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ABSTRACT

The Kullback-Leibler (KL) divergence is one of the most fundamental metrics in

information theory and statistics and provides various operational interpretations in

the context of mathematical communication theory and statistical hypothesis testing.

The KL divergence for discrete distributions has the desired continuity property which

leads to some fundamental results in universal hypothesis testing. With continuous

observations, however, the KL divergence is only lower semi-continuous; di�culties

arise when tackling universal hypothesis testing with continuous observations due to

the lack of continuity in KL divergence.

This dissertation proposes a robust version of the KL divergence for continuous

alphabets. Speci�cally, the KL divergence de�ned from a distribution to the Lévy

ball centered at the other distribution is found to be continuous. This robust version

of the KL divergence allows one to generalize the result in universal hypothesis testing

for discrete alphabets to that for continuous observations. The optimal decision rule

is developed whose robust property is provably established for universal hypothesis

testing.

Another application of the robust KL divergence is in deviation detection: the

problem of detecting deviation from a nominal distribution using a sequence of inde-

pendent and identically distributed observations. An asymptotically δ-optimal detec-

tor is then developed for deviation detection where the Lévy metric becomes a very

natural distance measure for deviation from the nominal distribution.

Lastly, the dissertation considers the following variation of a distributed detection



ii

problem: a sensor may overhear other sensors' transmissions and thus may choose to

re�ne its output in the hope of achieving a better detection performance. While this

is shown to be possible for the �xed sample size test, asymptotically (in the number of

samples) there is no performance gain, as measured by the KL divergence achievable

at the fusion center, provided that the observations are conditionally independent.

For conditionally dependent observations, however, asymptotic detection performance

may indeed be improved when overhearing is utilized.
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2.1 The Lévy ball centered at standard normal distribution with radius 0.045. . 14

2.2 The upper bound of D(µ||BL(P0, δ0)) for different δ0. . . . . . . . . . . . . 18

2.3 Illustration of u−δ, uδ, uδ−δ and uδδ . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 The shaded region is BL(µn, 2δ) and the solid line is P0. . . . . . . . . . . 42
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Statement

For distributions defined on discrete alphabets, the Kullback-Leibler (KL) divergence from

distribution µ to another distribution P0 is

D(µ||P0) =
∑
i

µi log
µi
Pi
. (1.1)

For continuous distributions defined on the real line, the KL divergence between µ and

P0 is

D(µ||P0) =

∫
R
dµ log

dµ

dP0

. (1.2)

For either discrete or continuous alphabets, let P denote the corresponding probability

space. In both discrete and continuous cases, the sublevel set and the superlevel set of the

KL divergence to a fixed distribution P0, are disjoint, i.e., for 0 < η0 < η1,

{µ ∈ P : D(µ||P0) ≤ η0} and {µ ∈ P : D(µ||P0) ≥ η1} are disjoint. (1.3)
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Two sets are separated if each is disjoint from the other’s closure. The topology that

specifies the “closure” is defined differently for the discrete and continuous cases. For the

discrete case with finite, say, m elements, P is a compact subset of the m-dimensional Eu-

clidean space, so P equipped with the Euclidean metric is a compact metric space. Assume

P0 is non zero at all m elements, then the KL divergence is continuous in the pair (µ, P0).

It is easy to see that the two sets in (1.3) are closed thus separated in the discrete case.

However, this is not true in the continuous case. For the continuous case, P equipped

with the Lévy metric is a metric space, which is compatible with respect to the weak topol-

ogy induced by weak convergence. Weak convergence can be defined in multiple equiva-

lent ways, one is using the Lévy metric: a sequence of distributions weakly converges to a

distribution if the corresponding Lévy distance converges to zero (c.f. Lemma 2.1.1).

In the continuous case, the KL divergence is lower semicontinuous, which is equivalent

to stating that the sublevel set in (1.3) is closed. However, it is not upper semicontinuous

thus the superlevel set is not closed in P . P0 belongs to the sublevel set, the following

shows that P0 is also a limit point of the superlevel set. Choose any distribution that is not

absolutely continuous with respect to P0, the linear combination of this distribution and

P0 is not absolutely continuous with respect to P0 either, thus the KL divergence becomes

infinity. But the Lévy metric between this combination and P0 converges to 0 when the

weight on P0 goes to 1. This example takes advantage of distributions that are not abso-

lutely continuous with respect to P0. Actually, even when constrained to distributions that

are absolutely continuous with respect to the fixed P0, it can be shown that P0 is still a

limit point of the superlevel set. Therefore the two sets in (1.3) are not separated in the

continuous case.

The above difference between discrete and continuous cases, in essence, stems from the

difference in the continuity property: the KL divergence is continuous in the discrete case

but not continuous with respect to weak convergence in the continuous case. As it turns out,

such a fundamental difference in the KL divergence between the continuous and discrete
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observations plays an important role in deviation detection, robust universal hypothesis

testing, and KL divergence estimation to be defined in subsequent sections.

We start with the deviation detection problem. The normal state, i.e., the null hypoth-

esis, is characterized by a proximity set, which consists of distributions that are close to a

nominal distribution P0; any significant departure to this nominal distribution constitutes

the alternative hypothesis. Deviation detection has numerous engineering and societal ap-

plications. The classical quality control problem can often be formulated as a deviation

detection problem. Normal operation leads to observation sequences (e.g., product mea-

surements or other quantifiable metrics) that are expected to follow a nominal distribution

P0, which is known as it can be learned from past operations. Abnormality in the distribu-

tion of the output sequence is indication of the operation irregularity; yet the precise state

of the anomaly, if it occurs, is often not a known a priori thus a sensible approach is to

model the quality control problem as a deviation detection problem where the abnormal

state can be any distribution significantly different from the nominal distribution.

Clearly, the first question in formulating the deviation detection problem is the choice

of distance metrics.

Problem 1. What is an appropriate metric that characterizes the distance between distri-

butions in deviation detection?

There are numerous metrics available to quantify the distance between distributions;

some of them are not strict distance metrics in the sense that they do not satisfy the usual

requirement for metrics, namely non-negativity, symmetry, and triangle inequality. Some

of the widely used metrics include: Hellinger distance, Kullback-Leibler (KL) divergence,

Kolmogorov metric, Lévy metric, Prokhorov metric, Separation distance, total variation

distance, Wasserstein metric and χ2 distance.

It is tempting to try the KL divergence given that this is probably the most widely used

“distance metric” in the literature. With the KL divergence, the uncertainty sets of the

deviation detection are just the above mentioned sublevel and superlevel sets in (1.3). In
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the discrete case, the two sets are separated. The same statement holds for some other

metrics, such as the total variation. Indeed, with discrete observations, almost all the above

distance metrics can be used to define uncertainty set and it often comes down to which one

is easy to work with or may lead to a detector that is simple to implement. However, with

probability measures defined on the real line, the KL divergence, is not a suitable choice

for defining the proximity set. This is true for some other metrics as well.

The deviation detection problem falls into the general framework of robust detection,

which has been the subject of extensive studies since the seminal work of Huber and

Strassen [1, 30]. In robust detection, the conditional probability distributions given each

hypothesis are specified to belong to some uncertainty sets. The goal of robust detection is

often to optimize the worst case performance over the uncertainty sets.

Naturally, the uncertainty sets of the general robust detection problems are disjoint.

Otherwise the problem becomes degenerate, since the worst case would correspond to any

distribution that belongs to both hypotheses. Furthermore, we need these two uncertainty

sets to be separated, that is, the two sets can not be arbitrarily close to each other.

With finite alphabets, the uncertainty sets are usually characterized by continuous func-

tions such as moments or above-mentioned metrics. For example, the two sets in (1.3) can

be used to define the uncertainty sets, in this case “disjoint” usually implies “separated”.

In general, for the finite alphabets case, as long as the two uncertainty sets are disjoint,

requiring two sets to be separated is redundant.

Such is not the case with continuous alphabets, and the following requirement is essen-

tial.

• The two uncertainty sets should be separated, in the sense that the closure of the

respective sets should be non-overlapping. Here the closure is defined with respect

to weak convergence of probability measures.

This separation requirement gives rise to difficulties in some well defined detection prob-

lems when dealing with distributions defined on the real line. One such example is the
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deviation detection problem when the deviation is defined using either the KL divergence

or the total variation; another example is the moment constrained detection problem.

We can draw more insight from an unexpected property of the KL divergence: for a

fixed P0, the closure of the KL divergence surface (D(µ||P0) = η) is the KL divergence ball

(D(µ||P0) ≤ η). Consequently, the closure of the superlevel set is the entire probability

space. As such, defining the uncertainty sets using the KL divergence would encounter

significant issues that render the deviation detection problem meaningless.

Recall that the separation requirement defined above is with respect to weak conver-

gence. On the other hand, it is well known that weak convergence is equivalent to conver-

gence in the Levy metric (again, c.f. Lemma 2.1.1). This leads to the next question.

Problem 2. What is the relation between the Lévy metric and the KL divergence?

Let us assume one can find the appropriate metric for the deviation detection problem.

The next problem is to design the optimal detector. As mentioned earlier, deviation de-

tection falls into the framework of the robust detection problem. In robust detection, to

minimize the worst case performance over the uncertainty classes, the solution typically

involves identifying a pair of least favorable distributions (LFDs), and subsequently de-

signing a simple hypothesis test between the LFDs. In the Huber and Strassen framework,

the proofs of existence of LFDs rely on the so-called joint stochastic boundedness prop-

erty of the uncertainty classes. Such a property, however, does not hold for the deviation

detection problem.

To facilitate the analysis, instead of solving the fixed sample size problem, we follow

Hoeffding’s approach in solving the universal hypothesis testing problem, which was first

formulated in [2]. Hoeffding used the generalized Neyman-Pearson (NP) criterion, which

evaluates the asymptotic efficiency by considering the error exponents instead of the error

probabilities. The universal hypothesis testing problem is to decide whether an indepen-

dent and identically distributed (i.i.d.) sequence of random variables has originated from a

known distribution P0 or another unknown distribution. This problem was treated in [30]
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where the underlying alphabet is assumed to be discrete. The statistic of Hoeffding’s de-

tector is

D(µ̂n||P0), (1.4)

where µ̂n is the empirical distribution. However, in the continuous case, one can not di-

rectly compare the KL divergence from an empirical distribution to a continuous distribu-

tion. Attempts to reconstruct a similar decision rule for continuous observations have been

fruitless. Zeitouni and Gutman extended Hoeffding’s work to continuous distributions [14]

at the cost of a strictly weaker optimality. Zeitouni and Gutman’s detector, as described in

Chapter 3, is rather complicated, which leads to the following question.

Problem 3. Why does not the detector (1.4) not work in the continuous case, and how to

generalize and improve the detector proposed by Zeitouni and Gutman?

One reason that detector (1.4) is not valid for continuous observations is that the com-

plementary set of the KL divergence open ball is not closed with respect to weak con-

vergence. However, Zeitouni and Gutman’s treatment of continuous observations sheds

light on a potential approach to circumvent the difficulty. Zeitouni and Gutman’s detector

first expands the empirical distribution to a Lévy ball centered at the empirical distribution

with radius δ, then compares the KL divergence from that Lévy ball to P0 and performs a

δ−smooth operation on the detector. This leads to the following conjecture.

Problem 4. If there is uncertainty under null hypothesis and the uncertainty is defined

using a Lévy ball centered at P0, will the generalized empirical likelihood ratio test be the

optimal test?

It turns out the above conjecture is equivalent to the following,

Problem 5. Is the KL divergence from a distribution to a known Lévy ball continuous with

respect to weak convergence?
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This thesis will start with the answer of Problem 5. The result is subsequently applied

to a slew of inference problems including robust universal detection, deviation detection

and estimation of the KL divergence.

1.2 Summary of Contributions

For distributions with continuous alphabets, the KL divergence between two distributions

is only lower semicontinuous and not upper semicontinuous with respect to weak con-

vergence. These properties have consequences when applying KL divergence to a number

of inference problems involving continuous observations. Examples include extending uni-

versal hypothesis testing currently developed for discrete alphabets to continuous alphabets

and estimating the KL divergence between distributions with continuous alphabets. In this

thesis, the classical KL divergence is generalized to that involving a distribution set de-

fined using the Lévy metric, which is compatible with the weak convergence of probability

measures.

The KL divergence defined between two sets is the infimum of the KL divergence over

the sets. In Chapter 2, we establish that the KL divergence from a distribution to the

Lévy ball of another known distribution is continuous with respect to weak convergence.

We refer to this KL divergence as the robust KL divergence in this dissertation. Besides,

the robust KL divergence is shown to be bounded and the supremum is represented as a

function of the radius of the Lévy ball due to the infimum operation in defining the robust

KL divergence.

The intuition of the continuous property of the robust KL divergence is the following.

The classical KL divergence is a function of two distributions, and its value may vary arbi-

trarily with small perturbation in one of the distributions with respect to the Levy metric.

The reason is because Lévy metric is strictly weaker than the KL divergence, i.e., conver-

gence in the KL divergence necessarily implies convergence in the Lévy metric but not
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the other way around. For the robust KL divergence, which compares one distribution

to a Lévy ball of another distribution, small perturbations in the first distribution can be

tolerated by the Lévy ball.

The following lists the important intermediate steps towards proving the continuity of

the robust KL divergence. Some of the statements are themselves significant results in that

they differ from that of the classical KL divergence.

• The robust KL divergence of discretized distributions will converge to the robust KL

divergence of the original distributions as the number of quantization levels increases.

• The robust KL divergence is defined as the infimum over the Lévy ball and the infi-

mum can be attained by a distribution within the Lévy ball.

• The robust KL divergence is continuous in the radius of the Lévy ball.

• The robust KL divergence and the quantized robust KL divergence are convex func-

tions.

• The supremum of the robust KL divergence over a Lévy ball can be achieved by

a distribution which is the combination of two distributions: the lower bound dis-

tribution and the upper bound distribution of the Lévy ball. The freedom of such

distribution is the combination point on the real line. Therefore, the problem of find-

ing the supremum is reduced from an infinite dimension problem to a one dimension

problem.

• The supremum of the robust KL divergence over a Lévy ball converges to the robust

KL divergence as the radius of the Lévy ball diminishes. Therefore, the robust KL

divergence is upper semicontinuous.

• The robust KL divergence is lower semicontinuous.

Chapter 2 proves the above properties and the continuous property of the robust KL di-

vergence. The continuous property plays an important role in finding the optimal decision
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rule for robust universal hypothesis testing and the deviation detection problem. Further-

more, it facilitates the estimation of the robust KL divergence from a sample sequence.

Chapter 3 examines the robust universal hypothesis testing problem, which is the gen-

eralization of the universal hypothesis testing problem to the robust setting. Zeitouni and

Gutman successfully gave a δ−optimal detector. However, the detector is hard to realize

given the sample sequence.

In robust universal hypothesis testing, the nominal distribution P0 is replaced by a Lévy

ball surrounding P0, which is denoted as P0. The robust universal hypothesis testing prob-

lem is not sensitive to P0: under the null hypothesis, the samples might come from a dis-

tribution that is very close to P0, the optimal detector should be robust to such uncertainty.

The reason to use the Lévy metric among various distance metrics is that the Lévy metric

is the weakest [18], in other words, this Lévy ball contains all distributions which are close

enough to the nominal distribution using any other metrics. Although we generalize the

universal hypothesis testing problem to the robust setting, we show that the generalized

empirical likelihood ratio test is optimal. The test is intuitive and the test statistic is easy to

compute.

In the deviation detection problem we first investigate which distance metrics are ap-

propriate for characterizing the two uncertainty sets. By choosing the KL divergence or the

total variation, the two uncertainty sets will be arbitrarily close to each other with respect

to weak convergence. Thus we turn to the Lévy metric, which can separate the probability

space into two separated sets. Finally, we show that the generalized likelihood ratio test

also applies to the deviation detection problem.

Chapter 4 investigates the computation and estimation of the robust KL divergence.

Computing the optimal detector of the robust universal detection problem is shown to be

equivalent to solving a convex optimization problem whose solution can be readily obtained

via a standard convex program. Besides, the estimate of the robust KL divergence is then

shown to converge almost surely.
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In Chapter 5, we examine a variation of the canonical distributed detection system: a

sensor may overhear other sensors’ transmissions and thus may choose to refine its output

in the hope of achieving a better detection performance. We show that while this is indeed

possible for the fixed sample size test, asymptotically (in the number of samples) there is

no performance gain, as measured by the KL divergence achievable at the fusion center,

provided that the observations are conditionally independent. For conditionally dependent

observations, however, we demonstrate that asymptotic detection performance may indeed

be improved when overhearing is utilized.

1.3 Organization

The rest of the thesis is organized as follows. In Chapter 2, we prove that the robust KL

divergence is continuous. In Chapter 3, we investigate the robust universal hypothesis test-

ing and deviation detection problems. In Chapter 4, we compute the robust KL divergence

of the empirical distribution via a convex optimization approach, and provided a procedure

for estimating the KL divergence. Chapter 5 deals with the problem of distributed detection

with asynchronous transmissions, using the KL divergence as an optimizing metric.
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CHAPTER 2

ROBUST KULLBACK-LEIBLER

DIVERGENCE

2.1 Preliminaries

The KL divergence was first introduced in [3]. It is often used as a metric to quantify

the distance between two probability distributions. The KL divergence is also known

as information divergence or relative entropy. For finite alphabets, the KL divergence

between a probability distribution µ = (µ1, µ2, · · · , µn) and another distribution P0 =

(p1, p2, · · · , pn) is

D(µ||P0) =
n∑
i=1

µi log
µi
pi
. (2.1)

Notice that the order of the two distributions matters in the definition hence it is not a sym-

metric function of the two distributions thus is not a true distance metric. For distributions

defined on the real lineR, the KL divergence between µ and P is defined as

D(µ||P ) =

∫
R
dµ log

dµ

dP
. (2.2)
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The KL divergence is one of the most fundamental metrics in information theory, statis-

tics [4], machine learning and signal processing. For example, a special case of the KL

divergence is the mutual information which has various operational interpretations in chan-

nel coding and data compression [5]. In hypothesis testing, the KL divergence controls

the decay rates of error probabilities (e.g., see Stein’s lemma [5] and Sanov’s theorem [6]).

In statistical machine learning, the KL divergence is used to extend machine learning al-

gorithms to distributional features. The KL divergence can be employed as a similarity

measure in image registration or multimedia classification [7–9]. In distributed signal pro-

cessing, the KL divergences are frequently exploited as the metric to be optimized as a

proxy to detection error probability which is otherwise intractable [10–12].

D(µ||P0) is jointly convex and lower semi-continuous in the pair (µ, P0) [13]. Further-

more, for the discrete case, D(µ||P0) is continuous in P0 and continuous in µ if min pi > 0.

For finite alphabets, one can directly compute the KL divergence between an empirical dis-

tribution with another distribution, or between two empirical distributions. However, in the

continuous case, given the samples and the empirical distribution µ̂n, computingD(µ̂n||P0)

directly using the definition (2.2) is meaningless as one can get infinity since µ̂n and P0 may

have different support sets. In addition, the non-continuity of the KL divergence for con-

tinuous distributions often leads to difficulties in various inference problems. One example

is universal hypotheses testing - while simple and intuitive results have been obtained for

the discrete case, the attempt to generalize that to the continuous case has been laborious

and the resulting detector is inexplicably complex to analyze or even implement. [14].

In this chapter, a novel property of the KL divergence is identified for distributions

defined on the real line. Although for a fixed distribution P0, D(µ||P0) is not continuous in

µ, the infimum of the KL divergence from µ to a Lévy ball centered at P0 is continuous in

µ. This will be elaborated in Theorem 2.2.1. This continuity property plays an important

role in solving the robust universal hypothesis testing problem and the deviation detection

problem in Chapter 3.
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Before we proceed to the main theorem, let us introduce some necessary definitions

and notations. Denote the space of probability distributions on (R,F) as P , where R is

the real line and F is the sigma-algebra that contains all the Borel sets of R. For P ∈

P , P (S) is defined for the set S ∈ F . A clear and simple notation commonly used,

is P (t) := P ((−∞, t]), since P and its corresponding cumulative distribution function

(CDF) are equivalent, i.e., one is uniquely determined by the other [16].

The Lévy metric dL between distributions F ∈ P and G ∈ P is defined as follows,

dL(F,G) := inf{ε : F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε,∀x ∈ R}. (2.3)

The Lévy metric makes (P , dL) a metric space [6], i.e., we have,

dL(µ, P ) = 0 ⇔ µ = P, (2.4)

dL(µ, P ) = dL(P, µ), (2.5)

dL(µ, P ) ≤ dL(µ,Q) + dL(Q,P ). (2.6)

The Lévy ball centered at P0 ∈ P with radius δ, is defined as

BL(P0, δ) = {P ∈ P : dL(P, P0) ≤ δ}. (2.7)

Fig.2.1 plots the CDF of the standard normal distribution and its Lévy ball with radius

0.045. A distribution falls inside the shaded area if and only if its distance to the standard

normal distribution, as measured by the Levy metric dL, is less than or equal to 0.045.

There are many equivalent ways to define the weak convergence, one is given in the

following.

Definition 1. (Weak convergence [15, 16]) For Pn, P ∈ P , we say Pn weakly converges to

P and write Pn
w−→ P , if Pn(x)→ P (x) for all x such that P is continuous at x.

The Lévy metric is strongly related to the concept of the weak convergence of proba-
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Fig. 2.1: The Lévy ball centered at standard normal distribution with radius 0.045.

bility measures.

Lemma 2.1.1. [15,16] For sequences in P whose limit is also in P , the weak convergence

and convergence in the dL are equivalent, i.e., if (Pn ∈ P) is a sequence in P and P ∈ P ,

then Pn
w−→ P iff dL(Pn, P )→ 0.

The set of all partitions A = (A1, · · · , A|A|) of R into a finite number of sets Ai is

denoted by Π. Partition of A over P ∈ P is denoted as PA, which can be represented as

a |A| dimensional vector (P (A1), P (A2), · · · , P (A|A|)) ∈ R|A|. For convenience, for set

Γ ⊆ P , we define

ΓA := {PA : P ∈ Γ}.

Definition 2 (The KL divergence [17]). The KL divergence between P ∈ P and Q ∈ P is

defined as,

D(P ||Q) = sup
A∈Π

D(PA||QA), (2.8)

where

D(PA||QA) =

|A|∑
i=1

P (Ai) log
P (Ai)

Q(Ai)
. (2.9)

The above definition is consistent with the classical definition using the Radon-Nikodym
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derivative as in (2.2). For convenience, for sets Γ1,Γ2 ⊆ P and S1, S2 ⊆ Rn, we will write

D(Γ1||Γ2) := inf
γ1∈Γ1,γ2∈Γ2

D(γ1||γ2), D(S1||S2) = inf
x∈S1,y∈S2

D(x||y).

In addition, lim and lim denote lim inf and lim sup, respectively.

2.2 Main Theorem

Theorem 2.2.1. For a distribution P0 ∈ P , if P0(t) is continuous in t, then for any δ0 > 0,

D(µ||BL(P0, δ0)) is continuous in µ with respect to the weak convergence.

The non trivial part is to show D(µ||BL(P0, δ0)) is upper semicontinuous in µ, which

is proved in Lemma 2.3.5. Lemma 2.3.6 proves D(µ||BL(P0, δ0)) is lower semicontinuous

in µ. Therefore, D(µ||BL(P0, δ0)) is continuous in µ. The complete proof is lengthy and is

included in Section 2.3. Important intermediate steps are summarized below.

• We first quantize the real line into a set of finite intervals, then the quantized robust

KL divergence will converge to the original robust KL divergence as the quantization

becomes finer. The proof is in essence proving that a max-min inequality is in fact

an equality (Lemma 2.3.1).

• The robust KL divergence is defined as the infimum over the Lévy ball and it is estab-

lished that there exists a distribution inside the Lévy ball that achieves the infimum

(Lemma 2.3.1).

• The robust KL divergence is continuous in the radius of the Lévy ball (Lemma 2.3.2).

• The robust KL divergence and the quantized robust KL divergence are convex func-

tions of µ and µA, respectively (Lemma 2.3.3).

• The supremum of the robust KL divergence over a Lévy ball can be achieved by

distributions consisting of only two parts, one is the distribution corresponding to the
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lower bound of the Lévy ball, the other is the distribution corresponding to the upper

bound of the Lévy ball. Therefore, the problem of finding the supremum is reduced

from an infinite dimension problem to a one dimension problem (Lemma 2.3.4).

• The supremum of the robust KL divergence over a Lévy ball converges to the robust

KL divergence as the Lévy ball diminishes, i.e., its radius goes to 0. Therefore, the

robust KL divergence is upper semicontinuous (Lemma 2.3.5).

• The robust KL divergence is lower semicontinuous (Lemma 2.3.6).

The continuity property in Theorem 2.2.1 does not hold if the ball is constructed using

other measures such as the total variation or the KL divergence. The total variation is

defined as follows.

Definition 3. [18] The total variation between P ∈ P and Q ∈ P is

dTV (P,Q) := sup
S∈F
|P (S)−Q(S)|.

Assume P0(t) is continuous in t, denote by BTV (P0, δ0) and BKL(P0, δ0) distribution

balls defined by the total variation and the KL divergence, respectively, in a manner similar

to that of the Levy ball in (2.7). We will show that there exists a sequence Pn
w−→ P0,

while neither D(Pn||BTV (P0, δ0)) nor D(Pn||BKL(P0, δ0)) converges to the desired limit,

i.e., D(P0||BTV (P0, δ0)) and D(P0||BKL(P0, δ0)). For any n > 0, we can always choose

a Pn ∈ BL(P0, 1/n) such that Pn(t) is a step function. Let Sn := {x ∈ R : Pn(x) −

Pn(x−) > 0}, Sn is the set of all jump points of Pn(t).
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• For the total variation case, from the data processing inequality,

D(Pn||BTV (P0, δ0)) = inf
{P∈BTV (P0,δ0)}

D(Pn||P )

≥ inf
{P∈BTV (P0,δ0)}

Pn(Sn) log
Pn(Sn)

P (Sn)
+ Pn(Scn) log

Pn(Scn)

P (Scn)

= inf
{P∈BTV (P0,δ0)}

1 log
1

P (Sn)
+ 0 log

0

P (Scn)

≥ 1 log
1

P0(Sn) + δ0

= log
1

δ0

,

then

lim
n→∞

D(Pn||BTV (P0, δ0)) ≥ log
1

δ0

> 0

= D(P0||BTV (P0, δ0)).

Thus D(Pn||BTV (P0, δ0)) 9 D(P0||BTV (P0, δ0)) even though Pn
w−→ P0.

• As for the KL divergence case, for any P such that D(P ||P0) ≤ δ0, D(Pn||P ) =∞,

therefore D(Pn||BKL(P0, δ0)) 9 D(P0||BKL(P0, δ0)).

The assumption that P0(t) is continuous in t is also necessary, otherwise the continuous

property of the robust KL divergence does not necessarily hold. We construct the following

example to illustrate this point. Let P0 be the distribution that P0(t) = 0 for t < 0 and

P0(t) = 1 for t ≥ 0, i.e., it is a degenerate random variable that equals to 0 with probability

1. Let µi be the distribution that µi(t) = 0 for t < 0.5 + 1
i

and µi(t) = 1 for t ≥ 0.5 + 1
i
.

Then µi
w−→ µ as i → ∞, where µ(t) = 0 for t < 0.5 and µ(t) = 1 for t ≥ 0.5. However,

we can see that, as µi
w−→ µ,

lim
i→∞

D(µi||BL(P0, 0.5)) = lim
i→∞

log
1

0.5
= log 2 6= D(µ||BL(P0, 0.5)) = 0. (2.10)
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Fig. 2.2: The upper bound of D(µ||BL(P0, δ0)) for different δ0.

D(µ||P0) is unbounded, but D(µ||BL(P0, δ0)) is bounded. The upper bound is given in

the following and its proof can be found in Proposition 1 in the next section.

sup
µ,P0∈P

D(µ||BL(P0, δ0)) = log
1

δ0

.

Fig. 2.2 shows how δ0 controls the upper bound of D(µ||BL(P0, δ0)).

Theorem 2.2.1 sheds some light on the dynamics of the KL divergence of continuous

distributions. Also, this continuity property provides a convenient approach for solving the

robust version of the universal hypothesis testing problem for the continuous case. This will

be elaborated in Chapter 3. Chapter 4 explores the estimation of the robust KL divergence,

again, by utilizing the continuity of the robust KL divergence.

2.3 Proof of Theorem 2.2.1

The following lemma generalizes (2.8) for the classical KL divergence to the robust KL

divergence.

Lemma 2.3.1. For µ, P0 ∈ P and δ0 > 0,D(µ||BL(P0, δ0)) = supA∈ΠD(µA||BAL (P0, δ0)).

Proof. P is not compact with respect to the weak convergence, a consequence of the count-

ably additive property in the axiomatic definition of probability [16]. Let M denote the
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space of finitely additive and non-negative set functions on (R,F) with M(R) = 1 for

M ∈ M. Thus, we relax the countable additivity to finite additivity and as a consequence,

P ⊆M andM is compact with respect to the weak convergence [17]. Similarly, we define

M(t) := M((−∞, t]) and M(t) is a right continuous non-decreasing function on R. As

with P (t) and P ∈ P , M(t) and M ∈ M are equivalent since one is uniquely determined

by the other.

P is equivalent to the set of right continuous non-decreasing functions on R with

P (−∞) = 0 and P (∞) = 1 if P ∈ P [16], whileM is equivalent to the set of right contin-

uous non-decreasing functions on R with M(−∞) ≥ 0 and M(∞) ≤ 1 if M ∈ M. The

Lévy metric dL and the KL divergence extend unchanged to F ∈M and G ∈M [16, 17].

The following three steps constitute the proof of the lemma,

D(µ||BL(P0, δ0)) = D(µ||B̄L(P0, δ0)), (2.11)

D(µ||B̄L(P0, δ0)) = sup
A∈Π

D(µA||B̄AL (P0, δ0)), (2.12)

sup
A∈Π

D(µA||B̄AL (P0, δ0)) = sup
A∈Π

D(µA||BAL (P0, δ0)), (2.13)

where B̄L(P0, δ0) := {P ∈M : dL(P, P0) ≤ δ0}. We now prove (2.11)-(2.13).

• D(µ||B̄L(P0, δ0)) = inf{P∈B̄L(P0,δ0)}D(µ||P ), B̄L(P0, δ0) is closed with respect to

the weak convergence, thus is compact sinceM is compact. To prove (2.11), let

Pµ := arg inf
{P∈B̄L(P0,δ0)}

D(µ||P ),

the existence of Pµ is guaranteed since D(µ||P ) is lower semicontinuous and lower

semicontinuous function attains its infimum on a compact set. Assume Pµ ∈M\P ,

then there exists a δ > 0 such that Pµ(−∞) ≥ δ or Pµ(+∞) ≤ 1− δ. Without loss

of generality, we can assume Pµ(−∞) = δ and Pµ(+∞) = 1, as other cases can be

proved similarly. Let s denote the minimum t such that P0(t−δ0) ≥ δ0, we construct
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P ′µ as follows.

– If Pµ(s) = δ, let

P ′µ(t) =


0 if t < s,

Pµ(t) if t ≥ s.

Since inft P
′
µ(t) = 0 and supt P

′
µ(t) = 1, P ′µ ∈ P . In addition, it can be easily

verified that dL(P ′µ, P0) ≤ δ0. Therefore, P ′µ ∈ BL(P0, δ0) and D(µ||P ′µ) =

D(µ||Pµ).

– If Pµ(s) > δ, let

P ′µ(t) =


(Pµ(t)−δ)Pµ(s)

Pµ(s)−δ if t < s,

Pµ(t) if t ≥ s.

inft P
′
µ(t) = 0 and supt P

′
µ(t) = 1 thus P ′µ ∈ P . For t < s,

(Pµ(t)− δ)Pµ(s)

Pµ(s)− δ ≤ Pµ(t)⇔ Pµ(t) ≤ Pµ(s),

then,

P0(t− δ0)− δ0 < 0 ≤ P ′µ(t) ≤ Pµ(t) ≤ P0(t+ δ0) + δ0 =⇒ dL(P ′µ, P0) ≤ δ0.

Therefore, we have P ′µ ∈ BL(P0, δ0). Also P ′µ achieves the infimum since,

D(µ||P ′µ) =

∫ s−

−∞
dµ(t) log

dµ(t)

dP ′µ(t)
+

∫ ∞
s

dµ(t) log
dµ(t)

dP ′µ(t)

= µ(s−) log
Pµ(s)− δ
Pµ(s)

+

∫ s−

−∞
dµ(t) log

dµ(t)

dPµ(t)
+

∫ ∞
s

dµ(t) log
dµ(t)

dPµ(t)

= µ(s−) log
Pµ(s)− δ
Pµ(s)

+D(µ||Pµ)

≤ D(µ||Pµ).
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Therefore in either case,

∃P ′µ ∈ BL(P0, δ0) s.t. P ′µ achieves inf
{P∈B̄L(P0,δ0)}

D(µ||P ). (2.14)

• Lemma 2.4 in [15] shows D(BL(P0, δ0)||µ) = supA∈Π D(BAL (P0, δ0)||µA), using a

parallel proof, one can show D(µ||B̄L(P0, δ0)) = supA∈Π D(µA||B̄AL (P0, δ0)), i.e.,

(2.12) holds.

• For any A ∈ Π, B̄AL (P0, δ0) = BAL (P0, δ0), therefore (2.13) holds.

Lemma 2.3.2. Given µ, P0 ∈ P and δ0 > 0, if P0(t) is continuous in t, thenD(µ||BL(P0, δ0))

is continuous in δ0.

Proof. Let δ ∈ (0, δ0). D(µ||BL(P0, δ0)) is left continuity in δ0 if,

D(µ||{P ∈ P : dL(P, P0) < δ0}) = D(µ||BL(P0, δ0)). (2.15)

It is easy to see that D(µ||{P ∈ P : dL(P, P0) < δ0}) ≥ D(µ||BL(P0, δ0)). So we only

need to show the other direction,

D(µ||{P ∈ P : dL(P, P0) < δ0}) ≤ D(µ||BL(P0, δ0)). (2.16)

Denote

Pδ = arg inf
{P∈BL(P0,δ)}

D(µ||P ), Pδ0 = arg inf
{P∈BL(P0,δ0)}

D(µ||P ).

The existence of Pδ and Pδ0 is guaranteed by (2.14). For any 0 < λ < 1,

dL(λPδ + (1− λ)Pδ0 , P0) < δ0,
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which may not hold if P0(t) is not continuous in t. Then,

D(µ||{P ∈ P : dL(P, P0) < δ0}) ≤ lim
λ→0+

D(µ||λPδ + (1− λ)Pδ0) (2.17)

≤ lim
λ→0+

λD(µ||Pδ) + (1− λ)D(µ||Pδ0) (2.18)

= D(µ||Pδ0) (2.19)

= D(µ||BL(P0, δ0)). (2.20)

Therefore D(µ||BL(P0, δ0)) is left continuous in δ0.

The rest is to show D(µ||BL(P0, δ0)) is right continuous in δ0. Since D(µ||BL(P0, δ0))

is decreasing in δ0, we only need to show:

lim
n→∞

D

(
µ||BL(P0, δ0 +

1

n
)

)
≥ D(µ||BL(P0, δ0)). (2.21)

From (2.14), there exists Pn ∈ BL(P0, δ0+ 1
n
) such thatD(µ||Pn) = D

(
µ||BL(P0, δ0 + 1

n
)
)
.

M is compact, Pn converges to P ∗ ∈ M. Since P ∗ ∈ B̄L(P0, δ0 + 1
n
) for any n,

P ∗ ∈ B̄L(P0, δ0). We have,

lim
n→∞

D

(
µ||BL(P0, δ0 +

1

n
)

)
= lim

n→∞
D(µ||Pn) (2.22)

≥ D(µ||P ∗) (2.23)

≥ D(µ||B̄L(P0, δ0)) (2.24)

= D(µ||BL(P0, δ0)), (2.25)

where (2.23) comes from the fact that the KL divergence is lower semicontinuous and

the last equality was proved in (2.11). Therefore D(µ||BL(P0, δ0)) is right continuous in

δ0.

Lemma 2.3.3. For µ, P0 ∈ P and δ0 > 0, D(µ||BL(P0, δ0)) is a convex function of µ.

Also, for any partition A, D(µA||BAL (P0, δ0)) is convex in µA.
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Proof. Let Pi = arg inf{P∈BL(P0,δ0)}D(µi||P ) for i = 1, 2. For any 0 < λ < 1, λP1 + (1−

λ)P2 ∈ BL(P0, δ0), thus,

D(λµ1 + (1− λ)µ2||BL(P0, δ0)) ≤ D(λµ1 + (1− λ)µ2||λP1 + (1− λ)P2)

≤ λD(µ1||P1) + (1− λ)D(µ2||P2)

= λD(µ1||BL(P0, δ0)) + (1− λ)D(µ2||BL(P0, δ0)).

Therefore, D(µ||BL(P0, δ0)) is a convex function of µ. That D(µA||BAL (P0, δ0)) is convex

in µA follows a similar argument.

Lemma 2.3.4. Given µ0, P0 ∈ P and δ, δ0 > 0, we have

sup
µ∈BL(µ0,δ)

D(µ||BL(P0, δ0)) = sup
x∈R

D(µδx||BL(P0, δ0)),

where

µδx(t) =


max(0, µ0(t− δ)− δ)) if t < x,

min(1, µ0(t+ δ) + δ)) if t ≥ x.

(2.26)

Proof. We have

sup
µ∈BL(µ0,δ)

D(µ||BL(P0, δ0)) = sup
µ∈BL(µ0,δ)

sup
A∈Π

D(µA||BAL (P0, δ0)) (2.27)

= sup
A∈Π

sup
µ∈BL(µ0,δ)

D(µA||BAL (P0, δ0)) (2.28)

= sup
A∈Π

sup
µA∈BAL (µ0,δ)

D(µA||BAL (P0, δ0)). (2.29)

Equality (2.27) comes from Lemma 2.3.1. Fix a partition A, without loss of generality

we can assume |A| = n and A = {(−∞, a1], (a1, a2], · · · , (an−2, an−1], (an−1,∞)}. The
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partition A over the probability space P can be represented as an n-dimensional polytope,

PA = {(x1, x2, · · · , xn) ∈ Rn :
∑
i

xi = 1 and ∀i, 0 ≤ xi ≤ 1}. (2.30)

Similarly, the partition A over the set BL(µ0, δ) is also an n-dimensional polytope inside

PA,

BAL (µ0, δ) = {(x1, x2, · · · , xn) ∈ PA : ∀1 ≤ j ≤ n− 1, Lj ≤
j∑
i=1

xi ≤ Uj}, (2.31)

where Lj = max(0, µ0(aj − δ)− δ), Uj = min(1, µ0(aj + δ) + δ). We can assume for any

1 ≤ j ≤ n − 2, Uj > Lj+1, otherwise we can make A finer such that the new partition

(denoted as A again) has the property that aj+1 ≤ aj + δ for 1 ≤ j ≤ n − 2. It can be

verified that for each 1 ≤ j ≤ n− 2, Uj > Lj+1. The reason that such an A can be finite is

that µ0(t) is a bounded non-decreasing function.

A vector x = (x1, x2, · · · , xn) is a vertex of BAL (µ0, δ) if and only if
∑j

i=1 xi equals

Lj or Uj for any 1 ≤ j ≤ n − 1,
∑n

i=1 xi = 1 and 0 ≤ xi ≤ 1. Since Uj > Lj+1 for any

1 ≤ j ≤ n− 2, for a vertex x, once
∑j

i=1 xi = Uj for some j, then for any k > j we have∑k
i=1 xi = Uk.

Therefore there are n vertices x1, · · · ,xn of BAL (µ0, δ) that satisfy the property that∑j
i=1 x

k
i = Lj for j < k,

∑j
i=1 x

k
i = Uj for j ≥ k. Or equivalently, if we denote L0 = 0

and Un = 1, for 1 ≤ k ≤ n,

xki =



Li − Li−1 if i < k,

Ui − Li−1 if i = k,

Ui − Ui−1 if i > k.

From Lemma 2.3.3, D(·||BAL (P0, δ0)) is a convex function, thus the supremum on the poly-
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tope BAL (µ0, δ) is achieved at its vertices. Let

µδx(t) =


max(0, µ0(t− δ)− δ)) if t < x,

min(1, µ0(t+ δ) + δ)) if t ≥ x.

(2.32)

Then any xk is a quantization of µδx over the partition A for some x.

sup
µA∈BAL (µ0,δ)

D(µA||BAL (P0, δ0)) = max
k
D(xk||BAL (P0, δ0)) (2.33)

≤ sup
x
D((µδx)

A||BAL (P0, δ0)) (2.34)

≤ sup
A∈Π

sup
x∈R

D((µδx)
A||BAL (P0, δ0)), (2.35)

= sup
x∈R

sup
A∈Π

D((µδx)
A||BAL (P0, δ0)), (2.36)

= sup
x∈R

D(µδx||BL(P0, δ0)), (2.37)

the last equality comes from Lemma 2.3.1. From (2.29) and (2.37), we have

sup
µ∈BL(µ0,δ)

D(µ||BL(P0, δ0)) ≤ sup
x∈R

D(µδx||BL(P0, δ0)).

For the other direction, since µδx ∈ BL(µ0, δ),

sup
µ∈BL(µ0,δ)

D(µ||BL(P0, δ0)) ≥ sup
x∈R

D(µδx||BL(P0, δ0)).

Therefore, we have,

sup
µ∈BL(µ0,δ)

D(µ||BL(P0, δ0)) = sup
x∈R

D(µδx||BL(P0, δ0)).

Proposition 1. supµ,P0∈P D(µ||BL(P0, δ0) = log 1
δ0

.

Proof. We construct a distribution S0 ∈ P such that S0(t) = 0 for t < 0, and S0(t) = 1 for
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t ≥ 0, then P = BL(S0, 1) since dL is bounded by 1. According to Lemma 2.3.4,

sup
µ∈BL(S0,1)

D(µ||BL(P0, δ0)) = sup
x∈R

D(µδx||BL(P0, δ0)), (2.38)

where µ1
x(t) = 0 for t < x, and µ1

x(t) = 1 for t ≥ x, then,

sup
x∈R

D(µδx||BL(P0, δ0))

= sup
x∈R

log
1

min(1, P0(x+ δ0) + δ0)−max(0, P0(x− δ0)− δ0)
(2.39)

= log
1

infx∈R(min(1, P0(x+ δ0) + δ0)−max(0, P0(x− δ0)− δ0))
(2.40)

= log
1

δ0

, (2.41)

the last equality comes from the fact that

min(1, P0(t+ δ0) + δ0)−max(0, P0(t− δ0)− δ0) ≥ δ0

and

lim
x→∞

min(1, P0(x+ δ0) + δ0)−max(0, P0(x− δ0)− δ0) = δ0,

which means a finitely additive measure belongs toM\P can always achieves the supre-

mum for any P0.

Lemma 2.3.5. Given P0 ∈ P and δ0 > 0, if P0(t) is continuous in t, thenD(µ||BL(P0, δ0))

is upper semicontinuous in µ with respect to the weak convergence.

Proof. For any fixed µ0 ∈ P , the statement is equivalent to show that when δ → 0,

lim
δ→0

sup
µ∈BL(µ0,δ)

D(µ||BL(P0, δ0)) ≤ D(µ0||BL(P0, δ0)). (2.42)
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From Lemma 2.3.4, it is equivalent to show

lim
δ→0

sup
x∈R

D(µδx||BL(P0, δ0)) ≤ D(µ0||BL(P0, δ0)).

Denote u−δ as the left boundary of support set S(µ(t+ δ)) and uδ−δ := arg infx µ(x+ δ) =

1 − δ, denote uδ as the left boundary of S(µ(t − δ)) and uδδ := arg infx µ(x − δ) = 1.

Fig.2.3 plots these locations. We will prove

u−δ uδ uδ−δ uδδ
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2.3: Illustration of u−δ, uδ, uδ−δ and uδδ. The solid line represents µ0 and shaded region
represents BL(µ0, δ).

lim
δ→0

sup
µ∈BL(µ0,δ)

D(µ||BL(P0, δ0)) ≤ D(µ0||BL(P0, δ0 − δ1))

for any δ1 > 0. Now fix δ1, we will prove D(µδx||BL(P0, δ0)) can be uniformly bounded as

x varies. Denote

Pδ0−δ1 := arg inf
{P∈BL(P0,δ0−δ1)}

D(µ0||P ).

For fixed δ < δ1, let

P δ,u
δ0−δ1(t) = (1− δ1)Pδ0−δ1(t+ δ) + δ1, P

δ,l
δ0−δ1(t) = (1− δ1)Pδ0−δ1(t− δ).

To get P δ,u
δ0−δ1(t), we first shift Pδ0−δ1(t) to the left by δ, then scale it by (1 − δ1) and shift
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it up by δ1; similarly to get P δ,l
δ0−δ1(t), we shift Pδ0−δ1(t) to the right by δ, then scale it by

(1− δ1). Clearly

dL(P δ,u
δ0−δ1 , Pδ0−δ1) ≤ δ1, dL(P δ,l

δ0−δ1 , Pδ0−δ1) ≤ δ1. (2.43)

For any x, construct P x
δ0−δ1 in a similar way as µδx,

P x
δ0−δ1(t) =


P δ,l
δ0−δ1(t) if t < x,

P δ,u
δ0−δ1(t) if t ≥ x.

(2.44)

P x
δ0−δ1 ∈ BL(P0, δ0) since

dL(P x
δ0−δ1 , P0) ≤ dL(P x

δ0−δ1 , Pδ0−δ1) + dL(Pδ0−δ1 , P0) (2.45)

≤ δ1 + (δ0 − δ1) = δ0, (2.46)

where the first inequality holds because (P , dL) is a metric space, dL satisfies the triangle

inequality, the second inequality comes from (2.43) and the definition of Pδ0−δ1 .

From Proposition 1 D(µ0||Pδ0−δ1) = D(µ0||BL(P0, δ0 − δ1)) < ∞, therefore µ0 is

absolutely continuous with respect to Pδ0−δ1 . From the construction of µδx and P x
δ0−δ1 , we

can see that µδx is absolutely continuous with respect to P x
δ0−δ1 as well. Therefore we have

lim
δ→0

sup
x∈R

D(µδx||BL(P0, δ0)) = lim
δ→0

sup
x∈R

inf
{P∈BL(P0,δ0)}

D(µδx||P ) (2.47)

≤ lim
δ→0

sup
x∈R

D(µδx||P x
δ0−δ1). (2.48)

We now prove D(µδx||P x
δ0−δ1) can be uniformly bounded as x varies.
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• For x < u−δ,

D(µδx||P xδ0−δ1)

≤ δ log
δ

δ1
+

∫ uδ−δ

u−δ

d(µ0(t+ δ) + δ) log
d(µ0(t+ δ) + δ)

d((1− δ1)Pδ0−δ1(t+ δ) + δ1)
(2.49)

= δ log
δ

δ1
+

∫ uδ−δ

u−δ

d(µ0(t+ δ)) log
d(µ0(t+ δ))

(1− δ1)d(Pδ0−δ1(t+ δ))
(2.50)

= δ log
δ

δ1
+

∫ uδ−δ

u−δ

d(µ0(t+ δ)) log
1

(1− δ1)

+

∫ uδ−δ

u−δ

d(µ0(t+ δ)) log
d(µ0(t+ δ))

d(Pδ0−δ1(t+ δ))
(2.51)

= δ log
δ

δ1
+ (1− δ) log 1

(1− δ1)
+

∫ uδ−δ+δ

Sl
d(µ0(t)) log

d(µ0(t))

d(Pδ0−δ1(t))
, (2.52)

when δ → 0, the above converges to

log
1

(1− δ1)
+D(µ0||Pδ0−δ1).

• For u−δ ≤ x ≤ uδ,

D(µδx||P xδ0−δ1)

= (u0(x+ δ) + δ) log
(u0(x+ δ) + δ)

(1− δ1)Pδ0−δ1(x+ δ) + δ1

+

∫ uδ−δ

x+
d(µ0(t+ δ) + δ) log

d(µ0(t+ δ) + δ)

d((1− δ1)Pδ0−δ1(t+ δ) + δ1)
(2.53)

≤ δ log
δ

δ1
+ (u0(x+ δ)) log

(u0(x+ δ))

(1− δ1)Pδ0−δ1(x+ δ)

+

∫ uδ−δ

x+
d(µ0(t+ δ)) log

d(µ0(t+ δ))

(1− δ1)d(Pδ0−δ1(t+ δ))
(2.54)

≤ δ log
δ

δ1
+

∫ uδ−δ

u−δ

d(µ0(t+ δ)) log
d(µ0(t+ δ))

(1− δ1)d(Pδ0−δ1(t+ δ))
, (2.55)

which degenerate to the case of x < u−δ since (2.55) is the same as (2.49).
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• For uδ < x ≤ uδ−δ,

D(µδx||P xδ0−δ1)

=

∫ x−

uδ

d(µ0(t− δ)− δ) log
d(µ0(t− δ)− δ)

d((1− δ1)Pδ0−δ1(t− δ))

+ (µ0(x+ δ) + δ − (µ0(x− δ)− δ)) log
(µ0(x+ δ) + δ − (µ0(x− δ)− δ))

(1− δ1)Pδ0−δ1(t+ δ) + δ1 − (1− δ1)Pδ0−δ1(t− δ)

+

∫ uδ−δ

x+
d(µ0(t+ δ) + δ) log

d(µ0(t+ δ) + δ)

d((1− δ1)Pδ0−δ1(t+ δ) + δ1)
(2.56)

=

∫ x−

uδ

d(µ0(t− δ)) log
d(µ0(t− δ))

(1− δ1)dPδ0−δ1(t− δ)

+ (2δ + µ0(x+ δ)− µ0(x− δ)) log
2δ + µ0(x+ δ)− µ0(x− δ)

δ1 + (1− δ1)(Pδ0−δ1(t+ δ)− Pδ0−δ1(t− δ))

+

∫ uδ−δ

x+
d(µ0(t+ δ)) log

d(µ0(t+ δ))

(1− δ1)dPδ0−δ1(t+ δ)
(2.57)

≤
∫ x−

uδ

d(µ0(t− δ)) log
d(µ0(t− δ))

(1− δ1)dPδ0−δ1(t− δ)

+ 2δ log
2δ

δ1
+

∫ x+δ

x−δ
dµ0(t) log

dµ0(t)

(1− δ1)dPδ0−δ1(t)

+

∫ uδ−δ

x+
d(µ0(t+ δ)) log

d(µ0(t+ δ))

(1− δ1)dPδ0−δ1(t+ δ)
(2.58)

= 2δ log
2δ

δ1
+

∫ uδ−δ+δ

uδ−δ
dµ0(t) log

dµ0(t)

(1− δ1)dPδ0−δ1(t)
(2.59)

= 2δ log
2δ

δ1
+ (1− 2δ) log

1

1− δ1
+

∫ uδ−δ+δ

uδ−δ
dµ0(t) log

dµ0(t)

dPδ0−δ1(t)
, (2.60)

when δ → 0, the above converges to

log
1

1− δ1

+D(µ0||Pδ0−δ1).

• Other symmetric cases can be solved similarly.

From the above arguments, we have

lim
δ→0

sup
x∈R

D(µδx||BL(P0, δ0)) ≤ log
1

1− δ1

+D(µ0||BL(P0, δ0 − δ1)).
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Notice this is true for any δ1, let δ1 → 0, we have

lim
δ→0

sup
x∈R

D(µδx||BL(P0, δ0)) ≤ lim
δ1→0

(
log

1

1− δ1

+D(µ0||BL(P0, δ0 − δ1))

)
(2.61)

= lim
δ1→0

D(µ0||BL(P0, δ0 − δ1)) (2.62)

= D(µ0||BL(P0, δ0)), (2.63)

the last equality comes from the fact that D(µ0||BL(P0, δ0)) is left continuous in δ0 if P0(t)

is continuous in t (Lemma 2.3.2).

Lemma 2.3.6. Given P0 ∈ P and δ0 > 0, D(µ||BL(P0, δ0)) is lower semicontinuous in µ

with respect to the weak convergence.

Proof. Assume µn
w−→ µ0. From (2.14), we know there exists Pn ∈ BL(P0, δ0) such that

D(µn||Pn) = D(µn||BL(P0, δ0)). Since B̄L(P0, δ0) is compact, there exists a subsequence

of Pn (which we again denote by n) that converge to Pµ0 ∈ B̄L(P0, δ0). D(µ||Pµ0) ≤

limn→∞D(µn||Pn) because (µn, Pn) → (µ0, Pµ0) and the KL divergence is lower semi-

continuous. Therefore we have

D(µ0||BL(P0, δ0)) = D(µ0||B̄L(P0, δ0)) (2.64)

≤ D(µ0||Pµ0) (2.65)

≤ lim
n→∞

D(µn||Pn) (2.66)

= lim
n→∞

D(µn||BL(P0, δ0)) (2.67)

where (2.64) comes from (2.11). Therefore, according to the definition, D(µ||BL(P0, δ0))

is lower semicontinuous in µ.
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2.4 Summary

It is straightforward to prove D(µ||BL(P0, δ0)) is lower semicontinuous in µ; proving that

it is also upper semicontinuous is tricky. The key step of the long proof in the previous

section is Lemma 2.3.4, which is explained below.

For a fixed P0, with small perturbation on µ, D(µ||P0) may vary in an arbitrary manner,

thusD(µ||P0) is not upper semicontinuous. BL(P0, δ0) provides the maximum freedom for

tolerating the perturbation on µ, since the Lévy metric is the weakest among other metrics.

For all perturbations on µ that are withinBL(µ, δ), the largest variation ofD(µ||BL(P0, δ0))

is achieved by a distribution whose CDF is constructed by shifting the µ(t) both horizon-

tally and vertically to the edge of of BL(µ, δ). Such shifts can be tolerated by BL(P0, δ0),

so as the level of perturbation on µ decreases to 0, and the corresponding variation in

D(µ||BL(P0, δ0)) diminishes.

By proving D(µ||BL(P0, δ0)) is both upper semicontinuou and lower semicontinuous

in Lemma 2.3.5 and 2.3.6, we know that if P0(t) is continuous in t, D(µ||BL(P0, δ0))

is continuous in µ with respect to the weak convergence. Therefore, for a fixed P0, the

sublevel and the superlevel sets of D(µ||BL(P0, δ0)) are both closed, i.e., the probability

space can be divided into two separated sets by the robust KL divergence. As elaborated in

Chapter 1, such a separation is desired when constructing robust detectors for both universal

hypothesis test and deviation detection. This is addressed in the next Chapter.
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CHAPTER 3

ROBUST UNIVERSAL HYPOTHESIS

TESTING AND DEVIATION DETECTION

3.1 Framework and Criteria

In this chapter, we focus our attention on the binary hypothesis testing problem. Each

hypothesis is characterized by an uncertainty set. Denote by P the set of all probability

measures defined onR. Consider a sequence of observations (X0, · · · , Xn−1) = Xn which

are i.i.d. random variables with distribution P ∈ P . Given Xn, one needs to determine

whether P belongs to one of the two hypotheses, i.e.,

H1 : P ∈ P1, H2 : P ∈ P2, (3.1)

where P1 and P1 are two uncertainty sets that belong to P .

The difficulty of the above problem is the composite nature of both hypotheses. A stan-

dard approach to designing decision rules in the above setting is the minimax NP criterion,

first introduced by Huber [30] to optimize the worst case performance of the composite

hypothesis testing problem. The decision rules thus obtained are said to be robust to the
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uncertainty sets. The minimax NP criterion imposes a uniform constraint on the type-I error

for all P1 ∈ P1; subject to this constraint, we seek an acceptance region that minimizes the

worst type-II error across P2 ∈ P2. Thus we have the following constrained optimization

problem:

min
Sn

sup
P2∈P2

P n
2 (Sn) s.t. sup

P1∈P1

P n
1 (Scn) ≤ α, (3.2)

where Sn ∈ Rn is the acceptance region ofH1.

For the above problem, the widely used method is identifying the LFDs within the

classes, by establishing the property of jointly stochastic boundedness. Then the solution

to the robust detection problem is a likelihood ratio test (LRT) between the pair of LFDs. It

turns out that finding the LFDs is not quite simple, and the most effective approach is often

to first guess the solution and then verify that it is indeed the LFD pair.

There are cases that the jointly stochastic boundedness does not hold. For example the

deviation detection problem in Section 3.4 is one such an exception. However, one can still

try to find an asymptotically optimal detector under the classical Hoeffding’s approach us-

ing the generalized NP criterion, which evaluates the asymptotic efficiency by considering

error exponents instead of error probabilities.

Let φ be the sequence of detectors {φn(x0, · · · , xn−1), n ≥ 1}. Define the generalized

error exponents for the two types of error probabilities respectively as follows,

IP2(φ) := lim
n→∞

− 1

n
logP n

2 (xn : φn(x0, · · · , xn−1) = 1),

JP1(φ) := lim
n→∞

− 1

n
logP n

1 (xn : φn(x0, · · · , xn−1) = 2).

Zeitouni and Gutman [14] have shown that to achieve the best trade-off between IP2

and JP1 , the test depends on xn only through the empirical measure µ̂n, which is defined
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by

µ̂n(t) =

∑
i I{xi≤t}
n

. (3.3)

Let P̂n denote the set of all possible empirical distribution functions for n samples, ∪nP̂n
belongs to P . Therefore IP2(φ) and JP1(φ) can be written as

IP2(Ω) = lim
n→∞

− 1

n
logP n

2 (µ̂n ∈ Ω1(n)), (3.4)

JP1(Ω) = lim
n→∞

− 1

n
logP n

1 (µ̂n ∈ Ω2(n)). (3.5)

Here Ω is a sequence of partitions (Ω1(n),Ω2(n)) (n = 1, 2, · · · ) of which Ω1(n) ∩

Ω2(n) = ∅ and P = Ω1(n)∪Ω2(n). The decision rule is made in favor ofHi if µ̂n ∈ Ωi(n),

i = 1, 2.

Similar to the fixed sample size problem, under a worst case constraint, i.e., a constraint

on the minimal rate of decrease in type I probability of error, we want to maximize the

exponent of the worst case type II probability of error. This is referred to as the minimax

asymptotic NP hypothesis testing problem, defined as:

sup
Ω

inf
P2∈P2

IP2(Ω) s.t. inf
P1∈P1

JP1(Ω) ≥ η. (3.6)

Throughout this Chapter, we will find the optimal detectors with respect to the minimax

asymptotic NP criterion, for different sets of (P1,P2).

3.2 An Overlooked Fact

Recall that the Lévy metric dL makes (P , dL) a metric space which is compatible with the

weak topology on P [6]. The following result is well known and will be used throughout

this chapter.
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Lemma 3.2.1. [15]For probability measures Pn, P ∈ P , Pn weakly converges to P is

equivalent to any of the following statements.

1. EPnf → EPf for all the bounded and lipschitz continuous functions,

2. Pn(A)→ P (A) for any continuity set A of P .

3. dL(Pn, P )→ 0.

For any set Sn ⊆ Rn, the boundary set of Sn is denoted as ∂Sn. For a set Γ ⊂ P , the

closure and interior of Γ in P with respect to the Lévy metric is denoted as clΓ and intΓ.

A direct result of the above theorem is the following.

Theorem 3.2.2. Consider the binary hypothesis testing problem,

H1 : P ∈ P1, H2 : P ∈ P2. (3.7)

Under the minimax NP criterion (3.2), if clP1 ∩ clP2 contains any P such that P is abso-

lutely continuous onR, then any set Sn ⊆ Rn with ∂Sn having measure 0 is no better than

random guess.

Proof. Assume P ∈ clP1 ∩ clP2 and P is absolutely continuous on R, there exists se-

quences {P i
k ∈ Pi} that weakly converge to P for i = 1, 2. For any Sn ⊆ Rn with ∂Sn

having measure 0, P (∂Sn) = 0 because P is absolutely continuous on R, that is, Sn is a

continuity set of P . Then from the second equivalent condition in Lemma 3.2.1 we have

P (Sn) = limk→∞ P
i
k(Sn) for i = 1, 2.
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Suppose supP2∈P2
P2(φn = 1) ≤ α, then

sup
P1∈P1

P1(Scn) ≥ lim
k
P 1
k (Scn) (3.8)

= P (Scn) (3.9)

= lim
k
P 2
k (Scn) (3.10)

≥ inf
P2∈P2

P2(Scn) (3.11)

= 1− sup
P2∈P2

P2(Sn), (3.12)

≥ 1− α. (3.13)

Therefore, we can use a random guess independent of the observations to achieve the opti-

mality in problem (3.2).

Remark 1. The above statement also holds for the asymptotic minimax NP criterion (3.6).

Loosely speaking, Theorem 3.2.2 states that the two uncertainty sets need to be sep-

arated, that is, the two sets can not be arbitrarily close to each other with respect to the

weak convergence. Otherwise the minimax hypothesis testing problem becomes degen-

erate. Theorem 3.2.2 may seem trivial, yet the result is quite subtle and is often over-

looked. In the discrete case with finite, say, m elements, P is a compact subspace of the

m-dimensional Euclidean space. The uncertainty sets under H1 and H2 are usually char-

acterized by continuous functions, in this case “disjoint” usually implies “separated”. In

general, for the finite alphabet case, as long as the two uncertainty sets are disjoint, The-

orem 3.2.2 is redundant. However, this is not the case for continuous distributions; in

fact some well defined problems for the discrete case do not generalize to the continuous

case because of Theorem 3.2.2. An example is the moment constrained testing problem as

elaborated below.

In moment constrained testing problems, the uncertainty sets P1 and P2 are specified
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by the union or intersection of the sets

{µ ∈ P : Eµf ≤ c},

where f is a real-valued function. The motivation for considering moment classes comes

from the simple observation that moments, as mean or correlation, are often much easier

to handle and characterize than the complete statistical distribution. In the finite alphabets

case, the moment constrained testing problem is well defined and has a long and rich his-

tory [31]. However, in the continuous case, the moment constrained testing problem may

turn out to be meaningless. This can be illustrated using the following observation, which

simply states that any probability distribution, including those whose moments do not exist,

is arbitrarily close to the set of distributions with mean equal to 0.

Lemma 3.2.3. cl{µ ∈ P : EµX = 0} = P .

Proof. For any distribution P ∈ P whose expected value EPX may or may not exist, e.g.,

P may be the Cauchy distribution. Let Pn be the truncated and appropriately normalized

version of P on the interval [−n, n], thus EPnX always exists. Define

µn =

(
1− 1

n

)
Pn +

1

n
In, (3.14)

where

In(t) =


0 for t < −(n− 1)EPnX,

1 for t ≥ −(n− 1)EPnX.

(3.15)

In is simply a degenerate probability measure with probability 1 at −(n − 1)EPnX . It is

easy to see that µn
w−→ P and EµnX = 0. That is, there exist a sequence of distributions

weakly converging to P but the sequence belongs to the set {µ ∈ P : EµX = 0}.
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Similarly, one can show that for any m > 0, cl{µ ∈ P : EµX
2 ≥ m} = P . As we can

see in the above proof, the underlying reason is that if f is unbounded, Eµf is sensitive to

small disturbance at the tail of the distribution µ, while the Lévy metric is not.

Therefore, in the moment constrained robust detection problem defined on the real line,

one needs to make sure that the two uncertainty sets are not arbitrarily close to each other

with respect to the weak convergence, otherwise the problem becomes degenerate. This

subtle presumption was neglected in the previous literatures, such as [33].

If the moment constraints are all characterized using the bounded and Lipschitz contin-

uous functions, from the first equivalent condition in Lemma 3.2.1, it is obvious to see that

the uncertainty sets are closed. Thus the moment constrained robust detection problems are

well defined.

In Section 3.3 and Section 3.4, two robust detection problems are discussed. One is the

robust universal hypothesis testing and the other is deviation detection. Similar to moment

constrained detection, the issue that two uncertainty sets in the continuous case are not

separated needs to be resolved. The detailed observation and solution will be elaborated in

Section 3.4.

3.3 Robust Universal Hypothesis Testing

3.3.1 Related Work

In [14], the problem of deciding whether an i.i.d. sequence of random variables originate

from a known continuous source P0 or an unknown source P ′ different from P0 is consid-

ered. This can be modeled as in (3.1) with

P1 = {P0}, P2 = {P ′}
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where P ′ 6= P0. The fact that P ′ is unknown gives rise to the name the universal hypothesis

testing, and the goal is to find an optimal detector under the asymptotic minimax criterion

(3.6).

The problem was first formulated by Hoeffding [2], where the alphabet of the i.i.d.

source is finite. By using combinatorial bounds, he successfully constructed an optimal

detector that takes the following simple form,

D(µ̂n||P0)
H2

≷
H1

η. (3.16)

Unfortunately, when the distribution is on the real line, the detector described in (3.16)

fails to be the optimal and Hoeffding’s approach cannot be directly extended as the combi-

natorial approach does not apply to the case with continuous alphabet.

However, under a weaker notion of optimality, Zeitouni and Gutman [14] extended the

classical work by Hoeffding from the discrete case to the continuous case. In lieu of the

combinatorial approach, they resorted to the large deviation theory. Their proof primarily

was based on the following general Sanov’s Theorem.

Theorem 3.3.1 (General Sanov’s Theorem). [6] Given a probability set Γ ⊆ P , for a

probability measure Q /∈ Γ,

inf
P∈clΓ

D(P ||Q) ≤ lim
n→∞

− 1

n
logQ({xn : µ̂n ∈ Γ})

≤ lim
n→∞

− 1

n
logQ({xn : µ̂n ∈ Γ})

≤ inf
P∈intΓ

D(P ||Q).

The general Sanov’s Theorem illustrates the large deviation principle for the empirical

measures and will be used extensively in the proof of Theorems 3.3.2 and Theorem 3.3.3.
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For any set Γ ⊆ P , define its δ−smooth set to be

Γδ := ∪µ∈Γ{P ∈ P : dL(P, µ) < δ}.

The major contribution in [14] is the following.

Theorem 3.3.2. [14] Define Λ as,

Λ2(n) = Λ2 := {µ : D(BL(µ, 2δ)||P0) ≥ η}δ Λ1 := P/Λ2. (3.17)

Λ is δ−optimal, i.e.,

1. JP0(Λ) ≥ η.

2. If Ω is a test such that JP0(Ω6δ) ≥ η, then for any P ′ 6= P0,

IP
′
(Ωδ) ≤ IP

′
(Λ). (3.18)

In the finite alphabets case, the corresponding detector as in (3.17) yields weaker results

than Hoeffding’s detector [2]. This is the price paid for its generality - Theorem 3.3.2.

applies to both discrete and ofR-valued random variables.

3.3.2 Some observations

For discrete distributions, the above detector (3.17) yields weaker result compared with

Hoeffding’s detector [2]. However, one has to be content with “δ−optimality" rather than

“optimality" in the continuous case, if there is no restriction on detector Ω and the general

Sanov’s Theorem is used. It is plausible that for a test Ω, either Ω1 or Ω2, say Ω1, consists

of only empirical distributions, since the test can depend on the observations only through

the empirical distributions. Then the interior point set of Ω1 is empty and the closure of Ω2

equals to P . For such a test, one can not take advantage of the general Sanov’s Theorem to



42

analyze the error exponents. That is why in Theorem 3.3.2, for an arbitrary test Ω, we need

to first perform δ−smooth operation on it before comparing its error exponents to those of

the test Λ. As such, if there is no restriction on detector Ω, we have “δ−optimality" rather

than “optimality" adopted in the continuous case.

Detector (3.17) has a complicated form. Given the empirical distribution µ̂n, it is hard

to determine whether µ̂n ∈ Λ1 or Λ2 due to the following two reasons.

• First, one has to compute D(BL(µ̂n, 2δ)||P0). From Fig. 3.1, we can see that com-

puting D(BL(µ̂n, 2δ)||P0) is an infinite dimension optimization problem. This is,

in essence, equivalent to finding a continuous µ∗ inside the shaded region such that

D(µ∗||P0) = infµ∈BL(µ̂n,2δ) D(µ||P0).

• Secondly, assume one can compute D(BL(µ̂n, 2δ)||P0). If D(BL(µ̂n, 2δ)||P0) ≥ η

then µ̂n ∈ Λ1. But if D(BL(µ̂n, 2δ)||P0) < η, one needs to further check if µ̂n

belongs to the δ-smooth set of {µ : D(BL(µ, 2δ)||P0) ≥ η}.

-3 -2 -1 0 1 2 3

Fig. 3.1: The shaded region is BL(µn, 2δ) and the solid line is P0.

One of the difficulties to directly generalize the discrete case to the continuous case, as

mentioned in [14], is that {P ∈ P : D(P ||P0) ≥ η} is not closed in P . Actually, it will be

shown in Section 3.4 that

{P ∈ P : D(P ||P0) ≥ η} 6= cl{P ∈ P : D(P ||P0) ≥ η} = P . (3.19)
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In Section 3.3.3, rather than “δ−smoothing” the detector as one does in (3.17), we

“δ−smooth” P0 to be a Lévy ball centered at P0. Then, under the minimax criterion, the

empirical likelihood ratio test which is simple and intuitive, is shown to be optimal.

Besides, Theorem 3.3.2 can not be directly extended to the case whereP1 is an arbitrary

set of distributions. For the proof in [14] to hold, {P ∈ P : D(P ||P1) ≤ η} should be

compact. However, if we let P1 = ∪n>0Pn where Pn is N (n, 1). Then the set {P ∈ P :

D(P ||P1) ≤ η} is not compact, since the sequence {Pn} belongs to this set but does not

have a subsequence that has a limit point in P .

3.3.3 Robust Universal Hypothesis Testing

The robust universal hypothesis testing is the generalization of the universal hypothesis

testing to the robust setting, which is modeled as in (3.1) with,

P1 = BL(P0, ε0),

P2 = {P ′}.

Here P0 is assumed to be a known continuous distribution and ε0 > 0. P ′ /∈ BL(P0, ε0)

and is unknown just as in the universal hypothesis testing.

The reason to use the Lévy metric among numerous distance metrics between distri-

butions is that the Lévy metric is the weakest [18], in another word, BL(P0, ε0) contains

all distributions that are close enough to P0 as measured using any other metrics. In addi-

tion, the optimal solution will be shown to be rather straightforward. Theorem 3.3.3 below

describes the optimal solution to the above problem.

Theorem 3.3.3. For the robust universal hypothesis testing problem, for any given δ > 0,

detector

D(µ̂n||BL(P0, ε0))
H2

≷
H1

η, (3.20)
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is optimal among all detector Ω such that Ω2(n) = Ω2 and Ω2 is open, i.e., let

Λ2(n) = Λ2 := {µ : D(µ||BL(P0, ε0)) > η}, Λ1(n) := Λ1 = {µ : D(µ||BL(P0, ε0)) ≤ η},

then,

1. infP1∈P1 J
P1(Λ) = η.

2. IP
′
(Λ) = D(Λ1||P ′).

3. For detector Ω with Ω2(n) = Ω2 and Ω2 open, if

inf
P1∈P1

JP1(Ω) > η, (3.21)

then for any P ′ /∈ BL(P0, ε0),

IP
′
(Ω) ≤ IP

′
(Λ). (3.22)

Proof. 1. By Sanov’s theorem, we have

inf
P1∈P1

JP1(Λ) = inf
P∈P1

lim
n→∞

− 1

n
logP n

1 ({xn : µ̂n ∈ Λ2}) (3.23)

≥ inf
P∈P1

inf
µ∈clΛ2

D(µ||P ) (3.24)

= inf
µ∈clΛ2

D(µ||P1) (3.25)

= η, (3.26)

the last equality holds sinceD(µ||P1) is continuous in µ thus clΛ2 ⊆ {µ : D(µ||P1) ≥
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η}. On the other hand,

inf
P1∈P1

JP1(Λ) ≤ inf
P∈P1

lim
n→∞

− 1

n
logP n

1 ({xn : µ̂n ∈ Λ2}) (3.27)

≤ inf
P∈P1

inf
µ∈intΛ2

D(µ||P ) (3.28)

= η. (3.29)

The last equality holds since intΛ2 = Λ2.

2. Again from Sanov’s theorem, we have

IP
′
(Λ) = lim

n→∞
− 1

n
logP

′n({xn : µ̂n ∈ Λ1}) (3.30)

≥ inf
µ∈clΛ1

D(µ||P ′) (3.31)

= D(Λ1||P ′). (3.32)

The last equality holds since clΛ1 = Λ1. On the other hand, {µ : D(µ||P1) < η} ⊆

intΛ1, thus,

IP
′
(Λ) ≤ lim

n→∞
− 1

n
logP

′n({xn : µ̂n ∈ Λ1}) (3.33)

≤ inf
µ∈intΛ1

D(µ||P ′) (3.34)

≤ inf
µ∈{µ:D(µ||P1)<η}

D(µ||P ′) (3.35)

≤ D(Λ1||P ′). (3.36)

Equation (3.36) holds because of the following. There exists a distribution P ∈ P1

such thatD(P ||P ′) <∞. For any Pc ∈ Λ1 and 0 < λ < 1, we have (1−λ)Pc+λP ∈
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{µ : D(µ||P1) < η} since

D((1− λ)Pc + λP ||P1)

≤ (1− λ)D(Pc||P1) + λD(P ||P1)) (3.37)

< (1− λ)η + 0 (3.38)

< η, (3.39)

where (3.37) comes from the fact that D(µ||P1) is convex in µ, which is proved in

Lemma 2.3.3. Since P ∈ P1, we also have (3.38). Then,

inf
µ∈{µ:D(µ||P1)<η}

D(µ||P ′) ≤ lim
λ→0+

D((1− λ)Pc + λP ||P ′) (3.40)

≤ lim
λ→0+

(1− λ)D(Pc||P ′) + λD(P ||P ′) (3.41)

≤ D(Pc||P ′), (3.42)

the last inequality holds since D(P ||P ′) < ∞. The above inequalities hold for any

Pc ∈ Λ1, thus we have

inf
µ∈{µ:D(µ||P1)<η}

D(µ||P ′) ≤ D(Λ1||P ′). (3.43)

3. We have

inf
P1∈P1

D(Ω2||P1) = inf
P1∈P1

D(intΩ2||P1) (3.44)

≥ inf
P1∈P1

lim
n→∞

− 1

n
logP1(xn : µ̂n ∈ Ω2) (3.45)

> η. (3.46)
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Therefore, Ω2 ⊆ Λ2, or equivalently, Λ1 ⊆ Ω1. Next,

IP
′
(Ω1) = lim

n→∞
− 1

n
logP

′n(xn : µ̂n ∈ Ω1) (3.47)

≤ lim
n→∞

− 1

n
logP

′n(xn : µ̂n ∈ Λ1) (3.48)

= IP
′
(Λ). (3.49)

One reason that detector (3.17) is complicated is due to the fact that {µ ∈ P : D(µ||P0) ≥

η} is not closed, as shown in (3.19). However, {µ ∈ P : D(µ||P1) ≥ η} is closed since

D(µ||P1) is continuous in µ (Theorem 2.2.1). This is a very important step in proving

Theorem 3.3.3.

Compared to detector (3.17) in Theorem 3.3.2, detector (3.20) has three main differ-

ences.

• Fig. 3.2 shows that computing D(µ̂n||BL(P0, δ0)) is a finite dimension optimiza-

tion problem, which is in essence finding a step function inside the shaded area that

achieves the minimum KL divergence to µ̂n. This can be shown to be a convex

optimization problem whose solution can be computed efficiently.

• As mentioned in the previous section, without any restrictions on Ω, we can only get

δ−optimality. The reason is that to characterize the asymptotic performance of an

detector Ω, Sanov’s Theorem will inevitably be used, which relies on the interior set

or the closure of Ω. However, for an arbitrary detector Ω, its interior set could be

empty and its closure could be P , or its interior set and closure are too abstract or

complicated to describe. In these cases, one can hardly draw any conclusion using

the Sanov’s Theorem.

Zeitouni and Gutman proposed a way in Theorem 3.3.2 to get around the above

difficulty, by comparing Ωδ instead of Ω. The advantage to doing so is that Ωδ
2 is
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open and Ωδ
1 is closed, the price paid is the weaker optimality, i.e., one has to settle

with the δ-optimality.

In Theorem 3.3.3, by restricting Ω to be independent of n and assuming Ω2 is open,

we extend the δ−optimality to optimality, with a much simplified proof compared to

that of Theorem 3.3.2.

• Theorem 3.3.2 only gives the lower bound of the error exponents, while Theorem

3.3.3 specifies the exact value of the error exponents. Furthermore, I and J are

defined using limit infimum, yet from the proof it can be seen that I and J remain

unchanged if one uses limit to define the worse case error exponents. Therefore

Theorem 3.3.3 gives an exact characterization of the error exponents.

-3 -2 -1 0 1 2 3

Fig. 3.2: The shaded region is a Lévy ball of the normal distribution and the step function
is an example of µ̂n.

After generalizing the universal hypothesis testing to the robust setting, the general-

ized empirical likelihood ratio test becomes optimal, the construction of detector and the

proof of optimality are much simplified. In the next section, we will explore the deviation

detection problem.
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3.4 Deviation Detection

3.4.1 Introduction

We consider in this section the so-called deviation detection problem. The normal state,

i.e., the null hypothesis, is characterized by a known nominal distribution; any significant

departure from this nominal distribution constitutes the alternative hypothesis. The most

sensible formulation is thus the following composite hypothesis testing problem: under the

null hypothesis, samples follow a distribution from a suitably defined proximity distribution

set close to the nominal distribution; under the alternative hypothesis, samples follow a

distribution that is significantly different from the nominal distribution.

Deviation detection has numerous engineering and societal applications, including net-

work intrusion detection, fraud detection, quality control, vacant channel detection in cog-

nitive wireless networks [21–24]. What is common among those applications is that the

normal operating state is often characterized by a known distribution of some observables,

e.g., learned from past history. Anomaly, in statistical distribution of the observables, oc-

curs when the system deviates from the normal operating state and such anomaly is often

not known a priori due to the unpredictable nature of the cause of the anomaly.

Closely related to the deviation detection problem is a class of the robust detection prob-

lems [25–29], in which each uncertainty set is populated by probability distributions within

a proximity set defined using a certain metric, e.g., the KL divergence, with respect to the

respective nominal distributions. For such a robust detection problem, to minimize the

worst case performance over the uncertainty classes, the solution typically involves iden-

tifying a pair of least favorable distributions (LFDs), and subsequently designing a simple

hypothesis test between the LFDs. However, as elaborated in Section 3.1, the existence of

LFDs requires the joint stochastic boundedness property. Such a property, however, does

not hold for the deviation detection problem, for the same reason as that of the universal
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hypothesis testing problem.

The key distinction between the deviation detection and the robust detection described

above is that the former has only a single nominal distribution (under the null hypothesis)

while the latter has a nominal distribution under each hypothesis. This distinction turns out

to be crucial. In fact, with continuous valued random sequences, the KL divergence is not

a suitable metric for the deviation detection problem in defining the proximity set for the

nominal distribution. Specifically, while for discrete random variables, it is guaranteed that

the complementary set of any open ball defined using the KL divergence is closed, such is

not the case with continuous valued random variables. As such, defining the distribution set

for the alternative hypothesis using the KL divergence would encounter significant issues

that render the deviation detection problem meaningless.

We thus turn into the Lévy metric as it is a true metric that metrizes the weak con-

vergence of probability measures. To facilitate the analysis, instead of solving the fixed

sample size problem, we follow the generalized NP criterion, which evaluates the asymp-

totic efficiency by considering the error exponents instead of the error probabilities.

In Section 3.4.2, we formulate the problem and establish that the deviation detection

problem characterized by the KL divergence is a degenerate one. Subsequently, we show

that by defining the proximity set using the Lévy metric makes the problem meaningful.

We then establish that, the generalized empirical likelihood ratio test turns out to be asymp-

totically δ-optimal for the worst case performance.

3.4.2 Problem Formulation and Solution

We now formulate the deviation detection problem as follows. Let P0 be a continuous

distribution representing the normal state. Under the null hypothesis the samples follow a

distribution from the setP1 which contains distributions close to P0, i.e.,P1 is the proximity

set of P0; under the alternative hypothesis the sample distribution belongs to the deviation

set P2, which contains all the distributions that are significantly different from P0. This can
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be written as in (3.1) with

P1 = {P ∈ P : d(P, P0) ≤ λ1} (proximity set),

P2 = {P ∈ P : d(P, P0) ≥ λ2} (deviation set),

where λ1 < λ2 and d represents a suitably defined measure of distance between two distri-

butions. Throughout this subsection, we use P1 and P2 as defined above.

For robust detection, a wide range of measures have been adopted to define the un-

certainty sets that are typically proximity sets of two nominal distributions under the two

hypotheses [25–29]. These include the total variation, the Kolmogorov distance, the Lévy

distance, the Hellinger divergence and the KL divergence. However, in the deviation de-

tection problem, the fact that there is only one nominal distribution for both hypotheses

precludes the use of many of those measures. This subtle but important observation will be

elaborated in Proposition 2 where we demonstrate that deviation from the nominal distribu-

tion (i.e., under the alternative hypothesis) is poorly characterized using the KL divergence

when the distributions are defined on the real line (i.e., continuous valued).

When the sample space is finite, the set of all probabilities is a compact subset of

the Euclidean space. Any d as previously mentioned can be used to define the deviation

detection problem. This is because in the discrete case, in general the distance metric of

any probability distribution to P0 is a continuous function which results in P1 and P2 being

two disjoint compact sets as long as λ2 > λ1.

However, if the sample space isR, it is possible that d(·, P0) is not continuous on P and

the corresponding clP1 ∩ clP2 is not empty even if λ2 > λ1, leading to the degeneration of

the hypothesis testing problem. This is true despite the fact that, P1 and P2 are themselves

two disjoint sets. Proposition 2 illustrates this point using the KL divergence.
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Proposition 2. Assume P0 is the standard normal distribution. For any given λ > 0, let

Pλ := {P ∈ P : D(P ||P0) = λ},

then

clPλ = {P ∈ P : D(P ||P0) ≤ λ}.

Proposition 3 states that the closure of the surface defined by distributions with constant

KL divergence to the nominal distribution is the entire sphere, i.e., includes all distributions

whose KL divergence is smaller than or equal to the radius of the surface.

Proof. It was shown in [6, 17] that {P ∈ P : D(P ||P0) ≤ λ} is a compact set, which

implies that clPλ ⊆ {P ∈ P : D(P ||P0) ≤ λ}. For the other direction, we only need

to show that for any P ∈ P such that D(P ||P0) < λ, P is a limit point of Pλ. We show

this by constructing a sequence {Pn} that belongs to the set Pλ while the sequence {Pn}

weakly converges to P .

Let Pn(t) = (1− 1
n
)P + 1

n
Qn(t), where Qn(t) is Gaussian with mean zero and variance

t, then D(Pn(t)||P0) is a continuous function of t on (0, 1] for any n. Let t = 1 then Qn(1)

reduces to P0 and we have

D(Pn(1)||P0) ≤
(

1− 1

n

)
D(P ||P0) +

1

n
D(Qn(1)||P0)

=

(
1− 1

n

)
D(P ||P0)

≤ D(P ||P0)

< λ, (3.50)

where the first inequality comes from the convexity property of KL divergence.

Denote by Sε = [−ε, ε]. From the data processing inequality of the KL divergence,

if the observations are quantized to Sε and R \ Sε, then the corresponding quantized KL
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divergence will be no greater than the original KL divergence. Denote the resulting KL

divergence by

Db(α||β) := α log
α

β
+ (1− α) log

1− α
1− β ,

then

lim
t→0

D(Pn(t)||P0) ≥ lim
t→0

Db

(
(1− 1

n
)P (x ∈ Sε) +

1

n
Qn(t)(Sε)||P0(Sε)

)
= lim

t→0
Db

(
(1− 1

n
)P (x ∈ Sε) +

1

n
Qn(t)(Sε)||P0(Sε)

)
= Db

(
(1− 1

n
)P (Sε) + lim

t→0

1

n
Qn(t)(Sε)||P0(Sε)

)
= Db

(
(1− 1

n
)P (Sε) +

1

n
||P0(Sε)

)
. (3.51)

The first inequality comes from the data processing inequality. The first and second equal-

ities holds since Db(·||P0(Sε)) is a continuous function because 0 < P0(Sε) < 1. When

t → 0 the quantity Qn(t)(Sε) → 1 as Qn(t) is zero mean Gaussian distribution with vari-

ance t. Therefore we have the last equality. Since the above relation holds for any ε > 0,

we can take the supremum over all ε > 0 in (3.51) and we get

lim
t→0

D(Pn(t)||P0) ≥ sup
ε>0

Db((1− 1

n
)P (x ∈ Sε) +

1

n
||P0(x ∈ Sε))

= ∞. (3.52)

Thus from relations (3.50), (3.52) and the continuity of D(Pn(t)||P0) on 0 < t ≤ 1, there

exists a tn ∈ (0, 1] such that for each n

D(Pn(tn)||P0) = λ.

Next we will show that Pn(tn) converges to P in the Lévy metric. Assume that a function
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f is both bounded by [m,M ] and lipschitz continuous onR, then

EPn(tn)f = (1− 1

n
)EPf +

1

n
EQn(tn)f

≤ (1− 1

n
)EPf +

1

n
M.

Similarly,

EPn(tn)f ≥ (1− 1

n
)EPf +

1

n
m.

Thus

lim
n→∞

EPn(tn)f = EPf. (3.53)

From Lemma 3.2.1, (3.53) is equivalent to dL(Pn(tn), P ) → 0, so P is a limit point of

Pλ.

Remark 2. This result can be generalized to any arbitrary P0.

If we let P2 be {P ∈ P : D(P ||P0) > λ2}, then according to Proposition 2,

P1 ⊆ clP2,

which violates Theorem 3.2.2 and the corresponding minimax detection problem would be

degenerate.

The Lévy metric dL is suitable in our problem because of the following reasons. Firstly,

the proximity set measured by the Lévy metric is more general, hence more inclusive com-

pared to that defined using the contamination model, the total variation, the Kolmogorov

distance and the KL divergence models. Take the KL divergence for instance, for any
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λ1 > 0, there exists a λ′1 such that

{P ∈ P : D(P ||P0) ≤ λ1} ⊆ {P ∈ P : dL(P, P0) ≤ λ′1}.

However, the reverse statement is not true, i.e., for any λ1, λ
′
1,

{P ∈ P : dL(P, P0) ≤ λ′1} * {P ∈ P : D(P ||P0) ≤ λ1}.

The reason is that, in general, convergence in dL is strictly weaker compared to convergence

in any other measures [15]. That means any proximity set constructed by dL includes all

the distributions which are close enough in any other d to P0. On the other hand, if the

proximity set is constructed by metrics other than dL, then it will exclude some distributions

close to P0 in terms of dL.

Another reason, which is a consequence of the fact that dL is the weakest true distance

metric, is that the corresponding Pi = clPi, i = 1, 2, and P1 ∩ P2 = ∅ as long as λ2 > λ1.

Therefore the deviation detection problem to be considered here is now formulated

using the Lévy metric with the two probability sets under the two hypotheses defined as,

P1 = {P ∈ P : dL(P, P0) ≤ λ1} (proximity set),

P2 = {P ∈ P : dL(P, P0) ≥ λ2} (deviation set).

Here we notice that the set P1 is identical to that of the robust universal hypothesis testing.

Indeed, the detector developed for the robust universal hypothesis testing applies to the

deviation detection problem under the asymptotic NP criterion. Proposition 3 shows that

the generalized empirical likelihood ratio test is also optimal for the deviation detection

problem, whose proof parallels that of 3.3.3.
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Proposition 3. In the deviation detection problem, for any given δ > 0, detector

D(µ̂n||P1)
H2

≷
H1

η, (3.54)

is optimal among all Ω such that Ω2(n) = Ω2 and Ω2 is open, i.e., let

Λ2(n) = Λ2 := {µ : D(µ||P1) ≥ η}, Λ1(n) := Λ1 = {µ : D(µ||P1) < η},

then,

1. infP1∈P1 J
P1(Λ) = η.

2. infP2∈P2 I
P2(Λ) = D(Λ1||P2),

3. For Ω with Ω2(n) = Ω2 and Ω2 open, Λ is optimal, i.e., if

inf
P1∈P1

JP1(Ω) > η, (3.55)

then,

inf
P2∈P2

IP2(Ω) ≤ inf
P2∈P2

IP2(Λ). (3.56)

3.5 Summary

This chapter deals with two binary composite hypothesis testing problem: the robust uni-

versal detection problem and the deviation detection problem. For robust detection under

the minimax NP criterion, the uncertainty sets under the two hypotheses are not allowed to

be arbitrarily close to each other as measured by the Lévy metric. Otherwise, the problem

becomes degenerate. This is illustrated using the moment constrained hypothesis testing,

where a well-defined robust detection problem in the discrete case is shown to be degener-
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ate for the continuous case.

The choice of the Lévy metric in defining the proximity for both universal detection

and deviation detection problems is due to the following. The Lévy metric is the weakest

distance metric hence the uncertainty set thus defined is the largest, in the sense that it

includes distributions that are close to the nominal distribution using any other metrics. For

example, with the classical KL divergence, it is shown that the closure of the surface of a

distribution defined by a KL divergence ball is equivalent to the entire KL divergence ball,

making it unsuitable to define the proximity set in both detection problems as well as the

deviation set in the deviation detection problem.

The root reason that the KL divergence is unsuitable is because of the discontinuity of

the KL divergence for continuous valued random variables where the continuity is defined

with respect to the weak convergence. This is the motivation for defining a robust version of

the KL divergence in Chapter 2 where the KL divergence is with respect to a Lévy ball in-

stead of a single distribution. Its continuity with respect to the weak convergence helps the

development of the generalized empirical likelihood ratio test that is shown to be optimal,

for both the robust universal hypothesis testing and deviation detection. We demonstrate

the advantages of the generalized empirical likelihood ratio test over the existing approach

developed by Zeitouni and Gutman.

In the next chapter, we will discuss the computation and estimation of the robust KL

divergence.
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CHAPTER 4

COMPUTATION AND ESTIMATION OF

THE ROBUST KL DIVERGENCE

4.1 Computation of the Robust KL Divergence

Chapter 3 established that the empirical robust KL divergenceD(µ̂n||BL(P0, δ0)) is the op-

timal statistic, for both the robust universal hypothesis testing and the deviation detection

problem, under the asymptotic minimax NP criterion. The proposed detector is also much

easier to implement and attains a stronger optimality compared with that proposed in [14].

This statement is made concrete in the present chapter where we develop an efficient pro-

cedure for evaluating the empirical robust KL divergence.

Given n samples from a distribution µ, the detection statistic amounts to evaluating the

empirical robust KL divergence

D(µ̂n||BL(P0, δ0)) = inf
P∈BL(P0,δ0)

D(µ̂n||P ) (4.1)

Without loss of generality, we order the n samples in ascending order and denote the or-

dered samples as (x0, x1, · · · , xn−1). Furthermore, for P ∈ BL(P0, δ0) denote by yi =
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P (xi) and y−1 = 0. As such, searching the optimal P in problem (4.1) is reduced to

searching the optimal y in the following optimization problem,

minimize
y

n−1∑
i=0

1

n
log

1/n

yi −max(yi−1, li)
(4.2a)

s.t. l′ � y � u′, (4.2b)

where l′i = max(P0(xi − δ0)− ε0, 0), u′i = min(P0(xi + δ0) + δ0, 1).

Problem (4.2) is not a convex optimization problem. To transform (4.2) to a convex

optimization problem, we introduce yn+i and the condition yn+i ≤ yi − max(yi−1, l
′
i),

which is equivalent to

yi − yn+i − yi−1 ≥ 0 and yi − yn+i ≥ l′i. (4.3)

Notice that to achieve the minimum, yn+i has to equal yi−max(yi−1, li). Therefore we can

modify the problem (4.2) to the following convex optimization problem,

minimize
y

2n−1∑
i=n

1

n
log

1/n

yi
(4.4a)

s.t. l � y � u, (4.4b)

lc � Ay, (4.4c)

where

lt = (l′0, · · · , l′n−1, 0, · · · , 0),ut = (u′0, · · · , u′n−1,∞, · · · ,∞),
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A =



1 −1

−1 1 −1
. . . . . . . . .

−1 1 −1

1 −1

1 −1
. . . . . .

1 −1



, lc =



0

0

...

0

l′0

l′1

...

l′n−1



.

This is a convex optimization problem with separable convex objective functions and linear

constraints, thus numerical solutions can be readily obtained via standard convex program.

4.2 Estimation of the Robust KL divergence

The KL divergence is hard to estimate for the continuous case. Estimating the KL diver-

gence includes as a special case the problem of estimating entropy and mutual information.

Numerous methods exist [45–49], most of them estimating the densities or likelihood ratio

first and then computing the KL divergence using the estimated distributions. In recent

years, direct KL divergence estimation has been developed including methods based on

empirical CDF, k-nearest neighbors density estimation or variational characterization of

divergences. The robust KL divergence provides a natural way to estimate the KL diver-

gence. We will discuss two cases, one with P0 known, the other P0 unknown.

4.2.1 P0 is known

Naturally, D(µ̂n||BL(P0, δ0)) can be viewed as an estimate ofD(µ||BL(P0, δ0)). The ques-

tion is whether D(µ̂n||BL(P0, δ0)) converges to D(µ̂||BL(P0, δ0)) as the sample size in-

creases. The answer is stated below.
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Proposition 4. Given P0 ∈ P , if P0(t) is continuous in t,D(µ̂n||BL(P0, δ0))
a.s.−−→ D(µ||BL(P0, δ0)).

Proof. Denote Cµ ⊆ R as the continuity set of µ(t). D(µ||BL(P0, δ0)) is continuous in µ.

If µn
w−→ µ, then limn→∞D(µ̂n||BL(P0, δ0)) = D(µ||BL(P0, δ0)), therefore,

Pr
(

lim
n→∞

D(µ̂n||BL(P0, δ0)) = D(µ||BL(P0, δ0))
)

≥ Pr
(
µ̂n

w−→ µ
)

(4.5)

= Pr
(

lim
n→∞

µ̂n(t) = µ(t), for all t ∈ Cµ
)

(4.6)

= 1− Pr
(

lim
n→∞

µ̂n(t) 6= µ(t), for some t ∈ Cµ
)

(4.7)

≥ 1−
∑
t∈Cµ

Pr
(

lim
n→∞

µ̂n(t) 6= µ(t)
)

(4.8)

= 1. (4.9)

The last equality comes from the fact that for any t ∈ Cµ, µn(t)
a.s.−−→ µ(t).

In the discrete case, D(µ̂n||P0) converges to D(µ||P0) almost surely. This is, however,

not the case for the continuous case. A remedy is to replace P0 with BL(P0, δ0), which

ensures convergence of the estimate of the robust version of the KL divergence. Some

simulation of D(µ̂n||BL(P0, δ0)) as n increases is given in the Fig.4.1.

We notice that D(µ||BL(P0, δ0)) → D(µ||P0) as δ0 → 0. For a fixed δ0, the KL

divergence and the robust KL divergence are related by the following equation.

D(µ||P0) = D(µ||BL(P0, δ0)) + [D(µ||P0)−D(µ||BL(P0, δ0))]. (4.10)

The first part of the right hand side is bounded and continuous; the second part is always

positive.

Loosely speaking, if µ and P0 are both “smooth”, for example, they belong to the

exponential family distributions, then for small δ0, D(µ||BL(P0, δ0)) is close to D(µ||P0).

With small perturbation on µ, D(µ||P0) may increase by an arbitrarily large value. In

this case the number of samples needed to accurately estimate the resulting KL divergence
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(a) Estimate of D(N (0, 1)||BL(N (1, 1), 0.01)).
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Fig. 4.1: Estimate of the robust KL.
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also increases tremendously. One such example can be found in [49]. The robust KL

divergence is insensitive to such perturbation and is able to capture the “smooth” part of

the KL divergence.

4.2.2 P0 is unknown

We now discuss the two samples problem, i.e., estimatingD(µ||BL(P0, δ0)) given the sam-

ples generated from both µ and P0 in the absence of the knowledge of the actual distribu-

tions. First, we have the following Theorem.

Theorem 4.2.1. Given µ, D(µ||BL(P0, δ0)) is continuous at P0 with respect to weak con-

vergence, provided P0(t) is continuous in t,

Proof. Assume Pm
w−→ P0 asm→∞, we will show thatD(µ||BL(Pm, δ0))→ D(µ||BL(P0, δ0)).

For any m, there exists a P ∗m ∈ BL(Pm, δ0) such that D(µ||P ∗m) = D(µ||BL(Pm, δ0)). For

any δ > 0, there exists an M such that dL(Pm, P0) ≤ δ for m ≥M . We have,

lim
m→∞

D(µ||BL(Pm, δ0)) = lim
m→∞

D(µ||P ∗m) (4.11)

≥ D(µ||BL(P0, δ0 + δ)). (4.12)

The last inequality holds since

dL(P ∗m, P0) ≤ dL(P ∗m, Pm) + dL(Pm, P0) (4.13)

≤ δ0 + δ. (4.14)

Notice that (4.12) is true for any δ, then from Lemma 2.3.2,D(µ||BL(P0, δ0)) is continuous

at δ0, therefore,

lim
m→∞

D(µ||BL(Pm, δ0)) ≥ D(µ||BL(P0, δ0)). (4.15)
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On the other hand,

lim
m→∞

D(µ||BL(Pm, δ0)) ≤ D(µ||BL(P0, δ0 − δ)), (4.16)

where the inequality holds because BL(P0, δ0 − δ) ⊆ BL(Pm, δ0) for m ≥ M . Equation

(4.16) holds for any δ. Since D(µ||BL(P0, δ0)) is continuous at δ0, we have,

lim
m→∞

D(µ||BL(Pm, δ0)) ≤ D(µ||BL(P0, δ0)), (4.17)

From (4.15) and (4.17), we have

lim
m→∞

D(µ||BL(Pm, δ0)) = D(µ||BL(P0, δ0)). (4.18)

A direct result of the above theorem is the parallel statement of Proposition 4 for P0, i.e.,

for the empirical distribution P̂m ∼ P0, D(µ||BL(P̂m, δ0)) converges to D(µ||BL(P0, δ0))

almost surely.

Previously we have proved D(µ||BL(P0, δ0)) is continuous at µ if P0(t) is continuous

in t. Combine with the above Theorem, we have the following Proposition.

Proposition 5. Assume µn
w−→ µ, Pm

w−→ P0 and P0(t) is continuous in t. Then

lim
n→∞

lim
m→∞

D(µn||BL(Pm, δ0)) = D(µ||BL(P0, δ0)).

Notice the above is different from limn,m→∞D(µn||BL(Pm, δ0)) = D(µ||BL(P0, δ0)).

The latter is a much stronger condition and if true, then given the empirical distributions µ̂n

and P̂m, the estimate D(µ̂n||BL(P̂m, δ0)) will converge to D(µ||BL(P0, δ0)) almost surely.
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4.3 Summary

This chapter first investigates the computation of the robust KL divergence between an em-

pirical distribution and a Lévy ball, which is the asymptotic optimal detection statistic for

both robust universal hypothesis testing and deviation detection. The problem is converted

to a convex optimization problem and can be readily solved via standard convex programs.

Furthermore, estimation of the robust KL divergence is considered and the constructed esti-

mate is shown to converge almost surely, when either one of the two distributions is known.

For the case that two sequences of samples are given for each distributions, i.e., when both

distributions are unknown, stronger convergence results are desired which will be left as

future work.
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CHAPTER 5

TO LISTEN OR NOT: DISTRIBUTED

DETECTION WITH ASYNCHRONOUS

TRANSMISSIONS

5.1 Introduction

Distributed detection has been a well studied topic in the past few decades [10,35,36]. Most

existing results assume either a parallel structure where all sensors propagate their local

data/decisions to a fusion center (FC), or a tandem network where sensors are connected in

a serial manner and the last node becomes the FC. Noteworthy exceptions include that of

tree structures and directed acycylic topologies as studied in [37–40].

We consider a variation of the parallel fusion system that is largely motivated by the

broadcast nature of the wireless transmission. While it is typically assumed that the fusion

center implements a mapping (decision rule) that takes inputs from all the sensors, commu-

nications from sensors to the FC often occur asynchronously (e.g., in a traditional TDM -

time division multiplexing system or in an Aloha type of random access system). As such,

it bears the question of whether sensors should perhaps take advantage of the asynchronism
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by listening to transmissions from other sensors before deciding what to transmit. Such an

ability of overhearing other sensors’ transmissions is made possible given the broadcast

nature of wireless transmission. Using a two sensor system as an illustration, our task is

to compare the performance between the two systems schematically shown in Fig. 1. At

each time, local sensors make decisions based on current observations with or without aid

of other sensors’ output, where (a) is the classical parallel system and (b) is one where

overhearing occurs.

It is clear in Fig. 1 that (b) should perform no worse than (a). One may also view (b) as

subsuming a two-sensor serial system, which is well known to perform no worse than the

parallel system with identical observations [35]. To see that this is true, we note that the

system in (b) can reproduce the final decision of a serial system when sensor 2 serves as a

fusion center, i.e., let sensor 2 make the final decision and send it to the fusion center as its

final decision, thus the input U from sensor 1 is essentially ignored in the FC.

This paper is interested in comparing the two systems in Fig. 1 for the large sample

regime, i.e., when the number of samples become large. Notice that the asymptotics is with

respect to the number of observations as opposed to the number of sensors (i.e., network

size) as studied in, for example, [41]. This will become clear in Section 5.2. While it can be

easily shown that with fixed sample size, overhearing may strictly outperform the classical

parallel system (c.f. Appendix), we show in this letter that for the large sample regime,

the performance comparison largely depends on the observation model. For conditionally

independent observations, we show that there is no difference in asymptotic detection per-

formance between the two systems. However, for conditionally dependent observations, it

is possible that strict performance improvement is attained through the overhearing scheme.

The overhearing system allows one of the sensors to have access to side information

(in the form of the other sensor’s output) in addition to its own observation. There have

been other forms of side information studied in the literature in decentralized detection.

The unlucky broker problem, considered in [42], involves decision making where some
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Fig. 5.1: Distributed network

sensors have access to the decision output of an initial fixed detector. Separately in [43],

an interactive decentralized detection scheme was considered where a peripheral sensor

takes input from the other sensor (which also serves as a fusion center) before sending its

decision back to the fusion center where a final decision is made. A key distinction between

the overhearing scheme and the interactive detection is in the system model: the fusion

center in the overhearing scheme has quantized decision output from the two sensors, with

one of them making decision based on its observation as well as the same output from the

other sensor; for the interactive scheme, the fusion center has access to its own observation

as well as the output of the peripheral sensor.

5.2 Problem Statement

We consider throughout this letter a two-sensor system and the asymptotics is taken in the

time domain, i.e., when the two sensors observe a sequence of observations. Generalization

to a system involving multiple sensors will be briefly discussed wherever applicable.

To be more specific, in reference to Fig. 1, let the sensor observations be {(Xi, Yi) :

i = 1, · · · , n}. The observations are assumed to be independent and identically distributed

(i.i.d.) in time i, i.e.,

PXY(x,y) =
n∏
i=1

PXY (xi, yi),

where PXY (x, y) is the joint distribution function of (X, Y ) on the sample space (X ,Y).
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The two hypotheses under test are defined by the joint distribution of (X, Y ):

PXY (x, y) =


P 0
XY (x, y) if H0 is true;

P 1
XY (x, y) if H1 is true.

The FC, however, does not have direct access to the entire observation. Instead, at time i,

the observations (Xi, Yi) are quantized to (Ui, Vi) where Ui = γ1(Xi), and

Vi =


γ2(Yi) for system (a);

γ2(Yi, Ui) for system (b).

Thus in system (b), the output of sensor 2 not only depends on its observation Yi, but also

depends on Ui, the output of sensor 1 at time i. The fusion center takes the sequence

(Ui, Vi), i = 1, · · · , n and makes the final decision

Ĥ = γ0(U,V)

where U = (U1, · · · , Un) and V = (V1, · · · , Vn). The objective is to determine if the

overhearing scheme is superior in detection performance as the number of samples n grows

to infinity. As per Chernoff-Stein Lemma [5], we use the KL divergence as the asymptotic

performance metric in our study. For probability measures P andQ defined over the sample

space Ω, KL divergence between them is given by

D(P ||Q) =

∫
Ω

ln

(
dP

dQ

)
dP.

We assume for ease of presentation that all sensor outputs are binary; our result can be

easily extended to multi-bit quantization.

Therefore, the objective is to find, for both systems in Fig.1, γ∗1 and γ∗2 that maximize

D(P 0
UV ||P 1

UV ), and to compare the maximum achievable KL divergence between the two
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systems.

For the parallel topology in Fig. 1(a), (γ1, γ2) can be equivalently characterized using

two binary partitions

Rx = {x : γ1(x) = 0}, Ry = {y : γ2(y) = 0}.

Thus, the optimum KL divergence for the parallel system can be equivalently defined as

Qxy := max
Rx,Ry

D(P 0
UV ||P 1

UV ). (5.1)

With overhearing, i.e., the system described in Fig. 1(b), where γ2 has both Y and output

of quantizer γ1 as its input, an equivalent characterization of (γ1, γ2) is

Rx = {x : γ1(x) = 0},

R0y := {y : γ2(y, 0) = 0}, R1y := {y : γ2(y, 1) = 0}.

The corresponding optimum KL divergence for the overhearing system is therefore

Q̃xy := max
Rx,R0y ,R1y

D(P 0
UV ||P 1

UV ). (5.2)

It is clear that Q̃xy ≥ Qxy. The question we attempt to answer is whether strict improve-

ment in asymptotic performance is possible, i.e., if Q̃xy > Qxy can be true for some obser-

vation models.

We show in the next two sections that the answer to the above problem depends on the

observation model. For conditionally independent observations, i.e., for (X, Y ) that satisfy

P i
XY (x, y) = P i

X(x)P i
Y (y), i = 0, 1,
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overhearing does not provide asymptotic detection performance improvement. For condi-

tionally dependent observations, however, we show through a simple example that asymp-

totic detection performance improvement in terms of KL divergence is indeed possible.

We now introduce a lemma [44] that shows, for a binary hypothesis test, a monotone

likelihood ratio (LR) quantizer maximizes KL divergence of the quantizer output.

Lemma 5.2.1. [44] For a random variable W with distribution P i
W under Hi, i = 1, 2,

maximum of D(P 0
γ(W )||P 1

γ(W )) over 1-bit quantizer γ(·) is achieved only by a single thresh-

old LR quantizer. A quantizer γ(·) is said to be a single threshold LR quantizer if

γ(w1) = γ(w2)⇔ (LW (w1)− τ)(LW (w2)− τ) ≥ 0 (5.3)

for some τ , where LW (·) is log LR function of W .

Notation used in this letter: For simplicity we use P i
A and P i

A|B to denote distribution

function of A and conditional distribution function of A given B under Hi. Furthermore,

define

dx(Rx) = P 0(X ∈ Rx) log2

P 0(X ∈ Rx)
P 1(X ∈ Rx)

+ P 0(X /∈ Rx) log2

P 0(X /∈ Rx)
P 1(X /∈ Rx)

, (5.4)

dy(Ry) = P 0(Y ∈ Ry) log2

P 0(Y ∈ Ry)
P 1(Y ∈ Ry)

+ P 0(Y /∈ Ry) log2

P 0(Y /∈ Ry)
P 1(Y /∈ Ry)

, (5.5)

dy|x(Ry, Rx) (5.6)

= P 0(Y ∈ Ry|X ∈ Rx) log2
P 0(Y ∈ Ry|X ∈ Rx)

P 1(Y ∈ Ry|X ∈ Rx)
+ P 0(Y /∈ Ry|X ∈ Rx) log2

P 0(Y /∈ Ry|X ∈ Rx)

P 1(Y /∈ Ry|X ∈ Rx)
.

These quantities will be used in evaluating KL divergence under different distribution mod-

els.



72

5.3 Distributed Detection with Asynchronous Trans-

missions

5.3.1 Conditionally independent observations

For the parallel system, conditional independence between X and Y leads directly to con-

ditional independence between U and V as they are respectively independent functions of

X and Y . Therefore,

Qxy = max
Rx,Ry

D(P 0
UV ||P 1

UV ) (5.7)

= max
Rx

D(P 0
U ||P 1

U) + max
Ry

D(P 0
V ||P 1

V )

= dx(R
∗
x) + dy(R

∗
y). (5.8)

From Lemma 5.2.1, the optimal R∗x, R
∗
y are given by

R∗x = {x : LX(x) > τ ∗X}, (5.9)

R∗y = {y : LY (y) > τ ∗Y }, (5.10)

for some τ ∗X , τ
∗
Y .

For the model described in Fig. 1(b) where sensor 2 makes its own decision based on

both Y and U , it may appear that there is potential improvement in terms of KL divergence

as compared with the parallel case. In particular, it is apparent that the U and V are no

longer conditionally independent as V explicitly depends on U . We show, however, in

Proposition 2 that such an overhearing scheme does not improve the asymptotic detection

performance, i.e., it attains the same maximum KL divergence as with the parallel case.

Proposition 6. If (X, Y ) are conditionally independent, then Qxy = Q̃xy.
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Proof. Denote by Rc
x complement set of Rx,

Q̃xy = max
Rx,R0y ,R1y

D(P 0
UV ||P 1

UV ) (5.11)

= max
Rx,R0y ,R1y

[D(P 0
U ||P 1

U) +D(P 0
V |U ||P 1

V |U)]

= max
Rx,R0y ,R1y

[dx(Rx) + P 0(X ∈ Rx)dy|x(R0y, Rx) +

P 0(X ∈ Rc
x)dy|x(R1y, R

c
x)]. (5.12)

Note that for i ∈ {0, 1},

P i(Y ∈ R0y|X ∈ Rx) = P i(Y ∈ R0y),

P i(Y ∈ R1y|X ∈ Rc
x) = P i(Y ∈ R1y),

due to the conditional independence. From (5.5) and (5.6), we have

dy|x(R0y, Rx) = dy(R0y),

dy|x(R1y, R
c
x) = dy(R1y).

Therefore,

Q̃xy = max
Rx,R0y ,R1y

[dx(Rx) + P 0(X ∈ Rx)dy(R0y) + P 0(X ∈ Rc
x)dy(R1y)] (5.13)

≤ max
Rx

[dx(Rx) + P 0(X ∈ Rx)dy(R
∗
y) + P 0(X ∈ Rc

x)dy(R
∗
y)] (5.14)

= max
Rx

[dx(Rx) + dy(R
∗
y)] (5.15)

= Qxy. (5.16)

Combined with Q̃xy ≥ Qxy, we have Q̃xy = Qxy.

Remark 3. The above result can be generalized to k sensors with each having D > 2

quantization levels. The ith sensor takes as input its own observation and output of sensors
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1, 2, . . . , i− 1. The result also holds if we allow random quantizers for the same reason as

that of [44] for the centralized case.

The above result about the asymptotic performance is in contrast to that of fixed sample

size test where, as shown in the Appendix, the overhearing scheme may strictly outperform

the parallel system for conditionally independent observations.

5.3.2 Conditionally dependent observations

Consider the following example where both X and Y are ternary random variables with

sample space {1, 2, 3}. Let

A =


(1− ε)/9 (1 + ε)/9 1/9

(1 + ε)/9 (1− ε)/9 1/9

1/9 1/9 1/9

 ,

with 0 < |ε| ≤ 1, represent joint probability distribution of X and Y . The two hypotheses

under test are respectively

H0 : ε = ε0, H1 : ε = ε1.

Under each hypothesis, (X, Y ) are dependent of each other. Let (ε0, ε1) = (−1, d),

D(P 0
XY ||P 1

XY ) = 4/9− (4/9) log2(1− d) is an increasing function of d.

It is easy to show that local LR quantizers are degenerate (i.e., the output is a constant),

which can never achieve optimal KL divergence. To see this, we note that the marginal

distributions under H0 and H1 are identical to uniform distribution, hence marginal LR

is constant 1. The fact that local LR quantizer is no longer optimum for maximum KL

divergence is due to the conditional dependence between X and Y under each hypothesis.

For this discrete example, however, one can compute the maximum KL divergence for both

systems through exhaustive search. For example , for the parallel system, each quantizer

amounts to a mapping from the ternary alphabets to a binary one.
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The result is plotted in Fig. 5.2 where Qxy, Q̃xy are plotted together with the difference

of the two (scaled by a factor of 10) as a function of d. It is apparent from the figure

that strict improvement in asymptotic detection performance is possible when d exceeds a

certain threshold.
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Fig. 5.2: Comparision betweent Qxy and Q̃xy of conditionally dependent example in
Section 5.3.2.

5.4 Examples for fixed sample size test

We use two examples, one discrete, one continuous, to show that strict detection perfor-

mance improvement is possible for the overhearing scheme for the finite sample size test.

We use the receiver operating characteristic (ROC) curve for performance comparison. Bi-

nary quantizers are assumed throughout the examples. For independent observations under

each hypothesis, the optimal binary quantizers are local LR single threshold quantizers for

both parallel and overhearing systems [35].

5.4.1 A discrete example

LetX and Y be independent ternary random variables with identical sample space {1, 2, 3}.

The distributions of the pair under the two hypotheses are given in Tab. 5.1.
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1 2 3
P 0
X 0.73 0.02 0.25
P 0
Y 0.50 0.17 0.33

1 2 3
P 1
X 0.67 0.05 0.28
P 1
Y 0.75 0.12 0.13

Table 5.1: The distributions of X and Y .

Since X and Y are independent under each hypothesis, for fusion rules AND and

OR, we can get their respective ROC curves by exhausting all local binary LR quantiz-

ers. Fig. 5.3 shows ROC curves under fusion rules AND and OR. Similarly, the ROC curve

of the overhearing system can be attained via an exhaustive search. It turns out that for

this example, the overhearing scheme has a ROC curve that achieves the same detection

performance as the parallel system provided that the parallel system uses the better of the

two fusion rules, i.e., the ROC curve of the overhearing scheme is the same as the concave

envelope of the ROC curves for the parallel system with fusion center implementing AND

and OR rules.
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Fig. 5.3: The ROC curves for the discrete example.
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5.4.2 A continuous example

Consider the detection of the shift in the mean value of Gaussian observations where the

two hypotheses are specified by

H0 : (X,Y ) ∼ N(0, 0, 1, 1, 0), H1 : (X,Y ) ∼ N(a, b, 1, 1, 0).

The observations X and Y are independent under each hypothesis, hence, for the parallel

system, we only need to determine the optimal thresholds of local LR quantizers, which

are given in [35].

As for the overhearing system in Fig. 1(b), let t1 be the threshold for quantizer 1, t2i be

the threshold for quantizer 2 if the output of quantizer 1 is i, i ∈ {0, 1}. Define

α1 = Pr(u = 0|H = 1), α2
i = Pr(v = 0|u = i,H = 1),

β1 = Pr(u = 1|H = 0), β2
i = Pr(v = 1|u = i,H = 0),

which are all functions of (t1, t20, t
2
1). For a given false alarm probability Pf , we can get the

optimal (t1, t20, t
2
1) by solving the following nonlinear equations,

t20α
1

1− β1
=
t21(1− α1)

β1
=
t1(α2

0 − α2
1)

β2
1 − β2

0

, (5.17)

Pf = (1− β1)β2
0 + β1β2

1 . (5.18)

Eqs. (5.17) and (5.18) are derived using the Lagrange multiplier method similar to that

of the parallel case [35]. Fig. 5.4 shows the result of three ROC curves. The ROC curve

of overhearing system is strictly above the ROC curve of parallel system, the latter is the

concave envelope of ROC curves with FC implementing AND or OR. Notice that in this

case, the parallel system needs to use dependent randomization to achieve the detection
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Fig. 5.4: The ROC curves for the continuous example.

performance determined by the concave envelope of that using AND and OR fusion rules.

5.5 Summary

This chapter investigates a variation of the parallel fusion system: sensors may take ad-

vantage of the asynchronism by overhearing other sensors’ transmissions in the hope of

achieving a better detection performance. Using a two sensor system as an illustration, we

show that while overhearing may strictly outperform the classical parallel system for the

fixed sample size test, in the large sample regime there is no performance gain, as mea-

sured by the KL divergence achievable at the fusion center, provided that the observations

are conditionally independent. However, for conditionally dependent observations, it is

demonstrated that strict asymptotic detection performance improvement can be attained

through the overhearing scheme.
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

6.1 Conclusion

The probability space defined on discrete alphabets, is a compact subspace of the Euclidean

space. The distance metrics such as the KL divergence and the total variation are contin-

uous functions of distributions for the discrete case. However, if the probability space is

defined on continuous alphabets such as the real line, it becomes much more complicated.

Many distance metrics, most notably the KL divergence, become only lower semicontin-

uous. The consequence of such a lack of continuity is that many of the well established

results in hypothesis testing for the discrete case no longer applies to the continuous case.

This thesis makes progress toward bridging the gap on two of the hypothesis testing prob-

lems: the universal hypothesis testing and deviation detection.

In Chapter 2, we provided a robust version of the KL divergence, which is defined to be

the KL divergence between a distribution and the Lévy ball of a known distribution. This

robust KL divergence is shown to be continuous with respect to the weak convergence.

The use of Lévy metric in the robust KL divergence is due to the fact that the Lévy metric

is a true distance metric and is also the most general one: closeness in the Lévy metric

implies closeness in every other known metrics. In other words, a Lévy ball centered at a
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nominal distribution encompasses the largest set of probability distributions that are close

to the nominal distribution. Some of the important properties of the robust KL divergence

are identified as follows.

• The robust KL divergence of discretized distributions will converge to the robust KL

divergence of the original distributions as the quantization level increases.

• The robust KL divergence is defined as the infimum over the Lévy ball and the infi-

mum is attained by a distribution inside the Lévy ball.

• The robust KL divergence is continuous in the radius of the Lévy ball.

• The robust KL divergence is a convex function.

• The supremum of the robust KL divergence over a Lévy ball can be achieved by a dis-

tribution which is the combination of two distributions that correspond to the lower

bound and upper bound of the Lévy ball defined using the cumulative distribution

function.

• The robust KL divergence is bounded and the supremum is a function of the radius

of the Lévy ball and this bound is independent of the actual distributions that define

the KL divergence..

The robust KL divergence plays an important role in the robust universal hypothesis test-

ing and deviation detection. Specifically, the continuity property is much desired when

constructing robust detectors for those detection problems.

In Chapter 3, we examine the robust universal hypothesis testing and deviation detec-

tion, both of them can be considered special cases of the general framework of: robust

detection. For robust detection under the minimax NP criterion, we have shown that the

uncertainty sets under the two hypotheses should not to be arbitrarily close to each other

as measured by the Lévy metric. Otherwise, the detection problem becomes degenerate

with respect to the minimax NP criterion. This result is redundant for the discrete case, as
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the probability space is simple and the uncertainty sets under two hypotheses are usually

characterized by continuous functions. As such, disjoint sets, which is required in specify-

ing the uncertainty sets under the two hypotheses, are naturally separated in terms of the

Lévy metric. However, in the continuous case, this subtle requirement is often overlooked.

We illustrate such a situation using a moment constrained testing problem, and we demon-

strate that additional assumptions are needed on the moment constraints for the problem to

become meaningful in the continuous case.

The above observation led to a more sensible formulation of the two hypothesis testing

problems. Specifically, for the robust universal hypothesis testing, the two hypotheses are

characterized respectively by a proximity set of the nominal distribution, defined using the

Lévy ball, and an unknown distribution. In deviation detection, the binary hypotheses are

characterized by a proximity set and a deviation set of the nominal distribution, again, de-

fined using the Lévy metric. To be more concrete, we show that the classical KL divergence

is not a suitable metric in defining the proximity set for the hypothesis testing problems:

the closure of the surface of distributions that are of constant KL divergence to the nominal

distribution becomes the entire KL divergence ball.

The generalized empirical likelihood ratio test, of which the statistic is the robust KL

divergence between the empirical distribution and the proximity set defined using the Lévy

metric, is shown to be optimal under the asymptotic minimax NP criterion, for both robust

universal hypothesis testing and deviation detection. The key that makes the generalized

empirical likelihood ratio test optimal, is the continuity of the robust KL divergence. We

also demonstrate the advantages of the generalized empirical likelihood ratio test over the

existing approach in terms of its implementation..

In Chapter 4, the computation of the robust KL divergence between an empirical distri-

bution and a known Lévy ball is converted to a convex optimization problem which can be

readily solved using standard convex program. In addition, we have shown that with either

one of the two distributions known, the estimate of the robust KL divergence, which is
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constructed by directly substituting the empirical distribution for the unknown distribution,

converges almost surely to the true value.

In Chapter 5, we study a variation of the parallel fusion system: sensors may listen

to transmissions from other sensors before deciding what to transmit in order to improve

the inference performance. Using a two-sensor system as an illustration, we showed that

for conditionally independent observations, while overhearing may strictly outperform the

parallel system for the fixed sample size test, it provides no performance gain in the large

sample regime, as measured by the KL divergence obtained at the fusion center. For condi-

tionally dependent observations, however, overhearing can attain strict asymptotic perfor-

mance improvement.

6.2 Future Work

This thesis has made important contributions to the theory of robust hypotheses testing for

continuous valued observations. Our investigation also helps identify some challenging

research problems. We list two of the most important ones below.

1. If a distribution P0(t) is continuous in t, D(µ||BL(P0, δ0)) is shown to be continuous

in µ as well as in P0 with respect to the weak convergence. Therefore for µn
w−→ µ

and Pm
w−→ P0, we have

lim
n→∞

lim
m→∞

D(µn||BL(Pm, δ0)) = D(µ||BL(P0, δ0)). (6.1)

This convergence result, however, is not strong enough for the purpose of estimating

the robust KL divergence when both µ and P0 are unknown. In this case, the desired

one is the following,

lim
n,m→∞

D(µn||BL(Pm, δ0)) = D(µ||BL(P0, δ0)), (6.2)
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which is much stronger than (6.1). We conjecture that (6.2) is true. Two promising

approaches to proving (6.2) are as follows.

• Given P0(t) is continuous in t, establish that D(µ||BL(P0, δ0)) is uniformly

continuous in µ.

• Prove

lim
m→∞

lim
n→∞

D(µn||BL(Pm, δ0)) = D(µ||BL(P0, δ0)), (6.3)

then combine with equation (6.1), one can show that equation (6.2) holds. The

difficulty is that D(µn||BL(Pm, δ0)) does not converge to D(µ||BL(Pm, δ0))

as n → ∞, since Pm(t) may not be continuous in t. However, the con-

jecture that (6.2) holds is due to the following intuition. The difference be-

tween limn→∞D(µn||BL(Pm, δ0)) andD(µ||BL(Pm, δ0)) is proportional to the

largest jump of Pm(t). As Pm
w−→ P0 such jump diminishes since P0(t) is itself

continuous, therefore the difference diminishes as well, leading to our conjec-

ture that (6.3) holds.

If equation (6.2) is indeed true, then given the empirical distributions µ̂n and P̂m, the

estimate D(µ̂n||BL(P̂m, δ0)) will converge to D(µ||BL(P0, δ0)) almost surely.

2. Estimating the classical KL divergence is known to be difficult for the continuous

case. This thesis reveals that the KL divergence may vary arbitrarily with small

perturbation on the distributions. On the other hand, estimating the robust KL diver-

gence for the continuous case is quite straightforward, at least in the case when one

of the two distributions is known. Additionally, we have shown that the robust KL

divergence is a lower bound of the KL divergence. A more precise characterization

of the relation between the estimate of the KL divergence and that of the robust KL

divergence will be needed in order to shed light on the problem of estimating the
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classical KL divergence.
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