
Syracuse University Syracuse University 

SURFACE SURFACE 

Dissertations - ALL SURFACE 

August 2016 

The Effects of Genetic and Environmental Variation on Growth The Effects of Genetic and Environmental Variation on Growth 

and Flowering and Flowering 

Kelly Marie Schmid 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/etd 

 Part of the Life Sciences Commons 

Recommended Citation Recommended Citation 
Schmid, Kelly Marie, "The Effects of Genetic and Environmental Variation on Growth and Flowering" 
(2016). Dissertations - ALL. 618. 
https://surface.syr.edu/etd/618 

This Thesis is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for 
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact 
surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=surface.syr.edu%2Fetd%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/618?utm_source=surface.syr.edu%2Fetd%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


 

Abstract 

 

 

The ability to respond to seasonal cues, including changes in daylength and temperature, can be 

vital for sessile organisms. One of the mechanisms plants use to deal with seasonal variation is 

adjusting their allocation to vegetative growth and reproduction, and the timing of the transition 

to flowering. To respond to selection and adapt to changing environments, populations must 

harbor genetic variation for these traits. This research addresses the following questions: (1) How 

much quantitative genetic variation for flowering time exists within a population? (2) Does 

photoperiod affect the timing of and allocation to growth and flowering? (3) Is their genetic 

variation and genetic correlations among and within photoperiod treatments for growth and 

flowering? To address these questions, we used a single population of the North American 

wildflower, Mimulus guttatus. We grew open-pollinated, field collected seed in a greenhouse to 

assess the standing genetic variation for growth and flowering traits. We then created full-sib 

families through assortative mating by flowering time. We grew seed in growth chambers in 

three photoperiod treatments (13, 14, and 15 hour days, corresponding to early spring through 

summer). We found substantial variation in flowering time across environments and maternal 

families. Additionally, we found that plants allocated their resources towards flowering and 

clonal growth differently according to daylength. Together, these results suggest that a single 

population can harbor substantial genetic variation, and that this variation may be the target of 

selection as climates shift and the onset of spring advances. 
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1 

 

Introduction 

One of the most fundamental questions faced by all organisms is: when is the best time to 

reproduce to maximize survival and success of their offspring.  As sessile organisms, it is 

important for plants to be able to respond to seasonal cues and variable environments, so that 

they may correctly time their transition to reproductive growth (Cohen 1976). Population 

flowering phenologies need to be synchronized so that potential mates are flowering; and 

flowering plants that rely on pollinators must display flowers when the appropriate pollinators 

are active (Grant 1971; Waser and Real 1979; Rathcke and Lacey 1985). In addition, life history 

theory predicts that selection on flowering time includes the trade-off between allocation to 

vegetative growth versus allocation to flowering and maturing seed (Cohen 1976; Kozlowski 

1992), and that different environments might favor alternate strategies of the timing of growth 

versus reproduction (Johnasson et al. 2013). For all of these reasons, adaptation of plant species 

to new biotic and abiotic environments often involves evolution of flowering time (Elzinga et al. 

2007; Sandring et al. 2007). 

The evolution of flowering time can occur very rapidly (e.g. Primack et al. 2004; Franks 

et al. 2007) due to phenotypic plasticity and/or genetic evolution. Various environmental factors 

can influence flowering time through a plastic response (e.g. Vermeulen 2015), through direct 

selection on flowering time itself (e.g. Franks et al. 2007), or through indirect selection caused 

by genetic correlations with other traits (e.g. Agrawal et al. 1999). The ability of plant species to 

react quickly to selection on flowering time suggests that populations harbor substantial 

quantitative genetic variation for flowering responses. Various forms of heterogeneous natural 

selection, as well as the genetic architecture of traits can affect the quantitative genetic variation 

within a population. Spatial or temporal variation in selection within a population can maintain 
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genetic variation (Levene 1953; Delph and Kelly 2014), and there is abundant evidence that 

selection varies among microsites within contiguous plant populations (e.g. Stewart and Schoen 

1987; Mojica et al. 2012). Alternatively, selection may favor different genotypes in different 

environments, particularly if there are gene x environment interactions so that genotypes respond 

differently to environmental variation (Via and Lande 1985; Gillespie and Turelli 1989). In 

addition, epistatic interactions among loci can maintain variation when the fitness effects of an 

allele change depending on an allele at another locus (Weinig et al. 2003). Finally, if the genetic 

covariances amongst traits under selection are such that alleles affect some traits positively and 

others negatively, then these alleles will tend to remain at intermediate frequencies longer (Houle 

1991). 

Negative genetic covariances amongst traits, or trade-offs, are a fundamental feature of 

life history theory (Stearns 1977;Ågren et al. 2013). Trade-offs may arise when two or more 

traits are both under selection to increase, but share a limiting resource; common examples 

include flower size and number (Worley and Barrett 2000), or increased egg size and number 

(Fox et al. 1997). In plants, a trade-off may also exist between vegetative growth and flowering 

if an individual cannot simultaneously allocate resources to both growth and reproduction 

(Reekie and Bazzaz 1987; Kozlowski 1992; Obeso 2002). Trade-offs may also arise directly 

through meristem usage, whereby a meristem can either take on vegetative fate or reproductive 

fate, but not both (Geber 1990). Friedman et al. (2015) have shown that populations that invest 

heavily in vegetative growth, specifically clonal growth, take longer to flower. Additionally, Van 

Drunen and Dorken (2012) found that investing in reproductive growth limits investment in 

clonal growth. For clonal plants, this trade-off between sexual and asexual growth represent 
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alternate routes to fitness, that may have different consequences depending on the environment 

(Reekie and Bazzaz 2005; Van Drunen et al. 2015).   

Classical life-history models predict that vegetative growth precedes reproduction during 

the course of a season, because the longer a plant delays flowering, the longer and larger it can 

grow and secure resources for reproduction (Iwasa and Cohen 1989; Ejsmond et al. 2010; Weis 

et al. 2014). However, too long a delay can impede the plant from setting any viable seed, if the 

season turns unfavorable. How plants partition resources between vegetative growth and 

reproduction should thus depend on both the ontogeny of the plant and the environment or the 

season it experiences. As sessile organisms, it is crucial that plants be able to respond to their 

environment, and indeed many traits show phenotypic plasticity as a response to variable 

environments (Bradshaw 1965; Schlichting 1986; Via et al. 1995). Phenotypic plasticity is 

considered adaptive if plastic genotypes have the greatest global fitness across environments 

(Via and Lande 1985; Via et al. 1995). For selection to act on phenotypic plasticity, there needs 

to be significant genetic variation in plasticity, often measured as genotype x environment 

interactions. Plants are faced with both intra- and inter-annual variability in their environments, 

and many phenological traits show plasticity in their response to this seasonal variability (van 

Kleunen and Fischer 2001).  

Optimal flowering phenology depends strongly on local climatic and ecological 

conditions. As such, many temperate plants rely on a combination of seasonal cues to transition 

from vegetative to reproductive growth. Seasonal cues that drive this transition include 

temperature, winter exposure (vernalization), and daylength (photoperiod) (Rathcke and Lacey 

1985; Lempe et al. 2005; Romera-Branchat et al. 2014). Photoperiod is the one seasonal cue that 

does not show inter-annual variation, regardless of other climatic factors; therefore, it is a 
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reliable cue that many temperate plants use to determine the time to transition to their 

reproductive phase (Lacey 1988; Koornneef et al.1991). However, as climates change, and 

springs advances earlier, plants are confronted with warmer temperatures at shorter daylengths 

(Amano et al. 2010; Wilczek et al. 2010). How this de-coupling between photoperiod and 

temperature affects flowering phenology, and early season trade-offs between vegetative growth 

and reproduction, remains an open question.  

In this study, we use the wildflower Mimulus guttatus (Phrymaceae) to study variation in 

flowering time and vegetative growth. Mimulus guttatus makes a good study system for such 

questions because the species is known to exhibit substantial variation in flowering time and 

vegetative growth among different populations (Vickery 1978; Hall and Willis 2006). This 

variation has largely been driven by local adaptation to seasonally dry environments (Lowry et 

al. 2008; Ivey and Carr 2012; Kooyers et al. 2014). Such ecological differences have imposed 

strong selection for changes in flowering time and allocation to vegetative growth, resulting in 

the advent of annual and perennial ecotypes (Vickery 1978; Hall and Willis 2006; Lowry et al. 

2008). This study investigates the standing quantitative genetic variation within a single 

perennial population of M. guttatus and the effects of changing or seasonal environments on 

growth and flowering. 

Here, we investigate whether there is genetic variation and phenotypic plasticity for the 

response to daylength in the timing of growth and flowering in a single population of M. 

guttatus. Our first goal was to measure the quantitative genetic variation for flowering time 

within the population in a common greenhouse environment. Next, we grew full-sib maternal 

families in three photoperiod treatments to assess how photoperiod affects the timing of and 

allocation to growth and flowering. The study addresses the following questions: (1) How much 
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quantitative genetic variation for flowering time exists within a population? (2) Does 

photoperiod affect the timing of and allocation to growth and flowering? (3) Is there genetic 

variation and genetic correlations among and within photoperiod treatments for growth and 

flowering? Understanding how plants may respond to environmental cues is important in 

understanding how they may adapt to changing environments. It is particularly relevant that we 

study the standing quantitative genetic variation for these responses, as this is the material upon 

which immediate selection can act.  

 

Methods 

 

Study species. The North American wildflower Mimulus guttatus (Phrymaceae), the common 

monkey flower, is a hermaphroditic herbaceous plant widely distributed in moist sites across 

western North America. The species shows extensive morphological variation, with populations 

classified as having either annual or perennial strategies (Vickery 1978). Although there is some 

disagreement about their taxonomic status (Nesom 2012), the two types are fully interfertile. For 

this study, we used a perennial population located in northern California, near Mt. Shasta at 

N122.176, W41.1105. In August 2013, we collected open pollinated seed from 30 plants, to be 

used in subsequent experiments. Plants were selected randomly, making sure that they were at 

least 100cm apart to limit the likelihood of sampling clones. 

 

Greenhouse experiment. To classify the genetic variation in flowering time in the population of 

interest, we grew seed from maternal families in a controlled greenhouse environment. In 

January 2015, we planted ten seed from 27 open-pollinated field-collected families (N=270) in 5 
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cm pots filled with moist Fafard 4P growing mix. We randomized the position of pots within 13 

flats. The seeds were stratified in the dark at 4°C for 5 days. We then moved the pots into the 

rooftop greenhouse at Syracuse University. The greenhouse was held at 21°C during the day and 

18°C during the night, with a 16-hour photoperiod. Flats were misted twice daily until 

germination and bottom watered every day for 1 hour. Plants were monitored for germination 

and date of first flower.  

We created outcrossed seed families for subsequent experiments by crossing 64 unrelated 

individuals (i.e. we avoided crossing half siblings). Because variation within a population in 

flowering time can cause assortative mating (Devaux and Lande 2008; Weis 2005), we created 

three sets of crosses, with individuals within each set chosen randomly. We crossed individuals 

that flowered early with other early flowering individuals; late flowering individuals with other 

late flowering individuals; and early flowering individuals with late flowering individuals (we 

randomly assigned whether the early or late parent was the mother to avoid maternal effects). We 

allowed seed to ripen on the mother plant, and then collected it and stored it at room temperature 

until use in the next experiment. 

 

Growth chamber experiment. To investigate how variation in vegetative growth and flowering 

time are influenced by quantitative genetic variation and seasonal environmental variation, we 

grew outcrossed full-sib plants that originated from a single population in three replicate growth 

chambers that varied in their photoperiod. Because the seed originated from maternal plants that 

experienced similar greenhouse conditions and after-ripening environments (see above), we 

assume there were minimal maternal effects. 
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 To investigate one aspect of seasonal variation, we used three growth chambers 

(Conviron E15) that varied in their photoperiod with day lengths of 13 hours 5 minutes, 14 hours 

5 minutes, and 15 hours 5 minutes. We chose these day lengths to simulate the day lengths of 

early spring (April 8
th

), late spring (May 3
rd

), and the longest day of the year (June 21
st
) in the 

natural location of this population. The temperature in all treatments was constant at 21°C days, 

18°C nights. We used 30 seed from 6 early x early crosses, 7 early x late crosses, and 6 late x late 

crosses (N=570).  We randomly assigned the 570 seed to the three treatments, while explicitly 

keeping the number of seed per family equal in each treatment. In July 2015, we planted seed in 

5cm pots filled with moist Fafard 4P growing mix. We stratified seed in the dark at 4°C for 7 

days, and then moved the flats into their assigned growth chamber treatment. We misted pots 

twice daily until germination and bottom watered every day for 1 hour. Although the growth 

chambers were identical models there may have been unwanted variation between them. To 

minimize this, we rotated the plants among the different chambers (maintaining their assigned 

treatment settings), and shuffled the position of every flat within a treatment every three days. 

There were 6 flats per treatment and 32 pots per flat, however one flat per treatment only 

contained 31 pots (n=191 per treatment). Each flat was considered a block in later statistical 

analyses. 

We monitored plants daily for germination and date of first flower. Additionally, we 

measured the following morphological traits every 2 weeks: leaf length, stolon number, stolon 

length, and leaf number. On the day of first flowering, we recorded node of first flower, length of 

the first three internodes, third leaf length, stolon number, and stolon length. At 2 weeks after 

first flowering, we measured branch number, stolon number, height, and flower number. We 

harvested flowering plants at 4 weeks after they first flowered, and recorded the number of 
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flowers and whether they were located on the primary axis, primary branches or stolons. We 

collected all of the nonflowering plants at 14 weeks (which coincided with the last harvest point 

of flowering plants) and recorded them as such. For all plants, we harvested the above ground 

biomass, separated it by branch type (primary axis, primary branch, or stolon), dried it, and 

weighed it.  

 

Statistical analysis. To estimate genetic variation (VG) and broad-sense heritability (H
2
), in 

flowering time for greenhouse-grown plants, we used a general linear mixed model (SAS PROC 

MIXED; 9.4; SAS Inst. 2014), with family as a random effect. We estimated genetic variance as 

four times the family variance component (for a half-sib design), and calculated the broad-sense 

heritability as the estimated genetic variance divided by the total phenotypic variance (Lynch and 

Walsh 1998). 

For all growth chamber plants, we investigated the relationship between vegetative traits 

and flowering traits by calculating phenotypic correlations among the traits for plants in each 

daylength treatment (SAS PROC CORR).  

We examined the effect of photoperiod treatment on each measure of flowering and 

growth traits separately using a general linear mixed model (SAS PROC MIXED). For this 

model, treatment was a fixed effect, while family, treatment by family interaction, and block 

nested within treatment were random effects. We used restricted maximum likelihood (REML) 

to estimate the variance components of the random effects, and their significance was determined 

using the likelihood-based Wald Z-scores, which are computed as the parameter estimate divided 

by its asymptotic standard error (Littell et al. 1996). Although we are not specifically interested 
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in the effect of cross, we ran a model that included cross type as a fixed effect and excluded 

family.  

 To estimate genetic variation (VG) and broad-sense heritability (H
2
), we used a general 

linear mixed model (SAS PROC MIXED) for each trait and each treatment separately, with 

family and block as random effects. We estimated genetic variance as two times the family 

variance component (for a full-sib design), and calculated the broad-sense heritability as the 

estimated genetic variance divided by the total phenotypic variance. We calculated family means 

using Best Linear Unbiased Predictors (BLUPs).   

To estimate pairwise genetic correlations for sets of traits, we first standardized data to z-

scores (mean=0, standard deviation=1) and performed restricted maximum likelihood general 

linear mixed models (SAS PROC MIXED) for each pair of traits within each treatment. The 

model included the effects of family and block as random effects. We specified the covariance 

matrix to be “unstructured”, allowing both among- and within-family variances and covariances 

to differ between traits. Then the genetic correlation between traits (rG)—defined as 

COVG/(VG1VG2)
1/2

, can be calculated directly from the observational variances and covariance 

between traits. We present both raw P-values, and adjusted values for multiple testing using the 

Bonferonni correction.  

 To investigate the differences between treatments in growth over time, we used a random 

regression mixed model in SAS PROC MIXED using standardized values for leaf length, leaf 

number, and stolon number. We fit individual intercepts and slopes for each family and used a 

repeated measures design. Because the data did not show a linear increase over time, we 

included both the linear and quadratic effects of time. Thus, the model included fixed effects of 

time, time
 
x time, treatment, and their interactions. We included block nested within treatment as 
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a random effect. We included family as a random effect, and allowed among-family and within-

family variances to differ between treatments. For each trait and treatment, we obtained a line of 

best fit based on family BLUPs. 

 

Results 

 

Intrapopulation variation in a common environment. Plants grown from field-collected open-

pollinated seed in the greenhouse showed a broad distribution of flowering phenology 

(mean=40.71 days, SD=5.67 days, range=31-66 days, n=260). In addition, 16 plants, from 7 

different maternal families, failed to flower at all over the 14 weeks that the plants were 

maintained. There was a significant effect of family for flowering time (VG=29.99 days), with a 

broad-sense heritability (H
2
) estimate of 0.54.  

 

Correlations between flowering time and vegetative growth in growth chamber treatments. 

Plants grown in growth chambers that differed in daylength, showed similar phenotypic 

correlations among flowering time traits, vegetative growth traits, and biomass allocation (Table 

1), with most traits showing significant correlations. Flowering time is negatively correlated with 

total flower number (at 4 weeks post-flowering), indicating that early flowering plants are 

making more flowers overall. Flowering time is also negatively correlated with early growth leaf 

size (at 2 weeks post-germination), showing that plants that flower early also grow more rapidly 

at early stages. In all three treatments, the correlations between flowering time and stolon traits 

were positive (early flowering plants produce few stolons).  
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The effect of daylength on flowering and vegetative growth. Overall, the highest proportion of 

plants flowered in the 15-hour treatment (83%), an intermediate proportion in the 14-hour 

treatment (56%), and the lowest in the 13-hour treatment (20%). We found a significant effect of 

treatment for all traits included in the model (Table 2), indicating that all traits showed 

significant phenotypic plasticity (Figure 1).  In the model that included cross, we found a 

significant effect of cross for flowering time (F stat=13.162,546, P<.0001), but no significant cross 

x treatment interaction. In addition, the effect of family was significant for all traits. The three 

biomass traits—stolon mass, branch mass, and primary axis mass, showed significant genotype 

by environment interactions (family x treatment effect, Table 2C), indicating that different 

families showed different degrees of plasticity. 

 

Genetic correlations and heritability. Genetic correlations were of the same sign and similar 

magnitude across all three treatments. Strong genetic correlations were found between leaf 

length at week 2 and flowering time, total flower number and flowering time, and flower number 

and stolon number (Table 3), the latter two remaining highly significant even after adjusting for 

multiple testing. The correlation between flower number and flowering time was especially high 

(13 hrs.=-0.81, 14 hrs.=-0.95, 15 hrs.=-0.94), as was flower number and stolon number (13 hrs.=-

0.97, 14 hrs.=-0.77, 15 hrs.=-0.77; Table 3). Stolon mass and primary rosette mass were not 

significantly correlated in any of the three treatments. All traits showed strong effects of family 

(Table 2) and significant genetic variation.  Broad-sense estimates of heritability were high for 

all traits across all treatments, however estimates were lower for stolon number in the 13 hour 

treatment (H
2
=0.19; Table 4).  
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The effect of daylength on growth rate. The growth of plants over time differed significantly 

between the treatments (Table 5). For leaf size, treatment explained a small, but statistically 

significant proportion of the variation (Table 5; Figure 2A). Leaf number and stolon number 

were more strongly influenced by treatment (Table 5; Figure 2). Plants in the 13- and 14-hour 

treatments had a greater number of leaves than the 15-hour treatment in the early life stages; 

however this pattern reversed in later life stages (Figure 2B). We found the opposite to be true 

for stolon number. Plants in the 13 hour treatment had fewer stolons than the 14 and 15 hour 

treatment in the early life stages; however plants in the 13 hour treatment had the greatest 

number of stolons in later life stages (Figure 2C).  

 

Discussion 

 

The main findings of our study demonstrate that there is both genetic variation and phenotypic 

plasticity for flowering time, and vegetative and flowering responses to daylength, within a 

single population of M. guttatus. This population harbors significant variation in growth and 

reproduction. We found a significant treatment x family interaction for biomass traits, indicating 

a genotype x environment interaction (Table 2; Figure 2E-F). As predicted by life history theory, 

we found a trade-off between vegetative and reproductive growth as indicated by negative 

genetic correlations between components of these traits (Table 3). Finally, daylength also 

significantly affected growth rate, such that plants grown in the shorter daylengths grew slower 

early in life but allocated more towards clonal growth later in life, while plants grown in the 

longer daylength grew rapidly early in life  and allocated preferentially towards their main 

rosette (Figure 2). Below we discuss the implications of these findings for our understanding of 
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trade-offs between vegetative growth and reproduction, and responses to selection in changing 

environments. 

 Environment-dependent allocation to growth and flowering. Photoperiod and temperature are 

two of the main abiotic cues that plants use to transition from vegetative to reproductive growth. 

A recent study by Li et al. (2014) investigated the underlying genetic variation in Arabidopsis 

thaliana for response to temperature. They found that a 1-3 degree increase in seasonal 

temperature decreased flowering. This study is of particular importance, as it predicts flowering 

phenologies in response to one of the important environmental cues that plants respond to. Our 

study, addresses the other important cue, daylength. It is well known that daylength plays a 

critical role in growth and flowering (Romera-Branchat et al. 2014). Fitting with these 

expectations, daylength significantly affected growth and reproduction in our study. Plants 

invested heavily in vegetative growth in short daylengths and allocated preferentially towards 

reproductive growth in the longer photoperiod (Table 1). In the natural population, plants are 

receiving the cue to grow vegetatively early in spring, when daylength is short. As the days get 

longer, they receive the appropriate environmental cues to begin their transition from vegetative 

to reproductive growth. A recent study by Friedman and Willis (2013) shows that the critical 

photoperiod required for flowering is highly variable across different populations of M. guttatus.  

Here we show that within a single population, maternal families also respond differently to 

daylength (Table 2; Figure 1). These differential responses indicate that there is genetic variation 

within this population that selection may act on, which may explain the differences in the 

proportion of flowering individuals across photoperiods.  

Being able to respond to their environment is particularly important for sessile organisms, 

like plants. By maintaining this ability to respond, plants can respond to differences in the 
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environment over the course of a growing season. A study by Debieu et al. (2013) investigated 

the genetic variation in seed dormancy, vegetative growth rate, and flowering time in 

Arabidopsis thaliana across a latitudinal gradient. They found that the co-variation between 

these three traits follows a latitudinal cline, such that at high latitudes growth rate is positively 

correlated with seed dormancy and negatively correlated with flowering time. In our study, we 

found that daylength had a significant effect on the rate of growth, such that plants grown under 

the 13-hour daylength initially grew leaves more rapidly than those in the 15-hour daylength; 

however, this shifted in later life stages when the plants in the 13-hour photoperiod invested 

more in clonal growth than leaf growth (Table 5; Figure 2). In the peak of the growing season 

plants are allocating resources towards their main rosette which ultimately indicates an 

investment in reproductive growth and flowering. Early in the growing season, plants are 

allocating preferentially towards vegetative and clonal growth.  

Our growth rate results suggest that there may be heterogeneous selection over time; 

which may be one mechanism by which genetic variation is maintained. Selection pressures may 

vary throughout the growing season; and families may respond differently to the changes in 

daylength throughout the growing season. For later flowering families, early vegetative and 

clonal growth may increase viability and fitness later in the growing season. For early flowering 

families, rapid flowering early in the growing season results in a greater number of flowers 

overall and thus higher fitness through sexual reproduction. Selection may also vary spatially 

throughout the population, such that microsites within the population experience different 

selection, resulting in maternal families that respond differently to daylength. While seed 

dispersal is extensive in this species, clonal growth remains within the immediate proximity of 

the mother plant. This may result in families that inhabit the same microsite as their ramets. This 
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variation in space (microsites) and time within a M. guttatus population has recently been shown 

by Mojica et al. (2012). Their study examining variation in flower size QTL, found that flower 

size differs within the population between growing seasons (years) and microsites, as a result of 

antagonistic pleiotropy with flowering time. Understanding this heterogeneous variation is 

important to understanding how plants’ flowering phenology may change within seasons as a 

response to changes in their environment.  

 

Evolution under changing climates. Our research can shed light on some of the consequences of 

a shift in the growing season due to climate change. Early season environment plays a major role 

in flowering phenology and population structure (Rathcke and Lacey 1985; Hendry and Day 

2005). In a warming environment where spring shifts earlier and plants begin to grow earlier, 

plants will be experiencing shorter photoperiods for longer periods of time. There are several 

potential outcomes to this. There may be selection favoring the families that have a lower critical 

photoperiod and flower earlier. This would result in a population that shifts towards an overall 

earlier flowering time, and reduced clonal growth. This would mimic the pattern of selection that 

likely produced the annual ecotype of M. guttatus (Hall and Willis 2006). Alternatively, the shift 

in climate may result in plants that grow vegetatively for longer and invest more in clonal growth 

because they are spending more time in shorter photoperiods and not receiving their critical 

photoperiod until later in the growing season.  Furthermore, as we found in our study, phenotypic 

selection may be constrained due to negative genetic covariances between traits. These scenarios 

may ultimately lead to changes in population structure and flowering phenology. Changes in 

early spring phenology, and the timing of major life history events like bud dormancy, tuber 

formation, spring leafing, and flowering, as a result of a warming climate have been well 
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documented (Fitter and Fitter 2002; Parmesan and Yohe 2003; Menzel et al. 2006).  For 

example, Memmott et al. (2007) investigated the effect of climate change on the interactions 

between plants and their pollinators, and found that increased atmospheric CO2 led to 

phenological shifts and reduced overlap between plants and their pollinators. Ultimately, they 

suggest that these reduced interactions may result in extinction of both plants and pollinators. A 

study by Anderson et al. (2012) found that earlier snow melt as a result of warming temperatures 

affected the phonologies in Boechera stricta via strong directional selection for early flowering. 

They found that shifts in flowering time reduce the flower resources available to pollinators. 

Ultimately, long-term population growth and survival will depend on adaptive genetic evolution, 

and the ability of plants to integrate environmental cues such as daylength, light level, 

temperature and water availability to determine the optimal time to transition between life stages.  

 

Genetic components for response to daylength. We detected a significant genotype x 

environment interaction for biomass allocation (family x treatment, Table 2C).  This suggests 

that selection may favor different genotypes at different points in the growing season. Biomass 

allocation is one indication of how plants are partitioning their resources. If they have a higher 

primary branch axis biomass, they are partitioning resources towards sexual reproduction. If they 

have a higher stolon biomass, they are partitioning resources towards asexual reproduction. To 

understand how selection might maintain genotypes that have different relative allocation 

patterns, one would need to assess the fitness contribution of seed versus stolons. Such a study 

would require multi-year field experiments that realistically determine how recruitment from 

seed competes with stolon rosettes. In some species clonal reproduction has been found to lead to 

higher population growth compared to sexual reproduction (Schulze et al. 2012), although other 
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studies show the two reproductive modes of equal importance in some species (Weppler et al. 

2006). It is likely that the relative importance of the two strategies changes under different 

environmental conditions in both time and space, as has been found for populations along an 

elevational gradient (Chen et al. 2015). 

As predicted by life history theory (Iwasa and Cohen 1989), a trade-off exists between 

vegetative and reproductive growth in this population. The significant negative genetic 

correlation between flower number and stolon number might suggest that plants cannot 

simultaneously allocate resources towards sexual and asexual reproductive growth. Previous 

work showing shared QTL between flowering time and stolons in an annual x perennial mapping 

population provide support for this hypothesis (Friedman et al. 2015). However, we cannot rule 

out an alternative explanation that the trade-off could show that families are relatively 

specialized in either sexual or clonal growth (although in our experiment, all families reproduced 

via both strategies). The fact that heritable variation in allocation patterns exists suggests that 

these two reproductive strategies may not result form an inherent constraint in allocation, but 

rather are an outcome of selection. Although allocation trade-offs between vegetative and sexual 

reproduction have been well documented in various clonal plant species (Geber et al. 1992; 

Worley and Harder 1996; Ronsheim and Bever 2000; van Kleunen et al. 2003), it can be 

challenging to interpret the mechanism underlying the phenotypic or genetic correlations. 

Although it is not possible to assess fitness in a growth chamber study like ours, we are 

able to interpret the fitness consequences of sexual reproduction using total flower number as a 

proxy for fitness through sexual reproduction. In our experiment, regardless of daylength, plants 

that flower early have a greater number of flowers overall (Table 1). This suggests that 

individuals that flower early have higher sexual fitness over a single growing season. However, 
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the individuals that are flowering later are investing more towards stolon production (Table 1), 

and given that this population is perennial, these individuals will likely have higher fitness in 

subsequent growing seasons. In a recent study by Herben et al. (2015), they found that clonality 

reduced reproductive output (seed number and size), but that clonal individuals also had reduced 

mortality. Additionally, late flowering individuals that are investing in stolons may out-compete 

new germinants in future growing seasons. Eckert et al. (1999) found that sexual reproduction 

was greatly reduced, or sometimes lost, in populations of an aquatic plant as a result of 

environmental conditions not conducive to sexual reproduction. This has led to populations that 

are exclusively clonal.  

 

Conclusions. We performed a greenhouse experiment to quantify the standing phenotypic 

variation in a single population of M. guttatus, followed by a growth chamber experiment to 

investigate whether this population exhibits genetic variation and phenotypic plasticity in 

response to daylength in the timing of growth and flowering. We found that this population is 

phenotypically plastic and exhibits a trade-off between reproductive and clonal growth. We 

suggest that the mechanisms maintaining the variation within this single population include 

genotype x environment interaction, heterogeneous selection over space and time, and negative 

genetic correlations between traits. Ultimately, this study has shed light on the maintenance of 

genetic variation in a single population and confirmed the critical role that photoperiod has on 

flowering phenology. Follow up experiments in the field should be conducted in order to confirm 

our findings in more natural environments and determine the way selection is maintaining the 

variation in sexual and clonal strategies.  
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Table 1. Phenotypic correlations of flowering traits, vegetative growth traits, and biomass for A) 

13-hour treatment (n=190, flowering time n=39); B) 14-hour treatment (n=190, flowering time 

n=107); C) 15-hour treatment (n=190, flowering time n=158) for Mimulus guttatus plants grown 

in growth chambers. P-values are shown in parentheses, with bold indicating statistical 

significance. 

 

A. 13-hour treatment 

  
Total flower 

number 

Leaf length 

(week 2) 
Stolon number Stolon  mass 

Primary axis 

mass 

Flowering 

time (days) 
-0.69(<0.0001) -0.34 (0.03) 0.66 (<.0001) 0.47 (0.003) -0.49(0.001) 

Total flower 

number  
0.24 (0.001) -0.32 (<.0001) -0.34 (<.0001) 0.58 (<.0001) 

Leaf length             

(week 2)   
-0.02 (0.76) 0.05 (0.48) 0.13 (0.08) 

Stolon number 
   

0.42 (<.0001) -0.02 (0.80) 

Stolon mass 
    

-0.34 (<.0001) 

B. 14-hour treatment 

Flowering 

time (days) 
-0.62 (<.0001) -0.33 (0.0006) 0.71 (<.0001) 0.72 (<.0001) -0.23 (0.02) 

Total flower 

number 
 0.28 (0.0001) -0.50 (<.0001) -0.68 (<.0001) 0.67 (<.0001) 

Leaf length             

(week 2) 
  -0.14 (0.06) -0.14 (0.05) 0.16 (0.03) 

Stolon number    0.72 (<.0001) -0.22 (0.002) 

Stolon mass     -0.43 (<.0001) 

C. 15-hour treatment 

Flowering 

time (days) 
-0.58 (<.0001) -0.23 (0.003) 0.58 (<.0001) 0.58 (<.0001) -0.20 (0.01) 

Total flower 

number 
 0.26 (0.0003) -0.49 (<.0001) -0.47 (<.0001) 0.56 (<.0001) 

Leaf length             

(week 2) 
  -0.14 (0.05) -0.13 (0.06) 0.13 (0.08) 

Stolon number    0.59 (<.0001) -0.27 (0.0002) 

Stolon mass     -0.33 (<.0001) 



20 

 

Table 2. Summary of REML mixed effect models for fixed and random effects on 

morphological traits. A) Shows effects on flowering traits, B) shows vegetative growth traits, and 

C) shows biomass allocation. Bold P-values indicate significance.   

 

A. Flowering time (days) Total flower number 

Fixed effects F stat P-value F stat P-value 

Treatment 28.932,18.7 <.0001 16.112,19.7 <.0001 

Random effects Z stat P-value Z stat P-value 

Family 2.62 0.004 2.44 0.007 

Family*Treatment 1.01 0.16 0.66 0.26 

Block(Treatment) 1.44 0.07 0.5 0.31 

B. Leaf length (week 2) Stolon number 

Fixed effects F stat P-value F stat P-value 

Treatment 12.272,14.5 0.0008 116.472,16.4 <.0001 

Random effects Z stat P-value Z stat P-value 

Family 2.86 0.002 2.43 0.008 

Family*Treatment 0.38 0.35 1.13 0.13 

Block(Treatment) 1.52 0.064 0.68 0.25 

C. Stolon mass Branch mass Primary axis mass 

Fixed effects F stat P-value F stat P-value F stat P-value 

Treatment 27.322,32.1 <.0001 12.692,36 <.0001 10.762,29.2 0.0003 

Random effects Z stat P-value Z stat P-value Z stat P-value 

Family 2.06 0.02 2.4 0.008 2.48 0.007 

Family*Treatment 3.1 0.001 2.89 0.002 2.77 0.003 

Block(Treatment) 0.73 0.23 . . 0.98 0.16 
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Table 3. Pairwise family genetic correlations (rG) between flowering traits, vegetative growth 

traits, and biomass allocation for three daylength treatments in growth chambers. Raw P-values 

are presented, and bolded values indicate those that remain significant after Bonferonni 

correction. 

 

Pairwise trait Treatment (daylength hours) 

 13 14 15 

Leaf length (week 2)-Flowering time (days) -0.6088 (0.006) -0.6091 (0.006) -0.4731 (0.03) 

Stolon mass-Branch and primary axis mass -0.4209 (0.08) -0.2257 (0.40) -0.1275 (0.62) 

Total flower number-Flowering time (days) -0.8131 (<.0001) -0.9505 (<.0001) -0.9404 (<.0001) 

Total flower number-Stolon number -0.9740 (<.0001)  -0.7748 (<.0001) -0.7696 (<.0001) 
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Table 4.  Genetic variance (VG), environmental variance (VE) and broad-sense estimates of 

heritability (H
2
) for flowering traits, vegetative growth traits, and biomass allocation within each 

growth chamber treatment. 

 

Trait Treatment VG VE H
2
 

Flowering time 

(days) 
13 426.12 67.21 0.86 

14 155.06 148.91 0.51 

15 139.93 74.93 0.65 

Total flower number 13 94.55 65.71 0.59 

14 212.34 141.3 0.60 

15 288.92 129.03 0.69 

Leaf length (week 2) 13 0.18 0.12 0.61 

14 0.24 0.16 0.59 

15 0.19 0.14 0.58 

Stolon number 13 0.64 2.77 0.19 

14 1.26 1.43 0.46 

15 0.61 0.99 0.37 

Stolon mass 13 0.06 0.06 0.48 

14 0.09 0.09 0.50 

15 0.07 0.04 0.62 

Branch and primary 

axis mass 
13 0.01 0.009 0.51 

14 0.09 0.06 0.62 

15 0.09 0.03 0.75 
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Table 5. Summary of REML mixed effect models for fixed and random effects on growth rate 

traits. Bold P-values indicate significance. 

  

 
Leaf length (cm) Leaf number Stolon number 

Fixed effects F stat P-value F stat P-value F stat P-value 

Treatment 8.572,81.8 <.0001 14.192,521 <.0001 19.142,1016 <.0001 

Time 3461.521,1706 <.0001 471.291,1649 <.0001 1222.381,1704 <.0001 

Time
2
 2047.011,1706 0.0003 54.721,1653 <.0001 665.491,1704 <.0001 

Time*Treatment 20.932,1706 <.0001 22.402,1649 <.0001 20.562,1704 <.0001 

Time
2
*Treatment . . 6.562,1654 0.0014 7.12,1704 0.0009 

Random effects Z stat P-value Z stat P-value Z stat P-value 

Family 2.28 0.01 2.39 0.009 2.05 0.02 

Family*Treatment 3.26 0.0006 3.08 0.001 2.79 0.0026 

Block (Treatment) 0.38 0.35 0.96 0.17 . . 
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Figure 1. Plasticity in six flowering and vegetative traits for three growth chamber treatments 

that differ in daylength. Grey lines represent norms of reaction for 19 maternal families, whereas 

the black line indicates the mean trait values across the 19 families. Families and treatments 

differed significantly from one another for all traits (Table 2), and the effect of family × 

treatment is significant for primary axis mass and stolon mass.   
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Figure 2. Relationship between vegetative growth and time for A) the length of the third leaf; B) 

total number of leaves; and C) total number of stolons in three growth chamber treatments. The y-

axis values are adjusted for other variables in the model (see Methods). The fitted lines depict 

quadratic regressions based on a repeated-measures random regression analysis for four sampling 

times. The light grey line is the 13-hour treatment, the intermediate grey line is the 14-hour 

treatment, and the dark grey line is the 15-hour treatment.  
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