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ABSTRACT

Parallel-topology inference networks consist of spatially-distributed sensing agents that

collect and transmit observations to a central node called the fusion center (FC), so that a

global inference is made regarding the phenomenon-of-interest (PoI). In this dissertation,

we address two types of statistical inference, namely binary-hypothesis testing and scalar-

parameter estimation in parallel-topology inference networks. We address three different

types of security threats in parallel-topology inference networks, namely Eavesdropping

(Data-Confidentiality), Byzantine (Data-Integrity) or Jamming (Data-Availability) attacks.

In an attempt to alleviate information leakage to the eavesdropper, we present optimal/near-

optimal binary quantizers under two different frameworks, namely differential secrecy

where the difference in performances between the FC and Eve is maximized, and con-

strained secrecy where FC’s performance is maximized in the presence of tolerable secrecy

constraints. We also propose near-optimal transmit-diversity mechanisms at the sensing

agents in detection networks in the presence of tolerable secrecy constraints. In the context

of distributed inference networks with M-ary quantized sensing data, we propose a novel

Byzantine attack model and find optimal attack strategies that minimize KL Divergence at

the FC in the presence of both ideal and non-ideal channels. Furthermore, we also propose

a novel deviation-based reputation scheme to detect Byzantine nodes in a distributed infer-

ence network. Finally, we investigate optimal jamming attacks in detection networks where

the jammer distributes its power across the sensing and the communication channels. We

also model the interaction between the jammer and a centralized detection network as a

complete-information zero-sum game. We find closed-form expressions for pure-strategy

Nash equilibria and show that both the players converge to these equilibria in a repeated

game. Finally, we show that the jammer finds no incentive to employ pure-strategy equilib-

ria, and causes greater impact on the network performance by employing mixed strategies.
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1

CHAPTER 1

INTRODUCTION

1.1 Inference Networks

Statistical inference has played a cardinal role in the growth of modern technology, and

is quintessential in almost every application when there is uncertainty within the collected

data. This demand for statistical inference has been bolstered by significant advancements

in the design of sensors and their networks over the past decade. In the context of clas-

sical inference, a single powerful sensing agent is designed /chosen to collect data and

make inferences about a phenomenon-of-interest (PoI). Such a sensor requires expensive

technologies to facilitate high-performance inference-tasks. Furthermore, other practical

difficulties such as PoI-shadowing and short battery life can severely degrade the inference

performance. Therefore, inference networks have been proposed where several low-cost

sensing agents are installed to collect data in a spatially distributed manner. Although these

distributed sensing agents are inexpensive and have limited computational, bandwidth and

energy resources, a significant number of such spatially-distributed low-cost agents collab-

orate and share resources and processing effort to achieve a prescribed performance. In

order to make inference networks practically viable, several researchers had pursued ex-

tensive work in the design and analysis of these networks under different scenarios and
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(a) E-Health Networks (b) Crowd-Sensing

(c) Agricultural Sensor Networks (d) Radar Networks

Figure 1.1: Inference Network Applications

applications (See [1, 9, 11, 12, 14, 15, 47, 60, 61, 64, 65, 69] and references therein). To-

day, inference networks span over a broad range of applications such as distributed radar

surveillance in the military domain, traffic-control networks, agricultural sensor networks

and disaster-monitoring in the commercial cyber-physical domain and, various other appli-

cations in stock markets, crowdsensing, smart-homes and wearable body sensors to facili-

tate e-health, as pointed out in Figure 1.1.

As shown in Figure 1.2, there are fundamentally two types of inference networks de-
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Inference Networks

With Fusion Center Without Fusion Center

Parallel
Topology
Networks

Serial
Topology
Networks

Tree/Hierarchical
Topology
Networks

Other
Network
Topologies

Centralized
Inference

Distributed
Inference

Figure 1.2: Topological Configurations of Inference Networks

pending on the presence/absence of a central node called the fusion center (FC), where a

global inference is made regarding the PoI [69]. Furthermore, inference networks with the

FC can be configured in different topologies based on their application needs. In parallel-

topology inference networks, sensing agents collect and transmit either processed/unprocessed

observations to the FC. In general, parallel-topology inference networks can be classified

into two types, namely centralized and distributed inference networks, based on how the

information is processed in the network. In a centralized inference network, the sensing

agents transmit unprocessed observations to the FC using an amplify-and-forward strategy.

The term centralized indicates that the data is only processed centrally at the FC. On the

other hand, in a distributed inference network, sensing agents compress observations into

a finite alphabet set and transmit compressed symbols to the FC. Due to the transmission

of a finite alphabet set, the bandwidth requirement for the distributed inference network is

significantly reduced at the expense of a minimal deterioration in inference performance.
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Note that the parallel-topology inference network is an umbrella term used to label net-

works where sensors can communicate to the FC either over dedicated channels, multiple-

access channels, or communication webs (internet) [65]. In contrast, serial-topology in-

ference networks comprise of spatially distributed sensing agents that collaborate together

in a linear hop-by-hop manner, in relaying their observations to the FC. Such networks

are found in special applications such as vehicular networks where the sensors are aligned

along the road. Other topological configurations that have been studied extensively, range

from tree networks [58, 59] to collaborative inference networks [23, 32, 33] where sensors

collaborate with each other in order to alleviate transmission costs. In some practical appli-

cations where the infrastructure cost is very high, inference networks are designed without

an FC. In such cases, each sensing agent shares processed/unprocessed observations with

the neighboring nodes in an ad-hoc manner, and makes a global inference based on the

information shared over several iterations.

In this dissertation, we focus on parallel-topology inference networks that are designed

to address two fundamental statistical inference problems, namely binary hypothesis-testing

and scalar parameter estimation. In the case of binary hypothesis-testing, the goal is to de-

tect the presence or absence of a given phenomenon-of-interest (PoI). On the other hand, in

the case of scalar parameter estimation, the goal is to estimate a scalar parameter regarding

the PoI. We analyze the vulnerabilities of a parallel-topology inference network, and design

them under three different types of security threats, namely eavesdropping, Byzantine and

jamming attacks. These attacks are discussed in greater detail in Section 1.2.

In the following subsection, we present our basic system model for the inference net-

work, and introduce some notation to label the signals and decisions made at both the local

sensing agents as well as the FC. Depending on the need, we may further introduce more

notation in the future chapters.
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Fusion Center

(θ̂ ∈ Θ)

Sensor-1
(u1)

Phenomenon

(θ ∈ Θ)

r1 r2 rN

Sensor-2
(u2)

Sensor-N
(uN)

Figure 1.3: Parallel-Topology Inference Network Model

1.1.1 Notations and System Model

Consider a parallel-topology inference network with N sensing agents which sense a given

PoI, as shown in Figure 1.3. Let θ ∈ Θ denote the parameter representing the PoI’s state,

where Θ is the set of all possible states of the PoI. For example, in the case of binary

hypothesis-testing, Θ , {0, 1}. Similarly, in the case of scalar parameter estimation,

Θ , R. Since there are two types of channels in any given inference network that a given

sensor encounters, we resolve this confusion by labeling these two channels as follows. We

refer to the channel between the PoI and the sensor as a sensing channel, and the channel

between the sensor and the FC as a communication channel.
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In this dissertation, we use regular and bold symbols to denote scalar and vector quanti-

ties respectively. For example, we denote the received signal (observation) at the ith sensing

agent as ri. In the case where the ith sensing agent collects a scalar observation, we denote

it as ri. For the sake of generality, we will use the bold notation to denote various quantities,

unless otherwise stated.

We assume the following signal received at the ith sensing agent over its sensing chan-

nel:

ri = f i(θ) + ni, (1.1)

where f i(·) is a known, deterministic and invertible function for all i = 1, · · · , N , and ni

is a zero-mean additive-white Gaussian noise with covariance matrix Σs. Having acquired

the symbol ri, the ith sensing agent processes (amplifies or compresses) it into a symbol ui

before relaying it to a central node called the fusion center (FC).

We consider two different types of communication channels in this dissertation. In the

first type, we assume that the communication channel is discrete and memoryless, in which

case, we denote the received symbol from the ith sensing agent as vi. In the second type

of communication channels, we assume that the FC receives a real-valued signal which

is denoted as rfcj at the jth receiving antenna (or, channel use). Based on the received

messages, FC makes a global inference θ̂ regarding the state of the PoI.

1.2 Security Threats in Inference Networks

Due to its wide range of applications and technological impact, vulnerabilities in the design

of inference networks pose a very significant problem that ought to be addressed with great

concern. Moreover, new security threats are discovered every day to bring down various

networks, particularly in the context of cyber-physical systems. Although many traditional

approaches have been proposed to address security, they also demand large amounts of

resources such as computational power and latency. In addition, most of these approaches
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Figure 1.4: Security Framework

rely on mathematical conjectures that assume the absence of any computationally tractable

algorithm to crack them.

On the other hand, most inference networks consist of sensing agents with limited

computational and bandwidth resources. Therefore, the design of secure inference net-

works demands novel techniques that protect the network using provably simple designs

and computationally tractable algorithms. Initial attempts in this direction were made in

the last decade by [24, 48, 49], which were mainly inspired by traditional security designs.

As the security threats have evolved to be more powerful and directed specifically towards

inference networks, there is an immediate need for system-level approaches to either pre-

vent or mitigate these security threats from deteriorating the inference performance of the

network. In the remaining section, we present a basic framework for security in order to

broadly classify the attacker’s endeavor, which has been discussed extensively in the tradi-

tional security literature.

Security threats have been traditionally classified into three types, based on the system

aspects threatened by attackers: Confidentiality, Integrity and Availability (in short, CIA).

In this dissertation, we follow the same taxonomy to discuss security threat models in
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inference networks. Note that the above CIA framework for security can be configured to

address different services in networking such as node identities, node location and data. In

this dissertation, we investigate the decision-theoretic aspects of the CIA framework, where

the attacker is assumed to interfere with various aspects of data flowing in the network. In

the remaining section, we describe briefly how these security threats classified under the

decision-theoretic CIA framework impact the inference performance.

• Data Confidentiality: Data confidentiality broadly addresses the problem of data ex-

filtration from the inference network to an unauthorized, third-party entity. There are

several approaches that the attacker can employ, in order to extract any given infor-

mation from the inference network. All of these approaches can be broadly classified

into two types. In the first type, the attacker gains access to the data repositories of

a given entity within the inference network, and extracts private information. This

attack model is traditionally labeled as a threat on the privacy of data, and various

solutions have been proposed to stall any unauthorized data access in the inference

network. In the second approach, the attacker extracts useful information by eaves-

dropping the transmitted information via wiretapping the communication channels

between the sensing agents and the FC. This attack model is labeled as a threat to the

secrecy of data in an inference network, and the readers can refer to [22] for a survey

on state-of-the-art solutions to this security threat.

• Data Integrity: Data integrity in inference networks refers to the authenticity of data

in terms of its accuracy in value. Such discrepancies in data can be achieved by the

attacker by either creating false identities through network infiltration, or by compro-

mising and enslaving an existing sensing agent within the inference network. In the

context of data accuracy, the attacker injects falsified sensing data into the network

either to randomize the global inference, or to manipulate it in a specific manner.

For more details on how data-falsification attacks with the intent of randomizing the

global inference (labeled as Byzantine attacks) are mitigated, the readers may refer to
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some of the solution approaches in [68]. On the other hand, one may find instances

of data falsification attacks with the intent of manipulating the global inference in

a specific manner in the case of spectrum sensing in cognitive-radio (CR) networks

where CR agents compete for vacant spectrum.

• Data Availability: Data availability in inference networks points out to security at-

tacks where data is made unavailable at any entity in the inference network. In the

case of attacks which introduce temporal inconsistencies in data acquisition or trans-

mission, there is a latency in the inference mechanism, thus resulting in untimely

decisions. Another attack that falls into this category is the case where the attacker

scrambles the identities of the sensing agents, in which case, the inference perfor-

mance at the FC deteriorates significantly. Among all the attacks within the context

of data availability, jamming attacks are extensively studied by several researchers. In

this attack model, the jammer introduces disruptive interference in either the sensing

channel, the communication channels, or both, in order to deteriorate the inference

performance of the network.

In the real world, more complex threats can be found where the attackers adopt hybrid

models to maximally disrupt the operation of the inference network. For example, a smart

jammer may first eavesdrop the channel and use this information to optimize its jamming

strategy in order to cause maximal impact on the performance of the inference network.

This dissertation attempts to understand the design limitations in the context of three sim-

ple attack models, and provides a basic foundation for the future design and analysis of

inference networks in the presence of complex, real-world attackers. In the remaining part

of this chapter, we summarize the contributions of this dissertation.
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1.3 Major Contributions

As pointed out in the earlier section, inference networks suffer from a wide variety of se-

curity threats. Since these security threats are driven by various motives, there is a demand

for a unique design for securing inference networks from each of these security threats.

Therefore, we design secure inference networks in the presence of three attack models,

namely eavesdropping, Byzantine and jamming attacks, each of which is derived from one

of the three issues within the CIA framework. We throw light on fundamental design-limits

and simple mitigation techniques for inference networks under each of these attack models.

In the remainder of this section, we summarize the contributions of this dissertation in the

aforementioned attack scenarios.

Eavesdropping Attack

In this dissertation, we address data confidentiality in inference networks within the context

of secrecy threats, by considering the problem of an eavesdropping attack in detection

(binary hypothesis testing) networks. In the past, a few attempts have been made to address

the problem of eavesdropping threats by designing stochastic ciphers at the sensing agents

[3, 20, 41]. In contrast, Marano et al. had designed optimal decision rules for a censoring

sensor network in the presence of eavesdroppers in [36], where they had assumed that Eve

can only determine whether an individual sensor transmits its decision or not.

In this dissertation, we consider a more realistic scenario where Eve can extract more

information than just merely determining the presence or absence of transmission, and

hence can make a reasonably good decision regarding the PoI, based on its receptions. In

the case of distributed detection networks [J1, C1], we consider the problem of design-

ing binary quantizers at the local sensing agents in the presence of a tolerable constraint

on eavesdropper’s inference performance. In Chapter 2, we design optimal binary quan-

tizers in a detection network where all the sensing agents are conditionally independent
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and identically distributed (i.i.d.) under the true hypothesis. Furthermore, due to the in-

tractable nature of the design of a general detection network with non-identical sensing

agents, we propose an efficient design for the local quantizers using a greedy algorithm.

On the other hand, in the case of centralized detection networks [C2], we propose a near-

optimal transmit diversity mechanism at the sensing agents in Chapter 3, in order to maxi-

mize the detection performance at the FC while constraining the detection performance at

the eavesdropper.

Byzantine Attack

In our attempt to address the issue of data integrity, we consider the problem of Byzantine

attacks in distributed inference networks. In the past, several efforts have been made to

address the problem of Byzantine attacks in distributed inference networks with different

topologies, especially when the sensors employ binary quantization to compress their ob-

servations. Byzantine attacks on centralized inference networks have been addressed in the

context of smart grids in [26]. For a detailed survey on related works on inference networks

in the presence of Byzantine attacks, the reader may refer to the survey by Vempaty et al.,

in [68].

In this dissertation, we investigate the problem of distributed inference with M-ary

quantized data at the sensors in the presence of Byzantine attacks in Chapter 4. We propose

a general attack model where the Byzantine nodes modify the original quantized message

into another symbol within the quantization alphabet-set using a probability distribution.

In the presence of noiseless communication channels, we show that the optimal Byzan-

tine attack deteriorates drastically in terms of the blinding fraction of Byzantine nodes,

as the quantization alphabet size increases. We also deduce the optimal Byzantine attack

in the presence of discrete memoryless channels between the sensors and the FC. In the

case where the Byzantine attack cannot afford to launch an optimal attack, we find an at-

tack from a restricted space of highly-symmetric attack strategies, that maximally degrades
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the performance of the inference network in the presence of resource-constrained Byzan-

tine attacks. Furthermore, a reputation-based scheme for identifying Byzantine nodes is

also presented as the network’s strategy to mitigate the impact of Byzantine threats on the

inference performance. We also provide asymptotic analysis to find the optimal reputation-

based scheme as a function of the fraction of compromised nodes in the network.

Jamming Attack

Within the context of data-availability, we consider the problem of jamming attacks on

inference networks which intentionally disrupt both the sensing and the communication

channels simultaneously by introducing interference. In the past, several attempts have

been made to address and mitigate jamming threats in inference networks. For more details,

the reader may refer to [39, 75] and references therein. In this dissertation, we consider

a novel decision-theoretic approach within the context of detection networks where the

jammer optimizes its attack strategy so as to minimize the detection performance of the

network.

In Chapter 5, we consider the problem of finding the optimal jamming attack in a sim-

ple detection network where there is only one sensing agent, for the sake of illustration.

Furthermore, we also assume that all the entities (PoI, sensing agent, FC and the jammer)

lie on a straight line. The goal of the jammer is to distribute its power between the sens-

ing and the communication channels in such a way that the error probability at the FC is

maximized. Since the problem is non-convex and intractable, we investigate the optimal

solution numerically and illustrate the results for different example scenarios. On the other

hand, in Chapter 6, we model a zero-sum game between a centralized detection network

and the jammer, and investigate Nash equilibria. In particular, we find closed-form expres-

sions for a family of pure-strategy Nash equilibria, and also show that the jammer has no

incentive to employ any of these pure-strategy equilibria in a complete-information game

under strict power constraints.
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CHAPTER 2

SECRECY IN DISTRIBUTED DETECTION:

DESIGN OF BINARY QUANTIZERS

Secrecy in the context of distributed detection networks is an important problem, espe-

cially when the network is a sub-system within a larger cyber-physical system. Following

are some examples where confidentiality plays a very important role in the context of dis-

tributed inference. First, consider the example of a distributed radar network where the

radars observe the presence or absence of an enemy aircraft. Any information about the

radar decisions at the enemy aircraft can help it to adapt its strategy so as to remain invisi-

ble to the radar and in clandestine pursuit of its mission. Another example is the case of a

cognitive-radio (CR) network where an eavesdropper may be able to use a given vacant PU

channel, without paying any participation costs to the network moderator. Thus, selfishness

and maliciousness can be two motives of any eavesdropper to compromise the confiden-

tiality of any inference network. In this chapter, we address confidentiality in distributed

detection networks and focus on the design of the network such that the eavesdropper may

not acquire any information beyond tolerable limits.

In this chapter, we consider a distributed detection network in the presence of noisy

channels between the sensors and the FC, as well as those between the sensors and the
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Eve, whose transition probabilities are known to the network designer. We address the no-

tion of secrecy in two different frameworks, namely differential secrecy and constrained

secrecy. In Section 2.4, we address the framework of differential secrecy by designing

optimal binary quantizers at the sensors that maximize the difference between the KL Di-

vergences at FC and Eve. We show that the structure of the optimal sensor quantizers are

either likelihood ratio test (LRT) based, or uninformative depending on the quality of the

Eve’s channels. On the other hand, in Section 2.5, we address the framework of constrained

secrecy where we design optimal binary sensor quantizers that maximize KL Divergence

at the FC while constraining the Eve’s KL Divergence to a prescribed tolerance level. We

consider two scenarios, one where the channels between the sensors and the FC (likewise,

channels between sensors and the Eve) are modeled as identical binary symmetric chan-

nels (BSCs), and the second where the channels are modeled as non-identical BSCs. In

Section 2.5.1, we consider the identical channel scenario, where we show that the structure

of the optimal quantizer at the local sensors is a likelihood ratio test (LRT). We present

an illustrative example where we assume that the sensors make noisy observations of a

known deterministic signal. We present an algorithm to find the optimal threshold so as

to maximize the KL Divergence at the FC while ensuring that the Eve’s KL Divergence

remains within tolerable limits. In Section 2.5.2, we consider the scenario where channels

are non-identical, where we decompose the problem into N subproblems to be solved se-

quentially using dynamic programming. Consequently, we decouple the Eve’s constraint

into N individual constraints, thus allowing us to solve each of these decoupled problems

as in the identical sensor case.

2.1 Literature Survey

In the past, a few attempts have been made to address the problem of eavesdropping threats

by designing ciphers in the broader context of sensor networks. For example, Aysal et al.
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in [3] investigated the problem of secure distributed estimation by incorporating a stochas-

tic cipher in the existing sensor networks to improve secrecy. They showed a significant

deterioration in Eve’s performance (in terms of bias and mean squared error) at the cost

of a marginal increase in the estimation variance at the FC. A similar attempt has been

made in the context of distributed detection in sensor networks by Nadendla in [41], where

the author presented an optimal network (sensor quantizers, flipping probabilities in the

stochastic cipher and the fusion rule) that minimizes the error probability at the FC in the

presence of a constraint on Eve’s error probability. In [20], Jeon et al. proposed a coop-

erative transmission scheme for a sensor network where the sensors are partitioned into

non-flipping, flipping and dormant sets, based on the thresholds dictated by the FC. The

non-flipping set of sensors quantize the sensed data and transmit them to the FC, while the

flipping sensors transmit flipped decisions in order to confuse the Eve. The sensors within

the dormant set sleep, in order to conserve energy and we have an energy-efficient sensor

network with longer lifetime.

In all of the above attempts, security in distributed detection systems was incorporated

as an afterthought in that separate security blocks were added after the original system had

been designed without considering the possible security threats. Marano et al. in [36], on

the other hand, investigated the problem of designing optimal decision rules for a censoring

sensor network in the presence of eavesdroppers. Although their framework of censoring

sensor networks is more general, they assume that the Eve can only determine whether an

individual sensor transmits its decision or not. In reality, Eve can extract more information

than just merely determining the presence or absence of transmission, and hence can make

a reasonably good decision regarding the PoI, based on its receptions. Therefore, in this

chapter, we assume that the Eve is also interested in making similar inferences regarding

the PoI, just as in the case of FC.
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Figure 2.1: Distributed Inference Network in the Presence of an Eavesdropper

2.2 System Model

Consider a binary-hypothesis testing problem for distributed detection with N sensors un-

der the Neyman Pearson framework, as shown in Figure 2.1. Let ri = {ri,t : t = 1, · · · , T}

denote a sequence of i.i.d. observations (in time) acquired by the ith sensor over T time

periods. Furthermore, we also assume that these observations ri are independent across

sensors, i.e., for i = 1, · · · , N , but do not necessarily have identical distributions at differ-

ent sensors. Let H0 and H1 denote the null and the alternate hypotheses respectively. We

denote the conditional probability density functions of ri,t under hypotheses H0 and H1 as
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pi,0(r) = p(ri,t = r|H0) and pi,1(r) = p(ri,t = r|H1) respectively. In this chapter, for all

i = 1, · · · , N , we assume that the ith sensor employs binary quantization to compress its

observation ri,t into ui,t, as defined below, using a decision rule γi(·).

ui,t = γi(ri,t) =





1, where Λ(ri,t) ≥ λi

0, otherwise.
(2.1)

where Λ(ri,t) is a test-statistic and λi is a suitable threshold to be designed.

Let xi = P (ui,t = 1|H0) and yi = P (ui,t = 1|H1) denote the false-alarm and detection

probabilities at the ith sensor respectively. The pair (xi, yi) is traditionally referred to, as

the operating point of the ith sensor, which can lie anywhere on the compact1 unit-square

U = [0, 1]2, which we call the ROC space. For any fixed test-statistic Λ(·), when the

threshold λi is varied, the operating point of the ith sensor follows a curve yi = gΛ(xi).

This curve yi = gΛ(xi) is traditionally known as the ROC curve. In the rest of the chapter,

we use the operating point (xi, yi) to represent the quantizer rule γi employed at the ith

sensor. Two quantizers γ1 and γ2 are considered identical (equivalent), if their operating

points (x1, y1) and (x2, y2) are the same.

Let Γi denote the set of all feasible2 operating points (xi, yi) at the ith sensor. Then, the

region Γi in the ROC space is upper-bounded by the set of operating points corresponding

to the likelihood ratio tests (LRTs). We call this boundary as the LRT curve, and denote

it as yi = gLRTi(xi). Furthermore, we restrict our analysis only to those operating points

that lie above the line yi = xi in the ROC plane. This is because any point below the line

yi = xi contributes negatively to the overall performance in terms of error probability at

the FC. In summary, the region Γi in the ROC space is upper-bounded by the LRT curve

yi = gLRTi(xi), and lower-bounded by the line yi = xi.

1In this context, compactness of the unit-square corresponds to the inclusion of the boundary points (0,0),
(0,1), (1,0) and (1,1) within the set itself.

2The feasibility of an operating point is primarily dictated by the quality of the sensing observations. Note
that the size of Γi diminishes as the sensor observations get corrupted due to multipath fading and/or thermal
noise.
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Note that the operating points (0, 0) and (1, 1) are the extreme points on the lower

boundary yi = xi. These operating points (0, 0) and (1, 1) are achieved by always deciding

ui,t = 0 and ui,t = 1 respectively. Since any operating point that lie on the line yi = xi can

be achieved via randomizing between the two operating points (0, 0) and (1, 1) (or, equiv-

alently the corresponding quantizer rules), we refer to this boundary as the uninformative

boundary (and, the corresponding quantizer rules and operating points as uninformative

rules and points respectively), since these rules do not depend on sensor observations.

Given the operating point (xi, yi), the Kullback-Leibler (KL) Divergence of the ith

sensor is defined as follows.

Di = xi log
xi
yi

+ (1− xi) log
1− xi
1− yi

(2.2)

Let Υ = {0, 1}N denote theN -dimensional space of compressed symbolsut = {u1,t, · · · , uN,t}

at all the sensors at a given time t. In this chapter, we assume that the ith sensor transmits its

compressed symbols ui,t to the FC through a binary-symmetric channel (BSC) with transi-

tion probability ρfci . In our model, we also assume that an eavesdropper wiretaps each of

these sensor transmissions through a BSC with transition probability ρei .

If vi = {v1,t, · · · , vN,t} and wi = {w1,t, · · · , wN,t} denote the received symbols at the

FC and Eve respectively, the operating point (xi, yi) at the ith sensor gets transformed into

(xfci , yfci) and (xei , yei) at the FC and Eve respectively, which are given as follows.

xfci = P (vi,t = 1|H0) = ρfci + (1− 2ρfci)xi (2.3a)

yfci = P (vi,t = 1|H1) = ρfci + (1− 2ρfci)yi (2.3b)

xei = P (wi,t = 1|H0) = ρei + (1− 2ρei)xi (2.3c)

yei = P (wi,t = 1|H1) = ρei + (1− 2ρei)yi (2.3d)
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Let the contributions of the ith sensor to the overall KL Divergence at the FC and Eve

be denoted as DFCi
and DEi

respectively. Then, DFCi
and DEi

are defined as follows.

DFCi
= xfci log

(
xfci
yfci

)
+ (1− xfci) log

(
1− xfci
1− yfci

)

DEi
= xei log

(
xei
yei

)
+ (1− xei) log

(
1− xei
1− yei

)
.

(2.4)

Let A FC
T ,A E

T ∈ ΥT denote the acceptance regions of the hypothesis H1 at FC and

Eve respectively, over a time-window t = 1, · · · , T . Then, the global probabilities of false

alarm and miss at the FC and Eve are given by

pFCT = Pr(vi ∈ A FC
T |H0), qFCT = Pr(vi ∈ A

FC

T |H1).

pET = Pr(wi ∈ A E
T |H0), qET = Pr(wi ∈ A

E

T |H1).

(2.5)

where A
FC

T and A
E

T are the rejection regions of the hypothesis H1 at the FC and Eve re-

spectively, and, vi = {vi,1, · · · , vi,T} and wi = {wi,1, · · · , wi,T} are the received symbols

at the FC and Eve respectively, transmitted by the ith sensor over a time window of length

T . Next, we present Stein’s Lemma that addresses the asymptotic properties of the global

probability of miss qFCT .

Lemma 2.1 (Stein’s Lemma [16]). For any 0 < δ, ϕ < 1
2
, let qFCT,δ = min

pFC
T <δ

qFCT and

qET,ϕ = min
pET<ϕ

qET . Then, we have

lim
δ→0

lim
T→∞

− 1

T
log qFCT,δ = DFC

lim
ϕ→0

lim
T→∞

− 1

T
log qET,ϕ = DE

(2.6)

where DFC and DE are the KL divergences at the FC and Eve respectively, which are
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defined as follows.

DFC =
N∑

i=1

DFCi
and DE =

N∑

i=1

DEi
. (2.7)

Thus, KL Divergence is the error exponent for the global probability of miss when

the global probability of false alarm is constrained (and diminishing to zero with time).

Therefore, as a surrogate to the global probability of miss, we choose KL Divergence as

the performance metric in this chapter. Note that DFC and DE are both convex functions

of x = {x1, · · · , xN} and y = {y1, · · · , yN} in the hyper-cube [0, 1]N , which is made up

of the ROC spaces of all the sensors in the detection network.

2.3 Linear Transformations in ROC Space

In this section, we focus our attention on the transformation of the operating point of a

single sensor due to the presence of a binary symmetric channel (BSC) between a given

sensor and both the FC, as well as between the same sensor and Eve. Let the operating

point of a given quantizer be A = (x, y). As mentioned earlier, the sensor’s quantizer

characteristics (x, y) are represented using its operating point in the sensor’s ROC. Also,

consider two BSCs with transition probabilities ρ1 and ρ2, each of which transforms the

operating point A = (x, y) into B1 = (x1, y1) and B2 = (x2, y2). Let C =
(

1
2
, 1

2

)
. In the

following lemma, we present a useful relationship between A, B1, B2 and C.

Lemma 2.2. Let 0 ≤ ρ1 ≤ ρ2 ≤ 1
2
. Then, B1 and B2 always lie on the line segment joining

A and C. In addition, the following inequality holds true.

x

y
≤ x1

y1

≤ x2

y2

≤ 1 ≤ 1− x2

1− y2

≤ 1− x1

1− y1

≤ 1− x
1− y (2.8)

Proof. Consider a BSC with transition probability ρ, which transforms the operating point
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A = (x, y) into B = (x̂, ŷ). Then, the equation of the line joining A and B is given by

b− y
a− x =

b− ŷ
a− x̂ (2.9)

where (a, b) is some arbitrary point on the line.

Substituting x̂ = ρ+ (1− 2ρ)x and ŷ = ρ+ (1− 2ρ)y, we have

b− y
a− x =

b− ρ− (1− 2ρ)y

a− ρ− (1− 2ρ)x
. (2.10)

Rearranging the terms in Equation (2.10), we have

(b− y)[a− ρ− (1− 2ρ)x] = (a− x)[b− ρ− (1− 2ρ)y]. (2.11)

Simplifying Equation (2.11), we have

(a− b) + (y − x) = 2(ay − bx). (2.12)

Note that the line a = b represents the set of operating points for which the KL Diver-

gence becomes zero. Therefore, let us investigate the point where Equation (2.9) intersects

the line a = b. Substituting b = a, we have

(2a− 1)(y − x) = 0.

In other words, the line in Equation (2.9) intersects line a = b = 1
2

for any transition

probability ρ. In other words, the points A, B1, B2 and C are collinear.

In fact, as ρ → 1
2
, B → C. In other words, for a given sensor’s operating point A,

the transformed operating point B slides along the line segment joining A and C. This

sliding behavior can be investigated by analyzing the distance between B and C, in terms

of increasing ρ, as shown in Figure 2.2. We denote the Euclidian distance between B and
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C =
(
1
2
, 1
2

)

B2 = (x2, y2)

B1 = (x1, y1)

A = (x, y)
Slope = y

x

Slope = 1−y
1−x

Slope = y1

x1

Slope = 1−y1

1−x1

Slope = y2

x2

Slope = 1−y2

1−x2

(0, 0)

(1, 1)

Figure 2.2: Transformations in the ROC

C as φBC =
√(

x̂− 1
2

)2
+
(
ŷ − 1

2

)2. Differentiating φBC with respect to ρ, we have

dφBC
dρ

=
1

φBC

[(
x̂− 1

2

)
(1− 2x) +

(
ŷ − 1

2

)
(1− 2y)

]

=
−1 + ρ+ (1− 2ρ)[x(1− x) + y(1− y)]

φBC

= −
(
ρ+ (1− 2ρ)[1− x(1− x)− y(1− y)]

φBC

)

≤ 0,

(2.13)

since the function x(1−x)+y(1−y) is concave and attains a maximum value of 1
2

at
(

1
2
, 1

2

)
.

In other words, B slides towards C as ρ increases. Consequently, as shown in Figure 2.2,
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B1 is farther away from C than B2 on the line joining A and C, since 0 ≤ ρ1 ≤ ρ2 ≤ 1.

Note that the slope of the line joining (0, 0) and B1 is y1
x1

, and similarly, y2
x2

in the case

of B2. Since B2 is closer to B1 to C, as shown in Figure 2.2, y1
x1
≥ y2

x2
and the slope tends

to 1 as the transition probability approaches 1
2
. A similar argument holds for the slope of

the lines that join B1 and B2 with (1, 1). Therefore, the inequality given in Equation (2.8)

holds.

In order to understand the impact of this transformation on the performance of the

network, let us now analyze the KL Divergence at some arbitrary operating point B =

(x̂, ŷ) due to a BSC with transition probability ρ operating on the sensor operating point A.

In the following lemma, we show that the KL Divergence decreases with increasing ρ.

Lemma 2.3. Given the sensor operating point A = (x, y), let B = (x̂, ŷ) denote the

transformed operating point due to a BSC with transition probability ρ. Let DB denote the

KL Divergence at B. Then, for 0 ≤ ρ ≤ 1
2
, DB is a monotonically decreasing function of ρ

whenever y ≥ x.

Proof. The KL Divergence at the transformed operating point B is defined as follows.

DB = x̂ log
x̂

ŷ
+ (1− x̂) log

1− x̂
1− ŷ . (2.14)

Differentiating DB with respect to ρ, we have

dDB

dρ
= (1− 2y)

[
1− x̂
1− ŷ −

x̂

ŷ

]
− (1− 2x)

[
log

(
1− x̂
1− ŷ

)
− log

(
x̂

ŷ

)]

=

(
1− x̂
1− ŷ −

x̂

ŷ

)

(1− 2y)− (1− 2x)





log

(
1− x̂
1− ŷ

)
− log

(
x̂

ŷ

)

1− x̂
1− ŷ −

x̂

ŷ








(2.15)

From Lemma 2.2, we have
x̂

ŷ
≤ 1− x̂

1− ŷ . (2.16)
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In other words,
1− x̂
1− ŷ −

x̂

ŷ
≥ 0. Therefore, the sign of

dDB

dρ
does not depend on

1− x̂
1− ŷ −

x̂

ŷ
.

Also, using the properties of the log(·) function, we have

1− ŷ
1− x̂ ≤

log

(
1− x̂
1− ŷ

)
− log

(
x̂

ŷ

)

1− x̂
1− ŷ −

x̂

ŷ

≤ ŷ

x̂
. (2.17)

Substituting Equation (2.17) in Equation (2.15), we have

(
1− x̂
1− ŷ −

x̂

ŷ

)−1
dDB

dρ
≤ (1− 2y)− (1− 2x)

{
1− ŷ
1− x̂

}

(
1− x̂
1− ŷ −

x̂

ŷ

)−1
dDB

dρ
≤ −(y − x)

1− x̂

(2.18)

Since
dDB

dρ
≤ 0, DB is a monotonically decreasing function of ρ, for all ρ ∈ [0, 1

2
].

Having analyzed the impact of BSCs on the ROC, let us now shift our focus on finding

those quantizers that maximize the KL Divergence at the sensor or the FC. Given any

operating point A = (x, y) at the sensor, we investigate the behavior of DA with respect to

y, for a fixed value of x.

Lemma 2.4. The optimal quantizer always lies on the boundary of the set of all feasible

quantizer designs.

Proof. For a fixed value of x, we differentiate DA with respect to y as follows.

dDA

dy

∣∣∣∣
fixed x

=
1− x
1− y −

x

y
(2.19)

From Lemma 2.2, we have
dDA

dy

∣∣∣∣
fixed x

≥ 0. In other words, DA is a monotonically

increasing function of y, for a fixed value of x. Hence, we are always interested in quantizer

rules whose operating points lie on the boundary of the set of all feasible quantizers.
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In summary, the sensor operating point chosen on the LRT boundary slides towards the

point (1
2
, 1

2
) as the channel deteriorates (increasing ρ), which, in turn, degrades the KLD

of any decision rule γ to zero. Therefore, we address the problem of finding the operating

point on the boundary which maximizes DFC , where the boundary is dictated by the Eve’s

constraint DE = α and the boundary of Γ = {Γ1, · · · ,ΓN}.

2.4 Differential Secrecy

There exists a trade-off in the selection of binary sensor quantizers, as the loss in FC’s

performance is directly reflected in the performance loss at Eve. Therefore, in this section,

we model this design trade-off by considering the difference in the KLDs at the FC and Eve

as our performance metric. More specifically, we design sensor quantizers in a distributed

detection network that maximize the difference in the KLDs at the FC and Eve, as stated in

the following problem.

Problem 2.1. Determine the set of optimal operating points (x,y) ∈ Γ at all the sensors

that

maximize
(x,y)

DFC −DE

subject to (xi, yi) ∈ Γi, for all i = 1, 2, . . . , N.

Since the received symbols vi and wi at both the FC and Eve respectively, due to the

ith sensing agent are conditionally independent from those of other sensing agents, the

difference DFC − DE =
N∑

i=1

(DFC −DE) is linearly separable. Therefore, Problem 2.1

can be decomposed into N independent problems, which is stated below. For the sake of

notational convenience, we ignore the sensor indices in the remaining section.
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Problem 2.2. Determine the optimal sensor operating point (x, y) ∈ Γ that

maximize
(x,y)

DFC −DE

subject to (x, y) ∈ Γ.

We solve this problem in two different cases. In the first case, we assume that the Eve’s

channel is worse than FC’s channel. In other words, we assume that ρe ≥ ρfc. In the

second case, we assume that the Eve has a better channel than FC, i.e., ρe < ρfc.

CASE 1: Eve has worse channels than FC

In this case, we assume that ρe ≥ ρfc. Under this assumption, we show that the optimal

binary quantizers always lie on the LRT boundary of the achievable region, as shown in

Figure 2.3.

Lemma 2.5. For a fixed x, L(y) = DFC −DE is a monotonically increasing function of y

in the achievable region Γ, if the Eve has a worse channel than FC.

Proof. For a fixed x, we investigate the rate of change of L(y) = DFC −DE by taking its

derivative with respect to y, as follows.

dL(y)

dy
=

dDFC

dy
− dDE

dy

=
dyfc
dy
· dDFC

dyfc
− dye
dy
· dDE

dye

= (1− 2ρfc)

[
1− xfc
1− yfc

− xfc
yfc

]
− (1− 2ρe)

[
1− xe
1− ye

− xe
ye

]
.

(2.20)

Given that ρe ≥ ρfc, we have 1 − 2ρfc ≥ 1 − 2ρe. Furthermore, given an operating
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Figure 2.3: L(y) increases with increasing y for a fixed value of x, when Eve has a worse
channel than FC.

point (x, y), as stated in Lemma 2.2, we have

1− xfc
1− yfc

− xfc
yfc
≥ 1− xe

1− ye
− xe
ye
. (2.21)

As a result, we have
dL

dy
≥ 0. (2.22)

Since L(y) is an increasing function of y for a given x, the optimal sensor operating

point always lies on the LRT boundary when the Eve has a worse channel than the FC.
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Figure 2.4: L(y) increases with decreasing y for a fixed value of x, when Eve has a better
channel than FC.

CASE 2: Eve has better channels than FC

Similar to Case 1, we now investigate the optimal sensor quantizers when Eve has a better

channel than the FC, i.e., when ρe < ρfc. We show that the optimal binary quantizers

always lie on the uninformative boundary of the achievable region (the line y = x), as

shown in Figure 2.4.

Lemma 2.6. For a fixed x, L(y) = DFC −DE is a monotonically decreasing function of y

in the achievable region Γ, if the Eve has a better channel than FC.

Proof. As shown in the proof of Lemma 2.5, we calculate the derivative of L(y) = DFC −
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DE with respect to y for a fixed x, as follows.

dL(y)

dy
= (1− 2ρfc)

[
1− xfc
1− yfc

− xfc
yfc

]
− (1− 2ρe)

[
1− xe
1− ye

− xe
ye

]
. (2.23)

Given that ρe < ρfc, we have 1 − 2ρfc < 1 − 2ρe. Furthermore, given an operating

point (x, y), as stated in Lemma 2.2, we have

1− xfc
1− yfc

− xfc
yfc

<
1− xe
1− ye

− xe
ye
. (2.24)

As a result, we have
dL

dy
< 0. (2.25)

Combining Lemmas 2.5 and 2.6, Problem 2.2 reduces to a quantizer selection problem,

as summarized below in the following theorem.

Theorem 2.1. The structure of an optimal sensor quantizer is LRT-based, if Eve has a

worse channel than the FC. Else, the optimal sensor quantizer is an uninformative rule.

Note that the objective considered in this section, namely the difference in KLDs at the

FC and Eve, does not constrain the Eve’s performance. Consequently, Eve may acquire an

intolerable amount of information from the sensors, and therefore, the solution (quantizer

design) provided in this section may not be attractive to the network designer in many

practical scenarios. Therefore, in the following section, we present another framework for

secrecy where we impose a tolerable constraint on the Eve’s performance in the design of

optimal binary quantizers at the sensors.
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2.5 Constrained Secrecy

In this section, we design a distributed detection network where DFC is maximized while

constraining DE to a prescribed tolerance limit, denoted as α. We present the formal prob-

lem statement and discuss the various scenarios that are addressed in this chapter, as fol-

lows.

Problem 2.3. Find

arg max
γ

DFC s.t.

1. DE ≤ α

2. (xi, yi) ∈ Γi, for all i = 1, · · · , N.

Note that Constraint 1 in the above problem statement becomes degenerate for large

values of α. More specifically, Problem 2.3 is meaningful only when 0 ≤ α < α∗ so that it

has a non-degenerate Constraint 1 in Problem 2.3. This critical value α∗ is equal to Eve’s

KL Divergence D∗E , which Eve attains when FC attains the maximum KL Divergence D∗FC .

This maximum KL Divergence D∗FC can be found by solving Problem 2.3 in the absence

of Constraint 1.

Let R , ∩Ni=1Γi ∩ { (x,y) | DE ≤ α } denote the search space in Problem 2.3. Note

that {(x,y) | DE ≤ α} is a convex level-set of DE [54], because DE is a convex function

of (x,y). Similarly, since LRTs are optimal in the absence of Eve (For a detailed proof,

please refer to Proposition 4.1 in [62]), Γi is also a convex set in the ROC space. Also, R

is an intersection of two convex sets, and therefore, R is a convex set.

Since DFC is a convex function of (x,y), Problem 2.3 is a convex maximization prob-

lem, and therefore, the optimal solution is one of the extreme points of R [54]. Note that

{(x,y) |DE ≤ α} is not necessarily a subset of Γi, and therefore, the optimal set of binary
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quantizers need not necessarily be LRTs. Furthermore, the search space R in Problem 2.3

is not a simple polytope. R is an intersection of two convex sets with smooth boundaries

and therefore, its boundary does not necessarily have a smooth differential at every point.

Consequently, optimal search algorithms proposed to solve traditional convex maximiza-

tion problems with polytope search spaces cannot be applied to find the optimal solution

of Problem 2.3, as our problem demands a more detailed analysis of the boundary of the

search space.

Therefore, in Section 2.5.1, we first restrict our attention to a simpler scenario3 where

all the sensors’ observations are identically distributed and, where all the channels between

the sensors and the FC (likewise, channels between sensors and the Eve) are identical. This

assumption results in the received symbols at the FC (likewise, received symbols at the

Eve) being conditionally i.i.d., thus decomposing the problem into a distributed framework

of N identical sub-problems. In Section 2.5.2, we consider a more general scenario4 where

the sensor observations are conditionally independent and non-identically distributed, and

the channels between the sensors and the FC (likewise, channels between sensors and the

Eve) are also non-identical. In both these scenarios, we investigate the design of secure

binary quantizers when α < D∗E .

2.5.1 Identical Sensors and Channels

In this section, we address the problem of designing optimal quantizers when all the sensors

and the channels between the sensors and the FC (likewise, channels between sensors and

the Eve) are identical.
3In this chapter, we call this scenario as “identical sensors and channels".
4Similarly, we call this scenario as “non-identical sensors and channels".
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For all i = 1, · · · , N , we have

pi,0(x) = p0(x), pi,1(x) = p1(x)

xi = x, yi = y

ρfci = ρfc, ρei = ρe

(2.26)

Since all the sensors and their corresponding channels are identical, we remove the

sensor-indices for notational simplicity. Therefore, we have xfci = xfc, yfci = yfc, xei =

xe and yei = ye for all i = 1, · · · , N . Because of this, Di = D, DFCi
= DFC and

DEi
= DE for all i = 1, · · · , N , and consequently, the KLD at the FC and Eve reduces to

DFC = NDFC and DE = NDE . In other words, Problem 2.3 reduces to the design of the

quantizer at one of the identical sensors as follows.

Problem 2.4. Find

arg max
γ

DFC s.t.

1. DE ≤ α̃

2. (x, y) ∈ Γ.

where α̃ =
α

N
.

Note that, although Problem 2.4 is still a convex maximization problem, due to its re-

duced dimensionality, the problem becomes tractable. In the remaining section, we find the

optimal quantizer in two stages. First, we find the structure of the optimal binary quantiz-

ers by gaining insights into the behavior of DFC on the boundary of the Eve’s constraint

{(x, y) | DE ≤ α̃}. Then, we present an algorithm to find the optimal threshold for this

quantizer.

We start our investigation of the behavior of DFC on the boundary of the Eve’s con-

straint {(x, y) | DE ≤ α̃} by determining the necessary conditions for guaranteeing DE =

α̃ in the following lemma.
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Lemma 2.7. If the transition probability of the Eve’s BSCs satisfies ρe <
1

2
, the two nec-

essary conditions for any sensor operating point (x, y) to guarantee DE = α̃ in the ROC

space are stated as follows.

dy

dx
=

log

(
1− xe
1− ye

)
− log

(
xe
ye

)

1− xe
1− ye

− xe
ye

(2.27)

and

(
1− xe
1− ye

− xe
ye

)
d2y

dx2
= (1− 2ρe)

[
−
(

1− xe
(1− ye)2

+
xe
y2
e

)(
dy

dx

)2

+2

(
1

ye
+

1

1− ye

)
dy

dx
−
(

1

xe
+

1

1− xe

)]
.

(2.28)

Proof. Since DE is a constant (equal to the fixed design-parameter α̃), its first two deriva-

tives are equal to zero. We employ these to prove the lemma.

First, we differentiate DE with respect to x and equate it to zero, as follows.

dDE

dx
=

d

dx

[
xe log

xe
ye

+ (1− xe) log

(
1− xe
1− ye

)]

= (1− 2ρe)

[(
1− xe
1− ye

− xe
ye

)
dy

dx
−
{

log

(
1− xe
1− ye

)
− log

(
xe
ye

)}]

= 0.

(2.29)

Rearranging the terms in Equation (2.29), we can obtain Equation (2.27).

Next, we differentiate Equation (2.29) again with respect to x as follows, in order to
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find a closed-form expression for
d2y

dx2
.

d2DE

dx2
= (1− 2ρe)

d

dx

[(
1− xe
1− ye

− xe
ye

)
dy

dx
−
{

log

(
1− xe
1− ye

)
− log

(
xe
ye

)}]

= (1− 2ρe)

[(
1− xe
1− ye

− xe
ye

)
d2y

dx2
+ (1− 2ρe)

(
1− xe

(1− ye)2
+
xe
y2
e

)(
dy

dx

)2

−2(1− 2ρe)

(
1

ye
+

1

1− ye

)
dy

dx
+ (1− 2ρe)

(
1

xe
+

1

1− xe

)]
.

= 0.

(2.30)

Rearranging the terms in Equation (2.30), we can obtain Equation (2.28).

Note that Equation (2.29) in Lemma 2.7 provides the slope of the Eve’s constraint

boundary DE = α̃. Since the slope of y with respect to x along the boundary DE = α̃ has

a structure similar to the slope of a line joining two points on a logarithmic curve as seen in

Equation (2.27), we present lower and upper bounds for the slope of this boundary curve

DE = α̃ in the ROC plane in the following lemma.

Lemma 2.8. The slope of the Eve’s constraint boundary in the ROC plane, as defined by

the set of points { (x, y) | DE = α̃ }, is bounded on both sides as follows.

xe
ye
≤ dy

dx
≤ 1− xe

1− ye
. (2.31)

Proof. Given two points a ≥ b, due to the concavity of the log(·) function, the slope of the

line joining (a, log a) and (b, log b) always lies between the slopes of the log(·) at points a

and b respectively Hence, this results in Equation (2.31).

Note that the necessary conditions for any operating point (x, y) to lie on the Eve’s

constraint boundary { (x,y) | DE = α̃ }, as stated in Lemma 2.7, and the bounds on the
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slope of the same boundary curve, as given in Lemma 2.8, are essential to our analysis of

the behavior of the sensor’s KL divergence D, and the FC’s KL Divergence, DFC , in terms

of the false alarm probability x along the Eve’s constraint, which is defined by DE = α̃.

First, we investigate the behavior of the KL Divergence at the sensor, which is denoted

as D(x, y), along the Eve’s constraint DE(x, y) = α̃. Note that this analysis can be equiva-

lently interpreted as the case where we investigate the behavior of DFC when the channels

between the sensors and the FC are ideal. In the following proposition, we prove that

D(x, y) is a convex function of x along the curve DE(x, y) = α̃.

Proposition 2.1. Given that the Eve’s channel is a BSC with transition probability ρe < 1
2
,

D is strictly a convex function of x, for all operating points that lie in the set {(x, y) |DE =

α̃}.

Proof. To show that D is a convex function of x in the presence of a constraint on Eve, we

investigate the second-order differential of D with respect to x.

The closed-form expression for the first-order differential of D with respect to x

dD

dx
=

d

dx

[
x log

x

y
+ (1− x) log

(
1− x
1− y

)]

=

(
1− x
1− y −

x

y

)
dy

dx
−
[
log

(
1− x
1− y

)
− log

(
x

y

)]
.

(2.32)

The second-order differential ofD can therefore be obtained by differentiating Equation

(2.32) with respect to x as follows.

d2D

dx2
=

(
1− x
1− y −

x

y

)
d2y

dx2
+

(
1− x

(1− y)2
+
x

y2

)(
dy

dx

)2

−2

(
1

y
+

1

1− y

)
dy

dx
+

(
1

x
+

1

1− x

)
.

(2.33)

Note that the first term in Equation (2.33) can be rewritten as follows.
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(
1− x
1− y −

x

y

)
d2y

dx2
=

(
1− x
1− y −

x

y

)

(
1− x̂
1− ŷ −

x̂

ŷ

)
(

1− x̂
1− ŷ −

x̂

ŷ

)
d2y

dx2

=
ŷ(1− ŷ)

y(1− y)
· 1

(1− 2ρ)
·
(

1− x̂
1− ŷ −

x̂

ŷ

)
d2y

dx2

(2.34)

Note that Equation (2.34) allows us to use the necessary condition for the operating

point (x, y) to lie on the Eve’s constraint curve DE = α̃, as given in Equation (2.28).

Therefore, we substitute Equation (2.28) from the Lemma 2.7 in Equation (2.34), and use

this in Equation (2.33) to have the following.

d2D

dx2
= T1

(
dy

dx

)2

− 2T2
dy

dx
+ T3 (2.35)

where

T1 =

(
1− x

(1− y)2
+
x

y2

)
− ŷ(1− ŷ)

y(1− y)

(
1− x̂

(1− ŷ)2
+
x̂

ŷ2

)
(2.36a)

T2 =

(
1

y
+

1

(1− y)

)
− ŷ(1− ŷ)

y(1− y)

(
1

ŷ
+

1

(1− ŷ)

)
(2.36b)

T3 =

(
1

x
+

1

(1− x)

)
− ŷ(1− ŷ)

y(1− y)

(
1

x̂
+

1

(1− x̂)

)
. (2.36c)

It is easy to show that T2 = 0.
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So, let us first consider T1. Expanding Equation (2.36a), we have

T1 =
(xŷ − x̂y)− (xŷ2 − x̂y2) + yŷ {(y − ŷ)− 2(x− x̂) + 2(xŷ − x̂y)}

y2(1− y)2ŷ(1− ŷ)

=
−ρ(y − x)− {ρ2x− ρy2 + 2ρ(1− 2ρ)xy − 2ρ(1− 2ρ)xy2}+ yŷ(ρ− 2ρx)

y2(1− y)2ŷ(1− ŷ)

=
ρ(1− ρ)(y − x)(2y − 1)

y2(1− y)2ŷ(1− ŷ)
(2.37)

Similarly, expanding Equation 2.36c for T3, we have

T3 =
1

y(1− y)

[
y(1− y)

x(1− x)
− ŷ(1− ŷ)

x̂(1− x̂)

]

=
ρ(1− ρ)

y(1− y)
· (y − x)(1− x− y)

x(1− x)x̂(1− x̂)

(2.38)

Substituting Equations (2.37) and (2.38) in Equation (2.35), we simplify Equation

(2.35) into the following.

d2D

dx2
=
ρ(1− ρ)(y − x)

y(1− y)
· T4 (2.39)

where

T4 =
2y − 1

yŷ(1− y)(1− ŷ)

(
dy

dx

)2

+
1− x− y

xx̂(1− x)(1− x̂)
. (2.40)

Note that, if T4 ≥ 0, D is a convex function of x along the Eve’s constraint curve

DE = α̃. Since we are only interested in the region where y ≥ x and ρ <
1

2
for all

practical purposes, we restrict our analysis of the sign of T4 in this region.

In order to analyze the sign of T4, we divide the achievable region in the receiver-

operating characteristics into three regions, as shown in Figure 2.5.



41

x

y

y

y =
1

2

x + y = 1R1

R2

R3
y = x

1

1

Figure 2.5: Partition of ROC into three regions

R1 :

(
y ≤ 1

2

)
& (x+ y ≤ 1)

R2 :

(
y ≥ 1

2

)
& (x+ y ≤ 1)

R3 :

(
y ≥ 1

2

)
& (x+ y ≥ 1) .

(2.41)

Obviously, in region R2, 2y − 1 ≥ 0 and 1 − x − y ≥ 0. Therefore,
d2D

dx2
≥ 0.

Henceforth, we analyze the sign of T4 in the remaining regions R1 and R3.
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Region R1 In this region, 2y − 1 ≤ 0. Therefore, we use the upper bound on
dy

dx
,

presented in Equation (2.31), to find the sign of T4 as follows.

Substituting Equation (2.31) in Equation (2.40), we have

T4 ≥
1− x− y

xx̂(1− x)(1− x̂)
− 1− 2y

yŷ(1− y)(1− ŷ)

yŷ

xx̂

=
1

xx̂

[
1− x− y

(1− x)(1− x̂)
− 1− 2y

(1− y)(1− ŷ)

]

=
(1− x− y)(1− y)(1− ŷ)− (1− y)(1− x)(1− x̂) + y(1− x)(1− x̂)

xx̂(1− x)(1− x̂)(1− y)(1− ŷ)

(2.42)

Equation (2.42) can be rearranged as follows.

T4 ≥
(y − x) [y(1− ρ) + (1− 2ρ) {(2y − 1)(1− x)− y2}]

xx̂(1− x)(1− x̂)(1− y)(1− ŷ)
(2.43)

Since 1 − x − y ≥ 0 in region R1, we have 1 − x ≥ y. Therefore, substituting this

inequality in Equation (2.43), we have

T4 ≥
(y − x) [y(1− ρ) + (1− 2ρ) {(2y − 1)y − y2}]

xx̂(1− x)(1− x̂)(1− y)(1− ŷ)

=
(y − x) [y(1− ρ) + (1− 2ρ)y(y − 1)]

xx̂(1− x)(1− x̂)(1− y)(1− ŷ)

=
(y − x)y [(1− ρ) + (1− 2ρ)(y − 1)]

xx̂(1− x)(1− x̂)(1− y)(1− ŷ)

=
(y − x)yŷ

xx̂(1− x)(1− x̂)(1− y)(1− ŷ)

≥ 0.

(2.44)
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Region R3 In this region, since 2y − 1 ≥ 0, we use the lower bound on
dy

dx
, presented

in Equation (2.31), in order to find the sign of T4.

Substituting Equation (2.31) in Equation (2.40), we have

T4 ≥
2y − 1

yŷ(1− y)(1− ŷ)

(1− y)(1− ŷ)

(1− x)(1− x̂)
− x+ y − 1

xx̂(1− x)(1− x̂)

=
1

(1− x)(1− x̂)

[
2y − 1

yŷ
− x+ y − 1

xx̂

]
.

=
(yŷ − xx̂)− y(yŷ − xx̂)− xy(ŷ − x̂)

xx̂yŷ(1− x)(1− x̂)

=
(1− y) {ρ(y − x) + (1− 2ρ)(y2 − x2)} − xy(1− 2ρ)(y − x)

xx̂yŷ(1− x)(1− x̂)

=
(y − x) {ρ(1− y) + (1− 2ρ)y(1− y)− (1− 2ρ)x(1− 2y)}

xx̂yŷ(1− x)(1− x̂)

(2.45)

Since we are only interested in the region where y ≥ x, Equation (2.46) can be lower-

bounded as follows.

T4 ≥
1

xx̂yŷ(1− x)(1− x̂)
[(y − x) {ρ(1− y)

+(1− 2ρ)x(1− y)− (1− 2ρ)x(1− 2y)}]

=
(y − x) [ρ(1− y) + (1− 2ρ)xy]

xx̂yŷ(1− x)(1− x̂)

≥ 0.

(2.46)

Hence, for BSCs with ρ < 1
2
, D is a convex function of x along the constraint DE =

α.
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For any general BSC between the sensors and the FC, the sensor’s operating point (x, y)

transforms linearly into (xfc, yfc). Consequently, we have the following proposition, where

we analyze the behavior of DFC for any general BSC.

Proposition 2.2. Let the BSCs corresponding to the FC and Eve have transition probabil-

ities 0 < ρfc, ρe <
1
2
. Then, DFC is strictly a convex function of x, for all operating points

that lie in the set {(x, y) | DE = α̃}.

Proof. Note that (xfc, yfc) is a linear transformation of (x, y). This can be mathematically

expressed as follows.



xfc

yfc


 = ρfc




1

1


+ (1− 2ρfc)



x

y


 . (2.47)

In other words, a composition of D with an affine transformation, as given in Equation

(2.47), results in DFC . Consequently, since D is a convex function, DFC is also a convex

function [10].

Thus, for any BSC with transition probability ρfc corresponding to the FC, DFC is a

convex function of x. In other words, among the set of operating points that lie on the

Eve’s constraint boundary DE = α̃, the quantizers that maximize DFC always lie on the

intersection of the LRT curve y = gLRT (x) and the Eve’s constraint boundary DE = α̃.

As a consequence, the optimal quantizer is LRT-based, which we state in the following

theorem.

Theorem 2.2. The optimal quantizer that maximizes the FC’s KL Divergence DFC in the

presence of a constraint on Eve’s KL Divergence DE = α̃ is a likelihood ratio quantizer.

Proof. Let Ri , Γi ∪ {(x, y) | DE = α̃} denote the search space in Problem 2.4. We

know, from Proposition 2.1, that DFC is convex with respect to x along the Eve’s con-

straint boundary on the ROC plane. Therefore, the solution of Problem 2.4 always lies
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on the extreme points of the set of operating points on the Eve’s constraint boundary

{(x, y) | DE = α̃}. Note that the region of the Eve’s constraint boundary that lies within

Ri depends on the choice of α̃.

Let D∗E be the maximum KL Divergence at the Eve when the sensor employs the opti-

mal solution to the unconstrained problem where Constraint 1 is not considered in Problem

2.4. In the regard, the following two cases arise:

• Case-1 [ α̃ ≥ D∗E ]: Note that, Γi ⊆ {(x, y) | DE ≤ α̃} in this case because the

Eve’s KL Divergence is always within the tolerable limit when the sensor employs

any operating point (x, y) ∈ Γi. Therefore, the solution to Problem 2.4 is the optimal

LRT in this case [62].

• Case-2 [ α̃ ≤ D∗E ]: This is equivalent to the case where Γi * {(x, y) | DE ≤ α̃}.

Note that we also have Γi 6⊃ {(x, y) | DE ≤ α̃} since there always exist operat-

ing points (x, y) ∈ Γi such that DE ≤ α̃. Therefore, the boundaries of Γi and

{(x, y) | DE ≤ α̃} both intersect each other. As discussed earlier in this proof, since

the optimal solution is an extreme point of the Eve’s constraint boundary DE = α̃,

this is one of the intersection points that also lies on the boundary of Γi. In other

words, the optimal sensor quantizer that solves Problem 2.4 is a LRT.

As discussed in the proof of Theorem 2.2, the problem of finding the optimal quantizer

reduces to the problem of finding the intersection points of the boundaries of Γi and the

Eve’s constraint {(x, y) | DE ≤ α̃}, and thereby, finding the corresponding threshold for

the optimal LRT at the sensor.
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Algorithm to find the Optimal Threshold

Let f(x) , DFC(x, y = gLRT (x)). For the sake of tractability, we consider the problem

of finding optimal thresholds when f(x) is a quasi-concave5 function of x. As shown in

Proposition 2.1, since the Eve’s constraint translates into the convexity ofDFC with respect

to x, there are at most two points of intersection for the curves y = gLRT (x) and DE = α̃,

of which, one of them corresponds to the optimal quantizer. We present this formally in the

following claim.

Claim 2.1. Let f(x) , DFC(x, y = gLRT (x)). If f(x) is a quasi-concave function of x,

then there are at most two intersection points for the curves y = gLRT (x) and DE = α̃.

The optimal quantizer corresponds to one of the two intersection points.

Therefore, the problem reduces to finding these two intersection points and comparing

them with respect to each other in terms of their respective DFC . Moreover, we wish to

find the threshold λ∗ for the LRT that maximizes DFC in the presence of Eve’s constraint.

Since, both x and y are tail-probabilities where the start of the tail is the threshold, x and

y are both monotonically decreasing functions of the threshold λ. Therefore, we have the

following claim.

Claim 2.2. The two intersection points can be found by investigating the zeros of the func-

tion h(λ) , DE(x(λ), y(λ)) − α̃, where x and y are parameterized by the LRT threshold

λ.

Let α̃max denote the value of KL Divergence at which DE reaches its maximum value.

In other words, the optimal quantizer in the absence of Eve (equivalent to α̃ =∞), denoted

as the operating point (x∞, y∞), is the same as the optimal quantizer for any α̃ ≥ α̃max.

5Note that
lim
x→0

f(x) = 0, lim
x→1

f(x) = 0 (2.48)

Since, KLD is always non-negative, we always have f(x) ≥ 0. Also, since any LRT curve y = gLRT (x)
cuts through the level-sets of DFC and is concave, f(x) is a quasi-concave function of x.
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Obviously, the function h(λ) has two real zeros only when α̃ < α̃max. Note that only one

of them provides the maximum KL Divergence at the FC.

In order to find both zeros of the function h(λ) = 0, we use the bisection method where

we first find the point λ∗ at which h(λ) attains its maximum value. Then, consider two

points, one on either side of λ∗ (which are at a significant distance from λ∗) as initial points

and use the bisection algorithm to find the roots of h(λ) = 0. We call these two zeros

as λ1 and λ2. Then, we compute and compare DFC at the operating points (x(λ1), y(λ1))

and (x(λ2), y(λ2)). We choose that threshold as the optimal choice, which results in the

maximum DFC .

For the sake of illustration, we present an example where the sensors observe the pres-

ence or absence of a known deterministic signal, which is corrupted by additive Gaussian

noise.

Illustrative Example

We have so far shown that the optimal quantizer lies at the intersection of the curves

DE = α̃ and the LRT boundary in the ROC. But, the structure of the LRT is specific to the

observation model, and therefore, it is difficult to characterize the optimal sensor quantizer,

in general. Therefore, we illustrate the design methodology for an example, where the sen-

sors observe the presence or absence of a known deterministic signal. In other words, the

observations at the ith sensor are modeled as follows.

ri,t =





ni,t if H0

θ + ni,t if H1

(2.49)

where θ is the signal-of-interest and ni,t ∼ N (0, σ2) is the additive Gaussian noise with

zero mean and variance σ2. Then, the probabilities of false alarm and detection are given

by

x = Q

(
λ

σ

)
, y = Q

(
λ− θ
σ

)
(2.50)
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where Q(·) is the tail probability of the standard normal distribution N (0, 1).

Substituting Equation (2.50) in Equation (2.2), we obtain the KL Divergence at the

sensor, which is observed to be concave for this example. Therefore, as stated in Claim

2.1, the optimum quantizer is given by the intersection of the LRT boundary in the ROC

with the Eve’s constraint DE = α̃.

Note that Equation (2.50) is a parameterization of the LRT boundary, where both the

ROC’s coordinates are parameterized with the threshold of the LRT. Since we are interested

in the intersection of the LRT’s boundary in the ROC with the Eve’s constraint DE = α̃,

we substitute xe = ρe + (1 − 2ρe)Q

(
λ

σ

)
and ye = ρe + (1 − 2ρe)Q

(
λ− θ
σ

)
in DE to

obtain h(λ) = DE(x(λ), y(λ))− α̃.

As shown in Figure 2.6, h(λ) is a quasi-concave function of λ, with the tails converging

to −α̃. In other words, there are at most two zero-crossings since the function h(λ) is

unimodal with the two tails converging to a value less than zero. Therefore, there are at

most two solutions to the equation h(λ) = 0. The optimum sensor threshold can be found

by investigating the two zeros of h(λ), as suggested in Claim 2.2, and comparing them in

terms of DFC .

Discussion and Results

In this subsection, we first discuss the impact of the secrecy constraint on the performance

of the sensor network. Obviously, when we consider α̃ = 0, the network achieves perfect

secrecy. But, this also forces the network to be blind in that DFC → 0. On the other

extreme, consider a scenario where α̃ → ∞. This is equivalent to the case where there is

no eavesdropper present in the network. In other words, the optimal quantizer is given by

(x∞, y∞). For any finite α̃ > 0, we numerically investigate the tradeoff between secrecy

and performance of a given distributed detection system.

Since α̃ is the tolerable limit on the performance of Eve, the greater the information

leakage we can tolerate, the better the performance of the distributed detection network.



49

−1 −0.5 0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

λ

h(
λ)

 

 

ρ
e
 = 0.1

ρ
e
 = 0.3

Figure 2.6: Plot of h(λ) as a function of λ

This tradeoff is captured by Figure 2.7, where the maximum DFC in the presence of a

constrained Eve increases with increasing α̃. Note that, beyond a certain value of α̃, the

maximum DFC gets saturated to the optimal KLD at the FC in the absence of Eve. This

saturation level for this example is 5.8 and it is dictated by the fundamental limits enforced

by the imperfect observations and channel models within the network.

Next, we demonstrate the impact of the Eve’s constraint on the ROC, as well as the KL

Divergence at the FC, in Figure 2.8, when the FC’s channels are ideal (ρfc = 0). Note

that this argument can be carried over to any general BSC at the FC, as the operating point

(xfc, yfc) is a linear transformation of (x, y). In Figure 2.8, we assume ρe = 0.1 and

consider two different values of α̃. In Figure 2.8a, we plot the constraint curve DE = α̃

along with the sensor’s ROC. Note that the constraint curve intersects the LRT curve at

two distinct points, as stated earlier. One of these two intersection points (the intersection
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point to the right, in this example) is optimal, as shown in Figure 2.8b. Note that the

skewness in the ellipses in Figure 2.8b is due to the asymmetry in the KL divergence.

Also, as α̃ decreases, DFC becomes deeper and flat-bottomed as a function of x over the

Eve’s constraint curve DE = α̃. Another important observation to be made is the fact

that the optimal solution in the presence and absence of Eve (red curves) always is on the

boundary of the LRT curve, although the thresholds vary depending on the scenario. Since

the sufficient test-statistic is the same irrespective of the presence or absence of Eve, the

network designer may implement the system in terms of a threshold that can be varied.
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In practice, there exist many conditional probability distributions p0(r) and p1(r) for

which the computation of likelihood-ratios is intractable. Also, there may be situations

where these distributions are not even known to the network designer. In both these cases,

the network designer may choose to employ a tractable test that is not LRT.

Let Λ be the test-statistic employed in the sensor quantizer γ, as defined in Equation

(2.1). Note that, by allowing randomization (linear stochastic combination of operating

points) between quantizers, Carathèodary’s theorem [54] and Lemma 2.2 in Section 2.3

together makes every operating point (x, y) inside the set Ψ , conv ({(x, y) | y ≤ gΛ(x)})

feasible, where conv(S ) represents the convex-hull of a given set S .

Since Ψi is convex, all of our arguments presented in Section 2.5.1 also hold for the

case of any general non-LRT quantizer. We summarize this in the following claim:

Claim 2.3. Given any ROC curve y = gΛ(x) based on a test-statistic Λ, the optimal quan-

tizer that maximizes the FC’s KL Divergence DFC in the presence of a constraint on Eve’s

KL Divergence DE = α̃ within the set Ψ̃i , conv{(x, y) | y ≤ gΛ(x)} always lies on the

boundary of Ψ̃i.

As discussed earlier in this subsection, this optimal operating point can be implemented

by randomizing over a finite set of quantizers, all defined using the same test statistic Λ.

2.5.2 Non-Identical Sensors and Channels

In Section 2.5.1, we investigated the case of identical sensors and channels which was sim-

ilar to the case of designing the quantizer at a single sensor. In this section, we investigate

Problem 2.3 when the network has non-identical sensors and/or has non-identical chan-

nels. Since Problem 2.3 is NP-Hard in general, we propose an efficient methodology for

quantizer design that satisfies the Eve’s constraint DE ≤ α.

Note that the objective function DFC is linearly separable since the sensor observations
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are conditionally independent. Therefore, we define

Φn = Φn−1 +DFCn , ∀ n = 2, · · · , N. (2.51)

where Φ1 = DFC1 . If, at any given intermediate stage, if Φn−1 is a constant, then the

problem of maximizing Ψn reduces to the problem of maximizing DFCn .

This above property of KL Divergence at the FC motivates us to employ dynamic pro-

gramming [8] to decompose Problem 2.3 into N sub-problems by breaking down the Eve’s

constraint parameter α into α = {α1, · · · , αN} using a greedy algorithm. Here, for the

sake of ensuring the feasibility of our solution, we assume the following.

N∑

i=1

αi ≤ α.

Therefore, for a given α, Problem 2.3 becomes:

Problem 2.5. For every i = 1, · · · , N , find

arg max
γ

DFCi
s.t.

1. DEi
≤ αi

2. (xi, yi) ∈ Γi, for all i = 1, · · · , N.

Note that the performance of this proposed design-methodology completely depends

on the choice of α = {α1, · · · , αN}. To be more precise, the exact solution to Prob-

lem 2.3 can be equivalently expressed in terms of an optimal decomposition of α into

α = {α1, · · · , αN}. Since the problem of finding optimal α is intractable, we present a

suboptimal (greedy) algorithm to find an efficient decomposition of α as follows.

Let D∗FCi
denote the maximum KL Divergence achievable at the FC, due to the ith sen-

sor. In such a setting, Eve attains a KL Divergence D∗Ei
due to the ith sensor. We define the
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quality6 of the FC’s and the Eve’s channels corresponding to the ith sensor as ki =
D∗FCi

D∗Ei

.

The quality ki represents the tradeoff between the detection performance and secrecy. Let

the sensors be ordered in terms of the increasing quality as ki1 ≥ · · · ≥ kiN . In other

words, we obtain the best tradeoff in terms of the sensor quality by considering sensors

in the order of decreasing quality in our sequential allocation mechanism. Therefore, we

propose a greedy decomposition of Problem 2.5 into N sequential problems based on the

sensors’ quality, where α = {α1, · · · , αN} is chosen such that DFC is maximized in the

presence of Eve’s constraint DE ≤ α. Note that this decoupling of α into α allows us to

solve each of the individual problems in Problem 2.5 using the same method as presented

in Section 2.5.1.

Having ordered the nodes in terms of decreasing k∗i , we know that node i achieves better

tradeoff than node j, if i > j. This allows us to select nodes with lower indices to achieve

the best tradeoffs between detection performance and secrecy until the resource (constraint

on Eve, α) is completely utilized. Therefore, the decomposition of DFC , as shown in

Equation (2.51), allows us to sequentially select the individual sensors in an increasing

order of indices. Therefore, for index i = 1, we allocate α1 = D∗E1
if α ≥ D∗E1

. Otherwise,

α1 = α. Having allocated the Eve’s constraint to Sensor 1, we move to Sensor 2. Now, the

remaining tolerable leakage information at the Eve is given by [α−D∗E1
]+, where [x]+ = x

if x ≥ 0, or, 0 otherwise. Therefore, we solve the problem at Sensor 2 with a new constraint

[α−D∗E1
]+.

As the process of selecting the nodes progresses, we reach a point where N∗ sensors

are already selected and the remaining resource left, given by α −
N∗∑

i=1

D∗Ei
, is less than

DEN∗+1
. Therefore, we let αN∗+1 = α −

N∗∑

i=1

D∗Ei
and let the remaining sensors sleep in

order to satisfy the secrecy constraint.

6Note that this definition for ki is one possible heuristic. Another potential heuristic is to define ki as the
difference D∗FCi

−D∗Ei
, for which we will investigate the network performance in our future work.
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Numerical Results

In order to illustrate the performance of the proposed algorithm, we consider a simple ex-

ample where, for each i = 1, · · · , N , the ith sensor’s observation follows N (0, σ2) under

hypothesis H0 and N (µi, σ
2) under hypothesis H1. Note that this example demonstrates

a scenario where the signal source is spaced at different distances from different sensors in

the network, and the sensor observations are modelled using a path-loss attenuation chan-

nel model. In such a case, the detection probability at the ith sensor can be defined as

yi = Q (Q−1(x)− ηi) in terms of the false alarm probability xi, where ηi = µi
σ

is the cor-

responding SNR. Assuming that the FC has a perfect channel (ρfci = 0), while the Eve has

a binary symmetric channel with transition probability ρei = ρi at the ith sensor, we have

xfci = xi, yfci = yi, xei = ρi + (1 − 2ρi)xi and yei = ρi + (1 − 2ρi)yi. Then, the KL

divergences at the FC and Eve are computed as shown in Equation (2.7).
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Figure 2.9: Performance of the Proposed Greedy Algorithm in a Distributed Inference Network when α = 50.
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For the sake of illustration, we consider a specific example in order to demonstrate the

performance of the proposed greedy algorithm. We assume that all the sensors have identi-

cal sensing channels by letting ηi = 1, for all i = 1, · · · , N . The transition probabilities of

the BSCs between the sensors and the FC are sampled randomly from a uniform distribu-

tion U (0, 0.01). Similarly, we let the Eve’s channels’ transition probabilities be sampled

randomly from a uniform distribution U (0, 0.1). We present a single run of our simulation

results in Figure 2.9, where we present both the KL Divergence at the FC and Eve, along

with the number of sensors selected in the network, as a function of N when α = 50.

Note that, for α = 50, the difference between the KL divergences between the FC and Eve

is about 40 units. We also provide an upper bound on this difference using a benchmark

comparison where we present the case where the FC has ideal channels. In the case where

FC has ideal channels, the KL Divergences at the FC and Eve are denoted as D̃FC and

D̃E respectively. Although the FC’s KL divergence is always lower-bounded by Eve’s KL

divergence, the difference in the KL Divergences at the FC and Eve depend on the quality

of the channels at both FC and Eve.

Also, note that, in Figure 2.9a, as the number of sensors increases, both DFC and DE

monotonically increase until N reaches a critical point where DE = α. Beyond this critical

point, the algorithm starts to select only those sensors that are prioritized according to

the decreasing order of ki. Furthermore, in Figure 2.9b, the number of selected sensors

increases with increasing number of sensors in the network at the similar rate as that of

DFC . Lastly, note that the performance of the distributed inference network in terms of KL

Divergence saturates as N increases as per intuition.

2.6 Summary

In summary, we have considered two secrecy frameworks, namely differential and con-

strained secrecy, in a distributed detection network when all the communication channels
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are binary symmetric channels. In the case of differential secrecy, we have shown that the

structure of optimal quantizer at any sensor is either LRT-based, or uninformative. In the

case of constrained secrecy, we have proved that the optimal quantizer is always LRT-based

in the presence of identical sensors and channels. We have presented an algorithm to find

optimal LRT thresholds, and presented numerical results to illustrate the performance of

our network design. In the case of non-identical sensors and channels, we have proposed

an efficient design for sensor quantizers by decomposing the original problem in N sub-

problems using a dynamic programming approach. Numerical results have been presented

to illustrate the efficiency of our proposed design under different scenarios.
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CHAPTER 3

SECRECY IN CENTRALIZED

DETECTION: TRANSMIT-DIVERSITY

Security in detection networks is a well-studied research topic in the past literature, in

which several mitigation techniques such as stochastic encryption, optimal design of local

detectors and so on, have been proposed to mitigate information leakage to eavesdrop-

pers. While secrecy has been addressed in distributed detection networks in the past, as

discussed in Chapter 2, the problem still remains open in the context of centralized detec-

tion networks. In this chapter, we consider the problem of designing a secure centralized

detection network in the presence of tolerable secrecy constraints in this chapter.

We propose a transmit-diversity mechanism in a centralized detection network where

the sensors construct transmission signals by combining artificial noise with the amplified

observation so as to maximize the KL Divergence at the FC in the presence of a tolerable

constraint on Eve’s KL Divergence. While the amplify-forward mechanism is designed to

increase the detection performance at the FC, the artificial noise is chosen in such a way

that the Eve’s performance is severely affected. In this chapter, we derive efficient sensor

transmission policies in the proposed framework for detection networks by solving a non-

convex optimization problem approximately using a two-stage algorithm. In the first stage,
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our proposed algorithm decomposes the original problem intoN sub-problems, whereN is

the number of sensing units in the network. In the second stage, each sub-problem is solved

by relaxing it into a semidefinite program (SDP). In our simulation results, we show that the

FC’s KL Divergence increases as the number of sensor antennas increases. Furthermore,

with enough number of sensor antennas, we show that the FC can always attain a greater

KL Divergence than that of Eve by employing our proposed approach.

3.1 Literature Survey

Transmit-diversity mechanisms in multiple-input multiple-output (MIMO) systems have

gained a lot of attention of many researchers over the last decade in the context of physical-

layer security of communication systems. For a detailed account on this literature, the

reader may refer to [40] for an in-depth survey on MIMO communication, and [28, 30]

for an in-depth survey on MIMO detection. In this vast literature on MIMO systems,

the most relevant framework to this work is the design of secure relay networks1 with

MIMO/beamforming capabilities, which are surveyed in great detail in [40], [70] and [19].

In these works, communication metrics such as Shannon’s equivocation rate were chosen

as design-objectives.

In contrast to securing relay networks and other communication networks using tradi-

tional MIMO/beamforming methods, we design an optimal transmission mechanism over

multiple antennas at the sensors that employ amplify-and-forward transmission of obser-

vations, while simultaneously injecting artificial noise at the sensors in order to reduce

information-leakage to the Eve. This work is inspired by the work carried out by Goel and

Negi in [18, 45], where they proposed a MIMO-based scheme for point-to-point commu-

nication links to mitigate information-transfer to the Eve by adding artificial noise in the

nulls of the beam.
1Relay networks are similar to parallel-topology detection networks in terms of their functioning and

architecture, which are traditionally designed to optimize Shannon’s information rate between the end-users.
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Figure 3.1: Centralized Inference Network in the Presence of an Eavesdropper

3.2 System Model and Problem Statement

Consider a detection network of N sensors, as shown in Figure 3.1, communicating with

the FC through a parallel-topology of wireless links. Let the binary hypotheses H1 and H0

denote the presence and absence of a phenomenon-of-interest (PoI), with prior probabilities

π1 and π0 respectively. Let ri be the observation made by the ith sensor, whose signal model

is given as follows.

ri =





ni; under H0

θ + ni; under H1

(3.1)

where ni is a zero-mean AWGN noise with variance σ2
s , and θ is a known real-valued PoI

signal, i.e., θ ∈ R.

Let each sensor be equipped with a transmitting array of L antennas, while the FC
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receives each of the sensor’s transmissions using a single antenna for each parallel channel.

The ith sensor processes the received signal ri and generates si = [si1, · · · , siL], and each

signal sik is transmitted through the kth antenna respectively, and is chosen as follows.

sik = rixik + wik (3.2)

where xik is the weight of the ith sensor’s observation ri at the kth antenna, and wik ∼

N (0, y2
ik) is the artificial noise added independently to the kth antenna at the ith sensor. In

other words, yik is the root-mean square (RMS) power of the artificial noise wik.

Equation (3.2) can be written in a vector form, as follows:

si = rixi + wi (3.3)

where si, xi and wi are L× 1 vectors for all i = 1, · · · , N .

In this chapter, we assume that the ith sensor transmits the signals si in one-shot us-

ing all its L transmitting antennas. In practice, a sensing unit has a limited total energy

available for its transmission. This constraint on the total energy consumed to transmit

si = {si1, · · · , siL} at the ith sensor is given as follows.

E
(
sTi si

)
≤ E . (3.4)

Expanding and simplifying Equation (3.4), we have

(
σ2
s + π1θ

2
)

xTi xi + yTi yi ≤ E (3.5)

The sensors transmit their respective messages over N dedicated orthogonal channels,

such that the FC and Eve receive N signals (one antenna per channel), which are denoted

as {rfc1 , · · · , rfcN} and {re1 , · · · , reN} respectively. We model these received signals at
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the FC and Eve respectively, as follows.

rfci =
L∑

k=1

hiksik + nfci , (3.6a)

rei =
L∑

k=1

giksik + nei , (3.6b)

where hik and gik are the channel-gains between the kth antenna at the ith sensor and the

ith receiving antenna at the FC and Eve respectively, and, nfci ∼ N (0, σ2
fc) and nei ∼

N (0, σ2
e) are AWGN noises at the FC and Eve respectively.

For the sake of notational simplicity, let hi = {hi1, · · · , hiL} and gi = {gi1, · · · , giL}

denote the channel-gain vectors at the FC and Eve respectively, corresponding to the ith

sensor. Let IN denote a N × N identity matrix. Then, Equations (3.6a) and (3.6b) can be

rewritten as

rfc = R




hT1 x1

...

hTNxN




+




hT1 w1

...

hT1 w1




+ nfc (3.7a)

re = R




gT1 x1

...

gTNxN




+




gT1 w1

...

gTNwN




+ ne (3.7b)

where R is a N × N diagonal matrix with ri being the ith diagonal entry, and, nfc ∼

N (0, σ2
fcIN) and ne ∼ N (0, σ2

e IN) are additive noise vectors at the FC and Eve respec-

tively. Being linear combinations of conditionally normal random variables, both rfc and re

are also normally distributed when conditioned under any given hypothesis. More specifi-

cally, we have

rfc|H0 ∼ N (0,Σfc), rfc|H1 ∼ N (µfc,Σfc),
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and

re|H0 ∼ N (0,Σe), re|H1 ∼ N (µe,Σe),

where µfc, µe, Σfc and Σe are computed as follows.

µfc = E(rfc|H1) = θ




hT1 x1

...

hTNxN



, (3.8a)

µe = E(re|H1) = θ




gT1 x1

...

gTNxN



, (3.8b)

Σfc = E[rfcr
T
fc|H0] = E[(rfc − µfc)(rfc − µfc)T |H1]

= σ2
s




xT1 H11x1 · · · 0

... . . . ...

0 · · · xTNHN1xN




+




yT1 H12y1 · · · 0

... . . . ...

0 · · · yTNHN2yN




+ σ2
fcI,

(3.8c)
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and
Σe = E[rfcr

T
fc|H0] = E[(rfc − µfc)(rfc − µfc)T |H1]

= σ2
s




xT1 G11x1 · · · 0

... . . . ...

0 · · · xTNGN1xN




+




yT1 G12y1 · · · 0

... . . . ...

0 · · · yTNGN2yN




+ σ2
e I.

(3.8d)

where, for all i = 1, · · · , N ,

Hi1 = hih
T
i , Gi1 = hih

T
i

Hi2 = [diag(hi)]
2 , Gi2 = [diag(gi)]

2 .

(3.9)

In this chapter, we choose KL Divergence as the performance metric at both FC and

Eve, denoted by Dfc and De at the FC and Eve respectively, for the sake of tractability.

Note that KL Divergence is the error exponent for the global miss probability in the Ney-

man Pearson framework, where the global false alarm probability is constrained to a fixed

tolerable amount. Therefore, Dfc and De act as a surrogate to the global error probability

at both the FC and Eve respectively.

We compute both Dfc and De of the received signals rfc and re respectively, as follows.
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Dfc = EH0

[
log

p(rfc|H0)

p(rfc|H1)

]

=
1

2
µTfcΣ

−1
fc µfc

=
θ2

2

N∑

i=1

[
xTi Hi1xi

σ2
sx

T
i Hi1xi + yTi Hi2yi + σ2

fc

]

(3.10a)

De = EH0

[
log

p(re|H0)

p(re|H1)

]

=
1

2
µTe Σ−1

e µe

=
θ2

2

N∑

i=1

[
xTi Gi1xi

σ2
sx

T
i Gi1xi + yTi Gi2yi + σ2

fc

]

(3.10b)

Our goal is to design a secure detection network that maximizes the KL Divergence at

the FC, while constraining the Eve’s KL Divergence to a fixed value α, in the presence of

an energy constraint at each sensor. This is formally stated as follows.

Problem 3.1.

maximize
{xi,yi}i=1,··· ,N

Dfc

subject to 1. De ≤ α

2.
(
σ2
s + π1θ

2
)
xTi xi + yTi yi ≤ E ,

for all i = 1, 2, . . . , N.
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For the sake of notational simplicity, let us assume

zi =




xi

yi


 .

Then, Equations (3.10a) and (3.10b) can be rewritten as follows.

Dfc =
θ2

2σ2
s

N∑

i=1

[
zTi Aizi

zTi Bizi + c

]
(3.11a)

De =
θ2

2σ2
s

N∑

i=1

[
zTi Cizi

zTi Dizi + e

]
(3.11b)

where

Ai =




Hi1 0

0 0


 , Bi =




Hi1 0

0
1

σ2
s

Hi2


 ,

Ci =




Gi1 0

0 0


 , Di =




Gi1 0

0
1

σ2
s

Gi2


 ,

c =
σ2
fc

σ2
s

and e =
σ2
e

σ2
s

.

Note that ignoring the constant
θ2

2σ2
s

in the objective function does not affect the optimal

solution of Problem 3.1. Let

β =
2σ2

s

θ2
α and E =




(σ2
s + π1θ

2) IL 0

0 IL


 .

Then, Problem 3.1 can be equivalently written as follows.
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Problem 3.2.

maximize
{z1,··· ,zN}

N∑

i=1

[
zTi Aizi

zTi Bizi + c

]

subject to 1.
N∑

i=1

[
zTi Cizi

zTi Dizi + e

]
≤ β

2. zTi Ezi ≤ E ,

for all i = 1, 2, . . . , N.

Note that Problem 3.1 is a hard, non-convex problem. In fact, the problem is non-

convex even if N = 1. Therefore, we propose two approximate solutions to Problem 3.2

via employing semidefinite relaxation and convex-concave restriction.

3.3 Approximation via Semidefinite Relaxation

Without any loss of generality, we introduce N slack variables β1, · · · , βN by assuming

zTi Cizi
zTi Dizi + e

≤ βi, ∀ i = 1, · · · , N. (3.12)

In other words, βi is an upper bound on the contribution of the ith sensor to the Eve’s KL

Divergence. Substituting Equation (3.12) in Problem 3.2, we have the following equivalent

problem statement.
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Problem 3.3.

maximize
{z1,··· ,zN},{β1,··· ,βN}

N∑

i=1

[
zTi Aizi

zTi Bizi + c

]

subject to 1.
zTi Cizi

zTi Dizi + e
≤ βi,

for all i = 1, 2, . . . , N

2.
N∑

i=1

βi ≤ β,

3. zTi Ezi ≤ E ,

for all i = 1, 2, . . . , N.

Note that, if the optimal decomposition β∗ = {β∗1 , · · · , β∗N} are known beforehand,

the above problem can be decomposed into N independent problems without any loss of

optimality, as shown below in Problem 3.4, because of two reasons:

• The objective function is linearly separable.

• Constraint 2 is the only coupling condition in Problem 3.3, which is itself a linearly

separable function.

Problem 3.4. For a given βi (which is chosen such that
N∑

i=1

βi ≤ β),

maximize
zi

zTi Aizi
zTi Bizi + c

subject to 1.
zTi Cizi

zTi Dizi + e
≤ βi,

2. zTi Ezi ≤ E .
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Before we determine {β1, · · · , βN} and the corresponding approximate solution, let us

consider the problem of optimal network design in the absence of an Eve’s constraint. This

is formally stated in Problem 3.5.

Problem 3.5.

maximize
zi

zTi Aizi
zTi Bizi + c

subject to 1. zTi Ezi ≤ E .

Let D̃FCi
and z̃i denote the optimal solution to Problem 3.5. Then, we have

D̃FCi
= λmax

(
Ai,Bi +

cE

E

)
(3.13a)

z̃i = η

√
E

ηTEη
(3.13b)

where λmax(Λ1,Λ2) is the generalized eigenvalue2 of the two given matrices Λ1 and Λ2,

and η is the generalized eigenvector corresponding to the aforementioned eigenvalue given

in Equation (3.13a). For a detailed account on the computation of generalized eigenvalues

and eigenvectors, the reader may refer to [7, 37].

We can compute the KL Divergence D̃Ei
that the Eve attains, due to the ith sensor, as

follows.

D̃Ei
=

z̃i
TCiz̃i

z̃i
TDiz̃i + e

(3.14)

Note that both D̃FCi
and D̃Ei

are both upper-bounds on the optimal values of DFCi
and

DEi
as they are the solutions of the unconstrained problem, which are found by solving

Problem 3.1.

In the remaining section, we present our proposed methodology to find an efficient
2The generalized eigenvalue ψ and eigenvector µ of the matrices Λ1 and Λ2 satisfy Λ1µ = ψΛ2µ.
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solution to Problem 3.3 by solving it in three stages. In the first stage, we find reasonable

values for βi based on the channel conditions at the FC and Eve using a greedy algorithm.

In the second stage, we provide an optimal solution to each of the following decomposed

problems using semi-definite relaxation (SDR). In the final stage, we use the above solution

to construct an efficient and a feasible solution using randomization techniques.

Stage 1: Efficient Decomposition

In this subsection, we propose a sequential methodology in order to compute the value of

{β1, · · · , βN} based on a specific ordering of the sensors. Intuitively, we expect that the

choice of this sensor-ordering is based on the combined effect of the sensing observations

and the channel models at both the FC and Eve.

Therefore, we first construct a vector k = {k1, · · · , kN} which, when sorted in a de-

creasing manner, gives the sensor-ordering in terms of their allocation quality. For the sake

of tractability, we assume that k is independent of the choice of {z1, · · · , zN}. With this as-

sumption, we deviate from the optimal solution of Problem 3.3. Note that the construction

of the sensor-ordering is key to the efficiency of our solution approach.

In this chapter, we define the ordering metric ki based on the objective function as

follows.

ki = D̃FCi
. (3.15)

Our intuition behind choosing this definition for ki is that the sensors shall be ordered

in terms of their respective contribution to the overall KL Divergence at the FC. Note that,

since DFCi
and DEi

have a monotonic relationship, increasing ki increases the value of βi.

Therefore, we denote the sorted vector of sensor-indices, as isort = {i1, · · · , iN}, which

are ordered in a decreasing order of k. In other words, kij ≥ kij+1
for all j = 1, · · · , N−1.
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Let ij denote the jth entry in isort. Then, βij is given by

βij = min
{

∆j−1, D̃Ei

}
, (3.16)

where ∆j−1 = β −
j−1∑

k=1

βik is the residual value that needs to be allocated to the rest of

the sensors with indices beyond the (j − 1)th entry in the vector isort, with its initial value

defined as ∆0 = β.

Note that our choice of {β1, · · · , βN} satisfies Constraint 2 in Problem 3.3. Therefore,

the proposed solution always lies within the feasible region of Problem 3.3.

Stage 2: Semidefinite Programming

In this subsection, we present a SDR-based methodology to approximately solve Problem

3.4. Note that since Problem 3.4 is completely defined locally at the ith sensor, we remove

the index i for notational convenience. In the case of βi, we replace the notation with δ in

order to avoid any confusion. Therefore, we restate Problem 3.4 by removing the index i,

as follows.

Problem 3.6.

maximize
z

zTAz

zTBz + c

subject to 1.
zTCz

zTDz + e
≤ δ,

2. zTEz ≤ E .

(3.17)

Without any loss of generality, let

1

zTBz + c
= u2. (3.18)
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where u is a non-negative slack variable. Replacing the variable z with a new variable

t = uz, Problem 3.6 can be equivalently expressed as follows.

Problem 3.7.

maximize
t,u

tTAt

subject to 1. tT (C− δD) t ≤ eδu2,

2. tTEt ≤ E u2

3. tTBt + c · u2 = 1

Note that, since the matrix A is positive semidefinite, the objective function is convex.

Therefore, Constraint 3 can be relaxed into an inequality tTBt + c · u2 ≤ 1 without any

loss of generality, since Problem 3.7 is a convex-maximization problem. Furthermore,

If (t∗, u∗) is the optimal solution to Problem 3.7, then the optimal solution is given by

z∗ = t∗/u∗.

To simplify further, we define the combined optimization variable v =




t

u


 in order

to have the following problem.

Problem 3.8.

maximize
v

vTM0v

subject to 1. vTM1v ≤ 0,

2. vTM2v ≤ 0

3. vTM3v ≤ 1
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where

M0 =




A 0

0T 0


, M1 =



C− δD 0

0T −eδ


,

M2 =




E 0

0T −E


 and M3 =




B 0

0T c


.

Let V = vvT . Note that V is rank-1 and positive semidefinite. Therefore, Problem 3.8

can be equivalently written in a matrix-form as follows.

Problem 3.9.

maximize
V

Tr (VM0)

subject to 1. Tr (VM1) ≤ 0,

2. Tr (VM2) ≤ 0

3. Tr (VM3) ≤ 1

4. V � 0,

5. rank(V ) = 1.

Note that, in Problem 3.9, if Constraint 5 does not exist, we have a standard SDP

which can be solved exactly in polynomial time [10]. Therefore, we relax the problem by

removing the rank-constraint as follows.
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Problem 3.10.

maximize
V

Tr (VM0)

subject to 1. Tr (VM1) ≤ 0,

2. Tr (VM2) ≤ 0

3. Tr (VM3) ≤ 1

4. V � 0.

Note that Problem 3.10 is a standard SDP and can be solved exactly in polynomial time

using standard algorithms such as the interior-point algorithm [10]. This solution acts as an

upper bound to the solution of Problem 3.9 since the search space gets expanded with the

removal of Constraint 5. Furthermore, in our simulation experiments, we have observed

that Problem 3.10 does not yield a rank-1 solution. Therefore, we investigate Problem 3.8

using approximations based on randomization.

Stage 3: Randomization

Let ε ∼ N (0,V ) denote a random vector of size (2L + 1). In other words, since V =

E(εεT ), Problem 3.9 can be interpreted [34] as follows.

Problem 3.11.

maximize
V

Tr
[
E(εεT )M0

]

subject to 1. Tr
[
E(εεT )M1

]
≤ 0,

2. Tr
[
E(εεT )M2

]
≤ 0

3. Tr
[
E(εεT )M3

]
≤ 1.
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Figure 3.2: Improvement in KL Divergence with increasing number of samples M in the
randomization procedure

This interpretation motivates us to construct v∗ in the following manner.
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Let ε1, · · · , εM , be M vectors that are sampled from the distribution N (0,V ∗), where

V ∗ is the solution to Problem 3.10. Note that each of these vectors ε1, · · · , εM are potential

candidates to approximate the solution of Problem 3.8. Therefore, we pick the best solution

from the M available vectors as follows.

For m = 1, · · · ,M,

Sample εm from N (0,V ∗).

Evaluate f(m) = εTmM0εm

Find m∗ = arg max
m=1,··· ,M

f(m).

(3.19)

Therefore, we propose v∗ = εm∗ as the solution to Problem 3.8. From v∗, we evaluate

the approximate solution z∗ to Problem 3.6, as follows:

z∗ =




x∗

y∗


 =

(
µT2 v

)−1 (
µT1 v

)
(3.20)

where

µ1 =




1

...

1

0




and µ2 =




0

...

0

1



.

3.4 Simulation Results

Consider an example network withN = 10 sensors, each equipped withL = 5 transmitting

antennas, a total energy budget E = 2 and σ2
s = 1. We assume that the PoI is characterized

by θ = 1, with prior probabilities π0 = 1− π1 = 0.8. Furthermore, we assume that each of

the channel gains at both the FC and Eve are realizations of a standard Rayleigh distribu-

tion. In our simulations, we take 100 different realizations of this Rayleigh distribution in
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order to evaluate the average performance of our system in all our simulation results.

Before we investigate the performance of our network design, we first focus our at-

tention on the randomization procedure used in Stage 2 of our proposed algorithm. It is

well known that the randomization procedure approaches the optimal value with increasing

number of random samples, when there is only one non-convex constraint in the problem

statement [34]. But, since M1 and M2 are not positive semidefinite, there is no guarantee

for the convergence of the approximated solution to the optimal one. Therefore, we first

demonstrate the performance of the randomization procedure proposed to solve Problem

3.6 (single sensor case) for this example scenario when the tolerable Eve’s constraint is

given by δ = 0.5. We plot the KL Divergence at the FC due to a single sensor in Fig-

ure 3.2 and show that the system performance in terms of KL Divergence at FC by our

proposed approach improves with increasing number of random samples collected in the

randomization procedure presented in Stage 2 of our design-algorithm. Note that the solid-

line in Figure 3.2 corresponds to the average KL Divergence that the FC attains, while the

dotted-line corresponds to the average maximum KL Divergence attained at the FC in the

absence of the secrecy constraint, as given by Equation (3.13a). Since the performance of

the dotted-line is the optimal KL Divergence attained at the FC in the absence of a secrecy

constraint on Eve, it acts like an upper bound to the optimal solution to Problem 3.6. Note

that the randomization approach works well in our problem since the approximate solution

to n = 1 case converges to a value that is very close to the optimal solution.

Given that the randomization algorithm works well in the context of our problem frame-

work, we next illustrate the performance of our proposed design algorithm in two different

simulation results. In the first experiment, we plot DFC and DE for varying number of

random samples in the randomization procedure in Figure 3.3. As per our intuition, we

observe that the KL Divergences at both the FC and Eve increases with increasing number

of random samples. More specifically, in Figure 3.3a, we consider the scenario where the

FC has better channels than Eve (i.e. when σ2
fc ≤ σ2

e ). Here, we observe that the difference
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Figure 3.4: KL Divergences at both FC and Eve for increasing number of sensor antennas
L, when σ2

e = 0.5, N = 10 and α = 5.

between the KL Divergences at the FC and Eve increases with increasing number of sensor

antennas. On the other hand, in Figure 3.3b, we consider the opposite scenario where the

Eve has better channels than the FC (i.e. when σ2
fc ≤ σ2

e ). In this scenario, we observe a

tremendous improvement in the performance of the FC as the number of sensor antennas

increases.

In the second scenario, in Figure 3.4, we plot the relationship between DFC and DE

with respect to the number of sensor antennas L for different channel scenarios at the FC

respectively. Here, we clearly observe that, while DFC increases with increasing number

of antennas, DE decreases at a relatively slow rate. Furthermore, the intersection points

between the DFC and DE curves corresponding to a given value of σ2
fc give us the minimum

number of sensor antennas needed to ensure a greater KL Divergence at the FC than that
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of Eve.

3.5 Summary

In summary, we have proposed a transmit-diversity framework for detection networks

where the KL Divergence at the FC is maximized in the presence of a total energy bud-

get at each sensor and a constraint on the Eve’s KL Divergence. In this transmit-diversity

framework, the sensors are allowed to construct a transmission signal by distributing the

total energy between their observations and the artificial noise across multiple transmitting

antennas. In this chapter, we have proposed a two-stage approximate algorithm to find

efficient signaling at the sensors based on a greedy decomposition and random-sampling

procedures. We have presented numerical results to illustrate the performance of the pro-

posed design.
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CHAPTER 4

BYZANTINE ATTACKS IN INFERENCE

NETWORKS WITH M-ARY QUANTIZED

DATA

Statistical inferences are reliable only when the data-collection process is reliable. If the

sensing agents participating in the data-collection process are compromised, the inference

performance can be deteriorated significantly. Therefore, in this chapter, we investigate

the fundamental performance-limits of inference networks in the presence of Byzantine

attacks, in addition to proposing an anomaly-detection scheme to detect the compromised

agents in the network. We focus our attention on two inference problems, namely detection

and estimation, when the sensors quantize their data to a more general M -ary symbols,

with M = 2 (binary quantization) and M → ∞ (centralized inference networks) being

special cases.

The main contributions of the chapter are three-fold. First, in Section 4.2, we define

a Byzantine attack model for a sensor network with individual sensors quantizing their

observations into one of the M-ary symbols, when the attacker does not have complete

knowledge about the true state of the POI and thresholds employed by the sensors. We
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model the attack strategy as a flipping probability matrix, where (i, j)th entry represents

the probability with which the ith symbol is flipped into the jth symbol. Second, we show

that quantization into M-ary symbols at the sensors, as opposed to binary quantization, im-

proves both inference as well as security performance simultaneously. As a function of the

number of Byzantine nodes in the network, we derive the optimal flipping matrix for both

ideal and non-ideal (discrete memoryless) channels in Sections 4.3 and 4.4 respectively.

In Section 4.5, we investigate the optimal Byzantine attack in the context of distributed

detection and estimation when the attacker is resource-constrained to compromise enough

number of nodes in the network to blind the FC (to be defined in Section 4.2). Finally, in

Section 4.6, we extend the mitigation scheme presented by Rawat et al. in [52] to the more

general case where sensors generate M-ary symbols. We present numerical/simulation re-

sults to illustrate the performance of the proposed network-design.

4.1 Literature Survey

In the context of distributed inference networks, the sensing agents compress their obser-

vations by mapping them to one of the symbols in an alphabet set of size M , prior to

transmission to the FC. In the context of sensing agents with binary quantization (M = 2)

capabilities, a lot of work is done in the past to address Byzantine attacks in the context of

distributed inference networks (see a recent survey [68] by Vempaty et al.).

Byzantine attacks (proposed by Lamport et al. in [27]) in general, are arbitrary and

may refer to many types of malicious behavior. In this chapter, we focus only on the data-

falsification aspect of the Byzantine attack wherein one or more compromised nodes of the

network send false information to the FC in order to deteriorate the inference performance

of the network. A well known example of this attack is the man-in-the-middle attack [44]

where, on one hand, the attacker collects data from the sensors whose authentication pro-

cess is compromised by the attacker emulating as the FC, while, on the other hand, the
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attacker sends false information to the FC using the compromised sensors’ identity. In

summary, if the ith sensor’s authentication is compromised, the attacker remains invisible

to the network, accepts the true decision ui from the ith sensor and sends vi to the FC in

order to deteriorate the inference performance.

Marano et al., in [35], analyzed the Byzantine attack on a network of sensors carry-

ing out the task of distributed detection, where the attacker is assumed to have complete

knowledge about the hypotheses. This represents the extreme case of Byzantine nodes hav-

ing an extra power of knowing the true hypothesis. In their model, they assumed that the

sensors quantized their respective observations into M-ary symbols, which are later fused

at the FC. The Byzantine nodes pick symbols using an optimal probability distribution that

are conditioned on the true hypotheses, and transmit them to the FC in order to maximally

degrade the detection performance. Rawat et al., in [52], also considered the problem of

distributed detection in the presence of Byzantine attacks with binary quantizers at the sen-

sors in their analysis. Unlike the authors in [35], Rawat et al. did not assume complete

knowledge of the true hypotheses at the Byzantine attacker. Instead, they assumed that the

Byzantine nodes derive the knowledge about the true hypotheses from their own sensing

observations. In other words, a Byzantine node potentially flips the local decision made

at the node. It does not modify the thresholds at the sensor quantizers. Rawat et al. also

analyzed the performance of the network in the presence of independent and collaborative

Byzantine attacks and modeled the problem as a zero-sum game between the sensor net-

work and the Byzantine attacker. In addition to the analysis of distributed detection in the

presence of Byzantine attacks, a reputation-based scheme was proposed by Rawat et al.

in [52] for identifying the Byzantine nodes by accumulating the deviations between each

sensor’s decision and the FC’s decision over a time window of duration T . If the accumu-

lated number of deviations is greater than a prescribed threshold for a given node, then the

FC tags it as a Byzantine node. In order to mitigate the attack, the FC removes nodes which

are tagged Byzantine node from the fusion rule. Another mitigation scheme was proposed
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by Vempaty et al. [66], where each sensor’s behavior is learnt over time and compared to

the known behavior of the honest nodes. Any node with significant deviation in the learnt

behavior from the expected honest behavior is labeled a Byzantine node. Having learnt

their parameters, the authors also proposed the use of this information to adapt their fusion

rule so as to maximize the performance of the FC. In contrast to the parallel topology in

sensor networks, Kailkhura et al. in [21] investigated the problem of Byzantine attacks on

distributed detection in a hierarchical sensor network. They presented the optimal Byzan-

tine strategy when the sensors communicate their decisions to the FC in multiple hops of a

balanced tree. They assumed that the cost of compromising sensors at different levels of the

tree varies, and found the optimal Byzantine strategy that minimizes the cost of attacking a

given hierarchical network.

Soltanmohammadi et al. in [57] investigated the problem of distributed detection in the

presence of different types of Byzantine nodes. Each Byzantine node type corresponds to a

different operating point, and, therefore, the authors considered the problem of identifying

different Byzantine nodes, along with their operating points. The problem of maximum-

likelihood (ML) estimation of the operating points was formulated and solved using the

expectation-maximization (EM) algorithm. Once the Byzantine node operating points are

estimated, this information was utilized at the FC to mitigate the malicious activity in the

network, and also to improve global detection performance.

Distributed target localization in the presence of Byzantine attacks was addressed by

Vempaty et al. in [67], where the sensors quantize their observations into binary decisions,

which are transmitted to the FC. Similar to Rawat et al.’s approach in [52], the authors

in [67] investigated the problem of distributed target localization from both the network’s

and Byzantine attacker’s perspectives, first by identifying the optimal Byzantine attack and

second, mitigating the impact of the attack with the use of non-identical quantizers at the

sensors.

In this chapter, we extend the framework of Byzantine attacks when Byzantine nodes
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do not have complete knowledge about the true state of the phenomenon-of-interest (POI),

and when the sensors generate M-ary symbols instead of binary symbols. We also assume

that the Byzantine attacker is ignorant about the quantization thresholds used at the sen-

sors to generate the M-ary symbols.1 Under these assumptions, we address two inference

problems: binary hypotheses-testing and parameter estimation.

4.2 System Model

Consider an inference (sensor) network with N sensors, where α fraction of the nodes in

the network are assumed to be compromised (Refer to Figure 4.1a). These compromised

sensors transmit false data to the fusion center (FC) in order to deteriorate the inference

performance of the network. We assume that the network is designed to infer about a

particular phenomenon, regarding which sensors acquire conditionally-independent obser-

vations. We denote the observation of the ith sensor as ri. This observation ri is mapped

to one of the M symbols, ui ∈ {1, · · · ,M}. In a compromised inference network, since

the Byzantine sensors do not transmit their true quantized data, we denote the transmitted

symbol as vi at the ith sensor. If the node i is honest, then vi = ui. Otherwise, we assume

that the Byzantine sensor modifies ui = l to vi = m with a probability plm, as shown in

Figure 4.1b. For the sake of compactness, we denote the transition probabilities depicted

in the graph in Figure 4.1b using a row-stochastic matrix P, as follows:

P =




p11 p12 . . . p1M

p21 p22 . . . p2M

...
... . . . ...

pM1 pM2 . . . pMM



. (4.1)

1The well-known attacker-in-the-middle is one such example.
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Figure 4.1: Distributed Inference Network in the Presence of Byzantine Attacks
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Since the attacker has no knowledge of quantization thresholds employed at each sen-

sor, we assume that P is independent of the sensor observations. The messages v =

{v1, v2, · · · , vN} are transmitted to the fusion center (FC) where a global inference is made

about the phenomenon of interest based on v.

In order to consider the general inference problem, we assume that θ ∈ Θ is the pa-

rameter that denotes the phenomenon of interest in the received signal ri at the ith sensor.

If we are considering a detection/classification problem, θ is discrete (finite or countably

infinite). In the case of parameter estimation, Θ is a continuous set. Without any loss of

generality, we assume Θ = {0, 1, · · · , K − 1} if the problem of interest is classification.

Hence, detection is a special case of classification with K = 2. In the case of estimation,

we assume that Θ = R.

Based on this system model, we investigate the optimal Byzantine attack under different

scenarios in the remaining chapter. Furthermore, we also propose a mitigation scheme

where the FC computes a reputation index for each sensing agent to identify and remove

the compromised nodes from the fusion rule.

4.3 Optimal Byzantine Attacks: Noiseless Channels

Given the conditional distribution of ri, p(ri|θ), and the sensor quantization thresholds, λj

for 0 ≤ j ≤M , the conditional distribution of ui can be found as

P (ui = m|θ) =

∫ λm

λm−1

p(ri|θ)dri (4.2)

for all m = 1, 2, · · · ,M .

If the true quantized symbol at the ith node is ui = m, a compromised node will

modify it into vi = l as depicted in Figure 4.1b, and transmit it to the FC. Since the FC is

not aware of the type of the node (honest or Byzantine), it is natural to assume that node i

is compromised with probability α, where α is the fraction of nodes in the network that are
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compromised. Therefore, we find the conditional distribution of vi at the FC as follows.

P (vi = m|θ) = αP (vi = m|i = Byzantine, θ) + (1− α)P (vi = m|i = Honest, θ)

= α
M∑

l=1

P (ui = l|θ) · P (vi = m|ui = l, θ) + (1− α)P (ui = m|θ)

= α
M∑

l=1

plmP (ui = l|θ) + (1− α)P (ui = m|θ)

= α
∑

l 6=m

plmP (ui = l|θ) + [(1− α) + αpmm]P (ui = m|θ)

= [(1− α) + αpmm] +
∑

l 6=m

{αplm − [(1− α) + αpmm]}P (ui = l|θ).

(4.3)

The goal of a Byzantine attack is to blind the FC with the least amount of effort (minimum

α). To totally blind the FC is equivalent to making P (vi = m|θ) = 1/M for all 0 ≤

m ≤ M − 1. In Equation (4.3), the RHS consists of two terms. The first one is based on

prior knowledge and the second term conveys information based on the observations. In

order to blind the FC, the attacker should make the second term equal to zero. Since the

attacker does not have any knowledge regarding P (ui = l|θ), it can make the second term

of Equation (4.3) equal to zero by setting

αplm = (1− α) + αpmm, ∀ l 6= m. (4.4)

Then the conditional probability P (vi = m|θ) = (1−α) +αpmm becomes independent of

the observations ri (or its quantized version ui), resulting in equiprobable symbols at the

FC. In other words, the received vector v = {v1, v2, · · · , vN} does not carry any informa-
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tion about θ and, therefore, results in the most degraded performance at the FC. So, the FC

now has to solely depend on its prior information about θ in making an inference.

Having identified the condition in Equation (4.4) under which the Byzantine attack

makes the greatest impact on the performance of the network, we identify the strategy that

the attacker should employ in order to achieve this condition as follows. Since we need

P (vi = m|θ) = (1− α) + αpmm = 1/M,

α = M−1
(1−pmm)M

. To minimize α, one needs to make pmm = 0. In this chapter, we denote the

α corresponding to this optimal strategy that minimizes the Byzantine attacker’s resources

required to blind the FC as αblind. Hence,

αblind =
M − 1

M
.

Rearranging Equation (4.4), we have

1

α
= 1 + (plm − pmm) = 1 + plm ∀ l 6= m. (4.5)

By setting α to αblind, we have plm = 1/(M−1), ∀ l 6= m. That is, the transition probability

P is a highly-symmetric matrix. We summarize the result as a theorem as follows.

Theorem 4.1. If the Byzantine attacker has no knowledge of the quantization thresholds

employed at each sensor, then the optimal Byzantine attack is given as

plm =





1

M − 1
; if l 6= m

0 ; otherwise

αblind =
M − 1

M
.

(4.6)
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Figure 4.2: Improvement in αblind with increasing number of quantization levels
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Quantization bits Quantization levels Blinding fraction
(log2M) (M) (αblind)

1 21 = 2 0.5

2 22 = 4 0.75

3 23 = 8 0.875

4 24 = 16 0.9375

5 25 = 32 0.9688

6 26 = 64 0.9844

7 27 = 128 0.9922

8 28 = 256 0.9961

Table 4.1: Improvement in αblind with increasing number of quantization levels M , and
quantization bits, log2M

We term Equation (4.6) as the optimal Byzantine attack, since the FC does not get

any information from the data v it receives from the sensors to perform an inference task.

Therefore, the FC has to rely on prior information about the parameter θ, if available.

In Figure 4.2, we show how αblind scales with increasing quantization alphabet size, M .

Since the quantized symbols are encoded into bits, we also show an exponential increase

in αblind as the number of bits needed to encode the M symbols, i.e., log2M , increases.

This is also shown in Table 4.1. Note that, if the sensors use one additional quantization-

bit (2-bit quantization) in their quantization scheme instead of 1-bit quantization (binary

quantization), then the αblind increases from 0.5 to 0.75. This trend is observed with in-

creasing number of quantization bits, and when the sensors employ an 8-bit quantizer, then
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the attacker needs to compromise at least 99.6% of the sensors in the network to blind the

FC. Obviously, the improvement in security performance is not free as the sensors incur a

communication cost in terms of energy and bandwidth as the number of quantization bits

increases. Therefore, in a practical world, the network designer faces a trade-off between

the communication cost and the security guarantees.

Also, note that, when M = 2 (1-bit quantization), our results coincide with those of

Rawat et al. in [52], where the focus was on the problem of binary hypotheses testing in

a distributed sensor network. On the other hand, our results are more general as they ad-

dress any inference problem - detection, estimation or classification in a distributed sensor

network. Another extreme case to note is when M → ∞, in which case, αblind → 1. This

means that the Byzantine attacker cannot blind the FC unless all the sensors are compro-

mised.

4.4 Optimal Byzantine Attacks: Discrete Memoryless

Channels

Given that the messages v = {v1, v2, · · · , vN} are transmitted to the fusion center (FC),

we assume a discrete noise channel Q = [qmn] between the sensors and the FC, where qmn

is the probability with which vi = m is transformed to symbol zi = n at the ith sensor.

Based on the received z at the FC, a global inference is made about the phenomenon of

interest. In this section, we assume that the row-stochastic channel matrix Q is invertible

for the sake of tractability.

Given the transition probability matrix Q for the channel between the sensors and the

FC, we assume that the FC receives zi = n when the the ith sensor transmits vi = m, with

a probability qmn. The conditional distribution of zi = n under a given phenomenon θ, is
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given as

P (zi = n|θ) =
M∑

m=1

qmnP (vi = m|θ). (4.7)

Note that if Q is a doubly stochastic matrix, since
M∑

m=1

qmn = 1, it is sufficient for the

Byzantine attacker to ensure P (vi = m|θ) = 1
M

. Thus, by Theorem 4.1, we have the

following theorem when Q is a doubly stochastic matrix.

Theorem 4.2. If the channel matrix Q is doubly-stochastic, and if the Byzantine attacker

has no knowledge about the sensors’ quantization thresholds, then the optimal Byzantine

attack is given as

plm =





1

M − 1
; if l 6= m

0 ; otherwise

αblind =
M − 1

M
.

(4.8)

Therefore, we focus our attention to any general row-stochastic channel matrix Q,

where
M∑

m=1

qmn need not necessarily sum to unity for all n = 1, · · · ,M . In other words, the

Byzantine attacker has to find an alternative strategy to blind the FC, where P (zi = n|θ) =

1
M

. Substituting Equation (4.3) in Equation (4.7) and rearranging the terms, we have

P (zi = n|θ) =
M∑

m=1

qmnP (vi = m|θ)

=
M∑

m=1

qmn[(1− α) + αpmm]

+
M∑

m=1

qmn

{∑

l 6=m

{αplm − [(1− α) + αpmm]}P (ui = l|θ)
}

=
M∑

m=1

qmn[(1− α) + αpmm]

+
M∑

l=1

[∑

m 6=l

qmn{αplm − [(1− α) + αpmm]}
]
P (ui = l|θ).

(4.9)
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The goal of a Byzantine attack is to blind the FC with the least amount of effort (min-

imum α). To totally blind the FC is equivalent to making P (zi = n|θ) = 1/M for all

0 ≤ n ≤ M − 1. In Equation (4.9), the RHS consists of two terms. The first one is based

on prior knowledge and the second term conveys information based on the observations.

In order to blind the FC, the attacker should make the second term equal to zero. Since the

attacker does not have any knowledge regarding P (ui = l|θ), it can make the second term

of Equation (4.9) equal to zero by setting

∑

m 6=l

qmn{αplm − [(1− α) + αpmm]} = 0 for all 1 ≤ n, l ≤M. (4.10)

Then the conditional probability P (zi = n|θ) =
M∑

m=1

qmn[(1 − α) + αpmm] becomes in-

dependent of the observations ri (or its quantized version ui), resulting in equiprobable

symbols at the FC. In other words, the received vector z = {z1, z2, · · · , zN} does not carry

any information about u = {u1, u2, · · · , uN}, thus making FC solely dependent on its prior

information about θ in making an inference.

In order to identify the strategy that the attacker should employ to achieve the condition

in Equation (4.10), for all n = 1, · · · ,M , we need

P (zi = n|θ) =
1

M
,

or,
M∑

m=1

qmn {(1− α) + αpmm} =
1

M
.

(4.11)

In matrix form, we can rewrite Equation (4.11) as

(1− α)1TQ + αpTQ =
1

M
1T ,

where 1 is an all-one column-vector and p = [p11, · · · , pMM ]T is the column-vector of all
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diagonal elements of P. In other words,

α(1− p) = 1− 1

M

(
QT
)−1

1 (4.12)

Note that every element in the LHS of Equation (4.12) always lies between 0 and 1.

Therefore, the existence of the Byzantine’s optimal strategy relies on the following condi-

tion. In other words,

0 ≤
(
QT
)−1

1 ≤ M 1. (4.13)

If (4.13) does not hold, there does not exist an optimal strategy. Given that the condition in

Equation (4.13) holds, the minimum α can be found as follows.

αblind = min

{
1− 1

M

(
QT
)−1

1

}

= 1− 1

M
max

{(
QT
)−1

1
}
.

(4.14)

Therefore, p can be calculated as

p = 1− 1

αblind

(
1− 1

M

(
QT
)−1

1

)

=
1

αblindM

(
QT
)−1

1− 1− αblind
αblind

1.

(4.15)

Next, in order to find the rest of the P matrix, let us consider Equation (4.10). Adding

qln {αpll − [1− α + αpll]} on both sides to Equation (4.10), for all 1 ≤ n, l ≤M , we have

M∑

m=1

qmn{αplm − [(1− α) + αpmm]} = −qln(1− α)

or, α
M∑

m=1

qmnplm =
1

M
− qln(1− α).

(4.16)
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In matrix form, we have

αPQ =
1

M
1− (1− α)Q, (4.17)

where 1 is an all-one matrix. Equivalently, we have

P =
1

αM
1Q−1 − 1− α

α
I, (4.18)

where I is the identity matrix. Note that the vector p (comprising the diagonal elements of

P) obtained from Equation (4.18) is verified to be same as that from Equation (4.15).

In summary, we have the following theorem that provides the optimal Byzantine strat-

egy in the presence of noisy FC channels:

Theorem 4.3. Let the Byzantine attacker have no knowledge about the sensors’ quan-

tization thresholds, and, the FC’s channel matrix be Q. If Q is non-singular, and, if

0 ≤
(
QT
)−1

1 ≤ M1, then the optimal Byzantine attack is given as

αblind = 1− 1

M
max

{(
QT
)−1

1
}

P =
1

αblindM
1Q−1 − 1− αblind

αblind
I.

(4.19)

Note that, if the channel matrix Q is doubly-stochastic, we have Q1 = 1 and QT1 = 1.

Substituting these conditions in Equation (4.19), Theorem 4.3 reduces to Theorem 4.2.

Having identified the optimal Byzantine attack, one can observe that the attacker needs

to compromise a huge number of sensors (αblind = 1 − 1

M
max

{(
QT
)−1

1
}

) in the net-

work to blind the FC. Therefore, it is obvious that, in the case of a resource-constrained

attacker, the attacker compromises a fixed fraction of nodes α ≤ αblind in such a way that

the performance degradation at the FC is maximized. In our future work, we will inves-

tigate the problem of finding the optimal strategy in the context of resource-constrained

Byzantine attacks in the presence of noisy FC channels.
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4.5 Optimal Byzantine Attacks: Constrained Resources

4.5.1 Distributed Detection

In this section, we consider a resource-constrained Byzantine attack on binary hypotheses

testing in a distributed sensor network where the phenomenon of interest is denoted as θ

and is modeled as follows:

θ =





0; if H0

1; if H1

. (4.20)

In order to characterize the performance of the FC, we consider Kullback-Leibler Di-

vergence (KLD) as the performance metric. Note that KLD can be interpreted as the error

exponent in the Neyman-Pearson detection framework [13], which means that the proba-

bility of missed detection goes to zero exponentially with the number of sensors at a rate

equal to KLD computed at the FC. We denote KLD at the FC by DFC and define it as

follows:

DFC = EH0

[
log

(
P (v|H0)

P (v|H1)

)]

=
∑

m∈{1,··· ,M}N
P (v = m|H0) · log

(
P (v = m|H0)

P (v = m|H1)

) (4.21)

Since we have assumed that the sensor observations are conditionally independent,2 KLD

can be expressed as

DFC = NDFC , (4.22)

where

DFC =
M∑

m=1

P (v = m|H0) · log

(
P (v = m|H0)

P (v = m|H1)

)
.

Note that the optimal Byzantine attack, as given in Equation (4.6), results in equiprobable

2For notational convenience, sensor index i is ignored in the rest of the section.
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symbols at the FC irrespective of the hypotheses. Therefore, DFC = 0 under optimal

Byzantine attack, resulting in the blinding of the FC.

On the other hand, if the attacker does not have enough resources to compromise αblind

fraction of sensors in the network (i.e. α < αblind), an optimal strategy for the Byzantine

node is to use an appropriate P matrix that deteriorates the performance of the sensor

network to the maximal extent. In this section, we restrict our search to finding the optimal

P within a space of highly symmetric row-stochastic matrices, as given in Equation (4.23).

pjk =





p if j 6= k

1− (M − 1)p otherwise.
(4.23)

Thus, we formulate the problem as follows.

Problem 4.1. Given the value of α < αblind, find the optimal P within a space of highly

symmetric row-stochastic matrices, as given in Equation (4.23), such that

minimize
p

DFC

subject to 0 ≤ p ≤ 1

M − 1

Theorem 4.4 presents the optimal flipping probability that provides the solution to Prob-

lem 4.1. Note that this result is independent of the design of the sensor network and, there-

fore, can be employed when the Byzantine has no knowledge about the network.

Theorem 4.4. Given a fixed α <
M − 1

M
, the probability p that optimizes P within a space

of highly symmetric row-stochastic matrices, as given in Equation (4.23), such that DFC is

minimized, is given by

p∗ =
1

M − 1
. (4.24)

Proof. For the sake of notational simplicity, let us denote xm = P (u = m|H0) and ym =
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P (u = m|H1). Similarly, x̃m = P (v = m|H0) and ỹm = P (v = m|H1).

Rewriting Equation (4.3) in our new notation, we have

x̃m = α
∑

l 6=m

pxl + (1− α(M − 1)p)xm = αp+ (1−Mαp)xm (4.25)

and

ỹm = α
∑

l 6=m

pyl + (1− α(M − 1)p)ym = αp+ (1−Mαp)ym. (4.26)

Therefore, the KLD at the FC can be rewritten as

DFC =
M∑

m=1

x̃m log

(
x̃m
ỹm

)
. (4.27)

On partially differentiating DFC with respect to p, we have

∂DFC

∂p
=

∂

∂p

M∑

m=1

x̃m log

(
x̃m
ỹm

)

= α
M∑

m=1

[
(1−Mxm)

(
1 + log

x̃m
ỹm

)
− (1−Mym)

x̃m
ỹm

]

= α
M∑

m=1

(1−Mxm) + α
M∑

m=1

(1−Mxm) log
x̃m
ỹm
− α

M∑

m=1

(1−Mym)
x̃m
ỹm

.

(4.28)

Consider the first term in the RHS of Equation (4.28). Note that, since x = {x1, · · · , xM}

is a probability mass function, we have

M∑

m=1

(1−Mxm) = M −M
M∑

m=1

xm = M −M = 0.
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Therefore, Equation (4.28) reduces to

∂DFC

∂p
= α

M∑

m=1

(1−Mxm) log
x̃m
ỹm
− α

M∑

m=1

(1−Mym)
x̃m
ỹm

. (4.29)

Rearranging the terms in Equation (4.29), we have

∂DFC

∂p
= α

M∑

m=1

[
log

x̃m
ỹm
− x̃m
ỹm

]
− αM

M∑

m=1

xm log
x̃m
ỹm

+ αM

M∑

m=1

ym
x̃m
ỹm

. (4.30)

Let us denote the first term as T1. In other words,

T1 = α
M∑

m=1

[
log

x̃m
ỹm
− x̃m
ỹm

]
.

Let us now focus our attention on the other terms in the RHS of Equation (4.30). Sub-

stituting Equations (4.25) and (4.26) in the second and third terms of the RHS of Equation

(4.30), we have

∂DFC

∂p
= T1 −

Mα

1−Mαp

M∑

m=1

(x̃m − αp) log
x̃m
ỹm

+
Mα

1−Mαp

M∑

m=1

(ỹm − αp)
x̃m
ỹm

= T1 −
Mα

1−Mαp
D(x̃||ỹ) +

Mα

1−Mαp

{
M∑

m=1

αp log
x̃m
ỹm
−

M∑

m=1

αp
x̃m
ỹm

+
M∑

m=1

x̃m

}
,

(4.31)

whereD(x̃||ỹ) is the KLD between x̃ and ỹ and is, therefore, non-negative. Also, note that

in Equation (4.31), since x̃ = {x̃1, · · · , x̃M} is a probability mass function,
M∑

m=1

x̂m = 1.

Therefore, Equation (4.31) reduces to

∂DFC

∂p
= T1 −

Mα

1−Mαp
D(x̃||ỹ) +

Mα

1−Mαp
+

Mα2p

1−Mαp

M∑

m=1

[
log

x̃m
ỹm
− x̃m
ỹm

]
.

(4.32)
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Note that the last term in the RHS of Equation (4.32),

Mα2p

1−Mαp

M∑

m=1

[
log

x̃m
ỹm
− x̃m
ỹm

]
=

Mαp

1−Mαp
T1.

In other words,

∂DFC

∂p
=

(
1 +

Mαp

1−Mαp

)
T1 −

Mα

1−Mαp
D(x̃||ỹ) +

Mα

1−Mαp

=
1

1−Mαp
T1 −

Mα

1−Mαp
D(x̃||ỹ) +

Mα

1−Mαp
.

(4.33)

Rearranging the terms in Equation (4.33) and expanding T1, we have

∂DFC

∂p
= − Mα

1−Mαp
D(x̃||ỹ) +

Mα

1−Mαp
+

α

1−Mαp

M∑

m=1

[
log

x̃m
ỹm
− x̃m
ỹm

]

= − Mα

1−Mαp
D(x̃||ỹ) +

α

1−Mαp

M∑

m=1

[
log

x̃m
ỹm
−
(
x̃m
ỹm
− 1

)]
.

(4.34)

Since log x ≤ x − 1 for all x, we find that the second term in the RHS of Equation

(4.29) is negative. Therefore, we have

∂DFC

∂p
≤ 0. (4.35)

Since DFC is a non-increasing function of p, the optimal p, p∗, takes the maximum value

1/(M − 1).

Note that this solution is of particular interest to the Byzantine attacker since the solu-

tion does not require any knowledge about the sensor network design. Also, the attacker’s

strategy is very simple to implement.
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Numerical Results

For illustration purposes, let us consider the following example, where the inference net-

work is deployed to aid the opportunistic spectrum access for a cognitive radio network

(CRN). In other words, the CRs are sensing a licensed spectrum band to find the vacant

band for the operation of the CRN.

Let the observation model at the ith sensor be defined as follows.

ri = s(θ) + ni, (4.36)

where θ ∈ {0, 1}, s(θ) = µ · (−1)1+θ is a BPSK-modulated symbol transmitted by the

licensed (or the primary) user transmitter, and the noise ni is the AWGN at the ith sensor

with probability distribution N (0, σ2).

Therefore, the conditional distribution of ri underH0 andH1 can be given as N (−µ, σ2)

and N (µ, σ2) respectively. The range of ri spans the entire real line (R). However, we

assume that the quantizer restricts the support by limiting the range of output values to a

smaller range, say [−A,A]. This parameter A is called the overloading parameter [51] be-

cause the choice ofA dictates the amount of overloading distortion caused by the quantizer.

Within this restricted range of observations, we assume a uniform quantizer with a step size

(called the granularity parameter) given by ∆ = 2
M−2

, which dictates the granularity dis-

tortion of the quantizer. In other words, the observation ri is quantized using the following

quantizer:

ui =





0; if −∞ < ri ≤ λ1

1; if λ1 < ri ≤ λ2

...

M − 1; if λM−1 < ri ≤ ∞

, (4.37)
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where

λi = A ·
[

2(i− 1)

M − 2
− 1

]
.

Note that, λ1 = −A and λM−1 = A represent the restricted range of the quantizer, as

discussed earlier. The ith sensor transmits a symbol vi to the FC, where vi = ui if it is

honest. In the case of the ith sensor being a Byzantine node, the decision ui is modified

into vi using the flipping probability matrix P as given in Equation (4.6).

Although the performance of a given sensor network is quantified by the probability

of error at the FC, we use a surrogate metric, as described earlier, called the KLD at the

FC (Refer to Equation (4.21)) for the sake of tractability. In an asymptotic sense, Stein’s

Lemma [13] states that the KLD is the rate at which the probability of missed detection

converges to zero under a constrained probability of false alarm. Therefore, in our numer-

ical results, we present how KLD at the FC varies with the fraction of Byzantine nodes α,

in the network.

For the above sensor network, we assume that µ = 1, σ2 = 1 and A = 2. In Figure 4.3,

we plot the contribution of each sensor in terms of KLD at the FC as a function of α, for 1-

bit, 2-bit, 3-bit and 4-bit quantizations, i.e., M = 2, 4, 8 and 16 respectively, at the sensors.

As per our intuition, we observe an improvement in both the detection performance (KLD)

as well as security performance (αblind). Therefore, for a given α, the Byzantine attack can

be mitigated by employing finer quantization at the sensors. Of course, the best that the

designer can do is to let the sensors transmit unquantized data to the FC, whether in the

form of observation samples or their sufficient statistic (likelihood ratio). In this case, we

can see that αblind = 1, since lim
M→∞

M − 1

M
= 1.

4.5.2 Distributed Estimation

In this section, we consider the problem of estimating a scalar parameter of interest, de-

noted by θ ∈ R, in a distributed sensor network. As described in the system model, we
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Figure 4.3: Contribution of a sensor to the overall KLD at the fusion center as a function
of α, for different number of quantization levels. The pentagrams on the x-axis correspond
to the αblind for 1-bit, 2-bit, 3-bit and 4-bit quantizations respectively from left to right.

assume that the ith sensor quantizes its observation ri into an M-ary symbol ui, and trans-

mits vi to the FC. If the ith node is honest, then vi = ui. Otherwise, we assume that the

sensor is compromised and flips ui into vi using a flipping probability matrix P. Under

the assumption that the FC receives the symbols v over an ideal channel, the estimation

performance at the FC depends on the probability mass function P (v|θ).

The performance of a distributed estimation network can be expressed in terms of the

mean-squared error, defined as E
[
(θ̂ − θ)2

]
. In the case of unbiased estimators, this mean-

squared error is lower bounded by the Cramer-Rao lower bound (CRLB) [53], which pro-

vides a benchmark for the design of an estimator at the FC. We present this result in Equa-

tion (4.38):
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E
[
(θ̂(v)− θ)2

]
≥ 1

IFC
, (4.38)

where

IFC = E

[(
∂ logP (v, θ)

∂θ

)2
]
. (4.39)

The term IFC is well known as the Fisher information (FI), and is, therefore, a performance

metric that captures the performance of the optimal estimator at the FC. Note that, as shown

in Equation (4.40), IFC can be further decomposed into two parts, one corresponding to

the prior knowledge about θ at the FC, and the other (denoted as JFC) representing the

information about θ, in the sensor transmissions v:

IFC = JFC + E

[(
∂ log p(θ)

∂θ

)2
]
, (4.40)

where

JFC = E

[(
∂ logP (v|θ)

∂θ

)2
]
. (4.41)

In most cases, a closed form expression for the mean-squared error is intractable and,

therefore, conditional Fisher information (FI) is used as a surrogate metric to quantify the

performance of a distributed estimation network. In this chapter, we also use conditional

FI of the received data v as the performance metric. Since the sensor observations are

conditionally independent resulting in independent v, we denote the conditional FI as JFC

and is defined as follows:

JFC = NJFC , (4.42)

where

JFC = E

[
∂

∂θ
logP (v|θ)

]2

= −E
[
∂2

∂θ2
logP (v|θ)

]
. (4.43)

Following the same approach as in Section 4.5.1, we consider the problem of finding an
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optimal resource-constrained Byzantine attack when α < αblind, by finding the symmetric

transition matrix P that minimizes the conditional FI at the FC. This can be formulated as

follows.

Problem 4.2. Given the value of α, determine the optimal P within a space of highly

symmetric row-stochastic matrices, as given in Equation (4.23), such that

minimize
p

JFC

subject to 0 ≤ p ≤ 1

M − 1

.

Theorem 4.5 presents the optimal flipping probability that provides a solution to Prob-

lem 4.2. Note that this result is independent of the design of the sensor network and,

therefore, can be employed when the Byzantine has no knowledge about the network.

Theorem 4.5. Given a fixed α <
M − 1

M
, the flipping probability p that optimizes P over

a space of highly symmetric row-stochastic matrices, as given in Equation (4.23), by mini-

mizing JFC is given by

p∗ =
1

M − 1
.

Proof. For the sake of notational simplicity, we let zm = P (u = m|θ). Similarly, z̃m =

P (v = m|θ). Using this notation in Equation (4.43), we have

JFC =
M∑

m=1

P (v = m|θ)
(
∂ logP (v = m|θ)

∂θ

)2

=
M∑

m=1

z̃m

(
∂ log z̃m
∂θ

)2

= (1−Mαp)2

M∑

m=1

1

z̃m

(
∂zm
∂θ

)2

.

(4.44)
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Partially differentiating JFC with respect to p, we have

∂JFC
∂p

= 2(1−Mαp)(−Mα)
M∑

m=1

1

z̃m

(
∂zm
∂θ

)2

+ (1−Mαp)2

M∑

m=1

(
− 1

z̃2
m

)
(α−Mαzm)

(
∂zm
∂θ

)2

= −(1−Mαp)

[
2Mα

M∑

m=1

z̃m

(
1

z̃m

∂zm
∂θ

)2

+ (1−Mαp)
M∑

m=1

α

(
1

z̃m

∂zm
∂θ

)2

−(1−Mαp)
M∑

m=1

Mαzm

(
1

z̃m

∂zm
∂θ

)2
]

= −(1−Mαp)

[
α(1−Mαp)

M∑

m=1

(
1

z̃m

∂zm
∂θ

)2

+Mα(1 +Mαp)
M∑

m=1

zm

(
1

z̃m

∂zm
∂θ

)2
]
.

(4.45)

In Equation (4.45), we have a negative term multiplied by a non-negative term, and hence

we have
∂JFC
∂p

≤ 0. (4.46)

Since JFC is a non-increasing function of p, p∗ =
1

M − 1
, being the maximum value, is

the optimal solution to Problem 4.2.

Numerical Results

As an illustrative example, we consider the problem of estimating θ = 1 at the FC based

on all the sensors’ transmitted messages. Let the observation model at the ith sensor be

defined as follows:

ri = θ + ni, (4.47)
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where the noise ni is the AWGN at the ith sensor with probability distribution N (0, σ2).

The sensors employ the same quantizer as the one presented in Equation (4.37). The quan-

tized symbol, denoted as ui at the ith sensor, is then modified into vi using the flipping

probability matrix P, as given in Equation (4.6).

Figure 4.4 plots the conditional FI corresponding to one sensor, for different values of

α and M , when the uniform quantizer is centered around the true value of θ. Note that as

SNR increases (σ → 0), we observe that it is better for the network to perform as much

finer quantization as possible to mitigate the Byzantine attackers. On the other hand, if

SNR is low, coarse quantization performs better for lower values of α. This phenomenon

of coarse quantization performing better under low SNR scenarios, can be attributed to the

fact that more noise gets filtered as the quantization gets coarser (decreasing M ) than the

signal itself. On the other hand, in the case of high SNR, since the signal level is high,

coarse quantization cancels out the signal component significantly, thereby resulting in a

degradation in performance.
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(a) Low SNR case: σ = 1
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(b) High SNR case: σ = 0.01

Figure 4.4: Contribution of a sensor to the overall conditional FI at the FC as a function of α, for different number of quantization levels
when θ = 0 and A = 2. The pentagrams on the x-axis correspond to the αblind for 1-bit, 2-bit, 3-bit and 4-bit quantizations respectively
from left to right.
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4.6 Reputation-based Detection of Byzantine Nodes

Given that the distributed inference network is under Byzantine attack, we showed that the

performance of the network can be improved by increasing the quantization alphabet size

of the sensors. Obviously, in a bandwidth-constrained distributed inference network, the

sensors can only transmit with the maximum possible M , which is finite. In this section,

we assume that the network cannot further increase the quantization alphabet size due to

this bandwidth constraint. Therefore, we present a reputation-based Byzantine identifica-

tion/mitigation scheme, which is an extension of the one proposed by Rawat et al. in [52],

in order to improve the inference performance of the network.

4.6.1 Reputation-Tagging at the Sensors

As proposed by Rawat et al. in [52], the FC identifies the Byzantine nodes by iteratively up-

dating a reputation-tag for each node as time progresses. We extend the scheme to include

fine quantization scenarios, i.e., M > 2, and analyze its performance through simulation

results.

As mentioned earlier in the chapter, the FC receives a vector v of received symbols

from the sensors and fuses them to yield a global decision, denoted as θ̂. We assume that

the observation model is known to the network designer, and is given as follows:

ri = fi(θ) + ni, (4.48)

where fi(·) denotes the known observation model. We denote the quantization rule em-

ployed at the sensor as γ. Therefore, the quantized message at the sensor is given by

ui = γ(ri). As discussed earlier, the ith sensor flips ui into vi using a flipping probability

matrix P. Since the FC makes a global inference θ̂, it can calculate the squared-deviation
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di of each sensor from the expected message that it is to nominally transmit as follows:

di =
(
γ−1(vi)− fi(θ̂)

)2

, (4.49)

where γ−1(vi) is the inverse of the sensor quantizer γ(vi) and it is assumed to be the cen-

troid of the corresponding decision region of the quantizer vi.

Note that vi is the received symbol which characterizes the behavior (honest or Byzan-

tine) of the ith sensor, while fi(θ̂) is the signal that the FC expects the sensor to observe.

If the ith sensor is honest, we expect the mean of di to be small. On the other hand, if the

ith sensor is a compromised node, then the mean of di is expected to be large. Therefore,

we accumulate the squared-deviations di = {di(1), · · · , di(T )} over T time intervals and

compute a reputation tag Λi(di), as a time-average for the ith node as follows:

Λi =
1

T

T∑

t=1

di(t). (4.50)

The ith sensor is declared honest/Byzantine using the following threshold-based tagging

rule

Λi

Byzantine
≷

Honest
η. (4.51)

The performance of the above tagging rule depends strongly on the choice of η. Note

that the threshold η should be chosen based on two factors. Firstly, η should be chosen in

such a way that the probability with which a malicious node is tagged Byzantine is high.

Higher the value of η, lower is the chance of tagging a node to be Byzantine and vice-

versa. This results in a tradeoff between the probability of detecting a Byzantine vs. the

probability of falsely tagging an honest node as a Byzantine. Secondly, the value of M

also plays a role in the choice of η, and therefore, the performance of the tagging rule. We

illustrate this phenomenon in our simulation results.
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4.6.2 Optimal Choice of the Tagging Threshold as T →∞

In this chapter, we denote the true type of the ith node as Ti, where Ti = H corresponds to

honest behavior, while Ti = B corresponds to Byzantine behavior, for all i = 1, · · · , N .

Earlier, in this section, we presented Equation (4.51) which allows us to make inferences

about the true type. But, the performance of the Byzantine tagging scheme corresponding

the ith sensor is quantified by the conditional probabilities P (Λi ≥ η|Ti = T ), for both

T = H,B. In order to find the optimal choice of η in Equation (4.51), we continue with the

Neyman-Pearson framework even in the context of Byzantine identification, where the goal

is to maximize P (Λi ≥ η|Ti = B), subject to the condition that P (Λi ≥ η|Ti = H) ≤ ξ.

To find these two conditional probabilities P (Λi ≥ η|Ti = H) and P (Λi ≥ η|Ti = B),

we need a closed form expression of the conditional distributions, P (Λi|Ti = H) and

P (Λi|Ti = B) respectively. In practice, where T is finite, it is intractable to determine the

conditional distribution of Λi, which is necessary to come up with the optimal choice of η.

Therefore, in this section, we assume that T →∞ and present an asymptotic choice of the

tagging threshold η used in Equation (4.51).

As T → ∞, since di(t) is independent across t = 1, · · · , T , due to central-limit theo-

rem, (Λi|Ti = T ) ∼ N (µi,T , σi,T ), where

µi,T = E(Λi | Ti = T )

= E

[(
γ−1(vi(t))− θ̂(t)

)2

| Ti = T

] (4.52)

and
σ2
i,T = Var(Λi | Ti = T )

=
1

T
Var

[(
γ−1(vi(t))− θ̂(t)

)2

| Ti = T

] . (4.53)

In this section, we do not present the final form of µi,T and σi,T in order to preserve
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generality. Assuming that vi(t) is independent across sensors as well as time, the mo-

ments of di can be computed for any given FC’s inference θ̂(t) at time t about a given

phenomenon. Although the final form of µi,T and σi,T is not presented, since di(t) is a

function of v, we present the conditional probability of (vj|Ti = T ) in Equation (4.54),

which is necessary for the computation of µi,T and σi,T .

P (vj|Ti = T ) =

∫
P (vj|θ,Ti = T )p(θ)dθ, (4.54)

where P (vj|θ,Ti = T ) can be calculated as follows:

P (vj = m|θ,Ti = H) =





P (uj = m|θ), if j = i

(1− πBH)P (uj = m|θ) +

πBH

M∑

k=1

pkmP (uj = k|θ), if j 6= i

(4.55)

and

P (vj = m|θ,Ti = B) =





M∑

k=1

pkmP (uj = k|θ), if j = i

(1− πBB)P (uj = m|θ) +

πBB

M∑

k=1

pkmP (uj = k|θ), if j 6= i

, (4.56)

where πBH = P (Tj = B|Ti = H) and πBB = P (Tj = B|Ti = B) are conditional

probabilities of the jth node’s type, given the type of the ith node. Since there are α fraction

of nodes in the network, given that the FC knows the type of ith node as H , the conditional

probability of the jth node belonging to a type T is given by πBH =
Nα

N − 1
and πBB =
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Nα− 1

N − 1
.

Given the conditional distributions P (Λi|Ti = H) and P (Λi|Ti = B), we find the

performance of the Byzantine identification scheme as follows:

P (Λi ≥ η|Ti = H) = Q

(
η − µi,H
σi,H

)

P (Λi ≥ η|Ti = B) = Q

(
η − µi,B
σi,B

)
. (4.57)

Under the NP framework, the optimal η can be chosen by letting P (Λi ≥ η|i = H) =

β, when Λi is normally distributed conditioned on the true type of a given node. In other

words,

Q

(
η − µi,H
σi,H

)
= ξ (4.58)

or equivalently,

ηoptimal = µi,H + σi,HQ
−1(ξ). (4.59)

Note that, since P (vi|Ti = H) is a function of α, it follows that both µi,H and σi,H are

functions of α. Although we do not provide a closed-form expression for η as a function of

α, we provide the following example to portray how η varies with different values of α.

Example: Variation of η as a function of α

Consider a distributed estimation network with N = 5 identical nodes. Let the prior distri-

bution of the true phenomenon θ be the uniform distribution U (0, 1). We assume that the

sensing channel is an AWGN channel where the sensor observations is given by ri = θ+ni.

Therefore, the conditional distribution of the sensor observations is N (θ, σ2), when con-

ditioned on θ. We assume that the sensors employ the quantizer rule shown in Equation

(4.37) on their observations ri. At the FC, we let γ−1(·) be defined as the centroid function

that returns ci =
λi−1 + λi

2
. Let θ̂ =

1

M

N∑

i=1

γ−1(vi(t)) be the fusion rule employed at the
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FC to estimate θ.

Since the network comprises of identical nodes, without any loss of generality, we

henceforth focus our attention on the reputation-based identification rule at sensor-1. Sub-

stituting the above mentioned fusion rule in the squared-deviation d1 corresponding to

sensor-1 in Equation (4.49), we have

d1 =

(
γ−1(v1)− 1

M

5∑

i=1

γ−1(vi(t))

)2

=

(
M − 1

M
γ−1(v1)− 1

M

5∑

i=2

γ−1(vi(t))

)2

.

(4.60)

Let us denote

φij = E
{(
γ−1(vi)

)j |T1 = H
}

=
M∑

vi=1

[(
γ−1(vi)

)j
P (vi|T1 = H)

]
,

for all i = 1, · · · , 5 and j = 1, 2, · · · ,∞. Here, P (vi|T1 = H) can be computed using

Equation (4.55) as follows:

P (vi = m|T1 = H) =

∫ ∞

−∞
P (vi = m|θ,T1 = H) p(θ)dθ

=

∫ 1

0

P (vi = m|θ,T1 = H) dθ

=





a1,m if i = 1

Nα

(N − 1)(M − 1)
+

(
1− MNα

(N − 1)(M − 1)

)
ai,m otherwise.

(4.61)

where ai,m =

∫ 1

0

P (ui = m|θ) dθ, for all i = 1, · · · , N . Note that, since all the nodes
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in the network are identical, P (ui|θ) is independent of the node-index i, and therefore,

φij = φ2j , for all i 6= 1.

Thus, the conditional mean and variance, µ1H and σ2
1H , are given as follows for the

special case of N = 5:

µ1H = E



(
M − 1

M
γ−1(v1)− 1

M

5∑

i=2

γ−1(vi(t))

)2

| Ti = H




=
1

M2
E



(

(M − 1)γ−1(v1)−
5∑

i=2

γ−1(vi(t))

)2

| Ti = H




=
1

M2

[
(M − 1)2φ12 + 4φ22 + 12φ2

21 − 8(M − 1)φ11φ21

]

(4.62)

and

σ2
1H =

1

T
Var

[(
γ−1(vi(t))− θ̂(t)

)2

| Ti = H

]

=
1

T

{
∆− µ2

1H

}
,

(4.63)

where

∆ = E



(
M − 1

M
γ−1(v1)− 1

M

5∑

i=2

γ−1(vi(t))

)4

| Ti = H




=
1

M4

[
(M − 1)4φ14 − 16(M − 1)3φ13φ21 + 6(M − 1)2φ12{4φ22 + 12φ2

21}

−4(M − 1)φ11(4φ23 + 36φ22φ21 + 24φ3
21) + 4φ24 + 12φ23φ21

+36(φ23φ21 + φ2
22 + 2φ22φ

2
21) + 24(φ4

21 + 3φ22φ
2
21)
]
.

(4.64)
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Figure 4.5: Variation of the optimal tagging threshold η (in the asymptotic sense, where T →∞) as a function of α
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Thus, for ξ = 0.01, we compute the tagging threshold η numerically as shown in

Equation (4.59), and plot the variation of η as a function of α in Figure 4.5. Note that, in

our numerical results, we observe that the optimal choice of η is a convex function of α,

where the curvature of the convexity decreases with increasingM . This can be clearly seen

from Figure 4.5b, where we only plot the case of M = 7. We observe a similar behavior

for all the other values of M , and therefore, present the case of M = 7 to illustrate the

convex behavior of η. In other words, for very large values of M , the choice of η becomes

independent of α, for any fixed α ≤ αblind.

4.6.3 Simulation Results

In order to illustrate the performance of the proposed reputation-based scheme, we consider

a sensor network with a total of 100 sensors in the network, out of which 20 are Byzantine

sensors. Let the sensor quantizers be given by Equation (4.37) and the fusion rule at the FC

be the MAP rule, given as follows:

N∑

i=1

log

(
P (vi|H1)

P (vi|H0)

)
θ̂=1

≷
θ̂=0

log
p0

p1

. (4.65)

Figure 4.6 plots the rate of identification of the number of Byzantine nodes in the net-

work for the proposed reputation-based scheme for different sizes of the quantization al-

phabet set. Note that the convergence rate deteriorates as M increases. This is due to the

fact that the Byzantine nodes have increasing number of symbol options to flip to, because

of which a greater number of time-samples are needed to identify the malicious behavior.

In addition, we also simulate the evolution of mislabelling an honest node as a Byzantine

node in time, and plot the probability of the occurrence of this event in Figure 4.7. Just

as the convergence deteriorates with increasing M , we observe a similar behavior in the

evolution of the probability of mislabelling honest nodes. Another important observation

in Figure 4.7 is that the probability of mislabelling a node always converges to zero in time.
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Figure 4.6: Rate of identification of the number of Byzantine nodes in time for different
number of quantization levels

Similarly, we simulate the evolution of mislabelling a Byzantine node as an honest one in

time in Figure 4.8. We observe similar convergence of the probability of mislabelling a

Byzantine node as an honest node to zero, with a rate that decreases with increasing num-

ber of quantization levels, M . Therefore, Figures 4.6, 4.7 and 4.8 demonstrate that, after a

sufficient amount of time, the reputation-based scheme always identifies the true behavior

of a node within the network, with negligible number of mislabels.

4.7 Summary

In summary, we have modeled the problem of distributed inference with M-ary quantized

data in the presence of Byzantine attacks, under the assumption that the attacker does not
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Figure 4.7: Evolution of the probability of mislabelling an honest node as a Byzantine in
time for different number of quantization levels

have knowledge about either the true hypotheses or the quantization thresholds at the sen-

sors. We found the optimal Byzantine attack that blinds the FC in the case of any inference

task for both noiseless and noisy FC channels. We have also considered the problem of

resource-constrained Byzantine attack (α < αblind) for distributed detection and estimation

in the presence of resource-constrained Byzantine attacker for the special case of highly

symmetric attack strategies in the presence of noiseless channels at the FC. From the in-

ference network’s perspective, we have presented a mitigation scheme that identifies the

Byzantine nodes through reputation-tagging. We have also shown how the optimal tagging

threshold can be found when the time-window T →∞. Finally, we have also investigated

the performance of our reputation-based scheme in our simulation results, and showed that

our scheme always converges to finding all the compromised nodes, given sufficient amount
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of time.
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CHAPTER 5

JAMMING ATTACKS IN DISTRIBUTED

DETECTION: POWER-ALLOCATION

AND PLACEMENT

Interference has always been a nuisance in the design of any electronic system. Most of

the past literature had addressed noise-like interference which disrupts the system uninten-

tionally. In contrast, jamming attacks are designed to introduce interference intentionally

so as to cause maximal degradation in their performance. In this chapter, we assume that

the sensors use a multiple access channel (MAC) to communicate their messages to the

FC. Given that there are fundamentally two types of channels in an inference network,

namely the sensing channel and the communication channel (MAC), we consider a general

jamming attack model which allows the jammer to distribute its energy across these two

channels. Such attack models are particularly useful in some practical applications such as

radar networks and cooperative spectrum sensing in cognitive radio (CR) networks where

the sensing channel can be jammed using an electromagnetic signal1.

1In other applications where the PoI does not emit an electromagnetic signal, we can let the energy de-
ployed in the sensing channel to be zero.



124

5.1 Literature Survey

Jamming attacks have traditionally been addressed in communication systems, where sev-

eral mitigation schemes have been proposed based on low probability of intercept (LPI)

techniques such as spectrum spectrum technology [38, 50] and adaptive filtering mech-

anisms [72]. Recently, a few authors have modeled the interaction between decision-

theoretic systems and jammers in a game-theoretic framework [2, 4, 55].

In the context of detection networks, there have been a few papers in the past which

addressed the problem of jamming attacks. In particular, in the context of ad-hoc wire-

less sensor networks, Wood and Stankovic have discussed several denial-of-service (DoS)

attacks in [74]. In [31], Li et al. presented optimal ad-hoc sensor network and jammer de-

signs under perfect knowledge of the channel-state information of all the channels. In the

context of spectrum sensing in cognitive radio networks, Li et al. [29] proposed a channel-

hopping design for multi-band spectrum sensing in cognitive radio networks under a game-

theoretic framework, where the radio tries to move from one channel to another in order to

evade interferers. In this chapter, we consider the problem of finding the optimal jamming

attack, which maximizes the error probability in a simple distributed detection network

where there is one sensor and one FC.

5.2 System Model

Consider a simple detection network in a one-dimensional field as shown in Figure 5.1,

where all the entities in our model lie on a straight line. We assume that our network model

consists of a single sensing agent located at xs and the FC located at xfc = 0. Let the

PoI be located at xt. Let the two hypotheses corresponding to the absence and presence of

PoI be denoted as H0 and H1 respectively, each with a prior probability P (H0) = p0 and

P (H1) = p1 = 1− p0.

Consider a random jammer located at xJ , trying to maximally degrade the performance
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FC Sensor S Target T

xfc = 0 xs xt

Jammer J
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Figure 5.1: Detection Network Model

of the network under a power constraint PJ . Therefore, the jammer distributes the available

power between the two channels: the sensing channel and the communication channel. Let

the two jamming signals be denoted as ws and wfc corresponding to the sensing and the

communication channels respectively. We assume that these two jamming signals follow

ws ∼ N (0, σ2
Ws

) and wfc ∼ N (0, σ2
Wfc

) respectively. Thus, the power constraint on the

jammer can be formally stated as σ2
Ws

+ σ2
Wfc
≤ PJ .

In this chapter, we assume that the observation at the ith sensing agent is modeled as

follows.

rs = hs · θ + gs · ws + ns (5.1)

where hs =
1

1 + α(xi − xt)n
and gs =

1

1 + α(xi − xJ)n
are the path-loss coefficients to

the PoI-sensor channel and the jammer-sensor channel respectively, both with exponent n

and attenuation factor α. We assume that the PoI’s state is modeled using a binary variable

θ, which takes the value 0 under hypothesis H0, and 1 otherwise. Furthermore, we assume

that ni ∼ N (0, σ2
s).

The sensor processes its observation rs into a binary antipodal symbol u using the

following quantizer rule.

rs
u=+1

≷
u=−1

λs. (5.2)

Let PF and PD be the probabilities of false alarm and detection respectively, at the sensor.

Assuming that the path-loss coefficients for all the channels are known, we have

PF = P (rs ≥ λs|H0) = Q


 λs√

σ2
s + g2

sσ
2
Ws


 (5.3a)
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PD = P (rs ≥ λs|H1) = Q


 λs − hs√

σ2
s + g2

sσ
2
Ws


 (5.3b)

When the sensor transmits this binary symbol u, the FC receives a signal

rfc = hfcu+ gfcwfc + nfc, (5.4)

where hfc and gfc are path-loss coefficients for the communication channel and the jammer-

to-FC channel respectively. The FC makes a global inference regarding the PoI using the

following decision rule:

rfc
H1

≷
H0

λfc. (5.5)

We consider error probability at the FC as the performance metric, which is defined as

PE = p0QF + p1(1−QD) (5.6)

where

QF = P (rfc ≥ λfc|H0) = PFQ


 λfc − hfc√

σ2
fc + g2

fcσ
2
Wfc


+(1−PF )Q


 λfc + hfc√

σ2
fc + g2

fcσ
2
Wfc


 ,

(5.7a)

QD = P (rfc ≥ λfc|H1) = PDQ


 λfc − hfc√

σ2
fc + g2

fcσ
2
Wfc


+ (1−PD)Q


 λfc + hfc√

σ2
fc + g2

fcσ
2
Wfc




(5.7b)

are the false alarm and detection probabilities at the FC respectively.

In this chapter, we assume that the thresholds λs and λfc are the optimal thresholds that

minimize the error probability of the detection network in the absence of the jammer. In

the following subsection, we compute these optimal thresholds at both the sensor and the

FC.
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5.2.1 Network Design in the Absence of Jammer

In this subsection, we find the optimal thresholds λs and λfc, such that the error probability

PE is minimized in the absence of a jammer. Since there is no jamming signal in our model,

we have ws = wfc = 0. Consequently, the average power of the jamming signals reduces

to σ2
Ws

= σ2
Wfc

= 0. Therefore, the design of a detection network reduces to the following

problem.

Problem 5.1. Determine the thresholds λs and λfc such that

arg min
λs,λfc

PE

where PE can be found by substituting σ2
Ws

= σ2
Wfc

= 0 in Equation (5.6). Assuming

that all the nodes’ locations are known, all the channel-coefficients are treated as constants

in the above problem. In such a case, the above problem of designing the detection rules

jointly at the sensors and the FC is NP-Hard in general [63]. Therefore, we provide closed-

form expressions for the thresholds λs and λfc by addressing the above problem in a person-

by-person-optimization (PBPO) framework.

Theorem 5.1. The optimal thresholds λs and λfc that minimize PE in a PBPO manner, in

the absence of the jammer are given by

λs =
hs
2
− σ2

s

hs
ln
p1

p0

(5.8a)

λfc =
σ2
fc

2hfc
ln


1 +

p1 − p0

p0Q

(
λs
σs

)
− p1Q

(
λs − hs
σs

)


 (5.8b)

Proof. First, we consider the optimization at the sensing agents. The optimal detector at

the local sensing agents can be calculated from its likelihood ratio test (LRT), which is
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defined as follows.
p(rs|H1)

p(rs|H0)

H1

≷
H0

p0

p1

(5.9)

Substituting the conditional distributions p(rs|H0) and p(rs|H1), and applying loga-

rithms on both sides, we have

1

2σ2
s

[
r2
s − (rs − hs)2

] H1

≷
H0

ln
p0

p1

(5.10)

On further simplification, we find that the optimal local detection rule is given by

rs
u=1

≷
u=0

(
hs
2
− σ2

s

hs
ln
p0

p1

)
, λs. (5.11)

Similarly, the optimal decision rule at the FC is an LRT, which is given as follows.

p(rfc|H1)

p(rfc|H0)

H1

≷
H0

p0

p1

. (5.12)

On simplification, we get

rfc
H1

≷
H0

σ2
fc

2hfc


1 +

p1 − p0

p0Q

(
λs
σs

)
− p0Q

(
λs − hs
σs

)


 , λfc. (5.13)

Given that the network employs the thresholds presented in Theorem 5.1, we investi-

gate optimal strategies at the jammer in terms of its location and power distribution across

sensing and communication channels under the assumption that the jammer has complete

information regarding the detection network. Note that the impact due to such a genie-aided

jammer serves as an upper-bound on the performance loss at the FC.
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5.3 Numerical Study of Optimal Jamming Attack

In this section, we investigate the problem in which the jammer’s goal is to optimize its

attack within the total available power by inflicting maximum performance deterioration

to the detection network. We assume that the jammer has three control parameters - one

being its location xJ , and the other two being the energy distributions to the sensing and

the communication channels, namely σ2
Ws

and σ2
Wfc

respectively. The jammer distributes

its total available power optimally between the sensing and the communication channels,

while simultaneously finding its optimal location so that the error probability at the FC is

maximized.

We state this problem formally, as follows.

Problem 5.2. Given the detection network as stated in Theorem 5.1, determine the optimal

power distribution at the jammer as follows.

maximize
σ2
ws
,σ2

wfc
,xJ

PE

subject to 1. E(w2
s) + E(w2

fc) ≤ PJ .

where Condition 1 represents the total power constraint at the jammer. Furthermore,

we also assume that the jammer has complete knowledge about the detection network - the

decision rules, node locations and also the prior information about the PoI. Therefore, this

genie-aided scheme, although not feasible in practice at the jammer, serves as an upper

bound on the impact that the jammer can cause on the CR network.

Due to the complicated structure of PE with respect to the three jammer’s parameters

xJ , σ2
Ws

and σ2
Wfc

, the problem is analytically intractable. Therefore, we investigate the

optimal jammer’s strategy numerically in the following subsection.
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5.3.1 Results and Discussion

In our numerical results, we assume isotropic signal power attenuation models for all the

channels’ gains where the decaying exponent n varies between 2 and 3 as in free-space

RF propagation models. We further assume σs = σfc = 0.1 in our results in Figures

5.2, 5.3, 5.4 and 5.5. In Figures 5.2a, 5.3a, 5.4a and 5.5a, the blue curve indicates the

error-probability at the FC as a function of jammer’s location, and the red curve represents

the the performance of the cognitive radio network in the absence of the jammer. Note

that, as the jammer moves away from the network, we observe that the impact of jammer’s

attack becomes weaker and approaches the red curve even though the jammer employs

optimal σ2
Ws

and σ2
Wfc

. On the other hand, Figures 5.2b, 5.3b, 5.4b and 5.5b show how

the power is optimally distributed by the jammer between the sensing (red curve) and the

communication (green curve) channels.

Note that in Figures 5.2, 5.3 and 5.4, we observe that the optimal jamming attack against

the network is to employ the total available energy to either jam the sensor’s channel or the

FC’s channel. The attack is more severe if the jammer is located closer to the CR. As

the observations are processed in the CR, noise margin also increases, not allowing the

jammer to maximally degrade the transmission channels at the FC. Since the maximum

useful information about the PU activity is available at the CR receptions (data-processing

inequality from information-theory [16]), the jammer tries to invest more resources on

jamming the CR receptions if it is located close to the CR. Note that if the jammer is far

away from the FC, then the optimal attack is to direct all its energy to jam the sensor itself.

If the jammer is closer to the FC, then the jammer has to distribute its energy between the

two channels to bring maximal impact to the CR network.
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Figure 5.2: Optimal Jamming attack when xs = 3, xt = 6, p0 = 0.5, α = 1, PJ = 0.5 and n = 2
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Figure 5.3: Optimal Jamming attack when xs = 3, xt = 6, p0 = 0.5, α = 1, PJ = 0.5 and n = 2.3
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Figure 5.4: Optimal Jamming attack when xs = 2, xt = 6, p0 = 0.5, α = 1, PJ = 0.5 and n = 2
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Figure 5.5: Optimal Jamming attack when xs = 1, xt = 6, p0 = 0.5, α = 1, PJ = 0.5 and n = 2
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One can also observe from Figures 5.2 and 5.3 that as the decaying exponent increases,

the performance of the network degrades. Also, the jammer has a choice to be closer to

either the sensor or the fusion center due to the multimodal nature of PE as a function of

xJ . While in the case of Figures 5.4 and 5.5, as compared to Figure 5.2, the CR node is

very close to the FC, while the PU transmitter is located far away from the CR network.

Hence the jammer has greater impact when it is close to the network. Note that PE is now

a unimodal quasi-convex function of the location of the jammer, xJ since the jammer need

not distribute its energy due to the close proximity of FC to the CR node.

5.4 Summary

In this chapter, we proposed a novel attacking scheme for the jammer that can distribute its

limited resources over different possible channels utilized for communication in a cognitive

radio network. A specific example was considered for the network design where the CR

network has only one CR node, to illustrate how a jammer can attack a given network. We

presented the optimal distribution of jammer’s energy resource between the sensing and the

communication channels, and also illustrated how the jammer chooses an optimal location

in our simulation results. We have also presented an interesting scenario where the jammer

totally focuses its attack on the sensor’s reception alone, irrespective of its location.
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CHAPTER 6

JAMMING ATTACKS IN CENTRALIZED

DETECTION: STRATEGIC GAMES

In contrast to Chapter 5, we model a complete-information zero-sum game between a cen-

tralized detection network and the jammer in this chapter, where the jammer’s strategy is to

design its interfering signals rather than energy distribution across the sensing and the com-

munication channels. Furthermore, in this chapter, we consider a more powerful jamming

attack than the one in Chapter 5 [42, 43] by assuming multiple antennas at the jammer

for transmitting its interfering signals in both sensing and communication channels. We

choose the error probability at the FC as the performance metric (utility) in this game,

which the network tries to minimize by appropriately choosing the threshold in its fusion

rule, while the jammer tries to maximize it by choosing an appropriate jamming signal. We

find closed-form expressions for the optimal pure strategies and show that the jammer has

no impact on the error probability at the FC due to pure-strategies. We also prove that the

network and the jammer converge to one of these pure-strategy equilibria when they play

best-response strategies iteratively from any initial point within the space of all possible

strategy-profiles. In other words, the jammer has no incentive to employ pure strategies

since the network can nullify its impact completely. Therefore, we investigate the impact
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of mixed strategies on the network performance and show that the jammer is more effective

when it employs mixed strategies.

6.1 Literature Survey

In the past, several efforts have been made to model the interaction between jammers and

communication systems in a game-theoretic setting. In particular, a seminal paper [4]

by Basar addressed this framework for the first time in 1983, where the author modeled

the interaction between a point-to-point communication system and an intelligent jammer

as a complete-information zero-sum game in a decision-theoretic framework. While the

communication system is designed to minimize the mean-square error at the receiver, the

jammer tries to maximize this distortion. Assuming that the jammer is equipped to wire-

tap the communication channel, the paper presents optimal (equilibrium) strategies under

different channel conditions (low, mid and high signal-to-noise ratio at the receiver). Later,

several papers have been published in this topic with the label "correlated jamming" under

different scenarios and networked systems [6, 25, 56, 73]. For more details about this line

of work, the reader may refer to a well-written survey by Sagduyu et al. in [55].

In the context of inference networks, a few efforts have been made to study jamming

attacks in a game-theoretic setting. Apart from our work presented in Chapter 5 and [42]

within the context of detection networks, Akyol et al. in [2] have studied the interaction be-

tween a Gaussian sensor network (distributed estimation network with a Gaussian source)

and a jammer. While the network is designed to minimize the receiver’s mean square er-

ror, the jammer employs a strategy to maximize the distortion. In this paper, the authors

assume that the jammer can also acquire observations regarding the PoI (Gaussian source),

and only jams the multiple access communication channel. They have shown that the opti-

mal network strategy requires sensors to collaborate in order to enable identical realization

of a randomized encoding scheme. The authors have also shown that the optimal strate-
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Figure 6.1: Detection Network in the Presence of a Jammer

gies are uncoded in one-shot games, and that a Stackelberg game (sequential interaction

between the network and the jammer) does not admit an equilibrium solution.

6.2 System Model

Consider a detection network with N sensing agents and a fusion center (FC) which makes

a global decision regarding the presence/absence of the phenomenon-of-interest (PoI) in

the presence of a disruptive jammer, as shown in Figure 6.1. Let H1 denote the hypothesis

when PoI is present, and H0 otherwise, with prior probabilities π1 and π0 respectively. We

assume that the PoI’s signal is modeled as θ = 1 under H1, and θ = 0 otherwise.

In this chapter, we denote the channel between the PoI and any given sensor as a sensing
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channel, and the channel between the sensors and the FC as a communication channel. We

assume that the communication channel at the FC is a multiple access channel (MAC),

where all the sensors’ messages are superimposed into one received signal at each antenna

at the FC. The disruptive jammer interferes with both the sensing and the communication

channels by introducing the jamming symbols ws and wfc respectively. For the sake of

notational convenience, we stack these jamming symbols together into a super-symbolw =

{ws,wfc}.

If αi and βil denote the known channel-gains at the ith sensing channel due to the PoI

signal and the lth antenna at the jammer respectively, the ith sensor acquires an observation

si as

si = αiθ +
L∑

l=1

βilwsl + ni, (6.1)

where ni is a zero-mean AWGN noise with variance σ2
s .

We assume that the ith sensor transmits its raw observation si over the MAC. The FC

receives the combined signal

rfc =
N∑

i=1

φisi +
M∑

m=1

ψmwfcm + nfc

=
N∑

i=1

φi

(
αiθ +

L∑

l=1

βilwsl + ni

)
+

M∑

m=1

ψmwfcm + nfc

= aθ + bTw + z,

(6.2)

where

a =
N∑

i=1

φiαi, z =
N∑

i=1

φini + nfc, (6.3a)

bT =

[
N∑

i=1

φiβi1 · · ·
N∑

i=1

φiβiL ψ1 · · · ψM

]
. (6.3b)



140

We assume that the FC employs a decision rule1

rfc
H1

≷
H0

λ, (6.4)

where λ ∈ Λ2 is a real-valued threshold designed to minimize the FC’s error probability

PE = π0QF + π1(1−QD). (6.5)

while the jammer simultaneously attempts to maximize PE by employing an appropriate

jamming signal w.

6.3 Jamming Games with Strict Power Constraints

In this section, we assume that the jammer has a strict power constraint, i.e., ||w||22 ≤ P .

We denote the set of all possible strategies at the jammer as

W , {w ∈ RL+M | ||w||22 ≤ P}.

Since rfc is a superposition of the PoI’s signal with several Gaussian random vari-

ables, the conditional distributions of the received signal at the FC are given by rfc|H0 ∼

N (bTw, σ2) and rfc|H1 ∼ N (a+ bTw, σ2), where σ2 = σ2
fc + σ2

s

N∑

i=1

φ2
i is the variance

of the noise signal z.

1Since this is a likelihood ratio test, all the other rules are dominated. Therefore, their removal does not
result any loss in network performance.

2Although λ can be any real number in practice, for the sake of tractability, we assume that Λ , [−R,R],
where R is a sufficiently large real number. For more details, the reader may refer to Theorem 5, Page 168
in [5] which guarantees the existence of a mixed strategy equilibrium.
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Consequently, the error probability PE at the FC stated in Equation (6.5), is given by

PE = π0QF + π1(1−QD)

= π0Q

(
λ− bTw

σ

)
+ π1

[
1−Q

(
λ− bTw − a

σ

)]
.

(6.6)

Within this framework, we investigate pure-strategy equilibria when the jammer has

strict power constraints. We also study the convergence of these pure-strategy equilibria

when the detection network and the jammer interact in a repeated game setting. In the

latter part of the section, we analyze the effectiveness of mixed strategies at the jammer in

comparison to the pure strategy equilibria.

6.3.1 Evaluation of Pure Strategy Equilibria

While the FC employs a strategy λ∗ that minimizes PE , the jammer employs a counter

strategy w∗ that maximizes PE . We model this interaction formally as a zero-sum game

between the FC and the jammer in the following problem statement.

Problem 6.1. Find the Nash equilibria {λ∗,w∗} ∈ Λ × W that satisfy the following in-

equality:

PE(λ∗,w) ≤ PE(λ∗,w∗) ≤ PE(λ,w∗)

∀ λ ∈ Λ, w ∈ W .

Before we solve the above problem statement, we investigate some important properties

of PE . These properties of PE guarantee the existence of pure-strategy Nash equilibria.

Lemma 6.1. For a given b, w and σ, PE is a quasiconvex function of λ.
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Proof. In order to prove quasiconvexity of PE , we adopt an approach, similar to that em-

ployed in Lemma 1 in [76]. For a fixed b, w and σ, we first differentiate PE with respect

to λ as follows.
∂PE
∂λ

= π0
∂QF

∂λ
− π1

∂QD

∂λ

= f1(λ) · [π1f2(λ)− π0]

(6.7)

where

f1(λ) =
1

σ
√

2π
exp

(
−(λ− bTw)2

2σ2

)
, (6.8a)

f2(λ) = exp

(
2a(λ− bTw)− a2

2σ2

)
. (6.8b)

Note that f1(λ) ≥ 0. Therefore, the value of f2(λ) decides the behavior of PE . One can

easily observe that f2(λ) is an exponential function of λ and is, therefore, a monotonically

increasing function of λ. Hence, there is only one value of λ = λ0 at which f2(λ) = 0. As

a result, we have
∂PE
∂λ
≥ 0 whenever λ ≥ λ0, and

∂PE
∂λ

< 0, otherwise. In other words,

PE is a quasi-convex function of λ.

Note that channel models with non-negative channel gains ensure that every element

in the vector b is non-negative. Since many practical channel models such as path-loss

model and Rayleigh fading model have non-negative channel gains, we assume that b is a

non-negative vector in the rest of this section.

Lemma 6.2. For a given λ, b and σ, PE is jointly quasiconcave inw, if every entry in b is

non-negative.

Proof. Given any two points w1,w2 ∈ W , PE is jointly quasiconcave [10] if and only if

PE(w1) ≤ PE(w2) ⇒ ∇wPE(w1) · (w1 −w2) ≤ 0. (6.9)

Therefore, we first consider the necessary condition PE(w1) ≤ PE(w2) and expand it



143

as follows:

PE(w1)− PE(w2) ≤ 0

⇔ π1

[
Q

(
λ− bTw1 − a

σ

)
−Q

(
λ− bTw2 − a

σ

)]

−π0

[
Q

(
λ− bTw1

σ

)
−Q

(
λ− bTw2

σ

)]
≥ 0

⇔
∫ y1

y2

g(y)dy ≥ 0.

(6.10)

where

g(y) =
1

σ
√

2π
exp

{
−(y − λ)2

2σ2

}

·
[
π1 exp

(
2a(λ− y)− a2

2σ2

)
− π0

]
,

(6.11)

and y1 = bTw1 and y2 = bTw2 are the integral limits.

Given that the values of b, λ and σ are fixed, we differentiate PE with respect to w to

have the following.

∇wPE(w1) = π0∇wQF (w1)− π1∇wQD(w1)

= −b · g(y1).

(6.12)

In other words, whenever Equation (6.10) holds true, we need to show that the following

condition holds true.

∇wPE(w1) · (w1 −w2) = −g(y1) · [y1 − y2] ≤ 0. (6.13)

Equivalently, we need to show that

g(y1) · [y1 − y2] ≥ 0. (6.14)

Before we prove the above condition, as given in Equation (6.14), we investigate the
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behavior of the function g(y). Note that the function g(y) is of the following form.

g(y) = f3(y) · [π1f4(y)− π0] , (6.15)

where

f3(y) =
1

σ
√

2π
exp

(
−(λ− y)2

2σ2

)
, (6.16a)

f4(y) = exp

(
2a(λ− y)− a2

2σ2

)
. (6.16b)

Note that f3(y) ≥ 0. Since f4(y) is a monotonically decreasing function of y, we have

g(y) ≥ 0 whenever y ≤ y0, and g(y) < 0 whenever y > y0, where y0 is the unique

zero-crossing point at which f4(y0) =
π0

π1

.

Therefore, we prove the theorem statement case-by-case as shown below.

CASE-1 [y0 ≤ y1, y2] Given that y0 ≤ y1, y2, we have g(y) ≤ 0 for any y between y1

and y2. In such a case, the necessary condition given in Equation (6.10) holds true when

y1 ≤ y2. In other words, g(y1) · [y1 − y2] ≥ 0 whenever Equation (6.10) holds true in this

case.

CASE-2 [y1, y2 ≤ y0] Given that y1, y2 ≤ y0, we have g(y) ≥ 0 for any y between y1

and y2. Therefore, the necessary condition in Equation (6.10) holds true when y2 ≤ y1. As

a result, g(y1) · [y1 − y2] ≥ 0 whenever Equation (6.10) holds true in this case.

CASE-3 [y1 ≤ y0 ≤ y2 or y2 ≤ y0 ≤ y1] Note that this is a trivial case. This is because

of the following. If y1 ≤ y0 ≤ y2, both g(y1) and (y1 − y2) are negative. On the other

hand, if y2 ≤ y0 ≤ y1, both g(y1) and (y1 − y2) are positive. Either way, their product

g(y1) · [y1 − y2] ≥ 0 whether or not, the necessary condition in Equation (6.10) holds

true.

Given that PE is quasi-concave-convex in nature, a pure strategy solution exists due
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to the classic Debreu-Glicksberg-Fan existence theorem [5, 17]. Therefore, we start by

investigating the necessary conditions that a pure-strategy equilibrium would satiate.

Proposition 6.1. The optimal threshold λ∗ = arg min
λ

PE(λ,w) for a fixed jammer’s strat-

egy w is given by

λ∗ = bTw + c (6.17)

where c =
1

2a

[
a2 + 2σ2 log

(
π0

π1

)]
is a constant. Furthermore, PE(λ = λ∗,w) is inde-

pendent of w.

Proof. We first consider the inner optimization in the max-min problem where we mini-

mize PE with respect to λ for a fixed jammer’s strategy w. The optimal λ = λ∗ satisfies

∂PE
∂λ

= f1(λ) · [π1f2(λ)− π0] = 0, (6.18)

where f1(λ) ≥ 0. Thus, if f2(λ) =
π0

π1

, we have
∂PE
∂λ

= 0. Substituting Equation (6.8b)

and rearranging terms, we have

λ∗ = bTw + c (6.19)

where c =
1

2a

[
a2 + 2σ2 log

(
π0

π1

)]
is independent ofw, and b is given in Equation (6.3b).

Given a fixed jammer’s strategy w, if the FC employs the optimal threshold λ∗, from

Equation (6.19), the error probability at the FC is given by

PE(λ∗,w) = π0Q
( c
σ

)
+ π1

[
1−Q

(
c− a
σ

)]
. (6.20)

Note that PE(λ∗,w) is independent of the jammer’s strategyw, as stated in the proposition

statement.

Note that the best response strategy employed by the network, as shown in Equation

(6.19), is unique for a fixed jammer’s strategy w. Furthermore, the jammer’s signal intro-

duces a linear shift to the point λ = c, which is optimal in the absence of the jammer.
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On the other hand, when we investigate the optimal jammer’s strategy w∗ by consider-

ing the min-max framework, we have the following proposition.

Proposition 6.2. The optimal jammer’s strategy w∗ = arg max
w

PE(λ,w) for a fixed

threshold λ satisfies

bTw∗ = λ− c. (6.21)

where c =
1

2a

[
a2 + 2σ2 log

(
π0

π1

)]
. Such a pure-strategy solution exists only when

c−
√
P · bTb ≤ λ ≤ c+

√
P · bTb. (6.22)

Proof. A similar approach to the proof of Proposition 6.1 can be followed in finding Equa-

tion (6.21). Therefore, we focus our attention in finding the existence condition, given in

Equation (6.22).

In order for a pure-strategy solution to exist, w∗ should lie within the set of strategies

that satisfy the jammer’s total power budget. In other words, we need (w∗)T w∗ ≤ P .

Therefore, the affine function given in Equation (6.21) should be within the squared-

distance of P units from the origin w = 0. In other words, we have

(λ− c)2

bTb
≤ P. (6.23)

Note that this condition can also be equivalently stated as given in Equation (6.22).

Note that the jammer’s best response strategy is not unique, as shown in Equation

(6.21). Indeed, there are infinite possibilities since the jammer can adopt any strategy on a

line segment without any regret.

Combining the results from Propositions 6.1 and 6.2, we have the following main result

of this section.
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Theorem 6.1. For every −b ≤ ε ≤ b,

λ∗ = c+

√
P

bTb
bTε, w∗ =

√
P

bTb
ε (6.24)

is a pure-strategy Nash equilibrium. At the above equilibrium point, the error probability

at the FC is given by

PE(λ∗,w∗) = π0Q
( c
σ

)
+ π1

[
1−Q

(
c− a
σ

)]
. (6.25)

Proof. As stated in Proposition 6.2, λ∗ varies between c −
√
P · bTb and c +

√
P · bTb.

Therefore, we first investigate the extreme points λ∗1 = c −
√
P · bTb and λ∗2 = c +

√
P · bTb.

We first consider the case where λ∗1 = c −
√
P · bTb. Comparing this threshold to

the optimal threshold from Equation (6.19), we have λ∗1 = bTw + c = c −
√
P · bTb.

On simplification, we find that w∗1 = −
√

P
bT b
b is the optimal jammer’s strategy. Thus,

λ∗1 = bTw + c = c −
√
P · bTb and w∗1 = −

√
P
bT b
b form a pure-strategy equilibrium.

Similarly, it is easy to show that λ∗2 = c +
√
P · bTb and w∗2 =

√
P
bT b
b is another pure-

strategy equilibrium.

Given these two pure-strategy equilibria, we find a parametric representation of all

possible pure-strategy Nash equilibria, as given below. Let

w∗ε =

√
P

bTb
ε (6.26)

where ε is the vector parameter that ranges from −b and b. Note that the two solutions

w∗1 and w∗2 both correspond to the parameter values ε1 = −b and ε = b respectively.

Furthermore, such a linear parameterization is valid because of the fact thatw∗ always lies

on the line bTw∗ = λ− c, as given in Equation (6.21).
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Substituting Equation (6.26) in Equation (6.19), we have

λ∗ε = c+

√
P

bTb
bTε. (6.27)

Since the equilibrium point satiates the necessary conditions presented in Propositions

6.1 and 6.2, the error probability at the FC is given by Equation (6.20).

6.3.2 Convergence in Repeated Games

In this section, we first investigate if the pure strategy equilibrium is attainable in practice

in a repeated setting. Since the network and the jammer do not communicate to agree and

play a pure strategy equilibria, it is necessary to analyze their convergence in a repeated

game setting. Therefore, in this section, we first investigate the convergence of the players’

strategies in a repeated game setting from any arbitrary strategy profile employed by the

network and the jammer. We denote the initial pure strategy profile as (λ0,w0), where the

total power of the initial jammer’s strategy w0 is within the jammer’s power budget P .

Lemma 6.3. Given any pure strategy profile (λ0,w0), the players always converge to one

of the equilibria presented in Theorem 6.1 in a perfectly-observable repeated-game irre-

spective of the order of their play.

Proof. In proving this lemma, we make an assumption that the players’ strategies are per-

fectly observable, i.e., the network makes noiseless observations regarding the jammer’s

strategy and vice-versa. Under such an assumption, we prove the lemma in two cases. In

the first case, we assume that the network takes the lead, followed by the jammer and so

on. In the latter case, we assume the opposite where the jammer takes the lead, followed

by the network and so on.

CASE-1 [N-J-N-J-· · · ] In this case, we assume that the network takes the lead. There-

fore, given the initial strategy profile (λ0,w0), the network chooses its best response from
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Proposition 6.1, which is

λ1 = bTw0 + c. (6.28)

Given that ||w0||22 ≤ P , without any loss of generality, we can represent w0 in the same

form as shown in Theorem 6.1. As a result, λ1 also has the form presented in Theorem 6.1.

Thus, the repeated game converges to an equilibrium point (λ1,w0) within one iteration.

CASE-2 [J-N-J-N-· · · ] In this case, we assume that the jammer takes the lead. There-

fore, given the initial strategy profile (λ0,w0), the jammer chooses its best response as

stated in Proposition 6.2. In other words, if λ0 lies between c−
√
P · bTb and c+

√
P · bTb,

the jammer chooses its best response w1a such that

bTw1a = λ0 − c. (6.29)

Otherwise, the jammer employs a strategy w1b = ±b where the sign of w1b matches to

sign(λ0 − c). In such a case, the network adopts a best response strategy

λ1 = c±
√
P · bTb. (6.30)

In summary, if λ0 lies between c−
√
P · bTb and c+

√
P · bTb, the repeated game con-

verges to an equilibrium point (λ0,w1a) in one iteration. Else, the repeated game converges

to an equilibrium point (λ1,w1b).
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6.4 Effectiveness of a Gaussian Jammer with Average

Power Constraint

Given that both the network and the jammer converge rationally to the pure strategy equi-

librium presented in Theorem 6.1, pure-strategies are practically ineffective at the jammer.

This is because the error probability at the FC under such equilibrium solutions is totally

independent of the jammer’s strategy. In fact, the error probability at the FC in the presence

of a jammer is identical to the FC’s performance in the absence of a jammer (i.e., w = 0).

In such a case, there is no incentive for the jammer to launch its attack as the network can

easily mitigate its impact with very minimal effort.

Given that pure strategies are not beneficial to the jammer, we now investigate if mixed

strategy equilibria can help deteriorate the network performance. For the sake of illustra-

tion and tractability, we further relax our problem by assuming that the jammer admits an

average power constraint. In other words, if W = E(wwT ) denotes the covariance matrix

of the jamming signalw, then we have Tr(W ) ≤ P . Furthermore, we assume that the jam-

mer employs additive Gaussian noise such that w ∼ N (0,W ). In the following lemma,

we demonstrate that a Gaussian jammer with an average power constraint, as stated above,

has a greater impact than that of a pure-strategy equilibrium.

Lemma 6.4. When the network employs its best response (mixed) strategy to the jammer’s

mixed strategy, the expected utility (average error probability) due to a Gaussian jammer

with an average power constraint is always greater than the error probability under pure-

strategy equilibrium.

Proof. Given a fixed threshold λ at the FC, the error probability at the FC turns out to be

P̃E(λ) = π0Q

(
λ√

σ2 + bTWb

)
+ π1

[
1−Q

(
λ− a√

σ2 + bTWb

)]
. (6.31)
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Note that P̃E(λ) is a quasiconvex3 function of λ. In other words, if the network employs

a mixed strategy, the optimal (best response) distribution is given by p(λ) = δ(λ∗), where

λ∗ = c+
1

a
bTWb log

π0

π1

is the optimal threshold that minimizes P̃E(λ), and δ(x) is a Dirac

delta function centered at x. Thus, the expected utility (minimum P̃E(λ)) due to a Gaussian

jammer is

U(W ) = π0Q



c+ bTWb

1

a
log

π0

π1√
σ2 + bTWb


+ π1


1−Q



c− a+ bTWb

1

a
log

π0

π1√
σ2 + bTWb





 .

(6.32)

Note that U(W ) is a quasiconvex4 function of W , with its minimum at W being an

all-zero matrix. In other words,

U(W ) ≥ PE(λ∗, w∗), (6.33)

where PE(λ∗, w∗) is given in Equation 6.25. Consequently, the jammer has every incentive

to use a mixed strategy rather than employing a deterministic (pure) strategy.

6.4.1 Illustrative Example

For the sake of illustration, we study the properties of saddle point equilibria in the fol-

lowing cognitive radio (CR) network example, where a Gaussian jammer (interferer) is

equipped with one antenna each for the sensing and the communication channels, to inject

a random Gaussian signal in each of these channels. We assume that there are N = 20

CRs in the network, whose locations are defined using a Binomial point process [71] over

the 10 × 10 grid centered about the origin. Furthermore, we assume that the FC, primary

user (PU) and the jammer are located at xfc = (0, 0), xt = (−3,−4) and xj = (1,−2)

respectively. We assume σs = 0.1, σfc = 0.1 and PJ = 0.5. Also, we assume free-space

3Proof is similar to our approach in Lemma 6.1.
4The proof is similar to our approach in Lemma 6.2.
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Figure 6.2: CR Network for π0 = 0.5 case

path loss shadowing with each path loss coefficient taking the form

√
1

(1 + d2
{·})

, where

d{·} is the propagation distance between the transmitter node and the receiver node in the

above mentioned system-model.
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Figure 6.4: CR Network for π0 = 0.8 case

First, in Figure 6.3, we present error probability as a function of λ, σWfc
and σWs for

the CR network shown in Figure 6.2. In this case, we let π0 = 0.5, which is the worst

case performance scenario of the network. The plots depict clearly both quasiconvexity

with respect to λ and monotonicity with respect to the interfering node’s parameters, σWfc

and σWs , especially when λ ≥ 0. In this case, as per our intuition, we numerically find

λopt =
a

2
.

Figure 6.5, on the other hand, presents the error probability as a function of λ, σWfc

and σWs for π0 = 0.8. We particularly present these results because π0 = 0.8 is found in

practice as pointed out by the FCC’s survey on spectrum utilization of licensed bands [77].

One can clearly note that the NE of the game from the network’s perspective has now

moved away from λ =
a

2
, due to the bias in the prior probabilities.
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One can also note from Figures 6.3 and 6.5 that in both the scenarios considered, the

optimal jammer degrades the individual CRs’ performance by allocating all the available

power to the sensing channel (σ2
Ws

= 0.5 and σ2
Wfc

= 0). This is similar to our numerical

results in Chapter 5, where we had studied the optimal jamming attack on a simple detection

network. Such a strategy can also be justified as per our intuition, since the jammer will

always invest all of its resources to interfere with the most vulnerable channel available (one

with maximum information about the spectrum availability) in order to have the maximal

impact on network performance. Given that the sensing channel carries the maximum

amount of information regarding the true state of the PoI, the jammer employs all its power

in the sensing channel to cause maximal impact on the network performance.

Note that all our results point to another important observation regarding the effec-

tiveness of mixed strategies at the jammer. A Gaussian jammer with enough resources

(PJ = 0.5 in this example) can bring the error probability PE close to 0.5, which is the

worse case performance at the FC. In other words, although the jammer has no incentive

to employ pure strategies, it can simply inject Gaussian signals into the sensing channel to

launch a very powerful denial-of-service attack on the detection network.

6.5 Summary

We have modeled the interaction between a centralized detection network and a jammer as a

zero-sum game. We have obtained a family of pure strategy Nash equilibria in closed-form,

and proved that the pure-strategy jamming attacks have no impact on the error probability

at the FC. We have also shown that both the players will converge to one of the equilibrium

points proposed, in a perfectly-observable repeated game irrespective of the order of their

play. We also showed that the jammer has an incentive to employ a mixed strategy since the

expected utility (average error probability due to mixed strategies) is always greater than

that in the case of pure-strategy equilibrium.
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CHAPTER 7

CONCLUDING REMARKS

7.1 Summary

With a broad range of applications, security threats in inference networks have a significant

impact on several practical domains. This dissertation focused on the design and analy-

sis of secure inference networks under three attack scenarios: (a) eavesdropping threats

in detection networks in Chapters 2 and 3, (b) Byzantine attacks in distributed inference

networks in Chapter 4, and, (c) jamming attacks in detection networks in Chapters 5 and 6.

Following is a brief summary of this dissertation.

In Chapter 2, we have considered the design of binary quantizers for secure distributed

detection networks in the presence of an eavesdropper. If the goal is to maximize the dif-

ference between the KL Divergences at the FC and Eve, we have shown that the optimal

binary quantizers are the same as when maximizing the KL Divergence at the FC alone.

In contrast, in the case of identical sensors and channels, we have proved that the opti-

mal binary quantizers at the sensors are likelihood-ratio test-based, and have presented a

numerical algorithm to find the optimal threshold. In the case of non-identical sensors

and channels, we have presented a greedy algorithm to find efficient, near-optimal binary

quantizers at the sensors. On the other hand, in Chapter 3, we have proposed an efficient
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transmit-diversity mechanism at the sensing agents (which are equipped with multiple an-

tennas) in the context of centralized detection networks. While the sensing agents amplify

and forward their raw observations to the FC, they also inject artificial noise in order to

confuse Eve. Since the problem of finding the optimal transmit-diversity mechanism is

non-convex, we presented a near-optimal solution using semidefinite relaxation.

In Chapter 4, we have investigated optimal Byzantine attacks in the presence of both

ideal and non-ideal (discrete, memoryless) communication channels, when the sensing

agents quantize their observations into an M -ary symbol. We have also studied optimal

resource-constrained Byzantine attacks when the attacker cannot compromise the blinding

fraction of nodes in the network. Furthermore, we have also proposed a novel deviation-

based reputation mechanism to identify Byzantine nodes in the network.

In Chapter 5, we have investigated an optimal jamming attack in a distributed detection

network, where the goal of the jammer is to maximize error probability at the FC by op-

timizing its placement and power allocation between the sensing and the communication

channels. Since the problem is non-convex, we have considered a simple network where

there is only one sensing agent. For the sake of illustration, we have assumed that all the

entities (sensing agent, FC, PoI and the jammer) lie on a straight line, and presented nu-

merical results that throw light on the jammer’s optimal strategy. In contrast, in Chapter 6,

we have modeled the interaction between the jammer and a centralized detection network

as a complete-information zero-sum game. We have found closed-form expressions for a

family of pure-strategy equilibria when there is a strict power constraint on the jammer. In

addition, we have also shown that the jammer has no incentive to employ a pure-strategy,

but instead, chooses mixed strategies to alleviate detection performance at the FC. We have

also investigated mixed strategy equilibria numerically in the presence of a Gaussian jam-

mer.
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7.2 Future Research Directions

Security in any domain/application is evolutionary, and demands novel designs and solu-

tions as the attacker evolves in time. In this dissertation, we have investigated three basic

security threats in inference networks, each belonging to a class within the CIA framework.

Given the evolutionary nature of security attacks, several open problems still remain un-

solved in this field, even within the three security threats addressed in this dissertation. We

discuss some of these open problems for future work in the remaining section.

• Eavesdropping Attack: A direct extension to our current work is to explore other

methods (e.g. convex-concave approximation) to solve the non-convex optimal trans-

mit diversity design problem efficiently in order to further improve the detection per-

formance of the inference network. Similar problems still remain open within the

context of other inference networks which are designed to address inference prob-

lems such as statistical estimation, classification, prediction, tracking and so on.

Given that there is a tradeoff between detection performance and security, it is neces-

sary to find a methodology to detect the presence of eavesdroppers. In practice, this

is a difficult problem especially when the eavesdropper remains passive and does not

emit any electromagnetic radiation.

• Byzantine Attack: The problem of designing an optimal inference network still re-

mains open under the non-asymptotic regime (finite number of sensors in the infer-

ence network) when the sensors transmit M-ary quantized data to the FC. Further-

more, in the case of resource-constrained Byzantine attacks, the problem of finding

the optimal Byzantine attack in the space of all row-stochastic flipping probability

matrices still remains open. Moreover, the problem of designing a secure inference

network, along with mitigation techniques in the presence of heterogeneous sensing

agents still remains open.

• Jamming Attack: Given that the problem of designing an optimal jamming attack
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in distributed detection networks is a non-convex problem, one can explore effi-

cient approximations to find near-optimal designs at both the jammer and the net-

work. Also, the problem of finding mixed-strategy equilibria in our proposed game-

theoretic framework still remains open under strict power constraints at the jammer.

One interesting technique worth investigating, is to study the effects of diversity due

to the presence of multiple receiving antennas at the FC, on the network performance

in the presence of a jammer.

Note that, in Chapters 2, 3, 5 and 6, we have assumed complete channel-state infor-

mation at both the network and the attacker. This may not be possible in practice, and

therefore, security should be addressed in the presence of incomplete information about

the channel gains at both the network and the attacker.

In addition to the open problems discussed in the context of three security threats dis-

cussed in this dissertation, the study of other security threats in parallel-topology inference

networks still remains open. For example, several other attack models such as a Sybil at-

tack [46] have already been proposed in the context of ad-hoc sensor networks. Security

threats in other network topologies also remain open. For example, secure tree-topology

inference networks in the presence of eavesdropping and jamming attacks remain open.

More recently, there have been several efforts in designing optimal network topologies in

inference networks where sensing agents collaborate with each other in order to maximize

energy efficiency of the network [23, 32, 33]. Security in such inference networks is a very

interesting topic, as it provides many venues (for example, denial-of-service attacks via

skipping transmissions) for the attacker to bring down the network.
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