
Syracuse University Syracuse University

SURFACE SURFACE

Dissertations - ALL SURFACE

December 2016

Selective Dynamic Analysis of Virtualized Whole-System Guest Selective Dynamic Analysis of Virtualized Whole-System Guest

Environments Environments

Andrew William Henderson
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Henderson, Andrew William, "Selective Dynamic Analysis of Virtualized Whole-System Guest
Environments" (2016). Dissertations - ALL. 580.
https://surface.syr.edu/etd/580

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/580?utm_source=surface.syr.edu%2Fetd%2F580&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ABSTRACT

Dynamic binary analysis is a prevalent and indispensable technique in program

analysis. While several dynamic binary analysis tools and frameworks have been

proposed, all suffer from one or more of: prohibitive performance degradation, a semantic

gap between the analysis code and the execution under analysis, architecture/OS

specificity, being user-mode only, and lacking flexibility and extendability.

This dissertation describes the design of the Dynamic Executable Code Analysis

Framework (DECAF), a virtual machine-based, multi-target, whole-system dynamic

binary analysis framework. In short, DECAF seeks to address the shortcomings of

existing whole-system dynamic analysis tools and extend the state of the art by utilizing a

combination of novel techniques to provide rich analysis functionality without crippling

amounts of execution overhead. DECAF extends the mature QEMU whole-system

emulator, a type-2 hypervisor capable of emulating every instruction that executes within

a complete guest system environment.

DECAF provides a novel, hardware event-based method of just-in-time virtual

machine introspection (VMI) to address the semantic gap problem. It also implements a

novel instruction-level taint tracking engine at bitwise level of granularity, ensuring that

taint propagation is sound and highly precise throughout the guest environment. A formal

analysis of the taint propagation rules is provided to verify that most instructions introduce

neither false positives nor false negatives. DECAF’s design also provides a plugin

architecture with a simple-to-use, event-driven programming interface that makes it both

flexible and extendable for a variety of analysis tasks.

The implementation of DECAF consists of 9550 lines of C++ code and 10270 lines of

C code. Its performance is evaluated using CPU2006 SPEC benchmarks, which show an

average overhead of 605% for system wide tainting and 12% for VMI. Three platform-

neutral DECAF plugins - Instruction Tracer, Keylogger Detector, and API Tracer - are

described and evaluated in this dissertation to demonstrate the ease of use and

effectiveness of DECAF in writing cross-platform and system-wide analysis tools.

This dissertation also presents the Virtual Device Fuzzer (VDF), a scalable fuzz testing

framework for discovering bugs within the virtual devices implemented as part of QEMU.

Such bugs could be used by malicious software executing within a guest under analysis by

DECAF, so the discovery, reproduction, and diagnosis of such bugs helps to protect

DECAF against attack while improving QEMU and any analysis platforms built upon

QEMU. VDF uses selective instrumentation to perform targeted fuzz testing, which

explores only the branches of execution belonging to virtual devices under analysis. By

leveraging record and replay of memory-mapped I/O activity, VDF quickly cycles virtual

devices through an arbitrarily large number of states without requiring a guest OS to be

booted or present. Once a test case is discovered that triggers a bug, VDF reduces the test

case to the minimum number of reads/writes required to trigger the bug and generates

source code suitable for reproducing the bug during debugging and analysis.

VDF is evaluated by fuzz testing eighteen QEMU virtual devices, generating 1014

crash or hang test cases that reveal bugs in six of the tested devices. Over 80% of the

crashes and hangs were discovered within the first day of testing. VDF covered an average

of 62.32% of virtual device branches during testing, and the average test case was

minimized to a reproduction test case only 18.57% of its original size.

SELECTIVE DYNAMIC ANALYSIS OF VIRTUALIZED

WHOLE-SYSTEM GUEST ENVIRONMENTS

by

Andrew W. Henderson

B.S., Embry-Riddle Aeronautical University, 1999

M.B.A., Jacksonville University, 2004

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering.

Syracuse University

December 2016

Copyright c© Andrew W. Henderson 2016

All Rights Reserved

To my wife, Cheryl.

v

ACKNOWLEDGMENTS

The work presented in this thesis could not have been created without the

encouragement and guidance provided by many others. I would like to acknowledge those

who have helped me throughout this effort.

First and foremost, I am proud to acknowledge my wife Cheryl, daughter Olivia, and

father Bill for all of the support and encouragement that they have given me during my

doctoral studies. I cannot begin to express how excited I am to spend more time with them

after five years of late nights in the lab away from them all. Without their help to make the

doctoral process more tenable, I doubt I would have made it through. For this, I will

forever be thankful. I look forward to all of the long walks and trips to the park that we

will have in our future.

My advisor, Dr. Heng Yin, who has been my mentor in both research and technical

pursuits, has shown me the importance of striking a balance between research work and

life. His expertise has taught me the importance of communication, attention to detail, and

the art of finding “good” research problems to think about. He has also taught me more

than I could ever imagine about the fundamentals of research and technical presentation.

All of these aspects will serve me very well in the years to come, and I am very grateful

that he decided to take a chance on working with the random graduate student that simply

walked into his office one day and asked to learn more about his research work.

vi

While my advisor has been my primary source of guidance during my time at

Syracuse University, he is one of many faculty members that have given me an

opportunity to gain both breadth and depth of knowledge during my doctoral studies. Dr.

Wenliang Du has provided me with a variety of opportunities to not only explore mobile

platform security, but also to lecture in his classes, collaborate with the students in his lab,

and discuss research and industry trends and opportunities. Dr. Ehat Ercanli’s coursework

and guidance introduced me to the world of single board computers, from which has

grown so many opportunities for me that I cannot even begin to count them. Dr. Roger

Chen has provided valuable mentorship, advice, and insight into teaching students and

navigating the world of higher education.

The help and friendship of my labmates and fellow graduate students (both current

students and those long since graduated), has made the long doctoral process much more

enjoyable. In particular, the guidance of Lok, Aravind, and Mu and the company of Qian,

Xunchao, Rundong, Amit, Mahmuda, and Yousra have helped see me through qualifier

exams, submission deadlines, and years of cold and snowy Syracuse weather.

Intelligent Automation, which has funded my research for the past three years, has

been very supportive of my doctoral studies. Dr. Jason Li and Dr. Julia Deng have both

helped to mentor me through the process of creating, writing, and presenting funding

proposals and technical reports. Their guidance has also provided me with training that

will serve me well as a principle investigator on my own research projects in the future.

vii

TABLE OF CONTENTS

Page

ABSTRACT . i

LIST OF TABLES . xi

LIST OF FIGURES . xii

1 Introduction . 1

1.1 Dynamic analysis design goals . 2

1.2 Hardening DECAF against malicious guest activity 5

1.3 Overview of dissertation . 7

1.4 Previous publications . 8

2 Background . 9

2.1 Process-level dynamic analysis . 9

2.2 System-level dynamic analysis . 11

2.3 Using fuzzing for dynamic analysis 13

3 DECAF . 16

3.1 Key challenges . 17

3.1.1 DECAF components . 21

3.1.2 Example DECAF Plugin . 25

3.2 Selective Code Instrumentation . 27

3.3 Just-in-Time VMI . 32

3.3.1 Goals and Challenges . 32

3.3.2 Solution . 33

3.4 Precise Lossless Dynamic Taint Analysis 37

3.4.1 Taint Propagation in CPU Registers 38

3.4.2 Taint Propagation in Memory and IO Devices 41

3.4.3 Asynchronous Tainting . 42

viii

Page

3.5 Formal Model and Definitions . 44

3.5.1 Taint Propagation Rules in Practice 46

3.5.2 Verifying Taint Propagation Rules 48

3.5.3 Constructing Tainting Rules 51

3.6 Evaluation . 61

3.6.1 SPEC CPU2006 Benchmarks 62

3.6.2 Per-Trace Verification of DECAF’s Tainting 65

3.6.3 API Tracer . 69

3.6.4 Keylogger Detector . 71

3.6.5 Instruction Tracer . 74

3.7 Limitations of DECAF . 77

4 Virtual Device Fuzz Testing . 80

4.1 VDF Overview . 82

4.2 Background . 84

4.2.1 Understanding guest access of virtual devices 87

4.2.2 Understanding memory mapped I/O 88

4.3 Fuzzing virtual devices . 91

4.3.1 Fuzzing workflow . 93

4.3.2 Virtual device record and replay 96

4.3.3 Selective branch instrumentation 104

4.3.4 Creation of minimal test cases 107

4.4 Evaluation . 109

4.4.1 Virtual device coverage and bug discovery 110

4.4.2 Classification of all discovered virtual device bugs 113

4.5 Limitations of VDF . 121

4.6 Related Work . 122

5 Summary . 126

A Rule construction and verification: A 2-bit and example 128

B VDF Sample Fuzzing Results: SDHCI Virtual Device 133

ix

Page

LIST OF REFERENCES . 137

VITA . 145

x

LIST OF TABLES

Table Page

2.1 The scope and purpose of existing dynamic analysis tools. 14

3.1 DECAF supported x86 instructions.
The tainting rules for all these instructions are sound, and most are also precise. The imprecise
ones are marked with “*”. 40

3.2 Flow Type Results for x86 Instructions Flow Types: (U)p, (D)own, (I)n-place, (A)ll-around,

(S)pecial, (N)ot-Supported, (S)pecial, (E)ax is tainted in cmpxchg, * - Zeroing Idiom, Boldface - Generated Policy

is more precise . 55

3.3 Precise Rules and Verification Results: Length of operands verified (in bits).
XVerified for all lengths. * Shift amount is untainted. z Non-zero operand for bsf, bsr. 59

3.4 New Precise Bit-level Taint Rules: rcr and bsr are similar to rcl and bsf
respectively, and so omitted. The bsf rule is shown for a 16-bit value which
must be non-zero, and the rule for rcl is precise only when the rotate amount
is untainted. x1, x2, and cf (carry flag) are the operands while t1, t2, and
tcf are the respective shadow taints. 60

3.5 Execution Overhead for DECAF and DECAF with VMI on different architec-
ture/OSs without tainting. 63

3.6 Code breakdown of DECAF, VMI, and various plugins. The code introduced
by DECAF in addition to the code of QEMU, which by itself has over 500K
LOC. 64

3.7 Trojan.Win32.KeyLogger Trace. 72

3.8 Comparing DECAF with TEMU on tainted shell commands.
“n / m” indicates that “n” bytes are tainted, and “m” tainted EIPs are observed. 73

4.1 QEMU virtual devices seed data sources. 97

4.2 QEMU virtual devices tested with VDF. 110

A.1 Query Results for 2-bit and . 130

xi

LIST OF FIGURES

Figure Page

3.1 The overview of DECAF. 23

3.2 A sample plugin for tracking tainted keystrokes. 24

3.3 DECAF inserts instruction execution callbacks into the original TCG code
stream (a) to create an instrumented opcode stream (b) to trigger helper func-
tion calls to plugin callback functions. 29

3.4 The VMI flowchart . 34

3.5 Register liveness tests determine which TCG instructions in the TB (a) should
be instrumented for taint propagation, and instrumentation is inserted as needed
(b). TCG’s optimization logic eliminates unnecessary opcodes, resulting in an
optimized, instrumented TB (c). 39

3.6 All events(a) are logged into a staging buffer(b). Logging logic(c) decides
which events should be recorded and places them into a circular buffer(d) that
is asynchronously written to disk(e). 43

3.7 Example SMT queries checking for information flow (equation 3.1) from the
low bit a of an input to the 4th bit b of an operation output. The first query,
for not, is unsatisfiable, indicating no flow. The second query, for add, is
satisfiable, for instance by x1 = 0 and x2 = 0xf: there is flow. 56

3.8 Information flow of dst in or instruction 56

3.9 Information flow of bits 7, 20 and 31 of dst in sbb instruction 57

3.10 Pseudocode for cmpxchg (flags are omitted) 58

3.11 CINT2006 benchmarks that measure overhead for VMI (a) and inline taint
propagation (b). 64

3.12 Per-Trace Verification Overview . 66

3.13 Trace entry for and bug . 68

3.14 Evaluation of API Tracer plugin. 70

3.15 A simple buffer overflow example. 75

3.16 Buffer overflow detection on ARM. 75

xii

Figure Page

3.17 Buffer overflow detection on x86. 76

4.1 Device access request originating from inside of a QEMU/KVM guest. Note
that the highest level of privilege in the guest (ring 0’) is still lower than that of
the QEMU process on the host (ring 3). 87

4.2 The x86 address space layout for port- and memory-mapped I/O. 90

4.3 VDF’s process for performing fuzz testing of QEMU virtual devices. 94

4.4 The record format of VDF for an MMIO read/write event. 98

4.5 Simplified control flow graph of the ide ioport write() function within
the QEMU IDE core. 100

4.6 Sample branch coverage data for the voice set active() function within
the AC97 virtual device. 106

4.7 Process for minimizing test cases. 107

4.8 Average percentage of branches covered during fuzz testing. 111

4.9 Average percentage of total bugs discovered during fuzz testing. 112

4.10 The backtrace of the deadlock in the worker thread pool shutdown, which oc-
curs in the TPM backend (entries #2 and #3 in the backtrace). 119

A.1 SMT2 for 2-bit and . 129

A.2 SMT2 for verifying the 2-bit and rule . 131

A.3 Sat model for simple 2-bit and rule . 132

B.1 Function call depth and test cases triggering crashes and hangs during the
fuzzing of the SDHCI virtual device in QEMU source file hw/sd/sdhci.c. 135

B.2 Discovered, explored, and pending paths during the fuzzing of the SDHCI vir-
tual device in QEMU source file hw/sd/sdhci.c. 136

xiii

1

1. INTRODUCTION

Dynamic analysis is the observation and modification of a guest system as it executes for

the purpose of understanding the runtime behavior of that system. It has demonstrated its

strength in many research problems, such as malware analysis, protocol reverse

engineering, vulnerability signature generation, software testing, profiling, and

performance optimization. While static analysis, the examination of code or binaries

without requiring the execution of that code, can determine many aspects of individual

binaries (control flow graphs, path predicates, use of uninitialized memory, “dead code”

that can never be reached, etc.), it is unable to determine behaviors that are only

observable at runtime. Examples of such runtime behaviors are interactions among

concurrent threads, dynamically modified/created code, time-sensitive logic, and complex

multi-process interactions via IPC.

Compared to process-level binary instrumentation and analysis, whole-system

dynamic binary analysis has unique advantages. First, it provides a complete view of the

guest system, including the OS kernel and all running applications, which enables the

analysis of kernel activity and the interactions among multiple user-space processes.

Second, the code instrumentation and analysis are performed from entirely outside of the

context of the guest system under analysis (typically by executing the guest within a

virtual machine (VM)). In contrast, process-level instrumentation tools share the same

memory space as the instrumented program execution. Leveraging virtualization

2

techniques, whole-system dynamic binary analysis provides better transparency and

stronger isolation than that of process-level instrumentation tools. This is especially

important within the context of analyzing malicious code that attempts to detect, evade,

and/or tamper with the analysis environment. To discover vulnerabilities within the

infrastructure of modern software frameworks, be they embedded, virtualized, or desktop,

we must be able to capture and analyze the complete execution of some functionality of

interest within an arbitrarily complex guest environment.

1.1 Dynamic analysis design goals

A generic, whole-system dynamic binary analysis platform that can instrument any

portion of the guest’s execution environment is highly desirable, but challenging to design

and create. Unless system-wide dynamic analysis is performed at a reasonable speed, it is

useless. Observation of time-sensitive runtime events, such as network communications or

GUI interactions, is one of the primary reasons to use dynamic analysis over static

analysis methods. Time-sensitive events must be performed in a timely fashion within an

instrumented guest to be useful and representative of their non-instrumented execution.

The two primary limitations of dynamic analysis are that guest code must be executed

to be observed and that overhead is imposed by the instrumentation necessary to observe,

and optionally record, the behavior of the guest. The analysis of every executed

instruction within the guest is infeasible. The performance and storage overhead of such a

task is too great, and the analysis of such a large dataset is not possible within a

3

reasonable timeframe. In addition, any instrumentation added to the system to observe

code execution may limit or interfere with the functionality of the code under observation.

Some subset of the guest’s entire execution, such as the behavior of a particular

user-space process or kernel module, is typically the desired subject of an analysis.

However, the interaction of this subset with the remainder of the guest environment

context must be considered. Because of this, it is infeasible to extract only the guest code

of interest and observe its execution in isolation. Therefore, this dissertation makes the

thesis statement that it is possible to unobtrusively dynamically analyze a subset of

the guest system’s execution while that subset executes within the context of the

guest. In particular, the following questions must all be satisfactorily answered to prove

this thesis statement to be true:

1. How and when is context information about the guest environment gathered?

Specifically, virtual machine instrospection (VMI) [58] must be implemented in a

way that effectively gathers all required guest context information at the proper time

to accurately reconstruct the semantics of the guest environment. Existing VMI

approaches place an agent within the guest to gather guest context information [82],

or continually poll the guest environment [66] (which incurs additional overhead to

guest execution). Is there a better way to accomplish this semantic reconstruction

without adding unreasonable instrumentation overhead?

2. How can you specify which subset of code within the guest to analyze? Specifically,

how is it determined what user or kernel space addresses belong to code of interest?

How are these pages of virtual memory mapped to physical memory locations?

4

How are only those code sections selectively instrumented, rather than

instrumenting all code within the guest?

3. How is selective instrumentation of the guest performed without modifying guest

execution? Specifically, the overhead for guest execution speed overhead must be

low enough that guest behavior is unchanged, and no additional instrumentation

(such as a VMI agent) must execute within the context of the guest. The order of

instructions executed within the guest must not be perturbed, and any

instrumentation added to the guest to collect information must not have side effects

that impact guest execution.

4. How can these principles of selective dynamic analysis be coupled with existing

analysis tools to form a complex, focused analysis effort? How can heavyweight

analysis tools be selective applied to accomplish analysis efforts that were

previously considered infeasible?

This dissertation addresses these four questions by presenting a novel new

whole-system dynamic analysis platform capable of selectively applying heavy-weight

instrumentation to any subset of code executing within the guest environment. This

platform is the Dynamic Executable Code Analysis Framework, or DECAF [62, 63].

Although much research has been performed to make use of whole-system dynamic

binary analysis to solve various security problems [40, 41, 46, 77, 90, 91], little attention

has been paid to the analysis framework itself. Such tools are often tailored to solve

specific problems in an ad-hoc manner. Many times, analysts must still develop new

analysis tools from scratch to meet their own specific needs. DECAF is built upon the

5

QEMU whole-system emulator [29], a popular type-2 hypervisor. It aims to address these

issues to “Make It Work, Make It Right, Make It Fast”. This means that DECAF must not

only provide the same set of capabilities as existing analysis systems such as TEMU [82],

but it must also follow proper principles in its design. DECAF offers analysis results of

better quality, and with a higher correctness guarantee, than TEMU while still conducting

analyses more efficiently.

1.2 Hardening DECAF against malicious guest activity

The primary intended purpose of DECAF is the transparent observtion and analysis of

the behaviors of malicious software (malware). DECAF is an open-source project [10],

and since its first release in January 2013, it has received over 5000 downloads and has

been utilized in a number of malware and security analysis studies [25, 37, 54, 85]. It is

reasonable to assume that malware authors familiar with DECAF will attempt to attack or

evade analysis by attacking and exploiting vulnerabilities in QEMU. Under no

circumstances should activity originating from within the guest be able to attack and

compromise QEMU (and by extension, DECAF), so effectively identifying vulnerabilities

in QEMU is a difficult, but valuable, problem to consider.

QEMU uses a virtualized device model: the hardware devices provided to the guest

environment are implemented in software within QEMU. Whether QEMU completely

emulates the guest CPU or uses another hypervisor, such as KVM [11] or Xen [27], to

execute guest CPU instructions, the hardware devices made available to the guest

environment will still be QEMU’s virtualized devices. Such virtual devices appear as real

6

hardware devices to the guest environment, and can be interacted with in the same

manner. Each virtual device emulates the corresponding interfaces (memory-mapped I/O

(MMIO), interrupts, and DMA) of its analogous physical device. Virtual devices may

completely emulate the internal state of a piece of hardware, provide a pass-through to a

physical device on the host system, or provide some combination of the two.

Because these virtual devices are part of the QEMU binary, they execute at a higher

level of privilege than any code executing within the guest environment. They are not

directly part of the guest environment, per se, but they are QEMU subsystems that the

guest environment directly interacts with. Because of this, a malicious or misbehaving

guest may attempt to use these virtual devices in an unpredictable manner. QEMU’s

virtual devices are a common source of security vulnerabilities [4, 5, 6, 7], are written by a

number of different authors, and the most complex virtual devices are implemented using

thousands of lines of code. Therefore, it is desirable to discover an effective and efficient

method to test these devices in a scalable and automated fashion without requiring expert

knowledge of each virtual device’s state machine and other internal details.

To ameoliorate the threat of malicious guests attacking DECAF via virtual device

bugs, this dissertation also presents Virtual Device Fuzzer (VDF), a novel new fuzz

testing [73] framework that provides targeted fuzz testing of QEMU’s virtual devices.

VDF selectively explores interesting branches within complex programs, namely the

portions of the QEMU codebase that implements specific virtual devices. While QEMU

does provide a mechanism for testing virtual devices [19], this mechanism is intended for

regression testing, rather than the discovery of unknown bugs. By providing such focused

testing capable of discovering new bugs within QEMU, VDF aims to better protect not

7

only DECAF against virtual device attacks, but also QEMU in general and any other

QEMU-based analysis platforms [40, 50, 82].

Providing proper seed test cases to the fuzzer is important for effective exploring the

branches of a program [38, 79], as a good starting seed will focus the fuzzer’s efforts in

areas of interest within the program. Therefore, VDF utilizes record and replay of virtual

device activity to create fuzzing seed test cases that are guaranteed to reach states of

interest and initialize each virtual device to a known good state from which to start testing.

It then mutates this seed data to generate and replay fuzzed inputs that exercise additional

branches of interest within the virtual device.

1.3 Overview of dissertation

This dissertation describes the theory and design of DECAF, as well as three of its

analysis plugins, and evaluates their ability to provide a whole-system binary analysis

solution that provides answers to the four questions laid out by the thesis statement. It

also describes the theory and design of VDF and evaluates its ability to test virtual

devices, discover any vulnerabilities within the virtual device code, and produce

minimized test cases suitable for the reproduction of discovered issues.

The dissertation is presented in the following manner. Chapter 1 is the introduction of

the thesis and an overview of the material presented within the dissertation. Chapter 2 is a

survey of background material that presents the current state of the art of dynamic analysis

at both the whole-system and process levels. Chapter 3 presents the DECAF system,

explains the novel contributions of its design, and evaluates both its benchmarked

8

performance and capability to perform common analysis tasks. Chapter 4 presents the

VDF system, provides additional background material on QEMU’s virtual devices,

evaluates VDF by fuzz testing a variety of virtual devices, and analyzes the nature of each

discovered virtual device issue. Chapter 5 provides a summary of all findings and

conclusions. Finally, Appendix A provides a rule construction and verification example of

the dataflow rules used within DECAF’s system-wide data flow tracking implementation.

Appendix B provides a sample set of coverage and result graphs for the fuzz testing of a

virtual device using VDF.

1.4 Previous publications

The research material presented within this dissertation is derived from three

publications. A portion of the DECAF material presented within Chapter 3 was first

published as a peer-reviewed conference paper in the Proceedings of the 2014

International Symposium on Software Testing and Analysis (ISSTA ‘14)[63]. The

remainder of the DECAF work presented in Chapter 3 and Appendix A has been

peer-reviewed and accepted for publication in a future issue of the IEEE Transactions in

Software Engineering[62] journal. The VDF material presented in Chapter 4 is currently

under submission as a peer-reviewed conference paper for the 2017 Network and

Distributed System Security Symposium (NDSS ‘17).

9

2. BACKGROUND

This chapter presents a survey of existing dynamic analysis tools and techniques.

Understang the capabilities and limitations of these prior works provides an understanding

of how the state of the art in whole-system dynamic analysis is advanced by the design

and features of the DECAF and VDF systems.

2.1 Process-level dynamic analysis

There are many analysis platforms for process-level binary instrumentation, as the

dynamic analysis of user-space processes has been a long-studied technique. Several

instrumentation solutions perform data flow analyses (known as “dynamic taint analysis”

or “tainting”) within the scope of a single process or binary. Such solutions are generally

much faster than their counterparts implemented for whole-system analysis because

process-level instrumentation is limited in scope to only the instructions executed by a

single process, rather than all instructions executed across an entire system.

The Pin [70] API is a flexible C/C++ interface used to create process-level

instrumentation tools (known as Pintools). Examples of such Pintools are libdft [69] and

Dytan [43]. Pintools do not have the benefit of a plugin development API that works at a

semantic level higher than that of individual instructions. Dytan is designed as a platform

for prototyping different tainting policies. libdft offers a less flexible, but faster, solution

10

for tracking explicit data flows. It has the same limitations of other Pintools and only

supports instrumenting x86 binaries.

DynamoRIO [32] is a runtime code manipulation system that translates process

execution on-the-fly to add, remove, and execute instrumentation. Like Pin, it also

supports an instrumentation development API to support instrumentation that is triggered

during key events such as the execution of individual instructions, loading of libraries,

execution of specific function calls, and triggering of system calls. Example tools created

using DynamoRIO trace library function calls, count executed instructions and basic

blocks [24], track code coverage during execution, and assist in debugging memory. It

supports instrumenting 32/64-bit x86 binaries and 32-bit ARM binaries. Similar in

functionality to DynamoRIO is Strata [80], which is another runtime code manipulation

system. Strata targets Sparc, MIPS, and x86, but provides a coarser level of

instrumentation (system call level) than DynamoRIO.

Many efforts have been made to reduce the runtime overhead of process-level dynamic

taint analysis. LIFT [78] assumes that taint propagation is not needed for most code

execution, so it optimizes performance by taking the fast paths (without taint

instrumentation) most of time. It also exploits extra registers in x86 64-bit architectures to

shadow taints in x86 32-bit applications. This is a form of selective instrumentation,

though the code is actually duplicated into instrumented and non-instrumented forms and

the particular version run for any path through the code is selected dynamically at runtime.

Minemu [31] leverages the x86 SSE registers to provide lightweight taint tracking for

32-bit x86 applications. Jee et al [65] build upon libdft to create a system that performs a

static analysis on a process to selectively instrument the process for dynamic analysis per

11

the rules of a Taint Flow Algebra. All of these tainting implementations only track taint

status, and apply imprecise and sometimes unsound tainting rules, to achieve high

efficiency.

Unlike approaches that sacrifice precision and correctness for performance,

Memcheck [81] focuses on applying precise and correct tainting rules to troubleshoot

memory errors within a process. It uses bitwise tainting to accurately track which bits of

memory within the process’s memory space have been initialized. Memcheck is able to

detect double freeing of memory, usage of uninitialized variables, overlapping

source/destination blocks when copying memory, and memory leaks. It favors correctness

over efficiency, and does so without relying upon architecture-specific features (e.g., SSE)

to improve runtime performance. The dramatic overhead of Memcheck (an average

slowdown of 2650%) makes it unsuitable for analyzing software that performs

time-dependent tasks. It supports a number of 32/64-bit architectures, include x86, ARM,

MIPS, and PPC.

2.2 System-level dynamic analysis

Whole-system instrumentation platforms leverage binary emulation and VMI, and

they have long suffered from poor performance. Typically, the guest environment is

executed under some form of virtual machine manager (VMM), such as QEMU [29],

VMWare [17], or KVM [11], and the guest is unaware that its execution is being

virtualized or emulated. The VMM is augmented to perform some form of

instrumentation of the guest environment during the guest’s execution.

12

Early whole-system analysis platforms, such as TaintBochs [41], favored accuracy

over performance. Ether [48] attempts to elude and analyze VM-aware malware by

leveraging Intel VT hardware virtualization extensions. By triggering a debug exception

after every instruction, Ether is able to stealthily analyze the state of the system at the cost

of heavy execution overhead. However, performing practical, accurate analyses of

interactive systems makes the reduction of such high overhead an important focus.

ReVirt [51] uses an instrumented UMLinux VMM for the record and replay of

compromised guest systems. This allows for more heavyweight analyses based upon

repeated replays of previously recorded guest sessions. Aftersight [42] attempts to record

information from the guest environment and then analyze it on a different system,

offloading the analysis overhead to a different machine.

More recent whole-system instrumentation platforms have been built upon

QEMU [29]. Argos [77] performs whole-system taint tracking within honeypot systems

for the purpose of generating signatures for network-based attacks. Argos extends the

earlier process-level taint tracking system TaintCheck [75]. TEMU [16], part of the

BitBlaze binary analysis suite [82], serves as the base for a variety of security analysis

tools that perform whole-system analysis, such as HookFinder [91], Panorama [90], and

Renovo [67]. TEMU is also not capable of emulating newer OSes such as Windows 7 and

8, and it is only capable of instrumenting x86 platforms. Its design, while feature-rich,

creates execution overheads that may be far too heavyweight for simpler analyses that do

not require all of TEMU’s features.

S2E [40] uses QEMU to perform inline symbolic execution on subsets of guest

execution. Guest instructions are transformed into a Low-Level Virtual Machine

13

(LLVM [22]) intermediary representation, and when execution of the guest environment

reaches a branch within code of interest, S2E forks the current QEMU process to explore

both branches using LLVM-based symbolic execution. While powerful, this process is

quite slow and memory intensive. PANDA [50] leverages the LLVM work performed by

S2E to create an analysis platform using record and replay. Tasks of interest are executed

within the guest platform and recorded in a log, and then the recorded activity is replayed

through a PANDA analysis plugin. This allows for increasingly heavyweight analyses to

be performed on the same recorded activity without placing heavyweight runtime

performance penalties on the guest at recording time.

The DECAF tool is designed to assist in performing such heavyweight analyses by

using lightweight plugins to capture detailed system information and instruction traces

that provide enough detail to allow other tools to perform heavyweight analyses offline, if

necessary. DroidScope [88] is a dynamic analysis platform for the security analysis of the

Android OS. The core idea of DroidScope is to seamlessly reconstruct both Dalvik

VM-level and OS-level semantic views and to provide a unified interface for Android

malware analysis. DroidScope is an extension to DECAF for Android-specific analyses.

Table 2.1 summarizes the scope and purpose of existing dynamic analysis tools, including

DECAF.

2.3 Using fuzzing for dynamic analysis

Fuzzing [73] can be leveraged for both system- and process-level dynamic analysis.

Because dynamic analysis is only useful if the behavior to be observed is triggered during

14

Ta
bl

e
2.

1:
T

he
sc

op
e

an
d

pu
rp

os
e

of
ex

is
tin

g
dy

na
m

ic
an

al
ys

is
to

ol
s.

TO
O

L
PU

R
PO

SE
PL

U
G

IN
SU

PP
O

R
T

FI
N

E
ST

TA
IN

T
G

R
A

N
U

L
A

R
IT

Y
A

N
A

LY
SI

S
SC

O
PE

X
86

A
R

M
BA

SE
D

U
PO

N
L

IN
U

X
G

U
E

ST
W

IN
32

G
U

E
ST

A
N

D
R

O
ID

G
U

E
ST

A
ft

er
si

gh
t[

42
]

R
ec

or
d/

R
ep

la
y

N
/A

Sy
st

em
4

V
M

W
ar

e
4

4

A
rg

os
[7

7]
Ta

in
tin

g
B

yt
e

Sy
st

em
4

Ta
in

tC
he

ck
4

4

D
E

C
A

F
[6

2,
63

]
G

en
er

al
4

B
it

Sy
st

em
4

4
Q

E
M

U
4

4
4

D
ro

id
Sc

op
e

[8
8]

G
en

er
al

4
B

it
Sy

st
em

4
4

D
E

C
A

F
4

D
yn

am
oR

IO
[3

2]
G

en
er

al
4

B
it

Pr
oc

es
s

4
4

N
/A

4
4

4

D
Y

TA
N

[4
3]

Ta
in

tin
g

4
B

yt
e

Pr
oc

es
s

4
Pi

n
4

4

E
th

er
[4

8]
G

en
er

al
N

/A
Sy

st
em

4
X

en
4

H
oo

kF
in

de
r[

91
]

A
na

ly
si

s
Pl

ug
in

N
/A

Sy
st

em
4

T
E

M
U

4
4

K
L

E
E

[3
6]

Sy
m

bo
lic

E
xe

c
N

/A
Pr

oc
es

s
4

L
LV

M
4

lib
df

t[
69

]
Ta

in
tin

g
4

B
yt

e
Pr

oc
es

s
4

Pi
n

4

L
IF

T
[7

8]
Ta

in
tin

g
B

yt
e

Pr
oc

es
s

4
St

ar
D

B
T

4

M
em

ch
ec

k
[8

1]
Ta

in
tin

g
B

it
Pr

oc
es

s
4

4
V

al
gr

in
d

4
4

4

M
in

em
u

[3
1]

Ta
in

tin
g

B
yt

e
Pr

oc
es

s
4

N
/A

4

PA
N

D
A

[5
0]

R
ec

or
d/

R
ep

la
y

4
B

yt
e

Sy
st

em
4

4
Q

E
M

U
4

4
4

Pa
no

ra
m

a
[9

0]
A

na
ly

si
s

Pl
ug

in
N

/A
Sy

st
em

4
T

E
M

U
4

4

Pi
n

[7
0]

G
en

er
al

4
B

it
Pr

oc
es

s
4

N
/A

4
4

R
en

ov
o

[6
7]

A
na

ly
si

s
Pl

ug
in

N
/A

Sy
st

em
4

T
E

M
U

4
4

R
eV

ir
t[

51
]

R
ec

or
d/

R
ep

la
y

4
N

/A
Sy

st
em

4
U

M
L

in
ux

4

S2
E

[4
0]

Sy
m

bo
lic

E
xe

c
4

N
/A

Sy
st

em
4

4
Q

E
M

U
4

4

St
ra

ta
[8

0]
G

en
er

al
4

N
/A

Pr
oc

es
s

4
N

/A
4

4

Ta
in

tB
oc

hs
[4

1]
Ta

in
tin

g
B

yt
e

Sy
st

em
4

B
oc

hs
4

4

Ta
in

tC
he

ck
[7

5]
Ta

in
tin

g
B

yt
e

Pr
oc

es
s

4
V

al
gr

in
d

4
4

Ta
in

tD
ro

id
[5

3]
Ta

in
tin

g
B

yt
e

Sy
st

em
4

A
nd

ro
id

O
S

4

T
E

M
U

[1
6]

G
en

er
al

4
B

yt
e

Sy
st

em
4

Q
E

M
U

4
4

15

analysis, it is necessary to automate the discovery of inputs that trigger interesting

behaviors. Once interesting inputs are discovered, they can then later be replayed while

the guest is executing under dynamic analysis. Work in the area of fuzzing has focused on

discovering interesting input “seed” data (KLEE [36], AEG [26], COVERSET [79]) and

fuzzing with symbolic execution (SAGE [59], Driller [83], TaintScope [84],

Mayhem [38], Bitfuzz [35]). EmuFuzzer [71] fuzz tested various x86 emulators

(QEMU [29], Valgrind [81], Pin [70], and Bochs [41]) for emulation correctness, showing

that fuzz testing not only aids in performing dynamic analysis, but can be used to improve

the analysis tools themselves.

The VDF fuzzing framework presented within this dissertation seeks to use record and

replay (similar to that seen in tools like PANDA [50]), to test QEMU virtual devices. This

provides a solution to the difficult problem of determining seed input that will trigger

branches of interest within a complex program.

16

3. DECAF

DECAF is built on top of QEMU [29], the whole-system emulator and dynamic translator.

By extending QEMU, DECAF inherits a mature and feature-rich platform to use as a

starting point when implementing its instrumentation and analysis functionality. Because

all aspects of the guest environment (e.g. CPU, RAM, hardware devices) are emulated in

software, DECAF has many opportunities to monitor the runtime behavior of the guest

system.

QEMU’s whole-system emulator functionality acts as a type-2 hypervisor for

executing guest virtual machines (VMs). It makes use of dynamic binary translation

techniques to emulate multiple target guest architectures, so the architecture of the guest

environment can differ from that of the host machine. Virtual guest hardware devices,

such as network interfaces and IDE/SCSI controllers, are implemented in software and

pass data through to the devices physically present on the host system as needed.

QEMU decouples the specific details of the guest CPU from that of the host using its

Tiny Code Generator (TCG). TCG translates the instructions of the guest environment

into an intermediary representation (IR) of architecture-neutral set of RISC-like

instructions. These instructions include common ALU operations (e.g. add, sub, xor),

memory load/store, and control flow transfer. This IR is then dynamically translated into

the native instructions of the host system and executed. This effectively decouples the

17

CPU architecture and instruction set of the emulated guest environment from that of the

host platform.

DECAF modifies QEMU’s TCG to selectively insert instrumentation into the IR at the

point of guest-to-IR translation. At the point of IR-to-host translation, the instrumentation

becomes embedded within the host instruction stream without disturbing the semantic

meaning of the guest’s execution. This enables DECAF to support the analysis of a wide

variety of different guest architectures while requiring only a minimal amount of

architecture-specific code, and without requiring ad-hoc modifications to numerous

subsystems. This process is detailed in Section 3.2.

3.1 Key challenges

The following key challenges must be overcome when building a whole-system

dynamic binary analysis platform:

1. How to reconstruct a fresh OS-level semantic view from completely outside of the

guest system? As we run a virtual machine inside a whole-system binary analysis

framework and perform various analysis tasks from outside, we must reconstruct the

OS-level semantic view of the guest VM from outside, known as Virtual Machine

Introspection (VMI). Several efforts (such as VMWatcher [66], Virtuoso [49], and

VMST [56]) have been made to bridge this semantic gap and reconstruct the OS-level

semantic view. However, the question of “when to reconstruct” has not been addressed. In

a running system, the OS-level semantic views constantly change (e.g., a process starts or

terminates, a code module is loaded or unloaded). For dynamic analysis, we must be

18

aware of these new events “just-in-time” at the moment they occur. The TEMU [82]

analysis platform circumvented this problem by inserting a kernel module into the guest

OS within the VM. This kernel module hooks several system events, retrieves OS-level

information, and passes it to the hypervisor through a spare port. This circumvention

clearly violates the external monitoring principle for VMI, and it can be easily subverted

by the malicious code inside the VM.

DECAF proposes a new, novel solution to reconstructing a fresh OS-level semantic

view by only monitoring hardware-level events. Such an approach has not, to our

knowledge, been proposed before. It provides notification of OS-level events without

requiring the expensive polling of guest kernel data structures or the violation of the

external monitoring principle.

2. How to provide an event-based programming paradigm that is both correct and

efficient? Most of the existing analysis platforms provide instrumentation interfaces only,

through which a plugin can specify which instructions to instrument and what

instrumentation code should be run. While this instrumentation approach is simple and

flexible, it places a burden on the plugin developers to decide exactly how to instrument

guest program execution. Such an approach is acceptable for user-level instrumentation,

but it becomes difficult within a whole-system setting. Properly instrumenting

whole-system execution requires the analyst to be familiar with the low-level system

details of the guest system, such as exceptions, interrupts, page faults, context switches,

etc.

19

Therefore, DECAF must provide an event-based interface, through which an analyst

can register for events in various selected contexts (e.g., a process, the kernel space, or a

kernel module). DECAF automatically determines what instrumentation code to

selectively insert and where, and it ensures that the inserted instrumentation code is

correct and efficient. TEMU provides a similar high-level interface, but achieves it in a

naive way: it inserts instrumentation code uniformly in all translated code blocks and

decides at execution time whether to deliver the events to the plugin. This guarantees the

correctness of event processing, but incurs unnecessarily high runtime overhead. DECAF

selectively inserts instrumentation into only the code blocks where it is needed,

dramatically lowering overhead and improving performance.

3. How to implement precise, sound, and lossless tainting? Dynamic taint analysis

(tainting) is a powerful dynamic binary analysis technique. Many taint system

implementations exist [31, 43, 75, 78, 82]. Among these implementations, two important

factors are often overlooked. First, most of these implementations are not precise enough

(resulting in overtainting), and some of them are not even sound (resulting in

undertainting). This means that these taint analysis systems would unnecessarily mark

many memory locations as tainted and/or fail to taint certain memory locations and CPU

registers that should be tainted. When dealing with security problems, an unsound

implementation may miss real attacks, while an imprecise implementation may raise too

many false alarms.

Second, we often need to track tainted data originating from multiple taint sources by

applying multiple labels. Many taint analysis implementations do not distinguish among

20

multiple taint labels. For the ones that do, they do not provide a lossless guarantee. Each

tainted byte or word is associated with up to a small number of taint labels, due to space

constraints on shadow memory. When a memory location or CPU register is tainted from

more taint sources than those that can be kept in the shadow memory, the remaining are

lost!

To achieve high precision, DECAF maintains taint information for every bit of

registers and memory locations, and it applies precise tainting rules for most instructions

at the QEMU TCG IR level. This thesis examines the information-flow patterns in integer

operations experimentally, survey previous systems, and in several cases designs new

propagation rules when no previous rule was sound and precise. The soundness and

precision of these best rules are verified for each operation using two decision procedures

(automatic theorem provers), and also using a new technique called per-trace verification.

An analysis of these rules, using definitions based upon bit-level non-interference, is

provided in Section 3.5.2.

To support any number of taint labels without the information loss seen in other

systems, DECAF separates tracking of taint status from tracking taint labels. Taint status

is tracked efficiently and inline during execution, while taint labels are tracked in an

asynchronous manner via plugin-based logging. Taken together with its sound and precise

information-flow rules, DECAF offers a novel, sound implementation of whole-system

tainting without prohibitive amounts of runtime overhead.

4. How to provide strong support for cross-platform analysis? Ideally, the same

analysis code (with minimum platform-specific code) works for different guest CPU

21

architectures (e.g, x86 and ARM) and different guest operating systems (e.g., Windows

and Linux). This requires the analysis framework to hide guest architecture- and

OS-specific details from the analysis plugins. Further, to make the analysis framework

maintainable and easily extensible to new architectures and OSes, the platform-specific

code within the framework must be minimized. Some instrumentation tools, like Pin [70],

can run under both Linux and Windows, but, until now, no analysis tool provides support

for both multiple architectures and multiple OSes. DECAF provides support for multiple

platforms by implementing core instrumentation and analysis tasks at the TCG IR level,

independent of the CPU architecture of the VM. DECAF’s plugin API is engineered to

hide many architecture and OS specific details.

3.1.1 DECAF components

Figure 3.1 provides an overview of DECAF. Inside the virtual machine, programs of

interest are run and various analyses are conducted externally via analysis plugins.

DECAF has the following key components:

Just-In-Time VMI. DECAF’s VMI component reconstructs a fresh, OS-level view of

guest execution within the virtual machine, including each of the guest’s processes,

threads, code modules, and symbols, to support binary analysis. Further, to support

multiple architectures and operating systems, DECAF follows a platform-neutral design

principle. The workflow for extracting OS-level semantic information is common across

multiple architectures and OSes. The only platform-specific handling lies in what guest

22

kernel data structures are examined and which fields to extract information from. Further

details about the VMI implementation is provided in Section 3.3.

Precise, lossless dynamic taint analysis. DECAF ensures precise tainting by

maintaining bit-level taint precision for CPU registers and memory, and inlining precise

tainting rules within translated code blocks. Thus, the taint status of every CPU register

and memory location is processed and updated synchronously during the code execution

of the virtual machine. The propagation of taint labels is done by recording to a taint

propagation log via a plugin. Later, this log can be analyzed to determine label

propagation. This label analysis is done in an asynchronous manner for two reasons: 1) it

is impractical and expensive to maintain an unlimited number of labels for each tainted bit

in the shadow memory; and 2) for most taint analysis problems, it is not necessary to

know which taint labels are associated with all tainted bits in real time. The majority of

tainting analyses are only interested in when a key data sink (e.g., the x86 EIP register or

a sensitive memory buffer) becomes tainted. Once taint reaches such a taint sink, the taint

propagation log can be reviewed and the taint labels present in the sink retrieved. By

implementing such a tainting logic mainly at QEMU’s largely architecture-independent IR

level, it becomes much simpler to extend tainting support to a new CPU architecture.

Section 3.4 provides more details about DECAF’s taint analysis implementation.

Event-driven programming interface. Compared to many existing analysis

frameworks [70, 74] that provide only an instrumentation interface, DECAF provides an

event-driven programming interface. This means that DECAF’s design of “instrument in

the translation phase and then analyze in the execution phase” is invisible to the analysis

plugins. Plugins only need to register for specific events and implement the corresponding

23

Just-In-Time
VMI

Precise
Tainting

Instru. Code
Management

Ev
en

t-
D

ri
ve

n
 A

P
I

API Tracer

Keylogger Detector

Instruction Tracer

…

Fig. 3.1.: The overview of DECAF.

event handling functions. The details of how the code is instrumented are handled by the

framework, not by the plugins. Such details include how to generate the instrumentation

code for inserting these event handlers into the translated code stream and how to maintain

instrumentation code consistency when new event handlers are registered and old ones are

removed.

Dynamic instrumentation management. To reduce runtime overhead to the guest

environment, the instrumentation code is inserted into the translated IR code only where

necessary. For example, when a DECAF plugin registers a function hook for a function’s

entry point, the instrumentation code for this hook is only placed once (at the function

entry point). When the plugin unregisters this function hook, the instrumentation code

will also be removed from the translated code accordingly. To ease the development of

plugins, the management of dynamic code instrumentation is completely taken care of in

the framework, and thus invisible to the plugins.

24

/∗ D e f i n e some g l o b a l s f o r our p l u g i n l o g i c . ∗ /
s t a t i c p l u g i n i n t e r f a c e t m y i n t e r f a c e ;
s t a t i c DECAF Handle h a n d l e k e y s t r o k e c b ;
s t a t i c DECAF Handle h a n d l e r e a d t a i n t m e m c b ;
s t a t i c i n t t a i n t k e y e n a b l e d = 0 ;

/∗ D e f i n e t h e c a l l b a c k t r i g g e r e d when t a i n t e d memory
i s read . ∗ /

s t a t i c vo id m y r e a d t a i n t m e m c b (DECAF Callback Params ∗param) {
char name [1 2 8] ;
t m o d i n f o t tm ;
/∗ Find t h e code module a c c e s s i n g t a i n t e d memory . ∗ /
i f (V M I l o c a t e m o d u l e c (DECAF getPC (c p u s i n g l e e n v) ,

DECAF getPGD (c p u s i n g l e e n v) , name , &tm) == 0)
/∗ V i r t u a l a d d r e s s and module o f t h e a c c e s s . ∗ /
DECAF printf (”INSN 0x%08x , Module ’%s ’ Read Key\n ” ,

DECAF getPC (c p u s i n g l e e n v) , tm . name) ;
}

/∗ D e f i n e t h e c a l l b a c k t r i g g e r e d when a k e y s t r o k e i s
e n t e r e d i n t o t h e g u e s t v i a a QEMU m o n i t o r command . ∗ /

s t a t i c vo id my sendkey cb (DECAF Callback Params ∗params) {
∗params−>ks . t a i n t m a r k = t a i n t k e y e n a b l e d ;
t a i n t k e y e n a b l e d = 0 ;
DECAF printf (” t a i n t key %d \n ” , params−>ks . keycode) ;

}

/∗ D e f i n e t h e f u n c t i o n c a l l e d when t h e p l u g i n−s p e c i f i c
” t a i n t s e n d k e y ” QEMU m o n i t o r command i s used . ∗ /

s t a t i c vo id d o t a i n t s e n d k e y (Moni to r ∗mon , c o n s t QDict ∗ q d i c t) {
i f (q d i c t h a s k e y (q d i c t , ” key ”)) {

/∗ Enable t a i n t i n g f o r t h e n e x t k e y s t r o k e ∗ /
t a i n t k e y e n a b l e d = 1 ;
/∗ Send t h e t a i n t e d k e y s t r o k e i n t o t h e g u e s t ∗ /
d o s e n d k e y (q d i c t g e t s t r (q d i c t , ” key ”)) ;

}
}

/∗ D e f i n e t h e ” t a i n t s e n d k e y ” QEMU m o n i t o r command . ∗ /
s t a t i c mon cmd t my term cmds [] = {
{

. name = ” t a i n t s e n d k e y ” ,

. a r g s t y p e = ” key : s ” ,

. mhandle r . cmd = d o t a i n t s e n d k e y ,

. params = ” t a i n t s e n d k e y key ” ,

. h e l p = ” Send a t a i n t e d k e y p r e s s t o t h e g u e s t ”
} ,
{NULL, NULL, } ,

} ;

/∗ D e f i n e a c l e a n u p f u n c t i o n f o r p l u g i n un load . ∗ /
s t a t i c vo id my cleanup (void) { /∗ Perform c l e a n u p here . ∗ / }

/∗ T h i s i s e x e c u t e d upon l o a d i n g t h i s p l u g i n . ∗ /
p l u g i n i n t e r f a c e t ∗ i n i t p l u g i n (void) {

/∗ R e g i s t e r p l u g i n−s p e c i f i c QEMU m o n i t o r commands . ∗ /
m y i n t e r f a c e . mon cmds = my term cmds ;
/∗ R e g i s t e r c l e a n u p f u n c t i o n c a l l e d a t p l u g i n un load . ∗ /
m y i n t e r f a c e . p l u g i n c l e a n u p = my cleanup ;
/∗ R e g i s t e r f o r DECAF c a l l b a c k e v e n t s . ∗ /
h a n d l e r e a d t a i n t m e m c b = D E C A F r e g i s t e r c a l l b a c k (

DECAF READ TAINTMEM CB, m y r e a d t a i n t m e m c b , NULL) ;
h a n d l e k e y s t r o k e c b = D E C A F r e g i s t e r c a l l b a c k (

DECAF KEYSTROKE CB , my sendkey cb , NULL) ;
/∗ Done ! Re t u r n t h i s new p l u g i n i n t e r f a c e t o DECAF . ∗ /
re turn &m y i n t e r f a c e ;

}

Fig. 3.2.: A sample plugin for tracking tainted keystrokes.

25

3.1.2 Example DECAF Plugin

Figure 3.2 presents the source code for an example DECAF plugin that detects

keylogger malware within the guest system. This plugin tracks the propagation of tainted

keystrokes throughout the entire guest environment, and it is both guest architecture and

OS independent. The same plugin code works for x86 and ARM, Windows and Linux.

Whenever possible, DECAF provides generic functions to abstract away any

architecture-dependent details of the guest. For example, DECAF getPC will return the

program counter (e.g., EIP in x86 and R15 in ARM), and DECAF getPGD will return

the page table directory (e.g., CR3 in x86 and CP15 in ARM).

DECAF plugins work by registering callback functions that are executed when events

of interest occur within the guest. The sample plugin defines two functions,

my read taint mem cb and my sendkey cb, that ware registered as callback

functions. my read taint mem cb is called whenever tainted guest memory is read

(the DECAF READ TAINTMEM CB event). my sendkey cb is called whenever a tainted

keystroke is entered into the system (the DECAF KEYSTROKE CB event).

Because it is often necessary for an analyst to interact with a plugin during guest

execution, DECAF leverages the QEMU command monitor. The monitor is a shell that

accepts commands for controlling and querying the runtime behavior of QEMU, such as

starting/stopping guest execution, saving the state of the VM, and profiling QEMU’s

resource usage. The example plugin code specifies a plugin-specific monitor command,

taint sendkey, in the my term cmds[] array. When this command is entered into

the QEMU monitor, the plugin’s do taint sendkey function is called and a tainted

26

keypress is entered into the guest VM. The taint sendkey command is only available

while the plugin is loaded. Upon unloading the plugin, any plugin-specific commands are

removed from the monitor.

Every plugin must have an init plugin function. This function is called to

initialize the plugin and return a pointer to a plugin interface t structure, which

specifies any plugin-specific monitor commands and a cleanup function (my cleanup in

the sample plugin) to be called when the plugin is unloaded. The init plugin function

typically registers callback functions for any guest events of interest, but registering and

unregistering callbacks can be performed at any point after the plugin has been loaded.

When the analyst loads this sample plugin and then enters the taint sendkey

command into the monitor, the registered callback my send keystroke is called and

the corresponding keystroke is tainted. Thereafter, the tainted keystroke will propagate

from the keyboard device, through the OS kernel, and to the destination user-level

program. Since DECAF performs whole-system dynamic taint analysis, the analyst is able

to observe this entire taint propagation flow. Whenever an instruction reads a tainted

memory location, the DECAF calls the registered my read tainted mem callback,

which checks the code module in which this instruction is located. Any relevant

information about this taint event is then logged for offline analysis.

27

3.2 Selective Code Instrumentation

To meet the requirements of efficiency and cross-platform for code instrumentation,

DECAF selectively inserts instrumentation code at QEMU’s intermediate representation

(IR) level.

Dynamic binary translation in QEMU. To support multiple architectures, QEMU

makes use of a compiler backend, called Tiny Code Generator (TCG), as its dynamic

binary translation engine. QEMU translates each basic block of guest instructions into an

architecture-independent TCG IR instructions within a TCG translation block (TB). The

TCG compiler then translates each TB into a piece of native code to be executed on the

host. Figure 3.3(a) provides an example of how two x86 instructions are translated into

these TCG instructions.

TCG instructions include common ALU operations (e.g. add, sub, xor), memory

load/store, and control flow transfer. The parameters for each TCG instruction can be

temporary variables (registers that exist only within the scope of the current TB), global

variables, and constants. For more complex, guest-specific instructions (e.g. floating point

operations), a call TCG instruction exists for making calls to high-level language helper

functions that implement the complex functionality. In this manner, TCG cleanly

decouples specific details of the guest’s architecture and instruction set from that of the

host.

Placement of code execution events. DECAF’s code instrumentation integrates

coherently into the TCG-based dynamic binary translation process. Events like “block

begin/end” (for reaching the beginning/end of a TB) and “instruction begin/end” (for

28

reaching the IR that begin/end a guest instruction) are used for tracing guest execution.

When callbacks for these events are registered by a plugin, DECAF inserts the proper

helper function calls into the necessary TBs by pausing the guest’s execution, flushing the

necessary TBs, retranslating those TBs to include calls to the helper functions (via an

inserted call IR), and then resuming the guest’s execution. Because callbacks are

triggered inline with the guest’s execution, they are guaranteed to be synchronized to the

occurance of events of interest.

Figure 3.3(b) shows the insertation of the two helper functions DECAF invoke

insn begin callback and DECAF invoke insn end callback at the

beginning and end of each guest instruction, respectively. For many analyses, the analyst

is only interested in the execution of a small subset of the guest system, such as the

instructions belonging to a single kernel module or user-level process. Plugins can specify

ranges of memory addresses, or even a single address, of interest when registering for

callbacks. Callback helper functions are only placed into the necessary TBs, and only at

the proper locations within each TB, to capture these events as they occur. This greatly

reduces the runtime overhead of DECAF.

An important design decision of DECAF is its callback dispatch mechanism. For each

kind of event (e.g., “block begin”), only a single helper function (e.g., DECAF invoke

block begin callback) is inserted at each desired program location. Within the

helper function, DECAF iterates through all registered callbacks for that event and decides

which callbacks to trigger. There are two important reasons for this: avoiding multiple

callbacks at the same location and efficiently removing stale instrumentation code.

29

// Start of translation block
// Original instruction: orl %ebx, %eax
mov_i32 tmp11, ebx
mov_i32 tmp12, eax
or_i32 tmp13, tmp12, tmp11
// Original instruction: addl $0x01, %eax
movi_i32 tmp14, $0x01
add_i32 tmp15, tmp14, tmp13
mov_i32 eax, tmp15
// End of translation block
goto_tb $0x0

(a)

(b)

// Start of translation block
// Insert DECAF_BLOCK_BEGIN callback
movi_i32 tmp21, $<CURRENT_ADDRESS>
movi_i32 tmp22, $DECAF_invoke_block_begin_callback
call tmp22, $0x0, $0, env, tmp21
// Original instruction: orl %ebx, %eax
// Insert DECAF_INSN_BEGIN callback
movi_i32 tmp23, $DECAF_invoke_insn_begin_callback
call tmp23, $0x0, $0, env
mov_i32 tmp11, ebx
mov_i32 tmp12, eax
or_i32 tmp13, tmp12, tmp11
// Insert DECAF_INSN_END callback
movi_i32 tmp24, $DECAF_invoke_insn_end_callback
call tmp24, $0x0, $0, env
// Original instruction: addl $0x01, %eax
// Insert DECAF_INSN_BEGIN callback
movi_i32 tmp25, $DECAF_invoke_insn_begin_callback
call tmp25, $0x0, $0, env
movi_i32 tmp14, $0x01
add_i32 tmp15, tmp14, tmp13
mov_i32 eax, tmp15
// Insert DECAF_INSN_END callback
movi_i32 tmp26, $DECAF_invoke_insn_end_callback
call tmp26, $0x0, $0, env
// End of translation block
// Insert DECAF_BLOCK_END callback
movi_i32 tmp27, $DECAF_invoke_block_end_callback
call tmp27, $0x0, $0, env
goto_tb $0x0

Fig. 3.3.: DECAF inserts instruction execution callbacks into the original TCG code
stream (a) to create an instrumented opcode stream (b) to trigger helper function calls to

plugin callback functions.

30

DECAF and its plugins may register multiple callbacks on the same event. A dispatch

mechanism like this avoids inlining repeated helper function call IRs into the TBs,

which would negatively impact guest performance. More importantly, in whole-system

analysis, callback functions inserted into the code stream are executed within the context

of the entire guest system. For example, instrumentation code inserted into the TB

containing code for a shared library is executed in all guest processes with that library

loaded. So, DECAF’s dispatch mechanism must decide at execution time if the current

execution context is the correct one for each registered callback.

DECAF also provides a mechanism to efficiently remove any stale instrumentation

code. Plugins may frequently register and unregister callbacks at runtime. A common

example of such activity is function hooking. A plugin may need to examine the return

value and output parameters when an API call returns. To do so, the plugin registers a

hook on the entrypoint of that call. When that hook is invoked, the plugin retrieves the

return address of the API call and then registers a second hook on its return address. When

the second hook is invoked, the plugin inspects the return value and any output

parameters. After that, the plugin can remove the second hook for efficiency.

Using the dispatch mechanism described above, it is no longer necessary to

immediately remove the second hook, which would require flushing the corresponding

code cache and forcing a retranslation of the TB (which hurts runtime guest performance).

If no callbacks are associated with an inserted helper function, then no callbacks will be

dispatched, which is expected. This little extra function call overhead is several

magnitudes smaller than frequent code cache flushing and retranslation. Therefore,

DECAF postpones the actual code cache flush to a much later time to improve efficiency.

31

MMU, IO, and higher-level events. Events like “memory read/write” and “tainted

memory read/write” are related to the Software Memory Management Unit (in short,

SoftMMU) in QEMU. QEMU must translate each guest virtual address into a guest

physical address, and then translate that into a host virtual address. Therefore, the

instrumentation for MMU-related events is straightforward: the helper functions are

directly inserted into the SoftMMU code. Of course, a dispatch mechanism is still needed

to properly deliver the callbacks to the plugin. Some higher-level events are derived from

these low-level memory events. For example, VMI events (such as process creation and

deletion) are derived from the “TLB execute miss” event.

QEMU emulates a set of common IO devices, such as hard disks, keyboards, and

network cards. DECAF instruments the IO events related to these devices by inserting

helper functions inside each virtual device’s implementation. Such helper functions

monitor events related to these IO devices, allowing plugins to taint network input and

keystrokes and track tainted data that is swapped out of main memory to secondary

storage and vice-versa. A more in-depth discussion of QEMU virtual devices is provided

in Section 4.

Dynamic tainting control. A unique feature of DECAF is that it can dynamically

enable or disable tainting during analysis. This is a particularly important feature for a

whole-system analysis framework. Due to the considerable runtime overhead of tainting,

tainting should only be enabled when needed for an analysis. When a user or plugin

requests to switch tainting on or off, DECAF flushes the entire translation code cache and

reinstruments the new code blocks under the new settings. Details of the implementation

of tainting instrumentation at the TCG-instruction level are explained in Section 3.4.

32

3.3 Just-in-Time VMI

As a binary analysis platform, DECAF must reconstruct the following OS-level

semantics of the guest to facilitate custom analysis tasks “out of the box”: (1) Processes.

DECAF must know what processes are running within the guest VM. As many analysis

tasks only focus on one or very few user-level processes, this process information is

essential to limit the amount of added instrumentation. (2) Threads. Many programs are

multi-threaded. Knowing which threads are running within a given process is also

important for many analysis tasks. (3) Code modules. Within a process’s memory space,

a main executable and several shared libraries are loaded. Binary analysis often needs to

know which code module an instruction comes from. Thus, this code module information

is also required. (4) Exported symbols. Shared libraries export a list of functions to

enable other code modules to dynamically link with each other and call exported functions

by name. Retrieving exported symbols greatly helps in understanding a program’s

behavior at the API level, as APIs are exported symbols.

3.3.1 Goals and Challenges

Three primary design goals guide the design and implementation of DECAF’s

just-in-time VMI. First, a fresh view of the guest OS must always be available to the

analyst. For many analysis tasks, the analyst must be immediately notified when a new

process is created or a new code module is loaded so a program’s complete execution can

be observed from beginning to end. No existing VMI techniques are able to provide such

a strong timing guarantee.

33

Second, the VMI technique must be as platform-independent as possible, as the same

techniques should work for different CPU architectures and different OSes with minimal

platform-specific handling. While one could simply hook specific system calls (e.g.,

fork and exec) or kernel functions to meet the first design goal, this approach is very

OS-specific and often changes across different OS versions. Doing so would fail to meet

the second design goal of platform-independence.

Third, as VMI is a basic functionality required by almost every analysis plugin, the

performance overhead for DECAF’s VMI technique must be minimal. A key challenge is

to meet both this performance requirement and the strong timing guarantee of the first

goal simultaneously. DECAF must monitor certain system events more frequently, which

may incur high runtime overhead, to continually maintain a fresh view of the guest OS.

3.3.2 Solution

DECAF relies upon the following three observations that commonly hold true across

modern platforms to achieve its goals for just-in-time VMI. First, each process must have

its own memory space, and each CPU architecture must have a register to indicate the

current base address of the memory space of that process (e.g., CR3 in x86 and CP15 in

ARM). DECAF uses this register to uniquely identify each new process. Second, a

Translation Look-aside Buffer (TLB) will have an “execute” cache miss whenever a new

code page is loaded and executed. Third, upon context switch, the old mappings in the

TLB will be flushed. Therefore, whenever a new process is created or a new module is

34

TLB Execute Cache Miss

Is PC in Kernel
Space?

Proc = Find_Process(Process_List, Cur_PGD)

Proc == NULL?

Proc = Kernel_Proc

Yes No

Proc = Find_New_Process(Cur_PGD)

Proc == NULL?

Yes

Exit

Yes

Mod = Find_Module(Proc->Module_list, Cur_PC)

No

Mod == NULL?

Mod = Find_New_Module(Proc, Cur_PC)

No

Yes

Mod == NULL?

Retrieve_Symbols(Proc->Module_List)

No

No

Yes

Fig. 3.4.: The VMI flowchart

35

loaded, DECAF’s VMI captures the exact moment it occurs via a TLB Execute cache miss

hardware event.

The usage of TLB Execute cache misses for VMI is a novel contribution of the

DECAF system. Process-level VMI approaches do not have visibility of such hardware

events, but they generally have no need to observe them because the semantics of the

process under analysis are already well-known. Whole-system VMI approaches must

either continually poll key kernel data structures for changes or violate the external

monitoring principle by placing notification code within the guest kernel (using a custom

kernel driver or module). Monitoring cache misses allows DECAF to eliminate the

overhead of polling key data structures while not violating the external monitoring

principle. This results in lower VMI overhead when executing guest environments.

Figure 3.4 illustrates the VMI workflow. Whenever DECAF observes a TLB Execute

cache miss, it first checks whether the current program counter is in the kernel space. If

not, it determines if the current process is newly created by searching for the current PGD

in DECAF’s list of current guest processes1. If it cannot find the PGD, the process must be

new. So, DECAF traverses the kernel data structures (i.e., active process list) of the guest

to retrieve information about the newly created process. Thus, DECAF only traverses

kernel data structures (which can be a costly operation) when there is a new process.

After DECAF locates the correct process (either it already exists or is newly created),

it checks if a new code module has been loaded. Again, DECAF uses a hash table to

quickly determine whether the current program counter falls into any code modules that

1DECAF uses a hash table to store its list of existing guest processes, so checking for the presence of a
particular guest process in the hash table takes constant time.

36

have been loaded into the current process memory space. If not, DECAF has found a new

code module and will traverse the module list in the guest kernel to retrieve information

(such as module name, base address, and size) about the new module.

Once DECAF locates the current code module, it starts retrieving the exported

symbols of the code modules directly from memory. DECAF must parse the headers (PE

for Windows, and ELF for Linux) of each code module to extract symbols. Note that it

may not be able to completely retrieve symbols for a newly loaded module the first time

DECAF sees it, as related pages of the module may not yet be loaded into guest RAM.

Therefore, on future TLB Execute misses, DECAF rechecks the code module to see if

additional symbols are now available for retrieval.

This symbol extraction process is fairly heavyweight because it requires many

memory reads from the guest to parse executable headers and copy the symbols. However,

DECAF only needs to do it once for each code module across all guest processes. Since

most code modules are shared libraries (.so files in Linux and .dll files in Windows), this

overhead is amortized across the creation of multiple processes.

Unfortunately, TLB cache misses cannot inform DECAF of the exact moment when a

process has terminated or a module has been unloaded. To find such events, DECAF must

periodically traverse the kernel data structures to find deleted process objects and

unloaded code modules. In general, these events are not so timing critical for binary

analysis purposes, unlike process creation and module loading events. So, periodically

checking (e.g., every 1 or 5 seconds) is acceptable. If an analyst must know the precise

time when such termination events happen, the plugins must implement their own

mechanism to do so, such as hooking specific functions in the guest execution.

37

This VMI workflow avoids inserting OS-specific hooks into the VM to obtain a fresh

view of the guest OS, and it also avoids frequent memory reads in the VM. The only

platform-specific knowledge for this VMI workflow is what kernel data structures to

examine and how to interpret the related fields in those structures. The definition of these

data structures are publically available. Compared to hooking into system calls and kernel

functions, this approach is more stable. Changes on kernel data structures are less frequent

than code. It is also fairly straightforward to extract the data structure information from

the public symbols of guest OSes.

3.4 Precise Lossless Dynamic Taint Analysis

The primary limitation of all dynamic taint analysis implementations is the runtime

performance penalty imposed upon the guest system under analysis. This penalty

becomes even greater when multiple taint sources are tracked separately using unique

taint labels. Tracking the propagation of multiple taint labels requires either a single

heavyweight taint propagation operation that accommodates all tracked labels or multiple

lightweight taint propagation operations (one for each tracked label). Neither of these

approaches scale when using a large number of taint labels, imposing a limit on the

number of taint labels in use simultaneously.

DECAF ameliorates this limitation by performing precise, lightweight taint status

propagation inline with guest execution while an asynchronous, heavyweight taint

propagation of multiple taint labels is performed in parallel to the guest execution.

DECAF implements its lightweight taint propagation mostly at the TCG instruction level,

38

so it is easily extended to support multiple CPU architectures. To achieve bit-level

precision, DECAF propagates tainted bits through CPU registers, memory, and IO devices.

3.4.1 Taint Propagation in CPU Registers

DECAF creates TCG global variables to shadow the TCG global variables that

represent general-purpose and flag CPU registers. Each shadow variable is the same size

as the variable that it shadows, and each bit of the shadow variable represents the taint

associated with the analogous bit in the variable. For example, the global variable eax for

an x86 guest is shadowed by taint eax, ebx is shadowed by taint ebx, etc. When

eax contains tainted data, taint eax contains a bitmask that marks which bits of eax

are tainted. These shadow variables emulate a set of dedicated taint-tracking registers in

the guest CPU. DECAF also creates a shadow temporary variable on-the-fly to shadow

each temporary variable present inside each TB. For the x86 target, DECAF creates

shadow variables for the cc src, cc dst global variables so that taint propagates to CC

flags naturally.

Currently, DECAF does not create a shadow memory for the FPU stack and the MMX

stack, and it does not have special tainting rules for instructions that operate on these

stacks. This is a design decision common in security applications, and this thesis leaves it

as a future work to investigate sound and precise tainting rules for the floating point and

MMX/SSE instructions.

Once TCG translates guest instructions into a TB containing TCG instructions,

DECAF performs a translation pass on the TB to insert additional TCG instructions which

39

movi_i32 tmp13, $0x0
mov_i32 tmp11, ebx
mov_i32 tmp11, eax
and_i32 tmp12, tmp11, tmp13
qemu_st32 tmp12, ecx, $0x0
movi_i32 tmp13, $0x0

movi_i32 tmp23, $0x0
movi_i32 tmp13, $0x0
mov_i32 tmp11, ebx
mov_i32 tmp21, taint_eax
mov_i32 tmp11, eax
not_i32 tmp30, tmp21
and_i32 tmp31, tmp11, tmp22
and_i32 tmp32, tmp30, tmp31
not_i32 tmp30, tmp22
and_i32 tmp31, tmp21, tmp13
and_i32 tmp33, tmp30, tmp31
and_i32 tmp30, tmp21, tmp22
or_i32 tmp31, tmp32, tmp33
or_i32 tmp23, tmp30, tmp31
and_i32 tmp12, tmp11, tmp13
mov_i32 tempidx, tmp23
taint_qemu_st32 tmp12, ecx, $0x0
movi_i32 tmp13, $0x0

movi_i32 tmp23, $0x0
movi_i32 tmp13, $0x0
nop // OPTIMIZED OUT
mov_i32 tmp21, taint_eax
mov_i32 tmp11, eax
not_i32 tmp30, tmp21
and_i32 tmp31, tmp11, tmp22
and_i32 tmp32, tmp30, tmp31
not_i32 tmp30, tmp22
and_i32 tmp31, tmp21, tmp13
and_i32 tmp33, tmp30, tmp31
and_i32 tmp30, tmp21, tmp22
or_i32 tmp31, tmp32, tmp33
or_i32 tmp23, tmp30, tmp31
and_i32 tmp12, tmp11, tmp13
mov_i32 tempidx, tmp17
taint_qemu_st32 tmp12, ecx, $0x0
nop // OPTIMIZED OUT

(a) (b) (c)

Taint TCG
ops added

TCG
optimizations

Liveness
analysis

Fig. 3.5.: Register liveness tests determine which TCG instructions in the TB (a) should
be instrumented for taint propagation, and instrumentation is inserted as needed (b).
TCG’s optimization logic eliminates unnecessary opcodes, resulting in an optimized,

instrumented TB (c).

implement taint propagation rules that shadow each of the original TCG instructions. For

example, Figure 3.5b shows that the instruction “mov i32 tmp11, eax” is shadowed

by “mov i32 tmp21, taint eax”. Some tainting rules are far more complex in

order to be precise. For example, the add operation in Figure 3.5 requires nine extra TCG

instructions to precisely propagate the taint bits from two source operands to the

destination. DECAF’s tainting rules have been formally verified to be sound (guarantee of

no under-tainting at instruction level), and most of them have also been verified to be

precise (guarantee of no over-tainting). The details are presented in Section 3.5.

Figure 3.5 illustrates this instrumentation pass. TCG translates a basic block of guest

instructions into a TB of TCG instructions (a). DECAF performs its instrumentation pass

on this TB by first performing a variable liveness analysis on the TCG code to determine

if any TCG instruction is unnecessary or redundant. A TCG instruction that fails this

analysis will be removed by TCG’s optimization later, so there is no need to instrument it.

Each opcode to be instrumented is compared against DECAF’s list of tainting rules to

determine which TCG instructions must be inserted to instrument it. The instrumentation

40

Table 3.1: DECAF supported x86 instructions.
The tainting rules for all these instructions are sound, and most are also precise. The imprecise ones are

marked with “*”.

AAA* AAD* AAM* AAS* ADC ADD AND ARPL BOUND BSF BSR BSWAP BTC BTR BTS BT CALLF CALL CBW
CDQ CLC CLD CLI CLTS CMC CMOVB/CMOVC/CMOVNAE CMOVBE/CMOVNA CMOVL/CMOVNGE CMOVLE/CMOVNG
CMOVNB/CMOVAE/CMOVNC CMOVNBE/CMOVA CMOVNL/CMOVGE CMOVNLE/CMOVG CMOVNO CMOVNP/CMOVPO
CMOVNS CMOVNZ/CMOVNE CMOVO CMOVP/CMOVPE CMOVS CMOVZ/CMOVE CMPS CMPXCHG8B CMPXCHG CMP CPUID
CWDE CWD DAA* DAS* DEC DIV ENTER FWAIT/WAIT HINT NOP HLT IDIV* IMUL* INC INS INT0 INT1/ICEBP
INT INVD INVLPG IN IRET JB/JNAE/JC JBE/JNA JCXZ/JECXZ JL/JNGE JLE/JNG JMPF JMP JNB/JAE/JNC
JNBE/JA JNL/JGE JNLE/JG JNO JNP/JPO JNS JNZ/JNE JO JP/JPE JS JZ/JE LAHF LAR LDS LEA* LEAVE
LES LFS LGDT LGS LIDT LLDT LMSW LOCK LODS LOOPNZ/LOOPNE LOOPZ/LOOPE LOOP LSL LSS LTR MOVBE
MOVSX MOVS MOVZX MOV MUL* NEG NOP NOT OR OUTS OUT POPAD POPA POPFD POPF POP PUSHAD PUSHA PUSHFD
PUSHF PUSH RCL RCR RDMSR RDPMC RDTSCP RDTSC REPNZ/REPNE REPZ/REPE REP RETF RETN ROL ROR RSM SAHF
SAL/SHL SAR SBB SCAS SETB/SETNAE/SETC SETBE/SETNA SETL/SETNGE SETLE/SETNG SETNB/SETAE/SETNC
SETNBE/SETA SETNL/SETGE SETNLE/SETG SETNO SETNP/SETPO SETNS SETNZ/SETNE SETO SETP/SETPE
SETS SETZ/SETE SGDT SHL/SAL SHLD SHRD SHR SIDT SLDT SMSW STC STD STI STOS STR SUB SUB SYSENTER
SYSEXIT TEST VERR VERW WBINVD WRMSR XADD XCHG XLAT/XLATB XOR

TCG instructions are inserted prior to the original TCG instruction because some tainting

rules (e.g. and, or) depend upon the values held in both the variables and shadow

variables when determining taint propagation. Values held in the variables may change if

the same variable is used as both the source and destination of the TCG instruction. Once

this pass is complete, the TB now contains both the original and instrumentation code (b).

The TCG engine performs an optimization pass on the instrumented TB and generates the

final, optimized TB (c), which is then translated into the native instructions of the host and

executed.

By implementing tainting rules at the IR level and with some special helper functions,

DECAF is able to provide full tainting support for all integer-based x86 instructions and a

few floating point and SSE instructions with simple semantics (totaling 369 opcodes -

operand types and widths ignored). A complete list of mnemonics with respect the

soundness and precision guarantees can be found in Table 3.1.

41

3.4.2 Taint Propagation in Memory and IO Devices

The guest’s physical RAM is shadowed bit-for-bit by a three-level shadow page table.

While other instrumentation platforms perform byte-level precision tainting of

RAM[82, 88, 90] by representing each byte of taint as a single bit, that approach requires

bit masking and shifting operations to represent a 32-bit register in a 4-bit space.

DECAF’s bit-level precision of shadow memory ensures that taint precision is not lost as

taint propagates throughout the guest.

At DECAF start-up, this shadow page table is empty and a pool of available pages is

allocated. When tainted data is copied into guest RAM, its taint is placed into the

appropriate entry in the page table. If no shadow page exists yet for that location, one is

taken from the available page pool and added to the page table. Periodically, a garbage

collector traverses the page table and deallocates shadow pages that no longer contain any

taint. If the available page pool becomes exhausted, another set of pages will be allocated

for the pool. This approach ensures that taint information for a large amount of guest

physical RAM can be tracked and retrieved with a minimum of processing overhead and

without require a large amount of host memory to be allocated up-front and potentially

never used.

An implementation challenge is to re-factor the existing TCG instructions that access

guest memory (qemu ld/st) to also access shadow memory at the same time. This is

necessary to ensure that taint propagation occurs at the same time that memory accesses

occur. The inlined SoftMMU code already uses most of the host’s x86 registers for TLB

lookup and parameter passing, meaning that the stack must also be used for passing taint

42

information. This causes performance degradation and potential side effects if unexpected

register spillage occurs when taint information is fetched from the stack. To counter this

problem, additional shadow global variables are used specifically for copying taint

information to and from the shadow page table.

Taint propagation in DECAF’s virtualized devices (NE2000 NIC, IDE hard disk, PS/2

keyboard) is similar to taint propagation in memory. Each instrumented virtual device has

a device-specific shadow memory, and a specific global variable passes taint data back and

forth between device and RAM when programmable I/O or DMA operations occur.

3.4.3 Asynchronous Tainting

DECAF’s lightweight taint propagation occurs inline with guest execution so that

DECAF can halt execution at the exact moment that taint reaches a specific taint sink (i.e.,

instruction pointer, system call, virtual device). Asynchronous heavyweight taint

propagation relies upon DECAF’s Instruction Tracer plugin to efficiently log the taint

propagation history. While the plugin is designed to log TCG instructions to record

instruction traces, DECAF’s flexible plugin interface enables Instruction Tracer to also

record memory accesses, CPU states, and taint events. The plugin quickly logs enough

information about the taint propagation for the log to be processed asynchronously offline

by any custom analysis tool that executes as a separate process. Such tools can consume

the taint log information as it is generated (running simultaneously with DECAF) or after

DECAF’s taint log has completed, performing a much more heavyweight taint analysis on

the trace (i.e. reconstructing taint labels and propagation via backward slicing[23]). The

43

TB of TCG
Instructions

Memory, Taint,
Insn End Events

Logging
Logic

State of
Guest CPU

Taint Log
on Disk

Staging
Buffer

Circular Disk
I/O Buffer

(a) (b) (c) (d) (e)

Fig. 3.6.: All events(a) are logged into a staging buffer(b). Logging logic(c) decides which
events should be recorded and places them into a circular buffer(d) that is asynchronously

written to disk(e).

combination of synchronous lightweight and asynchronous heavyweight taint tracking

guarantees that taint detection is both timely and more scalable than the inline tracking of

multiple taint labels.

Figure 3.6 shows the steps of the logging process. As each TB begins execution, the

plugin writes an identifier for the TB and the current taint state of the CPU registers (a) to

a staging buffer (b). If the TB has not been logged previously, or the TB has been flushed

and retranslated since it was last logged, all TCG instructions and their arguments held in

the TB are written to the staging buffer. Only the original, non-instrumented TCG

instructions are written. Any memory and shadow memory accesses (both access size and

both the virtual and TLB-resolved physical addresses) are written, as are the introduction

of any new taint labels. As each group of TCG instructions implementing a single guest

instruction complete execution, an “instruction end” event is recorded in buffer. This is

necessary because TB execution can cease early due to jumps, branches, and exceptions.

There must be a record of which instructions within the TB were executed so that

execution can be reconstructed. When the execution of the next TB begins, the staging

buffer is examined (c). If any global shadow variable contains taint, shadow memory is

44

accessed, or a shadow memory location is marked with a taint label, the buffer is written

to a circular buffer (d) that asynchronously writes log data to disk (e). Otherwise, the

staging buffer is discarded.

3.5 Formal Model and Definitions

This section begins with an overview of the data-centric noninterference model [87]

used by this thesis to analyze instruction level taint trackers. Observations on the model

and how it relates to taint tracker implementations in practice are provided. This

discussion helps to motivate some of DECAF’s design decisions. Finally, this section

concludes with the definitions used for formal verification of taint propagation rules and

taint analysis implementations.

The original formulation of noninterference by Goguen and Meseguer [60] was

applied to a multi-level secure operating system and used a state-machine model. A more

modern formulation divides the state of an arbitrary system into two parts, named “high”

and “low.” Consider two possible starting states of the computation that are the same in

their low portions (“low-equivalent”), though the high portions may be different. If the

computation satisfies noninterference, then the output states of the computation on those

two inputs will also be low-equivalent. Intuitively, this definition captures a lack of

information flow from high to low.

When the noninterference principle is applied to dynamic taint analysis, the tainted

values correspond to high. Noninterference is a soundness property for tainting, saying

intuitively that tainted values before the computation never affect untainted values after,

45

or equivalently that any value affected by a tainted value is itself tainted. Precise tainting

is also desirable: subject to the constraint of noninterference, the amount of data tainted

should be as small as possible.

The usual definition of noninterference considers the entire tainted (high) state of a

system, but for reasoning about noninterference it suffices to consider the effect of

changing an arbitrarily small part of the state. Stated informally, if a large change has an

effect, then among the smaller changes that make it up, at least one must also have an

effect. Taking advantage of this property, the analysis can be narrowed to consider the

effects of the smallest possible change: changing a single bit from 0 to 1 or vice-versa.

For the purposes of this thesis, the state of the computation system (e.g., a CPU) is

modeled as a vector of bits. The symbols ∧, ∨, ⊕, and an overbar are used to represent the

Boolean operations of AND, OR, XOR, and NOT either on single bits or bitvectors,

equivalent to the &, |, ˆ, and ˜ operators in C. S is the set of possible states, equal to all

the bitvectors of a particular fixed size. Bit positions are identified with bitvectors that

have just that one bit set, and use the notation v|b for extracting a single bit b from a

bitvector v.

Definition 3.5.1 Let a and b be bits in the state of a system. A computation has an

information flow from a to b if there are two input states s0 and s1 that are identical

except that s0 has a = 0 and s1 has a = 1, and in the corresponding output states s′0 and

s′1, the values of b are different (one 0 and the other 1, in either order). In other words, if

46

the computation is a function f on state vectors, and a is a bitvector with only a single

position set to 1, there is a state vector s ∈ S such that:

f(s ∨ a)|b 6= f(s ∧ a)|b (3.1)

From the untainted (low) perspective on a computation, tainted bits are ones whose

values are unknown. Thus we can use a shorthand notation analogous to three-valued

logic with three kinds of digits: 0 to represent a bit with value zero which is untainted, 1

for a bit with value one which is untainted, and X for any tainted bit. Thus 1X0 represents

a number whose second bit is tainted; in effect, the value from the high perspective might

be either 4 (binary 100) or 6 (binary 110).

3.5.1 Taint Propagation Rules in Practice

There are three important observations about this data-centric noninterference model.

First, the model is defined using information flows between bits. Thus, it directly describes

systems in which taint is labeled per bit. Not all implementations take this approach, but

the model extends naturally to coarser-grained taint. For example, there is information

flow from byte x to byte y as long as there is information flow from any bit of x to any bit

of y. Results from a coarse-grained analysis are inherently limited in their precision, but

for any granularity, DECAF can try to achieve the most precise results expressible at that

47

granularity. DECAF seeks to explore this at the maximum possible precision (bit-level

tainting).

Second, the precision of taint results also depends upon the granularity of the

computation analyzed. The reason for this is that the taint status of bits does not include

information about how some bits might be correlated with others. For instance, suppose

that a single tainted bit X (representing either 0 or 1) is multiplied by an untainted value 3

(binary 11). The result must be either 0 (00) or 3 (11); thus, both the low bits should be

tainted and represented as XX. If the source of where the untainted value came from is

known, then it is known that the first and second bit positions must have the same value.

But, this information is missing in the tainted-bit representation, which could equally well

describe a 1 (01) or 2 (10). This inherent imprecision of the representation leads, in turn,

to imprecision in later results. For instance if the tainted bit value XX is multiplied by 3

again (i.e., ? × 3 × 3), the result is XXXX, since there is information flow to each of the

four bits of the result. On the other hand, if instead of multiplying it by 3 twice (as two

separate operations), we had started with the tainted bit X and multiplied it by 9 in one

operation, the result becomes the more precise X00X.

This is a general phenomenon: expressing a larger computation in terms of smaller

ones and applying sound taint analysis to each operation separately will always give sound

final results. However, applying precise taint analysis to each operation separately will

often not give as precise of a result as analyzing the entire computation at once.

At the binary level, there are two common choices for taint analysis: either perform

the analysis and update the taint labels after each instruction, or translate each instruction

into a sequence of simpler IR operations and analyze the taint effects of each IR operation

48

separately. Though this IR-level approach has other advantages, it can come at a cost to

precision for the reason described in the previous paragraph. As an instruction-level

example, consider an instruction (such as the BIC instruction on ARM) which computes

the bitwise-AND of one register and the bitwise negation of another: z = x ∧ y. If the two

inputs are the same register, this has the effect of clearing the output register, so if this

instance of this instruction is analyzed as a unit, the output should be completely

untainted. On the other hand, an IR-level taint analysis that treated the AND and NOT as

separate operations would be unable to tell that one operand of the AND was the negation

of the other, so the result would still be tainted. The formal verification described in this

thesis can reveal these kinds of imprecision.

A final remark is that, as specified so far, the model does not place any further

restrictions on the choice of the input state s; the specific selection comes from the context

in which we are verifying a taint analysis. To analyze the taint propagation in a particular

situation, a concrete value can be specified for s. For instance, a program state

encountered during testing can be used. On the other hand, in constructing rules for taint

propagation, such rules should work correctly in all situations. So, taint rules should

soundly and precisely capture information flow for any choice of s. In short, s is a free

variable when constructing rules and s is concretized when verifying rules.

3.5.2 Verifying Taint Propagation Rules

Taint propagation rules have usually been defined based on domain expertise and then

reasoned about manually, or simply left unverified due to the difficulties of manual

49

verification. For example, Memcheck [81] has many special case rules, but according to

its project suggestions webpage, formal verification of the rules is still needed [12]. The

concepts for formal verification of tainting rules are introduced in this section.

The most obvious representation for bit-level taint, used by Memcheck, is to maintain

taint bits parallel to data bits with the same structure: for instance, the taint information

for a 32-bit data word is represented by another 32-bit word, with the first bit of the taint

word reflecting the taint status of the first bit of the data word, etc. DECAF’s

implementation of shadow memory also uses a bit-for-bit mapping, adopting the

convention that a taint bit value of 1 indicates that the corresponding data bit is tainted,

while 0 indicates untainted. Memcheck uses the opposite convention in its

implementation (for what are referred to as validity or “V” bits), but because of the duality

of Boolean algebra, the choice makes little difference.

The suffix t denotes shadow variables that hold taint; for instance S t = S is the set

of all possible taint states. The taint propagation rule for a given operation is a function

that takes as inputs the data state before the operation and the taint state before the

operation, and yields the taint state after the operation: ruleop : S × S t→ S t. This

thesis uses the definition of a sound and precise rule as one where the taint bit for an

output position b should be set if (soundness) and only if (precision) there is an input bit

position a for which there is information flow from a to b and a is tainted.

An equivalent perspective on the soundness of a rule, analogous to noninterference, is

that for each bit position b that is untainted after an operation, it should be the case that for

any choice of values for the tainted input bits, the value of that untainted output bit is

constant. If this condition fails, and there is an output bit that is affected by the tainted

50

input but is not itself tainted, the rule suffers from a false negative error. As a formula, let

y t be the output taint after applying the rule for the operation f to the input data state x

and the input taint x t. This is formally expressed as the following definition.

Definition 3.5.2 A rule y t = rulef (x, x t) applied to an operation y = f(x) has a false

negative error if:

∃b, x1, x2 :(y t|b = 0) ∧ ((x1 ∧ x t) = (x2 ∧ x t)) ∧

(f(x1)|b 6= f(x2)|b)

for some bit position b. Equivalently, all of the untainted output positions can be

compared at once:

∃x1, x2 :((x1 ∧ x t) = (x2 ∧ x t)) ∧

((f(x1) ∧ y t) 6= (f(x2) ∧ y t)) (3.2)

Conversely, a rule has a false positive error if there is a bit position which is tainted,

but does not in fact depend on the tainted input:

51

Definition 3.5.3 A rule y t = rulef (x, x t) applied to an operation y = f(x) has a false

positive error if:

∃b : (y t|b = 1) ∧ ∀x1, x2 : (3.3)

((x1 ∧ x t) = (x2 ∧ x t))⇒ (f(x1)|b = f(x2)|b)

Observe that the input state variables x and x t are free in Equations 3.2 and 3.3.

When checking the taint propagation in a trace, they are instantiated with values taken

from an execution. When checking the correctness of a rule in the abstract, we quantify

over all possible values for x and x t: a rule is sound if there is no value of x and x t for

which Equation 3.2 holds, and precise if there is no value of x and x t for which

Equation 3.3 holds.

3.5.3 Constructing Tainting Rules

In the previous section, a formal model was presented for taint analysis based on

noninterference, and defined soundness and precision based on information flow. In

security applications, unsoundness can lead to missed attacks (a result considered worse

than false alarms). So, a set of rules must first be constructed to be guaranteed sound, and

then refined to maximize precision.

This section focuses on the key concepts in constructing precise tainting rules. The

reader can refer to an in-depth technical report [89] on the material for a more detailed

52

treatment of topic, including examples of how these were actually applied for DECAF.

Constructing tainting rules is separated into three key steps. First, sound tainting rules are

constructed by identifying all bit-wise information flows in operations. Second, SMT

solvers are used to verify that the rules are indeed sound. Third, the sound rules are

improved upon to create precise rules; these precise rules are formally verified as well.

Examples are drawn from the x86 instruction set, but the techniques and most of the

specific rules are applicable to other architectures, since the same basic data and ALU

operations (such as addition and bit shifts) are provided by all CPUs.

Constructing Sound Rules

Recall that a rule is sound if every information flow from a tainted input bit to an

output bit is noted by making the output bit tainted. Thus, to construct a sound rule, all

possible information flows within an instruction are first identified and then these flows

are summarized with a rule. Since definition 3.5.1 is a satisfiability problem,

satisfiability-modulo-theories (SMT) solvers are used to identify the information flows. To

do this, the behavior of each instruction of interest is modeled using the bitvector

operations of SMT solvers. Then, queries are submitted to SMT solvers to identify all

information flows. For DECAF, all of the instructions are modeled in SMT-LIB Version

2 [28] (“SMT2” for short) to maintain compability with a wide range of solvers.

Stage 1: Behavioral Definitions: There are two general ways to define the behavior

of instructions: manual and automatic. Godefroid and Taly [59] presented algorithms to

automatically generate the behavioral specifications of common x86 instructions. The key

53

intuition behind their approach is that many instructions follow specific behavioral

“templates” (e.g., an addition template will cover the add, sub, inc, and dec

instructions). Thus, their algorithms use a small number of manually defined templates to

automatically specify the behaviors of a large number of instructions. While an automated

approach is available, the effort for DECAF’s uses the manual approach. This is because

previous experiments making extensive use of the x86 instruction set and BAP [33]

facilitated a manual definition of the behaviors much quicker than reimplementing

Godefroid and Taly’s algorithms. Additionally, templates for special instructions such as

cmpxchg were not readily available, requiring the manual definition of those instructions

anyway.

Since the correctness of the behavioral definitions is paramount, both BAP and the

Intel developer’s manuals [64] were used to help define the models. Please note that if any

errors exist in the behavioral definitions at this point, they will be revealed when Per-Trace

Verification (described in Section 3.6.2) fails as well. To manually define the behavior of

the x86 instructions, the instruction set was first divided into four categories: data

transfer, control transfer, arithmetic and logic, and special. Data and control transfer

instructions have simple semantics with obvious bitwise information flow relationships

and do not warrant further analysis. The arithmetic and logic category includes

instructions that are likely to be supported in any general-purpose architecture. The

remainder of the instructions fall into the special category. The cmpxchg is a prime

example of a special instruction since it has an unusual information-flow pattern.

For all of the instructions of interest, assembly code was written to exercise different

aspects of their behavior. This assembly was then linked them into an executable and

54

lifted the executable into BAP’s internal IR (BIL). This resulted in a collection of BIL that

summarizes the instruction. A single SMT2 behavioral representation was then

extrapolated from the instruction’s BIL instances and cross-checked against the processor

documentation.

In total, over 150 different arithmetic and logic instructions were analyzed. After some

initial tests, the precise mnemonics and operand choices (e.g., add r/m8, r8 vs. add

r8, r/m8 vs. add r16/32, r/m16/32), were found to not affect the information

flow patterns. Thus, the focus of the analysis was on only generic 32-bit register

instruction formats (e.g., add dst, src). The 26-instruction test set that was used is

outlined in Table 3.2. Please note that, similar to Godefroid and Taly’s intuition on

templates, while the analysis focused on these 26 instructions, the design for DECAF

(using IR-level tainting) enables the use of the rules for these 26 instructions to support

most of the x86 instructions.

Stage 2: From Information Flow to Sound Rules: The goal of this stage is to take

the SMT2 files from stage 1 and identify all possible information flows. For each file, all

possible pairs of input and output bits are iterated through and Z3 [47] is queried for the

satisfiability of the condition in Definition 3.5.1. A “sat” result means that there is

information flow and an “unsat” result means there is none. Figure 3.7 shows two

(simplified) example queries. The resulting statistics for all the instructions are

summarized in the first five columns of Table 3.2. The instructions are presented in the

first column; the input operands, both implicit and explicit, in the second; output

operands, both implicit and explicit, in the third; the total number of input-bit to output-bit

combinations in column four; and the time it took for Z3 to process the queries is shown

55

Table 3.2: Flow Type Results for x86 Instructions
Flow Types: (U)p, (D)own, (I)n-place, (A)ll-around, (S)pecial, (N)ot-Supported, (S)pecial, (E)ax is tainted in cmpxchg,

* - Zeroing Idiom, Boldface - Generated Policy is more precise

Instruction Inputs Outputs # Cases Runtime Fl
ow

Ty
pe

D
ro

id
Sc

op
e[

88
]

lib
df

t[
69

]

M
in

em
u[

31
]

T
E

M
U

[?
]

M
em

ch
ec

k[
?

]

C
od

en
am

e:
su

th
es

is

adc dst, src dst,src,cf dsr,src,zf,of,sf,af,cf,pf 4550 1m19s U A I A S U S
add dst, src dst,src dst,src,zf,of,sf,af,cf,pf 4480 1m13s U A I A A S S
and dst, src dst,src dst,src,zf,sf,pf 4288 1m05s I A I A I S S
dec dst dst dst,zf,of,sf,af,pf 1184 20s U A I A A U S

div rm edx,eax,rm edx,eax,rm 9216 95m48s D A I N A A D

idiv rm edx,eax,rm edx,eax,rm 9216 307m04 A A I N A A A
imul1 rm eax,rm edx,eax,rm,of,cf 6272 289m51s U A I N A U U
imul2 dst, rm dst,rm dst,rm,of,cf 4224 52m37s U A I N A U U
imul3 dst, rm, imm rm,imm dst,rm,imm,of,cf 6272 53m56s U A I N A U U
inc dst dst dst,zf,of,sf,af,pf 1184 19s U A I A A U S
mul rm eax,rm edx,eax,rm,of,cf 6272 16m02s U A I N A U U
not dst dst dst 1024 15s I A I A I I I
or dst, src dst,src dst,src,zf,sf,pf 4288 1m05s I A I A I S S
rcl dst, imm8 dst,imm8,cf dst,imm8,of,cf 1722 42s A A N A A A S
rcr dst, imm8 dst,imm8,cf dst,imm8,of,cf 1722 42s A A N A A A S
rol dst, imm8 dst,imm8 dst,imm8,of,cf 1680 41s A A N A A S S
ror dst, imm8 dst,imm8 dst,imm8,of,cf 1680 41s A A N A A S S
sal dst, imm8 dst,imm8 dst,imm8,zf,of,sf,af,cf,pf 1840 35s U A N A S S S
sar dst, imm8 dst,imm8 dst,imm8,zf,of,sf,af,cf,pf 1840 34s D A N A S S S

sbb dst, src dst,src,cf dst,src,zf,of,sf,af,cf,pf 4550 1m21s U A I* A* A A S

shr dst, imm8 dst,imm8 dst,imm8,zf,of,sf,af,cf,pf 1840 35s D A N A S S S
sub dst, src dst,src dst,src,zf,of,sf,af,cf,pf 4480 1m17s U A I* A* A* S S
xor dst, src dst,src dsr,src,zf,sf,pf 4288 1m05s I A I* A* A* I I
bsf dst, src src dst,src,zf 2080 31s A N I N A A S
bsr dst, src src dst,src,zf 2080 31s S N I N A A S
cmpxchg rm, r eax,rm,r eax,rm,r,zf,of,sf,af,cf,pf 9792 2m39s S N E N E E S
TOTAL 102064 13h52m48s

in column five. A new instance of Z3 is used for each test case and thus the timing results

include process creation overhead.

As expected, logical operations return results extremely quickly whereas signed

multiply and divide takes the most time. Overall, it took less than 14 hours on an Intel

Core-i7 860 to automatically identify all information flow relationships for the arithmetic

and logical instructions.

The Rules: Once all of the possible information flows were revealed, the flows are

then summarized into simple rule types. The sixth column of Table 3.2 indicates the

56

(declare-fun x1 () (_ BitVec 32))
(declare-fun x2 () (_ BitVec 32))
(declare-fun a () (_ BitVec 32))
(assert (= a #x00000001))
(declare-fun b () (_ BitVec 32))
(assert (= b #x00000010))

;; For NOT:
(assert
(not
(= (bvand b (bvnot (bvor x1 a)))

(bvand b (bvnot (bvand x1 (bvnot a)))))))

;; For ADD:
(assert
(not
(= (bvand b (bvadd (bvor x1 a) x2))

(bvand b (bvadd (bvand x1 (bvnot b))
x2)))))

Fig. 3.7.: Example SMT queries checking for information flow (equation 3.1) from the
low bit a of an input to the 4th bit b of an operation output. The first query, for not, is

unsatisfiable, indicating no flow. The second query, for add, is satisfiable, for instance by
x1 = 0 and x2 = 0xf: there is flow.

dst_IN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

dst_OUT

0

sf_OUT

0

pf_OUT

Fig. 3.8.: Information flow of dst in or instruction

general flow type for each instruction. There are four distinct information flow patterns

between the source and destination operands. A fifth type, special, is reserved for more

complex cases. The four basic flow types serve as four different sound rules that will later

be refined for precision.

The four rules are: 1. In-place: Information can only flow from bit i of the source to

bit i of the destination (as shown in Figure 3.8). 2. Up: Information can only flow from bit

57

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
dst_IN

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
dst_OUT

0 0
pf_OUT

0
cf_OUT

0
sf_OUT

0
zf_OUT of_OUT

0

Fig. 3.9.: Information flow of bits 7, 20 and 31 of dst in sbb instruction

i of the source to bits j of the destination where j ≥ i. Figure 3.9 depicts this behavior,

showing the combination of the information flow graphs for bits 7, 20, and 31. It is

evident from the figure that information only flows from bit 7 of the source operand to bit

7 and higher of the destination. The same applies to bits 20 and 31, where bit 31 of the

source only flows to bit 31 of the destination. 3. Down: Dual to up, information can only

flow from bit i of the source to bits j of the destination where j ≤ i. 4. All-around:

Information can flow from bit i of the source to any bit of the destination.

There are times when a single instruction requires multiple tainting rules. Table 3.2 is

not an exhaustive list. The divide instructions are good examples of this. In the divide

operation, edx:eax is divided by rm, the quotient placed into eax and remainder into

edx. Intuitively, division is similar to shift right and thus the flow type for edx:eax to

eax should be down. On the other hand, the flow type for edx:eax to edx is all-around

since nothing definitive can be said about the relationship between the divisor and the

remainder without concrete value analysis.

Special Instructions: Implicit information flows (those due to control dependencies)

are a known source of imprecision in taint analysis; they can even occur within a single

instruction, making tainting rule definition difficult. The bsf, bsr, and cmpxchg

instructions exhibit such behavior and are thus considered special.

58

1. cmpxchg (rm32, r32) {
2. if (eax == rm32) then
3. rm32 = r32;
4. else eax = rm32;
5. }

Fig. 3.10.: Pseudocode for cmpxchg (flags are omitted)

The cmpxchg (Figure 3.10) x86 instruction illustrates such a potential pitfall.

Applying Definition 3.5.1 to the instruction shows that there is no information flow from

eax to eax because the output value of eax is fully dependent on the input value of

rm32. On the other hand, if information flow was analyzed line-by-line using the

technique proposed by Ferrante et al. [55] (both Dytan [43] and DTA++ [68] use this

technique), eax will be tainted if eax was tainted before the instruction. This is because

eax was unchanged in the equals branch (line 3) and thus retains its taint. The case for

simple control flow dependencies is even worse. Since eax is used in the comparison on

line 2 and also as an l-value on line 4, it will remain tainted in the not-equals branch. The

false positive arises from the fact that the above mentioned techniques analyzed the

information flows line-by-line - this is what IR level tainting does -, thus knowledge of the

logic in the other branch is not taken into consideration. Overall, striking a balance

between handling all possible special instructions and only handling a smaller subset of

instructions that can be used to emulate the rest is a design decision. DECAF uses a

compromise approach that leaves some special cases unhandled, but uses per-trace

verification to minimize errors.

59

Table 3.3: Precise Rules and Verification Results: Length of operands verified (in bits).
XVerified for all lengths. * Shift amount is untainted. z Non-zero operand for bsf, bsr.

Precise Precise
Operation Sound Z3 MONA Operation Sound Z3 MONA
add 256 16 X adc 256 16 X
and 256 256 X
cmpEq 256 256
or 256 2 X
rol 256 16* rcl 256 16*
ror 256 16* rcr 256 16*
sal/shl 256 16*
sar 256 16*
shr 256 16*
sub 256 4 X sbb 256 4 X

bsf 32 16z

bsr 32 16z

Constructing Precise Rules

The previous section focused on the construction of sound rules. Four basic rules were

arrived at that are sound by construction. However, special cases such as cmpxchg

motivate the need for formal verification of tainting rules. Tainting rule verification is

accomplished in two steps: the operation and the tainting rules under test are formally

specified, and then solvers are used to determine whether Equations 3.2 and 3.3 are

satisfiable. The formal specification step is straightforward using the models from Stage 1

and will not be discussed further.

When verifying the sound rules from the previous section, it was found that, while all

of the rules were sound (as expected), many of them were not precise. In order to

construct precise rules, Memcheck’s rules were examined, since it has many

specially-defined rules. Many of Memcheck’s rules were found to be precise. In total, six

new precise rules were added for adc, sbb, rcr, rcl, bsf, and bsr, summarized in

Table 3.4. SMT2 code for a 2-bit and verification example is provided in Appendix A to

show a more detailed example of this verification process.

60

Table 3.4: New Precise Bit-level Taint Rules: rcr and bsr are similar to rcl and bsf
respectively, and so omitted. The bsf rule is shown for a 16-bit value which must be

non-zero, and the rule for rcl is precise only when the rotate amount is untainted. x1,
x2, and cf (carry flag) are the operands while t1, t2, and tcf are the respective shadow

taints.

Operation Rule (C-like pseudocode)
adc x1_min = x1 & ˜t1; x2_min = x2 & ˜t2; cf_min = cf & ˜tcf;

x1_max = x1 | t1; x2_max = x2 | t2; cf_max = cf | tcf;
t1 | t2 | ((x1_min + x2_min + cf_min) ˆ (x1_max + x2_max + cf_max))

sbb t1 | t2 | ((x1_min - (x2_min + cf_min)) ˆ (x1_max - (x2_max + cf_max)))
rcl pcast(v) { v == 0 ? 0 : -1 /* all ones */ }

pcast(t2) | rcl(t1, x2, tcf)
bsf xc = x1_max & ˜((x1_min << 1) | -(x1_min << 1));

((xc & 0x5555) && (xc & 0xaaaa) ? 1 : 0) |
((xc & 0x3333) && (xc & 0xcccc) ? 2 : 0) |
((xc & 0x0f0f) && (xc & 0xf0f0) ? 4 : 0) |
((xc & 0x00ff) && (xc & 0xff00) ? 8 : 0);

The verification results of all specially defined rules are summarized in Table 3.3.

Memcheck rules are placed on the left and DECAF rules on the right side of the

Memcheck rules if the rules are similar. There are four columns: the operation, Z3 result

for soundness, the Z3 result for precision and finally, if the Z3 result was inconclusive

(i.e., Z3 did not return a result after 24 hours of processing), the MONA [52] result of

whether the rule is precise, and the corresponding rule that was verified. Note that MONA

was chosen as a complementary decision procedure to Z3 since it deals gracefully with

alternating quantifiers, which Z3 does not. On the other hand, MONA is less expressive,

making it difficult to use MONA for all cases.

As the results show, all of the special rules defined in Memcheck are sound for

operands up to 256 bits2 Additionally, the special rules for and and cmpEq are also

precise up to 256 bits. In most cases, Z3 times out for operands beyond 16 bits in length.

The size of the state space to explore is the most likely culprit for these time outs, since

2We chose 256 bits as the maximum length to test, since we are unaware of any architectures with operands
greater than 256 bits.

61

smaller bit lengths returned quickly. MONA was able to verify precision of the add, adc,

or, sub, and sbb rules.

All of the shift rules were shown to be imprecise. This is because the shift amount can

be tainted, which causes all bits of the output to be marked as tainted. Subsequently, when

the shift amount was asserted to be not tainted and the rules were re-verified, they were

shown to be precise for up to 16 bit operands using Z3.

3.6 Evaluation

The performance overhead of DECAF has been evaluated under benchmarked guest

performance under different feature configurations (such as VMI or tainting functionality

enabled), and the results are presented in Section 3.6.1. The correctness of DECAF’s

tainting implemention was verified using per-trace verification in Section 3.6.2.

DECAF’s analysis capabilities are evaluated using three plugins: API Tracer

(Section 3.6.3), Keylogger Detector (Section 3.6.4), and Instruction Tracer (Section 3.6.5).

The source code for these plugins are available for download from DECAF’s project

page[10].

The hardware used for all evaluations is a 32-core 2.0GHz Intel Xeon ES-2650 CPU

server with 128 GB of RAM. The server uses Ubuntu 12.04 Linux (3.2.0 kernel) as its OS.

DECAF was executed on this server using an ARM Debian 6.0 Linux (2.6.32 kernel) VM

image and three x86 guest VM images: Windows 7, Windows XP SP3 and Ubuntu 12.04

Linux (3.2.0 kernel). 4 GB of RAM was allocated to each of the x86 VMs, and 128 MB of

RAM was allocated to the ARM VM. The priority of DECAF was nice’d to -20 to

62

minimize the performance impact of other processes executing on the benchmark

hardware.

3.6.1 SPEC CPU2006 Benchmarks

DECAF’s instrumentation impact on guest performance was measured using the

CINT2006 integer component of the SPEC CPU2006 benchmark suite.3 The CINT2006

tests were chosen because the tainting instrumentation is applied to the TCG instructions,

which all implement RISC-like integer operations. Floating point operations are

implemented as a set of guest architecture-specific helper functions. Performance of ARM

VMs under DECAF cannot be measured using the benchmark suite due to the memory

requirements of the tests. The majority of the tests exceed the RAM allocated to the VM4

and will measure the performance of the memory paging to disk, rather than the

instrumented operations of interest. While a direct comparison of TEMU and DECAF

performance using these benchmarks would be informative, this is infeasible because

TEMU is too slow to correctly execute the tests. When executing the benchmark suite

under TEMU, the first benchmark test of the suite (400.perlbench) was allowed to run for

over a day before its execution was terminated after failing to complete even a single

iteration of the benchmark test.

Baseline DECAF, without any instrumentation enabled, experiences an average of

15.20% overhead over the execution performance of a similarly-configured QEMU.

DECAF updates EIP (x86) and R15 (ARM) after every guest instruction to ensure

3462.libquantum was omitted from the test suite due to Visual Studio’s Visual C++ not supporting some C++
features used by the test.
4The ”versatilepb” platform QEMU uses to emulate ARM VMs has a 256MB RAM limitation.

63

accurate analysis, while QEMU updates these registers at the end of each TB. DECAF

must also maintain its plugin infrastructure by continually watching for the registration of

new plugin callbacks.

The VMI overhead measurements in Figure 3.11 show the difference in performance

between running DECAF in a baseline configuration with all features disabled and a

configuration with only VMI enabled. Average overhead is 12.07% for Windows 7 and

14.48% for Linux. The negative overhead result for the Linux 400.perlbench test can be

attributed to the short execution time of the test and the general variability in execution

times within an emulated VM environment. The result of 429.mcf has considerably higher

VMI overhead than the other tests with 54.36% for Windows 7 and 55.23% for Linux.

This test incurs almost twice as many TLB misses as the next closest test (471.omnetpp).

VMI callbacks are triggered when TLB misses occur, explaining the larger amount of

observed overhead.

Table 3.5: Execution Overhead for DECAF and DECAF with VMI on different
architecture/OSs without tainting.

Setup XUbuntu WinXP
SP 3

Debian Squeeze
(ARM)

DECAF with VMI 3m 25.9s 1m 4.36s 2m 50.16s
QEMU 1.0.1 2m 45.85s 0m 52.79s 2m 36.52s

DECAF + VMI
Overhead % 24.14 21.91 8.72

Furthermore, Table 3.5 presents guest boot time overhead under DECAF, and

Table 3.6 presents the source code distribution between architecture dependent and

independent components in QEMU to add DECAF functionality. DECAF and VMI

64

Table 3.6: Code breakdown of DECAF, VMI, and various plugins. The code introduced
by DECAF in addition to the code of QEMU, which by itself has over 500K LOC.

OS/Arch independent
(LOC)

OS Specific
(LOC)

Total
(LOC)

DECAF 18470 1350 19820
Insn Tracer 3770 90 3860
API Tracer 840 880 1720
Key Logger 120 0 120

 (a) (b)

-10%

0%

10%

20%

30%

40%

50%

60%

4
0

0.
p

er
lb

en
ch

4
0

1.
b

zi
p

2

4
0

3.
gc

c

4
2

9.
m

cf

4
4

5.
go

b
m

k

4
5

6.
h

m
m

er

4
5

8.
sj

en
g

4
6

4.
h

2
6

4
re

f

4
7

1.
o

m
n

et
p

p

4
7

3.
as

ta
r

4
8

3.
xa

la
n

cb
m

k

Windows 7

Linux

0%

100%

200%

300%

400%

500%

600%

700%

800%

4
0

0.
p

er
lb

en
ch

4
0

1.
b

zi
p

2

4
0

3.
gc

c

4
2

9.
m

cf

4
4

5.
go

b
m

k

4
5

6.
h

m
m

er

4
5

8.
sj

en
g

4
6

4.
h

2
6

4
re

f

4
7

1.
o

m
n

et
p

p

4
7

3.
as

ta
r

4
8

3.
xa

la
n

cb
m

k

Fig. 3.11.: CINT2006 benchmarks that measure overhead for VMI (a) and inline taint
propagation (b).

impose a combined overhead under 25% on x86 and 8.72% on ARM. Also, from

Table 3.6 we can see that most of the plugin code is architecture independent. API Tracer

includes OS-specific code to interpret some OS-specific data structures, but, the core part

of API Tracer contains no OS-specific code.

The inline taint propagation measurements in Figure 3.11 show the difference between

running DECAF in a baseline configuration with all features disabled and with inline

tainting enabled for the Windows 7 VM. The average overhead is 605.07%, ranging from

65

285.32% (429.mcf) to 815.77% (458.sjeng). Taint propagation overhead is directly related

to the number of TCG instructions being executed, so it is highest for CPU-bound tests.

Because DECAF’s inline tainting executes multiple taint propagation TCG instructions

for each TCG instruction that executes, an average slowdown of six-times is justified.

The internal QEMU profiler (the “info jit” QEMU monitor command) was used

to obtain translation block (TB) statistics. For the QEMU baseline, the average TB

contains 45.3 IR instructions with the largest TB having 464 instructions. An average of

29.3 temporary registers were used by the TBs, with a maximum of 68 temporary registers

used. On the other hand, DECAF TBs have an average of 86.7 IR instructions with the

largest TB containing 520 instructions. On average, 74.0 registers were used with a

maximum of 358 temporary registers.

3.6.2 Per-Trace Verification of DECAF’s Tainting

Per-trace verification was used to verify the correctness of a taint analysis system’s

implementation. A high level overview of the process is depicted in Figure 3.12.

In per-trace verification, the taint analysis system under test (e.g., DECAF) executes a

program and generates a tainted execution trace. The trace is a log of all instructions

executed, along with additional metadata. Each log entry contains the instruction

executed, the input operand values, the output operand values, and the corresponding taint

label assignments. (A sample log entry is shown in Figure 3.13)

For each entry in the instruction trace, an oracle is used to determine whether the

resulting taint matches the noninterference model. The oracle consists of three main

66

Program

Taint Analysis
System
(DECAF)

Tainted Trace

Oracle

==

bitvector
formula

IL Translator
(BAP)

Opin Opout Op_Tin Op_Tout

generate
queries

noninterference
model

SMT
Solver
(STP)

Pass/Fail

Inst

Fig. 3.12.: Per-Trace Verification Overview

components. An IL translator is used to translate the operation (and in the example) into

a bitvector formula. A query generator then takes the translated formula, the concrete

values from the trace entry, and the input taint assignments and generates a query to

determine the correct output taint labels. This query is subsequently sent to an SMT solver

and the results compared to the output taint as recorded in the trace entry. If they agree,

then the implementation is correct for this particular operation and machine state. If they

disagree, either the rule is imprecise or there is an implementation bug.

Per-trace verification has a number of advantages. First, the traces can be generated

and verified independently and thus processed in parallel. Second, the problem of

verifying traces one instruction instance at a time is more tractable: using concrete values

reduces the state space to explore. Third, the oracle can also be used as a taint analysis

system itself. For example, a taint analysis system might use sound but imprecise tainting

67

rules to improve runtime performance and then use the oracle to reprocess the trace offline

and remove any false positives.

The major limitation of per-trace verification is coverage. Per-trace verification will

not be complete unless the traces used to verify the system cover all possible system states

(i.e., all possible combinations of operations, operand values and taint values). To

maximize coverage, a collection of over 600,000 test programs from the PokeEMU [72]

project was used for the evaluation. These test programs were automatically generated by

exploring all of the different instruction decode and execution paths of the Bochs x86

emulator [3]. They provide full path coverage of more than 800 protected-mode x86

instructions, and so the per-trace verification results for DECAF inherit this same

extensive coverage.

In order to verify DECAF, an instruction tracer plugin was implemented to generate

the tainted trace. The oracle was implemented using BAP as the IL translator and STP [57]

as the SMT solver (Z3 works as well). Specifically the bitvector formula and queries are

expressed in the BAP IL, allowing the use BAP’s existing interface to STP (or Z3).

The correctness of DECAF’s rule implementations was verified using the 600,000+

PokeEMU test cases. Each test case was executed using DECAF, and all instructions

executed were logged into a tainted trace, one per test case. Due to the sheer number of

test cases, there was not exhaustive testing that attempted to try all possible taint

assignments to the program state. Instead, random taint values were assigned to the

program state at the beginning of execution and propagated through the program.

Each trace was then passed through the oracle to determine whether there were any

differences in the output taints. If the verification failed, the offending instruction was

68

/* ebx = eax & ebx */
Inst: and %eax, %ebx
Inputs: eax = 0x84be2329, ebx = 0xaed66ce1
Outputs: ebx = 0x84962021
Input Taints: eax_t = 0x7369C667, ebx_t = 0xec4aff51
Output Taints: ebx_t = 0xe44ae761
/* Expected Output Taints: ebx_t = 0xe64ae761 */

Fig. 3.13.: Trace entry for and bug

manually reviewed in an attempt to track down the source of the failure. If a bug was

found, it was patched in DECAF and then the offending test case was re-run to ensure that

the bug was fixed. In total, it took over 16 days to complete the verification task by

running 80 verification instances in parallel. Each trace took approximately 3 minutes to

complete. This does not include the extra time needed to address the few bugs that were

discovered.

This method of verification uncovered two incorrectly implemented tainting rules in

DECAF (and and add). Both errors were due to the same implementation mistake. A

text version of the offending trace entry is shown in Figure 3.13. The figure shows the

concrete values of the operands, as well as the input and output taints. According to

DECAF, the output taint was 0xe44ae761, which failed verification because the expected

taint was 0xe64ae761. Notice that bit 25 is 0, but should actually be 1.

As it turns out, this error was due to the way the extra TCG IR to propagate taint was

inserted. In the code for adding the propagation IRs for and, the propagation IRs were

incorrectly placed after the original and operation. As a result, instead of using the

concrete value of 0xaed66ce1 for ebx to calculate the taint, the result of ebx

(0x84962021) was used. In fact, this bug was pervasive throughout DECAF’s

implementation, and it was not understood it until it was discovered that the add

69

implementation had the same problem. In general, this bug only surfaces if the destination

operand is also a source operand, and the value written to the destination happens to affect

the final taint calculation, meaning it depends on both the concrete values as well as the

taint assignments. This discovery led to the insertion of all IRs that implement taint

propagation instrumentation for an IR immediately prior to the IR that they instrument.

3.6.3 API Tracer

The API Tracer plugin leverages the VMI and function hooking features of DECAF to

capture API-level traces of the user- and kernel-mode execution of a program.

At its core, API Tracer is a minimal and stand-alone cross-platform component,

comprised of 340 lines of C code, that retrieves function-level execution traces of

programs on any platform/OS supported by DECAF. Furthermore, it contains a custom

configuration parser, comprised of 500 lines of C code, and a Windows-specific extension

component, comprised of 880 lines of C code, to decipher the higher-level OS-specific

semantics. For example, in Windows the kernel32.dll::CreateProcess() API

call contains newly created process information and the creation flag parameters required

to extend analysis into child processes. The OS-specific component interprets such

information and acts accordingly.

Unlike static analysis tools that are unable to analyze dynamically generated code, and

user-space dynamic analysis tools (such as Pin [70]) that are unable to analyze activity in

the kernel, API Tracer keep track of any kernel modules loaded by a user program and

traces such modules automatically. It also monitors the memory allocation and

70

Fig. 3.14.: Evaluation of API Tracer plugin.

deallocation of a program to identify and trace any unpacked/dynamically generated code,

thereby providing rich cross-platform and system-wide analysis capabilities.

Figure 3.14 shows the overhead introduced by API Tracer5 on the execution of a

Windows XP SP3 guest as the plugin scales with the number of functions in the plugin’s

configuration file 6. DECAF selectively instruments only the TCG TBs that correspond to

the hooked functions, thereby significantly improving performance. An un-optimized

implementation would instrument all TBs and filter the ones that correspond to hooks -

similar to what TEMU [82] does. As a comparison, Internet Explorer loads the webpage

in 22.6 seconds and 217.79 seconds with selective optimization on and off, respectively.

For the sake of evaluation, two popular web browser clients for Windows (IE and

Chrome) and a notorious bot (TDSS [61], which inserts a kernel module to hide itself in

the kernel) were evaluated using the plugin. API Tracer is not only able to trace the

inserted kernel module, but is also able to extract the unpacked code in memory for further
5TDSS values are normalized because it stalls for 360 seconds to evade analysis. Loading of the web page
http://www.gnu.org was used as a reference to measure execution times of IE and Chrome.
6Configuration file consists of all functions that must be captured, along with their parameter list/types, return
types, and calling conventions.

71

analysis. The Chrome browser uses a multiple-processes architecture and keeps tabs,

extensions, web apps, and plug-in processes independent from each other and spawns new

processes when required. API Tracer is able to automatically and successfully trace the

parent Chrome process and any spawned child processes.

3.6.4 Keylogger Detector

The Keylogger Detector plugin is an extended version of the sample plugin shown in

Figure 3.2. Leveraging the VMI, tainting, and event-driven programing features of

DECAF, this plugin is capable of identifying keyloggers and analyzing their stealthy

behaviors. The core of Keylogger Detector is cross-platform and OS-independent,

comprised of only 120 lines of C code.

By sending tainted keystrokes into the guest system and observing whether any

untrusted code modules access the tainted data, keylogging behavior can be detected. This

is similar to the functionality provided by Panorama [90]. The sample plugin can

introduce tainted keystrokes into the guest system and identify which modules read the

tainted keystroke by registering DECAF READ TAINTMEM CB and

DECAF KEYSTROKE CB callback events. To capture the detailed stealthy behaviors,

Keylogger Detector implements a shadow call stack by registering a DECAF BLOCK END

callback. Whenever the callback is triggered, the current instruction is checked. If it is a

call instruction, function information is retrieved using VMI and the current program

counter is pushed onto the shadow call stack. If it is a ret instruction and pairs with the

entry on the top of the shadow call stack, it is popped from the stack. When the

72

DECAF READ TAINTMEM CB callback is invoked, information about which process,

module, and function read the tainted keystroke data from the shadow call stack is

retrieved.

Two experiments were run to evaluate the Keylogger Detector. First, a set of malware

samples, known to have key-logging functionality, was collected. This sample set has 117

malware samples in total, spanning 29 malware families. They were tested on a Windows

XP SP3 guest by sending keystrokes to the notepad.exe application and observing

whether any tainted keystrokes were accessed by the tested sample. Keylogger Detector

successfully detected the keylogging behaviors in all of these samples. Table 3.7 is the

trace of Trojan.Win32KeyLogger. It shows which module of the process read the tainted

keystroke using which function. The trace shows that the tainted keystroke entered the

system and was fetched by the untrusted code of MPK.exe, which clearly depicts a

keylogging activity. Furthermore, the trace shows which functions were used to steal

keystrokes. Such information is very valuable when performing malware analysis.

Table 3.7: Trojan.Win32.KeyLogger Trace.

PROCESS MODULE FUNCTION
<KERNEL> i8042prt.sys hall.dll:READ PORT UCHAR
<KERNEL> win32k.sys ntoskrnl.exe:PsGetProcessWin32Process
<KERNEL> win32k.sys hal.dll:HalEndSystemInterrupt
...
notepad.exe Mpk.dll ntoskrnl.exe:ProbeForWrite
notepad.exe Mpk.dll user32.dll:SendMessageA
...
MPK.exe user32.dll ntoskrnl.exe:ProbeForWrite
...
MPK.exe MPK.exe kernel32.dll:InterlockedIncrement
...
MPK.exe MPK.exe hal.dll:HalEndSystemInterrupt
MPK.exe MPK.exe ntdll.dll:wcscpy
MPK.exe user32.dll ntoskrnl.exe:ProbeForWrite
...

73

Second, an analogous Keylogger Detector plugin was created for the TEMU tool and

tested some tainted shell commands in both Windows XP Service Pack 3 and Linux 2.6.20

guests. Tainted keystrokes were sent as commands to the shell and each of the tainted

commands was observed as it was processed in the operating system. For each command,

after it finishes execution, the number of tainted bytes in main memory and the

occurrences of the EIP register becoming tainted were recorded. Note that, by design, the

number of bytes tainted should be more correlated with the length of the commands than

the actual commands used.

Table 3.8: Comparing DECAF with TEMU on tainted shell commands.
“n / m” indicates that “n” bytes are tainted, and “m” tainted EIPs are observed.

Windows
Command DECAF TEMU
dir 207 / 0 639 / 0
cd 146 / 0 616 / 0
cipher c: 929 / 0 3617 / 0
echo hello 660 / 0 3808 / 0
find "jone" a.txt 967 / 0 5684 / 0
findstr /s /i jone ./* 945 / 0 1333 / 0

Linux
Command DECAF TEMU
ls 350 / 3 34923 / 0
cd 306 / 3 301 / 0
cat ./readme 545 / 31 26619 / 0
echo hello 744 / 9 704 / 0
ln -s a.txt nbench 1122 / 35 24707 / 0
mkdir test 551 / 9 23766 / 0

The results for both Windows and Linux are listed in Table 3.8. The results for

Windows show that the number of tainted bytes in DECAF is much smaller than the

number in TEMU, demonstrating the benefit of DECAF’s tainting implementation being

more precise (less overtainting). No instances of a tainted EIP register were observed in

either system. The Linux results are somewhat different. Although the number of tainted

74

bytes marked by DECAF was generally much smaller than that of TEMU, DECAF

reported tainted EIP registers for all of the commands, whereas TEMU reported none.

These results look contradictory to the claim that DECAF should be more precise, so

the taint propagation logs generated by DECAF and TEMU were manually examined. Not

every instance of a tainted EIP register (a total of 93) was examined, but it was confirmed

that every examined sample was indeed correct. A common case is that a tainted character

(from the tainted keystroke entered) was being used as an index into a function pointer

table to call a function. The same instruction sequences were discovered in the trace

generated by TEMU. This means that TEMU has an under-tainting problem, even though

its tainting rules are generally sound.

3.6.5 Instruction Tracer

The Instruction Tracer plugin records a TCG IR instruction-level trace with concrete

and taint values for a specific guest user-space process or kernel code region. Similar to

the other two plugins, Instruction Tracer is largely platform-neutral, capable of collecting

execution traces for programs in x86 and ARM, Linux and Windows. Moreover, it is also

easier to perform formal verification on the TCG trace, due to its RISC-like instruction

semantics, than on the original code of the guest. For example, it has been demonstrated

as feasible to convert the TCG trace into LLVM IR and then perform symbolic execution

on the trace [39]. Instruction Tracer is implemented in 3860 lines of C code, though this

includes the code for both the plugin and the parser for the log file that the plugin

generates.

75

To demonstrate the practical effectiveness of this plugin, Instruction Tracer was used

to detect a buffer overflow at runtime. The sample code in Figure 3.15 was compiled and

executed inside of x86 and ARM Linux guest VMs running under DECAF with

Instruction Tracer loaded.

1. int func1(char *input) { 5. void main(void) {
2. char buffer[4]; 6. char buffer[16];
3. strcpy(buffer, input); 7. scanf("%s", buffer);
4. } 8. func1(buffer);

9. }

Fig. 3.15.: A simple buffer overflow example.

The code contains a simple buffer overflow vulnerability. If more than three characters

are entered by the user, buffer in func1() will overflow and begin corrupting data

stored on the stack. To capture the corruption, characters are entered into the program via

tainted keypresses until the return address is modified by the overflow. Under the ARM

environment, Instruction Tracer identified the buffer overflow when R15 (PC) became

tainted after entering five characters. R14 (Link Register) was also monitored for taint,

but it never became tainted during the test. Figure 3.16 shows the log output at the point

where R15 first becomes tainted. Tainted character data is fetched from stack memory,

masked to ensure that the value is properly aligned, and then stored in R15.

qemu_ld32 tmp61[00000000],tmp50[00000000],$0x0
--> TAINT HAS BEEN READ FROM MEMORY:

Address: 0x07837e5c (4 bytes)
Taint: [ffffffff]

movi_i32 tmp62[00000000],$0xfffffffe
and_i32 pc[00000000],tmp61[00000000],tmp62[ffffffff]
--> TAINT NOW PRESENT IN PROGRAM COUNTER (R15)

Fig. 3.16.: Buffer overflow detection on ARM.

76

Under the x86 environment, the TCG global variable for the EIP register can’t be

directly passed to an opcode as an argument. EIP is modified by writing to host memory

via the st i32 opcode. Watching for tainted writes to EIP’s offset (0x4C) in the

CPUState data structure identifies that the buffer overflow occurs. Figure 3.17 shows the

log output at the point where EIP first becomes tainted. Tainted character data is fetched

from memory located at the address in ESP, the stack size is reduced by four bytes, and

the tainted data is then placed into EIP’s offset in the CPUState data structure.

mov_i32 tmp2[00000000],esp[00000000]
qemu_ld32 tmp0[00000000],tmp2[00000000],$0x0
--> TAINT HAS BEEN READ FROM MEMORY:

Address: 0x0bfffff30 (4 bytes)
Taint: [ffffffff]

movi_i32 tmp15[00000000],$0x4
add_i32 tmp4[00000000],esp[00000000],tmp15[00000000]
mov_i32 esp[00000000],tmp4[00000000]
st_i32 tmp0[ffffffff],env,$0x4c
--> TAINT NOW PRESENT IN EIP

Fig. 3.17.: Buffer overflow detection on x86.

Instruction Tracer’s performance was also compared against that of the TEMU’s

Tracecap plugin. Tracecap generates a trace of the guest’s instructions as they execute to

facilitate analyses similar to that of the buffer overflow analysis performed with

Instruction Tracer. DECAF and TEMU were used to emulate the same Windows XP VM

and trace the execution of an instance of the DOS sort application. For both plugins,

tainting was disabled. A text file 5.4 MB in size7 was selected to be sorted, and both

plugins were configured to log their execution traces of the application directly to

/dev/null. The sort execution completed in 39m 57.33s with Tracecap under

7The text file selected for this test was “The Complete Works of William Shakespear”, which was downloaded
from Project Gutenberg (http://www.gutenberg.org).

77

TEMU, but in only 2m 5.23s with Instruction Tracer under DECAF (almost 20 times

faster). The same sort with a stock QEMU completed in 5.89s.

3.7 Limitations of DECAF

While the novel design for DECAF is suitable for a wide range of analysis tasks, no

single analysis platform will meet the requirements for every analysis task. Therefore, the

key limitations of the DECAF platform are enumerated here to both better understand the

reasoning behind those limitations and document them as tasks to be explored in future

work.

1. DECAF is based upon QEMU v1.0.1. This was the most recent version of QEMU

at the time when DECAF’s initial development began in 2012. A number of

improvements, such as additional features and bug fixes, have been added to the

QEMU codebase since then. DECAF does not contain these additional

improvements as it has been maintained as an independent fork of the QEMU

codebase. To receive the benefit of these additional items, the DECAF-specific code

must be ported to a newer QEMU codebase.

2. DECAF is currently only usable with 32-bit guest environments. This is an

implementation limitation, rather than an insurmountable technical limitation, as

support for 64-bit guests was never completed. The SoftMMU TLB lookup paths

have only been instrumented for taint propagation along the 32-bit cases

(Section 3.2). Implementation of the 64-bit cases is partially completed. Likewise,

the insertion of additional taint-propagation IRs within each TB is complete for

78

32-bit IRs (also Section 3.2), but support for 64-bit guests is partially completed.

Thus, adding 64-bit support is largely a matter of updating the implementation of

the SoftMMU TLB lookup code, shadow memory data structures, and 64-bit

taint-propagation IRs that currently exist in the DECAF codebase.

3. DECAF’s VMI reconstructs the semantics of the guest environment (as described in

Section 3.3.2) and provides an interface for plugins to easily utilize this information

during analysis. This abstracts away many of the guest-specific details to simplify

analysis tasks. However, DECAF’s VMI is designed to examine the known internal

data structures of either a Linux or Windows guest kernel. There is currently no

VMI support for other OSes, such as FreeBSD, QNX, or SunOS. Android inherits

its VMI support due to its use of the Linux kernel. Adding VMI support for

additional OSes is largely an implementation limitation, though an OS whose

design deviates from that of the monolithic kernels of the supported OSes may

require significant effort to support.

4. DECAF’s taint propagation is designed to shadow the activity of the IR of the

guest’s native instructions. However, when complex guest instructions cannot be

easily translated into TCG IR, high-level helper functions are called via a TCG

call IR (Section 3.2). DECAF has taint propagation rules for many of these

special cases (for example, the x86 cmpxchg instruction). But, floating point,

MMX, and SSE instructions do not have taint propagation rules (Section 3.4.1). By

using a sequence of these instructions, malicious guest software could potentially

remove taint from data and cause undertainting. Both the discovery of sound and

79

precise tainting rules and their implementation for these instructions is left as a

future work.

80

4. VIRTUAL DEVICE FUZZ TESTING

As cloud computing becomes more prevalent, the usage of virtualized guest systems for

rapid and scalable deployment of computing resources is increasing. Major cloud service

providers, such as Amazon Web Services (AWS), Microsoft Azure, and IBM SoftLayer,

continue to grow as demand for cloud computing resources increases. Amazon, the current

market leader in cloud computing, reported that AWS’s net sales exceeded 7.88 billion

USD in 2015 [2], which demonstrates a strong market need for virtualization technology.

This popularity has led to an increased interest in mitigating attacks that target

hypervisors from within the virtualized guest environments that they host. Unfortunately,

hypervisors are complex pieces of software that are difficult to test under every possible

set of guest runtime conditions. Virtual hardware devices used by guests, which are

emulated in software (rather than directly map to physical devices on the host system), are

particularly complex and a source of numerous bugs [4, 5, 6, 7]. This has leading to the

ongoing discovery of vulnerabilities that exploit these virtual devices to attack or spy on

the host environment.

Because virtual devices are so closely associated with the hypervisor, if not integrated

directly into it, they execute at a higher level of privilege than any code executing within

the guest environment. They are not part of the guest environment, per se, but they are

privileged subsystems that the guest environment directly interacts with. Because of this,

a malicious or misbehaving guest may attempt to use these virtual devices in an

81

unpredictable manner. Under no circumstances should activity originating from within the

guest be able to attack and compromise the hypervisor, so effectively identifying

vulnerabilities in these virtual devices is a difficult, but valuable, problem to consider.

However, these virtual devices are written by a number of different authors, and the most

complex virtual devices are implemented using thousands of lines of code. Therefore, it is

desirable to discover an effective and efficient method to test these devices in a scalable

and automated fashion without requiring expert knowledge of each virtual device’s state

machine and other internal details.

Such issues have led to a strong interest in effectively testing the code that implements

these virtual devices [19, 44] to discover bugs or other behaviors that may lead to

vulnerabilities. However, this is a non-trivial task as virtual devices are often tightly

coupled to the hypervisor codebase and may need to pass through a number of device

initialization states (i.e. BIOS and guest kernel initialization of the device) before

representing the device’s state within a running guest system.

The technique of fuzzing [73] has long been used to explore the execution states of

programs in an unexpected manner to discover bugs. This form of testing, when applied to

untrusted inputs provided to the program, is able to discover vulnerabilities such as buffer

overflows and infinite loops. While simple in concept, fuzzing is capable of executing

large numbers of dynamically-generated test cases in an automated fashion, making it a

powerful way to explore and test programs [59, 83, 84].

The benefits of fuzzing are very appealing when attempting to test virtual devices, but

it has its limitations. Fuzzing attempts to visit all states of a program to discover bugs, but

the number of branches belonging to a particular virtual device form a very small fraction

82

of the total branches within the entire hypervisor codebase. Even worse, some states of

interest may only be reachable after first visiting an arbitrary pattern of uninteresting

states, so random program inputs have no guarantee of actually reaching the interesting

states of a virtual device. Therefore, it is important to generate fuzzing test cases that not

only trigger bugs, but that are able to reach the specific program states where such bugs

may exist.

4.1 VDF Overview

This dissertation chapter presents Virtual Device Fuzzer (VDF), a novel fuzz testing

framework that provides targeted fuzz testing of interesting subsystems within complex

programs: the portions of a hypervisor’s codebase that implement virtual devices. VDF

enables the testing of virtual devices within the context of the hypervisor as the hypervisor

executes. It utilizes record and replay of virtual device memory-mapped I/O (MMIO)

activity to create fuzz testing seed inputs that are guaranteed to reach states of interest and

initialize each virtual device to a known good state from which to begin each test.

Providing proper seed test cases to the fuzzer is important for effective exploring the

branches of a program [38, 79], as a good starting seed will focus the fuzzer’s efforts in

areas of interest within the program. VDF mutates these recorded seed inputs to generate

and then replay fuzzed MMIO activity to exercise additional branches of interest within

virtual devices.

As a proof of concept, VDF is evaluated by using it to test eighteen virtual devices

implemented within QEMU. QEMU, and tools such as DECAF that extend QEMU,

83

provide a wide variety of virtual devices, such as network, audio, block, and character

devices. Such virtual devices may completely emulate the internal state of a piece of

hardware, provide a pass-through to a physical device on the host system, or provide some

combination of the two. Whether QEMU completely emulates the guest CPU or uses

another hypervisor, such as KVM [11] or Xen [27], to execute guest CPU instructions,

hardware devices made available to the guest are software-based virtualized devices.

This chapter thus presents the following material:

1. The design of VDF, a record and replay fuzz testing framework for virtual devices,

is presented. VDF uses selective instrumentation to perform fuzz testing of each

virtualized device, by providing fuzzed MMIO activity to the virtual device, to

target only the branches of execution which belong to the virtual device under

analysis. This testing is performed within the context of a running hypervisor, but

without the need for a guest environment to be booted, or even present. This allows

for large numbers of tests to be executed quickly.

2. The VDF solution is motivated by using it to test eighteen QEMU virtual devices,

executing over 2.28 billion test cases in several parallel VDF instances within a

cloud environment. This testing discovered a total of 348 crashes and 666 hangs

within six of the tested virtual devices. Bug reports for these crashes and hangs have

been reported to the QEMU maintainers and its security team where applicable.

3. A method is described that reduces each discovered crash/hang test case to a

minimal test case that is still capable of reproducing the same bug. Using this

method, the average test case is reduced to only 18.57% of its original size, greatly

84

simplifying the analysis of discovered bugs and discovering duplicate test cases that

reproduce the same bug. This method also automatically generates source code

suitable for reproducing the activity of each test case to aid in the analysis of each

discovered bug.

4. The discovered virtual device bugs are analyzed and organized into four categories:

excess host resource usage, invalid data transfers, debugging asserts, and

multithreaded race conditions.

4.2 Background

The functionality of complex programs is implemented as a collection of individual

subsystems. Each such subsystem implements some portion of the functionality of the

program and maintains the current state of that portion as it relates to the entire program.

For example, substates include values held in variables that describe attributes of that

subsystem, encapsulating these values within the scope of the subsystem.

Typically, an interesting subsystem provides an API for accessing that subsystem’s

functionality. This API could be as simple as a single function that acts as a gateway to the

subsystem, though more complex APIs can expose dozens of functions that access the

features the subsystem provides. Programs with well-defined subsystems can be unit

tested by testing each subsystem via its entry point (i.e. API functions that request that the

subsystem perform some action). If a subsystem’s behavior is based solely upon the

interface function calls that exercise the subsystem, then calling those functions with

different arguments will exercise different sections of the subsystem. If a subsystem’s

85

functionality cannot be triggered via these function calls, then that functionality will never

be exercised and that code within the subsystem is unreachable.

Within QEMU, virtual devices register callback functions with QEMU’s virtual

memory management unit (MMU). These callback functions expose virtual device

functionality to the guest environment, and they are called when specific memory

addresses within the guest memory space are read or written. QEMU uses this mechanism

to implement memory-mapped I/O (MMIO), mimicking the MMIO mechanism of

physical hardware.

The following attack model describes how malicious guest activity might attempt to

attack these virtual devices:

1. The virtual device is correctly instantiated by the hypervisor. The details of the

virtual device’s hardware have been correctly specified in the hypervisor’s

configuration (if necessary) and the hypervisor has created or claimed the device

and made it available to the guest environment.

2. The virtual device is correctly initialized via the guest’s BIOS and OS kernel and

brought to a stable state during the guest boot process. The virtual device has been

assigned resources via the PCI host controller (if necessary), and any needed kernel

device drivers have been loaded and initialized.

3. After the guest has booted, control of the system is given to the attacker. The

attacker then acquires privileged access within the guest and attempts to attack the

virtual devices via memory reads and writes to the MMIO address(es) belonging to

these virtual devices.

86

Unfortunately, it is non-trivial to perform large-scale testing of virtual devices in a

manner analogous to the attacks described by this model. The MMIO read/write activity

must originate from within the guest environment, requiring the guest to completely boot

and initialize prior to performing a test from within the guest1. Because any read or write

to a virtual device control register may change the internal state of the device, the device

must be returned to a known good “just initialized” state prior to the start of each test.

While utilizing virtual machine (VM) state snapshots to save and restore the state of the

guest would ameliorate a great deal of this overhead, the time required to continually

restore the state of the guest to a known good state makes this approach inefficient for

large-scale testing.

While the code that implements each virtual device within QEMU is fairly well

isolated from the remainder of the QEMU codebase, it may still have strong dependencies

on the current state of the running QEMU hypervisor (e.g., guest memory layout for

DMA, timers, and contextual state information). Virtual devices must be executed within

the context of a running QEMU, making their extraction and isolated testing infeasible.

There has been some prior work that explores stubbing out the functions of virtual devices

and extracting them for symbolic analysis outside of QEMU [44], but this focuses on only

a small number of virtual network devices as a proof of concept. When considering a

virtual device from a symbolic execution standpoint, the flow of execution for the virtual

device becomes disjointed because the code of the virtual device only represents a portion

of the overall execution of QEMU. The flow of execution will appear to “jump” from

1QEMU does provide a qtest framework to perform arbitrary guest memory read/write activity without a
guest present. We discuss qtest, and its limitations, in Section 4.3.

87

Ring 0

Ring 3

Ring 0'

Ring 3'

Ring 3' Ring 0'

Ring 3 Ring 0

Guest VM
Kernel Space

KVM
Interface

Virtual
Device

 Least
Privileged

 Most
Privileged

Host Kernel

KVM
Kernel
Module

QEMU Process On Host

Guest VM
Userspace

Process Kernel
Driver

 (a) (b)

 (c)

 (d)

 (e)(f)

Fig. 4.1.: Device access request originating from inside of a QEMU/KVM guest. Note
that the highest level of privilege in the guest (ring 0’) is still lower than that of the QEMU

process on the host (ring 3).

callback to callback, even though there is no direct correlation between the calling of one

callback function and another.

4.2.1 Understanding guest access of virtual devices

The flow of activity for virtual device access from within a QEMU-hosted guest is

shown in Figure 4.1. This figure shows a KVM-accelerated QEMU hypervisor

configuration. The guest environment executes within QEMU, and the virtual devices are

provided to the guest by QEMU. CPU instruction execution and memory accesses,

however, are serviced by the KVM hypervisor running within the host system’s Linux

kernel. A request is made from a guest process (a) and the guest kernel accesses the

device on the process’s behalf (b). This request is passed through QEMU’s KVM interface

to the KVM kernel module in the host’s kernel. KVM then forwards the request to a

QEMU virtual device (c). The virtual device responds (d) and the result is provided to the

88

guest kernel (e). Finally, the guest process receives a response to its device request from

the guest kernel (f).

Unlike the standard 0-3 ring-based protection scheme used by x86 platforms,

virtualized systems contain two sets of rings: rings 0 through 3 on the host, and rings 0’

through 3’ on the guest. The rings within the guest are analogous to their counterparts on

the host with one exception: the highest priority guest ring (ring 0’) is at a lower priority

than the lowest priority ring on the host (ring 3).

An exploit seeks to gain any privileges possible beyond those legitimately granted so

as to access data or resources that it would otherwise be able to use. While a guest

environment may be compromised by malicious software, it can still be safely contained

within a virtualized environment so as not to harm the host. However, if that software

were to compromise the hypervisor and gain ring 3 privileges on the host, it would

effectively “break out” of the virtualized environment and gain the opportunity to attack

the host system.

4.2.2 Understanding memory mapped I/O

Both physical and virtual peripherals must provide a method for software to interface

with them. Devices have one or more registers that control the behavior of the device. By

reading data from and writing data to these control registers, the hardware is instructed to

perform tasks and provide information about the current state of the device. Each device’s

control registers are organized into one or more register banks. Each register bank is

mapped to a contiguous range of guest physical memory locations that begin at a particular

89

base address. Thus, the physical memory addresses mapped to a particular device are

specified by the address of each base address and the size of the register bank located at

that base address. To simplify interaction with these control registers, the registers are

accessed via normal memory bus activity. From a software point of view, hardware

control registers are accessed via reads and writes to specific physical memory addresses.

The x86 family of processors is unique because it also provides port I/O-specific

memory (all memory addresses below 0x10000) that cannot be accessed via standard

memory reads and writes [45]. Instead, the x86 instruction set provides two special

I/O-specific instructions, IN and OUT [64], to perform 1, 2, or 4 byte accesses to port I/O

memory. Other common architectures, such as Alpha, ARM, MIPS, and SPARC, do not

have this port I/O memory region and treat all control register accesses as regular

memory-mapped I/O. For simplicity of discussion, port-mapped I/O (PMIO) is refered to

as memory-mapped I/O throughout this chapter.

Figure 4.2 shows where MMIO devices are mapped to in guest physical memory on

x86-based systems. PCI-based PMIO mappings occur in the addresses ranging from

0xC000 through 0xFFFF, with ISA-based devices mapped into the sub-0xBFFF PMIO

range. PCI devices may also expose control registers or banks of device RAM or ROM in

the PCI “hole” memory range 0xE0000000 through 0xFFFFFFFF.

Each ISA device claims some address range within the ISA port I/O space to map its

control registers. While some ISA devices have historically always been mapped to the

same specific addresses (for example, 0x3F8 for the COM1 serial port), other ISA

devices can be configured to use one or more of a small set of selectable base addresses to

avoid conflicts with other devices.

90

MAX ADDRESS

0x100000000
 0xFFFFFFFF

 0xE0000000
 0xDFFFFFFF

 0x00010000
 0x0000FFFF

 0x0000C000
 0x0000BFFF

 0x00000000

PCI Port I/O Address Space
0x4000 Bytes Long

Regular Memory Address Space
0xDFFF0000 Bytes Long

ISA Port I/O Address Space
0xC000 Bytes Long

Regular Memory Address Space
For Addresses Larger Than 32-Bit

PCI “Hole” Memory Address Space
0x20000000 Bytes Long

Fig. 4.2.: The x86 address space layout for port- and memory-mapped I/O.

PCI devices are far more flexible in the selection of their address mapping. At boot,

the BIOS queries the PCI bus to enumerate all PCI devices connected to the bus. The

number and sizes of the control register banks needed by each PCI device are reported to

the BIOS. The BIOS then determines a memory-mapping for each register bank that

satisfies the MMIO needs of all PCI devices without any overlap. Finally, the BIOS

instructs the PCI bus to map specific base addresses to each device’s register banks by

configuring the PCI base address registers (BARs) of each device. This process,

commonly performed by a “plug-and-play” BIOS, greatly simplifies and automates PCI

device MMIO configuration at boot.

However, PCI makes the task of virtual device testing more difficult. By default, the

BARs for each device contain invalid addresses. Until the BARs are initialized by the

91

BIOS, PCI devices are unusable. The PCI host controller provides two 32-bit registers in

the ISA MMIO/PMIO address space for the task of configuring each PCI device BAR:

CONFIG ADDRESS at 0xCF8 and CONFIG DATA at 0xCFC [13]. Until the proper

sequence of reads and writes are made to these two registers, PCI devices remain

unconfigured and inaccessible to the guest environment. Therefore, ensuring that the

configuration of a virtual PCI-based device is correct involves not only correctly

initializing the state of the virtual device itself, but also the state of the PCI bus on which

the virtual device resides.

4.3 Fuzzing virtual devices

Fuzzing mutates seed input to generate new test case inputs that exercise new paths of

execution within a program. Simple fuzzers naively mutate seed inputs without any

knowledge of the program under test, effectively treating the program being tested as a

“black box”. However, more sophisticated fuzzers, such as AFL [92], can insert

compile-time instrumentation into the program under test. This instrumentation, placed at

every branch and label within the instrumented program, tracks which branches have been

taken at runtime when specific inputs are supplied. This method of “white box” fuzzing

requires the program under analysis to be compiled from source, but it is much more

effective at exploring new branches within a program.

If AFL generates a test case that covers one or more new branches within a program,

that test case becomes a new seed input. As AFL continues to generate new seeds, more

and more states of the program are exercised. Unfortunately, such an approach has its

92

limitations. All branches are considered to be of equal priority during exploration, so

uninteresting states are explored as readily as interesting states are. This leads to a large

number of wasted testing cycles as uninteresting states are unnecessarily explored. VDF

leverages AFL’s powerful white box fuzzing functionality to perform state exploration of

virtual devices, but it is only interested in exploring branches belonging to the code that

implements virtual devices. Therefore, the AFL fuzzer used within VDF has been

modified to only instrument the portions of the hypervisor source code that belong to the

virtual device currently being tested. This effectively makes AFL ignore the remainder of

the hypervisor codebase when selectively mutating seed inputs.

AFL maintains a “fuzz bitmap”, with each byte within the bitmap representing a count

of the number of times a particular branch within the fuzzed program has been taken.

Programs may contain an arbitrarily large number of branches, and only a subset of

branches may be exercised during fuzz testing, so AFL does not perform a one-to-one

mapping between a particular branch and a byte within the bitmap. Instead, AFL’s

embedded instrumentation places a random two-byte constant identifier into each branch

to identify that branch. Whenever execution during fuzzing reaches an instrumented

branch, AFL performs an XOR of the new branch’s identifier and the last branch identifier

seen prior to arriving at the new branch. This captures both the current branch and the

unique path taken to reach it (such as when the same function is called from multiple

locations in the code). AFL then applies a hashing function to the XOR’d value to

determine which entry in the bitmap represents that particular branch combination.

Whenever a particular branch combination is exercised, the appropriate byte is

incremented within the bitmap.

93

VDF’s modified AFL uses a much simpler block coverage mechanism that provides a

one-to-one mapping between a particular instrumented branch and a single entry in the

bitmap. Because VDF selectively instruments only the branches within a virtual device,

the bitmap fuzz contains more than enough entries to accommodate all such instrumented

branches. VDF’s modifications do away with the XORing of branch identifiers and AFL’s

hash function. Instead, branch identifiers are assigned linearly. This allows for a simpler

mapping between identifiers and particular locations in the instrumented code, which

simplifies determining the ground truth of whether a particular branch has been reached

during testing. It also eliminates the possibility that randomly-generated branch identifiers

are duplicated.

One large benefit of using AFL within VDF is the increase in test case execution speed

provided by AFL’s fork server. By default, AFL executes the program to be fuzzed and

then makes a fork call in thta program once its main function is reached. This fork

call is inserted into the program during AFL’s compile-time instrumentation. Because the

forking at main occurs after all shared libraries are loaded and all static resources are

allocated, future test cases executed by child processes created at this fork point leverage

copy-on-write of memory pages to eliminate much of the program’s start-up time.

4.3.1 Fuzzing workflow

Figure 4.3 shows the three-step flow used by VDF when testing a virtual device. In the

first step, virtual device activity is recorded while the device is being exercised. This log

of activity includes any initialization of PCI BARs for the virtual device via the PCI host

94

Step 1: Record read/write activity of a virtual device by using our
instrumented QEMU and generate a device activity seed test case.

Step 2: Execute multiple fuzzer instances in parallel to repeatedly
mutate the seed, launch QEMU instances to replay the mutated seed,
and discover any crashes or hangs.

Step 3: Minimize crash/hang tests to simplify analysis and generate
qtest code for future reproduction of each discovered crash or hang.

QEMU with
virtual device
instrumented
for recording

Device
read/write
activity log

Device
read/write
activity log

Multiple
fuzzer
instances

Crash/hang
device
read/write logs

QEMU
instances
spawned by
fuzzers

Crash/hang
device
read/write logs

Minimized
crash/hang
testcase

Exercise and
record device

Minimize to create test case

Generate
reproduction
qtest code

Used as
seed data

Mutate seed
and replay

Check for
crash/hang

Record any mutations
resulting in a crash/hang

#if 1 /* START: Reproduce case for qtest */
 qpci_io_writew(dev, dev_base[0]+0x4, 0x00007214);
 qpci_io_writew(dev, dev_base[0]+0x6, 0x00000001);
 qpci_io_writew(dev, dev_base[0]+0xE, 0x0000333A);
 qpci_io_writeb(dev, dev_base[0]+0x0, 0x00001780);
 qpci_io_writel(dev, dev_base[0]+0x1, 0x00000000);
#endif /* END: Reproduce case for qtest */

Fig. 4.3.: VDF’s process for performing fuzz testing of QEMU virtual devices.

95

controller (if needed), initialization of any internal device registers, and any MMIO

activity that exercises the virtual device. This log is then saved to disk, and it becomes the

seed input for the fuzzer. This collection of seed input is described further in Section 4.3.2.

In the second step, the collected virtual device read/write activity is then provided as

seed data to AFL. Multiple AFL instances can be launched, with one required master

instance and one or more optional slave instances. The primary difference between master

and slave instances is that the master will use a series of mutation strategies (bit/byte

swapping, setting bytes to specific values like 0x00 and 0xFF, etc.) to explore the

program under test. Slave instances only perform random bit flips throughout the seed

data. The mutated test cases simulate guest misbehavior that could be due to a badly

written device driver within the guest’s kernel, the actions of a malicious program

executing within the guest OS, or even a combination of the two.

Once the seed input has been mutated into a new test case, a new QEMU instance is

spawned via AFL’s fork server. VDF replays the test case in the new QEMU instance and

observes whether the mutated data has caused QEMU to crash or hang. It is important to

note that VDF does not blindly replay events, but rather performs strict filtering on the

mutated seed input during replay. The filter discards malformed events, events describing

a read/write outside the range of the current register bank, events referencing an invalid

register bank, etc. This prevents mutated data from potentially exercising memory

locations unrelated to the virtual device under test. If a test case causes a crash or hang,

the test case is saved to disk and logged.

Finally, in the third step, each of the collected crash and hang test cases is reduced to a

minimal test case capable of reproducing the bug. Both a minimized test case and source

96

code to reproduce the bug are generated. The minimization of test cases is described

further in Section 4.3.4.

4.3.2 Virtual device record and replay

Fuzzing virtual devices is non-trivial because virtual devices are stateful. It may be

necessary to traverse an arbitrarily large number of states within both the virtual device

and the remainder of the hypervisor prior to reaching a desired state within the virtual

device. Because each virtual device must be initialized to a known good start state prior to

each test, VDF uses record and replay of previous virtual device MMIO activity to both

prepare the device for test and perform the test itself.

First, VDF records any guest reads or writes made to the virtual device’s control

registers when the device is initialized during guest OS boot2. This captures the setup

performed by the BIOS (such as PCI BAR configuration), device driver initialization in

the kernel, and any guest userspace process interaction with the device’s kernel driver.

Table 4.1 shows the different sources of initialization activity used by VDF when

recording device activity during our testing.

Second, the recorded startup activity is partitioned into two pieces: an init set and a

seed set. The init set contains any seed input required to initialize the device for testing,

such as PCI BAR setup, and the activity in this set will never be mutated by the fuzzer.

VDF plays back the init set at the start of each test to return the device to a known,

repeatable state. The seed set contains the seed input that will be mutated by the fuzzer. It

2VDF can also capture this initialization activity if the device is exercised via a QEMU qtest test case, if only
a minimal amount of recorded activity is desired. However, most seed input used in this dissertation was
simply recorded during the boot of the guest OS.

97

Table 4.1: QEMU virtual devices seed data sources.

Device Class Device Seed Data Source
AC97
CS4231a Linux guest boot with

Audio ES1370 ALSA [1] speaker-test
Intel-HDA
SoundBlaster 16

Block Floppy qtest test case
Char Parallel Linux guest boot with

Serial directed console output
IDE IDE Core qtest test case

EEPro100 (i82550)
E1000 (82544GC) Linux guest boot with

Network NE2000 (PCI) ping of IP address
PCNET (PCI)
RTL8139 qtest test case

SD Card SD HCI
Linux guest boot with

mounted SDHCI volume

TPM TPM
Linux guest boot with

TrouSerS test suite [20]
Watchdog IB700 qtest test case

I6300ESB Linux guest boot

can be any sequence of reads and writes that exercises the device, and it usually originates

from some guest user space activity that exercises the device (playing an audio file,

pinging an IP address, etc.).

Even with no guest OS booted or present, a replay of these two sets returns the virtual

device to the same state that it was in immediately after the register activity was originally

recorded. While the data in the sets could include timestamps to ensure that the replay

occurs at the correct time intervals, VDF does not do this. Instead, VDF takes the simpler

approach of advancing the virtual clock of the guest environment one microsecond for

98

each read or write performed. The difficulty with including timestamps within the seed

input is that the value of the timestamp is too easily mutated into very long virtual delays

between events. While it is true that some virtual device branches may only be reachable

once an longer, abitrary virtual time interval has passed (such as interrupts that are raised

when a device has completed performing some physical event), performing a fixed

increment of virtual time on each read and write is a reasonable approach to the issue.

Event record format

Header
1 Byte

Base Offset
 1-3 Byte(s)

Data Written
1 or 4 Byte(s)

(a) (b) (c)

Fig. 4.4.: The record format of VDF for an MMIO read/write event.

The format of the VDF read/write event record is shown in Figure 4.4. This format

captures all data needed to replay an MMIO event and represents this information in a

compact format requiring only 3-8 bytes per event. The compactness of each record is an

important factor because using a smaller record size decreases the number of bits that can

be potentially mutated by the fuzzer.

The header in Figure 4.4a is a single byte that captures whether the event is a read or

write event, the size of the event (1, 2, or 4 bytes), and which virtual device register bank

the event takes place in. The base offset field in Figure 4.4b is the offset from the base

address of the register bank specified in the header. The size of this field will vary from

99

device to device, as some devices have small register bank ranges (requiring only one byte

to represent an offset into the register bank) and other devices map much larger register

banks and device RAM address ranges (requiring two or three bytes to specify an offset).

The data field in Figure 4.4c is the data written to a memory location when the header

field specifies a write operation. Some devices, such as the floppy disk controller and the

serial port, only accept single byte writes. Most devices accept writes of 1, 2, or 4 bytes,

requiring a 4 byte field for those devices to represent the data. For read operations, the

data field of the record is ignored.

While VDF’s record and replay of MMIO activity captures the interaction of the guest

environment with virtual devices, some devices may make use of interrupts and DMA.

However, such hardware events are not necessarily required to recreate the majority of the

behavior of most devices during fuzz testing. Interrupts are typically produced by a virtual

device, rather than consumed, when some hardware event has completed. Interrupts alert

the guest environment that some hardware event has completed. Another read or write

event would then be initiated by the guest in reaction to an interrupt, but since VDF

records all read/write activity to the virtual device, the guest’s response to the interrupt is

captured without explicitly capturing the interrupt itself.

DMA events perform copies of data between guest and device RAM. DMA copies

typically occur when buffers of data must be copied and the CPU isn’t needed to copy this

data byte-by-byte. These buffers contain data to be processed by the virtual device, such

as pixel data to be displayed on a video framebuffer. Thus, when only copying data to be

processed, it is not necessary to actually place data in the correct location within guest

RAM and then copy it into the virtual device. It is enough to say that the data has been

100

Fig. 4.5.: Simplified control flow graph of the ide ioport write() function within
the QEMU IDE core.

copied and then move onto the next event. While the size of data and alignment of the data

may have some impact on the behavior of the virtual device, such details are beyond the

scope of VDF as described in this dissertation.

Recording virtual device activity

Consider the simplified control flow graph (CFG) shown in Figure 4.5. This is a CFG

for the function ide ioport write(), which is implemented within QEMU’s IDE

virtual device. This function is registered with QEMU’s MMU when an IDE bus is

instantiated, and the function is executed whenever the guest performs a write to memory

addresses 0x170 (primary IDE bus) or 0x1F0 (secondary IDE bus). The guest interacts

with IDE-based devices, such as hard disks and CD-ROM drives, by writing to the control

registers mapped to these memory locations.

This CFG has a structure seen in most QEMU virtual device callback functions. The

function receives a state structure of the virtual device (passed as an opaque void *), the

101

memory address written to by the guest, and the data written to that memory address.

Once the address is filtered and the current state of the device is examined, a switch

statement uses the address to dispatch the data to the proper subfunction of the virtual

device. This allows a single function to provide an interface that controls a large number

of the device’s features. While the simplest virtual devices register only a single set of

MMIO callback functions to handle read/write activity to a single MMIO address, more

complex devices register multiple sets of callbacks to represent several sets of MMIO

control registers provided by the device.

The structure of the callback function’s CFG explains the primary reason that VDF’s

targeted fuzzing is so effective for exploring virtual devices. A minor mutation in the

address provided to the callback function is all that is needed to reach different pieces of

the device’s functionality. Mutated test cases that exercise each of the various cases of the

switch statement will reach the majority of the branches of interest within the device.

Almost every interaction between the guest environment and virtual devices occurs via

this MMIO interface, so it is an ideal location to record the virtual device’s activity.

Rather than attempt to capture the usage of the each device by reconstructing the

semantics of the guest’s kernel and memory space, VDF captures device activity at the

point where the hardware interface is provided to software. In fact, there is no immediate

need to understand the semantic details of the guest environment as virtual devices

execute at a level above that of even the guest’s BIOS or kernel. By placing recording

logic in these callback functions, VDF is able to instrument each virtual device by adding

only 3 to 5 LOC of recording logic to the beginning of each MMIO callback function.

102

Playback of virtual device activity

Once VDF has recorded a stream of read/write events for a virtual device, it must have

a mechanism to replay these events within the context of a running QEMU. Because

QEMU traverses a large number of branches before all virtual devices are instantiated and

testing can proceed, it isn’t possible to provide the event data to QEMU via the command

line. The events must originate from within the guest environment in the form of

read/write activity to memory locations registered for MMIO. Therefore, QEMU must

first be initialized before performing the replay of MMIO events.

QEMU provides qtest, which is a lightweight framework for testing virtual devices.

qtest is a QEMU accelerator, or type of execution engine. Common accelerators for

QEMU are TCG (for the usage of QEMU TCG IR) and KVM (for using the host kernel’s

KVM for hardware accelerated execution of guest CPU instructions). The qtest

framework works by using a test driver process to spawn a separate QEMU process which

uses the qtest accelerator. The qtest accelerator within QEMU communicates with the test

driver process via IPC. The test driver remotely controls QEMU’s qtest accelerator to

perform guest memory read/write instructions to virtual devices exposed via MMIO. Once

the test is complete, the test driver terminates the QEMU process.

While the qtest accelerator and test driver programs are convenient, they are

inadequate for the type of testing that VDF performs for two reasons. First, the throughput

and timing of the test is slowed because of QEMU start-up and the serialization,

deserialization, and transfer time of the IPC protocol. Commands are sent between the test

driver and QEMU as plaintext messages, requiring time to parse each string. While this is

103

not a concern for the virtual clock of QEMU, wall clock-related issues (such as thread

race conditions in a virtual device backend) are less likely to be exposed with the slower

pace of virtual device activity.

Second, qtest does not provide control over QEMU beyond spawning the new QEMU

instance and sending control messages back and forth. It is unable to determine exactly

where a hung QEMU process has become stuck. A hung QEMU also hangs the qtest test

driver process, as the test driver will continue to wait for input from the non-responsive

QEMU. If QEMU crashes, qtest will respond with the feedback that the test failed.

Reproducing the test which triggers the crash may repeat the crash, but the analyst still has

to attach a debugger to the spawned QEMU instance prior to the crash to gain insight into

exactly why the crash is occurring.

VDF’s seeks to automate the discovery of any combination of virtual device MMIO

activity that triggers a hang or crash in either the virtual device or some portion of the

hypervisor. qtest excels at running known-good, hard-coded tests on QEMU virtual

devices for repeatable regression testing. But, it becomes less useful when searching for

unknown vulnerabilities. Such a search requires generating new test cases that cover as

many execution paths as possible through a virtual device, as quickly as possible.

To address these shortcomings, VDF contains a new fuzzer QEMU accelerator, based

upon qtest. This new accelerator adds approximately 850 LOC to the QEMU codebase. It

combines the functionality of the qtest test driver process and the qtest accelerator within

QEMU, eliminating the need for a separate test driver process and the IPC between

QEMU and the test driver. More importantly, it allows VDF to directly replay read and

104

write activity that exercises virtual devices as if the event came directly from within a

complete guest environment.

4.3.3 Selective branch instrumentation

Fuzz testing must explore as many branches of interest as possible within a program to

perform effective testing. Therefore, determining the coverage of those branches during

testing is a metric for measuring the thoroughness of our approach. While the code within

any branch may host a particular bug, execution of the branch must be performed to

trigger the bug. Thus, reaching more branches of interest increases the chances that a bug

will be discovered. However, if the fuzzer attempts to explore every branch it discovers, it

can potentially waste millions of test cycles trying to test branches unrelated to the virtual

device of interest.

To address this issue, VDF leverages the instrumentation capabilities of AFL to

selectively place this instrumentation in only the branches of interest (those belonging to a

virtual device). By default, the compiler toolchain supplied with AFL instruments

programs built using it. This instrumentation places a randomly-generated ID and some

trampoline logic at every branch within the instrumented program. When the program is

executed under AFL for testing, reaching a branch results in the ID of the branch being

loaded into a register and the trampoline code being called. The trampoline code notes the

ID and marks the branch as having been visiting in the fuzz bitmap. This scheme is

designed to encourage the exploration of all branches within a program, as each branch

represents a new area for AFL to focus on to expand coverage during test.

105

VDF modifies AFL to selectively instrument only code of interest within the target

program. The modifications provide a one-to-one mapping between branches of interest

and locations within AFL’s fuzz bitmap, so measuring coverage becomes as simple as

comparing the current state of the fuzz bitmap with the bitmap locations known to

represent branches of interest within the virtual device. Uninstrumented branches are

ignored by the fuzzer as they are seen as (very long) basic blocks of instructions that occur

between instrumented branches. Aside from the instrumented branches within the virtual

device, a stub main() function is also instrumented. This stub main()’s purpose is to

trigger AFL’s deferred forking and then call the program’s true main() function.

Prior to the start of each testing session, VDF dumps and examines all function and

label symbols found in the instrumented hypervisor. If a symbol is found that maps to an

instrumented branch belonging to the current virtual device under test, the name, address,

and AFL branch identifier (embedded in the symbol name) of the symbol are stored and

mapped to the symbol’s location in the fuzz bitmap. At any point during testing, the AFL

fuzz bitmap can be dumped using VDF to provide ground truth of exactly which branches

have been covered thus far.

Figure 4.6 shows an example of the coverage information report that VDF provides.

This example shows both the original source code for a function in the AC97 audio virtual

device (top) and the generated branch coverage report for that function (bottom). The

report provides two pieces of important information. The first is the ground truth of which

branches are instrumented, including their address within the binary, the symbol

associated with the branch (inserted by the modified AFL), and the original source file line

106

static void voice_set_active (AC97LinkState *s, int bm_index, int on)
{

switch (bm_index) {
case PI_INDEX:

AUD_set_active_in (s->voice_pi, on);
break;

case PO_INDEX:
AUD_set_active_out (s->voice_po, on);
break;

case MC_INDEX:
AUD_set_active_in (s->voice_mc, on);
break;

default:
AUD_log ("ac97",

"invalid bm_index(%d) in voice_set_active",
bm_index);

break;
}

}

ID: COVERED: ADDRESS: SYMBOL: LINE:
--- -------- -------- ------- -----
00c COVER 002e92e0 voice_set_active 296
00d COVER 002e9324 REF_LABEL__tmp_ccBGk9PX_s__27_39 296
00e COVER 002e9368 REF_LABEL__tmp_ccBGk9PX_s__28_40 296
00f UNCOVER 002e93a4 REF_LABEL__tmp_ccBGk9PX_s__29_41 296

Fig. 4.6.: Sample branch coverage data for the voice set active() function within
the AC97 virtual device.

number where the branch’s code is located. The second is whether a particular branch has

been visited yet during testing.

The four branches listed in the report are associated with the four cases in the switch

statement of the voice set active() function, which is located on line 296 in the

source file. By examining the coverage report, we can see that the first three cases have

been reached during the testing performed thus far. The default fall-through case has not

yet been triggered by any tests. An analyst familiar with the internals of the AC97 virtual

device could review this report and then devise a new seed input that contains the

necessary register activity to trigger the final case in the switch statement. Thus, such

reports are useful for not only an understanding of which branches have been reached, but

107

qpci_io_writew(dev, dev_base[0]+0x4, 0x00007214);
qpci_io_writew(dev, dev_base[0]+0x6, 0x00000001);
qpci_io_writew(dev, dev_base[0]+0xE, 0x0000333A);
qpci_io_writel(dev, dev_base[0]+0x1, 0x00DFFF00);

Eliminate any invalid records

Eliminate any records after crash/hang

Begin with a fuzzer-produced crash/hang
test case

Eliminate any remaining records not needed
to reproduce the crash/hang

Produce minimized test case and generate qtest code
that reproduces the discovered crash/hang

Fig. 4.7.: Process for minimizing test cases.

they also providing insight into how the unexplored virtual device functionality might be

reached.

4.3.4 Creation of minimal test cases

Once VDF detects either a crash or a hang in a virtual device, the test case that

produced the issue is saved for later examination. This test case may contain a large

amount of test data that is not needed to reproduce the discovered issue, so it is desirable

to reduce this test case to the absolute minimum number of records needed to still trigger

the bug. Such a minimal test case simplifies the job of the analyst when using the test case

to debug the cause of the discovered issue.

108

VDF performs a three-step test case post-processing, seen in Figure 4.7, to produce a

minimal test case from any test case shown to reproduce an issue. First, the test case file is

read into memory and any valid test records in the test case are placed into an ordered

dataset in the order in which they appear within the test case. Because the fuzzer lacks

semantic understanding of the fields within these records, it produces many records via

mutation that contain invalid garbage data. Such invalid records may contain an invalid

header field, describe a base offset to a register outside of the register bank for the device,

or simply be a truncated record at the end of the test case. After this filtering step, the

dataset contains only valid test records.

Second, VDF eliminates all records in the dataset that are located after the point in the

test case where the issue is triggered. To do this, it generates a new test case using all but

the last record of the dataset and then attempts to trigger the issue using this truncated test

case. If the issue is still triggered when using the new test case, the last record is then

removed from the dataset and another new truncated test case is generated in the same

fashion. This process is repeated until a truncated test case is created that no longer

triggers the issue, indicating that all dataset records located after the issue being triggered

are now removed.

Third, VDF eliminates any remaining records in the dataset that are not necessary to

trigger the issue. Beginning with the first record in the dataset, VDF iterates through each

dataset record, generating a new test case using all but the current record. It then attempts

to trigger the issue using this generated test case. If the issue is still triggered, the current

record is not needed to trigger the issue and is removed from the dataset. Once each

109

dataset record has been visited and the unnecessary records removed, the dataset is written

out to disk as the final, minimized test case.

While simple, VDF’s test case minimization is very effective. The 1014 crash and

hang test cases produced by the fuzzer during testing have an average size of 2563.5 bytes

each. After reducing these test cases to a minimal state, the average test case size becomes

only 476 bytes, a mere 18.57% of the original test case size. On average, each minimal

test case is able to trigger an issue by performing approximately 13 read/write operations.

This average is misleadingly high due to some outliers, however, as over 92.3% of the

minimized test cases perform fewer than six MMIO read/write operations.

4.4 Evaluation

The configuration used for all evaluations is a cloud-based 8-core 2.0GHz Intel Xeon

ES-2650 CPU instance with 8 GB of RAM. Each such instance uses a minimal server

installation of Ubuntu 14.04 Linux as its OS. Eight such cloud instances were utilized in

parallel. Each device was fuzzed within a single cloud instance, with one master fuzzer

process and five slave fuzzer processes performing the testing. A similar configuration

was used for test case minimization: each cloud instance ran six minimizer processes in

parallel to reduce each discovered crash/hang test case.

A set of eighteen virtual devices, shown in Table 4.2, were selected for the evaluation

of VDF. These virtual devices utilize a wide variety of hardware features, such as timers,

interrupts, DMA, and MMIO. Each of these devices provides one or more MMIO

interfaces to their internal registers, which VDF’s fuzzing accelerator interacts with. All

110

Table 4.2: QEMU virtual devices tested with VDF.

Device
Class Device Branches

of Interest
Coverage Via
Initial Seeds

Coverage Via
Fuzz Testing

Crashes
Found

Hangs
Found

Total Tests Per Fuzzer
Instance (Millions)

Cumulative
Test Duration

AC97 164 43.9% 53.0% 87 0 24.0 59d 18h
CS4231a 109 5.5% 56.0% 0 0 29.3 65d 12h

Audio ES1370 165 50.9% 72.7% 0 0 30.8 69d 18h
Intel-HDA 273 43.6% 58.6% 238 0 23.1 59d 12h
SoundBlaster 16 311 26.7% 81.0% 0 0 26.7 58d 13h

Block Floppy 370 44.9% 70.5% 0 0 21.0 57d 15h
Char Parallel 91 30.8% 42.9% 0 0 14.6 25d 12h

Serial 213 2.3% 44.6% 0 0 33.0 62d 12h
IDE IDE Core 524 13.9% 27.5% 0 0 24.9 65d 6h

EEPro100 (i82550) 240 15.8% 75.4% 0 0 25.7 62d 12h
E1000 (82544GC) 332 13.9% 81.6% 0 384 23.9 61d

Network NE2000 (PCI) 145 39.3% 71.7% 0 0 25.2 58d 13h
PCNET (PCI) 487 11.5% 36.1% 0 0 25.0 58d 13h
RTL8139 349 12.9% 63.0% 0 6 24.2 58d 12h

SD Card SD HCI 486 18.3% 90.5% 14 265 24.0 62d
TPM TPM 238 26.1% 67.3% 9 11 2.1 36d 12h
Watchdog IB700 16 87.5% 100.0% 0 0 0.3 8h

I6300ESB 76 43.4% 68.4% 0 0 2.1 26h

devices were evaluated using QEMU v2.5.0, with the exception of the TPM device. The

TPM was evaluated using QEMU v2.2.50 with an applied patchset that provides a libtpms

emulation [30] of the TPM hardware device [34]. Fewer than 1000 LOC were added to

each of these two QEMU codebases to implement both the fuzzer accelerator and any

recording instrumentation necessary within each tested virtual device.

4.4.1 Virtual device coverage and bug discovery

Four metrics were collected during testing to measure both the speed and magnitude of

VDF’s coverage. These metrics are 1) the number of branches covered by the initial seed

test case; 2) the total number of branches in the virtual device; 3) the current total number

of branches covered (updated at one minute intervals); and 4) the percentage of total bugs

discovered during each cumulative day of testing. Taken together, these metrics describe

not only the total amount of coverage provided by VDF, but also the speed at which

coverage improves via fuzzing and how quickly it discovers crash/hang test cases.

111

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 3 4 5 6 7 8 9 10

A
vg

 %
 o

f
To

ta
l B

ra
n

ch
e

s
C

o
ve

re
d

Cumulative Days of Fuzz Testing

Fig. 4.8.: Average percentage of branches covered during fuzz testing.

Figure 4.8 shows the average percentage of covered branches over cumulative testing

time. Of the eighteen tested virtual devices, 30.15% of the total branches were covered by

the initial seed test cases. After nine cumulative days of testing (36 hours of parallel

testing with one master and five slave fuzzing instances), 62.32% of the total branches

were covered. The largest increase in average coverage was seen during the first six

cumulative hours of testing, where coverage increased from the initial 30.15% to 52.84%.

After 2.25 days of cumulative testing, average coverage slows considerably and only

0.43% more of the total branches are discovered during the next 6.75 cumulative days of

testing. While eleven of the eighteen tested devices stopped discovering new branches

after only one day of cumulative testing, six of the seven remaining devices continued to

discover additional branches until 6.5 cumulative days had elapsed. Only one virtual

device (serial) discovered additional branches after nine cumulative days of testing.

Table 4.2 presents some insightful statistics about coverage. The smallest

improvement in the percentage of coverage was seen in the AC97 virtual device (9.1%

112

increase), and the largest improvement in coverage was seen in the SDHCI virtual device

(72.2% increase). The smallest percentage of coverage for any virtual device with

discovered crashes/hangs was 53.0% (AC97), but eight other virtual devices had a greater

level of coverage than 53.0% with no discovered crashes/hangs.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 5 10 15 20 25 30

A
vg

 %
 o

f
To

ta
l C

ra
sh

e
s/

H
an

gs
 F

o
u

n
d

Cumulative Days of Fuzz Testing

Fig. 4.9.: Average percentage of total bugs discovered during fuzz testing.

Figure 4.9 shows the average percentage of discovered hangs/crashes over cumulative

testing time. As shown in Table 4.2, a total of 1014 crashes and hangs were discovered in

six virtual devices. These 1014 test cases were all discovered within 27 days of cumulative

testing for each device, with no additional test cases being discovered after that point.

Approximately 50% of all test cases were discovered after four days of cumulative testing,

with approximately 80% of all test cases discovered after five days of cumulative testing.

One interesting insight is that even though the number of branches covered is very

close to its maximum after approximately 2.5 cumulative days of testing, only

approximately 25% of all crash/hang test cases were discovered at that point in time. This

113

shows that it is not necessarily an increase in branch coverage that leads to the discovery

of bugs, but rather the repeated fuzz testing of those discovered branches.

4.4.2 Classification of all discovered virtual device bugs

While it is straightforward to count the number of discovered crash/hang test cases

generated by the fuzzer, it is non-trivial to map these test cases to their underlying cause

without a full understanding of the virtual device under test. This understanding involves

knowing which reads/writes commands perform which register commands within the

virtual device, the state machine of the virtual device, and any additional requirements

(external files mounted as secondary storage, pass-through requirements, etc.) of the

virtual device.

The proposed test case minimization method greatly simplifies this process, as many

unique bugs identified by VDF minimize to the same set of read/write operations. The

ordering of these operations may differ, but the final read/write that triggers the bug

remains the same. Thus, it becomes far simpler to more accurately assess the number of

unique bugs discovered.

The discovered virtual device bugs fell into one of four categories: Excess resource

usage (AC97), invalid data transfers (E1000, RTL8139, SDHCI), debugging asserts

(Intel-HDA), and thread race conditions (TPM).

114

Excess host resource usage

Some set of resources belonging to the host system must be allocated to QEMU to

represent the resources allocated to the guest environment. Such resources include RAM

to represent the physical RAM present on the guest, CPU cores and cycles to perform

CPU and virtual device emulation, and disk space to hold the guest’s secondary storage.

The crash discovered while testing the AC97 audio virtual device caused QEMU to

allocate approximately 500MB of additional host memory when the control register for

AC97 MIC ADC Rate is set to an invalid, non-zero value. Additional resources may be

allocated by QEMU at runtime to meet the data needs of virtual devices, which presents a

potential opportunity for a malicious guest to trick QEMU into allocating large amounts

of unnecessary resources at runtime. An important observation on this type of resource

bug is that it will easily remain hidden unless the resource usage of the QEMU process is

strictly monitored and enforced. For example, using the Linux ulimit command to

place a limit on the virtual memory allocated to QEMU will discover this bug when the

specified memory limit is exceeded. VDF enforces such a limitation during its testing,

using AFL to limit the amount of virtual memory allocated to each QEMU instance. Once

this virtual memory is exceeded, memory allocations within QEMU fail, leading to a

SIGTRAP signal being raised and a crash test case saved for later analysis.

While a single hypervisor allocating excessive resources for a single guest instance is

typically not a concern, the potential impact of this issue increases greatly when

considering a scenario with large numbers of instances deployed within a cloud

environment. Discovering and correcting such bugs can have a measurable impact on the

115

resource usage of hosts implementing cloud environments. This bug has been reported to

the QEMU maintainers.

Invalid data transfers

Many virtual devices emulate hardware that transfers blocks of data. Such transfers

are used to move data to and from secondary storage and guest physical memory via

DMA. However, invalid data transfers can cause virtual devices to hang in an infinite loop.

This type of bug can be difficult to deal with in production systems as the QEMU process

is still alive and running while the guest’s virtual clock is in a “paused” state. If queried,

the QEMU process will appear to still be running without issue and will respond to signals

from the host OS. The guest will remain frozen and cause a denial of service for any

processes running inside of the guest.

VDF discovered test cases that triggered invalid data transfer bugs in the E1000 and

RTL8139 virtual network devices and the SDHCI virtual block device. In each of these

cases, a transfer was initiated with either a block size of zero or an invalid transfer size,

leaving each device in a loop that either never terminates or executes over an arbitrarily

long period of time.

For the E1000 virtual device, the guest sets the device’s E1000 TDH and E1000 TDT

registers (TX descriptor head and tail, respectively) with offsets into guest memory that

designate the current position into a buffer containing transfer operation descriptors. The

guest then initiates a transfer using the E1000 TCTL register (TX control). However, if

the values placed into the E1000 TDH/TDL registers are too large, then the transfer logic

116

enters an infinite loop. VDF discovered this by mutating writes into the

E1000 TDH/TDL registers. A review of reported CVEs has shown that this issue was

already discovered in January 2016, a CVE [8] was reserved, and a patch [9] was included

into mainline QEMU to address it.

For the RTL8139 virtual device, the guest resets the device via the ChipCmd (chip

control) register. Then, the TxAddr0 (transfer address), CpCmd (“C+” mode command),

and TxPoll (check transfer descriptors) registers are set to initiate a DMA transfer in the

RTL8139’s “C+” mode. However, if an invalid address is supplied to the TxAddr0

register, QEMU becomes trapped in an endless loop of DMA page lookup operations. An

interesting observation on this particular bug is that six test cases were generated by VDF

that demonstrate this same bug once the test cases were minimized. However, the seed

RTL8139 test case used in this evaluation testing was recorded from a qtest test case

(tests/rtl8139-test.c) that only tests the raising of an interrupt after a QEMU

timer has expired. This demonstrates that VDF is capable of discovering interesting bugs

that are completely unrelated to the register activity recorded in the seed input. This was

an undiscovered bug, which was reported to the QEMU security team for their assessment

due to its potential as a denial of service exploit.

For the SDHCI virtual device, the guest sets the device’s SDHC CMDREG register bit

for “data is present” and sets the block size to transfer to zero in the SDHC BLKSIZE

register. The switch case for SDHC BLKSIZE in the sdhci write() MMIO

callback function in hw/sd/sdhci.c performs a check to determine whether the block

size exceeds the maximum allowable block size, but it does not perform a check for a

block size of zero. Once the transfer begins, the device becomes stuck in a loop, and the

117

guest environment becomes unresponsive. Luckily, fixes for this issue were integrated into

mainline QEMU as part of an overall effort to correct SD card support for the Raspberry

Pi platform [18] in December 2015.

While most test cases reproducing invalid transfer bugs minimize down to a test case

containing only four read/write operations, some test cases contained six or seven

operations, instead. However, all of the test cases still resulted in triggering the same bugs.

After some examination, the reason for this was determined to be the fragmentation of

MMIO reads/writes on non-word aligned memory accesses. For example, a single

two-byte write made to a word-aligned memory address (say, 0x100) will appear as a

single write operation to a virtual device. The same two-byte write, when made to the

non-aligned address 0x101, will be fragmented into two one-byte writes at consecutive

addresses (0x101 and 0x102). Therefore, it is possible to shift the address of a

read/write to a non-aligned address in a test case and exercise a very different set of

registers. This results in test cases that appear quite different after minimization, but

which still trigger the same underlying bugs.

Debugging asserts

The Intel-HDA audio device demonstrates a limitation in using the assert function

to test for invalid conditions within virtual devices. All of the VDF evaluation testing used

a debug build of QEMU to assist in the assessment of each discovered hang or crash

within the virtual devices. The intel hda reg write() function in

hw/audio/intel-hda.c uses an assert call to trigger a SIGABRT when a write is

118

made to an address offset of 0 from the MMIO register base address. The mutated seed

data did indeed attempt to make 1-, 2-, and 4-byte writes to an address offset of 0,

resulting in VDF’s discovery of the issue. Thus, a guest could make a single, one-byte

write to the Intel-HDA control register bank and crash a debug QEMU!

While using an assert is a commonly-used debugging technique in mature software

codebases, asserts are used to catch a particular case that should “never happen”. If that

impossible case actually can happen as a result of untrusted input, proper error-handling

logic should be added to the code to address it. If the virtual device code is built with

NDEBUG defined (rendering the GNU libc asserts within the code into no-ops), then

the invalid input would continue past the assert check and into the remainder of the

virtual device. This item was reported as a bug to the QEMU development team.

Thread race conditions

The virtual TPM in mainline QEMU is a pass-through device to the host’s hardware

TPM device. It is possible to implement a TPM emulated in software using libtpms [30]

and then have QEMU pass TPM activity through to the emulated hardware. QEMU

interacts with the separate process implementing the TPM via RPC. However, it is also

possible to integrate libtpms directly into QEMU by applying a patchset provided by

IBM [34]. This allows each QEMU instance to “own” its own TPM instance and directly

control the start-up and shutdown of the TPM. This patchset was selected for testing

because it was never accepted into mainline QEMU and any bugs discovered would not

have an immediate security impact on deployed production systems. Instead, it serves as

119

an example of how proposed virtual device patches could be tested using VDF as part of

the patch vetting process.

The crashes/hangs discovered in the TPM demonstrate a race condition between the

shutdown of the main QEMU process and the worker threads in a thread pool that are

executing TPM commands in the TPM virtual device’s libtpms backend. It is possible for

the thread pool to hang while waiting on a mutex when shutting down the thread pool.

This hang is more noticeable on a single CPU, single core host system, though it could

potentially still occur on a multicore system within an extremely small time window. A

backtrace of the stack, as captured under GDB while using one of the crash datasets, is

shown in Figure 4.10.

Program received signal SIGINT, Interrupt.
pthread_cond_wait@@GLIBC_2.3.2 () at

../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:185
185 ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:

No such file or directory.
(gdb) bt
#0 pthread_cond_wait@@GLIBC_2.3.2 () at

../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:185
#1 0x00007ffff75e5bf7 in g_cond_wait () from

/lib/x86_64-linux-gnu/libglib-2.0.so.0
#2 0x00007ffff75c9f60 in g_thread_pool_free () from

/lib/x86_64-linux-gnu/libglib-2.0.so.0
#3 0x0000555555b5b68b in tpm_backend_thread_end

(tbt=0x555556eadef8) at backends/tpm.c:163
#4 0x0000555555fb8788 in tpm_ltpms_terminate_tpm_thread

(tb=0x555556eade80) at hw/tpm/tpm_libtpms.c:708
#5 tpm_ltpms_destroy (tb=0x555556eade80) at

hw/tpm/tpm_libtpms.c:821
#6 0x000055555560ae01 in main (argc=<optimized out>,

argv=0x7fffffffdd38,envp=<optimized out>) at vl.c:4503

Fig. 4.10.: The backtrace of the deadlock in the worker thread pool shutdown, which
occurs in the TPM backend (entries #2 and #3 in the backtrace).

This issue is the result of either a premature exit of QEMU, such as an exit()

triggered by a bad command line argument or a failed VM migration attempt, or an

extremely short QEMU session that triggers the main loop wait() function a

120

minimal number of times before QEMU terminates. In both of these cases, the thread pool

shutdown will occur before the tasks allocated to the thread pool have all been completed.

Without an adequately long call to sleep() or usleep() prior to the thread pool

shutdown to force a context switch and allow the thread pool worker threads to complete,

the thread pool will hang on shutdown. Because the shutdown of the TPM backend is

registered to be called at exit() via an atexit() call, any premature exit() prior to

the necessary sleep() or usleep() call will trigger this issue. QEMU registers signal

handlers that are never unregistered, so attempts to kill the hung process via a SIGTERM

signal are unsuccessful. The hung QEMU instance must be killed via a SIGKILL signal.

Note that this thread pool is part of the TPM backend design in QEMU. It is not part of

the libtpms library that implements the actual TPM emulator. Most likely this design

decision was made to avoid any noticeable slowdown in QEMU’s execution by making

the TPM virtual device run in an asynchronous manner to avoid any performance impact

caused by performing expensive operations in the software TPM. Other TPM

pass-through options, such as the Character in User Space (CUSE) device interface to a

stand-alone TPM emulator using libtpms, should not experience this particular issue. In

fact, the patchset that VDF was tested against has been made obsolete by a newer

patchset [14] that uses a stand-alone TPM emulator, so reporting the discovered threading

issue was not necessary.

This issue highlights a limitation of working with virtualized systems: while virtual

time within the guest can be manipulated, there is still a finite amount of wall clock time

required to execute the hypervisor on the host and emulate the hardware provided to the

guest. It also demonstrates a limitation of VDF’s test case minimization process. VDF’s

121

minimization operates under the assumption that a test case will consistently trigger a

hang or crash, so repeated executions of the test case during the iterative removal of

unnecessary records is reasonable. Unfortunately, race conditions, such as those seen in

the TPM backend, are not consistently triggerable. During reproduction of the issue by

using crash/hang test cases collected by VDF, each test case had to be executed an average

of 5.7 times under GDB before the hang in the thread pool shutdown was observed to

occur.

4.5 Limitations of VDF

While VDF is a novel approach to the fuzz testing of virtual devices, it has a number

of limitations that must be considered both when testing additional virtual devices and

attempting to adapt the techniques of VDF to testing other types of software. A summary

of those limitations, as mentioned throughout this chapter, are listed below:

1. VDF will only fuzz test a subsystem that has been instrumented for record and

replay. This is a simple matter for most virtual devices, as MMIO provides a

convenient entry point to the subsystem. However, if there are multiple methods of

triggering subsystem functionality (i.e. multiple API functions exposed that each

trigger a different piece of functionality), the record and replay mechanism must be

extended to capture each function’s arguments in a format suitable for fuzz testing.

2. VDF does not take hardware features such as timers, interrupts, or DMA into

account when fuzzing virtual devices. While much of a virtual device’s

functionality can be exercised via MMIO, some devices may have specific

122

functionality that is only triggered when these hardware features are used. This

limits the maximum branch coverage that can be acheved using VDF. However,

VDF does perform fuzzing that mimics the MMIO attack model proposed in

Section 4.2. The expansion of the attack model to incorporate these additional

hardware features is left as a future work.

3. VDF does not incorporate the timing of MMIO events during its record and replay.

As discussed in Section 4.3.2, including a timestamp within the event record

exposes that timestamp to the possibility of mutation during fuzzing, making the

addition of timing information difficult. This limitation does not limit VDF’s ability

to test, though it may limit the ability of VDF to reach a virtual device state that is

time-dependent.

4. VDF reduces discovered crash/hang test cases to a minimal test case still capable of

reproducing the issue. However, the issue must be consistently triggered by the test

case during the test case reduction process described in Section 4.3.4. For issues that

are not consistently reproducable (such as thread race conditions), additional event

records may be present in the final test case, resulting in non-minimal test cases.

4.6 Related Work

Fuzzing has been a well-explored research topic for a number of years. The original

fuzzing paper [73] used random program inputs as seed data for testing Unix utilities.

Later studies on the selection of proper fuzzing seeds [38, 79] and the use of fuzzing to

discover software vulnerabilities [26] have both been used to improve the coverage and

123

discovery of bugs in programs undergoing fuzz testing. By relying on the record and

replay of virtual device activity, VDF provides proper seed input that is known to execute

branches of interest within the virtual device under test.

A number of tools utilize record and replay to analyze programs and systems.

ReVirt [51] records system events to replay the activity of compromised guest systems to

better analyze the nature of the attack. Aftersight [42] records selected system events and

then offloads those events to another system for replay and analysis. Its primary

contribution of decoupled analysis demonstrates the ability for record and replay to

facilitate repeated heavyweight analysis that does not occur at the moment that the event

under analysis originally occurred. PANDA [50], a much more recent work in this area, is

a dynamic analysis tool that uses a modified QEMU to record non-deterministic events

that occur system-wide within a guest system. These events are then replayed through

increasingly heavier-weight analysis plugins to reverse engineer the purpose and behavior

of arbitrary portions of the guest.

Symbolic execution of complex programs is also a common technique to calculate the

path predicates and conditionals needed to exercise branches of interest. KLEE [36]

performs symbolic execution at the process level. Selective Symbolic Execution

(S2E) [40] executes a complete guest environment under QEMU leverages the previous

KLEE work to perform symbolic execution at the whole-system level. The approach

proposed by Cong et al [44] attempts to extract the code for five network virtual devices

from QEMU, stub out key QEMU datatypes, and then perform symbolic execution on the

resulting code. VDF is capable of performing its testing and analysis of a much larger set

of virtual devices, within the context of QEMU, without requiring the effort of extracting

124

and stubbing the virtual device code. However, the techniques laid out in [44] could

benefit VDF by generating new seed test cases designed to augment VDF’s ability to

reach new branches of interest.

Driller [83] uses both white box fuzzing and symbolic execution to discover

vulnerabilities within programs. Unlike VDF, which is interested in focused fuzzing to

explore branches of interest, Driller seeks to explore all branches within a program. It

focuses on switching back and forth between symbolic execution and fuzzing when

fuzzing gets “stuck” and can no longer discover data values that explore new branches.

VDF focuses on executing large numbers of fuzzing test cases without using expensive

instruction tracing and path conditional calculations to create new seeds.

Forced execution tools, such as X-Force [76], attempt to explore new branches of

execution by changing runtime data to force specific branches to be taken within a

program. Program context that has not yet been created or initialized, such as pointer

references and the contents of memory buffers, are dynamically created during execution

with just enough data to allow execution to continue. However, forced execution seeks to

explore new branches of a program while avoiding crashing the program. VDF explores

branches of interest, while executing those branches within a complete program context,

while actively seeking input that can crash or hang the program.

The discovery of vulnerable code is a difficult and ongoing process, and there is

interest in research work orthogonal to VDF that seeks to protect the host system and

harden hypervisors. DeHype [86] reduces the privileged attack surface of KVM by

deprivileging 93.2% of the KVM hypervisor code from kernel space to user space on the

host. The Qubes OS project [15] compartimentalizes software into a variety of VMs,

125

allowing the isolation of trusted activities from trusted ones within the OS. Qubes relies

upon the bare-metal Xen hypervisor, which is much harder to exploit than a hypervisor

executing under the host OS (like QEMU or KVM).

126

5. SUMMARY

Dynamic analysis is the observation and modification of a running system for the purpose

of understanding the runtime behavior of the system. It has demonstrated its strength in

many research problems, such as malware analysis, protocol reverse engineering,

vulnerability signature generation, software testing, profiling, and performance

optimization. Compared to process-level binary instrumentation and analysis,

whole-system dynamic binary analysis has unique advantages. First, it provides a full

system view, including the OS kernel and all running applications, allowing the analysis

of kernel activity and the interactions among multiple user-space processes. Second, the

code instrumentation and analysis are performed from entirely outside of the context of

the guest system under analysis (typically executing within a virtual machine (VM)).

Building a generic, whole-system dynamic binary analysis platform that can

instrument any portion of the guest’s execution is desirable, but challenging. Unless

system-wide dynamic analysis is performed at a reasonable speed, it is useless.

Observation of time-sensitive runtime events, such as network communications or GUI

interactions, is one of the primary reasons to use dynamic analysis over static analysis

methods. Time-sensitive events must be performed in a timely fashion within an

instrumented guest to be useful and representative of their non-instrumented execution.

This dissertation states the thesis that it is possible to unobtrusively and dynamically

analyze a subset of whole-system execution as that subset executes within the context of a

127

virtualized guest environment. To that end, this dissertation presents the design and

evaluation of two new and novel tools for the dynamic analysis of software: DECAF and

VDF. The primary intended purpose of DECAF, presented in Chapter 3, is the transparent

observation and analysis of the behaviors of malicious software (malware) via

whole-system dynamic analysis. VDF, presented in Chapter 4, is a fuzz testing framework

designed to test virtual devices, such as those seen in DECAF and QEMU. This is done by

exercising the MMIO interfaces of those devices as they interact with the guest

environment and discovering vulnerabilities that are susceptible to attack by malicious

software executing within the guest.

DECAF’s performance and functionality evaluation successfully demonstrates that the

tool is capable of performing system-wide data flow analysis that is both sound and

precise. The evaluation also proved that DECAF is capable of utilizing a novel,

hardware-based VMI solution to aid in detecting and analyzing key loggers, buffer

overflows, rootkits, and other behaviors commonly exhibited by malware. VDF’s

evaluation successfully demonstrates that it is capable of discovering and aiding in the

analysis of vulnerabilities seen in virtual devices. This not only helps to protect QEMU

from attack from a malicious guest environment, but it also does the same for any analysis

framework (such as DECAF) that extends QEMU.

In conclusion, both DECAF and VDF perform selective dynamic analysis using a

collection of novel techniques. These tools improve upon the current state of the art,

providing empirical results applicable to real-world problems. Future work, as mentioned

throughout the dissertation, will be required to address the limitations of each tool and

extend their functionalities to handle additional hardware features and architectures.

APPENDICES

128

A. RULE CONSTRUCTION AND VERIFICATION: A 2-BIT AND

EXAMPLE

The and instruction is a good candidate for illustrating the different stages of rule

construction and verification. The simple in-place flow type plus the straight forward taint

propagation rule means the analysis for a 2-bit and is equivalent to the analysis for 32-bit

and, as well as other bit lengths.

The SMT2 declarations for revealing the flow-type of the 2-bit and is listed in Figure

A.1. Lines 1 to 4 declare a new sort named STATE that is an alias for a bitvector of length

5 (2 for dst, 2 for src and 1 for zf1), as well as functions to extract the corresponding bits of

the state. Helper functions are defined on lines 6, 8, and 10. The update function which

returns the new state value given an input state is defined on line 12. Similar declarations

of helper functions and final update functions are defined for all of the instructions that are

listed in Table 3.2.

Recall that Definition 3.5.1 tests whether there is a system state where changing a

single bit of the input will result in a change in the output. All possible system states are

tested by declaring the input state components as free variables on lines 15-19.

Once all preparatory declarations have been made, all possible input-to-output bit-wise

combinations are iterated through and apply Definition 3.5.1. Since the 2-bit and

instruction has 4 bits of input and 5 bits of output, there are a total of 20 possible

1We removed sf and pf for brevity.

129

1. (define-sort STATE () (_ BitVec 5))
2. (define-fun dst ((S STATE)) (_ BitVec 2) ((_ extract 4 3) S))
3. (define-fun src ((S STATE)) (_ BitVec 2) ((_ extract 2 1) S))
4. (define-fun zf ((S STATE)) (_ BitVec 1) ((_ extract 0 0) S))
5.
6. (define-fun f_bool2bv ((b bool)) (_ BitVec 1) (ite b #b1 #b0))
7.
8. (define-fun f_and ((S STATE)) (_ BitVec 2) (bvand (dst S) (src S)))
9.
10. (define-fun f_zf ((S STATE)) (_ BitVec 1) (f_bool2bv (= (f_and S) #b00)))
11.
12. (define-fun x86_and ((S STATE)) (STATE) (concat (f_and S) (src S) (f_zf S)))
13.
14. ;---- FREE VARIABLE DECLARATIONS ----
15. (declare-const DST_1 (_ BitVec 1)) ; dst[1:1]
16. (declare-const DST_0 (_ BitVec 1)) ; dst[0:0]
17. (declare-const SRC_1 (_ BitVec 1)) ; src[1:1]
18. (declare-const SRC_0 (_ BitVec 1)) ; src[0:0]
19. (declare-const ZF_0 (_ BitVec 1)) ; zf
20. ;---- END DECLARATIONS ----
21.
22. ; 1: dst [1:1] -> dst [1:1]
23. (push)
24. (assert (exists ((i (_ BitVec 1)) (j (_ BitVec 1)))
25. (not (= ((_ extract 1 1) (dst (x86_and (concat i DST_0 SRC_1 SRC_0 ZF_0))))
26. ((_ extract 1 1) (dst (x86_and (concat j DST_0 SRC_1 SRC_0 ZF_0))))
27.))))
28. (check-sat)
29. (pop)
30. ;sat
31. ; 2: dst [1:1] -> dst [0:0]
32. (push)
33. (assert (exists ((i (_ BitVec 1)) (j (_ BitVec 1)))
34. (not (= ((_ extract 0 0) (dst (x86_and (concat i DST_0 SRC_1 SRC_0 ZF_0))))
35. ((_ extract 0 0) (dst (x86_and (concat j DST_0 SRC_1 SRC_0 ZF_0))))
36.))))
37. (check-sat)
38. (pop)
39. ;unsat
40. ; 8: dst [0:0] -> src [1:1]
41. (push)
42. (assert (exists ((i (_ BitVec 1)) (j (_ BitVec 1)))
43. (not (= ((_ extract 1 1) (src (x86_and (concat DST_1 i SRC_1 SRC_0 ZF_0))))
44. ((_ extract 1 1) (src (x86_and (concat DST_1 j SRC_1 SRC_0 ZF_0))))
45.))))
46. (check-sat)
47. (pop)
48. ;unsat
49. ;... TRUNCATED ...

Fig. A.1.: SMT2 for 2-bit and

combinations. Three of these combinations are shown on lines 23-29, 32-38, and 41-47.

In the first two test cases, there is a query whether there exists two assignments to bit 1 of

dst (the most significant bit) such that bits 1 and 0 of the resulting dst are different. The

first query returns sat (line 30) while the second returns unsat (line 39), meaning that there

is information flow from the highest bit of dst to itself, but not down to the lowest bit. The

130

third test case illustrates how the query is changed to determine whether there is

information flow from bit 0 of dst (it is now replaced with i and j) to bit 1 of src (the bit

being extract’ed).

The complete sat/unsat results are summarized in Table A.1. The in-place flow type

for dst is evident from the first two columns as information only flows from a bit from

either src or dst to the same bit in the dst. The third and fourth columns show that there is

only information flow from src to itself because it is unchanged by the instruction. The

final column indicates that the status of the zero flag changes based on changes from

either operand as expected.

Table A.1: Query Results for 2-bit and

dst[1:1] dst[0:0] src[1:1] src[0:0] zf
dst[1:1] sat unsat unsat unsat sat
dst[0:0] unsat sat unsat unsat sat
src[1:1] sat unsat sat unsat sat
src[0:0] unsat sat unsat sat sat

Once the flow-type is understood, a taint propagation rule is defined and a check

performed on its soundness and precision as listed in Figure A.2. Since the flow-type of

and is in-place, the most basic sound rule would be “a resulting bit is tainted if either of

the corresponding input bits are tainted”; however, this is known to be imprecise since it

does not take short-circuiting into account. The and of any bit with 0 will always be 0.

Therefore, an untainted 0 bit anded with any other bit (even if it is tainted) will always

result in 0. In accordance with Definition 3.5.1, the resulting bit should be untainted. This

special behavior is embedded into the taint propagation rule defined on lines 3-7.

131

1. (define-fun f_and ((x (_ BitVec 2)) (y (_ BitVec 2))) (_ BitVec 2) (bvand x y))
2.
3. (define-fun f_rule ((x (_ BitVec 2)) (y (_ BitVec 2)) (x_t (_ BitVec 2)) (y_t (_ BitVec 2))) (_ BitVec 2)
4. (bvand (bvor x_t y_t) ; either x or y is tainted
5. (bvand (bvor x x_t) ; unless x is 0 and not tainted
6. (bvor y y_t) ; or unless y is 0 and not tainted
7.)))
8.
9. ; A rule is precise if a bit of the result is NOT tainted implies all possible

10. ; re-assignments of tainted bits will not change the value of that bit
11. (define-fun isSound ((x (_ BitVec 2)) (y (_ BitVec 2)) (x_t (_ BitVec 2)) (y_t (_ BitVec 2))
12. (result_t (_ BitVec 2))) (Bool)
13. (and (implies (= #b0 ((_ extract 1 1) result_t))
14. (forall ((i (_ BitVec 2)) (j (_ BitVec 2)) (k (_ BitVec 2)) (l (_ BitVec 2)))
15. (=
16. ((_ extract 1 1) (f_and (bvor (bvand i x_t) (bvand (bvnot x_t) x))
17. (bvor (bvand k y_t) (bvand (bvnot y_t) y))))
18. ((_ extract 1 1) (f_and (bvor (bvand j x_t) (bvand (bvnot x_t) x))
19. (bvor (bvand l y_t) (bvand (bvnot y_t) y))))
20.)))
21. (implies (= #b0 ((_ extract 0 0) result_t))
22. (forall ((i (_ BitVec 2)) (j (_ BitVec 2)) (k (_ BitVec 2)) (l (_ BitVec 2)))
23. (=
24. ((_ extract 0 0) (f_and (bvor (bvand i x_t) (bvand (bvnot x_t) x))
25. (bvor (bvand k y_t) (bvand (bvnot y_t) y))))
26. ((_ extract 0 0) (f_and (bvor (bvand j x_t) (bvand (bvnot x_t) x))
27. (bvor (bvand l y_t) (bvand (bvnot y_t) y))))
28.)))
29.))
30.
31. ; A rule is not precise if there are exists a tainted bit in the result,
32. ; but all possible assignments of tainted input bits do not change the value
33. ; of the resulting bit that was tainted
34. (define-fun isNotPrecise ((x (_ BitVec 2)) (y (_ BitVec 2)) (x_t (_ BitVec 2)) (y_t (_ BitVec 2))
35. (result_t (_ BitVec 2))) (Bool)
36. (or (and (= #b1 ((_ extract 1 1) result_t))
37. (forall ((i (_ BitVec 2)) (j (_ BitVec 2)) (k (_ BitVec 2)) (l (_ BitVec 2)))
38. (=
39. ((_ extract 1 1) (f_and (bvor (bvand i x_t) (bvand (bvnot x_t) x))
40. (bvor (bvand k y_t) (bvand (bvnot y_t) y))))
41. ((_ extract 1 1) (f_and (bvor (bvand j x_t) (bvand (bvnot x_t) x))
42. (bvor (bvand l y_t) (bvand (bvnot y_t) y))))
43.)))
44. (and (= #b1 ((_ extract 0 0) result_t))
45. (forall ((i (_ BitVec 2)) (j (_ BitVec 2)) (k (_ BitVec 2)) (l (_ BitVec 2)))
46. (=
47. ((_ extract 0 0) (f_and (bvor (bvand i x_t) (bvand (bvnot x_t) x))
48. (bvor (bvand k y_t) (bvand (bvnot y_t) y))))
49. ((_ extract 0 0) (f_and (bvor (bvand j x_t) (bvand (bvnot x_t) x))
50. (bvor (bvand l y_t) (bvand (bvnot y_t) y))))
51.)))
52.))
53.
54. (declare-const x (_ BitVec 2))
55. (declare-const y (_ BitVec 2))
56.
57. (push)
58. (assert
59. (not
60. (forall ((x_t (_ BitVec 2)) (y_t (_ BitVec 2)))
61. (isSound x y x_t y_t (f_rule x y x_t y_t))
62.)
63.)
64.)
65. (check-sat)
66. ;unsat
67. (pop)
68.
69. (assert
70. (exists ((x_t (_ BitVec 2)) (y_t (_ BitVec 2)))
71. (isNotPrecise x y x_t y_t (f_rule x y x_t y_t))
72.)
73.)
74. (check-sat)
75. ;unsat

Fig. A.2.: SMT2 for verifying the 2-bit and rule

To determine whether a rule is sound, a function isSound (lines 11-29) is defined

that ensures that if a bit of the result is untainted, then all possible assignments of tainted

132

(model
(define-fun y_t!10 () (_ BitVec 2)
#b10)

(define-fun y () (_ BitVec 2)
#b00)

(define-fun x () (_ BitVec 2)
#b00)

(define-fun x_t!11 () (_ BitVec 2)
#b00)

)

Fig. A.3.: Sat model for simple 2-bit and rule

input bits will not change the value of the corresponding output bit. A similar function is

defined to determine whether a rule is not precise (lines 34-52) by querying if there are

tainted bits of the output that do not change for all possible assignments of the tainted

inputs.

The soundness and precision queries are listed on lines 58-65 and 69-74, respectively.

Both queries return unsat, meaning that the rule is both sound and precise. The simple

rule can also be verified by replacing lines 4-6 with (bvor x t y t). This new query

returns unsat and sat, respectively, meaning that the rule is sound, but not precise. The

satisfying model is depicted in Figure A.3 and shows this short-circuiting behavior. That

is, if bit 1 of x is 0 and untainted (bit 1 of x t is also 0), and bit 1 of y is tainted, then the

simple rule is wrong; bit 1 of the result cannot be tainted.

133

B. VDF SAMPLE FUZZING RESULTS: SDHCI VIRTUAL DEVICE

QEMU provides a Secure Digital Host Controller Interface [21] (SDHCI) virtual device to

allow emulated guest OSes to interact with SD and microSD media device images that

exist on the host. This Appendix provides a subset of the raw data captured by VDF

during its testing of the SDHCI virtual device. The full test took over ten days to

complete, but the presented subset is only for the first 36 hours of testing.

VDF utilized six fuzzing instances executing concurrently during this test. These

fuzzers, named fuzzer01 through fuzzer06, all worked from the same initial seed

event replay data. fuzzer01 was configured as a master fuzzer instance, while fuzzers

02 though 06 were configured as slave instances. The primary difference between the

master fuzzer and slave fuzzer instances are that the master attempts to perform smart

mutations (bit/byte swaps, setting whole bytes to 0x00 or 0xFF, etc.) of the seed data to

explore paths of interest. Slave fuzzers will only randomly mutate the seed data (known as

a havoc mutation).

Figure B.1 shows the number of crashes and hangs discovered while fuzz testing the

SDHCI virtual device. Figure B.2 shows the number of paths (series of branches)

discovered and explored. Periodically, the fuzzer instances will share their results with

each other to notify other fuzzers of any newly discovered branches of interest. This

produces a distinctive stair-step pattern in the graph data (Figure B.2), which shows the

134

total and current number of discovered paths suddenly increasing when the master

fuzzer01 synchronizes with the slave instances.

An interesting observation of the data empirically gathered during the SDHCI testing

is that slave fuzzer instances tend to discover new branches of interest and crash/hangs

faster than the master fuzzer instance does. One hypothesis is that new branches of

interest are so easily discovered by random mutation due to VDF’s filtering of invalid

events and its focusing of the mutated data into the device callback functions.

135

Master (fuzzer01):

Slaves (fuzzer02 through fuzzer06):

Fig. B.1.: Function call depth and test cases triggering crashes and hangs during the
fuzzing of the SDHCI virtual device in QEMU source file hw/sd/sdhci.c.

136

Master (fuzzer01):

Slaves (fuzzer02 through fuzzer06):

Fig. B.2.: Discovered, explored, and pending paths during the fuzzing of the SDHCI
virtual device in QEMU source file hw/sd/sdhci.c.

LIST OF REFERENCES

137

LIST OF REFERENCES

[1] Advanced Linux Sound Architecture (ALSA). URL
http://www.alsa-project.org.

[2] Amazon.com, Inc. Form 10-K 2015. URL
http://www.sec.gov/edgar.shtml.

[3] Bochs: The Cross Platform IA-32 Emulator. URL
http://bochs.sourceforge.net/.

[4] CVE-2014-2894: Off-by-one error in the cmd start function in smart self test in IDE
core, . URL https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2894.

[5] CVE-2015-3456: Floppy disk controller (FDC) allows guest users to cause denial of
service, . URL https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3456.

[6] CVE-2015-5279: Heap-based buffer overflow in NE2000 virtual device, . URL
https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5279.

[7] CVE-2015-6855: IDE core does not properly restrict commands, . URL http:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6855.

[8] CVE-2016-1981: Reserved, . URL https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1981.

[9] [Qemu-devel] [PATCH] e1000: eliminate infinite loops on out-of-bounds transfer
start, . URL https://lists.gnu.org/archive/html/qemu-devel/
2016-01/msg03454.html.

[10] DECAF Binary Analysis Platform. URL
https://github.com/sycurelab/decaf/.

[11] Kernel-Based Virtual Machine. URL http://www.linux-kvm.org/.

[12] Valgrind: Project Suggestions. URL
http://valgrind.org/help/projects.html.

[13] PCI - OSDev Wiki. URL http://wiki.osdev.org/PCI.

[14] [Qemu-devel] [PATCH 1/5] Provide support for the CUSE TPM. URL
https://lists.nongnu.org/archive/html/qemu-devel/
2015-04/msg01792.html.

[15] Qubes OS Project. URL https://www.qubes-os.org/.

http://www.alsa-project.org
http://www.sec.gov/edgar.shtml
http://bochs.sourceforge.net/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2894
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2894
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3456
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3456
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5279
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5279
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6855
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6855
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1981
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1981
https://lists.gnu.org/archive/html/qemu-devel/2016-01/msg03454.html
https://lists.gnu.org/archive/html/qemu-devel/2016-01/msg03454.html
https://github.com/sycurelab/decaf/
http://www.linux-kvm.org/
http://valgrind.org/help/projects.html
http://wiki.osdev.org/PCI
https://lists.nongnu.org/archive/html/qemu-devel/2015-04/msg01792.html
https://lists.nongnu.org/archive/html/qemu-devel/2015-04/msg01792.html
https://www.qubes-os.org/

138

[16] TEMU: The BitBlaze Dynamic Analysis Component. URL
http://bitblaze.cs.berkeley.edu/temu.html.

[17] VMWare. URL http://www.vmware.com.

[18] [Qemu-devel] [PATCH 1/2] hw/sd: implement CMD23 (SET BLOCK COUNT) for
MMC compatibility. URL https://lists.gnu.org/archive/html/
qemu-devel/2015-12/msg00948.html.

[19] Features/QTest. URL http://wiki.qemu.org/Features/QTest.

[20] TrouSerS - The open-source TCG software stack. URL
http://trousers.sourceforge.net.

[21] SD Host Controller Simplified Specification Version 2.00. Technical report, SD
Association, 2007. URL https:
//www.sdcard.org/developers/overview/host_controller/
simple_spec/Simplified_SD_Host_Controller_Spec.pdf.

[22] V. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke. LLVA : A Low-level
Virtual Instruction Set Architecture. In Proceedings of the 36th annual ACM/IEEE
International Symposium on Microarchitecture (MICRO-36), San Diego, CA, 2003.

[23] H. Agrawal and J. R. Horgan. Dynamic Program Slicing. In Proceedings of PLDI
1990, 1990.

[24] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, principles, techniques, and tools.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1986. ISBN
0-201-10088-6.

[25] A. Alwabel, H. Shi, G. Bartlett, and J. Mirkovic. Safe and Automated Live Malware
Experimentation on Public Testbeds. In 7th Workshop on Cyber Security
Experimentation and Test (CSET 14), 2014. URL https://www.usenix.org/
conference/cset14/workshop-program/presentation/alwabel.

[26] T. Avgerinos, S. K. Cha, B. Lim, T. Hao, and D. Brumley. AEG : Automatic Exploit
Generation. In Proceedings of Network and Distributed System Security Symposium
(NDSS), 2011.

[27] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. ACM SIGOPS Operating
Systems Review, 37(5):164, dec 2003. ISSN 01635980. doi:
10.1145/1165389.945462. URL
http://portal.acm.org/citation.cfm?doid=1165389.945462.

[28] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard - Version 2.0, 2015.

[29] F. Bellard. QEMU, a fast and portable dynamic translator. In USENIX Annual
Technical Conference, Freenix Track, pages 41–46, 2005. URL
http://static.usenix.org/events/usenix05/tech/freenix/
full_papers/bellard/bellard_html/.

[30] S. Berger. libtpms library. URL
https://github.com/stefanberger/libtpms.

[31] E. Bosman, A. Slowinska, and H. Bos. Minemu : The World’s Fastest Taint Tracker.
In Recent Advances in Intrustion Detection, pages 1–20. Springer, 2011.

http://bitblaze.cs.berkeley.edu/temu.html
http://www.vmware.com
https://lists.gnu.org/archive/html/qemu-devel/2015-12/msg00948.html
https://lists.gnu.org/archive/html/qemu-devel/2015-12/msg00948.html
http://wiki.qemu.org/Features/QTest
http://trousers.sourceforge.net
https://www.sdcard.org/developers/overview/host_controller/simple_spec/Simplified_SD_Host_Controller_Spec.pdf
https://www.sdcard.org/developers/overview/host_controller/simple_spec/Simplified_SD_Host_Controller_Spec.pdf
https://www.sdcard.org/developers/overview/host_controller/simple_spec/Simplified_SD_Host_Controller_Spec.pdf
https://www.usenix.org/conference/cset14/workshop-program/presentation/alwabel
https://www.usenix.org/conference/cset14/workshop-program/presentation/alwabel
http://portal.acm.org/citation.cfm?doid=1165389.945462
http://static.usenix.org/events/usenix05/tech/freenix/full_papers/bellard/bellard_html/
http://static.usenix.org/events/usenix05/tech/freenix/full_papers/bellard/bellard_html/
https://github.com/stefanberger/libtpms

139

[32] D. Bruening. Efficient, transparent, and comprehensive runtime code manipulation.
PhD thesis, 2004. URL
http://groups.csail.mit.edu/cag/rio/derek-phd-thesis.pdf.

[33] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. BAP: A Binary Analysis
Platform. pages 463–469. 2011. doi: 10.1007/978-3-642-22110-1 37. URL
http://link.springer.com/10.1007/978-3-642-22110-1_37.

[34] C. Bryant. [1/4] tpm: Add TPM NVRAM Implementation, 2013. URL
https://patchwork.ozlabs.org/patch/288936/.

[35] J. Caballero, N. M. Johnson, S. Mccamant, and D. Song. Binary Code Extraction
and Interface Identification for Security Applications. In Proceedings of Network
and Distributed System Security Symposium (NDSS), 2010.

[36] C. Cadar, D. Dunbar, and D. Engler. KLEE : Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs. In Proceedings of the 8th
symposium on Operating systems design and implementation, pages 209–224.
USENIX Association, 2008.

[37] C. Carmony, M. Zhang, X. Hu, A. V. Bhaskar, and H. Yin. Extract Me If You Can:
Abusing PDF Parsers in Malware Detectors. In NDSS, number February, pages
21–24, 2016. ISBN 189156241X. doi: 10.14722/ndss.2016.23483. URL
http://dl.acm.org/citation.cfm?id=2664243.2664248http:
//dl.acm.org/citation.cfm?doid=2664243.2664248.

[38] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing Mayhem on Binary
Code. In 2012 IEEE Symposium on Security and Privacy, pages 380–394. IEEE,
may 2012. ISBN 978-1-4673-1244-8. doi: 10.1109/SP.2012.31. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6234425.

[39] V. Chipounov. S2E: A Platform for In-Vivo Multi-Path Analysis of Software Systems.
PhD thesis, Ecole Polytechnique Federale De Lausanne, 2014.

[40] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea. Selective Symbolic
Execution. In Proceedings of Fifth Workshop on Hot Topics in System
Dependability, number June, Lisbon, Portugal, 2009.

[41] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum. Understanding
Data Lifetime via Whole System Simulation. In USENIX Security Symposium, pages
321–336, 2004.

[42] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program analysis from
execution in virtual environments. In USENIX Annual Technical Conference, pages
1–14, 2008.

[43] J. Clause, W. Li, and A. Orso. Dytan: A Generic Dynamic Taint Analysis
Framework. In Proceedings of the 2007 international symposium on Software testing
and analysis - ISSTA ’07, pages 196–206, New York, New York, USA, 2007. ACM
Press. ISBN 9781595937346. doi: 10.1145/1273463.1273490. URL
http://portal.acm.org/citation.cfm?doid=1273463.1273490.

[44] K. Cong, F. Xie, and L. Lei. Symbolic Execution of Virtual Devices. In 2013 13th
International Conference on Quality Software, pages 1–10. IEEE, jul 2013. ISBN
978-0-7695-5039-8. doi: 10.1109/QSIC.2013.44. URL http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6605903.

http://groups.csail.mit.edu/cag/rio/derek-phd-thesis.pdf
http://link.springer.com/10.1007/978-3-642-22110-1_37
https://patchwork.ozlabs.org/patch/288936/
http://dl.acm.org/citation.cfm?id=2664243.2664248 http://dl.acm.org/citation.cfm?doid=2664243.2664248
http://dl.acm.org/citation.cfm?id=2664243.2664248 http://dl.acm.org/citation.cfm?doid=2664243.2664248
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6234425
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6234425
http://portal.acm.org/citation.cfm?doid=1273463.1273490
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6605903
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6605903

140

[45] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux Device Drivers. O’ Reilly
Media, Inc., Sebastopol, CA, third edition, 2005. ISBN 978-0-596-00590-3.

[46] J. Crandall and F. Chong. Minos: Control Data Attack Prevention Orthogonal to
Memory Model. In 37th International Symposium on Microarchitecture
(MICRO-37’04), pages 221–232. IEEE, 2004. ISBN 0-7695-2126-6. doi:
10.1109/MICRO.2004.26. URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=1550996.

[47] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer Berlin Heidelberg, 2008.

[48] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether : Malware Analysis via
Hardware Virtualization Extensions. In Proceedings of the 15th ACM conference on
Computer and communications security, pages 51–62. ACM, 2008. ISBN
9781595938107.

[49] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee. Virtuoso : Narrowing
the Semantic Gap in Virtual Machine Introspection. In 2011 IEEE Symposium on
Security and Privacy, pages 297–312. IEEE, 2011.

[50] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan. Repeatable Reverse
Engineering for the Greater Good with PANDA. Technical report, Columbia
University, MIT Lincoln Laboratory, TR CUCS-023-14, 2014.

[51] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. ReVirt: Enabling
Intrusion Analysis through Virtual-Machine Logging and Replay. ACM SIGOPS
Operating Systems Review, 36(SI):211–224, dec 2002. ISSN 01635980. doi:
10.1145/844128.844148. URL
http://portal.acm.org/citation.cfm?doid=844128.844148.

[52] J. Elgaard, N. Klarlund, and A. Møller. MONA 1.x: new techniques for WS1S and
WS2S. In Proc. 10th International Conference on Computer-Aided Verification
(CAV), volume 1427, pages 516–520, 1998. ISBN 3540646086.

[53] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mcdaniel, and A. N. Sheth.
TaintDroid : An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation (OSDI ’10). Technical Report
NAS-TR-0120-2010, Network and Security Research Center, Department of
Computer Science and Engineering, Pennsylvania State University, USENIX
Association, 2010.

[54] Q. Feng, A. Prakash, H. Yin, and Z. Lin. MACE: High-coverage and robust memory
analysis for commodity operating systems. In Proceedings of the 30th Annual
Computer Security Applications Conference on - ACSAC ’14, pages 196–205, New
York, New York, USA, 2014. ACM Press. ISBN 9781450330053. doi:
10.1145/2664243.2664248. URL
http://dl.acm.org/citation.cfm?id=2664243.2664248http:
//dl.acm.org/citation.cfm?doid=2664243.2664248.

[55] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and
its use in optimization. ACM Transactions on Programming Languages and Systems,
9(3):319–349, jul 1987. ISSN 01640925. doi: 10.1145/24039.24041. URL
http://portal.acm.org/citation.cfm?doid=24039.24041.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1550996
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1550996
http://portal.acm.org/citation.cfm?doid=844128.844148
http://dl.acm.org/citation.cfm?id=2664243.2664248 http://dl.acm.org/citation.cfm?doid=2664243.2664248
http://dl.acm.org/citation.cfm?id=2664243.2664248 http://dl.acm.org/citation.cfm?doid=2664243.2664248
http://portal.acm.org/citation.cfm?doid=24039.24041

141

[56] Y. Fu and Z. Lin. Space Traveling across VM : Automatically Bridging the Semantic
Gap in Virtual Machine Introspection via Online Kernel Data Redirection. In 2012
IEEE Symposium on Security and Privacy, 2012. doi: 10.1109/SP.2012.40.

[57] V. Ganesh and D. L. Dill. A Decision Procedure for Bit-Vectors and Arrays. In
Proceedings of the International Conference in Computer Aided Verification (CAV
2007), pages 524–536, Berlin, Germany, 2007.

[58] T. Garfinkel and M. Rosenblum. A Virtual Machine Introspection Based
Architecture for Intrusion Detection. In Proceedings of Network and Distributed
System Security Symposium (NDSS), 2003.

[59] P. Godefroid, M. Y. Levin, and D. Molnar. SAGE: Whitebox Fuzzing for Security
Testing. Queue, 10(1):20, jan 2012. ISSN 15427730. doi:
10.1145/2090147.2094081. URL
http://dl.acm.org/citation.cfm?doid=2090147.2094081.

[60] J. A. Goguen and J. Meseguer. Security Policies and Security Models. In 1982 IEEE
Symposium on Security and Privacy, pages 1–11. IEEE, apr 1982. ISBN
0-8186-0410-7. doi: 10.1109/SP.1982.10014. URL http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6234468.

[61] S. Golovanov. Analysis of TDSS rootkit technologies, 2010. URL
https://securelist.com/analysis/publications/36314/tdss/.

[62] A. Henderson, L. K. Yan, X. Hu, A. Prakash, H. Yin, and S. McCamant. DECAF : A
Platform-Neutral Whole-System Dynamic Binary Analysis Platform. To appear in
IEEE Transactions on Software Engineering.

[63] A. Henderson, A. Prakash, L. K. Yan, X. Hu, X. Wang, R. Zhou, and H. Yin. Make it
work, make it right, make it fast: building a platform-neutral whole-system dynamic
binary analysis platform. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis - ISSTA 2014, pages 248–258, New York, New York,
USA, 2014. ACM Press. ISBN 9781450326452. doi: 10.1145/2610384.2610407.
URL http://dl.acm.org/citation.cfm?doid=2610384.2610407.

[64] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual, vol. 1-3.
Number 253665, 325383, 325384. 2016. URL http://www.intel.com/
content/www/us/en/architecture-and-technology/
64-ia-32-architectures-optimization-manual.html.

[65] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh, D. I. August, and A. D. Keromytis.
A General Approach for Efficiently Accelerating Software-based Dynamic Data
Flow Tracking on Commodity Hardware. In Proceedings of Network and
Distributed System Security Symposium (NDSS), 2012.

[66] X. Jiang, X. Wang, and D. Xu. Stealthy Malware Detection Through VMM-Based
Out-of-the-Box Semantic View Reconstruction. In Proceedings of the 14th ACM
conference on Computer and communications security, pages 128–138. ACM, 2007.
ISBN 9781595937032.

[67] M. G. Kang, P. Poosankam, and H. Yin. Renovo : A Hidden Code Extractor for
Packed Executables. In Proceedings of the 2007 ACM workshop on Recurring
malcode, pages 46–53. ACM, 2007. ISBN 9781595938862.

http://dl.acm.org/citation.cfm?doid=2090147.2094081
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6234468
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6234468
https://securelist.com/analysis/publications/36314/tdss/
http://dl.acm.org/citation.cfm?doid=2610384.2610407
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html

142

[68] M. G. Kang, S. McCamant, P. Poosankam, and D. Song. DTA ++ : Dynamic Taint
Analysis with Targeted Control-Flow Propagation. In Proceedings of Network and
Distributed System Security Symposium (NDSS), 2011.

[69] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. libdft: Practical
dynamic data flow tracking for commodity systems. In Proceedings of the 8th ACM
SIGPLAN/SIGOPS conference on Virtual Execution Environments - VEE ’12, pages
121–132, New York, New York, USA, 2012. ACM Press. ISBN 9781450311762.
doi: 10.1145/2151024.2151042. URL
http://dl.acm.org/citation.cfm?doid=2151024.2151042.

[70] C.-k. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. Janapa,
and K. Hazelwood. Pin : Building Customized Program Analysis Tools. In
Proceedings of PLDI 2005, volume 40, 2005. ISBN 1595930566.

[71] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi. Testing CPU emulators. In
Proceedings of the eighteenth international symposium on Software testing and
analysis - ISSTA ’09, page 261, New York, New York, USA, 2009. ACM Press.
ISBN 9781605583389. doi: 10.1145/1572272.1572303. URL
http://doi.acm.org/10.1145/1572272.1572303http:
//portal.acm.org/citation.cfm?doid=1572272.1572303.

[72] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and P. Maniatis.
Path-Exploration Lifting : Hi-Fi Tests for Lo-Fi Emulators. In Proceedings of the
17th international conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 337–348, 2012. ISBN 9781450307598.
doi: 10.1145/2150976.2151012. URL
http://dl.acm.org/citation.cfm?id=2151012.

[73] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of UNIX
utilities. Communications of the ACM, 33(12):32–44, 1990. ISSN 00010782. doi:
10.1145/96267.96279. URL
http://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf.

[74] N. Nethercote and J. Seward. Valgrind : A Framework for Heavyweight Dynamic
Binary Instrumentation. In Proceedings of PLDI 2007, volume 42, 2007. ISBN
9781595936332.

[75] J. Newsome and D. Song. Dynamic Taint Analysis for Automatic Detection ,
Analysis , and Signature Generation of Exploits on Commodity Software. In
Proceedings of Network and Distributed System Security Symposium (NDSS), 2005.

[76] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su. X-Force: Force-Executing
Binary Programs for Security Applications. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 829–844, 2014. ISBN 978-1-931971-15-7. URL
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/peng.

[77] G. Portokalidis, A. Slowinska, and H. Bos. Argos : an Emulator for Fingerprinting
Zero-Day Attacks for advertised honeypots with automatic signature generation.
ACM SIGOPS Operating Systems Review, 40(4):15–27, 2006.

[78] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu. LIFT: A Low-Overhead
Practical Information Flow Tracking System for Detecting Security Attacks. In 2006
39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’06), pages 135–148. IEEE, dec 2006. ISBN 0-7695-2732-9. doi:

http://dl.acm.org/citation.cfm?doid=2151024.2151042
http://doi.acm.org/10.1145/1572272.1572303 http://portal.acm.org/citation.cfm?doid=1572272.1572303
http://doi.acm.org/10.1145/1572272.1572303 http://portal.acm.org/citation.cfm?doid=1572272.1572303
http://dl.acm.org/citation.cfm?id=2151012
http://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/peng
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/peng

143

10.1109/MICRO.2006.29. URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4041842.

[79] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and D. Brumley.
Optimizing Seed Selection for Fuzzing. In 23rd USENIX Security Symposium, 2014.
ISBN 9781931971157.

[80] K. Scott and J. Davidson. Safe virtual execution using software dynamic translation.
In 18th Annual Computer Security Applications Conference, 2002. Proceedings.,
pages 209–218. IEEE Computer Society, 2002. ISBN 0-7695-1828-1. doi:
10.1109/CSAC.2002.1176292. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=1176292.

[81] J. Seward and N. Nethercote. Using Valgrind to detect undefined value errors with
bit-precision. In USENIX Annual Technical Conference, pages 17–30, 2005.

[82] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, and P. Poosankam. BitBlaze : A New Approach to Computer Security
via Binary Analysis. In Information Systems Security, pages 1–25. Springer, 2008.

[83] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna. Driller: Augmenting Fuzzing Through
Selective Symbolic Execution. In Proceedings of NDSS 2016, number February,
2016. ISBN 189156241X. doi: 10.14722/ndss.2016.23368.

[84] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A Checksum-Aware Directed
Fuzzing Tool for Automatic Software Vulnerability Detection. In 2010 IEEE
Symposium on Security and Privacy, number June, pages 497–512. IEEE, 2010.
ISBN 978-1-4244-6894-2. doi: 10.1109/SP.2010.37. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5504701.

[85] J. Wei, L. K. Yan, and M. A. Hakim. MOSE: Live Migration Based On-the-Fly
Software Emulation. In Proceedings of the 31st Annual Computer Security
Applications Conference on - ACSAC 2015, pages 221–230, New York, New York,
USA, 2015. ACM Press. ISBN 9781450336826. doi: 10.1145/2818000.2818022.
URL http://dl.acm.org/citation.cfm?doid=2818000.2818022.

[86] C. Wu, Z. Wang, and X. Jiang. Taming Hosted Hypervisors with (Mostly)
Deprivileged Execution. In Network and Distributed System Security Symposium,
2013.

[87] L. K. Yan. Transparent and Precise Malware Analysis Using Virtualization: From
Theory To Practice. PhD thesis, Syracuse University, 2013.

[88] L. K. Yan and H. Yin. DroidScope : Seamlessly Reconstructing the OS and Dalvik
Semantic Views for Dynamic Android Malware Analysis. In Proceedings of the 21st
USENIX Security Symposium, 2012.

[89] L. K. Yan, A. Henderson, X. Hu, H. Yin, and S. McCamant. On Soundness and
Precision of Dynamic Taint Analysis. Technical report, Syracuse University, 2014.

[90] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama : Capturing
System-wide Information Flow for Malware Detection and Analysis. In Proceedings
of the 14th ACM conference on Computer and communications security, pages
116–127. ACM, 2007. ISBN 9781595937032.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4041842
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4041842
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1176292
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1176292
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5504701
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5504701
http://dl.acm.org/citation.cfm?doid=2818000.2818022

144

[91] H. Yin, Z. Liang, and D. Song. HookFinder : Identifying and Understanding
Malware Hooking Behaviors. In Proceedings of Network and Distributed System
Security Symposium (NDSS), 2008.

[92] M. Zalewski. American Fuzzy Lop Fuzzer. URL
http://lcamtuf.coredump.cx/afl/.

http://lcamtuf.coredump.cx/afl/

VITA

145

VITA

Andrew W. Henderson was born in Corning, New York, USA. He received his

Bachelor of Science degree in Computer Science at Embry-Riddle Aeronautical

University (Daytona Beach, Florida, USA). He received his Masters of Business

Administration degree from Jacksonville University (Jacksonville, Florida, USA). He

received his PhD in Electrical and Computer Engineering from Syracuse University

(Syracuse, New York, USA) in December 2016.

	Selective Dynamic Analysis of Virtualized Whole-System Guest Environments
	Recommended Citation

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Dynamic analysis design goals
	Hardening DECAF against malicious guest activity
	Overview of dissertation
	Previous publications

	Background
	Process-level dynamic analysis
	System-level dynamic analysis
	Using fuzzing for dynamic analysis

	DECAF
	Key challenges
	DECAF components
	Example DECAF Plugin

	Selective Code Instrumentation
	Just-in-Time VMI
	Goals and Challenges
	Solution

	Precise Lossless Dynamic Taint Analysis
	Taint Propagation in CPU Registers
	Taint Propagation in Memory and IO Devices
	Asynchronous Tainting

	Formal Model and Definitions
	Taint Propagation Rules in Practice
	Verifying Taint Propagation Rules
	Constructing Tainting Rules

	Evaluation
	SPEC CPU2006 Benchmarks
	Per-Trace Verification of DECAF's Tainting
	API Tracer
	Keylogger Detector
	Instruction Tracer

	Limitations of DECAF

	Virtual Device Fuzz Testing
	VDF Overview
	Background
	Understanding guest access of virtual devices
	Understanding memory mapped I/O

	Fuzzing virtual devices
	Fuzzing workflow
	Virtual device record and replay
	Selective branch instrumentation
	Creation of minimal test cases

	Evaluation
	Virtual device coverage and bug discovery
	Classification of all discovered virtual device bugs

	Limitations of VDF
	Related Work

	Summary
	Rule construction and verification: A 2-bit and example
	VDF Sample Fuzzing Results: SDHCI Virtual Device
	LIST OF REFERENCES
	VITA

