1

We first express I0(x0; y|h, Ĥ0) as follows:

I0(x0; y|h, Ĥ0) =
(T − τ

T

)[∫
h

(∫ ∞
−∞

2∑
i=1

Pr(Hi|Ĥ0)

πci
e
− |y−x0h|

2

ci log
( 2∑
i=1

Pr(Hi|Ĥ0)

πci
e
− |y−x0h|

2

ci

)
dy

)
fh(h)dh

−
∫
g

(∫
h

(∫ ∞
−∞

2∑
i=1

Pr(Hi|Ĥ0)

π(ci + |h|2P0(g, h))
e
− |y|2

ci+|h|2P0(g,h) log
( 2∑
i=1

Pr(Hi|Ĥ0)

π(ci + |h|2P0(g, h))
e
− |y|2

ci+|h|2P0(g,h)

)
dy

)

× fh(h)dh
)
fg(g)dg

]
,

(F.1)

where c1 = N0 + σ2
s and c2 = N0. Then, we obtain the upper bound below by using the

inequalities in (F.3) and (F.4) as follows:

I0(x0; y|h, Ĥ0) ≤
(T − τ

T

)[∫
h

(∫ ∞
−∞

2∑
i=1

Pr(Hi|Ĥ0)

πci
e
− |y−x0h|

2

ci log
( 2∑
i=1

Pr(Hi|Ĥ0)

πci
e
− |y−x0h|

2

c1

)
dy

)
fh(h)dh

−
∫
g

(∫
h

(∫ ∞
−∞

2∑
i=1

Pr(Hi|Ĥ0)

π(ci + |h|2P0(g, h))
e
− |y|2

ci+|h|2P0(g,h) log
( 2∑
i=1

Pr(Hi|Ĥ0)

π(ci + |h|2P0(g, h))
e
− |y|2

c2+|h|2P0(g,h)

)
dy

)

× fh(h)dh
)
fg(g)dg

]
(F.2)

e
− |y|2

c1+|h|2P0(g,h) ≥ e
− |y|2

ci+|h|2P0(g,h) ≥ e
− |y|2

c2+|h|2P0(g,h) (F.3)

e
− |y−hx0|

2

c1 ≥ e
− |y−hx0|

2

ci ≥ e
− |y−hx0|

2

c2 (F.4)
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Evaluating the integrals in (F.2) yields the following upper bound:

I0(x0; y|h, Ĥ0) ≤
(T − τ

T

)[
Eg,h

{ 2∑
k=1

log

( ∑2
i=1

Pr(Hi|Ĥ0)
ci∑2

i=1
Pr(Hi|Ĥ0)

ci+|h|2P0(g,h)

)}
−
(
N0 + Pr(H1|Ĥ0)σ2

s

N0 + σ2
s

)

+ Eg,h
{

1 +
Pr(H1|Ĥ0)σ2

s

N0 + |h|2P0(g, h)

}]
(F.5)

Following the similar steps, we obtain the upper bound for I1(x1; y|h, Ĥ1) as follows:

I1(x1; y|h, Ĥ1) ≤
(T − τ

T

)[
Eg,h

{ 2∑
k=1

log

( ∑2
i=1

Pr(Hi|Ĥ1)
ci∑2

i=1
Pr(Hi|Ĥ1)

ci+|h|2P1(g,h)

)}
−
(
N0 + Pr(H1|Ĥ1)σ2

s

N0 + σ2
s

)

+ Eg,h
{

1 +
Pr(H1|Ĥ1)σ2

s

N0 + |h|2P1(g, h)

}]
(F.6)

Inserting the inequalities in (F.5) and (F.6) into (E.1) and subtracting from Ra in (4.3) gives

the desired result in (4.6). �
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Appendix G

Proof of Theorem 4.2.1

The optimization problem is quasiconcave since achievable rate Ra is concave in transmission

powers and total power consumption Ptot(P0, P1) is both affine and positive, and hence the

level sets Sα = {(P0, P1) : ηEE ≥ α} = {αPtot(P0, P1) − Ra ≤ 0} are convex for any α ∈ R.

Since quasiconcave functions have more than one local maximum, local maximum does not

always guarantee the global maximum. Therefore, standard convex optimization algorithms

cannot be directly used. Hence, iterative power allocation algorithm based on Dinkelbach’s

method [107] is employed to solve the quasiconcave EE maximization problem by formulating

the equivalent parameterized concave problem as follows:

max
P0(g,h)
P1(g,h)

{
Eg,h

{
R
(
P0(g, h), P1(g, h)

)}
− α(Eg,h{Pr{Ĥ0}P0(g, h) + Pr{Ĥ1}P1(g, h)}+Pc)

}

(G.1)

subject to Eg,h{Pr{Ĥ0}P0(g, h) + Pr{Ĥ1}P1(g, h)} ≤ Pavg (G.2)

Eg,h{
[
(1−Pd)P0(g, h) + Pd P1(g, h)

]
|g|2} ≤ Qavg (G.3)

P0(g, h) ≥ 0, P1(g, h) ≥ 0, (G.4)
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where α is a nonnegative parameter. At the optimal value of α∗, solving the EE maximization

problem in (4.8) is equivalent to solving the above parametrized concave problem if and only

if the following condition is satisfied

F (α∗) = Eg,h
{
R
(
P0(g, h), P1(g, h)

)}
− α∗

(
Eg,h{Pr{Ĥ0}P0(g, h) +Pr{Ĥ1}P1(g, h)}+ Pc

)
= 0.

(G.5)

The detailed proof of the above condition is available in [107]. Since the problem in (G.1) is

concave, the optimal power values are obtained by forming the Lagrangian as follows:

L(P0, P1, λ1, ν1, α) = Eg,h
{
R
(
P0(g, h), P1(g, h)

)}
− α(Eg,h{Pr{Ĥ0}P0(g, h) + Pr{Ĥ1}P1(g, h)}+Pc)

− λ1(Eg,h{Pr{Ĥ0}P0(g, h)+Pr{Ĥ1}P1(g, h)}−Pavg)− ν1(Eg,h{
[
(1−Pd)P0(g, h) + Pd P1(g, h)

]
|g|2}

−Qavg),

(G.6)

where λ1 and ν1 are nonnegative Lagrange multipliers. According to the Karush-Kuhn-

Tucker (KKT) conditions, the optimal values of P ∗0 (g, h) and P ∗1 (g, h) satisfy the following

equations:

T−τ
T

Pr{Ĥ0}|h|2 log2 e

N0 + Pr(H1|Ĥ0)σ2
s + P ∗0 (g, h)|h|2

− (λ1 + α) Pr{Ĥ0} − ν1|g|2(1−Pd) = 0 (G.7)

T−τ
T

Pr{Ĥ1}|h|2 log2 e

N0+Pr(H1|Ĥ1)σ2
s + P ∗1 (g,h)|h|2

− (λ1+α) Pr{Ĥ1} − ν1|g|2Pd =0 (G.8)

λ1(E{Pr{Ĥ0}P ∗0 (g, h) + Pr{Ĥ1}P ∗1 (g, h)} − Pavg) = 0 (G.9)

ν1(E{[(1−Pd)P ∗0 (g, h) + Pd P
∗
1 (g, h)]|g|2} −Qavg) = 0 (G.10)

λ1 ≥ 0, ν1 ≥ 0. (G.11)

Solving equations (G.7) and (G.8), yield the optimal power values in (4.12) and (4.13),

respectively. �
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Appendix H

Proof of Proposition 5.1.1

The first derivative of Pc with respect to frame duration Tf is

∂Pc

∂Tf
=
(

Pr{H0|Ĥ0}λ0 Pr{H1}2 − Pr{H1|Ĥ0}λ1 Pr{H0}2
)

×
(

1− e
− Tf−τ
λ0 Pr{H1}

(Tf − τ)2
− 1

λ0 Pr{H1}(Tf − τ)
e
− Tf−τ
λ0 Pr{H1}

)
.

(H.1)

The expression inside the first parenthesis can easily be seen to be greater than zero if

Pf < Pd and less than zero if Pf > Pd by using the formulations in (7.1), (5.9) and (5.10).

In order to show that the expression inside the second parenthesis is always nonnegative, we

compare it with zero as follows:

1− e
− Tf−τ
λ0 Pr{H1}

(Tf − τ)2
− 1

λ0 Pr{H1}(Tf − τ)
e
− Tf−τ
λ0 Pr{H1} > 0. (H.2)

Above inequality can be rewritten as

(
1 +

Tf − τ
λ0 Pr{H1}

)
e
− Tf−τ
λ0 Pr{H1} < 1. (H.3)

Left-hand side of (H.3) is a decreasing function since its first derivative with respect to

frame duration Tf is − Tf−τ
(λ0 Pr{H1})2 e

− Tf−τ
λ0 Pr{H1} ≤ 0. Since it is a decreasing function and it takes
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values between (0, 1) for Tf > τ , the inequality in (H.3) and hence the inequality in (H.2)

hold. With this, we have shown that the expression inside the second parenthesis in (H.1)

is nonnegative, and therefore the first derivative of Pc is greater than zero if Pf < Pd and

less than zero if Pf > Pd, proving the property that Pc is increasing with Tf if Pf < Pd and

decreasing with Tf if Pf > Pd.

Also, it can be easily verified that Pc takes values between Pr{H1|Ĥ0} and Pr{H1}. In

particular, we examine the limit of Pc as Tf approaches τ and ∞ as follows:

lim
Tf→τ

Pc = Pr{H0|Ĥ0}
(

Pr{H1} −
λ0 Pr{H1}2

λ0 Pr{H1}

)
+ Pr{H1|Ĥ0}

(
Pr{H1}+

λ1 Pr{H0}2

λ0 Pr{H1}

)
= Pr{H1|Ĥ0} (H.4)

lim
Tf→∞

Pc = Pr{H0|Ĥ0}Pr{H1}+ Pr{H1|Ĥ0}Pr{H1} = Pr{H1}. (H.5)

�
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Appendix I

Proof of Theorem 5.2.1

The objective function in (5.11) is quasiconcave since the average throughput in the numer-

ator is composed of positive weighted sum of logarithms which are strictly concave and the

power consumption in the denominator is both affine and positive. Therefore, the optimal

power value can be found iterativaly by using Dinkelbach’s method [107]. The optimization

problem is first transformed into the equivalent parameterized concave problem as follows:

max
P (g,h)≥0

{
Ravg − α

((Tf − τ
Tf

)
Pr{Ĥ0}E{P (g, h)}+ Pcr

)}
(I.1)

subject to
(Tf − τ

Tf

)
Pr{Ĥ0}E

{
P (g, h)

}
≤ Pavg (I.2)(Tf − τ

Tf

)
Pc Pr{Ĥ0}E

{
P (g, h)|g|2

}
≤ Qavg, (I.3)

where α is a nonnegative parameter. At the optimal value of α∗, the following condition is

satisfied

F (α∗)=Ravg−α∗
((Tf − τ

Tf

)
Pr{Ĥ0}E{P (g, h)}+ Pcr

)
=0. (I.4)

Explicitly, the solution of F (α∗) is equivalent to the solution of the EE maximization problem

in (5.11). It is shown that Dinkelbach’s method converges to the optimal solution at a
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superlinear convergence rate. The detailed proof of convergence and further details can be

found in [69]. Since the parameterized problem in (I.1) is concave for a given α, the optimal

power levels can be obtained by using the Lagrangian optimization approach as follows:

L(P (g, h), λ, ν, α) = Ravg − α
((Tf−τ

Tf

)
Pr{Ĥ0}E{P (g, h)}+Pcr

)
− λ

((Tf − τ
Tf

)
Pr{H0}E{P (g, h)} − Pavg

)
− ν
((Tf − τ

Tf

)
Pc Pr{Ĥ0}E

{
P (g, h)|g|2

}
−Qavg

)
,

(I.5)

where λ and ν are the nonnegative Lagrange multipliers. The Lagrange dual problem is

defined as

min
λ,ν≥0

max
P (g,h)≥0

L(P (g, h), λ, ν, α). (I.6)

For fixed λ and ν values, and each fading state, we express the subproblem using the Lagrange

dual decomposition method [105]. According to the Karush-Kuhn-Tucker (KKT) conditions,

the optimal power control Popt(g, h) must satisfy the set of equations and inequalities below:

Pr{Ĥ0}
loge(2)

(Tf − τ
Tf

)[( (1−Pc)|h|2

N0 + Popt(g, h)|h|2

)
+

(
Pc|h|2

N0 + σ2
s + Popt(g, h)|h|2

)]
− (α + λ)

(Tf − τ
Tf

)
Pr{Ĥ0}

− ν
(Tf − τ

Tf

)
Pr{Ĥ0}Pc|g|2 = 0

(I.7)

λ

((Tf − τ
Tf

)
Pr{Ĥ0}E{Popt(g, h)} − Pavg

)
= 0, (I.8)

ν

((Tf − τ
Tf

)
Pc Pr{Ĥ0}E

{
Popt(g, h)|g|2

}
−Qavg

)
= 0, (I.9)

λ ≥ 0, ν ≥ 0. (I.10)

Solving (I.7) and incorporating the nonnegativity of the transmit power yield the desired

result in (8.31). �
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Appendix J

Proof of Proposition 5.3.1

In order to find the operating power level, which satisfies the minimum required EE, we

consider that the objective function in (5.34) is subject to only a minimum EE constraint

in (5.36). Since Ravg is a concave function of the transmission power and the feasible set

defined by the minimum EE constraint is a convex set, KKT conditions are both sufficient

and necessary for the optimal solution. The constraint in (5.36) can be rewritten as follows

Ravg − EEmin

((Tf − τ
Tf

)
Pr{Ĥ0}E{P (g, h)}+ Pcr

)
≥ 0. (J.1)

By defining η as the Lagrange multiplier associated with the above constraint, the Lagrangian

function is expressed as

L(P (g, h), η) = (1 + η)Ravg − ηEEmin

((Tf − τ
Tf

)
Pr{Ĥ0}E{P (g, h)}+ Pcr

)
. (J.2)
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By setting the derivative of the above function with respect to P (g, h) equal to zero at the

optimal power level, we obtain the equation below:

∂L(P (g, h), η)

∂P (g, h)

∣∣∣∣
P (g,h)=P ∗(g,h)

= (1 + η)
Pr{Ĥ0}
loge(2)

(Tf − τ
Tf

)[( (1−Pc)|h|2

N0 + P ∗(g, h)|h|2

)
+

(
Pc|h|2

N0 + σ2
s + P ∗(g, h)|h|2

)]
− ηEEmin

(Tf − τ
Tf

)
Pr{Ĥ0}=0.

(J.3)

Solving the above equation leads to the desired characterization in (5.40) and the Lagrange

multiplier, η can be determined by satisfying the minimum EE constraint with equality or

solving (5.43). Consequently, the average transmission power is obtained by inserting (5.40)

into (8.50). �
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Appendix K

Proof of Theorem 5.3.1

The Lagrangian function is expressed as

L(P (g, h), ϑ, ϕ) = Ravg − ϑ
((Tf − τ

Tf

)
P (Ĥ0)E{P (g, h)} −min(Pavg, P

∗
avg)
)

− ϕ
((Tf − τ

Tf

)
Pc Pr{Ĥ0}E{P (g, h)|g|2}−Qavg)

)
.

(K.1)

Setting the derivative of the above function with respect to transmission power, P (g, h), to

zero and arranging the terms give the desired optimal power control in (5.45). �
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Appendix L

Proof of Proposition 6.3.1

Since the signals are equiprobable, the maximum likelihood (ML) decision rule is optimal in

the sense that it minimizes the average probability of error [108]. Since cognitive transmission

is allowed only when the channel is sensed as idle under OSA scheme, it is enough to evaluate

the ML decision rule under sensing decision Ĥ0, which can be expressed as

m̂ = arg max
0≤m≤M−1

f(ȳ|sn,q, h, Ĥ0). (L.1)

The above decision rule can further be expressed as

m̂ = arg max
0≤m≤M−1

(
Pr{H0|Ĥ0}f(ȳ|sn,q, h, Ĥ0,H0) + Pr{H1|Ĥ0}f(ȳ|sn,q, h, Ĥ0,H1)

)
. (L.2)

Above maximization simply becomes the comparison of the likelihood functions of the re-

ceived signals given the transmitted signals sn,q. Without loss of generality, we consider the

signal constellation point sn,q. Then, the decision region for the in-phase component of this

signal constellation point is given by (L.3). The right-side boundary of the corresponding

decision region, which can be found by equating the likelihood functions in (L.3)–(L.4) shown

at the top of next page. Gathering the common terms together, the expression in (L.3) can

further be written as in (L.5) given on the next page.
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1∑
j=0

Pr{Hj|Ĥ0}f(ȳ|sn,q, h, Ĥ0,Hj) ≥
1∑
j=0

Pr{Hj|Ĥ0}f(ȳ|sn+1,q, h, Ĥ0,Hj) (L.3)

1∑
j=0

Pr{Hj|Ĥ0}f(ȳ|sn,q, h, Ĥ0,Hj) ≥
1∑
j=0

Pr{Hj|Ĥ0}f(ȳ|sn−1,q, h, Ĥ0,Hj) (L.4)

Pr{H0|Ĥ0}
2πσ2

n

e
− (ȳr−sn|h|)2+(ȳi−sq |h|)

2

2σ2
n

(
1− e

2dmin,0|h|(ȳr−sn|h|)−d
2
min,0|h|

2

2σ2
n

)

+ Pr{H1|Ĥ0}
p∑
l=1

λl
2π(σ2

l + σ2
n)

e
− (ȳr−sn|h|)2+(ȳi−sq |h|)

2

2(σ2
l

+σ2
n)

(
1− e

2dmin,0|h|(ȳr−sn|h|)−d
2
min,0|h|

2

2(σ2
l

+σ2
n)

)
≥ 0.

(L.5)

We note that all the terms on the left-hand side of (L.5) other than the terms inside the

parentheses are nonnegative. Let us now consider these difference terms. Inside the first set

of parentheses, we have

1− e

(
2(ȳr−sn|h|)dmin,0|h|−d

2
min,0|h|

2

2σ2
n

)
(L.6)

which can easily be seen to be greater than zero if ȳr − sn|h| < dmin,0|h|
2

and is zero if

ȳr − sn|h| = dmin,0|h|
2

. The same is also true for the term inside the second set of parentheses

given by

1− e

(
2(ȳr−sn|h|)dmin,0|h|−d

2
min,0|h|

2

2(σ2
l

+σ2
n)

)
. (L.7)

Therefore, the inequality in (L.5) can be reduced to

ȳr − sn|h| ≤
dmin,0|h|

2
. (L.8)

231



1∑
j=0

Pr{Hj|Ĥ0}f(ȳ|sn,q, h, Ĥ0,Hj) ≥
1∑
j=0

Pr{Hj|Ĥ0}f(ȳ|sn,q+1, h, Ĥ0,Hj) (L.10)

1∑
j=0

Pr{Hj|Ĥ0}f(ȳ|sn,q, h, Ĥ0,Hj) ≥
1∑
j=0

Pr{Hj|Ĥ0}f(ȳ|sn,q−1, h, Ĥ0,Hj). (L.11)

Similarly, (L.4) simplifies to

ȳr − sn|h| ≥ −
dmin,0|h|

2
. (L.9)

From these observations, we immediately conclude that the decision rule to detect sn involves

comparing ȳr with thresholds located at midpoints between the received neighboring signals.

Following the same approach, we can determine the decision region for the quadrature

component of the signal constellation point sn,q by comparing the likelihood functions in

(L.10) – (L.11) shown on the next page, which similarly reduce to ȳi − sq|h| ≤ dmin,0|h|
2

and ȳi − sq|h| ≥ −dmin,0|h|
2

, respectively. Hence, we again have the thresholds at midpoints

between the neighboring received signals.

Under the SSS scheme, the secondary users are allowed to transmit in busy-sensed channel

(i.e., under sensing decision Ĥ1) as well. Since the simplified decision rules in (L.8) and (L.9)

do not depend on the sensing decision Ĥi, the same set of inequalities are obtained for the

ML detection rule under sensing decision Ĥ1, leading to the same conclusion regarding the

decision rule and thresholds. �
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Appendix M

Proof of Theorem 8.1.1

The mutual information I(ρ) is a concave function since its second derivative is negative,

i.e., Ï(ρ) = −E{(E{|s[i] − ŝ[i]|2
∣∣ŷ[i]})2 + |E{(s[i] − ŝ[i])2

∣∣ŷ[i]}|2} < 0 [99]. Subsequently,

−θTBI(ρ) is a convex function for given values of θ, T , B, and e−θTBI(µ(θ,z)z) is a log-

convex function, which takes non-negative values. Since expectation preserves log-convexity,

E
{

e−θTBI(µ(θ,z)z)
}

is also log-convex [92]. This implies that log(E
{

e−θTBI(µ(θ,z)z)
}

) is a convex

function of ρ. Since the negative of a convex function is concave, it follows that the objective

function in (8.5) is concave. Since logarithm is a monotonic increasing function, the optimal

power control policy can be found by solving the following minimization problem:

min
µ(θ,z)

E
{

e−θTBI(µ(θ,z)z)
}

(M.1)

subject to E{µ(θ, z)} ≤ SNR. (M.2)

The mutual information I(ρ) is a concave function since its second derivative is negative,

i.e., Ï(ρ) = −E{(E{|s[i]− ŝ[i]|2
∣∣y[i]})2 + |E{(s[i]− ŝ[i])2

∣∣y[i]}|2} < 0 [99] . Hence, the above

objective function is strictly convex and the constraint in (M.2) is linear, which implies that

the optimization problem is convex. Therefore, the optimal power control can be obtained

by first writing the expectations in (M.1) and (M.2) as integrals and then forming the
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Lagrangian as follows:

L(θ, z) =

∫ ∞
0

e−θTBI(µ(θ,z)z)f(z)dz + λ
(∫ ∞

0

µ(θ, z)f(z)dz − SNR

)
. (M.3)

Above, λ denotes the Lagrange multiplier. Setting the derivative of the Lagrangian with

respect to µ(θ, z) equal to zero, we obtain

∂L(µ(θ, z), λ)

∂µ(θ, z)

∣∣∣∣
µ(θ,z)=µ∗(θ,z)

= 0 =⇒
(
λ− βe−θTBI(µ∗(θ,z)z)MMSE(µ∗(θ, z)z)z

)
f(z)=0.

(M.4)

Above, we have used the relation between the mutual information and MMSE given in (2.9)

and defined β = θTB log2 e. Let α = λ
β
. Rearranging the above expression inside the

parentheses, we obtain the equation in (8.8) where α can found from the average power

constraint given in (8.9). �
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Appendix N

Proof of Proposition 8.1.1

We first rewrite the equation in (8.8) by using the relation in (2.9) as follows:

g
(
(µ(θ, z)z)

)
= e−θTBI(µ(θ,z)z)İ(µ(θ, z)z)z log 2− α. (N.1)

Then, differentiating g
(
(µ(θ, z)z)

)
with respect to (µ(θ, z)z) results in

ġ
(
(µ(θ, z)z)

)
= e−θTBI(µ(θ,z)z)z2

(
− θTB(İ(µ(θ, z)z))2 + Ï(µ(θ, z)z)(log 2)2

)
. (N.2)

Since Ï(ρ) < 0, the first derivative of g
(
(µ(θ, z)z)

)
is always negative, i.e., ġ

(
(µ(θ, z)z)

)
< 0.

Hence, using Rolle’s theorem [109], the equation in (8.8) cannot have more than one root,

implying the uniqueness of the optimal power policy. �
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Appendix O

Proof of Theorem 8.1.2

We first express the mutual information achieved with arbitrary input distributions in the

low-power regime as follows:

I(SNRz) = SNRz +
Ï(0)

2
SNR2z2 + o(SNR2). (O.1)

Inserting the above expression into the effective capacity formulation, CE(SNR), given in

(8.5) and evaluating the first and second derivatives of CE(SNR) with respect to SNR at

SNR = 0 results in

ĊE(0) =
E{z}
log 2

(O.2)

C̈E(0) = (Ï(0)− β log2 e)E{z2} log2 e + β log2 e(E{z})2. (O.3)

Further inserting the above expressions into those in (8.20) and (8.21), the minimum energy

per bit and wideband slope expressions in (8.23) are readily obtained. �
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Appendix P

Proof of Theorem 8.1.3

In the low power regime, MMSE behaves as [52]

MMSE(ρ) = 1 + Ï(0)ρ+ o(ρ2). (P.1)

Incorporating the above approximation into (8.8), we have

e−β
∫ µ(θ,z)z
0 (1+Ï(0)ρ+o(ρ2))dρ

(
1 + Ï(0)µ(θ, z)z + o

(
(µ(θ, z)z)2

))
z = α. (P.2)

Via the first-order Taylor expansion of the above equation, we obtain

(
1−

(
β − Ï(0)

)
µ(θ, z)z + o

(
(µ(θ, z)z)2

))
z = α. (P.3)

Solving the above equation provides the optimal power policy in (8.27) where α is again

found by satisfying the average power constraint as in (8.9). �
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Appendix Q

Proof of Theorem 8.1.4

The objective function is quasiconcave since the effective capacity is a concave function of

transmission power and the total consumed power in the denominator is affine and positive.

Therefore, the optimal power policy can be found through fractional programming [69]. By

using the variable transformation ψ = 1
Pcn+ 1

ε
E{Pn(θ,z)} , the problem can be converted to a

minimization problem as follows:

min
Pn(θ,z)≥0

ψ log
(
E{e−θTBI(Pn(θ,z)z)}

)
(Q.1)

subject to ψ(Pcn +
1

ε
E{Pn(θ, z)}) ≤ 1. (Q.2)

Since the objective function in (Q.1) is convex subject to an affine constraint, the optimal

power control policy can be obtained through the Lagrangian optimization approach as

follows:

L(Pn(θ, z), ψ, λ) = ψ log
(
E{e−θTBI(Pn(θ,z)z)}

)
+ λ
[
ψ
(
Pcn +

1

ε
E{Pn(θ, z)}

)
− 1
]
. (Q.3)
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Above, λ denotes the Lagrange multiplier. Applying the Karush-Kuhn-Tucker (KKT) con-

ditions yields the set of following equations:

ψ(Pcn +
1

ε
E{Pn(θ, z)}) = 1 (Q.4)

dL(Pn(θ, z), ψ, λ)

dPn(θ, z)
= −ψθTBe−θTBI(Pn(θ,z)z)MMSE(Pn(θ, z))z log2(e)

E{e−θTBI(Pn(θ,z)z)}
f(z) +

λψ

ε
f(z) = 0

(Q.5)

log
(
E
{

e−θTBI(Pn(θ,z)z)
})

+ λ
(
Pcn +

1

ε
E
{
Pn(θ, z)

})
= 0. (Q.6)

Rearranging the terms in (Q.5) leads to the desired result in (8.31) where λ can be found by

inserting the optimal power control in (8.31) into (Q.6) and solving the resulting equation

in (8.34). �

239



Appendix R

Proof of Theorem 8.1.5

The objective function is concave in transmission power and the feasible set defined by (8.45)

is a convex set. Therefore, the Karush-Kush-Tucker conditions are sufficient and necessary

to find the optimal solution. First, the EE min constraint in (8.45) can be rewritten as

− 1

θTB
logE

{
e−θTBI(µ(θ,z)z)

}
− EEminN0B

(1

ε
E{µ(θ, z)}+ Pcn

)
≥ 0. (R.1)

Let us define ν as the Lagrange multiplier associated with the min EE constraint. Then, the

Lagrangian function is given by

L(P (g, h), ν) = (1 + ν)
(
− 1

θTB
logE

{
e−θTBI(µ(θ,z)z)

})
− νEEminN0B

(1

ε
E{µ(θ, z)}+ Pcn

)
.

(R.2)

Differentiating the above Lagrangian function with respect to µ(θ, z) and and setting the

derivative equal to zero, we obtain the following equation:

∂L(µ(θ, z), ν)

∂µ(θ, z)

∣∣∣∣
µ(θ,z)=µ∗(θ,z)

= (1 + ν)
log2(e)MMSE(µ∗(θ, z)z)ze−θTBI(µ∗(θ,z)z)

E{e−θTBI(µ∗(θ,z)z)}
− νEEmin

ε
N0B = 0.

(R.3)
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Rearranging the terms in (R.3) leads to the desired result in (8.48) and the Lagrange multi-

plier, ν can be found by inserting the optimal power control in (8.47) into the minimum EE

constraint and solving the equation in (8.48). Consequently, the average transmission power

is determined by substituting the optimal power control in (8.47) into (8.50). �
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Appendix S

Proof of Proposition 8.2.1

The optimization problem is quasiconcave since the effective capacity, CE(θ), is a concave

function of the transmission power [46] and the logarithm in (8.65) is strictly monotonically

increasing function of CE(θ). Hence, the maximum average arrival rate in the numerator in

(8.75) is a concave function of the transmission power and the power consumption in the

denominator is both affine and positive. Therefore, the optimal power value can be found by

using fractional programming [69]. By introducing an additional variable ψ = 1
1
ε
E{P(θ,z)}+Pc

,

the problem can be transformed into

min
P(θ,z)≥0

−ψ log
( e2θCE(θ) − p11eθCE(θ)

(1− p11 − p22) + p22eθCE(θ)

)
(S.1)

subject to ψ
(1

ε
E {P(θ, z)}+ Pc

)
≤ 1. (S.2)

Since the total consumed power in the denominator of the objective function in (8.75) is an

affine function, the above inequality can be changed to equality. Consequently, the optimal

power values are obtained by forming the Lagrangian function as follows:

L(P(θ, z), ψ, λ) = −ψ log

(
e2θCE(θ) − p11eθCE(θ)

(1− p11 − p22) + p22eθCE(θ)

)
+ λ
[
ψ
(1

ε
E {P(θ, z)}+ Pc

)
− 1
]
,

(S.3)
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where λ is the Lagrange multiplier. According to the Karush-Kuhn-Tucker (KKT) condi-

tions, the optimal power control must satisfy the following set of equations:

ψ
(1

ε
E {P(θ, z)}+ Pc

)
= 1 (S.4)

− ψθe−θI(P∗(θ,z)z)MMSE
(
P∗(θ, z)z

)
z log2(e)

[
(2− p11e−θCE(θ))(1− p11 − p22) + p22eθCE(θ)

((1− p11 − p22)e−θCE(θ) + p22)(1− p11e−θCE(θ))

]
f(z)

+
λψ

ε
f(z) = 0

(S.5)

− log

(
e2θCE(θ) − p11eθCE(θ)

(1− p11 − p22) + p22eθCE(θ)

)
+ λ
(1

ε
E {P(θ, z)}+ Pc

)
= 0. (S.6)

In (S.5), we have used the relation between MMSE and the mutual information given in

(2.9). Rearranging the terms in (S.5) yields the desired result in (8.77) where λ is obtained

by solving the equation in (S.6). �
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Appendix T

Proof of Proposition 8.2.2

The optimization problem is again quasiconcave due to the same reasoning explained in

the proof of Proposition 8.2.1. Hence, fractional programming can be employed to find the

optimal power control. Let us define ψ = 1
1
ε
E{P(θ,z)}+Pc

. Then the problem can be converted

to

min
P(θ,z)≥0

−ψθCE(θ) + α + β

θCE(θ) + α
CE(θ) (T.1)

subject to ψ
(1

ε
E {P(θ, z)}+ Pc

)
≤ 1. (T.2)

The above inequality can be changed to equality since the total power in the denominator is

an affine function. Hence, we can write the Lagrangian function to find the optimal power

control as follows:

L(P(θ, z), ψ, λ) = −ψθCE(θ) + α + β

θCE(θ) + α
CE(θ) + λ

[
ψ
(1

ε
E {P(θ, z)}+ Pc

)
− 1
]
, (T.3)
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where λ is the Lagrange multiplier. The optimal power control must satisfy the KKT con-

ditions listed below:

ψ
(1

ε
E {P(θ, z)}+ Pc

)
= 1 (T.4)

− ψe−θI(P∗(θ,z)z)MMSE
(
P∗(θ, z)z

)
z log2(e)

[( αβ

(θCE(θ) + α)2
+ 1
) 1

e−θCE(θ)

]
f(z) +

λψ

ε
f(z) = 0

(T.5)

− θCE(θ) + α + β

θCE(θ) + α
CE(θ) + λ

(1

ε
E {P(θ, z)}+ Pc

)
= 0. (T.6)

After further rearrangements in (T.5), we derive the equation in (8.84) and the optimal value

of λ can be determined by solving the equation in (T.6). �
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Appendix U

Proof of Proposition 8.2.3

The objective function in (8.88) is concave in the transmission power and the feasible set

defined by the minimum EE constraint is a convex set. Hence, the optimal power can be

found by using the Lagrangian optimization approach as in the following:

L(P(θ, z), λ)= (1 + λ)
PON

θ
log

(
e2θCE(θ) − p11eθCE(θ)

(1− p11 − p22) + p22eθCE(θ)

)
− λEEmin

(1

ε
E {P(θ, z)}+ Pc

)
.

(U.1)

Setting the derivative of the Lagrangian function with respect to P(θ, z) equal to zero at the

optimal power level, we obtain the following equation:

∂L(P(θ, z), λ)

∂P(θ, z)

∣∣∣∣
P(θ,z)=P∗(θ,z)

= (1 + λ)PONe−θI(P∗(θ,z)z)MMSE
(
P∗(θ, z)z

)
z log2(e)

×
[

(2−p11e−θCE(θ))(1−p11−p22)+p22eθCE(θ)

(1−p11eθCE(θ))((1−p11−p22)e−θCE(θ)+p22)

]
−λ
ε

EEmin(θ)=0.

(U.2)

Rearranging the terms in the expression in (U.2) results in the desired characterization in

(8.90) where Lagrange multiplier λ can be found by satisfying the minimum EE constraint

with equality or equivalently by solving (8.93) [45]. �
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