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Structure and dynamics of self-assembling colloidal monolayers in oscillating magnetic fields

Alison E. Koser, Nathan C. Keim, and Paulo E. Arratia*

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
(Received 18 July 2013; published 10 December 2013)

Many fascinating phenomena such as large-scale collective flows, enhanced fluid mixing, and pattern formation
have been observed in so-called active fluids, which are composed of particles that can absorb energy and dissipate
it into the fluid medium. For active particles immersed in liquids, fluid-mediated viscous stresses can play an
important role on the emergence of collective behavior. Here, we experimentally investigate their role in the
dynamics of self-assembling magnetically driven colloidal particles which can rapidly form organized hexagonal
structures. We find that viscous stresses reduce hexagonal ordering, generate smaller clusters, and significantly
decrease the rate of cluster formation, all while holding the system at constant number density. Furthermore, we
show that time and length scales of cluster formation depend on the Mason number (Mn), or ratio of viscous to
magnetic forces, scaling as t ∝ Mn and L ∝ Mn−1/2. Our results suggest that viscous stresses hinder collective
behavior in a self-assembling colloidal system.

DOI: 10.1103/PhysRevE.88.062304 PACS number(s): 83.80.Hj, 89.75.Fb, 47.57.−s, 47.65.−d

I. INTRODUCTION

Recently, there has been much interest in understanding the
flow behavior and dynamics of active fluids, which arise when
active or live particles are present in the fluid medium [1–3].
Active fluids differ from their passive counterparts in that the
particles have the ability to absorb or inject energy and to gen-
erate motion and mechanical stresses in a fluid medium. Impor-
tantly, these active particles can drive the system out of equi-
librium even in the absence of external forcing, as in the case of
bacterial suspensions [4–6]. Active fluids exhibit novel prop-
erties not seen in regular (passive) fluids such as large-scale
flows and collective motion on length scales much greater than
the particle dimensions [4–6], anomalous shear viscosity [7],
giant density fluctuations [8], and enhanced fluid mixing [9]. In
general, such particles interact in a plethora of ways including
simple contacts in vibrated monolayers of granular particles [8]
and long-range chemical signaling among cells [10]. Despite
the wide variety of interactions in active materials, they share a
striking similarity: the emergence of rich nonlinear, collective
behavior such as schooling [1], clustering [11,12], phase
segregation [13], and pattern formation [1,10,14].

The role of particle interactions in the emergence of
collective behavior, however, is not yet fully understood
[1–3]. In particular, fluid-mediated viscous stresses are known
to significantly alter the emergence of collective behavior
[4,11,15,16]. For instance, hydrodynamic interactions can
synchronize rotating paddles [17], order colloidal crystals
[16], and aggregate swimming sperm cells [11]. In the
case of suspensions of microorganisms, large-scale collective
flow manifests at sufficently high number densities but is
nonexistent in dilute suspensions, leading to the conjecture that
hydrodynamic interactions are the principal cause of collective
flow [4–6,12].

Experiments with microorganisms or other living systems,
however, can be sensitive to factors such as temperature or
chemical conditions, and the relative contribution of viscous
stresses specifically hydrodynamic interactions is typically a
function of number density and not an independent variable.

*Corresponding author: parratia@seas.upenn.edu

Furthermore, interactions and forcing among microogranisms
can be complex and difficult to quantify. Thus there is a need
for nonliving experimental models which can withstand large
variations of independent parameters for testing hypotheses
involving active fluids. Examples include vibrated granular
materials [8], synthetic photoactivated colloids [18], and
chemically reactive colloidal particles [19]. Another model
system is a suspension of paramagnetic particles which can
be activated via external magnetic fields and dynamically
self-assemble [20]. This is an interesting overdamped system
for exploring whether viscous stresses and hydrodynamic
interactions amplify or hinder the cluster formation process.

Paramagnetic and magnetic particles are known to exhibit
collective behavior. In steady or slowly rotating magnetic fields
such particles form chains, which align with the magnetic-field
lines [21–25]. If the field rotates too quickly, viscous drag
breaks apart the chains [21], and the particles can instead
form highly organized crystals [26–28]. However, previous
experiments have not yet explored the role of hydrodynamic
interactions in cluster formation.

In this manuscript, we investigate the role of fluid-mediated
viscous stresses on the structure and dynamics of self-
assembling paramagnetic particles. We find that such stresses
hinder the cluster formation process. In this active material,
viscous stresses, which are varied independently from density,
(1) reduce the hexagonal order of clusters, (2) decrease their
size, and (3) significantly slow down their rate of formation.

II. EXPERIMENTAL METHODS

Experiments are performed with a monolayer of spherical
paramagnetic particles suspended in water and activated by an
oscillating external magnetic field. The particles (Spherotech)
are 20.5 µm in diameter, stabilized with a carboxyl-group
coating, and have an effective magnetic susceptibility χ =
0.06 [29]. The monolayer is generated by confining an aqueous
suspension of the particles in a small cell, comprising PDMS
side walls and sealed above and below with glass slides. The
cell is 6 mm by 6 mm in area and 1 mm in height. Since the
particles are relatively large, gravity quickly settles them into
a monolayer at the bottom of the cell. The particles stay a few
nanometers above the glass surface due to the electrostatic
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FIG. 1. (Color online) (a) Experimental setup. Four computer-
controlled electromagnets create an oscillating magnetic field in the
plane of the particles. (b) Magnetic forces between two paramagnetic
particles in an external magnetic field. Each particle has a moment
vector µM in the direction of the applied magnetic field and one
moment vector µN along the axis connecting the centers of each
sphere.

repulsion between the carboxyl-group coating and the glass
surface [20]. Here, the area fraction φ is 0.42 ± 0.02. This area
fraction was chosen so that the monolayer is dense enough to
form clusters but still far below the jamming transition at 0.84.

To observe dynamical assembly, the particles are placed in
an oscillating magnetic field #H (t) generated by four computer-
controlled electromagnets, as shown in Fig. 1(a). Two of the
electromagnets supply a steady field of magnitude Hsteady. The
other two electromagnets, orthogonal to the first pair, supply
an alternating field, a sinusoidal wave of amplitude Halt and
held at a constant frequency f equal to 0.2 Hz. The combined
magnetic field can be written as

#H (t) = Hsteadyx̂ + Haltsin(ωt)ŷ, (1)

where ω = 2πf is the angular frequency.
We note that this experimental design is different from

previous experiments involving monolayers of dipolar parti-
cles in rotating electric or magnetic fields [20,23,27,28,30] in
the sense that one component of the magnetic field remains
steady. This introduces a new degree of freedom, the angle θ
through which the magnetic field sweeps, as sketched in Fig. 1.
The angle θ is defined by the ratio of the two field strengths,
θ = tan−1(Halt/Hsteady). In the limit of small Halt/Hsteady,
the field approaches the steady case in which the particles
form one-dimensional chains [23–25] and no two-dimensional
aggregates would form. Previous work has shown that the
breakup of chains and formation of clusters occurs when a
critical frequency [21,23] or a critical angle between the field
and the plane of the particles [20] is reached. Likewise, we
expect a critical angle for this new degree of freedom (θ )
which must also be exceeded for chains to break and particles
to cluster. Here, we wish to investigate the role of viscous
stresses in cluster formation. Therefore, we choose an angle
in which we observe clustering, θ = 75◦, and hold it fixed,
leaving the investigation of θ on the clustering mechanism for
later experiments.

Due to the paramagnetic nature of the particles, when placed
in the field #H , interparticle magnetic forces arise via induced
dipole moments µ in the particles. The dipole moment µ =
4/3πa3µ0χH is proportional to and aligns with the magnetic-
field lines. The dipole moment is dependent on the particle
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FIG. 2. (Color online) Formation of clusters with paramagnetic
particles. Snapshots of experiment conducted at Mn = 6.8 × 10−4

and φ = 0.41 during (a) its initial configuration, (b) after 40 cycles,
and (c) after 500 cycles. In (a), the arrow denotes the direction of
the aligning field Hsteady for all images shown in this paper. (d) The
corresponding pair-correlation functions g(r) for each snapshot. The
first three peaks of g(r) increase as the number of cycles increases.

radius a, the magnetic permeability of a vacuum µ0, and the
particle susceptibility χ . Two particles in the field experience
a dipole-dipole force due to the magnetic field generated by
each of their moments µ. This force is given by [22]

#Fmag = 3µ2

4πµ0r4
(3 cos2α − 1)r̂ + 3µ2

4πµ0r4
sin(2α)θ̂ , (2)

where r is the center-to-center distance between the particles
and α is the angle between #r and #H , shown in Fig. 1(b).

The relative contribution of the attractive magnetic forcing
fm ∼ µ0a

2χ2H 2 to the viscous drag fd ∼ ηav experienced
by the particle is usually described by the Mason number Mn,
defined as

Mn = 32ηω

µ0χ2H 2
, (3)

where ω is the frequency of the external magnetic field, η is
the viscosity of the fluid, and the velocity of the particles is
assumed to be aω. The prefactor 32 is derived from the torque
balance on a chain of particles [22] and is used here because
of the initial chain formation as seen in Fig. 2(a). For particles
to move and cluster, the magnetic forces on a particle must
overcome viscous drag, i.e., Mn < 1. The Mason number is
varied via the field strength H from 6.8 × 10−2 to 1.7 × 10−4.

III. RESULTS AND DISCUSSION

Initially, the particles are positioned within a steady
magnetic field. As has been previously shown [23–25], the
particles in a steady field form one-dimensional chains which
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FIG. 3. (Color online) (a)–(d) Sample snapshots of cluster formation as a function of Mason number (Mn). The arrow denotes the direction
of the aligning field Hsteady for all images shown in this paper. (e) Pair-correlation function g(r) after 500 cycles as a function of Mn. The
first four peaks increase as Mn is lowered from 1.7 × 10−2 to 1.7 × 10−4. (f),(g) The magnitude of the pair-correlation vector g(r,θ) for (f)
Mn = 1.7 × 10−2 and (g) Mn = 1.7 × 10−4. Note that viscous stresses are more relevant as Mn increases. The six peaks at r/2a = 1.0 indicate
hexagonal ordering when magnetic forcing is strongest.

align with the field. When the magnetic field begins to oscillate,
the particle configurations change over time (see Supplemental
Material [31]). The particles form clusters of a particular length
scale. This is illustrated in Figs. 2(a)–2(c) by snapshots after
0, 40, and 500 cycles of an experiment conducted at a single
Mason number, Mn = 6.8 × 10−2.

In order to gain further insight into the structure and
dynamics of the cluster formation process, the particles
are tracked individually for 500 cycles. We quantify these
observations as a function of time with the pair-correlation
function g(r). Figure 2(d) shows g(r) for each snapshot in
Figs. 2(a)–2(c). We find an increase in the first three peaks of
g(r) as the number of cycles increases. This is a result of the
particles gaining more neighbors and clustering over longer
length scales in comparison to their initial configuration.

Next, we vary the Mason number to study the role of
viscous stresses on the structure and dynamics of cluster
formation. The Mason number is adjusted via the magnetic
field H , defined by the root-mean-square strength of the
field | #H | [Eq. (1)], which ranges from 5 to 120 kA/m. As
Mn is decreased, we find the particles form increasingly
larger and more organized clusters (see Supplemental Material
[31]). This effect is illustrated in Fig. 3 which shows images
from experiments conducted at Mn = 1.7 × 10−2, 7.6 × 10−3,
6.8 × 10−4, and 1.7 × 10−4 after 500 cycles. At relatively
high Mn, as shown in Fig. 3(a), viscous forces dominate
and prevent particles from significant clustering and exhibiting
large-scale ordering. However, as Mn is decreased [Fig. 3(d)]
magnetic forces are relatively strong, and the particles form
more organized clusters. Furthermore, Figs. 3(a)–3(d) show
that the length scale of the clusters increases as Mn is lowered.

A. Viscous stresses reduce hexagonal structure

Figure 3(a) shows that when viscous stresses are most
significant, i.e., Mn = 1.7 × 10−2, very little clustering is
observed after 500 cycles. But as Mn decreases and viscous
stresses become less significant, the particles tend to form
larger crystals with nearest-neighbor hexagonal order. We
quantify this observation by computing the corresponding
pair-correlation functions g(r), as shown in Fig. 3(e), for
images in Figs. 3(a)–3(d). For highest Mn, there is only
two distinct peaks. But as Mn is decreased, four peaks
emerge, all increased in value, indicating a higher probability
of finding particles at increased distances from a reference
particle. This suggests that significant viscous stresses and
their corresponding hydrodynamic interactions reduce long-
range order.

The two-dimensional (2D) pair correlation g(r,θ ) shown
in Figs. 3(f) and 3(g) also reveals details about the material
structure. At low Mn, i.e., Mn = 1.7 × 10−4 [Fig. 3(g)], g(r,θ )
resembles a nearest-neighbor hexagonal structure with six
distinct peaks observed around r/2a = 1. There are deviations
from a hexagonal lattice structure, however. For instance,
the six peaks are not of constant magnitude nor are they
strictly 60◦ apart, in a way that may depend on our choice
of θ . The two highest peaks reflect the static field alignment.
In contrast, for the case of higher Mn (Mn = 1.7 × 10−2),
we do not observe the hexagonal pattern. The value at
r/2a = 1 is nearly uniform, and the extrema values are
lower than those presented for Mn = 1.7 × 10−4, indicating
a fewer average number of neighbors. These measurements
suggest that viscous stresses reduce the hexagonal order
of clusters.
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FIG. 4. (a) Coarse-grained density autocorrelation function at Mn = 1.7 × 10−4, 6.8 × 10−4, and 6.8 × 10−2. The minimum in the density
autocorrelation function, or the correlation length, shifts to the left as Mn is raised. (b) Correlation length versus Mn. The correlation length
decreases from 6.4 to 3.2 particle diameters as Mn increases, indicating smaller clusters when viscous stresses are significant. The dotted line
represents L ∝ Mn−1/2 scaling.

B. Viscous stresses result in smaller clusters

Our results so far show that the particles tend to form
much larger clusters at low Mn, when viscous stresses are
relatively weak. To quantify a correlation length scale that
reflects the size of the clusters, we consider a density-density
correlation function C(r). Since we are only interested in
which regions contain more or fewer particles, we consider
a density correlation function that is coarse grained at a length
scale above a particle diameter. To compute C(r), we first
measure a coarse-grained density field ρ with unit cells of
width 3a, where a is the radius of a particle. Then, the
autocorrelation function of ρ is calculated as

C(r) = 〈ρ(#r0)ρ(#r1)〉
〈ρ(#r0)〉2 , (4)

where ‖#r1 − #r0‖ = r and the brackets denote an average over
#r0 and #r1. Similar density-density correlation functions have
been used to characterize structure [32] and determine fractal
dimensions of colloidal aggregates [33].

Figure 4(a) show the values of C(r) as a function of
r/2a for Mn = 1.7 × 10−4, 6.8 × 10−4, and 6.8 × 10−2. The
data suggest that cluster formation leads to correlations
within a cluster and anticorrelations outside, corresponding
to a peak and minimum in C(r). At small r (or within a
cluster), the local densities are correlated and C(r) is relatively
high. As r increases and extends past the length scale of a
cluster, the curves decay and reach a minimum value. This
minimum corresponds to decreased correlations in regions in
between clusters where particle densities tend to be lower.
We take the distance at which this minimum occurs to be
the correlation length L of the clusters. At large r , C(r)
approaches a constant value, indicating a uniform density
correlation.

Figure 4(b) displays the correlation lengths L as a function
of Mn. We find that L decreases from 6.4 to 3.2 particle
diameters. These length scales are consistent with the cluster
sizes shown in Figs. 3(a)–3(d) and the trend indicates that

hydrodynamic interactions tend to decrease the size of a
cluster.

A series of theoretical and experimental studies have shown
that the length scales of colloidal chains in magnetic fields
scale as Mn−1/2 for 1D chains [21,34]; however, this has
not been measured for two-dimenional clusters. The one-
dimensional studies were conducted via chains of paramag-
netic particles in slowly rotating fields. As a magnetically
formed chain rotates through a fluid, viscous drag, which
depends on the length of the chain, acts to break it apart.
Petousis et al. showed there is a maximum length under
which a chain is stable for a given Mn which scales as
Mn−1/2 [21]. The unstable regime in which chains break
apart and form two-dimensional clusters has only recently
been explored [27,28,34]. Here, we present the correlation
length of two-dimensional clusters L as a function of Mn.
Figure 4(b) shows that the correlation length is consistent with
L ∝ Mn−1/2, as represented by the dotted line and which
matches previous studies of stable one-dimensional chain
lengths.

C. Viscous stresses slow clustering dynamics

To quantify the clustering dynamics, we measure the
average number of neighbors N over time t for a range of
Mason numbers. Neighbors are defined as particles whose
center-to-center distance is less than the distance at which the
first minimum in g(r) occurs. We use the average number
of neighbors N as a measure of dynamics instead of the
correlation length L since N can be measured at initial times
before a correlation length is apparent. Figure 5(a) shows that
the average number of neighbors increases over time for all
Mn; however, the rate at which it increases varies. In order to
determine a characteristic clustering time τ , we fit the data in
Fig. 5(a) to the form

N = N0 + (Nf − N0)(1 − e−t/τ ), (5)
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FIG. 5. (Color online) (a) Average number of neighbors as a function of time and Mn. (b) Time scale as a function of Mn. The clustering
time τ increases with Mn indicating that viscous stresses slow down the dynamics. (c) The final average number of neighbors versus Mn, which
also decreases with Mn.

where N0 and Nf are the initial average number of neighbors
and the final average number of neighbors, respectively.
Figures 5(b) and 5(c) show that the time scale τ increases
from 212 to 1290 s and the final number of neighbors Nf

decreases from 4.6 to 3.5. Thus increases in viscous stresses
(or increases in Mn) tend to increase the clustering time and
lower the hexagonal order farther from its limit of Nf = 6 at
the highest possible packing fraction.

Calderón and Melle [35] showed that the dynamics of
paramagnetic particles within rotating magnetic fields should
depend on a temporal scale ts ,

ts = Mn/ω, (6)

where ω is the angular frequency of the applied field. This
implies that for lower Mn (relatively stronger magnetic
forcing) the dimensionless time scale should decrease and
faster cluster formation is expected.

To illustrate this time scaling, Fig. 6 shows the average
number of neighbors versus a rescaled time, ωt/Mn. The data
aligns over four orders of magnitude. Note, we do not expect
perfect alignment. When the magnetic field is stronger, more
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FIG. 6. (Color online) Average number of neighbors versus
ωt/Mn. The data collapse over many decades in Mn, reinforcing
the time scaling t ∝ Mn also used in [35].

particles contribute to one-dimensional aggregates, raising the
initial number of neighbors. Furthermore, each curve deviates
at the end as a result of the saturation in final average number
of neighbors Nf . Despite these differences, there is still an
overall agreement in the trend of the master curve, consistent
with ts ∝ Mn/ω.

Previously, the clustering rate for magnetic particles in
a rotating magnetic field was measured for three different
frequencies by Wittbracht et al. [28]. The investigators found
that the clustering rate increased linearly with frequency, which
is also consistent with the scaling of Calderón and Melle
[Eq. (6)] [35]. Here, we have showed the validity of Eq. (6)
over a large range in Mason number, which should reflect many
other magnetorheological fluids with different geometries or
particles. We anticipate that the role of fluid-mediated viscous
stresses on the structure and dynamics presented here can be
extended to other active fluids.

IV. CONCLUSION

In this paper, we investigated the role of viscous stresses on
the structure and dynamics of cluster formation in monolayers
of paramagnetic particles subjected to an oscillating magnetic
field. When viscous forcing is relatively low, the particles form
large clusters with nearest-neighbor hexagonal ordering. But
as the role of viscous stresses and hydrodynamic interactions
increase, the structure becomes less ordered and the clusters
become smaller, their length scaling as L ∝ Mn−1/2. At
the same time, viscous stresses slow cluster formation. The
clustering time increases significantly from 212 to 1290 s as
Mn increases. This is consistent with the presence of a time
scale ts = Mn/ω, as shown by the collapse of the average
number of neighbors versus ωt/Mn, ranging over several
orders of magnitude. These results are in contrast to the con-
ventional view that viscous stress, in particular hydrodynamic
interactions, accelerates and/or causes collective behavior.
Furthermore, the role of viscous stresses in (1) reducing cluster
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size, (2) creating less order, and (3) slowing dynamics may
have significant impact on the collective behavior in other
active fluids, such as the clustering of E. coli bacteria [36],
aggregation of sperm cells [11], or synchronization of rotating
flagella [37].
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