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ABSTRACT

With the emergence of low-cost unmanned air vehicles, civilian and military organizations

are quickly identifying new applications for affordable, large-scale collectives to support

and augment human efforts via sensor data collection. In order to be viable, these collec-

tives must be resilient to the risk and uncertainty of operating in real-world environments.

Previous work in multi-agent planning has avoided planning for the loss of agents in en-

vironments with risk. In contrast, this dissertation presents a problem formulation that

includes the risk of losing agents, the effect of those losses on the mission being executed,

and provides anticipatory planning algorithms that consider risk. We conduct a thorough

analysis of the effects of risk on path-based planning, motivating new solution methods.

We then use hierarchical clustering to generate risk-aware plans for a variable number of

agents, outperforming traditional planning methods. Next, we provide a mechanism for

distributed negotiation of stable plans, utilizing coalitional game theory to provide cost

allocation methods that we prove to be fair and stable. Centralized planning with redun-

dancy is then explored, planning for parallel task completion to mitigate risk and provide

further increased expected value. Finally, we explore the role of cost uncertainty as addi-

tional source of risk, using bi-objective optimization to generate sets of alternative plans.

We demonstrate the capability of our algorithms on randomly generated problem instances,

showing an improvement over traditional multi-agent planning methods as high as 500%

on very large problem instances.
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1

1

INTRODUCTION

Unmanned aircraft are quickly becoming an affordable option for a wide range of applica-

tions, offering diverse capabilities without requiring human operators to be exposed to risk.

As the cost and size of these aircraft are reduced, the number of these platforms being used

is expected to increase dramatically, outpacing the availability of human operators to pilot

these assets. As we move towards affordable, large-scale collectives of these unmanned

aircraft we will need planning methods that will allow the platforms to operate without

continuous, direct control.

A key element of conducting operations in real world environments is the presence of

risk and uncertainty. In a military context, we often wish to operate in hostile environments

with adversarial threats. For humanitarian aid, resources are dispatched to regions where

natural disasters, such as damaged buildings that could fall, pose a threat. Even civilian

applications are exposed to risk of equipment malfunction, weather, or other natural phe-

nomenon. These challenges can make planning difficult, and require strategies that are

robust to the presence of risk in the environment.

In this dissertation, we explore anticipatory risk-aware planning, which generates ro-

bust plans that will not be altered after execution begins. These plans will provide a series of

actions that maximize expected value, with consideration for the probability of detrimental
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events occurring. Rather than treating the loss of agents as a catastrophic failure, we plan

with the expectation of losing some platforms to these events and continuing operations

without interruption. In addition, we provide planning methods that are flexible enough to

allocate a variable number of aircraft, in response to the value of the tasks provided by the

user, and the expected risk in the operating environment.

This work spans various fields of research across multiple communities of interest. De-

velopment of the initial plan has similarities to the multi-vehicle routing and team orienteer-

ing problems that have been widely studied in the operation research community. Artificial

intelligence research has shown much interest in algorithms for the maximizing the value

for assignment of agents to tasks. Finally, the game theory community seeks mechanisms

to describe interactions between self-interested agents, providing formal guarantees on the

outcome of complex negotiation. We draw from each of these fields to provide a thorough

examination of the effects of risk on path-based planning, offering new solution methods

for each facet that we explore.

1.1 Risk-Aware Sensor Data Collection Problem

We start with a set of collection tasks to be serviced, each of which has a location specified

by a user. Tasks are serviced by unmanned air vehicles that are dispatched from a base

station that contains a large number of these vehicles. Each task has a value, which is

gained only when a vehicle visits the task location, collects the data, and then returns to the

base station. Each vehicle also has value, which is incurred as a cost if the vehicle is lost

during a mission. The goal is to maximize the total value of the mission plan by specifying

a path for a number of air vehicles to travel, each visiting a series of collection tasks along

the way and returning to the base with all collected data.

Maximizing the value of collection is complicated by the presence of risk, which can

lead to losing the air vehicles before they are able to return to the base. Losing a vehicle
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has a number of effects:

• Any data that was previously collected is lost with the vehicle, preventing the value

of those tasks from being gained.

• Tasks that were planned for collection after the loss of the vehicle will not be col-

lected, forfeiting their value.

• The value of the vehicle is incurred as cost, further reducing the total value of the

mission.

The total value of the mission is represented as expected value, which is the sum over

the value for each air vehicle’s collection tasks times the probability of successfully com-

pleting the path with that aircraft. We seek to specify mission plans that maximize expected

value for a given set of tasks and the value of the air vehicles used. This requires solving a

set of intertwined problems, which include assigning tasks to vehicles, constructing paths

between those tasks, and balancing the risk of collection with the rewards for task comple-

tion.

Consider the analogy of hunters tasked to collect food for a village, requiring visiting

one or more known hunting spots, and returning to the village with the food. The landscape

contains predators that will strike at random and kill the hunters, an event that results in the

loss of the hunter and all of the food that was gathered and not yet returned to the village.

The inhabitants of the village wish to maximize the amount of food that is collected, but

want to minimize the risk of losing trained hunters, who have invested time into learning

to hunt effectively.

Having lived in this village for many years, the village elders have observed the behav-

ior of the predators. They know that on hot and sunny days the predators often seek a shady

place to sleep, waiting for cooler weather. Under these conditions, the risk to the hunters is

low and many can be dispatched to gather as much food as possible. On cloudy days and at

dusk the predators are more active, increasing the risk to the hunters that leave the village.
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During these times, hunters should be sent on short missions to nearby hunting locations

before quickly returning to the safety of the village. In the dead of night, the predators

are at their most active, and hunters should avoid leaving the village, else risk the likely

outcome of being a late night snack.

The location of these predators is not known, and their attacks are silent and without

warning. Therefore, we can represent the likelihood of being attacked as a probability

based on distance traveled. During the sunny days, the hunters may have a 1% chance of

being attacked for every mile they travel, while at night their probability of being attacked

is a terrifying 50% for every mile traveled. We explore the implications of these proba-

bilities and their effects on the planning process, providing general purpose methods that

can generate mission plans when provided information about task values, the values of the

collection assets, and the probability of an asset being lost.

We now discuss a number of real-world applications that can benefit from considering

risk as part of a multi-vehicle path planning process. Unlike the hunting scenario we de-

scribed, we assume that the agents are collecting sensor data, requiring it to be stored on

board the asset until it can be delivered to a base station. Each problem has unique chal-

lenges and objectives, but there are common elements of moving through physical space

with inherent sources of risk in the environment.

1.2 Applications

The goal of this work is the completion of ‘collection tasks’, an intentionally abstract con-

cept. In the course of the work presented in this dissertation, we keep in mind a number

of applications of interest. The rapidly increasing availability of cost-effective air vehicles

has provided new potential for applications that have not yet been realized. We expect that

the applications discussed here will serve as a starting point for using large collectives of

these vehicles in real world environments with inherent uncertainty and risk.
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Each application requires assigning a collective of vehicles to collection tasks that are

located in a physical environment, requiring both allocation of resources tasks and genera-

tion of paths between the tasks. We assume that communications are limited, often due to

small size of the platforms and the large distances that must be covered. Additionally, each

application has an element of risk that needs to be considered. In general, we assume that

these applications are completed by multi-rotor air vehicles, allowing for straight paths be-

tween locations, and more vulnerable to airborne threats, such as weather. This work could

be applied to other types of vehicles, such as ground vehicles with known road distance

between locations, but these applications are not discussed here.

1.2.1 Utility Inspection

There is massive infrastructure required to provide utilities for both established and devel-

oping nations. As the scale and age of these systems increases, it becomes more difficult

to to ensure consistent and reliable supply. Interruptions in power can not only provide

inconvenience, but also cause serious financial losses to industry. One method for address-

ing this challenge is to dispatch mobile robots, which can provide constant observation of

vital locations, detecting faults before they occur or finding damaged infrastructure after an

event [56].

Fig. 1.1: Drones have the potential to provide persistent monitoring of power infrastruc-
ture, allowing for constant surveillance to detect current and potential faults.
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There are a number of valuable roles that a collective of unmanned air vehicles could

serve in this domain. The inspection of power lines and equipment can often only be

performed within close view to detect anomalies, a task that can be dangerous and time-

consuming for human technicians. Additionally, there is a need for monitoring of the

safe distance that should be maintained from power equipment, providing safe operating

parameters for other activities being conducted nearby.

Inspection tasks would be generated by faults that are detected at the control stations,

routine maintenance, or damage reports that are called in. Collection could be performed

using imagery or measuring the electrical power, and the vast distances traveled may re-

quire returning to a base location that can allow for communication of the collected data

back to users. The electromagnetic field surrounding power equipment can be dangerous,

especially when equipment is damaged, providing an element of risk for the vehicles as they

conduct inspection. Conversely, these fields could also be exploited to provide recharging,

which has interesting implications for the other applications mentioned here, which may

want to integrate recharging into the planning process.

1.2.2 Crop Monitoring

With an ever-increasing demand for food, the agriculture industry is constantly looking for

new way to automate processes and increase production. Currently, many crop monitor-

ing applications utilize satellite imagery, which suffers from long delays between image

acquisition [61] and the difficulties of acquiring the imagery in a timely manner from the

producer. There is great interest in using collective of mobile robots to provide high quality

imagery of crops on demand, especially in regions with weather conditions that may im-

pede satellite-based monitoring. These methods can be used to better manage weed control

and the application of water and nutrients [68].

There is also interest in using mobile robots to help harvest crops that are tradition-

ally harvested by hand [48], requiring significant cost and human workload. For example,
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Fig. 1.2: A helicopter drone used by Dr. Charlie Rush, Texas A& M AgriLife plant
pathologist in Amarillo, flies over a wheat field to track disease progression. (Texas A& M
AgriLife Research photo by Kay Ledbetter)

coffee blossoms do not develop regularly throughout a plantation, but rather have unpre-

dictable patterns of maturity that may be localized. Mechanical harvesting of an entire field

will likely yield unripened and overipened product, and methods direct harvesting are of

significant monetary value.

Collectives of unmanned vehicles offer the potential to perform long-endurance, persis-

tent collection of imagery to assist in managing large crops. Tasks can be generated from

satellite imagery with low resolution, requiring platforms to get a closer look in order to

increase accuracy. As the technology progresses, we can foresee more sophisticated capa-

bilities, such as the ability to administer water or fertilizer, detect and remove weeds, or

even provide harvesting of crops at their optimal ripeness.

The agriculture industry is not without risks, however. Weather and wildlife pose a

threat to the vehicles, such as birds that may perceive these airborne intruders as a threat,

or strong winds and rain arriving unexpectedly. All of these applications will require multi-

agent planning capabilities that are robust to these uncertainties found in the real world.
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Fig. 1.3: The ‘cockpit’ of a Predator drone, relying on a team of operators to conduct
missions for a single platform. Extending this control model to hundreds or thousands of
UAVs without autonomy would require a massive workforce and complex coordination.

1.2.3 Military Intelligence, Surveillance, and Reconnaissance

Currently, an unmanned vehicle conducting collection for and Intelligence, Surveillance,

and Reconnaissance (ISR) mission requires a team of operators to fly the platform, monitor

the visual input, communicate observations, and coordinate with other operations. While

this is proving to be an effective way to extend our reach without risking human life, operat-

ing a large collective of platforms would be prohibitively expensive, time-consuming, and

complex. It is difficult to imagine 100 platforms being managed by a team of hundreds op-

erators that are all coordinating effectively as the mission is being executed. Additionally,

in environments where communication with platforms is limited or infeasible this level of

direct control is simply not possible.

In this context, the tasks are generated by users that have collection requests they wish

to have fulfilled. These requests are compiled by the controlling organization and are used

to generate paths for the platforms. In more complex scenarios, the distance between tasks

may be altered to reflect known threat regions or areas where flight is prohibited. The

limitations on long-distance communications, paired with conducting operations that may

require remaining undetected, require the platforms to return to the base to submit collected
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Fig. 1.4: The Aeryon Scout quad copter, weighing 1.3kg, is an example of a small aircraft
with onboard electronics that could support autonomous flight and tasking of collection.

data.

While there is increased interest in utilizing collectives of unmanned air vehicles (UAVs)

to enable autonomous operations [92], there is uncertainty that is introduced when oper-

ating in adversarial environments. This uncertainty may arise from directed threats from

an adversary, the possibility of malfunction in harsh conditions, or general civilian aggres-

sion towards drones. Additionally, requests are serviced from a number of organizations,

requiring planning for many collection tasks that may be in regions of significant danger.

This difficulty motivates the use of autonomous vehicles that can meet the needs of

the mission while being resilient to threats that arise during execution. In high threat en-

vironments we would expect that some or all of the platforms may be lost, requiring that

our investment not be focused on a single large aircraft, but rather a collective of small,

low-cost vehicles that can meet mission needs while still being expendable.

With the increased availability of relatively low-cost consumer aircraft, such as quad

copters, we foresee new opportunities for ISR missions to be executed without needing

expensive aircraft. This frees up more advanced platforms to be tasked for other missions

requiring their advanced capabilities. These new assets have the potential to be a significant

force multiplier across the ISR enterprise, requiring the development onboard software

systems that ensure missions are executed safely and can react to unexpected changes in

the area of operation.
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Fig. 1.5: A drone captures imagery of building damage in Nepal following an earthquake.
Photograph: Olivia Harris/Reuters

1.2.4 Disaster search and Rescue

When natural disasters occur, there is a need to quickly divert resources to multiple loca-

tions in order to provide timely discovery and rescue of injured persons. Because of the

widespread destruction, lack of preparation, and the number of disjoint agencies involved,

it can be difficult to effectively prepare and distribute resources appropriately. In these sit-

uations, having up-to-date information about the damage and potential for rescue is vital,

and can directly effect the potential to save lives. Given the high demand on personnel, we

seek solutions that can plan and dispatch mobile sensors with minimal human support.

Collection tasks would be generated by analysis of satellite imagery, calls made to

emergency services, or knowledge of buildings where a high number of victims are likely

to be located at a given time of day. Agents can be tasked with capturing imagery of

collapsed buildings to aid in coordinating equipment, or collecting infrared or audio that

can help determine where survivors are trapped. Because of damage to communications

infrastructure, each platform would need to return to a base station to submit the collected

data for processing.

Disaster management has already gained some momentum as an application for un-

manned air vehicles [2]. Specific uses include structural damage inspection, overhead

imagery, and monitoring of emerging weather conditions that could endanger rescue op-
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Fig. 1.6: Drone images captured of temporary housing for disaster survivors in rural
Kenya. Photograph: Trygve Bolstad/Panos

erations. The need for well-defined and realistic challenge problems using multi-agent

planning for disaster scenarios has been noted [84], which should motivate further work in

this domain.

1.2.5 Drone Journalism

Unmanned air vehicles provide new opportunities for journalists to report on stories in

remote and dangerous locations. In addition, aerial coverage provides a sense of scale to the

viewer that can often not be captured from the ground. The field of journalism has already

started to embrace the use of drones in high-risk environments [26] such as embedding with

military operations and covering disasters that prohibit reporters from entering a dangerous

area.

However, not all governments support these activities [29], and there is a risk of losing

the drones when reporting on activities that a ruling government would prefer to keep hid-

den. Additionally, the subject of the reporting may not be cooperative, and there is risk of

the aircraft being attacked by those who do not wish to be seen. Journalists already em-

brace these risks as part of their job, and extending the risks to unmanned vehicles provides

a growing area of research.
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1.3 Terminology

We now define some of the common themes across this body of work. We do not claim to be

an authoritative source of how these terms are defined, but rather seek to provide the reader

with clarity regarding our problem exposition. Given the large body of work addressing

multi-agent path-based planning, we feel it is necessary to assert our interpretation of these

terms.

Definition 1.3.1. The objective of this work to maximize expected value, which is the

probability-weighted average over all possible outcomes.

The value for this work is derived from the completion of tasks and the loss of collection

assets in the presence of risk, all of which will be defined below. We do not specify how

many agents to use in a problem instance, but rather seek solutions that specify the number

of agents that will maximize the expected value.

Definition 1.3.2. An agent is the software used to control a physical or simulated asset.

For our purposes, these terms are interchangeable.

In this work, we consider the planning process to be a one-time activity, with the result

being a set of plans given to each individual agent via communication while located at the

base station. After the agents have been dispatched, they are no longer given commands by

the base, but rather must execute the plan given to them.

Each agent is deployed from the base, and must eventually return to the base to com-

plete the mission. If an agent is destroyed or disabled, it is assumed to be permanently lost.

Planning for the loss of assets is one of the primary contributions of this work.

Definition 1.3.3. A collective is a set of homogeneous agents executing a behavior to attain

macro effects.

Homogeneous platforms provide a number of practical benefits. Scaling the collec-

tive requires only increasing the number of agents, without requiring the user to modify
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how the software works. Homogeneous hardware configurations makes also enable mass

production of assets, allowing for rapid construction of vehicles with interchangeable parts.

We consider problems that may requiring large collective of platforms, sometimes on

the order of hundreds or thousands of agents. A vast majority work in multi-agent planning

and coordination do not exceed tens of agents, often due to the complexity of planning,

modeling and executing. We consider our ability to plan for large collectives of agents as

another contribution of this work.

Definition 1.3.4. A base is a fixed installation or large platform that is used to deploy the

collective in a region.

Unlike the agent platforms, that are relatively small and have limited capability, the

base has significantly more resources and is used to house the collective of vehicles and

store any information they may collect. While we do not specify exactly how the base is

deployed, we envision it could be a building or even a large truck or plane that has been

relocated to the area of operations. It is assumed that the base has sufficient storage for the

air vehicles and the capability for refueling/recharging prior to their use.

Definition 1.3.5. A collection task is a request for collection of sensor data to be delivered

to a base station.

Collection tasks are assumed to be provided before the agents are deployed, and are

generated to meet the objectives of user(s). Completing a task requires capture of the sensor

information and subsequent delivery to the base, which can be achieved by one or more

agent. Tasks are assumed to be unique, assuming any redundant requests are deconflicted

before tasking of the agents begins. A task can be completed only once, and if another

agent completes a collection task redundantly no additional credit is given. The generation

of plans with redundant collection will be discussed in Chapter 3.

Definition 1.3.6. A task location is a physical point of interest an agent can visit in order

to fulfill a collection task.
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In this work, each task location represents exactly one collection task, and vice versa.

We assume collection is instantaneous, such as capturing an image, and meeting the col-

lection requirement is achieved when the agent is located at the same location as the task.

The locations are assumed to be in a 2D Euclidean space, but the methods presented are

flexible enough to be used in higher dimensional or non-metric spaces.

Definition 1.3.7. A path is an ordered series of task locations traveled by a single agent.

Each agent follows a path assigned to them, visiting the task locations and collecting

the task data. A path can be characterized abstractly by a cost, which can represent time,

fuel costs, or any resource of value being expended. We also assign risk to each path, which

has effects on both the expected value of the tasks in the path, and the risk to the asset.

Definition 1.3.8. A plan is a collection of paths for all agents in a swarm prior to execution.

A plan is formed based on the knowledge and perceptions available before the agents

are deployed. Once execution begins, the agents follow their respective path until they

are destroyed or return to the base unharmed. Because we allow for the deployment of a

variable number of agents, the number of paths in a plan is not known prior to the planning

process. Agents that are not dispatched on a path remain at the base, incurring no cost.

Definition 1.3.9. The presence of risk implies there is a chance of losing one or more things

of value.

In this work, value of tasks and assets is quantified in some way that is measurable,

although we acknowledge that value is subjective measure that may not be agreed upon by

all involved parties. This value must also be comparable, such that we can define a partial

order on the value of all things of interest in the problem space. For our purposes, we

assume that this is a numeric measure.

We focus on the loss of (or lost opportunity to collect) sensor data, and the loss of

physical assets used for collection, but this does not limit applicability of our models to
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other losses that could be incurred. For example, we may wish to measure the cost of time

for completing a task, or the cost of losing something more ephemeral, such as the trust of

a customer.

Definition 1.3.10. Losing members of the collective is referred to as attrition, a form of

risk.

In much of this dissertation, we will focus on attrition risk, which is a chance of losing

one or more agents (and the controlled asset) performing collection of sensor data. When

an agent is lost, we lose not only the sensor data that has been collected, but also the data

that was planned for collection after the loss occurred. In Chapters 3 and 4 we provide

various methods to mitigate this risk.

Unmanned vehicles represent a major shift in how planning methods may deal with

risk. Tasks issued to manned vehicles must severely minimize the exposure to risk to avoid

the loss of invaluable human lives. In contrast, unmanned vehicles have a cost that can be

measured as a quantity of money or time to manufacture. In this context, resiliency can be

measured as a trade-off between cost and value as interchangeable commodities.

1.4 Quantifying Risk

We define risk as the possibility of not achieving one or more mission objectives, or achiev-

ing the mission but with unnecessary use of resources. Without considering risk, we could

think of sensor data collection as a traditional planning problem and expect that everything

will proceed without complication. A vast majority of path-based planning problems make

this assumption, making this one of the key contributions of this work.

We assume that risk is derived from events that are considered to be out of the control

of the agent. Given knowledge of the probability of these events occurring, we can choose

a series of actions that will strike a balance between minimizing risk and maximizing the

value gained. The knowledge of the probabilities can be derived from historical data, such
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as records of equipment failure, or more complex models, such as a map of hostile forces

and their capability for destruction. Because the occurrence of these events is random, we

can measure the expected value, which multiplies the value of a set of actions times the

probability of successful completion of the actions.

Passive threats are not intentional, but rather a by-product of an environment, such as

weather, or other natural phenomena. This includes the possibility of equipment malfunc-

tion due to unexpected defects, ‘acts of god’ such as lightning and hail damage, or even

animals attacking the aircraft. We assume that any damage to the asset is unrecoverable,

resulting in loss of the asset.

Active threats are caused by one or more adversarial entities making decisions based on

perceptions of the environment. For example, an anti-air battery may attempt to eliminate

any aircraft entering sensor range, making a specific region a no fly zone. Alternatively, a

threat may emerge only when it perceives overt activities, such as flying lower to collect

sensor data, or communication between platforms.

In this work we model risk as a uniform probability of failure based on movement, and

risk is based time and distance of exposure. This is similar to the concept of mean time to

first failure [47], which is used to characterize the reliability of non-repairable hardware.

This general model assumes that the agents have no reliable means of perceiving the threat

and may fail without warning. This could represent an active threat that is unknown, with

a probability of being attacked anywhere in the area of operations. More complex threat

models are compatible with our solution methods, as long as each edge in the graph can be

assigned an accurate assignment of risk.

1.4.1 Assumptions

Throughout the work discussed here, we assume that the probabilities underlying the risk

model are known and fixed after planning has occurred. Clearly, if these values change be-

tween planning and execution, then the computation of expected value can not be expected
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to hold. We acknowledge that having full probabilistic information about all of the risks in

an environment may be unrealistic, but we seek to explore the fundamental properties of

problems with probabilistic risk with the expectation of extending these definitions as they

are appropriate for more specific applications.

It is also worth noting that we consider all of our probabilities to be independent vari-

ables, with no conditional relationships between them. There are a number of interesting

applications that would require modeling conditional probabilities, but we do not explore

those alternatives in this work. For example, in an adversarial environment, collecting data

at a task location may cause alarm and increase the risk to the platform for subsequent

travel. Such scenarios are of great interest, and serve to provide a rich set of problems for

analysis in future work.

1.5 Related Work

This work is derived from immense bodies of work in operations research and artificial

intelligence, many of which help to guide our problem definitions and solution methods.

Starting with the original Traveling Salesman Problem (TSP), which seeks the shortest

route visiting a set of cities in a road network, there have been countless extensions and

variations. This work derives inspiration from diverse bodies of work in Multi-Robot Task

Assignment (MRTA) [42] and Vehicle Routing Problems (VRP) [76]. These fields, while

having been generally distinct in their definitions and solution concepts, have common

goals. Both seek to minimize or maximize some objective function while providing a

plan that achieves all of the specified tasks. In these problems, the number of agents to

be used is specified a priori, the expectation is that all tasks will be completed as part

of a valid solution, and limited consideration is given to losing agents during execution.

The collection planning problem introduced here relaxes these constraints, motivating new

solution methods.
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Table 1.1: A sample of research in single and multi-agent routing problems with various
models of risk.

Single-Agent Multi-Agent
Risk Task Commodity Task Commodity

None
path-TSP [4]
Hamiltonian Path [12]

TSP [78]
Hamiltonian Circuit [40]

MRTA [43]
MR Coverage [67]

mTSP [10]
VRP [59]

Constraint-
based

MLP [18]
Pathfinding [87]

TPP [94]
PC-TSP [37]
TSP-TW [83]
Orienteering [93]

MRTA [43]
MAPP [95]

RCTVRP [89]
PC-VRP [91]
MVTPP [16]

Stochastic
Event

GSP [82]

Stochastic TSP [75]
Canadian TSP [62]
PSP-PK [46]
SPSP [21]

Multi-Robot Search [49]
Stochastic VRP [41]
TPPSP [55]

Attrition Collection Planning Problem with Attrition Risk (CPPAR)

Our primary focus in this work is to explore anticipatory methods for addressing risk

during the planning process, maximizing our expectation of value prior to dispatching phys-

ical platforms to perform collection. The assumption is that communication is limited and

agents are not able to perceive and reason over objects or revents in the environment. This

shares similarities to conformant probabilistic planning (CPP) [63, 52], which assumes that

the state can not be observed while the plan is begin executed, and robust optimization [11],

which assumes some probability distribution over costs. However, we are not aware of any

existing work in these fields that plans for the loss of actors as part of the planning process.

We provide a sample of the foundational and related problems in this dissertation in

Table 1.1. We make a distinction between single and multi-agent problems, the type of

actions required, and means by which risk is modeled. For actions we consider tasks,

which are completed by the arrival of the agent to a location, and commodities, which

require that the agent transport some object or resource from one location to another. We

also categorize each problem’s treatment of risk, which we will describe in more detail,

starting with routing problems that do not consider risk.
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1.5.1 Routing without Risk

Combinatorial optimization for routing has a long history, starting with the well-known

Traveling Salesman Problem (TSP [78], which seeks the shortest distance cycle visiting

all vertices in a graph. The TSP is thought to have originated in the 1800s before being

formalized in the 1930s, and still remains a challenging problem that gets research attention

today. The simplicity of the problem description, coupled with the diabolical difficulty of

finding a solution in the general case, has made the TSP a canonical NP-hard problem.

If we consider only tasks with immediate reward at each vertex, then the cycle solution

is unnecessary and a path that visits each vertex will suffice. This problem is known as

the path-TSP [4], or a Hamiltonian Path [12]. Because many TSP solvers rely on the cycle

constraint to find solution, allowing for a path that visits all vertices will often make the

problem more difficult to solve [4]. If the salesman is collecting a commodity at each

vertex and returning them all to the starting location, this is equivalent to the TSP. This is

equivalent to finding a Hamiltonian Circuit [40] in a graph, and these terms are often used

interchangeably.

For multiple agents completing tasks with immediate reward, the problem specifies the

number of agents that are used ans seeks a solution that minimizes the sum of all agent

paths. Variations of this problem exist in the field of Multi-Robot Task Allocation (MRTA)

[43], which seeks to have a fleet of robots complete tasks in an environment. Similarly, the

term Multi-Robot Coverage [67] refers to problems where robots must visit all locations,

usually in a grid environment.

For commodities that must be returned to the start location, the multiple TSP [10] is a

simple extension of the original TSP to a collective of salesman. A more robust and well-

studied problem is the Vehicle Routing Problem (VRP) [59], where vehicles must purchase

and deliver items from different sites to complete the tasks and earn a reward.

In each of these fundamental problem, risk is not considered. The focus is on optimiza-

tion of distance and cost, with the large search space often being the primary challenge.
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Countless solution methods exist, ranging from heuristic methods to linear programming.

There are cases in which risk is referenced, characterized as a constraint on an additive

quantity. In the next section we will discuss the benefits and shortcomings of this approach.

1.5.2 Constraint-based Risk

It is not uncommon to find problem formulations that quantify risk as a fixed value on cost

or edges, allowing solvers to treat risk as an additional additive constraint. In many cases,

the problem will specify a maximum risk for a valid solution, allowing only solutions that

fall under this threshold. This is an effective way to use existing solvers to also minimize

risk. A key benefit of constraint-based methods is that they provide bounds on the solution

space, allowing us to eliminate portions of the search space that violate constraints.

There are a wide range of other constraints found in routing problems that could also

be leveraged to model risk. The distance of an edge could be directly equated to exposure,

making shorter paths result in reduced risk. For a single agent completing a task with an

immediate reward, this is similar to the process of pathfinding [87], which seeks the shortest

path from the source to the destination. For multiple tasks, the Minimum Latency Problem

(MLP) [18], also referred to as the Traveling Repairman Problem, is a customer-centric

model that encourages the a solution that minimize the average distance each task being

serviced.

When a task requires transporting a commodity to some destination, the distance con-

straint must consider the paths to pickup and drop off the commodity. Minimizing distance

for this two-stage journey is a common theme among route planning problems. The Trav-

eling Purchaser Problem (TPP) [94] is a generalization of the TSP, specifying pickup and

delivery of items while minizing total distance. The Prize Collecting TSP (PC-TSP) [37]

and the Orienteering Problem [93] are instances of the TPP that seek to visit as many

tasks as possible given a constraint on the maximum distance traveled. Both seek to also

maximize the value of the tasks completed, which can yield a multi-objective optimization
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problem depending on the model used.

Another popular constraint is the addition of time windows, which specify a range

of time that a site can be visited. For tasks, this is a single range for getting immediate

credit, while commodities may have different time windows for pickup and delivery, or

for different types of commodities. A straightforward example of this is the TSP with

Time Windows (TSP-TW) [83], which requires not only minimizing path length, but also

respecting the time window constraints. If the time windows are based on periods of time

when there is lower risk to perform pickup or drop off, then respecting these constraints

could provide a mechanism for minimizing risk.

The above methods are equally effective when there are multiple agents. There are

a number of problem formulations with similar constraints that fall under the umbrella

of Multi-Robot Task Allocation (MRTA) [43]. One example is Multi-Agent Path Planning

(MAPP) [95], which places constraints on how close multiple robots can be in order to min-

imize risk of collisions. For multiple agents, one example is the Risk-constrained Cash-in-

Transit Vehicle Routing Problem (RCTVRP) [89] involves moving cash in armored trucks

between locations. Each road the trucks may travel has a risk value assigned to it, and a

constraint is placed on the maximum sum of risk that can be tolerated. Similarly, the trans-

port of hazardous waste through populated areas can quantify risk by the number of people

affected on a roadway if the transport were to be involved in an accident [32].

A major drawback of constraint-based measure of risk is that they make it difficult to

reason over attrition as an event that affects the tasks on a path. Consider a constraint that

specifies a vehicle should travel no more than 20 miles, as it yields at most a 10% chance of

losing that vehicle. For a critical task, 10% may be an unacceptable risk that could result in

catastrophic failure. This would require having constraints that change based on the tasks

that are selected, preventing us from setting clear boundaries. Without these boundaries,

risk is no longer a constraint and is part of the objective function, eliminating the benefit of

being able to reduce the search space.
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These challenges motivate us to preserve risk as probabilities, including them in the

objective function. There is a body of emerging work that includes probabilistic knowledge

in the route planning process, which we have leveraged in this work. We consider this work

to be most closely aligned with our research.

1.5.3 Risk as a Stochastic Event

When we have events that can be modeled with stochastic variables we can characterize

a solution by using the expected value, which is the average outcome over an infinite set

of samples. This form of probabilistic evaluation is the foundation of characterizing relia-

bility for physical systems, leading to approaches such as series-parallel systems for fault

tolerance [88]. Similarly, we seek solutions that are tolerant to losing assets due to events

that can be characterized as failure event probabilities.

An early model of routing for stochastic events is the graph Search Problem (GSP)

[82], in which an agent is searching a graph to find an object of interest. At each vertex in

the graph, there is a probability that the object is located there, which is realized the first

time that agent visits the vertex. The goal is to find a path that maximizes the probability of

finding the object as soon as possible. Multi-Robot Search [49] is the multi-agent extension

of the GSP, with a number of variations that specify constraints on the environment or the

robots.

For the collection of commodities, where the agent must return to some location after

completing tasks, there are a number of problems that have probabilistic elements. The

Stochastic TSP [75] extends the original TSP with lengths between cities that are drawn

from independent, identically distributed random variables. Similarly, there are models

that consider the randomness of traffic flows on the speed of travel over roads [72]. The

Canadian TSP [62], which considers traveling in heavy snows with unpredictable road

closures, takes this a step further. Each edge between cities has a probability of actually

being in the graph, with the existence of an edge being observable only when you reach a
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city connected to it.

The cost of acquiring the commodity can also be stochastic, introducing the risk of

having insufficient resources to complete high value tasks. In the Physical Search Problem

with Probabilistic Knowledge (PSP-PK) [46], there is a shared resource that is used to travel

on a path and purchase a commodity, and each vertex has a stochastic cost for acquiring

the commodity. In this problem excessive search for a low cost can exhaust resources,

while purchasing too early may miss out on a lower cost. Similarly, the Stochastic Physical

Search problem (SPSP) [21] explores this problem for general graphs.

The Stochastic VRP [41] is one of the earliest problem definitions with multiple agents

gathering commodities with stochastic problem components. This model has been ex-

tended to consider randomizing the cost and existence of commodities, such as the Trav-

eling Purchaser Problem with Stochastic Prices (TPPSP) [55]. These probabilistic models

present risk in the form of limited resources, seeking to minimize the expectation over

multiple trials.

1.5.4 Attrition-based Risk

While the previously mentioned problem definitions capture risk in a probabilistic form,

stochastic costs are “randomized inconvenience”, driving the cost of execution up for a

specific instance but without risking failure of objectives. In this work, we explore how to

plan for attrition, which involves losing the agent itself due to a stochastic event. This event

can have affects on actions already take by an agent, and remove the ability to perform

collection action in the future. For tasks with immediate reward, losing an agent means

that any remaining tasks will not be completed. When an agent is collecting and delivering

commodities, we risk losing everything that the agent has collected so far.

Because of the lack of work dealing with attrition, we have devoted much of this dis-

sertation to exploring fundamental effects of probabilistic risk of losing agents to combi-

natorial optimization problems. This focus is driven by realistic scenarios where platforms
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will be dispatched into the real world, vulnerable to equipment failure, external threats, or

random acts of nature. We hope that this work will lay the foundation for considering the

risk of losing assets for a wide range of planning problems.

1.6 Dissertation Overview

In this dissertation, we will provide an examination of implications of attrition risk on

optimization problems. We start by applying risk to a set of simple knapsack problems

and end with a multi-agent route planning problem, showing that each problem is changed

significantly when there is a probability of loss included in the definition. For the simplest

cases, such as the family of knapsack problems, risk provides a ‘self-regulating’ constraint

that may require not filling the entire knapsack to maximize expected utility. This self

regulation is a recurring theme throughout each problem type, and is a primary force that

shapes solutions when risk is added to the optimization problems discussed in this work.

When applying risk to multi-agent routing, risk adds interactions between the allocation

of tasks, the physical routes between tasks, the number of assets to use, and the value of the

collection assets. This topology of inter-related problems yields a complex problem space

that exponentially increases the difficulty of searching for high-valued solutions. Because

of this complexity, which can make traditional optimization methods intractable at scale,

we introduce a clustering methodology that can find high expected value solutions.

We then consider how a servicing organization could provide vehicles to complete tasks

for customers, with mechanisms for fair allocation of costs. We use coalitional game theory

to develop an algorithmic method for assigning costs and prove that the resulting alloca-

tions are fair and stable. We then use this algorithm to improve the approximate solutions

generated by our clustering algorithm, providing cost allocation for large problems.

Finally, we explore an alternate model of risk that has an uncertain cost of completing

a task at a given location. In this scenario, a vehicle risks expending limited resources in
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search of a low cost, making it impossible to complete the task. We provide a bi-objective

optimization approach that can generate sets of non-dominated solution for selection by a

user, allowing them to choose between cost and acceptable risk prior to execution.

1.6.1 Problem Scope

The variables used to characterize instances of problems are numerous, including: severity

of risk, communication, size of the continuous space, distance measure between tasks, and

number of tasks. Each problem instance is a combination of one setting for each of these

parameters, yielding a very large experimental space. Therefore, we use only a subset of

instance parameters, focusing on regions of the instance space with what we consider to be

the most interesting properties.

We model risk as a percent chance of losing the asset depending on how far it travels,

which we often set to around 1%. If the risk value is too high, and the task values are not

comparably high, then the risk of travel often dominates any benefit of completing tasks. It

is worth noting that the ratio of the task value to the risk has strong effects on the solution.

Similarly, the ratio of the task value to the asset value can also yield problem instances that

prohibit sending any assets, or encourage sending as many as possible. Further exploring

this space is of interest in future work.

A majority of our results are on problem instances with 100 tasks placed according to a

uniform random distribution, but we also generate instances up to 2000 tasks to show that

our clustering approach will scale. The number of tasks and the value of these tasks has a

relationship with the size of the space containing the tasks. As the space increases in size,

the tasks are farther apart and risk increases. If the space is fixed and more tasks are added

the average inter-task distance will be reduced.

Finally, we assume that no communication is available, and that tasks must be physi-

cally returned to the base station. Allowing for communication introduces a wealth of new

challenges, which we discuss in more detail in Chapter 6.
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1.6.2 Contributions

Characterizing risk-aware planning for sensor data collection has proven to be a challeng-

ing and fulfilling venture, synthesizing a number of fields of study under a common goal.

Because of this problems unique challenges, we have set out to lay a foundation for con-

tinued work in risk-aware planning for collection of digital data. This dissertation provides

the following contributions:

• We introduce the Collections Planning Problem with Attrition Risk (CPPAR), which

seeks to maximize the expected value for completing collection tasks when there is

risk of losing assets as they travel through the environment. This multi-agent com-

binatorial optimization problem bridges the gap between Artificial Intelligence and

Operations Research communities, adding probabilistic attrition events that require

new solution methods not found in either community.

• Risk-based versions of well-studied optimization problems are formulated and ana-

lyzed, providing insight into the foundational challenges in risk-aware planning. We

discuss existing theorems and solution methods, and how they can be adapted to

provide solutions to CPPAR.

• We provide a clustering algorithm that generates solutions for the CPPAR, and share

our results of using graph analysis methods on this problem. We develop an approx-

imation method for computing solutions on a variable set of instances and on very

large problem instances. This synthesis of multi-agent route planning and clustering

is provided in the context of probabilistic risk, distinguishing it from previous work

using clustering methods for multi-agent route planning problems.

• We formulate CPPAR as a hedonic coalitional game, providing a mechanism for a

servicing organization to charge customers that request tasks. We develop an algo-

rithm from this formulation, generating a cost allocation profile and also improving
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our approximate solutions. This formulation combines the field of coalitional game

theory (CGT) with route planning under probabilistic risk, extending previous work

in applying CGT to routing problems.

• We present an alternative form of probabilistic risk in the form of uncertainty of

collection costs, providing a bi-objective solution methodology that finds the pareto

front between cost and task completion probability. This work is part of a relatively

new branch in the field of route planning with task cost uncertainty, of which we are

one of a few researchers performing work.

• We provide insight into the numerous potential extensions of this work, each rep-

resenting realistic challenges for dispatching collectives of autonomous vehicles to

perform collection tasks in real world environments.

The remainder of this thesis is organized as follows: Chapter 2 provides the formal def-

inition of the Collection Planning Problem with Attrition Risk (CPPAR) and the Volatile

Knapsack Problem, which is used to explore fundamental effects of probabilistic risk on

combinatorial optimization problems. In Chapter 3, we discuss the use of clustering meth-

ods for CPPAR, and provide a clustering-based method for solving CPPAR instances. We

also discuss the potential and limitations of using redundancy to improve performance.

Chapter 5 provides an alternative form of risk that is characterized by constrained resources

and probabilistic costs of data collection. Finally, in Chapter 6 we summarize this thesis

and discuss the vast potential for additional research in this domain.
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2

COLLECTION PLANNING PROBLEM

WITH ATTRITION RISK

In this chapter, we introduce a collection planning problem with attrition risk that includes

a risk of losing agents during execution as part of the planning process. We start with

risk-based version of a number of classic optimization problems, iteratively increasing the

complexity. Collection tasks require agents to collect sensor data at a location and then

return to a base location in order to complete the task. The objective is to maximize the

expected value of the completed tasks, taking into account the path chosen for each agent

and the potential for losing agents.

In the next section, we provide a definition for the Collection Planning Problem with

Attrition-Based Risk (CPPAR) and provide examples that illustrate the unique aspects of

this problem. We motivate solutions that use a variable number of agents and show the con-

ditions under which agents will choose to not complete some or all of the proposed tasks.

Then, we discuss the effects of risk on a number of well-known combinatorial optimization

problems. Finally, we provide insight into solution methods for combinatorial optimization

and the inspiration for the clustering approach discussed in Chapter 3.
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2.1 Task Allocation Problem

A task allocation problem specifies a nonempty set of agents A = {a1, a2, ..., an} and a

nonempty set of tasks T = {t1, t2, ...tm}. The goal is to find a matching of tasks to agents

that maximizes a global reward function. The reward function is determined by the tasks

assigned to a single agent. We adopt an objective function similar to that found in [24],

max
n∑
i=1

(
m∑
j=1

cij(xi,pi)xij

)
, (2.1)

where cij is the score for agent i completing task j, and xij = 1 if agent i is assigned

to task j and 0 otherwise. The vector xi ∈ {0, 1}m is the set of tasks assigned to agent i

where the jth element is xij , which can be used to compute any dependencies between task

values. The vector pi ∈ (T ∪ {∅})|T | is an ordered sequence of tasks assigned to agent i,

and can be used to determine the distance traveled and time at which each task is visited.

The kth element is j ∈ T if agent i executes task j at the kth point within the path. For

our application, these vectors are not necessary, but can be important to relate our specific

problem to more general definitions.

We assume each task ti ∈ T has an associated location vi ∈ V in 2-dimensional space.

Additionally, we specify the location of the base b, where the agents start. This yields the

full set of all location vertices V = {b, 0, 1, ...,m}. We are also given a set of edges E =

{eij = (i, j) : i 6= j and i, j ∈ V }. Each edge eij has a non-negative distance represented

as d(eij), or dij for short . We can represent this structure as a graph G =< V,E >.

Without any risk of losing the collection assets, and if the number of agents is specified,

this problem is equivalent to the Vehicle Routing Problem (VRP) [59] with zero cost for

purchasing items. In the next section, we discuss a variant in which there is attrition risk in

the environment and the number of agents is unspecified. This problem will be the focus

of the majority of this dissertation.
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2.2 Collection Planning Problem with Attrition Risk

(CPPAR)

Planning for collection adds the additional constraint that each task in T = {t1, t2, ...tm}

is a collection task, requiring the agent collect a sensor reading from the task location and

return it to the start location. Additionally, the environment has inherent dangers that may,

with some probability, disable or destroy the agent. A task is considered complete only

when the sensor data from the associated location is delivered to the base station. Because

we are providing an a priori plan, if an agent is disabled during the execution of a path,

all tasks {t1, ..tk} on the path will remain incomplete. All gathered data is lost with the

platform and the remaining sensor data on the path is never collected.

The probability of the agent surviving an edge traversal is ps(eij), and each edge has

an independent probability of survival. Each edge is a series of events, with a probability

of successfully traversing the edge as a cumulative probability over traversing a collection

of unit length segments in sequence. Let ψ be the probability of successfully traversing a

unit distance. For an edge eij with distance dij , the probability of successfully traversing

the entire edge is

ps(eij) = ψdij (2.2)

such that limdij→∞ ps(eij) = 0. The value used for ψ may be derived from a number

of sources: hardware failure during operation of the vehicle, the platform may become

unreliable after repeated use, or threats may exist that can destroy the vehicle. While we

use discrete distance values in our examples, this formulation also supports continuous

distances that have non-integers in the exponent.

Consider a path for agent ai, πi = (b, eb1, v1, e12, ..., vj, ejk, vk, ekb, b). Traversing a path

can be considered a series of events, with a probability of successfully reaching the end as a

cumulative probability over traversing a collection of unit length segments in sequence. Let
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Fig. 2.1: A probability tree representation of the risk model for CPPAR. As the agent
traverses each edge between tasks, there is a probability of being neutralized, ending the
trip. Upon returning to the base, all collected tasks are completed. Being neutralized before
reaching the base results in all collected task data to be lost, resulting in completion of none
of the tasks.

ψ be the probability of successfully traversing a unit distance. For a path πi with distance

d(πi) =
∑

eij∈πi dij , the probability of successfully traversing the entire path is

Si = ψd(πi) (2.3)

such that limd(πi)→∞ Si = 0. We use Si to represent the survivability of a path, and

use this value extensively in Section 3.4 and Chapter 4. Intuitively, an agent traversing a

longer path has a lower likelihood of surviving, and must balance the gain of completing

tasks with the possibility of being lost. The task expected value of the single agent path is

defined as

Et(πi) =
∏
ejk∈πi

ps(ejk)
∑
vp∈πi

cip. (2.4)

where cip is the score for agent ai completing the task tp at location vp. Because the

agent must return to the base with the task data, the order of collection is not important. The

agent either collects and returns all of the task data, or none of it. Therefore, the expected

value of the path is the probability of successfully traversing the entire path times the sum

over the scores for agent ai completing each of the tasks in the path. In the multi-agent
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case, the objective is to maximize the expected value over all agents. Given a set of agent

paths πi ∈ Π, the overall expected task value is

Et(Π) =
∑
πi

Et(πi). (2.5)

To maximize Et(Π), we must find an assignment of tasks among agents that maximizes

the sum over their individual expected value. This requires ensuring that the distance of the

path traveled by each agent through their assigned tasks is also minimized. The result is a

trade-off between how many agents are used, how long their paths are, and the ordering of

the tasks within each path.

2.2.1 Including Asset Value

While task completion is an important objective, we must also consider the relative value

of the assets being deployed. Failure to complete a path not only loses the value of the

assigned tasks, but also the asset itself. We use θi to represent the asset value for agent

ai, which may represent the cost of manufacturing the vehicle, the relative abundance or

scarcity of the platform, or an external force, such as needing the platforms for another

mission the next planning cycle.

In general, θ provides the value of the platforms with respect to the value of the tasks

being completed. For example, consider a sophisticated aircraft piloted by agent ai with a

suite of expensive sensors. This aircraft has a high cost to manufacture, and sending it into

a contested environment needs to be justified. If there is a single, low-value task located

deep within dangerous territory, it’s likely not worth sending the platform. Such a platform

would have a very large θi value. However, we may also have the option of using low-cost,

expendable platforms that can be sacrificed to complete a task, which would be indicated

by a low θi value. The attrition-based expected value for a path is
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E(πi) =
∏
ejk∈πi

ps(ejk)
∑
vp∈πi

cip − θi · (1−
∏
ejk∈πi

ps(ejk)). (2.6)

This considers not only the expected value of the tasks, but also the probability and

value of losing the asset controlled by the agent. As the path length increases, the proba-

bility of successfully completing the k tasks on the path decreases, and the probability of

losing the asset of value θi increases. This results in a function that varies based on the

number of tasks on an agent’s path, the distance they are from the base, and the distance of

the path between the tasks being collected. Similarly to Equation 2.5, we define the overall

expected value for the set of all agent paths as

E(Π) =
∑
πi∈Π

E(πi). (2.7)

When θ = 0 for all agents, meaning the assets are expendable, the best solution is to

send one asset to collect on each task location. This minimizes the distance traveled to

collect on each task, which also minimizes the risk of not completing that task. On the

other hand, if θ is very large, the assets may not worth risking to collect on any task. This

can yield valid solutions that perform none of the tasks. Examples of the effects of θ are

given in the following sections.

2.3 Effects of Number of Tasks

In the general case, where tasks have an arbitrary location, it can be difficult to show how

the length of an agent path effects the expected value for an agent. Distances between tasks

and the base can vary, and minor differences can yield significantly different solutions.

If an agent is visiting a set of tasks, the value of that path is determined by the relative

location of the tasks in the space and the order of tasks visited. Ideally, the path chosen is

the shortest path visiting all tasks, which is equivalent to solving an instance of the traveling
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Fig. 2.2: Example single agent problem with 6 tasks 1km apart on a 1km unit circle. A
valid plan will visit a sequence of adjacent tasks before returning to the center base.

salesperson problem on a subset of problem vertices.

In order to isolate the effects of the number of tasks on expected value, we first present

a trivial example with one agent and tasks evenly space on a 1 kilometer unit circle (with

u = 1 km), shown in Figure 2.2. Because the distances between tasks are equal, the only

decision is to determine how many tasks to visit before returning to the base.

In Figure 2.3, we show the resulting expected value for an agent plan with an increas-

ing number of tasks from the example in Figure 2.2. Because of the equidistant layout,

the order of the tasks visited does not effect the distance of the path. As the value of θ is

increased, the number of tasks that should be collected is reduced. This is due to the addi-

tional risk incurred by the length of the path, which exposes the agent to more opportunities

to be destroyed. If θ is large enough, the best course of action is to collect on zero tasks

and remain at the base.

In Figure 2.4 we show the effects of task distance from the base, which can be thought

of as increasing the radius of the ring of tasks in Figure 2.2. In this case, while the value of

the tasks is reduced by the additional travel distance, the number of tasks that maximizes

the expected value remains the same. However, if the distance of the tasks is too far, it is

not worth incurring the risk of traveling to and from the tasks and the agent remains at the
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Fig. 2.3: For the example in Figure 2.2, when ψ = 0.85 the number of tasks in the highest
value assignment (filled boxes) depends on the asset value, θ. The line plotted between the
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base.

2.4 Multi-Robot Interaction

When we are solving for more than one agent, we must consider the joint expected value

over all agents. The subset of tasks that would maximize the expected value for one agent

may not be the best subset to choose when there are other agents available. As with the

single-agent case, the value of a solution is affected by the distance between tasks, their

distance from the base, and the value of the asset.

To illustrate the effects of θ on multi-agent plans we provide another simple example,

shown in Figure 2.5, with a base and 3 collection tasks. The labeled edges indicate the

distance between tasks in kilometers, and the probability of survival per unit moved is

ψ = 0.8. The goal is to generate an assignment of up to three agents that maximizes the

expected value.

Fig. 2.5: Example set of 3 tasks, denoting the distance between task locations. The
probability of survival per unit traveled is ψ = 0.8. The objective to to find an assignment
of up to 3 agents that maximizes the expected utility.

In Figure 2.6, we show three possible assignments using a different number of agents.

We also include the empty assignment, ∅, in which no agents are assigned to any tasks.

These are only a subset of all possible assignments, but they are useful to demonstrate the

effects of different asset values. We consider four scenarios with different platforms of

increasing value, with each having the same value of θ drawn from {0, 1, 2, 3}. In Table
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2.1 we provide the resulting expected value for each assignment for different values of θ,

with the best choice shown in bold.

Fig. 2.6: Three possible path allocations of agents to tasks. Π1 send one agent to each
task, Π2 send one agent to each of the two closer tasks, and Π3 send one agent to both of
the closer tasks.

Task Assignment
θ (Asset Value) Π1 Π2 Π3 ∅
0 (Expendable) 1.69 1.28 1.02 0

1 (Low Value) 0.38 0.56 0.54 0

2 (Medium Value) -0.93 -0.16 0.05 0

3 (High Value) -2.24 -0.88 -0.44 0

Table 2.1: Task assignment with the maximum expected value for varying asset value, θ.
The optimal path allocation changes as the asset value θ is increased.

When the assets have no value (θ = 0), the user is willing to risk losing them to max-

imize collection. In this case, the optimal solution is to always assign one agent to each

task, as it will minimize the risk of any one task not being completed. This is analogous to

the minimum latency problem when |A| = |T | [70], where the maximum utility is gained

by sending each agent to one task and then returning, minimizing the latency of each cus-

tomer. If the assets have low value (θ = 1), the middle task no longer provides sufficient

score to offset the risk incurred to visit it. For medium value assets (θ = 2), it is better to

risk only one agent in order to complete the two closest tasks. Finally, when the assets are

of high value (θ = 3), it is no longer feasible to send agents to any task, as the risk of losing
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the asset outweighs the value of completing the tasks.

These simple, theoretical examples provide insight into the problem space, but we are

also interested in finding solutions to CPPAR problems in the general case. To this end, we

explore existing methods for solving common combinatorial optimization problems, and

evaluate if they can be used on problems that include the risk of attrition.

2.5 Combinatorial Optimization Problems with Attri-

tion Risk

In order to make connections with existing work, we present ‘volatile’ versions of classical

knapsack problems. We introduce risk as a probability of an item destructing, destroying

the contents of a container. This shows how risk adds additional complexity, providing a

foundation for the challenges of solving CPPAR instances. While some of these problems

do not have clear practical applications to collection of sensor data, they provide a simple

foundation on which to discuss the interesting properties of attrition risk and how it affects

the utility of the optimization problem. We utilize much of the notation found in [31] for

the risk-free version of each problem.

2.5.1 Single Item Knapsack

This problem variant is also referred to as the unbounded knapsack problem [5], but with

only one type of item available. The item has a weight w and a positive value v > 0, and

the objective is to maximize the value of the items placed into the knapsack with maximum

weight capacity of W . Let x be the number of instances of the item that are placed in the
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knapsack.

maximize vx

subject to wx ≤ W and x ≥ 0

The solution to this problem can be found trivially by simply determining how many

instances of the item can fit within the capacity W , but the introduction of risk yields a

more interesting problem.

2.5.2 Single Item Volatile Knapsack

We now introduce the risk of attrition, referring to the modified problem as the volatile

knapsack problem. Consider an item that is not stable, and may destruct with some prob-

ability, destroying all instances of the item stored in the knapsack. We are provided one

opportunity to fill the knapsack with some number of the item, after which the probabil-

ity of destruction is realized. In this problem formulation there is an item with weight w,

positive value v > 0, and a probability of not destructing p, such that 0 ≤ p ≤ 1. In this

work, we will often use this ‘negative destruction probability’, as it aids in simplifying the

presentation and computation. The objective is to maximize the expected value of the items

in the knapsack with maximum capacity ofW . Let x be the number of instances of the item

that are placed in the knapsack.

maximize pxvx

subject to wx ≤ W and x ≥ 0

Unlike the traditional knapsack problem, where we seek to find a best use of the capacity

to maximize the value, this objective function has a self-regulating property that limits

the desired number of objects. In Figure 2.7 we show the non-discrete expected values for
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Fig. 2.7: The non-discrete expected value functions for the single item volatile knapsack
problem, with v = 10 and varying values for the probability of not destructing, p.

adding items with value v = 10 to the knapsack. Because each item added incurs additional

risk of losing everything in the knapsack, when p < 1 there is a maximum number of items

at which we do not wish to risk losing everything in the knapsack in order to gain more

value. In fact, the capacity of the knapsack W is only a constraint when it is less than the

number of items that maximize the expected utility.

If we consider a fixed probability p and vary the value of the item, we find that the

optimal number of items is fixed, as shown in Figure 2.8. Because we are considering

multiple instances of a single item type with a fixed value, the optimal number of items to

place in the knapsack is determined only by the probability of not destructing.

This self-regulating property of the attrition risk model yields interesting effects even

in this very simple knapsack problem. In this problem, the value of the item has no bearing

on the number of items needed to maximize expected value, as seen in Figure 2.8. To show

this formally, consider the value function,

V (x) = pxvx. (2.8)

We then take the derivative, yielding
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problem, with p = 0.9 and varying values for the item value, v.

V ′(x) = c(px + ln(p)pxx). (2.9)

If we let V ′(x) = 0, we can solve for the value of x that maximizes V (x),

x = − 1

ln(p)
(2.10)

Because this function is in a continuous space, the number of items that maximizes

value is the closest integer, d 1
ln(p)
e or b 1

ln(p)
c. This is equivalent to our path planning prob-

lem with a single agent, all inter-task edges the same distance, and all tasks with the same

value.

This is has similarities to a dice game referred to as Pig [69]. In this game, each player

repeatedly rolls a die on their turn, accumulating the value on the die. However, if the

player rolls a 1, they lose all points accumulated so far. Therefore, after each roll the player

must decide if they will roll again or pass and take the points that have been accumulated

on this turn. The challenge is to maximize score while mitigating the risk, and the optimal

tactics are a complex function of players scores.

Geometrically, this is a very limited case with no clear practical application, but it
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provides some insight into how the value is regulated by the probability. This is opposed

to placing constraints on capacity or distance, as is standard practice in route planning

problems. We continue by discussing more complex problems and the effects of attrition.

2.5.3 0-1 Knapsack

A commonly used version of the knapsack problem is the 0-1 knapsack problem [65],

which provides multiple items to choose from and restricts the number of instances of each

item to 0 or 1. This formulation is more intuitive, and in the context of storing data on a

platform has clear applications. Consider a single asset that must choose which tasks to

collect, given a limit on the storage space available on the platform. We seek to maximize

the value of the completed tasks while respecting the space constraint.

We are given a set of n items, numbered from 1 to n, where each item i has a weight wi

(or size of task data) and a value vi, and the knapsack has a capacity of W . Let xi ∈ {0, 1}

be an indicator variable if item i is included in the knapsack.

maximize
n∑
i=1

vixi

subject to
n∑
i=1

wixi ≤ W and xi ∈ {0, 1}

This problem has been shown to be in the class of NP-complete problems, but it can be

solved in pseudo-polynomial time using dynamic programming [5].

2.5.4 0-1 Volatile Knapsack

Once again, we consider the risk of attrition. Each item i has a weight wi, a value vi,

and a probability of not destructing pi when collected. As with the single item knapsack,

we assume that distance between tasks is fixed, and the order in which they are collected

has no effect on the probability of destruction. If any item destructs, all of the contents
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of the knapsack are lost. Let X = {0, 1}n be the vector of indicator variables for all

possible items. Let S(X) be the support of X , containing only the elements included in the

knapsack.

maximize
∏

xi∈S(X)

pixi

n∑
i=1

vixi

subject to
n∑
i=1

wixi ≤ W and xi ∈ {0, 1}

This can be thought of as a simple single agent version of the CPPAR, where each task

has its own probability of destroying the platform, rather than deriving the probability from

the distance traveled. In many cases, the maximum capacity W becomes an unnecessary

constraint, as the risk of collecting the task data can how much should be collected before

the storage limit is reached. However, as p values approach 1 (little or no risk), the capacity

constraint has a stronger effect.

For this problem, we would see similar value function to those in Figures 2.7 and 2.8,

but we now have varying destruct probabilities and value for each item. The interaction

between these provides a rich space of optimization that is familiar among this class of

problems. A difficulty that arises is the need to perform multiplication in order to compute

the joint probabilities, which increases the computational difficulty over problems with

linear relationships between variables.

2.6 Solution Methods for the 0-1 Knapsack Problem

Problems such as the knapsack problem are often solved efficiently using dynamic pro-

gramming [28], which breaks a problem down into sub-problems, solves them individually,

and stores their solution for later use. This method is applicable when the problem has op-

timal substructure and overlapping sub-problems. Knapsack problems are well-known to
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have these properties, raising the question if our volatile problems have the same properties

to allow us to make use of these methods. If not, then dynamic programming cannot be

used effectively, motivating other solutions methods.

Similarly, a turnpike theorem [50] is a common method for reducing the problem space

in knapsack problems, and are often applicable problems that can be solved using dynamic

programming. It chooses the item with the highest density (value divided by weight) and

determines if it should be added to the solution. The term turnpike is derived from the

idea that if we are planning a long automobile trip, then we should expect to spend most

of our time on the turnpike, or highway, as it is the fastest we can travel. Therefore, if we

can identify the turnpike and include it in the solution, then we only need to solve for the

sub-problem of getting on and off the turnpike. Similarly, if we can identify an item that

will always be included in the solution, we can add it and solve the remaining sub-problem.

Using these approaches on the volatile version of these problems requires optimal sub-

structure. We will show that this problem formulation does not have optimal substructure,

preventing us from making use of these well-studied methods. The following example

highlights the need for more sophisticated search methods in order to solve this class of

optimization problems.

Let X = {0, 1}n be the vector of indicator variables for all items in a set of size n.

Each item i has a value vi, and a probability of not destructing pi when collected. We can

denote the probability of the items in X not destructing as pX and the value of the items

as vX , with V (X) = pXvX as the expected value of X . Assume for this example that the

weight capacity for the knapsack exceeds the sum of all item weights. Adding a new item

a with probability pa and value va to Xa yields a new expected value,

V (Xa) = (pX · pa)(vX + va) (2.11)

Let X∗ = {0, 1}n be an optimal selection of items from a set of size n, such that pX∗ = .9
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and vX∗ = 30. We are now given two additional items to consider, a and b, such that,

pa = .25, va = 40 V (a) = 10

pb = .9, vb = 10 V (b) = 9

If we must choose one item from the pair, item a is of higher value. However, if we consider

adding each item to the existing optimal solution, we get the following values,

V (Xa) = (.9 · .25)(30 + 40) = 15.75

V (Xb) = (.9 · .9)(30 + 10) = 32.4

This example shows that we are unable to consider the value of items in relative isolation,

but rather each item must be considered along with items that may not be represented in

the sub-problem. This prevents us from using existing dynamic programming algorithms

to solve the volatile versions of these problems.

2.6.1 Turnpike theorems for CPPAR

We have shown that the volatile knapsack problem (and by extension, CPPAR) does not

exhibit optimal substructure, preventing us from using a turnpike theorem. The primary

benefit of finding a turnpike in a knapsack problem is that it can be used to reduce the prob-

lem by subtracting the weight of the item from the capacity and solving for the remaining

items. For the volatile knpasack, we can identify a single item that is of the highest value,

and likely to be included in the optimal solution, but we are unable to use that selection

to reduce the problem size. This is because collections of items must be considered as

a bundle, and their value is a combination of their joint probability and the sum of their

values.

Therefore, a similar turnpike method for the volatile knapsack would consider groups
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of items, starting with the most valuable item first and storing the current probability and

value for the next iteration. We then choose items that, in combination with previously

chosen items, provide the largest gain in expected value. Eventually, none of the remaining

items will provide a positive gain in expected value, indicating that no further items should

be added. Unlike dynamic programming methods such as the original turnpike method,

these steps are sequential and can not be performed in isolation.

While this process is effective for the volatile knapsack, it does not apply directly to

CPPAR for two reasons. First, because tasks are located in a metric space, the order in

which they are chosen affects the distance traveled and, therefore, the probability of sur-

vival. Second, when there are multiple agents to choose from it may be better to split a

group of tasks among multiple agents rather than bundle them all together for one agent to

collect. Both of these aspects of the problem lead to exponential growth in the state space,

making a tree-based search computationally difficult.

These challenges led us to find a method for grouping tasks into multiple bundles, each

of which maximized a local bundle value while also allowing for multiple agents. To help

guide our search for a solution, we used brute force methods to solve a number of relatively

small instances. Some observed properties of optimal solutions for the CPPAR are:

• Agents will prefer tasks that are closer to the base, as they have less risk. As θ

increase, some tasks may be so far from the base that they are not worth the risk to

complete them.

• Tasks that are close together will provide an increased value as a group, since the

value of the tasks will exceed the total distance to travel between them.

• As the distance from the base increases, larger groups of closely grouped tasks are

needed to offset the risk of traveling the distance required to reach them.

The preference for tasks that are closer together is similar across most path-based plan-

ning problems, and clustering has long been a common method for helping to inform path
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construction [73]. However, the introduction of risk motivates new solution concepts that

consider all of these aspects, doing more than find shortest paths. Clustering methods

seemed like a natural fit, but existing algorithms were not well suited to dealing with the

risk model. Based on these challenges, we have devised a clustering algorithm that is re-

sponsive to the unique aspects of this problem and is capable of finding solutions for large

numbers of tasks with variable agents. In the next chapter we will provide a description of

our algorithm.
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3

CLUSTERING FOR CPPAR

The collection planning problem with attrition risk (CPPAR), while having some unique

properties, shares a number of features with other multi-agent planning problem. In gen-

eral, tasks that are located spatially near each other are more likely to be connected by a

single agent path. Additionally, when ample agents are available, a single path will often be

contained on one side of the base. For example, with 2 agents with a base in the center, it’s

often the case that each agent will cover the tasks on one side of the base, with relatively

no overlap.

The observation of ‘clusters’ among path-based planning has been widespread, and a

number of algorithms use a form of clustering as a means of reducing the search space for

finding solutions. The cluster first-route second method uses clustering to group together

nearby tasks, then executes the routing procedure on those clusters [60]. In contrast, the

route first-cluster second method generates a single route ignoring constraints, and then

uses clustering to to split the route into feasible paths [9].

We present a solution method, referred to as Progressive Risk-aware Clustering (PRC),

that uses hierarchical clustering to generate plans for groups of agents to complete a set of

collection tasks with the risk of attrition. Tasks are clustered using a bottom-up approach,

which starts with each task being in a singleton cluster and iteratively joining clusters in a
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pairwise fashion, ending with all tasks in one cluster. This sequence yields a hierarchical

data structure that can be processed to provide task groupings, with each group being vis-

ited by one agent. By exploiting spatial relationships and considering risk, PRC generates

solutions with a high expected value. Additionally, the algorithm is effective across a wide

range of problem instances without requiring user calibration.

Clustering is a common method for solving multi-agent routing problems, often used

to generate initial solutions to guide the search process. The overwhelming majority of

clustering solutions are intended for problems with a known number of agents [22] [96]

[58] [19]. This is not the first work to use hierarchical clustering to find task groupings

[81], but we do not require a user specify the number of agents to be used.

The value of a cluster in the CPPAR is dependent on a few key properties, as depicted

in Figure 3.1. First, we must consider the total value of the tasks being collected as part of

a cluster. Second, the inter-task distance is the length of the path that is necessary to visit

all of the tasks in the cluster. Dense clusters would be expected to have a short inter-path

distance, while loosely packed tasks will require additional distance to visit all of them.

Finally, the distance of the cluster from the base has a significant effect on the overall

value. In order to reach the cluster, the collecting agent must travel to and from the cluster,

incurring additional risk.

The risk of losing assets and their associated tasks scheduled for collection introduces

additional constraints that must be considered. If the value of the asset is high, then there

may be tasks that are too far away, or not of sufficient value, to be collected. In this case,

there are tasks that are not a member of any cluster. Additionally, as more tasks are added

to a path, both the distance traveled and the value at risk is increased. Therefore, there is

a ‘critical mass’ of tasks that is reached, at which point no more tasks can be added to a

cluster without reducing the overall value of the path.

With these considerations in mind, we set out to investigate a number of methods for

grouping tasks into clusters. Each method is evaluated based on the performance against a
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Fig. 3.1: The key properties of a cluster for CPPAR. The task value determines the joint
value of the cluster, the inter-task distance is the length of the path visiting all tasks in the
cluster, and the distance from the base determines how much value a cluster must have to
be worth visiting.
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common baseline, using a range of problem and parameter settings. We investigate the use

of both community detection and clustering methods, which differ in their approach. Com-

munity detection looks for structure in a graph, requiring us to reduce the complete graph

of inter-task edges. We test two methods for graph reduction, k-nearest neighbor and me-

dian cut, along with a community detection algorithm that seeks to maximize Modularity

(Q-score) [17]. For clustering methods we show results for DBSCAN [33] and Heirar-

chical Clustering [27], neither of which require the number of clusters to be specified a

priori. Based on these results, we formulate a method well-suited to CPPAR, which we call

Progressive Risk-Aware Clustering (PRC).

3.1 Empirical Evaluation of Clustering Methods

Given the clear application of clustering methods to path-based planning problems, and the

similarities of CPPAR to planning problems without risk, we investigated the effectiveness

of existing clustering approaches. Applying these clustering methods to CPPAR turned out

to be challenging for a few reasons:

• The number of paths to be used is not known a priori. When risk is low, many agents

should be dispatched, when risk is high, few or no agents should be sent. Therefore,

we should exclude any methods that require the number of clusters be specified, or

find a automated way to select the number of clusters.

• Cluster value can decrease if clusters grow too large, which requires recomputing the

distance measure between tasks based on the current size of the cluster. Many clus-

tering algorithms assume the ‘distance’ between instances remains fixed throughout

the clustering process.

• The value of a task (and its associated cluster) is in part determined by how far

the agent must travel from the base to reach it. This yields cluster values that are a
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function of both inter-task Euclidean distance and the relative distance from the base.

Uncertain of exactly which forms of clustering would be best suited to generate so-

lutions for CPPAR, we implemented a number of approaches and compared their perfor-

mance. We describe the most notable performing algorithms and discuss the implications

of their results.

To evaluate the performance of these algorithms, we compare against the sequential

greedy (SG) algorithm [20], which iteratively adds tasks to paths based on the gain in

expected value. At each step, all tasks are evaluated based on insertion to all possible loca-

tions in existing paths, as well as the gain for starting a new path with only that task. The

operation with the largest gain is performed and the task is removed from future consider-

ation. When no tasks have a positive gain in expected value, the algorithm terminates and

the resulting paths are used as the solution.

The following experiments were conducted on 100 randomly generated CPPAR prob-

lem instances with 100 tasks each. Tasks are placed in a 100km ÃŮ 100km 2D Eu-

clidean space, according to a uniform random distribution. The probability of survival

is ÏĹψ = 0.99 for each km traveled. Each approach is evaluated based on the mean ex-

pected value (EV) of the solution with respect to the mean performance of the SG baseline

on the same instances.

For each set of experiments, we observe performance over a range of asset values (θ)

in order to determine if the algorithm is effective for a range of problems. Recall from

Chapter 2, Figure 2.6, that the optimal solutions vary significantly as asset value changes,

with θ = 0 assigning one agent to each task and high values of θ motivating paths that

prefer closer tasks using less assets.

k-NN Cut + Modularity

In this approach, the initial complete graph is modified by keeping edges only between

each vertex and the k nearest vertices in the space, where k is an input parameter to the
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Fig. 3.2: Example of the application of the Modularity metric to a reduced graph. Different
colors represents individual community, each of which is used to form a path for a single
agent.

process. Because the community detection process is based on the existence of edges and

does not consider distance, this reduction takes the complete graph and preserves links

only between nearby tasks. We then use community detection method called Modularity

[17], provided by the Gephi graph analysis library [8], to generate a set of groupings. Each

group is converted to a path using the same sequential greedy method [24] we used for the

baseline, except only on the subset of tasks identified to be in a single cluster.

The use of Modularity for path-based planning has been shown to be successful for

Traveling Salesman problems [3]. However, it is highly sensitive to the topology of the

reduced graph, motivating the exploration of different methods for generating the reduced

graph.

Experiments were performed using an increasing number of nearest neighbors during

the graph reduction, k = {1, 2, 3, 4, 5}. Increasing values of k preserve more edges con-

nected to a single node, and result in graphs with more edges overall. The results of this

approach on simulated instances is shown in Figure 3.3. Surprisingly, when k = 1, the
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Fig. 3.3: Performance of k-NN graph reduction with Modularity for detecting groupings
of tasks for verious values of k versus baseline (red line).

performance was the highest, with performance degrading as k in increased.

We were encouraged by the performance of this approach when k = 1, as it outper-

formed the baseline sequential greedy algorithm under certain conditions. This encouraged

us to try other clustering methods to see if further performance gains could be found. How-

ever, it was still unclear if the k-NN process was causing poor performance, as opposed to

the Modularity process.

Median Cut + Modularity

Instead of having an exact number of edges per vertex, as was the case with the k-NN

graph reduction, we also tried reducing the graph by ordering the edges based on distance

and removing those edges that fell beneath some percentage value. Originally referred to

as a ‘median cut’ method, which eliminated any edges with a value less than the median,

we also tried a number of percentile thresholds (0.1, 0.3, 0.5, 0.7, 0.9).

In general, this approach showed poor performance for all parameter settings tested, as

shown in Figure 3.4. Based on these result, it seemed that more sophisticated graph re-

duction techniques would be needed to achieve the level of performance we would expect.
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Fig. 3.4: Performance of ‘median cut’ reduction with Modularity for detecting groupings
of tasks for various percentile cutoff values versus baseline (red line).

However, performing reduction based on pairwise computation of risk would be exponen-

tially expensive. Therefore, we changed direction and looked at more traditional clustering

methods.

DBSCAN

We first tried using clustering methods that were well-suited to ‘visual’ clustering of in-

stances. These approaches have the benefit of not needing to have any specification of how

many clusters that are expected. The DBSCAN [33] algorithm, contained in the WEKA

library [45], requires the user to specify two parameters: minPoints specifies the minimum

number of points nearby each other to be considered a cluster, and epsilon specifies how

close together vertices should be to be considered part of a the same cluster. To coarsely

explore the parameter space, we performed experiments using minPoints = {5, 10, 15}

and epsilon = {0.3, 0.5, 0.7}.

As shown in Figure 3.5, this approach performed better Median Cut + Modularity in

many cases, but fell short of the promising performance seen with k-NN + Modularity. In

addition, it also introduces the need to modify two parameters depending on the properties
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Fig. 3.5: Performance of DBSCAN for detecting groupings of tasks for various minPoints
and epsilon values versus baseline (red line).

of varying problem instances. This seemed to introduce unecessary complexity if we were

try to adapt it for CPPAR.

Hierarchical Clustering

Another clustering method that allows for clustering without explicitly specifying the num-

ber of clusters is Hierarchical Clustering [27], a method for grouping instances in a metric

space. We use a bottom-up approach, where each instance starts as a singleton cluster.

Then, a series of successive cluster merges is executed, terminating when all instances are

part of a single cluster, referred to as agglomerative clustering. Given the output of the

process, a cutoff is chosen that induces a set of clusters. We used the WEKA library [45]

for this implementation, which required a specification of the number of clusters to extract

from the output, for which we select from {5, 10, 15, 20, 25, 30}.

In Figure 3.6 we show that hierarchical agglomerative clustering (HAC) proposed task

assignments with the highest observed values across the clustering methods, in some cases

showing 50% improvement across most asset values tested. This relatively stable perfor-

mance led us to choose hierarchical clustering as our baseline approach and explore new
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Fig. 3.6: Performance of Hierarchical Clustering for detecting groupings of tasks for
various number of output clusters, versus baseline (red line).

ways to adapt it more specifically to this unique problem. The resulting algorithm is dis-

cussed in the next section.

3.2 Hierarchical Agglomerative Clustering for CPPAR

Based on the superior performance of HAC in our experiments, we conducted further in-

vestigation into the algorithmic process to identify improvements. The result of the HAC

process can be visualized as a dendrogram, as shown in Figure 3.7. By moving from the

bottom to the top, we can reconstruct the series of merges that occurred and choose a spe-

cific distance at which to truncate the structure, resulting in a set of clusters. When a pair of

clusters are merged, the distance to the other clusters is updated. There are a large number

of strategies used for this update procedure, refer to [64] for further details and discussion.

This approach is appealing for this problem because it allows for a variable number of

clusters depending on the problem structure and it evaluates groupings of tasks based on

their proximity, which should also minimize inter-task distance. However, using only the

distance between tasks as the similarity measure has some drawbacks:

• Combining task clusters (or singletons) into a single cluster may increase or decrease
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Fig. 3.7: An example dendrogram for six instances. Horizontal lines indicate a merge
of two clusters, with the height along the the vertical axis being the distance between the
clusters. The dotted line is an example of using a distance cutoff value to generate a set of
clusters. In this case, the resulting clusters are {1, 4}, {2}, and {5, 6, 3}.

the utility, depending on how large the clusters are.

• The value of a cluster is also dependent on how far from the base the tasks are, which

is not captured by the inter-task distance alone.

• There is no clear cutoff value for the distance at which we should stop the clustering

process to yield the best groups of task assignments for all agents.

To address these challenges, we must consider not just the distance between clusters, but

the gain in expected value when performing the merge. This requires considering all of the

cluster features shown in Figure 3.1. Task value is fairly straightforward, as it is an additive

property. The inter-task distance and base distance, however, require computing a new

path for the combined set of tasks as part of the evaluation. This can be computationally

expensive, motivating approximation methods that we will describe in detail.

Our Progressive Risk-aware Clustering (PRC) method yields clusters that are variable

based on their size, distance between tasks, and the distance from the base. We refer to

this clustering process as “risk-aware", as the search process considers risk, exceeding the

capabilities of existing algorithm to provide solutions for the CPPAR. We provide a formal
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description of this algorithm in the next section.

3.2.1 Progressive Risk-Aware Clustering

We introduce an agglomerative clustering method for finding solutions to the collection

planning problem with attrition-based risk. It provides solutions that exceed the perfor-

mance of sequential greedy methods with orders of magnitude less computation required.

Unlike clustering methods commonly used for multi-agent tasking, we do not specify how

many clusters are to be formed as part of the problem definition. Instead, we consider

determining how many agents to send as part of the problem begin solved, allowing the

details of the problem instance to guide the number of agents used.

We set the distance between clusters as the gain in expected value, which is a function

of the numbers of tasks, the distance between tasks, and the distance of the task grouping

from the base. We then iteratively combine tasks into clusters based on the gain in expected

value until no positive gain can be found, or all tasks are in a single cluster.

Recall from Chapter 2 that cip is the score for agent ai completing the task tp, and

ps(ejk) is the probability of successfully traversing the edge between tasks tj and tk. Given

a cluster Ci consisting of a set of tasks, let π∗i be the optimal path for agent i to visit all tasks

in Ci, starting and ending at the base. The optimal expected value for a cluster of tasks is:

EV ∗(Ci) =
∏

ejk∈π∗i

ps(ejk)
∑
tp∈Ci

cip − θi · (1−
∏

ejk∈π∗i

ps(ejk)). (3.1)

The exact gain in expected value from merging two clusters is defined as:

GAIN∗(Ci, Cj) = EV ∗({Ci ∪ Cj})− EV ∗(Ci)− EV ∗(Cj). (3.2)

In practice, computing the optimal value can be expensive. Finding the optimal path

through a set of tasks is an NP-complete problem, and the path would need to be computed

for every possible merging of clusters. Even using agglomerative clustering with average-
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Fig. 3.8: An example showing the difference between an exact merge between clusters,
which requires computing the optimal TSP route for the merged clusters, and an approxi-
mate merge, which utilizes the Minimum Spanning Tree and a single shortest distance path
to compute the benefit of merging two clusters.

linkage has a complexity of O(n3), making the approximation of cluster value beneficial to

scaling up to hundreds or thousands of tasks.

In order to approximate the value of a cluster, we keep track of the length of the mini-

mum spanning tree (MST) over the tasks in the cluster. When two clusters are merged we

can easily update the MST by adding only the closest edge between the two original MSTs.

Finding the edge between the closest tasks can be done in O(n2) time. Additionally, we

keep track of only the closest element to the base in the cluster, an O(1) operation. An

example of this approximation method is shown in Figure 3.8.

Let dist(b, Ci) be the distance between the base and the nearest element of cluster Ci,

andMST (Ci) return the distance of the minimum spanning tree. The MST has been shown

to be a 2-approx solution for a TSP[74], meaning that the value it returns is no more than

2 times the actual TSP distance. Using these components as an estimate of distance, we

define the approximate path length for cluster Ci as d̃(Ci) = MST (Ci) + 2 ·dist(b, Ci). Our
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approximate value function for a cluster is defined as:

Ṽ (Ci) = |Ci| · ψd̃(Ci) − θi · (1− ψd̃(Ci)). (3.3)

Using this value function, we can compute our approximate gain for merging two clus-

ters:

GAIN(Ci, Cj) = Ṽ ({Ci ∪ Ci})− Ṽ (Ci)− Ṽ (Cj). (3.4)

The Progressive Risk-aware Clustering (PRC) algorithm (Algorithm 1) is shown below.

The merging of two clusters is conducted as follows: P [ ] is used to track the cluster parents

as clusters are merged. Each cluster is represented by a single task, with all other tasks in

that cluster referring to that task. H[ ] is used to track merge height, and keeps track of what

gain value caused the merge. It is used as an index to truncate the dendogram of tasks and

form the final clusters, as explained in more detail in the next section.

The properties of a cluster are also tracked and updated, allowing for fast merging

operations. S[ ] indicates the number of tasks in a cluster. The distance to the base for

each cluster is stored in B[ ], which is updated as the minimum base distance over both

merged clusters. Finally, M [ ] tracks the distance over the minimum spanning tree for each

cluster, and is updated by summing the merged clusters’ MSTs, plus the shortest distance

between a pair of tasks between the clusters. This shortest distance is equivalent to the

single-linkage strategy for hierachical clustering.

The steps for generating the multi-agent plan (and their associated commands in Algo-

rithm 1) are as follows:

• Step 1. [Lines 1-12] Initialize singleton clusters from tasks and associated data struc-

tures.

• Step 2. [Lines 13-22] Iteratively merge clusters until they form a single cluster of

all tasks. At each merge track the gain in EV and update the properties of the new
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cluster and it’s relation to other clusters.

• Step 3. [Line 25] Extract clusters from the resulting dendogram by returning clusters

that were formed with a positive gain in expected value.

• Step 4. [Lines 26-30] Generate agent path from each cluster. Remove any agent

paths that do not have a positive expected value.

In order to speed up this procedure we utilize ELKI 0.7 [1, 85], which provides data

structures that are optimized for large-scale clustering, including fast indexing and iteration

of distances between a collection of instances and optimized handling of the resulting den-

dogram data structure. ELKI performs neighbor search using a database core that is indexed

specifically for performing distance queries, yielding impressive speed for our clustering

application.

3.3 Performance and Evaluation

We evaluate the performance of PRC over a number of randomly generated problem in-

stances. Tasks are placed in a 100km× 100km 2D Euclidean space, according to a uniform

random distribution. The probability of survival is ψ = 0.99 for each km traveled. Each

approach is evaluated based on the expected value (EV) of the solution as well as the CPU

time required to find a solution.

To evaluate the performance of the PRC algorithm, we once again compare against the

sequential greedy (SG) algorithm specified in [24], which is shown to provide solutions

equivalent to those provided by CBBA. We use the gain in expected value for adding a new

task as the scoring function. All experiments results are provided for 100 random instances

for each parameter setting.

In order to allow for a fair comparison we provide SG with one agent per task. While the

solutions generated by the SG algorithm will not necessarily use all of the agents provided,
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Algorithm 1 Progressive Risk-aware Clustering

Input: Task set T = {t1...tn}, graph G =< V,E >, where V = T ∪ {b}
Output: Set of clusters {C1, ..., Cm}.

1: A ← ∅
2: for i← 1...n do
3: A ← A∪ {{ti}}
4: P [i]← i
5: H[i]←∞
6: S[i]← 1
7: B[i]← dist(b, ti)
8: M [i]← 0
9: for j = (i+ 1)...n do

10: dist[i][j]← dist(ti, tj)
11: end for
12: end for

13: while |A| > 1 do
14: C∗1 , C∗2 ← arg max

C1,C2∈A
GAIN(C1, C2)

15: P [C∗1 ]← C∗2
16: H[C∗1 ]← GAIN(C∗1 , C∗2)
17: S[C∗2 ]← S[C∗1 ] + S[C∗2 ]
18: B[C∗2 ]← min(B[C∗1 ], B[C∗2 ])
19: M [C∗2 ]←M [C∗1 ] +M [C∗2 ] + dist(C∗1 , C∗2)
20: for all Ci ∈ A \ C∗2 do
21: t∗i , t

∗
j ← arg min

xi∈Ci,xj∈C∗2
22: dist[Ci][C∗2 ]← dist(t∗i , t

∗
j)

23: end for
24: end while

25: ExtractClusters()

26: for all Ci ∈ A do
27: if EV ∗(Ci) ≤ 0 then
28: A ← A \ Ci
29: end if
30: end for
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(f) θ = 0 (g) θ = 1 (h) θ = 2 (i) θ = 3 (j) θ = 4

Fig. 3.9: Comparison of solutions provided by Sequential Greedy Gain [top] and PRC
[bottom] for a problem instance with 100 sites. The base is located in the center and the
task collection sites are depicted as squares. Each line is a path for a single agent. Solutions
are for θ ∈ {0, 1, 2, 3, 4}, from left to right.

this allows the algorithm to maximize value. For example, when θ = 0, the optimal solution

is to assign one agent to each task. An agent that is not used provides no utility, but also

incurs no risk of being lost, so there is no penalty or gain for any unused agents.

Because our problem has a score function that does not have a diminishing marginal

gain (DMG) property [24] and allows for values less than zero, we also consider an alter-

native sequential greedy solver that bids only on positive gains in score when adding a task

to a bundle. This sequential greedy gain (SG-Gain) algorithm performs significantly better

on this problem than SG, as shown in Figures 3.11 and 3.12. SG allows for negative bids,

assigning tasks to the agent that has the “least negative" score and effectively bidding on

all tasks. Therefore, we use SG-Gain as the baseline for comparison for our experiments.

An example of the solutions generated by SG-Gain and PRC for a single 100 task

instance with varying asset values are shown in Figure 3.9. When θ = 0, assets have no

value and the best solution sends one agent to each task. As θ increases, both approaches

reduce the number of tasks that are assigned. Because SG-Gain only bids on positive

gains, it fails to capture clusters where all tasks are far away. This is because the sequential
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Fig. 3.10: A single pair of solutions from Figure 3.9, for θ = 2, is shown. The red
dashed circle is the threshold at which a single task would not have sufficient value to form
a cluster with positive expected value. As a result, the Sequential Greedy method will
form only paths that have a single task within that range, making it unable to recognize
high-value clusters outside that range.

bidding process is limited to generating values for one task at a time. Therefore, it does not

bid on an initial task to begin forming the path, as it would require a negative gain (a loss

in value compared to a value of zero for an empty path). An example of this behavior is

shown in Figure 3.10.

In Figure 3.11 we show the expected value on 100 tasks for PRC and SG-Gain com-

pared to the Exact Merge Algorithm, (Algorithm 2) which uses the exact gain in expected

value in order to evaluate cluster merges, rather than approximating the gain. This shows

that PRC performs nearly as well as the exact merge solution, with improvement over SG-

Gain.

Alternatively, we compute the percent improvement over SG-Gain for the same prob-

lem instances, as shown in Figure 3.12. We use this measure to show performance over

a set problem instances with a variable number of tasks. The increased variance for high

asset values is due to there being relatively fewer tasks being visited as part of a solution, in

some cases no tasks are visited at all. Therefore, the performance of all algorithms is more
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Fig. 3.11: The expected value of multi-agent plans generated by each algorithm on 100
tasks. PRC achieves performance near Exact Merge, with improvement over SG and SG-
Gain.
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Fig. 3.12: The % improvement over SG-Gain for increasing asset value with 100 tasks.
SG quickly degrades in performance as the asset value increases, Exact and PRC show
improvement over SG-Gain except when θ = 0.
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dependent on the randomly generated problems, and how many tasks are located near the

base. With respect to CPU time, PRC provides these performance results at a significant

computational savings in almost all cases, as shown in Figure 3.13.

Algorithm 2 Exact Merge Algorithm

1: A ← ∅
2: maxGain← −∞
3: for i← 1...N do
4: A ← A∪ {{xi}}
5: end for
6: while maxGain > 0 AND |A| > 1 do
7: C∗1 , C∗2 ← arg max

C1,C2∈A
GAIN(C1, C2)

8: maxGain← GAIN(C∗1 , C∗2)
9: A ← A \ {{C∗1}, {C∗2}}

10: A ← A∪ {C∗1 ∪ C∗2}
11: end while

In Figure 3.14 we show that the PRC algorithm scales well to large problem instances,

with the gains in expected value increasing along with problem size. This increase in

gain is due to there being more tasks outside of the threshold at which one task is worth

completing.

In order to understand why PRC outperforms the greedy sequential methods, we can

look at the properties of the solutions generated by each approach. In Figure 3.15, the

number of task sites visited by each planner is shown. The Sequential Greedy algorithm

will always collect on all of the tasks, which is detrimental when the asset value, θ, is large.

The SG-Gain variant, which does not bid on tasks that have a negative utility, suffers from

visiting too few tasks, resulting in the lower performance shown in Figure 3.11.

Finally, we show how many agents were dispatched by each algorithm in Figure 3.16.

The sequential greedy approaches suffer from sending too few agents, missing out on op-

portunities for additional value. The SG methods choose individual tasks with the highest

perceived value, which can discard tasks that may be part of a large cluster far from the

base. On the other hand, PRC recognizes these clusters and determines their value, moti-
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vating sending an agent to collect and gain the associated value.
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Fig. 3.13: CPU Time in milliseconds for each algorithm with respect to asset value for
100 tasks. Note the logarithm scale used for the vertical axis.
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Fig. 3.14: The % improvement over SG-Gain grows as the problem size increases. Results
are shown for PRC on problems with the 100, 500, 1000, and 2000 tasks.

The solutions generated by the PRC algorithm have been shown to be effective when a

single agent visits each task, but there is additional value that can be gained by allowing for

redundant collection of sensor data, increasing the probability of success. We will explore

redundancy, and the limits on value that can be gained, in the next section.
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3.4 Redundant Collection for CPPAR

Before this point, there has been an implicit assumption that tasks were collected once and

returned to the base. However, it’s not hard to imagine scenarios in which the task data

can be collected by one or more agents, with credit being given for completion as long

as at least one of them returns to the base with the data. For example, consider gathering

imagery fixed locations, which can be collected at any time. If more than one agent is sent

to collect the image then we can mitigate the risk of losing one of the agents, increasing the

probability of completing that task.

Adding redundancy comes with a cost, however. Instead of one agent extending its

path to complete a task, multiple agents must increase their risk to collect a single task.

This requires that the value of the task, and the marginal gain in probability of successfully

completing it, offset the additional cost of increasing the risk of losing another asset to

collect it. We show that redundancy of collection has value only when the ratio of the

asset cost to the task value is very low, on the order of 1:5. Additionally, each additional

redundant agent has diminishing returns, as it can only marginally increase the probability

of successfully completing the task.

In this section, we explore a method for including redundant collection in the solution

process. We present an algorithm for computing an initial solution using the PRC algorithm

and then iteratively search for redundant collections that maximize the expected value.

Our results show a diminishing return on the increase in expected value from redundantly

collecting a task. In cases where the asset value is high, there is no benefit to including

redundancy.

3.4.1 Redundancy-Based Utility

To model redundancy, we leverage concepts from reliability engineering. A common

method for handling faults is to form components in a series parallel system, where re-
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Fig. 3.17: Block diagram for a parallel system, with components 1 through n providing
redundancy. Only one of the components needs to be successful for the overall process to
be successful.

dundancy can provide protection against single component failures [88]. In the example

shown in Figure 3.17, we have n parallel components, with each component i having a re-

liability value, Ri, indicating the probability of providing the desired function. The overall

reliability R of the block diagram is,

R = 1− (1−R1)(1−R2)× · · · × (1−Rn) (3.5)

Similarly, we can think of agents as components that are acting in parallel to ensure a

task gets completed. Each agent has a reliability value, which we refer to as survivability.

The survivability Si (see Equation 2.3) is the probability of the event that an agent ai will

return to the base with the collected task data via the specified path πi.

Consider a single task ti, that may be visited by one or more agents, where πj is the

path for agent aj . By considering all of the agents that visit a node, we can compute the

expected value for that task. Let Πti be the set of agent paths that visit task ti, with a task

score ci. The expected task value is,

V (ti,Πti) =

1−

 ∏
πj∈Πti

(1− Sj)

 ci (3.6)

Adding a new agent path πN to a task yields the following value
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V (ti,Πti ∪ πN) =

1−

 ∏
πj∈Πti

(1− Sj)

 (1− SN)

 ci (3.7)

The increase in value from adding an additional agent path has diminishing returns, as

each successive path has reduced gain that it can provide to the probability of completing

the task. For example, consider a set of paths Π = {π1, .., πn}, each with a fixed probability

of success S1 = ... = Sn = 0.5. STarting with a task with no visits, successively adding

the task to each of these paths will yield the following sequence of success probabilities for

the task, 0, 0.50, 0.75, 0.875, 0.9375, ..., approaching 1.0 in the limit. Therefore, there will

be a threshold at which it is no longer worth adding the task to an additional path, as the

added value is less than the overall cost.

This diminishing returns is fairly straightforward if each path has a fixed probability of

survival that is independent of what tasks are visited. However, in our model, adding a task

to an agent path will affect the path that is traveled and cause the probability of survival

to change accordingly. In our model, where the risk of attrition is a function of distance

traveled, adding a task to a path will always increase the risk of the vehicle being lost,

which will influence the probability of task completion for all of the tasks being visit by

that path.

Path survivability

We now consider paths through metric space, where the distance between tasks locations

is of importance. Let π′i = πi ⊕ vj symbolize inserting task location vj into path pii such

that we minimize the the path length of π′i. Using this definition, we can denote the change

in path distance for inserting task tj into path πi is

δ(πi, vj) = d(πi ⊕ vj)− d(πi) (3.8)

It is worth noting that an empty path is considered to start and end at the base with no
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task locations visited. Therefore, if πi is an empty path, then d(πi) = 0 and δ(πi, vj) =

d(πi ⊕ vj).

Traversing a path can be considered a series of events, with a probability of successfully

reaching the end as a cumulative probability over traversing a collection of unit length

segments in sequence. Let ψ be the probability of successfully traversing a unit distance.

For a path πi with distance d(πi), the probability of successfully traversing the entire path

is

Si = ψd(πi) (3.9)

such that limd(πi)→∞ Si = 0. The value used for ψ may be derived from a number

of sources: hardware failure during operation of the vehicle, the platform may become

unreliable after repeated use, or threats may exist that can destroy the vehicle.

Adding a task to a path will increase the distance traveled, simultaneously decreasing

the survivability of the path. Let S ′i be the new survivability of a path after adding task

location vj , defined as,

S ′i = ψ(d(πi)+δ(πi,vj)) = Si · ψδ(πi,vj) (3.10)

Clearly, S ′i < Si, which implies that adding any new task to an agent path will reduce

the survival probability of that agent. This has implication that will be discussed in the next

section.

S∆
i = Si − Si · ψδ(πi,vj) (3.11)

For additional clarity, consider the example plan in Figure 3.18, which has two paths π1

and π2. In this example, we consider altering path π1 to include task t4, providing redun-

dancy. The survivability of the original paths is S1 and S2, and we denote the survivability

of the updated π1 as S ′1 = S1 · ψd2+d3−d1 . This change will have 3 effects:
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(a) (b)

Fig. 3.18: Example plan with two paths (left) and a proposed extension of path π1 to
redundantly collect task t4 (right).

• The probability of completing task t4 will increase from S2 to 1− (1− S ′1)(1− S2).

• The probability of completing the other tasks in π1 will be reduced from S1 to S ′1.

• The probability of losing asset a1 will increase from 1− S1 to 1− S ′1.

In order for the added redundancy to provide a gain in expected value, the gain in utility

for task t4 must be greater than the the reduction of value for the other tasks in the extended

path, plus the additional cost incurred by the risk to the asset. Because of the diminishing

returns on the increase in value for the task, a positive gain in expected value is usually

observed when asset value is relatively low with respect to the task value. We provide

evidence of this in Section 3.4.4.

3.4.2 CPPAR Utility with Redundancy

Having defined the effects of adding tasks locations to an agent path, we can now formulate

the task expected value when an agent path πN is altered to visit task ti. This definition

considers the full effects of both redundancy and the increased distance (and resulting risk)

of the agent path.

To avoid having to compute the value of all tasks every time we check the value of

adding a redundant visit, we define the updated task expected value in terms of the previous
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expected value.

V (ti,Πti ∪ πN) =

1−

 ∏
πj∈Πti

(1− Sj)

(1− SN · ψδ(πN ,vj))
 ci (3.12)

=

1−

 ∏
πj∈Πti

(1− Sj)

+

 ∏
πj∈Πti

(1− Sj)

SN · ψδ(πN ,vj)
 ci

(3.13)

= V (ti,Πti) +

 ∏
πj∈Πti

(1− Sj)

SN · ψδ(πN ,vj)
 ci (3.14)

= V (ti,Πti) +

[(
1− V (ti,Πti)

ci

)
SN · ψδ(πN ,vj)

]
ci (3.15)

= V (ti,Πti) +

[
SN · ψδ(πN ,vj) −

V (ti,Πti)

ci
SN · ψδ(πN ,vj)

]
ci (3.16)

= V (ti,Πti)− V (ti,Πti)SN · ψδ(πN ,vj) + SN · ψδ(πN ,vj) · ci (3.17)

= V (ti,Πti)
(
1− SN · ψδ(πN ,vj)

)
+ ci · SN · ψδ(πN ,vj) (3.18)

Using this result, we can now compute the net benefit of adding task ti to agent path πj ,

B(ti, πj) = V (ti,Πti ∪ πj)− V (ti,Πti) (3.19)

= V (ti,Πti)
(
1− Sj · ψδ(πj ,vi)

)
+ ci · Sj · ψδ(πj ,vi) − V (ti,Πti) (3.20)

= V (ti,Πti)
(
1− 1− Sj · ψδ(πN ,vj)

)
+ ci · Sj · ψδ(πN ,vi) (3.21)

= ci · Sj · ψδ(πj ,vi) − V (ti,Πti)Sj · ψδ(πj ,vi) (3.22)

= Sj · ψδ(πj ,vi) (ci − V (ti,Πti))) (3.23)

In addition, we must consider the effects of reducing the survivability of the agent path

πN . This change not only effects the new task being visited, but also the set of all tasks

currently being serviced by the agent. Let Π′ti be the set of agent paths that extends path
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πN such that {πN ⊕ tj},

Π′ti = (Πti \ {πN}) ∪ {πN ⊕ tj} (3.24)

Once again, we wish to define the change in expected task value with respect to the

previous value. We do so as follows:

V (ti,Π
′
ti

) =

1−

 ∏
πj∈Πti\πN

(1− Sj)

 (1− SN · ψδ(πN ,vj))

 ci (3.25)

=

1−

 ∏
πj∈Πti\πN

(1− Sj)

 (1− (SN − S∆
N ))

 ci (3.26)

=

1−

 ∏
πj∈Πti\πN

(1− Sj)

 (1− SN + S∆
N )

 ci (3.27)

=

1−

 ∏
πj∈Πti\πN

(1− Sj)

 (1− SN) +

 ∏
πj∈Πti\πN

(1− Sj)

S∆
N

 ci
(3.28)

=

1−

 ∏
πj∈Πti

(1− Sj)

−
 ∏
πj∈Πti\πN

(1− Sj)

S∆
N

 ci (3.29)

= V (ti,Πti)−

 ∏
πj∈Πti\πN

(1− Sj)

S∆
N

 ci (3.30)

Using this formulation, we can define the cost to ti in agent path πj when task tk is

added,
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C(tk, πp, ti) = V (tk,Πtk)− V (ti, (Πtk \ {πp}) ∪ {πp ⊕ ti}) (3.31)

= V (tk,Πtk)− V (tk,Πtk) +

 ∏
πj∈Πtk\πp

(1− Sj)

S∆
p

 ck (3.32)

=

 ∏
πj∈Πtk\πp

(1− Sj)

S∆
p

 ck (3.33)

By combining the benefit and costs of adding a redundant task, we can quantify the

expected gain (or loss, if negative) of adding task ti to agent path πj .

G(ti, πj) = B(ti, πj)−
∑

tk∈T (πj)

C(tk, πj, ti) (3.34)

where T (πi) be the set of tasks currently being visited by agent path πi.

3.4.3 Algorithm

Having defined the equation for computing gain of adding a redundant collection, we now

provide an algorithm that uses the gain to add redundant visits. We begin by computing an

initial non-redundant solution using the PRC algorithm described in Chapter 3, and then

iteratively search for redundant collections that maximize the expected value.

We impose a maximum redundancy value (MR) to bound the algorithm. To understand

the need for this parameter, consider the case when θ = 0, meaning that the assets have no

value. In this case, the optimal solution is one that has an infinite number of agents visit

each task and return to the base, even though the gain in expected value for additional paths

diminishes as redundancy increase.

We avoid adding redundancy to more than one site at a time. Once a single redundancy

is added, it can change the value of adding redundancy to tasks within the corresponding
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Table 3.1: Redundant Collection Algorithm for the Collection Planning Problem with At-
trition Risk

Input: Task set T = {t1, ..., tn}, graph G =< V,E > where V = T ∪ {b},
maximum redundnacy MR.
Output: Set of paths Π.

Phase 1. Risk-Aware Clustering

1. Execute Progressive Risk-aware Clustering algorithm as described in Chap-
ter 3, generating approximate coalitions.

2. Store resulting task coalitions as P .

Phase 2. Redundancy Insertion

1. while there exists a task-path pair ti, πj such that G(ti, πj) > 0 and Π(ti) <
MR do

(a) All tasks ti ∈ T check for potential redundancies, choosing the path
that maximizes its payoff.

(b) The task-path pair with the highest expected gain in payoff tm, πm is
chosen, adding tm to path πm.

2. Return the updated set of paths Π′.
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paths. Therefore, we make sure that the gain in utility is recomputed before allowing for

another redundancy to be added. In the next section, we provide the results of executing

the algorithm on simulated instances.

3.4.4 Experimental Results

We now show the results of computational experiments using the Progressive Risk-Aware

Clustering with Redundancy (PRC+R). Tasks are placed in a 100km × 100km 2D Eu-

clidean space, according to a uniform random distribution. The probability of survival is

ψ = 0.99 for each km traveled, each task yi has a score ci = 1, and we show the aver-

age over 100 randomly generated instances. We consider the effects of adding redundancy

with respect to expected value, the gain in expected value over sequential greedy, and the

computation time.

We denote our redundancy algorithm as PRC + R{MR}, where MR is the maximum

number of paths that are permitted to visit a single tasks. This bound serves dual purposes.

First, it limits the number of redundancies when θ = 0, for which the optimal solution has

an infinite number of paths visiting each task. Also, performing the checks to determine

the value of adding a redundant visit is computationally expensive, and increasing values

of MR will perform an increasing number of checks. This bound allows us to explore the

trade-off between allowing more redundancy and CPU time.

In Figure 3.19 we show the expected value for sequential greedy (SG), progressive risk-

aware clustering (PRC), and increasing amounts of maximum redundancy ranging from 2

paths per site to 7 paths per site. These results show the diminishing returns of value for

increasing redundancy, and also highlight the lack of gain for using redundancy as the

relative value of the asset increases.

We provide a closer look at the difference between the different algorithms in Figure

3.20, showing the gain in expected value over the sequential greedy baseline. Even for very

small θ values, the gain for increasing redundancy beyond 5 paths per task is minimal. It’s
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Fig. 3.19: Expected value for sequential greedy (SG), progressive risk-aware clustering
(PRC), and increasing maximum number of paths per task (MR) ranging from 2 paths per
task to 7 paths per task. For high valued assets the cost of visiting a task redundantly is
increased, therefore the gain in expected value is only observed when the relative asset
value is low.

worth noting that all tasks have a score ci = 1, and tasks with a larger value would provide

increased value for redundancy.

The execution time for finding redundant collections is significant, as each task com-

putes the value of insertion into every edge of each path. However, the computational cost

can provide significant gains in value. Similarly to the trend seen for expected value, as

the asset value increases there is little difference between the computation time for the

increasing level of maximum redundancy.

These results provide encouraging evidence that redundancy can provide significant

gain in solution value when the asset value is low with respect to the task value, on the

order of 1:5. For problem instances in which assets have a higher value, no gain is expected

and the increased computation should be avoided. Exploring the trade-off between solution

quality and computational time with respect to the properties of the problem instance is an

interesting direction we discuss further in Chapter 6.
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Fig. 3.21: Execution time for sequential greedy (SG), progressive risk-aware clustering
(PRC), and increasing amounts of maximum redundancy ranging from 2 paths per site to 7
paths per site. Increasing redundancy requires additional computation.
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Realistic Problem Instances

The previous results were drawn from problem instances with a uniform random distri-

bution of tasks in the environment. In the real world, we would often expect that tasks

will have some natural groupings with a less uniform distribution. For example, capturing

images of events near an urban environment would likely have more tasks in the highly

populated areas, and less where there are fewer people. While the uniform generation pro-

cess inevitably yields some degree of groupings of tasks, we are also interested in how

our algorithm performs on non-uniform problem instances with a higher degree of natural

clustering.

Real problem instances were taken from the repository of National Traveling Salesman

Problems found at http://www.math.uwaterloo.ca/tsp/world/countries.html, which are gen-

erated from cities in world countries and collected VLSI instances. The country data sets

are relatively large in size, spanning over a large area with irregular density, while the VLSI

instances are highly structured, with alternating regions of high and low density. In general,

the VLSI instance have an overall higher density of tasks per unit distance. The results of

using this data are found in Tables 3.2 and 3.3.

Across all input density distributions tested, both synthetic a real, the PRC algorithm

performs better than the Sequential Greedy baseline for all asset values from 0 to 8. As with

the synthetic instances, the performance gap increases as θ increases from 0, and narrows

as the value of the assets becomes significantly larger than the task values. As with the

synthetic instances, this improvement is due to the limitations of the sequential greedy

algorithm to generate new paths with no tasks within the radius that a single task is worth

visiting.
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Instance Point Set Radius Density Results
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Table 3.2: Problem instances based on collections of cities in countries, dis-
playing a non-uniform population density. Instances by country are Djibouti
(dj38), Qatar (qa194), Zimbabwe (zi929), Oman (mu1979), and Tanzania (tz6117).
The number in the instance name indicates the number of points. (Source:
http://www.math.uwaterloo.ca/tsp/world/countries.html)
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Instance Point Set Radius Density Results
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Table 3.3: Problem instances derived from VLSI data provided by the Bonn In-
stitute, displaying highly structured clustering of points at relatively regular inter-
vals. The number in the instance name indicates the number of points. (Source:
http://www.math.uwaterloo.ca/tsp/vlsi/index.html)
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3.5 Guided Random Search Algorithms

We have shown positive results using our Progressive Risk-aware Clustering algorithm to

generate good solutions for CPPAR, as compared to an iterative search baseline. However,

the Sequential Greedy algorithm has clear shortcomings, motivating comparison against

other optimization/search methods. In this section we explore an alternate solution pro-

cess, utilizing genetic algorithms. We implement a genetic algorithm (GA) that generates

potential solutions for CPPAR. In order to compare against the PRC algorithm in a con-

trolled manner, we utilize genetic search to generate the task groupings, and then perform

sequential greedy path generation from the resulting groupings. We also implemented a

genetic search method for path generation, but the performance was nearly identical to the

sequential greedy approach, so no separate graphs are shown.

While there is a significant body of existing work using genetic algorithms for cluster-

ing, the majority of work reviewed makes assumptions that do not hold for our problem.

In some cases it assumed that k, the number of clusters, is a known fixed value [14, 15],

which violates our assumption that the number of agents (or paths) is not known a priori.

Other work represents solutions as a set of fixed centroids [66, 53], which would not permit

the path structure necessary for high value solutions. Finally, some representations rely on

having explicit cluster labels [35, 36], while our task groupings are interchangeable and not

assigned to a specific agent identity.

The CPPAR problem has another important distinction from existing work in cluster-

ing, as some tasks may not be chosen for any path, excluding them from being included in

a cluster. We address this by introducing a null cluster, which always exists and can not be

created or removed. Any tasks in the null cluster are not used when paths are generated,

while still allowing clusters to be formed over all tasks in the problem. To represent so-

lutions, we draw inspiration from existing methods for using genetic algorithms to group

sets of objects [7, 25]. A solution, i.e., an individual chromosome, is represented as an

array of |T| integers, with T begin the set of tasks. Each entry is the cluster number that
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Fig. 3.22: The chromosome representation used for the genetic algorithm. Each entry
represents a single task, with the value being the ID of the current cluster the task belongs
to. Cluster 0 represents the null coalition, meaning the task is not part of any cluster that is
visited by an agent.

the respective task belongs to, with 0 representing the null cluster, meaning the task is not

selected for visit in the solution.

Cole [25] has shown limited effects of using traditional crossover operators, such as one

point and two point crossovers, for clustering; He suggested the use of split, merge, and

move operators for clustering with GAs. Our GA utilizes elitism, which keeps the most

promising solutions in the population and applies genetic operators to search for better so-

lutions. In order to construct the population for the next generation, we select the top 10%

solutions to remain in population without modification. For each of the solutions in the

top 10%, we make 5 copies (representing 50% of the new population) and apply a genetic

operator, as per the selected distributions described in the results below. We then iteratively

add the next highest ranking solutions to the population, applying a genetic operator to

each solution according to the selected distribution. We terminate the process when the

population has reached its original size minus one, as we reserve one spot in the next pop-

ulation for a randomly generated new solution to ensure continued diversity throughout the

evolutionary process. This process is conducted until there is no improvement of expected

value for the best solution after 100 generations. In this work, we utilize the following three

genetic operators from Cole [25]:

• Split: The split operator chooses a random cluster and splits off a random number

of members into a new cluster. The null coalition may also be chosen as the source

cluster, but not as a new cluster.
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(a) Split (b) Merge (c) Move

Fig. 3.23: Genetic operators used for clustering: (a) Split will randomly split an existing
cluster to generate a new cluster. (b) Merge joins two existing clusters to form a single
cluster from all members. (c) Move randomly swaps members of a single cluster to the
cluster with nearest task.

• Merge: A merge chooses two random clusters and merges them into a single cluster.

The null coalition may be one of these clusters chosen.

• Move: The move operator chooses a random cluster and randomly moves tasks to

the cluster that contains the member with the nearest task.

The combination of these operators allows the algorithm to explore the search space.

Different probabilities applied to the genetic operators are explored, with split and merge

having the same probability to prevent bias towards solutions with one large cluster or each

task in its own cluster. In each generation, once a partition is performed by the GA, we

use the same sequential greedy path generation process as the PRC algorithm in order to

evaluate the effectiveness of the GA, making this a comparison between only the clustering

methods, i.e., GA vs. PRC. We also conducted experiments with various population sizes,

10, 50, and 200.

In Figure 3.24, we observe that the genetic algorithm approach is outperformed by

PRC across the spectrum of operator probabilities and different population sizes, more so

when θ = 2, where our PRC algorithm also showed the largest gains in expected value

over the sequential greedy baseline. These results are also achieved at the expense of a

significantly longer execution time, shown in Figure 3.25. The long execution times for the

GA approach are caused by having to construct a solution in order to evaluate each solution

in every generation of the population. However, it is worth mentioning that with long time
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(c) Split: 0.2, Merge: 0.2, Move: 0.6
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(d) Split: 0.3, Merge: 0.3, Move: 0.4
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 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  1  2  3  4  5  6  7  8

Ex
pe

ct
ed

 V
al

ue

Asset Value (θ)

Expected Value vs. Asset Value
GA-550-010
GA-550-050
GA-550-200

PRC

(f) Split: 0.5, Merge: 0.5, Move: 0

Fig. 3.24: The expected value of multi-agent plans generated by the genetic algorithm
(GA) with different operator distributions, and with population size 10, 50 and 200, com-
pared against our PRC algorithm on 100 task problem instances.
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Fig. 3.25: The CPU time expended by the genetic algorithm (GA) with operator distribu-
tion split: 0.3, merge: 0.3, move: 0.4, and with population size 10, 50 and 200, and our
PRC algorithm to find solutions for 100 task problem instances.

constraints, a large pool of computing resources, and a carefully designed set of genetic

operators, we expect the genetic algorithm approach would perform better.

When θ is small (< 1), when a large number of agents should be sent to do relatively

few tasks each, genetic search is an effective strategy. In this case, there is limited interac-

tions between the paths and significant gain can be made performing the move operation,

which swaps tasks between two agents. However, as θ increases, the complexity of the

problem grows, requiring a longer series of operators to be executed in order to see an im-

provement in expected value. Additionally, there are additional local maxima that require

a sequence of genetic operations to break out of, which may be lost as the value of the

interim chromosomes is relatively low compared to other population member. As a result,

we speculate that the genetic algorithm approach relies on a series of specific operators in

order to find good solutions. Given these results, we conclude that further modifications

need to be made to the genetic operators to further improve solution quality and reduce run

time. One of the main reasons PRC’s performance is that PRC was specifically designed

for the multi-agent path finding problem, CPPAR, inherently containing some domain spe-

cific heuristics. We conclude that new genetic operators specific to CPPAR would improve

GAs performance, but such a direction is beyond the scope of this dissertation, requiring

major research efforts. We have also shown that search space for CPPAR solutions is often
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complex, further motivating heuristics that exploit problem structure.

3.6 Summary of Contributions

Inspired by turnpike theorems, which focus on the largest gains in the problem space, we

have developed a method for iteratively generating solution for the Collection Planning

Problem with Attrition Risk using hierarchical clustering. We explore the the aspects of a

cluster that must be considered during execution, providing insight into what contributes

to cluster value. Based on these insights, we explore community detection and clustering

methods that are flexible enough to be used without specifying the number of clusters as

part of the problem definition.

Based on the promising results of experiments using hierarchical clustering, we im-

plement a risk-aware hierarchical agglomerative clustering algorithm that can outperform

sequential greedy planning methods. Our results show that this algorithm not only pro-

vides good performance, but can also scale to thousands of tasks using an approximation

methods without a significant loss of performance. We compare this method against an

alternative randomized search procedure, with similar results. Finally, we show the effects

of redundant collection of tasks, showing that it is most effective when asset values are

relatively low, and with diminishing returns.

In the next chapter, we explore methods for distributing the cost of a path among mem-

bers of the agent path, allowing us to distribute the cost to each task. We present a coali-

tional game theory formulation for CPPAR solutions, and prove that cost allocations are

stable and fairly distributed among the member tasks for each path.
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4

HEDONIC COALITION FORMATION

FOR CPPAR

We introduce a hedonic coalitional game formulation for the Collection Planning Problem

with Attrition Risk that includes a risk of losing agents during execution as part of the

planning process. To motivate this formulation, consider an provider that makes vehicles

available to service tasks for customers, which could be individuals or other organizations.

For each task serviced, the provider must determine how much to charge the customer in

order to cover the cost the asset, θ, with respect to the risk of losing the asset when it is

sent to collect. Because multiple customers may be serviced by a single asset, the provider

must determine a fair allocation of cost to the customers for their respective tasks. If an

allocation is not fair, the customers will desire to find another provider.

It may seem intuitive to allocate the cost of an asset equally among the tasks on the path

being serviced, but we will show that this allocation is not fair for this problem and leads

to undesirable instability. Consider two task requests for an image to be collected. One

request is an aerial shot of an event taking place right next to the provider’s base station,

and the other is requesting a photo of a building located 3 miles away. A single vehicle is

dispatched to collect on both tasks, requiring 6.1 miles of total travel at an estimated cost
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of $40.

If we allocate the cost of the collection equally among the customers, each paying

$20, the first customer will be charged far more than if their task alone was serviced by a

vehicle. This is because the vast majority of the path distance, and the cost associated with

the risk of losing the asset, is due to servicing the second task. Therefore, in order to keep

customers, the provider should aim to allocate the cost such that each customer is happy

with what they will pay for their task. In this example, if a fair allocation can not be found,

the provider should consider dispatching an additional vehicle and charging each customer

for a direct path to their task.

We provide a formulation for a hedonic coalitional formation game in which each cus-

tomer seeks to minimize the cost paid for a task. Using this formulation, we devise a cost

allocation method that yields fair allocations that are stable. This formulation allows us to

distribute the cost of using an asset among the tasks being serviced in a manner that is fair

and stable, making both the provider and customers happy.

We use the resulting cost allocation method to design an algorithm that outputs fair and

stable cost allocations as paths for CPPAR. Du to the relative complexity of this algorithm,

it is not well-suited for solving our problems from scratch. However, by executing the

algorithm on the approximate solution from our PRC algorithm in Chapter 3, we show that

this approach can generate solutions that are not only fair and stable allocations, but also

have a higher expected value overall.

The application of cooperative game theory to path-based coalitions has received some

attention. Previous work on Traveling Salesman Games has shown that stable cost alloca-

tions exist for n ≤ 5 [57] and also shown that when n = 6 and the distances are Euclidean

there may be an empty core [34]. Discussion on a wide range of combinatorial optimization

problems and the application of cooperative game theory can be found in [30].

In the next section, we provide a definition for the Collection Planning Problem with

Attrition-Based Risk (CPPAR) and provide examples that illustrate the unique aspects of



93

this problem. We motivate solutions that use a variable number of agents and show the con-

ditions under which agents will choose to not complete some or all of the proposed tasks.

We then provide a hedonic coalition formation game for CPPAR, with a cost allocation

method that ensures key properties that ensure stability. Finally, we show the improvement

this method can provide in simulated problem instances.

4.1 Coalitional Game Theory for CPPAR

Coalitional games, also referred to as cooperative games, require that a set of players come

to an agreement on organizing themselves into one or more coalitions. Each coalition

is a collection of players, and has an associated utility that is distributed as a payoff to

the members of that coalition. This paradigm is beneficial, as it informs a distributed

implementation of a process for finding path assignments with high expected value, which

is key for ensuring resiliency and scalability in realistic operating environments where a

central planner is unavailable or undesirable.

In this work, the tasks (and their respective customer) are the players and vehicle paths

are the coalitions with tasks as members. Each path has an associated utility that is divided

among the tasks. Each task seeks a coalition that maximizes its own utility, and a coalition

is considered stable if no task can achieve a higher utility by leaving the coalition. We

assume that payoffs are a transferable currency, which allows players to exchange utility

freely as incentive to other players. We utilize the definitions provided in [20, 80] to for-

malize the descriptions of coalitions, with some notable modifications to account for tasks

that are not visited. Having previously defined the process for ordering tasks on a path, we

denote the coalition containing the tasks in a path πj as Pj .

A coalition structure is defined as the set P = {P1, ..., Pp}, which assigns each member

of the set of visited tasks T to a coalition Pj ∈ P . These coalitions are equivalent to the

paths used in the previous chapter. Any task not included in P is referred to as being in the
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null coalition P∅. A task in the null coalition is not visited by any agent path and generates

no cost or utility. Given a coalition structure P , the coalition to which task ti belongs is

denoted as SP(ti) ∈ P ∪ P∅.

4.1.1 Utility of Coalitions and Tasks

In the previous chapter, we provided methods to maximize the overall expected utility,

which we denote here as the sum over the utility of all coalitions,

U(P) =
∑
Pj∈P

u(Pj) (4.1)

Utility is defined as the the value of completing one or more tasks minus the cost of

servicing the tasks. A single vehicle represents a coalition of tasks, having a value that is

the sum of the task values, and a total cost of exposing the vehicle to risk. A customer is

assigned the value for its own completion, and the cost that is allocated to it by the provider

for use of the vehicle.

Coalition Utility

In basic terms, we can compute the overall utility of a coailition Pj as the value of that

coalition minus the cost of the coalition,

u(Pj) = v(Pj)− c(Pj). (4.2)

The utility of the null coalition is u(P∅) = 0, as these tasks are not visited by any

vehicle. Otherwise, the value of the coalition is defined as, derived from Equation 2.6,

v(Pj) =
∑
ti∈Pj

vi(Pj) =
∑
ti∈Pj

Sjgi (4.3)

where Sj is the survivability of the path formed from coalition Pj (see Equation 2.3),
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and gi is the gain for completing task ti. The notation is changed from from the original

formulation, from score ci to gain gi. This reflects the use of a monetary exchange, as well

as more clearly differentiating this value from the cost function ci(·). The total cost of the

coalition is,

c(Pj) = (1− Sj)θ. (4.4)

The goal is to provide an allocation of this coalition cost to each of the tasks that results

in no task preferring to leave a coalition that is part of the globally maximum solution.

Task Utility

The utility of a path consists of both the value of the tasks being completed and the cost of

risking the asset to perform collection. The utility of a single task ti in coalition πj is,

ui(Pj) = vi(Pj)− ci(Pj). (4.5)

The individual task value is also based on the survivability of the entire path, denoted

as,

vi(Pj) = Sjgi. (4.6)

The cost incurred by task ti in coalition Pj is denoted as ci(Pj), and methods for deter-

mining this value will be discussed in the next section. For problems where order of visits is

important, there is literature that describes more appropriate cost allocation schemes [39].

In this work, we provide an allocation based on the relative path distance, regardless of the

direction the agent travels on the path.

For each task ti ∈ T a preference relation �i is a complete, reflexive, and transitive

binary relation defined over the set {Pk ⊆ T |ti ∈ Pk} ∪ P∅. If a task ti is given two

coalitions P1 ⊆ T and P2 ⊆ T , where ti ∈ P1 and ti ∈ P2, P1 �i P2 indicates that task ti
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Fig. 4.1: Simple example problem with a base (bottom) and three tasks t1, t2, and t3, with
all pairwise distances denoted. In this example, the task values are g1 = g2 = g3 = 1, the
cost per asset is θ = 1, and the survival probability per unit traveled is ψ = 0.97.

prefers to be a member of coalition P1 over being a member of coalition P2, or prefers the

coalitions equally. A stronger preference is indicated by P1 �i P2, in which task ti strictly

prefers coalition P1 over P2.

The preferences of a task is defined based on the utility that the agent receives from a

coalition, such that,

P1 �i P2 ⇐⇒ ui(P1) ≥ ui(P2) (4.7)

where ui : 2P → R is a function defined for each task. Put simply, each task prefers

the coalition that yields the maximal utility for that task.

Consider the example shown in Figure 4.1 with 3 tasks, with task values c1 = c2 =

c3 = 1, cost per asset of θ = 1, and the survival probability per unit traveled is ψ = 0.97.

The survivability of a path is ψ raised to the power of the distance of a path. For example,

the path traveling to task t1 and back to the base with distance 10 has a survivability of ψ10.

The utility for each of the six possible coalitions is as follows:
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u({t1}) = ψ10g1 − (1− ψ10)θ = .4748

u({t2}) = ψ16g2 − (1− ψ16)θ = .2286

u({t3}) = ψ10g3 − (1− ψ10)θ = .4748

u({t1, t2}) = ψ18(g1 + g2)− (1− ψ18)θ = .7339

u({t1, t3}) = ψ16(g1 + g3)− (1− ψ16)θ = .8439

u({t2, t3}) = ψ18(g2 + g3)− (1− ψ18)θ = .7339

u({t1, t2, t3}) = ψ20(g1 + g2 + g3)− (1− ψ20)θ = 1.175

The maximum overall value is achieved by either of two symmetric solutions, U({{t1, t2}, {t3}}) =

1.2087 and U({{t1}, {t2, t3}}) = 1.2087. For this example, we will discuss the solution

{{t1, t2}, {t3}}, focusing the coalition formed by tasks t1 and t2. Recall that the utility

for an agent is composed of a value and a cost function. The value earned by each agent

is derived from the survivability of the path visiting the tasks, and is not transferable be-

tween tasks. Therefore, we seek to allocate the cost of the collector among the tasks being

serviced.

4.1.2 Cost Allocation

Consider a task joining an existing coalition, which incurs a longer distance to be traveled

by the collector, consequently reducing the survivability of the collector. As a result, not

only does the cost of the risk to the collector increase, but the value provides to all members

of the coalition is correspondingly decreased. Therefore, in order to provide a fair alloca-

tion of the cost, the joining task must consider both the cost and value that are offset by its

entry into the coalition.

We assume that the value of the task is non-transferable, meaning that one task can not
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offer the value gained to another task as compensation. Instead, we must determine how

the cost will be allocated among the members of a coalition. In Figure 4.2, we provide an

example of coalitions that would form among tasks, with each task having a local value

and a cost that must be shared among the member tasks.

Fig. 4.2: An example of 2 coalitions that would be formed for tasks in a problem instance.
Each task has a value that is non-transferable, and each coalition must allocate the cost of
the asset to be sent. Tasks not in a coalition are not visited and provide no value or cost.

We desire a cost allocation method that ensures stability and fairness. Potters and

Curiels [77] propose three conditions that should be satisfied:

1. Efficiency: The sum of the cost for each task sums up to the total cost for the coali-

tion.

2. Individual rationality: Each task is willing to accept, at most, the cost paid for a

direct path from the base to the task and back.

3. Minimal Obligation: Each tasks pays no less than its marginal cost.

We will show that equal allocation of cost violates these conditions, and introduce a

cost allocation method, along with a proof that these conditions are met for a solution that

maximized global utility.
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Equal allocation

The most straightforward cost allocation method is to split the cost of the collecting asset

equally among the tasks being collected. Let ci(Pj) be the cost paid by the owner of task ti

being collected by agent aj , with Sj being the survivability (Equation 2.3) of coalition Pj .

Each task pays an equal share of the total cost,

ci(Pj) =
(1− Sj)θj
|Pj|

. (4.8)

We show that this is not a valid cost allocation by counterexample. Using once again

the example in Figure 4.1, the total cost of the coalition {t1, t2} is defined as c({t1, t2}) =

(1− ψ18)θ = .422. This yields the following utility for the individual tasks,

u1({t1, t2}) = v1({t1, t2})− c1({t1, t2}) = .578− .422/2 = 0.367

u2({t1, t2}) = v2({t1, t2})− c2({t1, t2}) = .578− .422/2 = 0.367

With this cost allocation, u1({1}) > u1({1, 2}) (.4748 > 0.367), which means that task

t1 would prefer to be in a singleton coalition rather than be in a coalition with task t2. This

violates our requirement for individual rationality, therefore an equal cost allocation is not

desirable.

Cost-value proportional allocation

We propose a cost allocation method for CPPAR that considers the the relative increase

in risk that each task brings to the coalition. This allocation is a modified version of the

alternative costs avoided method described in [13]. The total cost for the coalition can

be split into separable and non-separable costs. The separable cost, also referred to as the

marginal cost, represent the cost share attributable to a single task. The non-separable costs

are shared by the tasks, and must be allocated further.
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The marginal cost is for task ti in coalition Pj is denoted asmi,Pj , and takes into account

both the increased risk of losing the collector and the decreased value incurred by all other

tasks in the coalition. Recall that vk(Pj) is the individual value for task tk ∈ Pj as part of

the path formed by coalition Pj .

mi,Pj =

 ∑
tk∈Pj\{i}

vk(Pj \ {i})− vk(Pj)

+

(
c(Pj)− c(Pj \ {i})

)
(4.9)

If the marginal cost exceeds the total cost of the collector, mi,Pj > (1− Sj)θ, then task

ti is better off not joining the coalition, as it could gain equal or greater value for, at most,

a cost of θ.

Continuing to use the example in Figure 4.1, we compute the marginal cost for both t1

and t2 in coalition {1, 2},

m1,{1,2} = (.6143− .578) + (.422− .3857) = .0726

m2,{1,2} = (.7374− .578) + (.422− .2626) = .3188

These values reflect the decrease in overall utility that each member of the coalition

is responsible for. The non-separable residual cost is the remaining cost that can not be

directly attributed to a single task. The non-separable cost of coalition Pj is the remaining

cost after subtracting the separable costs, referred to as the residual cost and denoted as,

cR(Pj) = c(Pj)−
∑
k∈Pj

mk,Pj (4.10)

The non-separable residual cost is the remaining cost that can not be directly attributed

to a single task, and any remaining cost is shared equally among the members of the coali-

tion. This cost is split equally among the agents, with the individual cost allocation of task

ti denoted as,
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cRi (Pj) = mi,Pj +
wi∑

k∈Pj wk
cR(Pj). (4.11)

For the residual allocation, wi is the weight for task ti, based on the savings for ti when

joining Pj if it had to only pay its separable cost,

wi = c({ti})− (v({ti})− vi(Pj))−mi,Pj . (4.12)

The utility equation for a task ti in coalition Pj is,

ui(Pj) = vi(Pj)− cRi (Pj). (4.13)

We now show the derived utility for the coalition {t1, t2} in the example in Figure 4.1,

using the cost-value gap method of allocation. We first compute the residual of the coalition

cR({t1, t2}) = c({t1, t2}) −
∑

ti∈Pj mi,Pj = .422 − (.0726 + .3188) = .0306. This value

is split using the weights for each task, w1 = .2626− (.7374− .578)− .0726 = .0306 and

w2 = .3857− (.6143− .578)− .3188 = 0.0306. We can now compute the cost allocation

for each task, cR1 = .0726 + 1
2
.0306 = .0879 and cR2 = .3188 + 1

2
.0306 = .3341.

u1({t1, t2}) = .578− .0879 = .4901

u2({t1, t2}) = .578− .3341 = .2439

In this example, these values satisfy the efficiency requirement, such that u({t1, t2}) =

u1({t1, t2}) + u2({t1, t2}), meaning that all of the utility provided to the coalition has

been accounted for. They account for individual rationality, with u1({t1, t2}) > u1({t1})

and u2({t1, t2}) > u2({t2}), so that neither task is motivated to leave the coalition to

form a singleton coalition. Finally, both agents fulfill their minimal obligation, such that

c1({t1, t2}) ≥ cR1 ({t1, t2}) and c2({t1, t2}) ≥ cR2 ({t1, t2}). We now show that these prop-
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erties hold in the general case.

Proposition 1. The cost-value proportional allocation has the efficiency property when

a coalition maximizes expected value.

Proof. We must show that the utility of the coalition is distributed exactly among the

members. For members of the null coalition c(P∅) = ci(P∅) = 0, for all ti ∈ P∅. For a

coalition with a single task, c(Pj) = ci(Pj) if Pj = {ti}. For the general case, we must

show that u(Pj) =
∑

ti∈PJ ui(Pj).

u(Pj) =
∑
ti∈PJ

ui(Pj)

v(Pj)− c(Pj) =
∑
ti∈PJ

vi(Pj)−
∑
ti∈PJ

cRi (Pj) By Equations 4.4,4.13

∑
ti∈Pj

Sjgi − c(Pj) =
∑
ti∈PJ

Sjgi −
∑
ti∈PJ

cRi (Pj) By Equations 4.3,4.6

c(Pj) =
∑
ti∈PJ

cRi (Pj)

c(Pj) =
∑
ti∈PJ

(
mi,Pj +

wi∑
k∈Pj wk

cR(Pj)

)
By Equation 4.11

c(Pj) =
∑
ti∈PJ

mi,Pj +
∑
ti∈PJ

wi∑
k∈Pj wk

cR(Pj)

c(Pj) =
∑
ti∈PJ

mi,Pj + cR(Pj)

c(Pj) = c(Pj) By Equation 4.10

Proposition 2. The cost-value proportional allocation accounts for individual rational-

ity when a coalition maximizes expected value.

Proof. We must show that if there is a coalition Pj such that the global utility is max-

imized,
∑

tk∈Pj u({tk}) ≤ u(Pj), ti ∈ Pj then, u({ti}) ≤ ui(Pj), ensuring no member

tasks would be better off if they opted to be in a singleton coalition. We can show this via
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equivalence.
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u({ti}) ≤ ui(Pj)

v({ti})− c({ti}) ≤ vi(Pj)− cRi (Pj) By Eq. 4.2,4.13

v({ti})− c({ti}) ≤ vi(Pj)−

mi,Pj +
wi∑

k∈Pj
wk
cR(Pj)

 By Eq. 4.11

v({ti})− c({ti}) ≤ vi(Pj)− (c({ti})− v({ti})

+ vi(Pj)− wi)−
wi∑

k∈Pj
wk
cR(Pj) By Eq. 4.12

0 ≤ wi −
wi∑

k∈Pj
wk
cR(Pj)

wi∑
k∈Pj

wk
cR(Pj) ≤ wi

cR(Pj) ≤
∑
k∈Pj

wk

c(Pj)−
∑
k∈Pj

mk,Pj ≤
∑
k∈Pj

(c({tk})− (v({tk})

− vk(Pj))−mk,Pj) By Eq. 4.10,4.12

c(Pj)−
∑
k∈Pj

mk,Pj ≤
∑
k∈Pj

c({tk})−
∑
k∈Pj

v({tk})

+
∑
k∈Pj

vk(Pj)−
∑
k∈Pj

mk,Pj

c(Pj) ≤
∑
k∈Pj

c({tk})−
∑
k∈Pj

v({tk})

+
∑
k∈Pj

vk(Pj)

∑
k∈Pj

(v({tk})− c({tk})) ≤
∑
k∈Pj

vk(Pj)− c(Pj) By Eq. 4.13,4.2

∑
k∈Pj

u({tk}) ≤ u(Pj)
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Therefore, u({ti}) ≤ ui(Pj) if and only if
∑

k∈Pj u({tk}) ≤ u(Pj), ensuring no agent

would receive a cost allocation that would give it incentive it to leave the coalition and form

a singleton.

Proposition 3. The cost-value proportional allocation enforces minimal obligation

when a coalition maximizes expected value.

Proof. By Equation 4.11, the marginal cost for task ti in coalition Pj is cRi (Pj) =

mi,Pj + wi∑
k∈Pj

wk
cR(Pj). It remains to show that cR(Pj) ≥ 0. Recall from Equation 4.10,

c(Pj) =
∑

ti∈Pj mi,Pj + cR(Pj). If cR(Pj) < 0, the there must be some task ti ∈ Pj with

a marginal that exceeds u({ti}), which would require that the coalition does not maximize

expected value. .

4.2 Hedonic Coalition Formation Algorithm for CP-

PAR

A hedonic coalitional game imposes two additional constraints; the payoff of a player is

dependent only on the members of the coalition that the player belongs to, and coalitions are

formed based on the preferences of players over the set of possible coalitions. Therefore,

each player must be able to compare coalitions that is can be a member of, and indicate an

ordering to indicate which coalition is preferable. We adopt a similar set of definitions to

existing work in hedonic coalition formation games [20, 80].

Definition 1. (Switch Rule). Given a coalition structure P = {P1, ..., Pp} and a set of

tasks T = {t1, ..., tm}, a task ti will choose to leave its current coalition SP(ti) and join

another coalition Pk ∈ P ∪ P∅, Pk 6= SP(ti), if and only if Pk ∪ {ti} �i SP(ti).

The switch rule provides the condition under which a ti will choose to perform a switch

operation, leaving its current coalition for another. This represents a self-interested deci-

sion, as it does not rely on any notion of maximizing the global utility, nor does it consider

the effect on the utility of other agents. This evaluation also allows an agent to consider
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changing the coalition structure based only on a subset of problem information, which can

be desirable for distributing the computational workload of the algorithm.

In order to ensure stability of the proposed algorithm, we introduce a coalition history

for each task ti, denoted as h(ti). This records all coalitions that ti has previously been a

member of, allowing us to prevent the task from rejoining a previous coalition and entering

a cycle. The modified utility function for task ti in coalition Pj is,

ui(Pj) =


0, if Pj ∈ h(ti)

vi(Pj)− cRi (Pj), otherwise
(4.14)

When no agent desires to leave its current coalition, the solution is considered to be

stable. This also indicates that the algorithm has converged, and no further operations will

be performed. Formally, a set of coalitions P = {P1, ..., Pp} is Nash-stable if ∀ti ∈ T ,

SP(ti) �i Pk ∪ {ti}, for all Pk ∈ P ∪ P∅.

Proposition 4. A coalition structure P resulting from the hedonic coalition formation

algorithm in Table 4.1 is Nash-stable.

Proof. Assume we are given as a converged output of the algorithm a coalition structure

P or which no task has incentive to leave its current coalition using the utility function in

Equation 4.14. If P is not Nash-stable, then there exists a task ti and a coalition Pj ∈ P

such that Pk ∪ {ti} �i SP(ti). Therefore, task ti could perform a switch operation, which

contradicts P being the result of convergence of the algorithm. Therefore, any coalition

structure P resulting from HCFA is Nash-stable.

This algorithm uses the approximate solution provided by PRC as a starting point, then

allowing for individual tasks to bid on better paths as a method of increasing utility. No

task will join an existing path that yields a loss greater than the gain realized by making the

switch, which ensures that any switch will increase the global utility, as well. Therefore,

we expect that this 2 phase process will yield solutions of higher expected value than using

PRC alone. In the next section, we confirm this expectation.
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Table 4.1: Hedonic Coalition Formation Algorithm (HCFA) for the Collection Planning
Problem with Attrition Risk

Input: Task set T = {t1, ..., tn}, graph G =< V,E > where V = T ∪ {b}.
Output: Coalition structure Pout = {P1, ..., Pp}.

Phase 1. Approximate Clustering

1. Execute Progressive Risk-aware Clustering algorithm as described in Chap-
ter 3 [51], generating approximate coalitions.

2. Store resulting task coalitions as P .

Phase 2. Hedonic Coalition Formation

1. while there exists a task ti such that Pk ∪ {ti} �i SP(ti) do

(a) All tasks ti ∈ T checks the potential switch operations, choosing the
operation that maximizes its payoff.

(b) The task with the highest expected gain in payoff tm is chosen to exe-
cute the switch operation:

i. The coalition history for the task h(tm) is updated, adding SP(ti).
ii. Task tm is removed from its current coalition SP(ti).

iii. Task tm is added to the coalition that maximizes its payoff.

2. Return the converged coalition structure P as Pout.
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4.3 Performance and Evaluation

We evaluate the performance of the Hedonic Coalition Formation Algorithm (HCFA) on

100 randomly generated problem instances for each parameter setting. Tasks are placed in

a 100km × 100km 2D Euclidean space, according to a uniform random distribution. The

probability of survival is ψ = 0.99 for each km traveled.

Due to the nature of the problem space, executing Phase 2 of the algorithm from an

empty set of coalitions would have limited success. Expanding paths in an incremental

process, as is the case with the sequential greedy algorithm used in [51], has been shown to

have relatively poor performance. Instead, clustering-based approaches allow for solutions

with a higher expected value, as shown by our previous work developing the Progressive

Risk-aware Clustering (PRC) algorithm [51]. Because PRC is an approximate algorithm,

we expect that there is room for improvement, a performance gap that can be closed using

our hedonic coalition formation process.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  1  2  3  4  5  6  7  8

Ex
pe

ct
ed

 V
al

ue

Asset Value (θ)

Expected Value vs. Asset Value
HCFA-0100
HCFA-0500
HCFA-1000
HCFA-2000

Fig. 4.3: The expected value of multi-agent plans generated by HCFA on 100, 500, 1000,
and 2000 tasks.

In Figure 4.3, we show the resulting performance of HCFA, which outputs expected

values that are consistent with previous results on the CPPAR [51]. Additionally, in Fig-

ure 4.4 we see an increase in performance over the base PRC algorithm by applying the

hedonic coalition formation process. For large problems with 2000 tasks, we observe an
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approximate gain of 7%, for problems with a high asset value.

We have provided a hedonic coalition formation game for the collection planning prob-

lem with attrition risk (CPPAR) and applied it to improve the expected value of approximate

solutions on a range of problem instances. We have also provided a cost allocation method

that is efficient, individually rational, and fulfills the minimal obligation for each task.

This formalism provides a mechanism for allocating cost to customers who are request-

ing tasks be fulfilled by a servicing organization that will charge for risk incurred by their

vehicles. We see further potential to integrate the cost allocation scheme with a procedural

clustering method in a distributed framework, providing stable solutions without requiring

the two phases of path formation and improvement. Additionally, further study is needed

on the effects of varying task values, heterogeneous asset capabilities and values, commu-

nication of collected data through an ad hoc network, and the allowing for redundancy of

collection. In the next chapter, we discuss an alternative form of risk based on uncertainty

of costs of collection at a task location.
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5

RESOURCE-CONSTRAINED RISK FOR

COLLECTION PLANNING

Having provided methods for dealing with attrition risk, we now discuss another form of

probabilistic risk that alters how we find solutions for path-based optimization problems.

We address the challenge of collecting data that can be located at multiple sites, but with an

uncertain cost of collection. We may wish to dispatch vehicles to collect data from locations

that have uncertain conditions, such as weather, and may require a variable amount of effort.

For example, if collecting imagery, foggy conditions will require the platform move closer

to the target before collecting, requiring additional energy expenditure. Therefore, there

is uncertainty surrounding the cost of collection that can only be dispelled by sending a

sensor-laden vehicle to the site.

This problem seeks solutions that minimize cost and minimize the probability of failure,

objectives that are in conflict. Additionally, conducting these missions requires human

oversight to assure objectives are met. The decision maker may have a preference prior

to search, allowing the search to focus on a single objective. But commonly, the decision

maker may wish to evaluate a set of alternatives after analyzing a set of alternatives against

their own preference [71]. In the latter case, a solution set needs to be generated that spans
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the objective space.

If the decision maker is able to provide additional budget or probability of failure con-

straints, the goal is to find a path that meets one of two objective functions, both of which

have been shown to be NP-complete [55] on general graphs:

• Minimize budget: given a probability of failure p∗fail, minimize the budget necessary

to ensure an active site is located with certainty of at least 1 − p∗fail. This answers

the question, "How much budget will I need to ensure the risk of failure is below

acceptable levels?"

• Minimize probability of failure: given a fixed starting budget B∗, minimize the

probability of failing to find an active site, while ensuring the sum of travel and

purchase costs do not exceed B∗. This addresses, "What risk of failure can I expect

given this limited budget?"

A user may want to be presented with a range of options representing the trade-off

between budget and risk. For example, the mission may be a part of a larger operation and

is one of many competing objectives, which requires evaluating the overall efficiency of

the search process to determine if it should be carried out at all, or if additional resources

are needed. If a decision maker has a requirement for a maximum travel cost, or minimum

risk, we can optimize the solution for the other objective. Otherwise, we must present the

user with a set of alternatives that they can choose from. While similar formulations exist

[55, 46], to our knowledge this is the first work to provide solutions for this multiobjective

optimization problem.

This problem is similar to a Traveling Salesman Problem and its variations (see [44]

for a comprehensive review), but varies in signficant ways. In this work, each site has a

distinct probability of failure that differentiates it from other sites, imposing a preference

order. More recent work extended the TSP to include features that assign value to visited

locations [6, 86], but these models assume that costs are fixed and known. The Orienteering
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Problem with Stochastic Profits (OPSP) introduces a distribution over the profits at each site

and seeks to meet a profit threshold within a given time limit [90].

Another key difference of this domain from prior work is the minimization of multiple

competing objectives. Multi-objective optimization for path planning has been approached

using evolutionary algorithms [54], but has often been limited to simple cycles on graphs.

The Traveling Purchaser Problem with Stochastic Prices [55] introduces the model used in

this work, but generates solutions by generalizing the cost distribution at each site as the

expected cost, which we compare against in our evaluation in Section 5.4. More recent

work has provided solutions for maximizing probability with a fixed budget or minimizing

budget with a fixed probability [46, 21], but not both simultaneously.

5.1 Stochastic Physical Search Problem (SPSP)

We define the problem as a stochastic physical search problem (SPSP), where we are given

an undirected networkG(S+, E) with a set of sites S+ = S∪{o, d}where S = {s1, ..., sm}

is the set of m sites that may be active, o and d are the origin and destination locations. We

are also given a set of edges E = {(i, j)] : i, j ∈ S+}. Each (i, j) has the cost of travel tij

that is deterministic and known. An agent must start at origin node o, visit a subset of sites

in S to find an active site, and then end at the destination point d.

The cost of collecting the data at each site si ∈ S is an independent random variable

Ci with an associated probability mass function Pi(c), which gives the probability that

determining if a site is active will cost c at site si. A solution is a path π, a list of length n

where π(i) and π(i+1) are consecutive locations along a path, with π(1) = o and π(n) = d

. We define π(i, j) as the the sub-path of π containing consecutive path locations π(i)

through π(j). The objective is to provide a path that minimizes the cost c and probability

of failure pfail.

This cost at site may be infinity, which indicates the site is not active and no information
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Fig. 5.1: A simple instance of a 2 site SPSP with the agent starting at location s. For
each site si, there is a probability Pi(c) of being able to collect the data at cost c. The table
(right) indicates the budget thresholds at which the agent can achieve the corresponding
probability of success, Psucc = 1 = pfail, via the path.

can be gained, or 0 to indicate there is no cost. We refer to this specialization as a Binary

SPSP. A site si is active with some probability pi, or inactive with probability 1 − pi. In

Figure 5.2 we show a small instance of a Binary SPSP with 5 sites and the associated pareto

set of path solutions. The longest solution path, the shortest path that visits all sites, is also

the solution to the Traveling Salesman Path Problem [44].

5.2 Multiobjective optimization of SPSP

A multi-objective optimization problems (MOP) represents a trade-off between competing

objectives. Efficient exploration of the solution space is difficult in the case where MOP

criteria share dependencies on a common set of variables, such as budget and probability of

failure, in this case. The following definitions are derived from multiobjective optimization

literature [97], with adaptations for the specifics of the B-SPSP.

In general, a multi-objective problem is characterized by a vector of r decision vari-

ables, x = (x1, x2, ..., xr) ∈ X , and k criteria. There is an evaluation function F : X → A,

where A = (a1, a2, ...ak) represents the k attributes of interest. We represent the fitness of

vector x as F (x) = (f1(x), f2(x), ...fk(x)), where fi(x) is the mapping from the decision

variable vector to a single attribute ai.
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Fig. 5.2: A CPPRR instance with starting location s and 5 sites. Below each site is the
probability that the site is active. The set of solutions contains a collection of nondominated
paths and their associated cost and probability. Each point is labeled with the path, which
is the order of site visits starting from s. A single path (blue) is shown on both graphs, for
reference.

Definition 1.1 (Multiobjective Optimization for SPSP) We define a set of decision vari-

ables x denoting a path, a set of 2 objective functions for cost, f1 : X → R, and probability

of failure, f2 : X → [0, 1], and a set of m constraints that require a decision vector be a

valid path. We use probability of failure for clarity of definition, allowing us to minimize

both objectives. The optimization goal is to

minimize F (x) = (f1(x), f2(x))

subject to e(x) = (e1(x), e2(x), ..., em(x)) ≤ 0

where x = (x1, x2, ..., xn) ∈ X

(5.1)

The feasible set Xf is defined as the set of decision vectors in X that form a valid path,

with each decision vector x satisfying the path constraints e(x), and such that Xf = {x ∈

X|e(x) ≤ 0}. While we would prefer solutions that provide the minimum probability of

failure at the minimum cost without violating the constraints, the objectives do not have

optima that correspond to the same solution.
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Definition 1.2. For a pair of objective vectors u and v,

u = v iff ∀i ∈ {1, 2, ..., k} : ui = vi

u ≤ v iff ∀i ∈ {1, 2, ..., k} : ui ≤ vi

u < v iff u ≤ v ∧ u 6= v

(5.2)

The relations ≥ and > are defined similarly.

These definitions impose a partial order on solutions. When none of these relations

hold between u and v, we can only state that u � v and u � v, meaning neither is superior.

A solution that provides higher probability and higher cost than another solution is just as

strong and may prove more effective if the additional budget is available to spend.

Definition 1.3 (Pareto Dominance) For any decision vectors b and c,

b � c (b dominates c) iff F (b) < F (c)

b � c (b weakly dominates c) iff F (b) ≤ F (c)

b v c (b is indifferent to c) iff F (b) � F (c) ∧ F (b) � F (c)

(5.3)

The definitions for "dominated by" (≺,�,v) are analogous.

An optimal solution is one that can not be improved by any other solution in the feasible

set. This does not include solutions that are indifferent, as they are not comparable within

the partial order imposed by pareto dominance. A decision vector x ∈ Xf is nondominated

with respect to a setD ⊆ Xf iff @a ∈ D : a � x. We refer to a solution x as Pareto optimal

iff x is nondominated by Xf . Because the set of all solutions may be a partial order, there

can be two or more Pareto optimal solutions for a given problem instance. The collection

of all nondominated solutions with respect to the set of all solutions is referred to as the

nondominated solution set.

LetD ⊆ Xf . The function n(D) = {d ∈ D : d is nondominated regarding D} outputs
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the set of nondominated decision vectors in D. The objective vectors in f(n(D)) is the

nondominated front regarding D. The set Xn = n(Xf ) is referred to as the Pareto-optimal

set (Pareto set). We use the term solution set to denote both nondominated decision set and

their associated objective values. Solution sets represent the output of a solver that can be

used to evaluate performance on problem instances.

5.2.1 Comparing solution sets

We desire a measure to compare solution sets, so that we can determine the trade-offs be-

tween using different solution techniques. Because the budget values are not normalized,

and will vary greatly with respect to the number of sites, it is important that any measure

be scale-independent. We use a measure similar to the S metric [97] on a two-dimensional

space.

Definition 1.4 (Size of solution set) Let D = (d1, d2, ..., dm) ⊆ X be a set of decision

vectors, ordered by f1. The function S(D) returns the union of the area enclosed by the

objective values for each vector di. The area enclosed by a single decision vector di is

a rectangle defined by the points (f1(di+1), 0) and (f1(di), f2(di)). If i = m, then let

f1(di+1) = f1(di).

Using the S metric, we can derive a measure of error with respect to the optimal solu-

tion.

Definition 1.5 (Solution set error) Let B∗ = (x∗1, x
∗
2, ..., x

∗
m) ⊆ Xf be the optimal set

of decision vectors. Given a decision vector D = (x1, x2, ..., xm) ⊆ X we define the error

of C as

E(D) =

( S(D)

S(B∗)

)
− 1 (5.4)



117

A solution set should seek to minimize the E metric, with E(D) = 0 indicating solution

set D is optimal.

5.3 Algorithm

The Iterative Domination Solver (IDS) starts by generating all paths containing one market

and adding them to the active set. Each iteration of of the algorithm consists of two phases:

the search phase and the domination phase. In the search phase, remaining sites are added

to all paths in the active set. This generates a new set of candidate paths that are added

to the active set. In the domination phase, the solver evaluates new candidate paths and

determines if they are dominated or dominate any other solutions. Depending on the filter

depth parameter, dominated solution are removed from the active set, preventing any further

search using that path. This procedure allows us to focus search on high value sub-paths

without expending significant effort on paths that are low value and unlikely to be found

on a non-dominated path.

5.3.1 Search Phase

A site is added to the previous path immediately after the start site or previous to the desti-

nation site, which ever adds lower total travel cost. This operation prevents insertions that

break up edges from the last iteration, preserving inter-site edges that exist in sub-paths.

An example of this operation is shown in Figure 5.3. This process continues, iteratively

adding new markets to the candidate paths, until we have the path that visits all sites in the

problem, at which point the process terminates and the non-dominated set of intervals is

returned.

We can reduce the search space via a filter depth (fd) parameter, which is path length
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Fig. 5.3: Illustration of the insertion step for the IDS algorithm. A new node sk is added to
the search path after the origin site or before the destination site, whichever has the lower
added path cost. This preserves the edges from the previous path in the search process,
exploiting nondominated substructure.

at which we start pruning out dominated solutions. For example, if we set fd = 1, only a

single path consisting of (o, si, d) will remain after initial path generation, and all paths of

length 2 must contain si. Then, if the only nondominated size 2 path contains si and sj , all

resulting paths from the next iteration must contain that ordered pair, and so on. Using filter

depth is an effective pruning strategy because it prefers edges with shorter path lengths and

there is a diminishing return on probability as the problem size increases.

5.3.2 Domination phase

A quad tree [38] is a rooted data structure where a node may have up to 4 children. For

our purposes, each child represents a quadrant in the 2D plane of budget and probability

of failure. This is defined recursively, making it an extension of a binary tree to 2 dimen-

sions. The quad tree data structure allows us to store the value pairs (cost, probability) and

their associated paths, while also detecting when a new solution is dominated or dominates

another solution.

Because the number of possible paths is exponential with respect to the number of sites

[79], storing all solutions is unreasonable. When a domination relation is detected, we use

the structure to search for entries that should be removed or preserved and restructure the



119

tree as necessary. This adds additional overhead during storage of individual solutions, but

allows us to limit the space complexity of storing candidate solutions. The efficiency of

searching this structure is sensitive to proper selection of the initial root node, an optimiza-

tion still being investigated. In this work we choose to seed the tree with a random path

using half of the markets, but better methods are certain to exist.

5.4 Experimental Results

We evaluate our approach using randomly generated problem instances and comparing

performance against a number of intuitive approaches to solving the B-SPSP. Site networks

are formed by placing sites randomly in a 1000 × 1000, with travel cost tij being the

Euclidean distance between sites si and sj . The probability of failure at each sites is drawn

from a Gaussian distribution with varying mean and variance. All results are based on

100 instances, with error bars indicating a 95% confidence interval. We use a naming

convention based on the chosen filter depth. If fd = k then we refer to the algorithm as

IDS-k.

In order to determine the relative performance of IDA, we compare against a solver

for these problem types that minimizes Expected Cost (EC), adapted from the approach

outlined in [55]. Changes to the algorithm are the acquisition of only a single ‘item’, and

the removal of item cost, which is 0 in this domain.

At each step, EC will provide a path the minimizes the overall cost of the complete path,

without consideration for budget or some fixed probability of success. In order to generate

a solution set from this single path, we include all sub-paths of the solution beginning

at the starting site. This gives us a step-wise set of intervals that still meet the criterion

of minimizing expected cost. We also include a greedy solution that generates a set of

solutions by selecting the lowest cost edge available.

Using the E metric defined in Section 5.2.1, we can compute the error of each approach
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Fig. 5.4: Comparison of error on random instances with respect to mean and variance of
probability of failure on sites

with respect to optimal. In Figure 5.4, we show the effectiveness of IDS with respect to

both changes in the mean and variance of the probability of failure. As the mean probability

of failure increases, all 3 algorithms perform closer to optimal. This is due mostly to each

site individually moving closer to 0% failure, leaving less room for error, in general.

As the variance on the probability is increased, expected cost seems relatively unaf-

fected, the greedy solver performs significantly worse, and IDS sees significant improve-

ment. Increased variance distinguishes the site probabilities, making higher cost edges

feasible options for paths that may be non-dominated. This makes the single path with low

average cost less likely to cover the space of non-dominated solutions.

In Figure 5.5 we show the execution time of IDS with expected cost, optimal and a

random solver that generates 30,000 randomly selected paths. IDS completes search orders

of magnitude faster than optimal and EC, mainly due to being able to terminate search

before expanding the search tree on paths that are not of good quality. In Figure 5.6 we
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Fig. 5.5: Comparison of average execution time among solvers.

Fig. 5.6: Execution time for various IDS filter depths.
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Fig. 5.7: Lift of IDS and greedy versus random sampling

show execution time of IDS with respect to varied filter depths.

Because the optimal solution requires exponential time to solve as the problem size

increases, it is difficult to compare performance against optimal for large instances. To

show that the performance of IDS is maintained for large problem instances, we compare

against a random solver, which generates 30,000 random paths and generates a solution set

from all enumerated sub-paths. We define the lift of set D as
(
S(D)
S(R)

)
− 1, where R is the

nondominated solution set generated by the random solver. The results of this analysis are

shown in Figure 5.7. While increasing the filter depth provides minor gains in performance,

the increased computational demand is significant, especially for large instances.

We have presented B-SPSP as a method for solving CPPRR, providing analysis of the

problem space and a characterization of nondominated solution sets. We have also pre-

sented the Iterative Domination Solver as an approximate method for generating solution

sets. We have shown that IDS performs better than existing approaches across a wide range

of problem parameters with orders of magnitude less execution time on randomly gener-

ated instances. While the filter depth can be increased for minor performance gains on

instances of the CPPRR, in most cases IDS-1 will prove sufficient. In the next chapter, we

discuss the many opportunities for future work in risk-aware planning.
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6

CONCLUSIONS & FUTURE WORK

In this thesis, we have introduced a new type of path-based planning problem with a risk of

losing assets during collection of sensor data, referred to as the Collection Planning Prob-

lem with Attrition Risk (CPPAR). This problem is motivated by the emergence of small,

low-cost air vehicles, which have the potential to become a invaluable tool for performing

collection of data for both military and civilian applications.

We consider a planning problem in which there is a risk of losing agents during exe-

cution, and that risk must be dealt with as part of the planning process prior to execution.

Additionally, the number of platforms used is not specified by the user, but is rather in-

formed by the magnitude and nature of the risk in the environment. As a result, we can

provide solutions that are robust to a wide range of operating conditions.

We have provided a clustering method for determining the allocation and path ordering

for agents, referred to as Progressive Risk-Aware Cluster (PRC), showing that it outper-

forms a sequential greedy solutions in both solution quality and execution time. To do so

we have modified a hierarchical clustering process to consider the unique aspects of this

problem, including task value, inter-task distance, and the distance of the cluster from the

base. For digital goods that can be collected by more than one agent, we have introduced

a problem formulation that included redundancy of collection. In this case, more than one
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agent can perform collection, and the task is completed if any one of the agents returns to

the base with the collected data. We show improvement in expected value when the asset

value is low relative to the value of the tasks, and observe that there are diminishing returns

on redundancy that limit gains as we add more agents to a single task.

Using coalitional game theory, we have specified a mechanism for distributed compu-

tation of task clusters, which includes a method for fair allocation of the costs for each

platform among the visited tasks. This mechanism can be used by a servicing organization

to charge customers for completing tasks in a manner that is fair and stable. We show that

our cost allocation method meets the criterion for generating stable allocations, by meet-

ing expectations of efficiency, individual rationality, and minimal obligation. We use this

method to further improve our clustering results, while simultaneously measuring the gap

between the clustering output and a stable solution.

Finally, we explored an alternative representation of risk, based on limited resources

being used to perform tasks with a probability distribution over the cost of collection. We

provide an algorithm for computing a non-dominated front of solutions that seek to max-

imize both cost and the probability of success, providing a user with a set of alternatives.

Our approach outperforms monte carlo methods, providing in most cases better perfor-

mance with a significant reduction in CPU time.

6.1 Future Research

While we have laid the groundwork in this thesis, there is a vast space of new research

opportunities that remain to be explored. Some of these opportunities are fundamental

questions that still remain, while other arise from more specific applications. Each of these

can provide a valuable contribution to the research community.
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6.1.1 Communication

One can imagine that if each collecting agent were outfitted with communication hardware,

then collected data could be transmitted back to the base before the agent has returned,

mitigating some of the risk. While full communication among all agents and the base is

preferable, it’s practical to assume that distance and signal limitation will result in scenarios

in which only a subset of agents can communicate at any given time. This introduces a

number of challenges, each of which requiring significant attention.

With communication available, there is value in transmitting each task’s data to any

other agent that will listen, and have them transmit it to the base at the earliest moment

possible. However, storage on the platforms is likely to be limited, and one platform may

not be able to store all of the data for every single task. As a result, each agent may want to

be selective about what ti transmits and when. If the data for one task has been replicated

to many other agents already, it may be more valuable to transmit a different task’s data to

the next agent in range. Computational methods for computing the value of transmitting a

certain task to another agent, taking into account storage limitations, the history of previous

transmission, and the paths of agents through the environment, could begin to solve this

challenge.

Constraints in the communication itself may also provide restrictions that an agent

should consider when communicating. Bandwidth may be limited, preventing too many

agents from communicating at once. The data begin transmitted may be large enough to

require a time window to transmit, so agents should consider their movement vectors to

determine if they have enough time to complete the replication process. Finally, for mobile

agents in ad hoc networks, there is the challenge of maintaining routing tables for multi-hop

transmission, which may be unreliable at high velocities.

The introduction of dynamically appearing tasks also provide challenges due to com-

munication. Even if re-planning is available, an agent will not be able to schedule collection

of a task it does not know about. Information about what tasks were detected needs to be
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propagated to the agents before they can make plans for collection, and this relies on the

communications infrastructure available. If resources are scarce, the agents may wish to

avoid saturating the network with new task requests, especially to agents that are not within

feasible range to perform collection.

All of these challenges may not only be a decision to be made by the agent during

execution, but could included as part of a planning process. An agent may choose to be a

transmission node, providing a bridge between other agents and the base. This could be

part of the global expected value function, motivating an additional layer of planning for

the communication infrastructure. Additionally, agents may want to structure their paths

to maximize the time they spend within communication range, increasing the likelihood of

successful replication of their respective task data.

6.1.2 Heterogeneous Platforms and tasks

In this work, we have assumed that each platform has the same relative value and capa-

bilities for collection. We may have a collection of different platforms, each with its own

value, in which case we may want to allocate high-valued assets to lower risk collections,

and send the lower valued assets out on longer collection paths with increased risk. Al-

ternatively, each platform may vary in the value gained by performing specific tasks. For

example, a platform with a higher resolution camera may provide an image that increases

the value of a task, if collected.

Another consideration is platforms that have different modalities of operation, allowing

for collection of only a subset of the tasks. For example, we may have tasks that require

infrared imagery, or capturing a signal at a specific frequency, and no single platform is

of sufficient size or power to collect everything on its own. This requires new methods of

planning for paths, and may also motivate a problem where each platforms is outfitted with

a subset of sensors as part of the planning process.
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6.1.3 Varied Threat Models

We have modeled threats as a uniform probability of the asset being destroyed per unit

moved. This can represent passive threats, such as weather, or active threats with an un-

known location within the environment. However, if more information is available about

specific threats, this information could be provided to the agent as part of the planning

process.

Some examples of threat information could be the location of threats with a radius of

influence, or dynamic threat models that increase the threat as the agent is detected by

the adversary. Alternatively, there may be information about what regions of the area of

operation are considered more dangerous, allowing the agent to compute the risk on each

edge based on how it intersects those regions.

6.1.4 Risk-aware Planning with Dynamic Replanning

We do not address replanning during execution in this work, but rather focus on how we can

anticipate risk as part of the planning process. While dynamic replanning can be used with

plans that do not consider risk, we expect the combination of the two will have additive

benefits. For example, because our risk-aware planning models do not assume how many

agents will be used a priori, the number of agents dispatched will effect how effective the

dynamic replanning may be.

If tasks are time-sensitive or appear dynamically, some form of replanning will be nec-

essary to ensure they are completed if they appear after execution has started. Alternatively,

we may want to plan for ‘waves’ of agents that are dispatched in response to he evolving

environment.
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6.1.5 Tipping and Cueing

Until now, we have treated task data as if it was something only to be delivered, with the

contents to be interpreted by a human analyst. With sufficient computational resources, we

could consider scenarios in which a platform can process the collected data and use it to

inform further collection activities. For example, an agent may collect data that contains

a list of coordinates for other tasks of interest. By processing this list, the agent can then

generate task requests and an associated value.

As discussed above in the communication section, the methodology for sending this

new task information through the network may introduce new challenges. Consider a new

task list with hundreds of additional tasks to be collected. If the current mission is relatively

short and fuel limited, it may be better to not send any tasks, but rather deliver the data for

use in a follow-on collection. On the other hand, if the set of platforms are conducting

persistent operations over a long period of time, the agent will need a way to distribute the

task information in a way that doesn’t negatively effect communications that could be used

for task data.

6.1.6 Quality vs. Computation Trade-off with Redundancy

In Chapter 3 we explored the effects of allowing for redundant collection of tasks by multi-

ple assets. Under certain conditions, the benefits can be significant, nearly doubling the

solution quality. In other cases, redundancy provided no additional value, making the

increased computation without benefit. This raise a number of research problems to be

addressed:

• Methods of pre-processing problem instances to determine if redundancy will pro-

vide sufficient gain to warrant the computation.

• The effects of varying task value, both independently and groupings of tasks nearby

each other.
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• Determining if we can alter the initial paths to provide a greater benefit from redun-

dancy, rather than relying on our clustering technique.

These considerations can also be explored in combination with the other challenges

presented in this chapter, providing a rich space of challenging problems.

6.1.7 Coalitional Formation Game with Redundancy

Traditionally, coalitional game theory is concerned with partitions, in which each task

would be a member of a single coalition. We have explored this case Chapter 4, pro-

viding the foundation for additional extensions to overlapping coalitions. Extending this

definition to redundant collection, as discussed in Section 3.4, remains an open problem.

There is recent work in overlapping coalitional games [23] that could be leveraged to for-

mulate this relatively complex mechanism. One must consider not only the benefit to a

single task for having additional collectors visit, but also find ways to fairly allocate the

task’s contribution to each member coalition and provide a fair allocation of cost from each

coalition that reflect the demand on collection resources.

6.1.8 Additional Opportunities

There are a number of concerns about security and privacy that are sure to become at the

forefront of policy and regulation as unmanned air vehicles increase in accessibility. At

the time of this dissertation, we have already witnessed near misses at airports and security

incidents at federal government buildings. This has prompted calls for increased control

over these vehicles.

As we enable these platforms with autonomous capabilities, we must also be sure that

adversaries or other malicious actors are prevented from taking control of the aircraft and

using them for unintended purposes. Additionally, the information stored during collection

may be sensitive or proprietary, motivating new methods for securing data as it is collected
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and during transport.

We are thankful to have been given the opportunity to contribute to this field at a time

when unmanned vehicles are an emerging and exciting trend. We hope that our work will

inform others and feed the imagination of our peers. We offer gratitude to the countless

researchers before us, who enabled progress through their hard work and persistence.
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