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ABSTRACT

Identification of a set of key players, is of interest in many disciplines such as sociology,

politics, finance, economics, etc. Although many algorithms have been proposed to identify

a set of key players, each emphasizes a single objective of interest. Consequently, the

prevailing deficiency of each of these methods is that, they perform well only when we

consider their objective of interest as the only characteristic that the set of key players

should have. But in complicated real life applications, we need a set of key players which

can perform well with respect to multiple objectives of interest.

In this dissertation, a new perspective for key player identification is proposed, based on

optimizing multiple objectives of interest. The proposed approach is useful in identifying

both key nodes and key edges in networks. Experimental results show that the sets of key

players which optimize multiple objectives perform better than the key players identified

using existing algorithms, in multiple applications such as eventual influence limitation

problem, immunization problem, improving the fault tolerance of the smart grid, etc.

We utilize multi-objective optimization algorithms to optimize a set of objectives for

a particular application. A large number of solutions are obtained when the number of

objectives is high and the objectives are uncorrelated. But decision-makers usually require

one or two solutions for their applications. In addition, the computational time required for

multi-objective optimization increases with the number of objectives. A novel approach

to obtain a subset of the Pareto optimal solutions is proposed and shown to alleviate the

aforementioned problems.

As the size and the complexity of the networks increase, so does the computational

effort needed to compute the network analysis measures. We show that degree centrality

based network sampling can be used to reduce the running times without compromising

the quality of key nodes obtained.



IDENTIFICATION OF KEY PLAYERS IN NETWORKS

USING MULTI-OBJECTIVE OPTIMIZATION AND ITS

APPLICATIONS

By

Raigamage Chulaka Gunasekara
B.Sc (Hons.) in Computer Science and Engineering, University of Moratuwa, 2009

M.Sc. in Computer Science, Syracuse University, 2015

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer & Information Science & Engineering

Syracuse University
December 2016



Copyright c© 2016 Raigamage Chulaka Gunasekara

All rights reserved



ACKNOWLEDGMENTS

There is a long list of wonderful individuals to whom I should be extremely thank-

ful for helping me throughout the journey towards completing this thesis.

First and foremost, I am extremely fortunate to have two impeccable advisors;

Professor Kishan Mehrotra and Professor Chilukuri K. Mohan, who have been two

pillars of driving force, encouragement, and support throughout this journey. I

thank my two advisors for all the fruitful research discussions, the time they were

able to fit into their busy schedules when I needed, and helping to develop this

study into a PhD dissertation. I am also grateful to my dissertation committee

members; Professor Vir Phoha, Professor Sucheta Soundarajan, Professor Edmund

Yu and Professor Utpal Roy for their time and effort in providing me with invalu-

able feedback in putting together and improving my dissertation.

I should also acknowledge the former and current lab mates of the SENSE lab

at Syracuse University for very fruitful weekly research meetings, their valuable

feedback on my work, and for all the good times spent in Syracuse. I should also

thank all my friends in Syracuse, for being a integral part of my life for the last five

years.

I am also thankful for all the Professors at the Department of EECS at Syracuse

University from whom I have learned invaluable new knowledge and numerous

skills. I should also thank the staff members at the Department of EECS for seam-

lessly handling all administrative work necessary throughout my stay at Syracuse

University. I consider myself very fortunate to have had more some fantastic teach-

iv



ers right from my early school days in Sri Lanka. I take this as an opportunity to

thank all my teachers at Ananda College, Colombo and all my lecturers at Univer-

sity of Moratuwa, Sri Lanka.

Most of all, I am grateful to my family. My wife Ishani Ratnayake; who has been

selfless in supporting me every step of the way and waiting up many late nights

throughout last five years. I am extremely thankful to my parents and parents in

law, who have been the source of encouragement and influence throughout my

life. If not for their love, support, and encouragement, none of this could have

happened. I am dedicating this thesis to my precious daughter Mithuli, for being

the source of unending joy and love of my life.

v



TABLE OF CONTENTS

Acknowledgments iv

List of Tables x

List of Figures xiii

1 Introduction 1

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Key player identification in networks 8

2.1 Key node identification in networks . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Degree Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Betweenness Centrality . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Closeness Centrality . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Eigenvector Centrality . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.5 PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.6 Katz Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.7 HITS Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.8 k-Core Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.9 Identification of sets of key nodes . . . . . . . . . . . . . . . . . . 14

2.2 Key edge identification in networks . . . . . . . . . . . . . . . . . . . . . 17

vi



2.2.1 Edge weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Edge betweenness . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Edges to improve/reduce robustness . . . . . . . . . . . . . . . . . 19

2.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Decision making from multi-objective optimization 20

3.1 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Parent_selection . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Offspring_generation . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 Select_for_survival . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.4 Exploration vs exploitation in evolutionary algorithms . . . . . . . 24

3.2 Multi-objective optimization . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Evolutionary algorithms for multi-objective optimization . . . . . . 26

3.3 Large number of solutions in O-objective optimization . . . . . . . . . . . 29

3.3.1 Selecting solutions from the Pareto optimal set . . . . . . . . . . . 29

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Identifying multi-objective key nodes 35

4.1 Deficiencies of current approaches for key node identification . . . . . . . . 36

4.1.1 Collective behavior of a set of key nodes . . . . . . . . . . . . . . 37

4.1.2 Optimization of a single property . . . . . . . . . . . . . . . . . . 40

4.2 Multi-objective optimization for identification of k key nodes in social net-

works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Addressing the deficiency of Eigenvector Centrality using Multi-Objective

Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Using community information as an objective . . . . . . . . . . . . 43

4.3.2 Using distance as an objective . . . . . . . . . . . . . . . . . . . . 44

4.4 Selection of key players sets . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



4.4.1 Leave-k-out approach for multi-objective optimization . . . . . . . 47

4.5 Applications of multi-objective k-key players . . . . . . . . . . . . . . . . 54

4.5.1 Eventual Information Limitation problem . . . . . . . . . . . . . . 54

4.5.2 Improving the fault tolerance of the smart grid . . . . . . . . . . . 63

4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Reducing the computational time 80

5.1 Network Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Degree centrality based sampling . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Performance of degree centrality based sampling in key node iden-

tification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Applications of multi-objective key players identified on degree centrality

sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Performance of multi-objective key players in EIL problem . . . . . 91

5.3.2 Performance of multi-objective key player identification algorithm

on the Immunization problem . . . . . . . . . . . . . . . . . . . . 92

5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Improving network robustness using key edges 99

6.1 Robustness measures for networks . . . . . . . . . . . . . . . . . . . . . . 100

6.1.1 Measures based on the eigenvalues of the adjacency matrix . . . . . 100

6.1.2 Measures based on the eigenvalues of the Laplacian matrix . . . . . 101

6.1.3 Measures based on other properties . . . . . . . . . . . . . . . . . 102

6.2 Properties of network robustness measures . . . . . . . . . . . . . . . . . . 104

6.2.1 Analysis of trivial networks . . . . . . . . . . . . . . . . . . . . . 104

6.2.2 Behavior of the Robustness measures for a single edge addition to

the network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.3 Correlation of robustness measures . . . . . . . . . . . . . . . . . 107

viii



6.3 Multi-objective definition of robustness . . . . . . . . . . . . . . . . . . . 109

6.3.1 Fast calculation of robustness measures . . . . . . . . . . . . . . . 111

6.3.2 Selecting solutions from multi-objective optimization . . . . . . . . 112

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.1 Improving robustness by edge addition . . . . . . . . . . . . . . . 113

6.4.2 Network robustness after node attacks . . . . . . . . . . . . . . . . 118

6.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 Conclusions and Future work 123

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 125

ix



LIST OF TABLES

4.1 Statistics of the networks used . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Collective behavior of the key players . . . . . . . . . . . . . . . . . . . . 39

4.3 Set of multi-objective key players found for Dolphin Network. Objectives

: Eigenvector centrality (EC) of the super node, Number of communities

represented by the key nodes . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Set of multi-objective key players found for Prisoners Network. Objectives

: Eigenvector centrality (EC) of the super node, Number of communities

represented by the key nodes . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Performance Criteria and Measures for sets of Key Players . . . . . . . . . 51

4.6 Set of Key Players found for Dolphin Network from Pareto front and re-

spective centrality values . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Set of Key Players found for Prisoners Network from Pareto front and re-

spective centrality values . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.8 Comparison of Pareto set pruning approaches on the number of nodes re-

cruited by the limiting campaign . . . . . . . . . . . . . . . . . . . . . . . 59

4.9 The comparison of running times (in seconds) of Pareto set pruning ap-

proaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.10 Average percentage of the solutions identified by the Leave-k-out approach

are also solutions that belong to the Pareto front of the original multi-

objective optimization of the EIL problem . . . . . . . . . . . . . . . . . . 62

x



4.11 Number of surviving nodes in the power network after a random node at-

tack, in the fully synthetic model . . . . . . . . . . . . . . . . . . . . . . . 75

4.12 Standard deviation of number of nodes saved after random node attacks in

the fully synthetic model . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.13 Number of surviving nodes in the power network after a targeted node at-

tack in the fully synthetic model . . . . . . . . . . . . . . . . . . . . . . . 76

4.14 Standard deviation of number of nodes saved after targeted node attacks in

the fully synthetic model . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.15 Number of surviving nodes in the power network after a targeted node at-

tack in the semi-synthetic model . . . . . . . . . . . . . . . . . . . . . . . 78

4.16 Standard deviation of number of nodes saved after targeted node attacks in

the semi-synthetic model . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Statistics of the largest connected component in the networks and description 81

5.2 Running times for centrality calculations in seconds (Averages over 30 runs) 81

5.3 Time taken to identify EC key players with degree centrality sampling (sec-

onds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Time taken to identify PR key players with degree centrality sampling (sec-

onds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Time taken to identify BC key players with degree centrality sampling (sec-

onds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Improvements of running time using Degree centrality based sampling for

multi-objective key player identification . . . . . . . . . . . . . . . . . . . 90

5.7 Average number of nodes recruited by the Limiting Campaign starting at

different delays on ca-GrQc network . . . . . . . . . . . . . . . . . . . . . 92

5.8 The comparison of Pareto set pruning approaches on the Immunization

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xi



5.9 Probability of the solutions identified by the Leave-k-out approach also be-

ing solutions in the Pareto front of the original multi-objective optimization

(Immunization problem) . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.10 Average Time to stabilize . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.11 Average infection probability . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 Robustness values of the trivial networks . . . . . . . . . . . . . . . . . . . 106

6.2 Correlation of the robustness measures . . . . . . . . . . . . . . . . . . . . 108

6.3 Statistics and description of the networks used . . . . . . . . . . . . . . . . 113

6.4 Average robustness ranks of edge addition methods; smaller values repre-

sent greater robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Robustness values during targeted node attacks - OpenFlights network . . . 121

6.6 Robustness values during random node attacks - OpenFlights network . . . 122

xii



LIST OF FIGURES

3.1 One point crossover operator . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Mutation operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Dolphin Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Creation of the Ssuper as a node for a set of nodes S . . . . . . . . . . . . . 38

4.3 Pareto Fronts : Objectives - Eigenvector centrality of the super node and

average distance between key players . . . . . . . . . . . . . . . . . . . . 46

4.4 Pareto Fronts : Objectives - Borgatti’s KPP positive and negative . . . . . . 48

4.5 Comparison of the positions of the key players identified by the Eigenvector

centrality approach vs the positions of the key players identified by multi-

objective approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Number of nodes recruited by the Limiting Campaign starting at differnt

delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 North American power grid and the degree distribution . . . . . . . . . . . 68

4.8 Cascading failures in a smart grid; the subgraph on the left (in red) shows

the power network, and the network on the right (in blue) represents the

communication network . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.9 Result of cascading failures in smart grid when an extra controlling link is

added to node C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xiii



5.1 Comparison of sampling algorithms on the ca-GrQC network: performance

in retaining the original network’s top 10 key players using different cen-

trality measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Comparison of sampling algorithms on the PGP network: performance in

retaining the original network’s top 10 key players using different centrality

measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Pareto Fronts: Eigenvector centrality of the super node and Average dis-

tance between key players . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Pareto Fronts: Degree centrality of the super node and Betweenness cen-

trality of the super node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 Six trivial networks considered for robustness calculation; the networks are

arranged in the increasing order of robustness assesed intutively. . . . . . . 105

6.2 Correlation plots between the robustness measures . . . . . . . . . . . . . 109

6.3 Robustness improvement in OpenFlights network - Comparison between

multi-objective approach and single objective approaches . . . . . . . . . . 115

6.4 Robustness improvement in OpenFlights network - Comparison between

multi-objective approach and heuristic approaches . . . . . . . . . . . . . 117

xiv



1

CHAPTER 1

INTRODUCTION

Networks provide an excellent platform to model many complex systems comprised of a

set of entities and various relationships among them. When such a system is modeled as

a network, the entities are represented as nodes (vertices), and the relationships among the

entities are represented as edges. Some such systems which are commonly modeled and

studied as networks include the Internet, social networks, food web, gene regulatory net-

works, infrastructure networks, etc. Various concepts of network theory have been used to

reveal interesting patterns and open pathways to insights in the modeled systems. Starting

from the well known ‘Seven Bridges of Koenigsberg’ problem in 1735, network theory has

been applied to many disciplines including physics, computer science, electrical engineer-

ing, biology, economics, and sociology.

Some of the interesting problems that are studied through network science include iden-

tification of important entities in systems, detecting communities of users in social net-

works, identifying anomalous users in social settings, modeling and analyzing information

or disease spread among people in various regions, and predicting possible connections that

can occur in future among people.

Modeling real-world data using networks has become popular in recent years, and the

size of the networks analyzed has also grown rapidly in size. For example, social networks
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such as Facebook and Twitter have reached hundreds of millions of users around the world.

The World Wide Web contains at least five billion pages. As the networks grow in size,

the insights that can be unveiled through network science expand, while presenting the

researchers with challenges that arise with such large volumes of data.

1.1 Objectives

The main focus of this dissertation is to identify the most important entities in a system

modeled as a network. These important entities are referred to as key players, throughout

this dissertation. Networks consist of nodes and edges; in this study we consider identifi-

cation of both the key nodes and the key edges.

Key nodes in an environment represented by a network are the most important entities

in the modeled environment; such as decision makers in an organization, opinion leaders in

social media, celebrities and political leaders, key infrastructure nodes in an urban network,

and mediators between communities.

Selecting a set of key nodes from a system that is represented as a network is an impor-

tant research problem in many disciplines, such as the following:

• In viral marketing, it is important to identify and target the ‘right’ set of key people

in a population to spread information efficiently and effectively.

• In human resource management, it is critical to identify and strategically place the

key people to improve the productivity of the entire organization.

• In politics, it is necessary to gain the support of key individuals to gain advantages in

political campaigns.

Many node centrality measures have been proposed to capture the different behaviors

a node can have in a social setting. These node centrality measures are used to identify key

nodes in a networks, and are discussed in Chapter 2.
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Identifying the important edges in a network plays an important role in applications

such as the following:

• In information diffusion applications, it is important to identify the edges which play

an important role in diffusing information more efficiently among different parts

(communities) in the network.

• In determining and strengthening robustness of networked environments, it is impor-

tant to identify the connections that upon removal would collapse the network, and

take necessary measures to protect these connections from attacks and failure.

Current approaches proposed to identify key edges include methods based on the strength

of the edges, edge centrality measures and optimization techniques addressing a specific

property of interest to the network. These measures are discussed in Chapter 2 and Chapter

6.

One common property of all the current approaches for key player identification is that

each of these methods identifies key players based on a single characteristic of interest. For

example, one trivial method to identify important nodes in a network is to count the number

of edges incident on each node. Intuitively, an important node in a network should be con-

nected to more peers in a network setting. But, this method of key node identification does

not consider the structure of the network and the positions to which these selected nodes

belong in the network. Hence, the identified key players might come from the periphery of

the network, which may not correspond to the most important positions in a network.

We investigate the effects of using key players which optimize multiple properties of

interest in different well known applications of network science. Our hypothesis is that

when a set of key players optimizes multiple properties which are relevant for a particular

application, this set of key players should outperform the sets of key players identified

based on a single property of interest. Towards this goal, we identify both key nodes and

key edges, that optimize multiple properties of interest. In multiple applications, we show
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that key players which optimize multiple objectives perform better than the key players

identified using existing algorithms.

We utilize multi-objective optimization algorithms (such as NSGA-II) to optimize a

set of objectives for a particular application. Such an approach identifies a set of solu-

tions (rather than one solution needed by a typical decision-maker), which are ‘equally’

good in optimizing the set of objectives. In addition, the computational time required for

multi-objective optimization increases with the number of objectives. To alleviate these

problems, we propose a technique which approximates the solutions in the multi-objective

optimization. The proposed approach utilizes a two-step process to multi-objective opti-

mization, and has advantages such as: (1) reducing the number of solutions in the solution

space, (2) reducing the computational time significantly, and (3) providing solutions which

deliver performance ‘similar’ to the performance obtained by the solutions given by the

unmodified multi-objective optimization algorithm.

As the size and the complexity of the networks increase, so do the computational times

associated with the network analysis measures. Hence, we focus on how network sampling

can be used to reduce the running times without compromising much on the quality of key

nodes obtained. We introduce the idea of degree centrality based sampling to reduce the

running time of the key node identification problem. We show that the multi-objective key

player sets obtained with degree centrality based sampled networks perform better than

single objective key player sets identified by applying the algorithms on the entire network.

1.2 Organization of the Dissertation

This dissertation is organized as follows. In Chapter 2, we discuss the related work on key

node and key edge identification methods. We discuss the widely used centrality measures,

and optimization techniques proposed to identify key players in networks.

Following this, in Chapter 3, first we discuss the basics of evolutionary algorithms,
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the background of multi-objective optimization tasks, and discuss how evolutionary algo-

rithms have been used to solve multi-objective optimization. One prevailing issue with

multi-objective optimization is that it identifies a set of solutions, rather than a single so-

lution as required by most decision makers. In addition to that, the time complexity of

multi-objective optimization increases with the number of objectives. To alleviate these is-

sues, we propose the leave-k-out approach for multi-objective optimization. We show that

the solutions for multi-objective optimization obtained using our approach perform well

compared to other approaches proposed to select solutions from a set of solutions obtained

by multi-objective optimization, while reducing the computational time significantly.

In Chapter 4, we propose the algorithm for identifying key nodes which optimize mul-

tiple objectives of interest. In our approach we transform the network of interest into a bit

string, and apply leave-k-out approach for multi-objective optimization to obtain key nodes

which optimize multiple properties of interest. We show that by using this approach we

can alleviate some of the prevailing problems of key node identification. Then we compare

the different key node identification methods in two well known applications, viz., Even-

tual Information Limitation (EIL) and improving the fault tolerance of the smart grid, and

show that the multi-objective approach outperforms the previous key node identification

methods.

As the size and the complexity of the networks increase, so do the running times of the

network analysis measures. The proposed multi-objective approach to key player identifi-

cation depends on the computational complexity of individual network centrality measures

and on the computational complexity of evolutionary optimization algorithm employed.

The focus of Chapter 5 is on how network sampling can be used to reduce the running

times of key player identification without compromising much on the quality of key nodes

obtained. First, we give an overview of the common network sampling methods. Next,

we propose the idea of degree centrality based sampling approach to reduce the running

time of the key node identification problem. Finally, the multi-objective key player sets
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obtained on degree centrality based sampled networks are used to address two well known

problems, viz., Eventual Information Limitation (EIL) problem and Immunization problem.

The results suggest that the multi-objective key player sets identified on sampled networks

perform better than single objective key player sets identified by applying the algorithms

on the entire network.

In Chapter 6 we address key edge identification. When edges are added to a network,

the properties of the network change. The amount of change depends on the importance

of the set of edges that are added to the network. In this study, we assume that upon addi-

tion a set of key edges should maximally improve the network robustness. In this chapter

we address the following problem : Given a network and a budget, how should a set of

‘key’ edges be selected to be added to the network in order to maximally improve the over-

all robustness of the network. Towards this goal, first we discuss the network robustness

measures that have been proposed and widely used. Then, we analyze the properties of

these robustness measures and identify their similarities and dissimilarities using correla-

tion analysis. Then, we use multi-objective optimization and the leave-k-out approach to

optimize multiple robustness measures of interest to improve the overall robustness of a

network. We provide experimental evidence which shows the improvement in multiple

robustness measures when the new edges are added using our algorithm.

Finally, Chapter 7 provides the concluding remarks of this study and the future direc-

tions of research.

1.3 Contributions

The main contributions of this thesis are as follows.

1. We are the first to propose an approach that identifies a set of key nodes which op-

timize multiple properties of interest. The experimental results show that the key

nodes identified using this approach outperform the key nodes identified using other
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approaches in multiple well known applications.

2. A key edge identification method, which optimize multiple properties of interest is

proposed. The sets of key edges identified using this approach improves the overall

robustness a network, compared to previous approaches to key edge identification.

3. We propose a two-step approximation approach for multi-objective optimization.

The solutions obtained for multi-objective optimization using our approach perform

‘equally’ well compared to other approaches proposed to select solutions from a set

of solutions obtained by multi-objective optimization, while reducing the computa-

tional time significantly.

4. A sampling approach based on degree centrality is proposed. We show that on mul-

tiple applications, the multi-objective key player sets identified on sampled networks

perform better than the single objective key player sets identified by applying the

algorithms on the entire network.
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CHAPTER 2

KEY PLAYER IDENTIFICATION IN

NETWORKS

As discussed in Chapter 1, key player identification in networks is an important problem.

Hence, over the years many algorithms have been proposed to solve this problem. This

chapter summarizes previous work on key player identification in networks, considering

key node identification as well as key edge identification.

2.1 Key node identification in networks

Given a networkG = (V,E) with a set of nodes V and a set of edges E ⊆ V ×V , network

centrality measures assign a value to the nodes in V based on the structural properties of

the network. The score each node gets assigned depends on the property of interest. A

network centrality measure is a function that maps a node v in the network G = (V,E) to

a real number. Based on the value each node receives from the centrality measure, a rank

can be assigned to each node. This rank determines the importance of a node with respect

to the structural property on which the centrality measure is based. In this section, some of

the most widely used centrality measures are presented.
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2.1.1 Degree Centrality

The number of vertices adjacent to a given vertex in a network is the degree of that vertex.

Degree centrality is defined as the ratio of the number of neighbors of a vertex with the

total number of neighbors possible [75].

Cdegree(x) = d(x) (2.1)

Cdegree centrality(x) =
d(x)

(n− 1)
(2.2)

where, d(x) is the number of nodes adjacent to node x, and n is the total number of nodes

in the network. For networks with directional edges (directed networks), two variants of

node degree are defined. In directed networks, the In-degree of a vertex x refers to the

number of edges received by x, and the Out-degree of a vertex x refers to the number of

edges initiated by x. Degree centrality is used to rank vertices in a network based on the

number of direct connections of each vertex, where the implication is that the vertices that

have more direct connections are more important. Degree centrality is a local measure and

does not consider the importance of the vertices to whom each vertex is connected; hence

using degree centrality to identify key nodes may not be satisfactory in some cases.

2.1.2 Betweenness Centrality

The degree of a node is not the only measure of the importance of a node in a network. In

Betweenness centrality, the nodes which have a high probability of occurring in shortest

paths of other nodes are considered to be more important [45, 81].

Cbetweenness centrality(x) =
∑

y,z 6=x, σy,z 6=0

σy,z(x)

σy,z
(2.3)

where, σy,z is the number of shortest paths between nodes y and z, and σy,z(x) is the number

of shortest paths between y and z that passes through x. The nodes with high betweenness
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centrality often act as bridges between different communities in a network. Thus, removal

of a node with high betweenness centrality can lead to increase in the geodesic path lengths,

and in the extreme case, the network might even get disconnected. In real world networks,

this can be important; for example, to prevent the spread of a disease in an epidemic net-

work. A common criticism for shortest-paths based measures is that they do not take into

account spread along non-shortest paths. Hence, betweenness measures that relax this as-

sumption by including contributions from essentially all paths between nodes (not just the

shortest) have also been proposed [83].

2.1.3 Closeness Centrality

In closeness centrality, the nodes with smallest paths to other nodes are considered more

important, formally defined as the length of the average shortest path between a vertex x

and all other vertices in the network [92].

Ccloseness centrality(x) =


n∑
j=1

d(x, i)

(n− 1)

−1

(2.4)

where d(x, i) is the shortest path distance between nodes x and i, and n is the total number

of nodes in the network. This can be used to measure how long it will take to spread

information from node x to all other nodes, and thus plays an important role in information

propagation in networks. For disconnected networks, Harmonic Centrality, which is a

variant of closeness centrality, has been defined as follows:

Charmonic centrality(x) =
∑
x 6=i

1

d(x, i)
(2.5)

where 1
d(x,i)

is taken to be 0 for disconnected node pairs.
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2.1.4 Eigenvector Centrality

Eigenvector centrality assigns relative scores to all nodes in the network based on the con-

cept that connections to high-scoring nodes contribute more to the score of the node of

interest [13]. Unlike degree centrality, in this case the importance of the neighbors is also

taken into account.

The eigenvector centralities of all the nodes in the network (vector x) are defined using

the equation,

Ax = λ1x (2.6)

where A is the adjacency matrix of the network and λ1 is the highest eigenvalue of A.

The power iteration method is used to approximate eigenvector centrality. Here, the

eigenvector centrality of a vertex is iteratively recomputed as the sum of centralities of its

neighbors. To begin the power iteration method, it is assumed that vertex i has eigenvec-

tor centrality of xi(0). Then we gradually improve this estimate by employing a Markov

model, and continue until no more improvement is observed. The estimate made at step t

is defined as,

xi(t) =
∑
j

Aijxj(t− 1) (2.7)

i.e.,

x(t) = Ax(t− 1)

and,

x(t) = Atx(0) (2.8)

2.1.5 PageRank

PageRank is a link analysis algorithm used by the Google Internet search engine, that

assigns a numerical weighting to each element of a hyperlinked set of documents, such
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as the World Wide Web [94]. The PageRank of a page is defined recursively and depends

on the PageRank metric of all pages that link to it. A page that is linked by many pages with

high PageRank receives a high rank. The same concept applies to identifying nodes with

high PageRank in a network. PageRank can be thought of as approximately a probability

distribution representing the likelihood that a random walk in the network will arrive at any

particular node.

PR(i) =
1− β
n

+ β
∑

(j,i)∈E

PR(j)

L(j)
(2.9)

where n is the number of nodes in the network, β is the damping factor defined for the

network.

2.1.6 Katz Centrality

In Katz centrality a weighted count of all nodes that are connected to a certain node is

considered. The weight of a path of length d is computed with attenuation factor βd, where

β is the attenuation constant defined for the application [65].

ki = Iij + β
∑
j

Aij + β2
∑
j

A2
ij + β3

∑
j

A3
ij + ...

or, in vector notation,

k = (I + βA+ β2A2 + β3A3 + ...)e

k =
∞∑
i=0

(βiAi)e

k = (1− βA)−1e

(1− βA)k = e (2.10)

where, A is the adjacency matrix and e is a unit vector.
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2.1.7 HITS Score

Hyperlink-Induced Topic Search (HITS) (hubs and authorities) is another algorithm that

can be used to rank nodes in a network. In the world wide web, a good hub represents a

page that points to many other informative pages, and a good authority represents a page

that is linked by many different hubs [69].

The algorithm assigns two scores for each page: its authority value, which estimates

the value of the content of the page, and its hub value, which estimates the value of its links

to other pages. The authority centrality of a node i (xi) is proportional to the sum of hub

centralities of nodes (yj) pointing to it, and is defined as

xi = α
∑
j

Ajiyj (2.11)

The hub centrality of a node is proportional to the sum of authority centralities of nodes it

points to, and is defined as

yi = β
∑
j

Aijxj (2.12)

2.1.8 k-Core Score

k-Core score is another recent approach to identify key nodes in a network. The argument

for this approach is that the best spreaders in the network reside in the core of the network

[68], and are identified by k-shell decomposition. The process assigns an integer index or

coreness, kx to each node, representing its location according to k successive layers (shells)

in the network. Small values of ks define the periphery of the network and the innermost

network core corresponds to large ks.

The process of assigning ks values for each node is as follows.

i. Start by removing all nodes with degree k = 1.

ii. After removing all the nodes with k = 1, some nodes may be left with one link, then
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continue pruning the network iteratively until there is no node left with k = 1 in the

network.

iii. The removed nodes, along with the corresponding links, form a k shell with index

ks = 1.

iv. In a similar fashion, iteratively remove the next shell, ks = 2, and continue removing

higher-k shells until all nodes are removed.

2.1.9 Identification of sets of key nodes

In some cases it is necessary to identify a set of key nodes, rather than one important node

for the whole network. Some of the examples of such cases involve the following:

1. A network comprised of several communities, so the key nodes should ideally come

from different parts of the network.

2. A set of key nodes with multiple capabilities are needed to be identified.

The problem of identifying an optimal set of k players is different from the problem

of selecting k individuals that are each individually optimal. Ideally, an algorithm that

identifies a set of key nodes should identify k key nodes that can ‘collectively’ perform

well. A few methods have been proposed to find sets of key nodes capable of optimizing

some performance criterion.

Group centrality

The concept of centrality has been applied not only to single individuals within a network

but also to groups of individuals, for example, measures for degree centrality, closeness

and betweenness are defined for a group [39]. Using these measures, a group having high

centrality will be the key node set. It must be remarked that group centrality can be used
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not only to measure how ‘central’ or important a group is, but also in constructing groups

with maximum centrality within an organization.

Combinatorial optimization to identify key node sets

Borgatti [14] described how to find a set of key nodes considering two different aspects.

He defined the set of nodes maximally connected to all other nodes as KPP-Pos and the set

of nodes whose removal would result in a residual network with the least possible cohesion

as KPP-Neg.

i. KPP-POS - These are the key nodes for the purpose of optimally diffusing something

through the network by using the key nodes as seeds. A measure for identifying the

measure of reach (DR), for a set of k key nodes was defined as follows.

DR =

∑
j

1

dK(j)

n
(2.13)

where, dK(j), is the minimum distance from any member of set of nodes K to node j,

and n is the total number of nodes in the network. The set of k nodes which gives the

highest DR is considered to be the k key nodes for KPP-POS.

ii. KPP-NEG - These are the key nodes for the purpose of disrupting or fragmenting the

network by removing the key nodes. A measure of Fragmentation(DF ), for a set of k

key nodes was defined as follows.

DF = 1−

2
∑
i>j

1

dij

n(n− 1)
(2.14)

where, dij , is the minimum distance between nodes i and j, and n is the total number

of nodes in the network. The set of k nodes, whose removal gives the highest DF

value, is considered to be the k key nodes for KPP-NEG.
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To identify the best set of nodes for each of the above problems, the following proce-

dure (combinatorial optimization) is followed.

Algorithm 1 : Greedy Combinatorial optimization
1: Select k nodes at random to populate set S
2: Find F = fitness value for the set S using appropriate key node metric
3: for Node u ∈ S do
4: for Node v 6∈ S do
5: ∆f = improvement in fitness if u and v were swapped
6: end for
7: end for
8: if ∆f ≤ 0 then
9: Terminate

10: else
11: Swap u and v with greatest ∆f and set F = F + ∆f
12: Go to step 3
13: end if

Information Theory to identify key node sets

Ortiz-Arroyo and Hussain [93] proposed an Information Theory based measure to find

KPP-Pos and KPP-Neg key node sets. This method relies on the structural properties of

the network, and uses Shannon’s definition of entropy to define the measures.

The connectivity probability distribution of the network is defined as,

χ(vi) =
deg(vi)

2n

Using the above definition, the connectivity entropy Hco, is defined as follows,

Hco(G) = −
n∑
i=1

χ(vi)× log2 χ(vi) (2.15)

The connectivity entropy measure provides information about the connectivity degree of a

node in the graph.

Another probability distribution can be defined in terms of the number of shortest or
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geodesic paths that have node vi as source and the rest of nodes in the network as targets.

This is called the centrality probability distribution.

γ(vi) =
paths(vi)

paths(v1, v2, .., vM)

where paths(vi) is the number of shortest paths from node vi to all the other nodes in the

network and paths(v1, v2, ..., vM) is the total number of shortest paths M that exists across

all the nodes in the graph. Using the above definition, the centrality entropy Hce, is defined

as follows,

Hce(G) = −
n∑
i=1

γ(vi)× log2 γ(vi) (2.16)

Centrality entropy provides information on the degree of reachability for a node in the

graph. The algorithm in [93] attempts to solve KPP-POS and KPP-NEG problems using

connectivity entropy and centrality entropy. To solve the KPP-POS problem, the set of

nodes that produce the largest change in Hco is selected. To solve the KPP-NEG problem,

the set of nodes that produce the largest change in Hce is selected.

2.2 Key edge identification in networks

Typically, key players in networks refer to important nodes in the network. However in

some contexts such as network robustness, edges also play an important role. Although

many approaches in the literature have been proposed to identify important nodes, there

are very few studies on identifying key edges in networks. Identifying the important edges

in a network plays an important role in applications such as the following:

• In information diffusion applications, it is important to identify the edges which play

an important role in diffusing information more efficiently among different parts

(communities) in the network.

• In determining and strengthening robustness of networked environments, it is impor-
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tant to identify the edges that upon removal would collapse the network, and take

necessary measures to protect these edges from attacks and failure.

As mentioned earlier, the number of methods proposed in literature to identify key

edges are limited compared to the number of methods proposed in identifying key nodes in

networks. In this section, some of the previous work on key edge identification is summa-

rized.

2.2.1 Edge weights

Most of the networks that have been studied are binary in nature; that is, the edges be-

tween vertices are either present or not. But some of the networks can also be weighted,

meaning their edges can have differing strengths; there may be stronger or weaker social

ties between individuals. For example, in a network representing the email exchanges in

an office environment, the number of email messages exchanged between two persons can

be considered as the edge weight between the corresponding nodes.

As the edges with the highest weights represent the most frequent interactions in the

network, edge weights provide a useful means to identify important edges in a weighted

network [36].

2.2.2 Edge betweenness

Node betweenness has been studied in the past as a measure of importance of nodes in

networks [45, 81]. In order to identify the important edges in a network in terms of ap-

pearing in ‘between’ the shortest paths of pairs of vertices, the node betweenness centrality

has been generalized to edges [48]. According to the notation introduced in [48], the edge

betweenness centrality for the edge e is defined as,

Cedge betweenness(e) =
∑
x 6=y∈V

σx,y(e)

σx,y
(2.17)
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where, σx,y(e) is the number of shortest paths between the nodes x and y, that includes

edge e, and σx,y is the total number of shortest paths between the nodes x and y. This

measure reflects the total number of shortest paths between nodes in the network that rely

on a given link. Thus, edges with higher edge betweenness centrality are generally more

important for maintaining the connectivity of the network than edges with low centrality.

2.2.3 Edges to improve/reduce robustness

When edges are removed from a social network, the properties of the network change. This

amount of change depends on the importance of the set of edges that gets removed. The

set of k edges that can reduce the robustness the most upon removal or the set of k edges

upon addition that can increase the robustness the most can be considered as ‘key’ edges

in a network. For example, in [21] the set of edges that minimize the natural connectivity

of the network [63] upon removal, and the set of edges that maximize natural connectivity

upon addition were identified as the important edges in the network. These methods are

discussed in detail in Chapter 6, where we focus on improving the network robustness using

key edges.

2.3 Concluding Remarks

In this chapter we reviewed some of the previously proposed approaches for key node and

key edge identification in network. One underlying property of all the approaches discussed

in this chapter is that each of them focuses on one property of interest. But in complicated

real life applications, we need a set of key players that can perform well with respect to

multiple objectives of interest. To address this problem, in chapter 4, we propose a new

algorithm for identifying key players which optimizes multiple objectives of interest.
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CHAPTER 3

DECISION MAKING FROM

MULTI-OBJECTIVE OPTIMIZATION

This chapter introduces evolutionary algorithms and multi-objective optimization, discusses

on problems of using multi-objective optimization to real-world decision making. This

chapter is organized as follows. Section 3.1 gives an overview of Evolutionary Algorithms

(EAs). In Second 3.2, we formally describe the problem of multi-objective optimization.

Section 3.3 discusses the problem that multi-objective optimization algorithms produce too

many solutions when the number of objectives are high and conflicting, and discusses the

approached proposed to solve this problem.

3.1 Evolutionary Algorithms

Various techniques have been proposed to solve optimization problems, and these tech-

niques can be classified into three categories: exhaustive, deterministic and stochastic.

In exhaustive search, the entire decision space is searched in order to find the optimal

solution. Therefore, exhaustive search techniques are highly computationally expensive

and cannot be applied to real world large problems. Deterministic search methods incor-
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porate domain knowledge to reduce the size of the search space, which is subsequently

probed through tree like or graph like walks. Although the domain knowledge helps to

reduce the search space and computational complexity, the domain knowledge is not al-

ways available to reduce the search spaces of interest. Evolutionary Algorithms belong to

the third category; stochastic search, and work by repeatedly sampling the search space,

guided by the information collected during the search process. Compared to other methods,

Evolutionary Algorithms typically do not attempt to search the entire decision space, and

are not guaranteed to find the optimal solution.

Inspired by the natural evolution process [43, 22], Evolutionary Algorithms iteratively

modify a population of candidate solutions for the optimization problem. Each solution in

the optimization process is referred to as an individual, and through repeated application of

randomized processes of recombination, mutation and selection, the individuals are altered

until specified termination criteria are met. A typical Evolutionary Algorithm is described

by the pseudo-code shown in Algorithm 2 [34].

Algorithm 2 : A typical evolutionary algorithm
1: i← 0
2: P (i)← Random set of individuals (initial population)
3: Evaluate the fitness of all individuals of P (i)
4: Choose a maximum number of generations imax
5: while i < imax do
6: i = i+ 1
7: M(i) = Parent_selection(P (i− 1))
8: C(i) = Offspring_generation(M(i))
9: P (i) = Select_for_survival(P (i− 1), C(i))

10: Evaluate the fitness of all individuals of P (i)
11: end while
12: Return the best individual of P (i)

Evolutionary Algorithms begin with generating an initial population of individuals

drawn at random from the decision space. Then, at each generation i, the mating pool

M(i) is generated from the population currently stored as P (i− 1).
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3.1.1 Parent_selection

During the Parent_selection stage, an objective function is used to compute the fitness

value of each candidate solution, which indicates the quality of the solution. A selection

mechanism is then used to select individuals to be used as parents to those of the next

generation. Individuals with a high fitness value are given a higher probability to be placed

into the mating pool for reproductive purposes. Roulette Wheel Selection[49], Stochastic

Universal Sampling[4], Tournament Selection[9] and Truncation Selection[85] are a few of

the most common selection techniques used in literature.

3.1.2 Offspring_generation

During the this step, genetic materials between the selected parents are exchanged within

the mating pool and it results in the creation of the child population C(i). Offspring gen-

eration usually occurs in two forms: crossover and mutation. Every offspring generation

operation has an associated probability of occurrence, which is a parameter usually prede-

termined and kept unchanged throughout the search process.

Crossover or Recombination

The crossover operator is applied to two individuals in the parent population. This creates

two new offspring individuals each having different subsets of the alleles of the parents.

Figure 3.1 gives an example for one point crossover; a commonly used variant of crossover

operator. Here, the point of crossover is determined to be at a particular point, and then the

first child inherits alleles (bits) of the first parent upto the crossover point and the alleles of

the second parent after the crossover point. The second child inherits alleles of the second

parent upto the crossover point and the alleles of the second parent after the crossover

point. Other crossover operators have also been proposed in the literature, e.g., two-point

crossover and uniform crossover. The new chromosome may be better than both of the
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parents if it takes the best characteristics from each of the parents.

Fig. 3.1: One point crossover operator

Mutation

A mutation operator modifies an individual in the parent population by a slight alteration.

Usually this is done by flipping one or more bits of an individual in the parent population

to create a new child. Figure 3.2 gives an example of the mutation operator where one bit

(5th bit) is flipped to create a new child. Mutation allows the development of un-inherited

characteristics in individuals and promotes diversity by allowing an offspring to evolve in

ways not solely determined by traits inherited by parents.

Fig. 3.2: Mutation operator
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3.1.3 Select_for_survival

In this stage, the fitness values of the individuals of the current population P (i − 1) and

the child population C(i) are compared, and the individuals that form the next generation

of the population P (i) are identified. The selection of individuals in this stage does not

completely depend on the fitness values. Elitism involves using a small fraction of the fittest

candidates in the parent population (P (i−1)) in the new population (P (i)) unaltered, even

though fitness values of some of these individuals are less than that of the individuals found

after recombination in (C(i)) [32]. Elitism avoids the risk of losing highly fit individuals

from later generations.

3.1.4 Exploration vs exploitation in evolutionary algorithms

The balance between the exploration of unexamined regions of the search space and the ex-

ploitation of regions already identified as areas containing good solutions plays an impor-

tant role in evolutionary algorithms [29]. This can be adjusted by modifying the selection

pressure implemented using the selection operator and the probability of mutation.

With selection pressure, more emphasis is given to selecting the individuals with high

fitness. A strong selection pressure may cause the algorithm to converge rapidly to a local

optimum, and a low selection pressure may cause the algorithm to yield random results

that differ from one run to another. Crowding[30] is one of the techniques that is widely

used to preserve diversity under selection pressure in evolutionary algorithms [79]. There

are two main steps involved in crowding. In the pairing step, the offspring individuals are

paired with individuals in the parent population according to a similarity metric. In the

replacement step, a decision is made for each pair of individuals as to which of them will

remain in the population.

Mutation is used to enhance exploration, flipping random bits in an individual. A very

high mutation rate increases the probability of searching more areas in search space, pre-

venting the population from converging to optimum solution. On the other hand, a very
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low mutation rate may result in premature convergence. Hence, the selection of the proper

mutation rate for the application at hand is important in determining the performance of the

evolutionary algorithm.

3.2 Multi-objective optimization

Multi-objective optimization is the process of optimizing (minimizing or maximizing) a

number of objectives simultaneously. A multi-objective optimization problem may also

contain a set of constraints which any feasible solution must satisfy. In general, a multi-

objective optimization problem can be defined as follows:

Find the vector x∗ that optimizes a given set of O objective functions, i.e.,

Maximize/Minimize F (x∗) = [F1(x∗), F2(x∗), ..., FO(x∗)]T

subjected to the constraints,

gj(x
∗) ≤ 0 ; j = 1, 2, ..., k

hl(x
∗) = 0 ; l = 1, 2, ..., e

Each objective function Fi(x) must be maximized or minimized,O is the number of ob-

jective functions, k is the number of inequality constraints, and e is the number of equality

constraints.

In many real-life problems, various objectives conflict with each other. Hence, opti-

mizing with respect to a single objective results in poor solutions with respect to the other

objectives. Therefore, in multi-objective optimization we obtain a set of solutions, each of

which satisfies the objectives at an acceptable level without being dominated by any other

solution.

In multi-objective optimization problems, we expect to find a set of Pareto-optimal
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solutions, each of which is non-dominated by any other solution. A solution X is non-

dominated, if every solution better than X with respect to one objective function, must be

worse than X with respect to another objective function. For example, in a car purchase

problem scenario, two objectives of interest to a buyer would be the cost and the engine

performance. Alternatives may include a car which has low cost and low engine perfor-

mance, and another car which comes with high cost and high engine performance. In this

scenario, neither is strictly ‘better’ than the other according to both cost and performance

criteria. Such solutions are called Pareto optimal solutions. The set of all possible non-

dominated solutions in X is called the Pareto optimal set. The corresponding objective

function values of the Pareto optimal set in the objective space constitute the Pareto front.

The goal of a multi-objective optimization algorithm is to identify solutions in the Pareto

optimal set.

3.2.1 Evolutionary algorithms for multi-objective optimization

Many different methods exist to solve multi-objective optimization problems. The most

common technique is to aggregate the multiple objectives into a single objective by using

weighted sum model [86]. Another trivial technique is to optimize the objectives one at the

time, with a given order of importance of the objective functions [86]. However, finding

the appropriate weight assignment for the objective functions is generally non trivial and

problem-dependent. In additions, since these techniques arbitrarily limit the search space

some Pareto optimal solutions will not be considered [26].

The application of evolutionary algorithms to solve multi-objective optimization prob-

lems is similar to Algorithm 2. However, multi-objective optimization algorithms should

also consider how the fitness values should be assigned to individuals to lead the evolution

to a Pareto optimal set and how to maintain diversity in the population to avoid premature

convergence [34].

Vector Evaluated Genetic Algorithm (VEGA) [100], was the first evolutionary algo-
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rithm proposed to solve multi-objective optimization. During each generation of VEGA, a

number of sub-populations are generated by performing proportional selection according

to each objective function. Then these sub-populations are shuffled, and regular GA op-

erations are carried out on the shuffled populations. The concept of Pareto optimality was

introduced by David E. Goldberg in [50], and has been used by almost all the evolutionary

algorithms proposed to solve multi-objective optimization afterwords.

Non-dominated Sorting Genetic Algorithm (NSGA) was proposed by Srinivas and Deb

[106], and is based on several layers of classification of the individuals. The key steps of

the NSGA are as follows:

i. Before selection, the population is ranked based on non-domination, where all non-

dominated individuals are given the same rank.

ii. All these individuals share the same fitness value.

iii. Then, this group of individuals are ignored and the next set of non-dominated individ-

uals are obtained from the remaining layers.

iv. These individuals are given a fitness value less than that of the previous set.

v. The process continues until all individuals in the population are assigned a rank.

Since the individuals in the first non-dominating set have the highest fitness value, more

individuals of that set get selected to the mating pool. NSGA was shown to be a computa-

tionally expensive algorithm for multi-objective optimization because of repeated calcula-

tion of non-dominating sets [27]. Niched-Pareto Genetic Algorithm (NPGA) [56], which

uses a tournament selection scheme based on Pareto dominance, and Multi-Objective Ge-

netic Algorithm (MOGA)[44], which ranks individuals based on the number of other indi-

viduals which are dominated by it, were also proposed during the same period. Strength

Pareto Evolutionary Algorithm (SPEA) [127] uses a generational gap elitist approach,
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Algorithm 3 : The NSGA-II algorithm
1: i← 0
2: Pi ← Random set of individuals (initial population) of size N
3: Evaluate the fitness of all individuals of Pi
4: Apply crossover and mutation to Pi to create offspring population Ci of size N
5: Choose a maximum number of generations imax
6: while i < imax do
7: Set Ri = Pi ∪ Ci
8: Identify the non-dominated fronts F1, F2, ..., Fk in Ri.
9: for j = 1, ...k do

10: Calculate crowding distance of the solutions in Fi
11: Pi+1 = ∅
12: if (|Pi+1|+

∣∣Fj∣∣ ≤ N) then
13: Pi+1 = Pi+1 ∪ Fj
14: else
15: Add the least crowded N −|Pi+1| individuals from Fj to Pi+1

16: end if
17: end for
18: Use binary tournament selection based on the crowding distance to select parents

from Pi+1

19: Apply crossover and mutation to Pi+1 to create offspring population Ci+1 of size N
20: i← i+ 1
21: end while

where a proportion of the current population is preserved and carried to the next gener-

ation. Strength Pareto Evolutionary Algorithm 2 (SPEA2) [126] is an improved version of

the SPEA.

The most widely used evolutionary algorithm for multi-objective optimization is the

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [31], which is an improved ver-

sion of NSGA [106], and is shown in Algorithm 3.

NSGA-II estimates the density of solutions surrounding a particular solution in the

population by computing the average distance of two points on either side of this point

along each of the objectives of the problem. This value is called the crowding distance.

During selection, the NSGA-II considers both the non-domination rank of an individual

and its crowding distance. The elitist mechanism used in NSGA-II consists of combining

the best parents with the best offspring obtained. NSGA-II is much more efficient than its
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predecessor, and the superior performance is evident from the wide usage of the algorithm

in wide range of applications [70].

Some of the more recent evolutionary algorithms proposed to solve multi-objective

optimization problems includes MOEA/D [125], BORG[53] and NSGA-III [33, 61].

As NSGA-II has been widely used and shown superior performance in multiple appli-

cations, we use NSGA-II as the multi-objective optimization algorithm in this study.

3.3 Large number of solutions inO-objective optimiza-

tion

One issue with regard to O-objective optimization is that we obtain a large number of so-

lutions when the value ofO is high and the objectives are uncorrelated [46, 41, 7]. But, the

decision makers who use multi-objective optimization in their applications usually require

one or two solutions to be used in their applications. Multiple methods have been proposed

in literature to prune the Pareto optimal set of solutions. This section discusses some of the

methods proposed in literature.

3.3.1 Selecting solutions from the Pareto optimal set

The methods proposed to select solutions from the Pareto optimal set can be divided into

three categories.

Ranking methods

In ranking methods, after executing the multi-objective optimization algorithm, the set of

Pareto optimal solutions obtained are ranked according to a user-specified certain criteria.

Once the ranking is done, the decision maker can pick the solutions that are best ranked for

the desired applications. Some of the proposed ranking methods include the following:
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1. Weighted sum approach (WS) :

This is the most widely used approach for pruning solutions from the Pareto optimal

set. For an O-objective optimization problem, the weighted sum rank of the Pareto

optimal solution Xi is given by,

WS(Xi) =
O∑
j=1

wjOj(Xi), (3.1)

where wj is the weight assigned to the objective Oj . The weight assignment to the

objectives is domain dependent and the decision maker should determine the appro-

priate weight assignment to the objectives. The result of the ranking depends on the

weight assignment. Hence, in applications where the proper weight assignment is

unknown, the results of the weighted sum approach are questionable [46].

2. Average Ranking (AR):

This method uses the average of the ranking positions of a solution Xi given by all

the objective functions, and is calculated as follows:

AR(Xi) =

O∑
j=1

Rj(Xi)

O
, (3.2)

where Rj(Xi) is the rank given to the solution Xi by the objective Oj .

3. Maximum Rank (MR):

This approach does not assign a rank to each of the solutions in Pareto set. The main

steps of the MR are as follows,

i. Solutions in the Pareto set are ranked separately for each objective.

ii. The best ranked k points from each objective are extracted.

As this approach selects the best solutions for each objective independently, this tends
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to extract solutions from extreme points in the Pareto surface [120].

Pruning methods

The solution pruning methods proposed in the literature can be divided into two categories.

1. Clustering:

The clustering method assumes that the output of the pruning process should be

the distinct solutions in the objective space. The number of clusters can either be

determined by the decision maker or can be optimized according to the Pareto set

solutions. For each cluster, one representative solution is chosen in which often

the solution nearest to the center of the cluster is used. The number of clusters is

optimized using the average silhouette width [98]. For a solution Xi, this approach

calculates the average distance a(Xi) to all other points in its cluster and the average

distance b(Xi) to all other points in the nearest neighbor cluster.

Silhouette(Xi) =
b(Xi)− a(Xi)

max(ai, bi)
(3.3)

A silhouette value close to 1 indicates that the solution was assigned to an appropri-

ate cluster. If the silhouette value is close to 0, it means that the solution could be

assigned to another cluster; and if it is close to −1, the solution is considered to be

misclassified. The overall silhouette width is the average of the silhouette values of

all solutions. The largest silhouette width indicates the best clustering and therefore

the number of clusters associated with this best clustering is taken as the optimal

number of clusters. The following are two approaches used to select representative

points from the clusters.

(a) Cluster centers (CC):

In this method, after the clustering algorithm is executed, the centroids of the
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clusters are chosen as the representative points from each cluster. In [23], k-

means [54] is used as the clustering algorithm, and the cluster centroids are

picked as the representative points.

(b) Points closest to the Ideal point (IP):

The main steps of this approach are as follows [24].

i. For each cluster, the ideal point is identified. The ideal point of a subset of

points is the virtual point that has a minimal evaluation for each objective.

ii. Then, for each point in each cluster, the distance from to the ideal point of

the cluster is calculated.

iii. From each cluster, the point with the smallest distance to the ideal point is

selected.

However, clustering methods do not necessarily guarantee an even spread of solu-

tions, as they are sensitive to the presence of outliers. Also, in cases where the Pareto

optimal set does not form any clusters, identifying solutions based on clustering is

not ideal.

2. Angle based pruning:

In this method, the geometric angle between each pair of solutions is calculated, for

each objective. A threshold angle is defined for each objective, in order to iden-

tify the subset of desirable solutions. The idea is to remove the solutions that only

improve some objectives marginally while significantly worsening other objectives

[108]. This method may identify the knee points [6] in the Pareto set.

Subset optimality

Each point in the Pareto optimal set is non-dominated by any other point in the same Pareto

optimal set with regard to the O objectives on which the multi-objective optimization al-

gorithm is run. But, when a subset of the O objectives is considered, some of the points in
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the Pareto optimal set may dominate other points. Some methods have been proposed to

use the concept of subset optimality to reduce the number of solutions in the Pareto optimal

set. Some such methods include:

1. Favor Relation (FR):

The favor relation [35, 28] is defined as, ‘a solution Xi is favored over the solution

Xj if and only if Xi is better than Xj on more objectives than Xj on Xi’. Depending

on the favor relation between the solutions of the Pareto set, the following steps are

followed to create a directed network and prune the Pareto set.

i. If Xi favored over Xj , an edge from the node Xi to Xj is created.

ii. Collapse all the nodes in each cycle to a single pseudo node (The favor relation

may not be transitive, thus the network may have cycles). Each node inside a

pseudo-node is not better than another in the same cycle.

iii. The nodes with in_degree = 0 are selected.

As cycle identification is computationally expensive, there are computational limita-

tions in applying this algorithm to Pareto sets that create large directed networks.

2. K-optimality (KO):

The concept of k-optimality was introduced in [34], and was used to prune solutions

from the Pareto optimal solutions. A point Xi in a set of non-dominated O objective

points is efficient with order k, where 1 < k < O, if and only if Xi is non-dominated

in every k objective subset of the O objectives. The points that show the highest

order k optimality are selected from the Pareto optimal set.

One issue with the all aforementioned methods for pruning Pareto optimal solutions is

that these algorithms need to be run after O objective optimization is completed. Hence

the decision makers have to incur more computational cost in addition to the computational

cost of O objective optimization algorithm. We propose an algorithm in Chapter 4 which
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not only reduces the number of solutions in the Pareto set but also reduces the computa-

tional cost compared to previously proposed algorithms.

3.4 Concluding Remarks

Evolutionary algorithms have been widely used to solve multi-objective optimization prob-

lems. One prevailing problem with multi-objective optimization algorithms is that they

produce too many solutions when the number of objectives are high and conflicting. But

the decision-makers who use multi-objective optimization algorithms in their applications

require one or two solutions to be used in their applications. Multiple methods have been

proposed to select solutions from the Pareto optimal set, but these need to be invoked after

the multi-objective optimization algorithm is executed. Hence the decision-makers have

to incur more computational cost in addition to the computational effort required by the

multi-objective optimization algorithm.
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CHAPTER 4

IDENTIFYING MULTI-OBJECTIVE KEY

NODES

In Section 2.1 we presented the existing methods to identify the key nodes in a network.

One underlying property of all the measures presented in Section 2.1 is that each of them

focus on one property of interest. For example, the key players identified by eigenvector

centrality are the nodes well connected to important nodes in the network, and the key

players identified by closeness centrality are the nodes that are in the center of the network.

But, for most of the real world applications, we need a set of key players who can perform

well on multiple objectives of interest. For example, in selecting a set of seeds for an appli-

cation of information propagation, we would ideally need a set of nodes which can reach all

the nodes in the network quickly (high closeness centrality), and are also connected to the

more important nodes (high eigenvector centrality). Since, each existing algorithm for key

node identification only focuses on one objective of interest, these algorithms cannot find

key players who can perform well on multiple objectives of interest in many applications.

Also, the ‘collective’ behavior of key nodes is ignored in existing key node identification

methods.

This chapter is organized as follows. In Section 4.1 we introduce some of the defi-
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Table 4.1: Statistics of the networks used

Network Nodes Edges Description
Dolphin1 62 159 Frequent associations between dol-

phins that lived off Doubtful Sound,
New Zealand

Prisoners2 67 142 Sociometric choice data collected
from 67 prison inmates

ciencies in current key node identification methods. Then, to address these deficiencies,

we introduce the idea of ‘identifying multi-objective key nodes’ in Section 4.2. Then in

Section 4.3, we show how the multi-objective key node identification method solves one

of the deficiencies identified in the current approaches. Finally Section 4.5 compares the

different key node identification methods in two well known applications and show that the

multi-objective approach outperforms the existing key node identification methods.

4.1 Deficiencies of current approaches for key node

identification

In this section we discuss a few deficiencies found in single objective key node identifica-

tion algorithms. For illustrative purposes we use Dolphin and Prisoners datasets which are

publicly available in UCI Network Data Repository and Table 6.1 shows the statistics and

descriptions of the two networks.

For example, the Dolphin social network [77] represents the frequent associations be-

tween dolphins in a community living off Doubtful Sound, New Zealand. Figure 4.1 shows

the network structure and the communities detected using the modularity optimization al-

gorithm proposed by Blondel, et al.[10]. Sizes of the nodes are proportional to Eigenvector

centrality, and different communities are denoted by different colors.

1Source: http://networkdata.ics.uci.edu/data.php?id=6
2Source: http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/ucidata.htm#prison



37

9

4

10 6

7

11

1
3

14

15
16

17

182

19

20

8

21

22

23

25

26

27

28

29

30

31

32

33

34
13

35

36

37

24

38

39 40

41

42

43

44

45

46

47

48

50

51

52

512

53

54

55

56

57

58
49

59

60

61

62

Fig. 4.1: Dolphin Network

4.1.1 Collective behavior of a set of key nodes

One problem with previous approaches for key player identification algorithms is the influence-

overlapping of the key players that these algorithms identify. In other words, one key

player’s contribution may overlap with the contribution of another key player. A ‘good’

key player identification algorithm should identify k key players who can ‘collectively’

perform well.

To measure the collective influence of a set S of k key players, we follow the minimum

method introduced in [40]. The minimum method was introduced to capture the behavior

of a group of nodes, once formed, need to act as a single unit [40]. To model the collective

behavior of a set of nodes S, the concept of ‘super’ node Ssuper is used.

Given the network G = (V,E) and a set of nodes S, Algorithm 4 generates a new

network G′ = (V ′, E ′), which consists of Ssuper. In G′, the set of nodes S, is replaced by

a single node Ssuper and all the neighbors of the set of nodes S are connected to Ssuper.
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Algorithm 4 : GetSuperNode: The algorithm to create Ssuper
Input: Set of nodes S, Network G = (V,E)
Output: Network G′ = (V ′, E ′), Super Node Ssuper

1: Ns = {}, E ′ = E, V ′ = V ∪ {Ssuper}
2: for all Node j ∈ S do
3: Nj = {u | u ∈ V and (j, u) ∈ E}
4: Ns = Ns ∪Nj

5: E ′ = E ′ \ {(j, v′) ∈ E ′ | v′ ∈ Nj}
6: V ′ = V ′ \ {j}
7: end for
8: for all Node i ∈ Ns do
9: E ′ = E ′ ∪ (Ssuper, i)

10: end for
11: return G′ = (V ′, E ′), Ssuper

Figure 4.2 shows an example for the Ssuper node creation. Initial G = (V,E) is shown

in Figure 4.2(a) and S = {1, 2, 3}. Figure 4.2(b), shows network G′ = (V ′, E ′) after the

creation of the node Ssuper. Finally, the collective centrality measure of S is the measure

associated with Ssuper in the new network G′ = (V ′, E ′).
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(a) Original Network G = (V,E) and
S=(1,2,3)
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Ssuper

(b) Network G′ = (V ′, E′), with cre-
ated node Ssuper

Fig. 4.2: Creation of the Ssuper as a node for a set of nodes S

To capture the collective behavior of the sets of 5 key players identified by Eigenvector,
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Betweenness and Closeness centrality measures, we follow these steps:

i. Identify the set of 5 top key players using each centrality measure.

ii. Use Algorithm 4 to generate the ‘super’ node Ssuper for each top set of 5 top key

players.

iii. Calculate the appropriate centrality measure for the generated ‘super’ node Ssuper.

In order to identify the set of 5 key nodes which gives the best collective behavior for

each centrality measure, we use a Genetic Algorithm based optimization algorithm.

The set of 5 top key players identified for Dolphin and Prisoners networks are shown in

the 3rd column of Table 4.2 and the appropriate centrality values of the ‘super’ node Ssuper

created by each of these set of 5 top key players are shown in the 4th column of Table

4.2. The sets of 5 nodes (which optimizes each centrality value for Dolphin and Prisoners

networks) are shown in the 5th column of Table 4.2 and the appropriate centrality values of

the ‘super’ node Ssuper created by each of these set of 5 nodes are shown in the 6th column

of Table 4.2.

Table 4.2: Collective behavior of the key players

Network Centrality
Measure

Top 5 key players Collective
central-
ity
value

Best top 5 nodes
for collective be-
havior

Collective
central-
ity
value

Dolphin
Eigenvector 1, 15, 19, 17, 16 0.513 34, 15, 58, 46, 21 0.552
Betweenness 38, 44, 21, 15, 30 0.579 8, 15, 40, 38, 16 0.697
Closeness 15, 11, 9, 16, 14 0.528 15, 2, 37, 19, 17 0.740

Prisoners’
Eigenvector 51, 36, 40, 29, 54 0.548 40, 7, 28, 54, 15 0.596
Betweenness 15, 7, 29, 54, 51 0.744 7, 29, 40, 46, 51 0.759
Closeness 51, 29, 15, 36, 7 0.585 7, 13, 36, 46, 55 0.667

It can be seen from the results in Table 4.2 that none of the 5 top key nodes identified

by any of the centrality values could achieve the best collective behavior. This behavior is

further evident from the poor performance of single objective key player algorithms in the

results shown in Chapter 4.
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4.1.2 Optimization of a single property

Although many algorithms have been proposed to identify a key node or a set of key nodes,

they all share a common characteristic. All the aforementioned approaches define ‘key

nodes’ with an appropriate objective of interest, and find sets of key nodes which optimize

the identified objective. We call such algorithms as ‘single objective’ key node identifi-

cation algorithms in this study. Consequently, the prevailing deficiency of each of these

methods is that, they perform well only when we consider their objective of interest as the

only characteristic that the set of key players should have. But in complicated real life

applications, we need a set of key players which can perform well with respect to multiple

objectives of interest.

Let us consider Eigenvector centrality as an example. Eigenvector centrality gives pri-

ority to nodes that are connected to other important nodes. One known deficiency of the

Eigenvector centrality approach is that it tends to find key nodes that are all within the same

region of a network [60]. When key nodes are identified in a massive social network with

multiple communities, ideally the key nodes should represent all the communities in the

network. A strong argument in favor of identifying key nodes from different parts of a

given network was given by Granovetter [52]. In this paper, Granovetter argues that mem-

bers of one community have much to gain from acquaintances (nodes belonging to other

communities) for fresh ideas. So, for a set of key nodes to have diverse ideas and to rep-

resent the ideas of the whole population, they should represent all parts of the population.

Another example for the need of identifying key nodes from different parts of a network is

target marketing. In this case it is important to target the ‘right’ set of key people in a popu-

lation to spread information efficiently and effectively. If the set of initial seeds (key nodes)

for the information were identified from the same community in a network, the information

spread will be limited to that particular community.

In an attempt to cure this weakness Ilays and Radha introduced Principal Component

centrality [60], but this method was also unable to capture the key concerns raised above
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when applied to some social networks, and results in finding key players from a small

number of communities.

We applied Eigenvector centrality and Principal Component centrality to identify key

nodes in the Dolphin network. According to Eigenvector centrality, the set of 5 key nodes

was found to be {1, 15, 19, 17, 16}, and all 5 key nodes come from only three communities

in the network. Similarly, the set of 5 key nodes {1, 15, 4, 9, 21} identified by Princi-

pal Component centrality also belong to only three communities. Similarly, the set of 5

key nodes identified on the Prisoners network ({54, 55, 48, 63, 51}) represent only two

communities.

Eigenvector centrality manages to identify a set of key nodes connected to important

nodes in the network, but ignores importance of the distribution of the key nodes as we just

observed. Such a deficiency is not unique to Eigenvector centrality approach; other key

node identification algorithms that focus on single objective optimization can suffer also

from this problem. In Section 4.3 we show how this problem can be addressed using the

multi-objective approach that we propose in this thesis.

4.2 Multi-objective optimization for identification of

k key nodes in social networks

The set of key players that we identify must possess multiple important properties of in-

terest. To simultaneously optimize all the relevant objectives for a certain application, we

model the key player identification problem as a multi-objective optimization problem. In

this case, the objective functions describe the set of properties the key players should pos-

sess.

A binary representation of the network is used in a Genetic Algorithm (GA). In the

binary representation, each node in the network is assigned an index. The number of bits in

the bit string is equal to the number of nodes (n) in the network. Initially, before selecting
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any key players, the bit string consists of all 0s. When a certain node is selected to be a key

player, the bit value corresponding to the index of the selected node will be changed to 1.

For example, if nodes 4, 6, 10, 14 and 19 were selected as key nodes from a social network

of 20 nodes, this will be represented as a bit string of length 20 with indices 4, 6, 10, 14 and

19 selected as 1s and rest as 0s. The key steps of the Genetic Algorithm are:

i. Initial population - In each individual (bit string) in the initial population, k random

bits are assigned the value of 1 to indicate that they are selected as key players, and the

remaining (n− k) bits are assigned 0.

ii. Fitness values - The fitness value of each selected set of k key nodes is calculated by

constructing the node Ssuper (using Algorithm 4 in Section 4.1.1) and evaluating the

multiple desired properties of interest for Ssuper.

iii. Crossover - Crossover is applied to a fraction Pc of selected individuals to generate

offspring.

iv. Mutation - Mutation is performed by flipping each bit value with a probability Pm.

Pc = 0.9 and Pm = 0.1 are used in the experiments in this study. After crossover and

mutation, the resulting bit strings are readjusted to contain k 1s and (n−k) 0s by randomly

adding or deleting some 1s as the case requires.

As mentioned earlier, each individual is evaluated on multiple properties of interest

and the individuals that optimize all the properties considered simultaneously are identified

by the multi-objective optimization. Once the optimization completes, we obtain a Pareto

surface of non-dominated solutions. The number of solutions obtained depends on the

network on which the optimization is performed and the objectives selected.



43

4.3 Addressing the deficiency of Eigenvector Central-

ity using Multi-Objective Optimization

We now consider the problem of Eigenvector centrality that we discussed in Section 4.1.2.

Suppose we need to find 5 key nodes in this case. The issue was that the identified key

players were too close to each other.

4.3.1 Using community information as an objective

One possible way to solve this issue of Eigenvector centrality is by using the community

information in the multi-objective optimization. In this case, in addition to maximizing the

Eigenvector centrality of the super node constructed by the key nodes, a second objective

of maximizing the number of communities represented by the set of key players was intro-

duced into the problem. The idea here is that, when the number of communities represented

by the set of key players increases, the set of key players would spread out in the network.

When the above problem formulation is compared with the description of multi-objective

optimization provided in Section 3.2, the Eigenvector centrality and the number of com-

munities represented by the set of key players are the two objective functions (Fi(x)) con-

sidered. The equality constraint (h(x)) is that the number of key players selected is equal

to 5.

Tables 4.3 and 4.3 show the results obtained from using multi-objective optimization

algorithm for key node identification. As expected, there are multiple non-dominating solu-

tions for each network. For example, from the results obtained for the Dolphin network, the

solution which represents least number of communities has the highest collective Eigen-

vector centrality value and the solution which represents highest number of communities

has the lowest collective Eigenvector centrality value. The solution {48, 58, 37, 46, 15},

represents all the communities in the network.

One could argue that identifying nodes with the highest Eigenvector centrality from
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Table 4.3: Set of multi-objective key players found for Dolphin Network. Objectives :
Eigenvector centrality (EC) of the super node, Number of communities represented by the

key nodes

The set of key players EC of the super node Number of communities represented
34, 15, 58, 46, 21 0.552 3
48, 58, 38, 46, 15 0.549 4
48, 58, 37, 46, 15 0.541 5

each community separately also can solve this problem without using multi-objective op-

timization. But the solutions obtained from this approach have low collective Eigenvector

centrality value compared to the results obtained in multi-objective approach. For example,

in the Dolphin network, the super node constructed by the solution obtained from identify-

ing nodes with the highest Eigenvector centrality from each community separately ({4, 7,

15, 19, 1}) has an Eigenvector centrality of 0.49, which is lower than the Eigenvector cen-

trality of the super nodes constructed from the solutions obtained from the multi-objective

approach.

4.3.2 Using distance as an objective

If the communities in the network are not known, the second objective of maximizing the

distance between the key players can be introduced into the problem. The reasoning behind

distance maximization is to spread out the set of identified key players. The intention is to

find solutions (sets of key players) that maximize both objectives.

Figure 4.3(a) shows the Pareto optimal front identified for the Dolphin network and

Figure 4.3(b) shows the same for the Prisoners network [78], where

Table 4.4: Set of multi-objective key players found for Prisoners Network. Objectives :
Eigenvector centrality (EC) of the super node, Number of communities represented by the

key nodes

The set of key players EC of the super node Number of communities represented
40, 7, 28, 54, 15 0.596 3
40, 7, 36, 54, 15 0.592 4
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i. the x-axis represents the Eigenvector centrality of the Ssuper node created from the

selected set of five key players, and

ii. the y-axis represents the average distance between the selected set of key players.

As mentioned earlier, all the points in the Pareto front are non-dominated thus, depend-

ing on the importance given to each objective function, all points in the Pareto front provide

a set of 5 key players. For example, pointA in the Pareto front shown in Figure 4.3(a) refers

to the set of key players {1, 17, 22, 9, 7} and they belong to 5 different communities in the

network. More concretely, consider Figure 4.3(b), the Pareto optimal front for Prisoners

Network. In this figure point B refers to the set of five key players {4, 14, 29, 54, 63}

that belong to 4 different communities in the network. We now consider two additional

points in the Pareto front: B1 and B2. Although these 3 solutions are non-dominated and

intended to optimize both objectives, they assign different weights to the two objectives

considered here. The point B1 which refers to the key player set {0, 10, 18, 37, 51}, has

a high distance between the selected key players, but its average Eigenvector centrality is

low compared to B and B2. This indicates that the solution B1 is appropriate if a higher

weight should be given to the distance between the key players, as opposed to the average

Eigenvector centrality. On the other hand, the point B2 which refers to the key player set

{7, 36, 40, 51, 54}, has a high average Eigenvector centrality but low distance between

the key players compared to B1 and B. If one intends to find key players which give high

significance to the average Eigenvector centrality as opposed to the distribution of the key

players, B2 is a better choice than B and B1. Compared to point B1 and B2, the key

player set identified by point B, gives equal weight to average Eigenvector centrality and

distribution of the key players. The selection of ideal key player set from the suggested

points in the Pareto front is application oriented.

The same principle can be used to optimize other objectives as well, such as Borgatti’s

positive and negative KPP. The idea is to identify key players who are optimally connected

to the rest of the network and will maximally disconnect the network upon deletion. Figure
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(a) Dolphin Network, Objectives - Eigenvector centrality of the super node and average
distance between key players

(b) Prisoners Network, Objectives - Eigenvector centrality of the super node and average
distance between key players

Fig. 4.3: Pareto Fronts : Objectives - Eigenvector centrality of the super node and average
distance between key players
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4.4(a) shows the Pareto front generated for the Dolphin Network for this case. For example

point C in the Pareto front refers to the set of key players {2, 31, 16, 21, 1}. Figure

4.4(b) shows the Pareto front generated for Prisoners Network considering the same two

objectives where point D in the Pareto front refers to the set of key players {7, 15, 46, 51,

60}.

4.4 Selection of key players sets

Multi-objective optimization identifies multiple sets of solutions which fall on the Pareto

front. For example, as shown in Figure 4.3(a) and 4.3(b), when we use the objectives

‘Eigenvector centrality of the super node’ and ‘distance between the key players’, Dolphin

Network and Prisoners network have 56 and 44 points in the Pareto front, respectively.

In Chapter 4, we discussed a few approaches that have been proposed to select solutions

from the Pareto set. But all those approaches require computational cost in addition to the

computational cost of O objective optimization algorithm. We propose an algorithm, viz.,

Leave-k-out approach, which not only reduces the number of solutions in the Pareto set but

also reduces the computational cost compared to previously proposed algorithms.

4.4.1 Leave-k-out approach for multi-objective optimization

The Leave-k-out approach for an O objective optimization problem is described below:

i. Select (O − k) objectives from the set of objectives and run the multi-objective opti-

mization algorithm.

ii. Obtain the Pareto set, and evaluate each solution in the Pareto set on the objectives that

were left out.

iii. Select the solutions in the Pareto set which are non-dominated on the evaluation of the

objectives which were left out.
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(a) Dolphin Network, Objectives - Borgatti’s KPP POS and Borgatti’s KPP NEG

(b) Prisoners Network, Objectives - Borgatti’s KPP POS and Borgatti’s KPP NEG

Fig. 4.4: Pareto Fronts : Objectives - Borgatti’s KPP positive and negative
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Compared to the other approaches proposed, the Leave-k-out approach has the follow-

ing advantages.

1. A high percentage of solutions obtained are a subset of the Pareto surface obtained

by O objective optimization.

2. The running time of the optimization reduces, as (O − k) objective optimization

requires less computational effort than the originalO objective optimization problem.

3. This method does not require any additional processing such as ranking, clustering

etc. after the Pareto set identification, unlike the other approaches.

In using the Leave-k-out to select the best k key player set, we assume that the selected

set of key players are needed to perform well “collectively" (as a single unit). For example,

if a set of k key players were picked to initiate a marketing campaign, these k key players

should perform well collectively to spread information effectively.

Let A = {a1, a2, ..., aN} be the complete set of qualities (objectives) that can be used

to identify a set of k-key players. The items in the set A are the measures, such as average

Degree centrality of the key players, average Eigenvector centrality of the key players,

Borgatti’s KPP Positive measure, Borgatti’s KPP Negative measure, etc., as discussed in

Section 2.1. Let M = {m1,m2, ...,mn} ⊆ A be the set of properties measuring the

qualities desirable for the key nodes, as determined by the application of interest, such

as a target marketing campaign. The subset of measures used to identify key players in

a political campaign may be different from the subset of measures picked to identify key

players for a marketing campaign.

In the previous example (addressing the deficiency of Eigenvector centrality), two qual-

ities are chosen fromM to identify sets of non-dominated k key players. When 2 qualities

were chosen in the initial step to identify the Pareto front, it helps us better visualize and

compare other key node identification methods with the multi-objective approach of key

node identification. Now we use the remaining qualities in M to select a smaller subset
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from the Pareto front, as described below. Since we assume that the set of k key nodes

should “perform" well as a single unit, we represent the set of key nodes as a single super-

node as discussed in Algorithm 4 in Chapter 2. Then, we evaluate the “performance" of

this super-node, in terms of other measures in M which are not used to draw the Pareto

front. Finally, we restrict attention to non-dominated vectors to find the desired set of key

players. Algorithm 5 describes this approach.

Algorithm 5 : Reducing the number of Key Player sets

Input: Sets of key players found in the Pareto Front (S), Network G = (V,E), M′ =
{ml+1,ml+2, ...,mn}

Output: Sets of key players (T , where |T |≤ |S|)
1: for all set of key players s ∈ S do
2: ml+1(s)← 0,ml+2(s)← 0,ml+3(s)← 0, ...,mn(s)← 0
3: end for
4: for all set of key players s ∈ S do
5: (G′ = (V ′, E ′), Ssuper ) = GetSuperNode(G = (V,E), s)
6: i← l + 1
7: for i ≤ n do
8: mi(Ssuper)← Evaluate(mi, Ssuper)
9: mi(s)← mi(Ssuper)

10: end for
11: end for
12: T ← Find_non_dominated_sets(ml+1,ml+2,ml+3, ...,mn)
13: return T

Assume we initially use l objectives first (of the setM) to construct the Pareto front.

Inputs to Algorithm 5 are, (i) the setM′ = {ml+1,ml+2,ml+3, ...,mn} (the k objectives

that were left out) (ii) the set S of k-key players found by the Pareto front using two selected

objectives from the setM, and (iii) the network G(V,E). A super node is constructed to

represent each set of key players as a single node using the function ‘GetSuperNode’

introduced in Algorithm 4. The objectives inM′ are used to evaluate the super node Ssuper

using the function Evaluate(mi, Ssuper), and the set(s) of non-dominated key players is

selected.

Now we consider how this algorithm can be applied to the Pareto fronts obtained by the

Dolphin and Prisoners networks. To obtain the Pareto front we used two properties from
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Table 4.5: Performance Criteria and Measures for sets of Key Players

Performance Criteria Measured By
Directly connected to as many nodes as possible Degree centrality
Should be able to mediate communication be-
tween communities

Betweenness centrality

Should be able to communicate quickly with all
the nodes

Closeness centrality

Should be connected to important nodes PageRank

the set M, namely, eigenvector centrality and the distance between the key nodes. For

this application, suppose setM′ consists of measures mentioned in Table 4.5 and each set

of five selected key players is required to do well with respect to all four capabilities. A

fraction of the sets of key players, suggested by the Pareto front, is presented in Table 4.6

for the Dolphin Network and in Table 4.7 for the Prisoners Network. DC, BC, CC and

PR stand for Degree centrality, Betweenness centrality, Closeness centrality and PageRank

respectively. The set of players identified by Algorithm 5 is depicted (in bold) in both

tables. The sets selected by Algorithm 5 are non-dominated and the users can select any set

depending on the requirements. Both examples illustrate that the algorithm significantly

reduces the desired set of key players (from 56 to 3 in the Dolphin Network and 44 to 2 for

the Prisoners network).

The Figure 4.5 compares the positions of the key nodes identified by the Eigenvector

centrality approach and the positions of the key nodes identified by the multi-objective

approach. Clearly, the key nodes identified by the multi-objective approach are well spread

throughout the network.

When all the objectives in M are considered in a single step to identify the sets of

key players using multi-objective optimization, the number of non-dominated solutions

identified is large. For example, when all the objectives were considered in a single step,

the NSGA-II algorithm identifies 549 sets of non-dominated key players for the Dolphin

network and 249 sets of non-dominated key players for the Prisoners network. Recall that

the two step process described above identified only 3 sets of key players for the networks
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Table 4.6: Set of Key Players found for Dolphin Network from Pareto front and respective
centrality values

Set ID Set of Key Players DC BC CC PR
1 26 20 45 14 13 0.31 0.38 0.49 0.052
2 56 49 58 11 60 0.33 0.39 0.52 0.053
3 56 2 60 45 14 0.39 0.49 0.59 0.065
4 56 49 58 60 55 0.28 0.35 0.46 0.047

...
...

...
...

...
22 56 14 60 45 46 0.42 0.46 0.6 0.068

...
...

...
...

...
30 9 20 45 14 17 0.40 0.47 0.58 0.065

...
...

...
...

...

Table 4.7: Set of Key Players found for Prisoners Network from Pareto front and
respective centrality values

Set ID Set of Key Players DC BC CC PR
1 0 10 12 18 34 0.13 0.11 0.39 0.14
2 0 10 13 18 34 0.13 0.12 0.38 0.09
3 0 10 13 18 51 0.26 0.31 0.49 0.44
4 0 10 18 21 37 0.13 0.10 0.36 0.13

...
...

...
...

...
31 7 36 40 55 15 0.47 0.70 0.60 0.59
32 7 36 40 54 15 0.48 0.66 0.60 0.59

...
...

...
...

...
Note : DC, BC, CC and PR stand for Degree centrality, Betweenness centrality, Closeness centrality and PageRank respectively

Dolphin network and 2 sets of key players for the Prisoners network. Since the users would

be more interested in identifying a small number of sets of key players for their applications,

the two step process is more useful.

This approach not only allows us to identify sets of key players that optimizes both

objectives, but also allows us to evaluate other key player identification algorithms with

regard to selected objectives. Once the non-dominated set is obtained using the first two

selected objectives, the sets of key players identified by previously proposed methods can

be compared against the obtained non-dominated set3. For example, consider the address-

3Key player identification methods of Degree centrality, Betweenness centrality [81], Eigenvector cen-
trality [13], Pagerank[94], Borgatti’s KPP Positive[14] , Borgatti’s KPP Negative[14], Principal Component
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Fig. 4.5: Comparison of the positions of the key players identified by the Eigenvector
centrality approach vs the positions of the key players identified by multi-objective

approach

ing of the deficiency of Eigenvector centrality again. Each of the above methods assigns a

certain value for average Eigenvector centrality and another value for distance between the

key players. The points corresponding to these two values are shown in Figures 4.3(a) and

4.3(b).

All the sets of key players identified by previously proposed algorithms are dominated

by the solutions in the non-dominated set in Figures 4.3(a) and 4.3(b). According to Figure

4.3(a):

• The sets of key players identified by all the methods mentioned above are dominated

by the solutions in the Pareto front.

• The key player set found by Principal Component centrality is near the Pareto front

(Euclidean distance of 0.44 to the closest point in the Pareto front) while the key

player set found by Betweenness centrality is far from the Pareto front (Euclidean

distance of 1.04 to the closest point in the Pareto front). This indicates that Princi-

centrality[60], KPP Positive using Information theory [93], KPP Negative using Information theory [93],
K-shell [68] are compared here.
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pal Component centrality can identify key player sets better suited to optimize both

Eigenvector centrality and distance between key players than Betweenness centrality.

Given a Pareto optimal set of solutions, each of the methods discussed in Section 3.3.1

and the Leave-k-out approach select different solutions from the Pareto set. As the solutions

in a Pareto set are non-dominating with respect to each other, there is no obvious way

of defining metrics to evaluate the solutions in the Pareto set with each other. Hence,

we evaluate the Leave-k-out approach against the other methods of selecting solutions in

terms of the Eventual Information Limitation (EIL) problem (in Section 4.5.1), and the

Immunization problem in Section 5.3.2.

4.5 Applications of multi-objective k-key players

4.5.1 Eventual Information Limitation problem

This section is focused on evaluating the relative quality of the key player sets identified by

the multi-objective approach discussed in Sections 4.2 and 4.4.

Online social networks offer an excellent platform for information dissemination. An

individual (X) in a social network is connected to his/her peers through social links, and

gets exposed to the pieces of information shared by his/her peers. If X decides to accept

a certain piece of information, X can also share this information with X’s peers. This

sharing and acceptance process happens iteratively and leads to the diffusion of information

through the social network. Multiple computational models have been proposed over the

years to capture the dynamics of such information spread in social networks.

In the real world, multiple pieces of such information can get diffused simultaneously

through the network of interest. If these multiple pieces of information are related (co-

operative or competitive), they do not spread independently [87]. Marketing campaigns

launched by a certain company for two of its products can be considered as an example for
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cooperative diffusion of information. If one of these products gets endorsed by many indi-

viduals in a population, this in turn could improve the ‘word of mouth’ spread of popularity

of the other product as well, since both the products belong to the same company. Thus,

the spread of information is inter-dependent and the two contagions cooperate as they mu-

tually help each other in spreading through the network. Marketing campaigns launched

by two different companies for competitive products provide an example for competitive

contagions. In this case, the individuals who accept a certain product A in the competition

are less likely to endorse the other product B in the competition. This decreases the spread

of popularity of product B in the social network. As is clear through the aforementioned

examples, the models proposed for spread of independent information will not hold in the

cases where inter-dependent information flows are spreading simultaneously.

When multiple campaigns cascade in social networks, the optimization problem can be

formalized either as influence maximization or influence blocking maximization (or influ-

ence minimization) problem [114]. Assume the two campaigns cascading in the network

are A and B, and the budget of each campaign is p, where p is the maximum number of

nodes selected by a campaign as its initial set of seeds. The problem of interest here is to

pick an initial set of seeds for each campaign to maximize the number of nodes recruited

for the same campaign at the time the campaigns stabilize. The campaigns stabilize when

no more nodes can be recruited by any of the two campaigns. When the problem is for-

malized as an influence maximization problem the goal of cascade A is to recruit the initial

set of nodes that has the capability of maximizing the number of recruited nodes for cas-

cade A at the time the campaigns stabilize. Identification of the optimal set of nodes for

this problem has been found to be NP-hard. But there is a greedy algorithm that yields a

solution that is within 1-1
e

of the optimal solution [67, 17]. Since the greedy solution also

tends to be computationally complex, most of the recent approaches to solve the problem

propose heuristic measures to select the starting seeds for the desired optimization problem

of interest. Network centrality measures [96, 45], which are commonly used for identifying
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key players in social networks are among such measures used as heuristics [17, 90].

In a social network, each node represents an individual, and an edge eu,v represents the

influence from node u to v. Initially all nodes are inactive and the information diffusion

process starts when a set of nodes (initial seeds) becomes activated in a certain campaign

and starts to diffuse information to their neighbors. A node becomes active in a campaign

depending on the probabilistic model involved in the diffusion process. In the classical in-

dependent cascade model, each activated node u has a single chance to activate its inactive

neighbor v with a success probability of pu,v, which is a predefined parameter.

Modeling multiple simultaneous cascades

To model the diffusion of multiple cascades evolving simultaneously in a network, sev-

eral models have been proposed in recent years. Budak et al. [17] proposed two models

called Multi-Campaign Independent Cascade Model (MCICM) and Campaign-Oblivious

Independent Cascade Model (COICM).

To explain the MCICM model, consider a network G = (V,E) consisting of |V | nodes

and |E| edges. Consider a situation where two cascades (R and L) evolving simultaneously

in a network. The cascade R is used to denote a rumor and the cascade L is used to denote

the limiting campaign which is used to limit the spread of cascade R. At any given time,

any node v can be in one of 3 states; recruited by campaign R, recruited by campaign

L or neutral. Two weights pv,w(R) and pv,w(L) are assigned to each edge ev,w which is

used to model the direct influence the node v has on node w for cascade R and cascade L

respectively.

The initial set of active nodes for cascadeR (rumor creators) is denoted by AR. When a

node v first becomes active in campaign R in time t, it has a single chance to activate each

of its neighbors w in campaign R and it succeeds with probability pv,w(R). The cascade

R starts spreading through the network at t = 0 and the cascade L starts spreading after a

delay d. The delay d is determined by the time taken to detect the spreading of the rumor R
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in the network4. After the rumorR is identified, the campaign L starts to spread, after some

delay (r) and attempts to send “good" information to the network. The campaign L has a

budget b to recruit nodes, and suppose that to recruit a neutral node the campaign L should

spend a unit cost. The initial set of nodes recruited by campaign L is denoted by AL. After

a node v becomes active in campaign L it can activate each of its neighbors w in campaign

L and it succeeds with probability pv,w(L). The only difference in the COICM models is

that the probability of each edge being live is independent of the campaign. In this setting

only one probability pv,w is associated with each edge ev,w. No matter which information

reaches a node v, v forwards this information to its neighbor w with probability pv,w. This

model is proposed to simulate competing campaigns where the two information cascades

are more likely to be of similar ‘quality’ and the nodes would agree to the campaign that

reaches out to them first.

The problem addressed here is, given a budget b, select a set of nodes AL to serve as

seeds for initial activation for the limiting campaign L, such that the number of nodes that

adopt campaign L when the model stabilizes (π(AL)) is maximized. This problem is also

known as the Eventual Influence Limitation (EIL) Problem.

As proved in [17], EIL is a NP-hard problem, so it is believed to be impossible to find

the optimal set of key players AL in polynomial time. Different algorithms have been used

to select the setAL and the results showed that in many cases, the quality of results obtained

by heuristics such as degree centrality (for solving EIL), is comparable to computationally

costly algorithms. We have evaluated the performance of different key player identification

algorithms discussed in Section 2.1, and the multi-objective approach discussed earlier

with regard to the EIL problem. A set of 5 key players (b = 5) selected by each key player

identification algorithm was used as the seed for initial activation for L and eventually the

π(AL) values generated by each set of key players were compared against each other.

4How to identify the spreading of a rumor is out of scope for this study
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Application of the Leave-k-out approach for multi-objective optimization

The objectives that a set of key nodes should maximize for the EIL problem are assumed to

be Degree centrality, Betweenness centrality, Closeness centrality, Eigenvector centrality

and PageRank. The implications of these centrality measures are shown in Table 4.5.

When all 5 of the aforementioned objectives were optimized to identify 5 key nodes on

Dolphin and Prisoners networks, the 5 objective optimization results in 67 and 72 solutions

for the two networks respectively. In Section 3.3.1, we discussed the approaches that have

been proposed to select solutions from the Pareto set and in Section 4.4.1 we introduced

a novel approach (Leave-k-out approach) to select solutions from the Pareto set. In this

section we evaluate the performance of the Leave-k-out approach.

1. Performance of the selected solutions:

The aim of the EIL problem is to ‘save’ as many nodes as possible from receiving

the gossip. Hence, with respect to the EIL problem, we measure the quality of the

results by the number of nodes recruited by the limiting campaign when the cas-

cades settle (π(AL) ). If π(AL) is higher, the set of initial seeds picked by the key

node identification algorithm is better. Table 4.8 shows the comparison of the Pareto

set pruning approaches on the number of nodes recruited by the limiting campaign.

When multiple sets of key players were identified by a Pareto set pruning approach,

the average performance of the identified sets was used for comparison against the

other algorithms. Also, selecting k objectives to leave out for the Leave-k-out ap-

proach can be done in multiple ways, the results show for each case of Leave-k-out,

are the averages of all cases. Each number shown in Table 4.8 is the average over 30

trials.

According to the results shown in Section 4.5.1, Leave-k-out with (k = 1) (or Leave-

one-out) approach yields the slightly better performance when compared to other

approaches of selecting solutions from the Pareto set. But, according to the results,
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Table 4.8: Comparison of Pareto set pruning approaches on the number of nodes recruited
by the limiting campaign

Method
Network

Dolphin Prisoners
Leave-k-out (k=1) 44.39 42.14
Leave-k-out (k=2) 40.21 40.54
Leave-k-out (k=3) 38.92 38.88
Weighted sum 41.12 40.04
Average Ranking 42.47 39.98
Maximum Rank 38.97 37.84
Cluster centers 39.02 39.54
Ideal points 40.93 40.92
Angle based pruning 39.89 38.17
Favor Relation 39.47 39.16
K-optimality 41.97 40.42

no method significantly outperforms other methods. Hence, we conclude that when

evaluated based on the performance on the EIL problem, all the considered methods

for selecting best solutions from the Pareto set perform equally well.

2. Comparison of Running times:

Next, we compare the running time of each algorithm proposed to select solutions

from the Pareto set. The running time of each approach (in seconds) is shown in

Table 4.9. According to the results, the Leave-k-out approach outperforms all other

approaches significantly (p < 0.001). The reduced running time of the Leave-k-out

approach occurs due to the reduction of objectives in the multi-objective optimiza-

tion. In the above experiment, Leave-k-out (k=1), Leave-k-out (k=2), and Leave-k-

out (k=3) requires 4, 3 and 2 objective optimization in the first step respectively. All

the other approaches require 5 objective optimization.

The reason for reduced running time, when the number of objectives is reduced is as

follows. We use two termination criteria for NSGA-II algorithm:

i. Algorithm reaching the maximum number of generations allowed.

ii. All of the objectives remain unimproved for a k number of consecutive genera-
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Table 4.9: The comparison of running times (in seconds) of Pareto set pruning approaches

Method
Network

Dolphin Prisoners
Leave-k-out (k=1) 74.45 73.82
Leave-k-out (k=2) 44.76 40.83
Leave-k-out (k=3) 31.83 30.21
Weighted sum 173.98 168.51
Average Ranking 175.22 170.32
Maximum Rank 183.23 182.53
Cluster centers 199.23 200.16
Ideal points 204.22 203.21
Angle based pruning 211.93 221.37
Favor Relation 821.92 711.49
K-optimality 378.34 311.54

tions (k = 50 is used in our experiments).

When the number of objectives in the NSGA-II algorithm is reduced, the algorithm

terminates early, as the number of generations needed to reach the best fitness value

(criteria ii) is reduced. The reduced number of generations needed for termination en-

sures that the number of function evaluations is less. The following are the numbers

of function evaluations for different cases in the EIL problem. In each calculation,

the number of individuals per generation is 50.

i. 5 objective optimization

Average number of generations = 731.6

Average number of function evaluations = 731.6× 50× 5

= 182900
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ii. 4 objective optimization (Leave-k-out (k=1))

Average number of generations = 418.83

Average number of function evaluations = 418.83× 50× 4

= 83766

iii. 3 objective optimization (Leave-k-out (k=2))

Average number of generations = 268.17

Average number of function evaluations = 268.17× 50× 3

= 40225.5

iv. 2 objective optimization (Leave-k-out (k=3))

Average number of generations = 182.47

Average number of function evaluations = 182.47× 50× 2

= 18247

3. Quality of the solutions identified:

To evaluate the quality of the solutions obtained by the Leave-k-out approach, we

consider the probability that the solutions identified by the Leave-k-out approach are

also solutions that belong to the Pareto front of the original multi-objective opti-

mization problem. If this probability is greater, then the solutions identified by the

Leave-k-out approach are closer to the Pareto front, and can be considered to be

better. Table 4.10 shows the results. All the results shown are averages over 30 trials.

Leave-k-out (k=1) needs a 4 objective optimization and the evaluation of the objec-

tive that was left out. According to the results, the solutions obtained by Leave-k-out

(k=1) were always found in the Pareto front of the 5 objective optimization of the

EIL problem. Similarly, the solutions obtained by Leave-k-out (k=2), and Leave-
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Table 4.10: Average percentage of the solutions identified by the Leave-k-out approach
are also solutions that belong to the Pareto front of the original multi-objective

optimization of the EIL problem

Dolphin Prisoners
Leave-k-out (k=1) 1.0 1.0
Leave-k-out (k=2) 0.92 0.90
Leave-k-out (k=3) 0.81 0.81

k-out (k=3) have respective probabilities 0.92 and 0.81 of being in the Pareto front

of the 5 objective optimization for the Dolphin network. This indicates that when

more objectives are left out from the initial optimization, the quality of the solutions

decreases. This also explains the reduction of performance among the solutions of

Leave-k-out, when k increases (Table 4.8). A similar pattern is observed for the

Prisoners network as well.

It is clear from the above results that the number of function evaluations decreases sig-

nificantly when the number of objectives in the multi-objective optimization is decreased.

Hence, the running time of the Leave-k-out method for selecting solutions is significantly

less compared to other approaches. Similar results were obtained when the NSGA-II algo-

rithm was replaced by the SPEA2 multi-objective optimization algorithm.

Selecting the appropriate k value for the Leave-k-out approach is a trade-off between

performance and computational cost. For example, for the EIL problem, when k = 1,

Leave-k-out shows the best performance (in Table 4.8), but requires the highest computa-

tional time (in Table 4.9) among all the Leave-k-out variants. In the same example, when

k = 3, Leave-k-out shows the worst performance (in Table 4.8) among all the Leave-k-out

approaches, but best computational time (in Table 4.9). Hence, selecting the appropriate

k value depends on the application and the decision maker. For example, for the Dolphin

network, selecting k = 1 over k = 2, delivers only a 10% increase in performance while

increasing the computational time by 67%. Hence, for this application, the Leave-k-out

with k = 2 is desirable.
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Performance comparison of key node identification approaches on the EIL problem

When comparing the performance of the multi-objective key nodes against other key node

identification methods, we use the Leave-k-out approach with (k = 2) as our selection

method. Figure 4.6(a) shows the variation of π(AL) for different key player identification

algorithms with the delay r for the Dolphin network. Since the aim is to “save" as many

nodes as possible from getting the gossip, the idea is to achieve high π(AL) values. As

the delay increases, the number of nodes recruited by the gossip campaign is high, so the

π(AL) value of each key player set decreases as expected. According to Figure 4.6(a),

the π(AL) value of the key player set identified by the multi-objective approach is higher

than the values obtained by all the other algorithms used in the comparison. Figure 4.6(b)

shows the same plot with regard to Prisoners network and this figure also shows that the

key player set identified by the multi-objective approach achieves high π(AL) compared to

alternative key player identification methods. For both the networks, the number of nodes

saved when the multi-objective approach was used to identify initial seeds (key nodes) is

significantly high (p < 0.001) compared to previous approaches of selecting key nodes.

4.5.2 Improving the fault tolerance of the smart grid

The smart grid interconnects a power grid (network) and a communication network, and

enables bidirectional flow of electricity and information. To prevent the cascading failures

which occur when the disruptions in one network cause disruptions in the other network, ro-

bustness should be enhanced by increasing the number of links (edges) between the power

grid and the information flow network. Given a budget which constrains the number of new

links that can be added to ‘strengthen’ the network, the best strategy to determine where to

add those new links remains an open research problem. We used the multi-objective key

player identification approach to identify the best subset of nodes in the power network

where new links can be added to improve the overall robustness of the smart grid, when

constrained by resource limitations.
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(a) Dolphin Network - Delay vs Number of nodes recruited by the Limiting Campaign

(b) Prison Network - Delay vs Number of nodes recruited by the Limiting Campaign

Fig. 4.6: Number of nodes recruited by the Limiting Campaign starting at differnt delays
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The power network consists of entities needed for the generation and distribution of

electricity, such as generating stations, sub-stations, and distribution stations, connected

through the transmission and distribution power lines. The proper operation of the com-

ponents of the power network requires continuous monitoring and control, performed by

nodes in the communication network. Conversely, the communication network is also

dependent on the proper operation of the power network, since each entity in the commu-

nication network needs to obtain power from an entity in the power network.

An important problem with such inter-dependent networks is that failures in one net-

work can lead to failures in the other network, hence the possibility of catastrophic cas-

cading failures in the system. A failure in a power station could result in failures of some

communication stations as they require electricity from the failed power station, then the

failures in the communication stations might cause failures in other power stations which

receive control signals from the failed communication stations.

Such cascading failures can lead to blackouts on an enormous scale. In August 2003,

a power blackout occurred in the northeastern United States and parts of Canada, affecting

over 55 million people. It was announced later that the outage started from a computer

malfunction in Ohio and cascaded into a widespread power grid failure [3]. According

to the US Department of Energy, power failures cost the nation about $150 billion each

year [76]. This cost may increase substantially when large-scale power blackouts occur.

In addition to natural causes, such disasters can be caused by cascading failures stemming

from cyber-attacks launched by malicious agents. Cyber-attacks similar to ‘Stuxnet’ have

been reported in entities related to the United States power grid [91], and the blackout

in Turkey in March 2015 was believed to be caused by a cyber-attack [1]. Hence it is

important to identify the vulnerabilities of smart grid systems to cyber-attacks, and to find

methods to mitigate the effects of such attacks. Our approach addresses this problem via

the identification of key players in the relevant networks.

In related work, interdependent networks were introduced and studied for the effect of
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cascading failures by Buldyrev et al. [18]. The failure of a few nodes in the communication

network will affect nodes in the power network, which will further affect nodes in the

communication network. In their study, the two networks were assumed to be of the same

size, and one-to-one correspondence was assumed between the nodes which are joined

by inter-network links. In [105] a similar inter-dependent network model with multiple

support inter-network links, was studied.

Huang et al. [57] modeled the smart grid as two scale-free inter-dependent networks

generated using the generalized Barabasi-Albert model [88], and studied the robustness in a

phase of cascading failures following random node failures/attacks on the communication

network. They observed that when the power law parameters decrease, the number of

surviving nodes (after cascading failures stabilize) increases.

Ruj and Pal [99] show that the smart grid disintegrates faster during targeted attacks

compared to random attacks. For a network of 10000 nodes in the communication network

and 1000 nodes in the power network, compromising about 2.2% of the communication

network nodes with targeted attacks can destroy the whole network. Erdos-Renyi random

networks [51] were found to be more resilient than scale free networks, when subjected to

targeted attacks.

Huang et al. [58] showed that robustness can be improved by increasing the number of

communication nodes (k) used to control each power grid node. When k = 1, the smart

grid fails even at 2% random node attacks, and when k is increased to 2, the smart grid

can operate even at 10% random node failures. When k is further increased to k = 15,

the smart grid remains functional even if 60% of nodes in the communication network are

destroyed. However, the difference in robustness between k = 15 and k = 10 is relatively

small, i.e., we have diminishing returns in robustness for extra cost.

Schneider et al. [103] improve robustness by partially decoupling the inter-dependent

network using ‘autonomous’ nodes. An autonomous power station would have an alter-

native (backup) communication node (which has its own energy power supply) to obtain
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control signals when one communication node fails. They showed that the number of au-

tonomous nodes required to make the system robust can be reduced by a factor of five

(compared to random autonomous node selection), if they used degree [75] or betweenness

centrality [15] to identify the nodes to be made autonomous. In [97], Reis et al. showed

that if inter-network links are made by the network hubs, the inter connected networks are

stable and robust.

Modeling the Smart Grid

We model the smart grid using two interconnected networks: the power network and the

communication network, whose details are discussed below.

• Power Network: Here, the nodes represent generating stations, substations, trans-

formers, etc., while edges represent high-voltage transmission and distribution lines

between the nodes. The North-American high voltage power grid extracted by [119]

and the degree distribution of the nodes in the power grid are shown in Figure 4.7.

The network contains 14990 nodes and 18804 edges.

• Communication Network: This can be considered as a part of the internet, and the

internet is known to be a scale free network [5].

Since a real data set describing the inter-network connections is unavailable, we conduct

simulations using the following assumptions:

1. Both the power network and the communication network are scale-free (SF) networks,

where the degree distribution follows the power law, pk ∝ k−α, where pk is the fraction

of nodes with degree k and α is the power-law parameter specific to the network [57,

58, 99, 59].

2. A node is considered to be ‘active’ only if it belongs to the largest connected component

in its own network, and has at least one inter-network link from an active node in the

other network.



68

(a) North-American high-voltage power grid

(b) Degree distribution of the North-American high-voltage power grid

Fig. 4.7: North American power grid and the degree distribution
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3. Inter-network connections could be many-to-many, with multiple inter-network links

going to a node.

4. There will be more nodes in the communication network than the power network, since

the same power node may supply power to more than one communication node.

We use two different models of the smart grid for our experiments.

Simulating the smart grid using a fully synthetic network

In this case, both the power network and the communication network are generated as

separate scale free networks. Then, the inter-network edges are constructed as follows. Let

Np denote the power network, with np nodes and Nc denote the communication network

with nc nodes, where nc > np. Let N in
p and N out

p denote the maximum in-degree and

out-degree of a node in Np, and let N in
c and N out

c denote the maximum in-degree and out-

degree of a node in Nc. The following procedure is applied to add directed links from Np

to Nc. For each node N i
p ∈ Np,

i. Select a random number N i
p(out) in the range [0−N out

p ]

ii. Let N ′c denote the set of nodes in Nc in which the in-degree is less than N in
c . Select

N i
p(out) nodes randomly from N ′c

iii. Add links from N i
p to selected nodes of Nc.

Similarly directed links are added from Nc to Np.

Simulating the smart grid using a semi-synthetic network

In this case, we use the data available in [119] to construct the power network, and use the

location information of the power network to generate the communication network. We

assume that the communication network has a geographical density similar to that of the

power network. The communication network generation process is as follows.
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i. Randomly select k nodes from the power grid.

ii. For each power grid node selected, randomly establish m communication network

nodes within a neighborhood of a radius of r miles. The number of nodes in the

communication network would be km.

iii. Generate a power law sequence consistent with the size of the communication network.

iv. For each node in the communication network, assign a degree d from the generated

power law sequence and connect to d randomly selected nodes in a neighborhood with

a radius of r miles.

The process of inter-network edge creation is similar to the process presented in Section

4.5.2. But in this case, we connect inter-network nodes which are in a neighborhood with

a radius of r miles.

Cascading failures in the smart grid

Figure 4.8 illustrates the occurrence of cascading failures in the smart grid. For this exam-

ple, we assume that each power station N i
p ∈ NP is controlled/monitored by one operation

center (N in
p ), and provides power to up to three monitoring stations (N out

p ). Each moni-

toring/control station N j
c ∈ Nc can control up to two power stations (N out

c ), and receives

power from one power station (N in
c ). The nodes denoted by blue color belong to the com-

munication network and the nodes denoted by red color belong to the power grid. The

cascade starts after the failure of node 2, and the Figures 4.8(a)-4.8(i) shows how failures

cascade through both the networks. In these figures, the intra-network links are denoted

by solid lines and the inter-network links are denoted by dashed lines. The power network

nodes are labeled with numbers and the nodes in the communication network are labeled

by English letters.
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(a) State 0: Initial network. Node
2 will get attacked

(b) State 1: Node 2 and its links
removed

(c) State 2: Nodes 1 & 3 are not
in the giant component of Nc; so
get removed

(d) State 3: Nodes A, B and C of
Np does not have any supporting
links from Nc anymore; so get
removed

(e) State 4: Nodes 4, 5 and 8
lose their supporting links from
Np; so get removed

(f) State 5: Nodes 6 and 7 are
not part of the giant component
of the Nc anymore; so get re-
moved

(g) State 6: Node E and G lose
all supporting links from Nc;
so get removed

(h) State 7: Nodes 10 and 11
lose all supporting links from
Np; so get removed

(i) Final State: Node D loses
all supporting links from Nc,
so will get removed. Then node
9 loses all supporting links
from Np; so get removed

Fig. 4.8: Cascading failures in a smart grid; the subgraph on the left (in red) shows the
power network, and the network on the right (in blue) represents the communication

network
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(a) State 0: Initial network.
Node 2 will get attacked

(b) Final State after cascades
settle

Fig. 4.9: Result of cascading failures in smart grid when an extra controlling link is added
to node C

Improving the robustness of the smart grid

Increasing the number of links between the two interrelated networks can increase the

robustness of the smart grid for cascading failures [58]. The redundancy of a power station

nodeNa
p will be increased by adding extra links from the communication network to control

that power station.

For example, node C in the power network in Figure 4.8 receives an extra control signal

from node 6 in the communication network. Figure 4.9 depicts the initial network and the

final state of the network after the cascading failures (as in Section 3). Thus, a single link

addition increases the number of surviving active nodes in the power network from 14% to

71%.

The failure of a key node would cause more damage compared to the failure of a less

significant node. For example, in the case of the power network, the failure of a larger

power station would cause more power outages compared to a small scale power station.

Thus, given a budget to add more links to the network, the robustness of the network could

be improved by adding links targeted to increase the redundancy of links connected to key

nodes in the network, rather than adding links randomly. In the example shown in Figure

4.9, node C was a highly connected node in the power network.

We now consider what strategy should be used to increase the robustness of the smart
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grid maximally, measured in terms of the number of nodes surviving after cascading node

failures stabilize. The following link addition strategies are considered:

1. Random - In this case, the heads of the links are chosen randomly from the power

network. For each of these chosen power network nodes, the tail of the link (source

of the link) is selected at random from the nodes in the communication network.

2. Degree Centrality - Here, the heads of the links are chosen from the nodes with the

highest degree in the power network. For each of the selected nodes, the tail of the

link is selected randomly from the nodes in the communication network.

3. Eigenvalue Centrality - The heads of the links are chosen from the nodes with highest

Eigenvector centrality in the power network.

4. Betweenness Centrality - The heads of the links are chosen from the nodes with

highest Betweenness centrality in the power network.

5. Multi-objective - In this case, the heads of the links are chosen from the nodes in the

multi-objective key player set in the power network, as described in Section 4.2. The

rest of the edge creation process remains the same, as with the previous strategies.

In the multi-objective approach, we assume the set of key players should have high

Degree centrality, Betweenness centrality, Eigenvector Centrality and Pagerank, and use

those properties to optimize the multi-objective optimization process. For the experiments

in Section 4.5.2, we selected key player sets of 10 nodes, which are non-dominated with

respect to each other in the two selected objectives. To reduce the number of non-dominated

key player sets identified, we represent the set of key nodes as a single super node and then

evaluate the performance of this super node in terms of rest of the characteristics a set of

key players should possess. In this case, we use Leave-k-out approach with k = 2.
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Experimental Results

We assume that each power station N i
p ∈ NP is controlled by one operation center, and

provides power to upto three communication nodes (monitoring stations) each of which

(N j
c ∈ Nc) can control a power station, and receives power from a power station. Both

the power network and the communication network are assumed to be scale-free, as in

[57, 58, 99, 59].

Smart grid as a fully synthetic network

In this case, both the networks were constructed as scale free networks with power law

parameter α = 2.5. The power network contains 1000 nodes and the communication

network contains 1500 nodes. Then, we increase the number of control links from the

communication network to selected nodes in the power network. This increases the number

of nodes surviving in the power network after the cascading failures settle. The robustness

of the network was measured by the number of nodes surviving in the power network.

Different key player selection algorithms were used to select the key nodes from the power

network to add extra links, and were compared by examining the number of nodes surviving

in the power network after the cascades settle.

1. Random Node Failures

Table 4.11 shows the number of nodes surviving in the power network after the cas-

cades occur due to random node failures. Here, the first column shows the number

of extra links added to the smart grid. The second column shows the percentages of

nodes attacked in the communication network and the third column lists the numbers

of surviving nodes (after cascades) without adding any extra links to the network.

Columns 4-7 correspond to the number of surviving nodes in the power network

after extra links are added, based on Degree Centrality, Eigenvector Centrality and

Betweenness Centrality, respectively. In each of these approaches, 10 key players
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Table 4.11: Number of surviving nodes in the power network after a random node attack,
in the fully synthetic model

% of
links
added

Nodes
at-
tacked

Nodes after
attack

Links
Added to
10 ran-
domly
selected
nodes

Links
added to
top 10
Degree
centrality
key players

Links
added to
top 10
Eigen-
vector
centrality
key players

Links added
to top 10 Be-
tweenness
centrality
key players

Links
added to
top 10
multi-
objective
key players

1%

1% 252.24 261.42 318.60 318.67 345.66 378.52
2% 248.87 257.61 314.74 314.42 341.92 372.84
5% 238.74 245.68 304.66 303.23 328.54 359.30
10% 221.74 226.47 285.18 283.79 305.61 347.54
20% 185.60 187.96 246.24 243.01 260.06 310.96

5%

1% 252.24 269.20 339.44 343.40 345.07 400.48
2% 248.87 264.48 336.46 340.41 341.95 393.94
5% 238.74 252.00 326.72 329.49 332.95 388.89
10% 221.74 231.28 310.43 312.63 314.59 370.60
20% 185.60 190.33 276.83 274.01 279.80 333.98

10%

1% 252.24 286.04 354.77 355.98 355.83 408.70
2% 248.87 281.78 350.15 351.94 351.08 395.34
5% 238.74 270.09 339.67 337.01 341.92 389.31
10% 221.74 246.44 321.18 323.14 323.01 382.81
20% 185.60 202.51 283.93 282.89 286.42 338.69

Table 4.12: Standard deviation of number of nodes saved after random node attacks in the
fully synthetic model

Random Degree
Centrality

Eigenvector
Centrality

Betweenness
Centrality

Multi-objective
Key players

61.44 33.2 33.81 32.16 21.54

from the power network were selected to add extra links, and these extra links were

distributed equally among these selected nodes. The last column shows the number

of nodes saved in the power network by adding the links to the top 10 key play-

ers identified by the multi-objective key player identification algorithm described in

Section 4.2. Results shown are averages over 100 different trials.

In all cases, adding extra links to the set of 10 key players identified by the multi-

objective key player approach helps to save significantly more nodes in the power
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Table 4.13: Number of surviving nodes in the power network after a targeted node attack
in the fully synthetic model

% of
links
added

Nodes
at-
tacked

Nodes after
attack

Links
Added to
10 ran-
domly
selected
nodes

Links
added to
top 10
Degree
centrality
key players

Links
added to
top 10
Eigen-
vector
centrality
key players

Links added
to top 10 Be-
tweenness
centrality
key players

Links
added to
top 10
multi-
objective
key players

1%

1% 234.18 243.12 307.30 318.52 336.44 371.81
2% 211.83 239.57 304.67 317.47 335.35 360.96
5% 176.59 191.47 263.04 264.31 296.04 346.30
10% 122.35 135.76 216.43 232.11 247.05 290.39
20% 87.58 100.34 146.56 149.50 157.14 201.96

5%

1% 234.18 251.16 311.59 314.27 321.13 357.24
2% 211.83 244.37 306.17 309.71 311.07 344.22
5% 176.59 205.55 279.38 270.19 280.99 329.52
10% 122.35 141.81 244.81 240.13 243.77 300.54
20% 87.58 106.51 187.94 177.43 189.31 227.15

10%

1% 234.18 258.92 319.33 324.88 331.51 364.27
2% 211.83 253.61 305.27 300.43 314.28 352.39
5% 176.59 221.53 285.46 280.59 300.51 338.94
10% 122.35 150.64 255.55 267.75 281.33 320.51
20% 87.58 129.40 201.11 214.94 229.72 260.76

Table 4.14: Standard deviation of number of nodes saved after targeted node attacks in the
fully synthetic model

Random Degree
Centrality

Eigenvector
Centrality

Betweenness
Centrality

Multi-objective
Key players

54.66 24.59 25.27 25.43 17.69

network compared to other key player selection methods (p < 0.001). Table 4.12

compares the standard deviations between various node selection algorithms across

all cases shown in Table 4.11. The values in Table 4.12 show that the multi-objective

key player method not only results in the best averages, but also the best standard

deviation, compared to other key player selection algorithms.

2. Targeted Node Attacks

In targeted attacks, a node’s probability of getting attacked is assumed to be propor-
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tional to the degree of the node. Table 4.13 shows the numbers of nodes saved in the

power network after the failure cascades that happen due to targeted node failures.

Each number in the table is the average over 100 scale free network simulation trials.

Our results show that even in the case of targeted attacks, adding extra links to the

set of 10 key players identified by the multi-objective key player approach helps to

save significantly more nodes in the power network compared to other key player

selection methods (p < 0.001). According to the results in Table 4.14, the stan-

dard deviation of the multi-objective approach was lower than those of the other key

player selection methods.

Smart grid as a semi-synthetic network

As mentioned in Section 4.5.2, in this case we used the real data for the power network and

the generated data for the communication network. Table 4.15 shows the number of nodes

surviving in the power network when the cascades settle, after different algorithms were

used to add new edges to the network. The generated communication network depends on

the set of k initial nodes that are identified from the power network, the set of m points

randomly picked from the neighborhood of a radius of r miles and the generated power

law sequence that we used to determine the degrees of the km nodes. The results presented

here are averages over 30 semi-synthetic networks generated. In this study, the parameter

values of k = 4000 and m = 5 were used. The results show that adding extra links to

the set of 10 key players identified by the multi-objective key player approach helps to

save significantly more nodes in the power network compared to other key player selection

methods (p < 0.001).
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Table 4.15: Number of surviving nodes in the power network after a targeted node attack
in the semi-synthetic model

% of
links
added

Nodes
at-
tacked

Nodes after
attack

Links
Added to
10 ran-
domly
selected
nodes

Links
added to
top 10
Degree
centrality
key players

Links
added to
top 10
Eigen-
vector
centrality
key players

Links added
to top 10 Be-
tweenness
centrality
key players

Links
added to
top 10
multi-
objective
key players

1%

1% 6782.3 6928.8 7292.1 7222.6 7314.2 7432.5
2% 6634.4 6804.2 7124.8 7198.5 7234.5 7318.4
5% 5987.9 6219.2 6727.4 6628.2 7003.8 7199.7
10% 4100.4 4245.3 5175.1 5119.3 5321.3 5934.2
20% 472.9 667.3 2145.8 2284.9 2467.2 3264.7

5%

1% 6782.3 7284.3 7712.8 7841.9 7932.5 8134.2
2% 6634.4 7024.2 7561.3 7624.7 7723.2 8022.8
5% 5987.9 6418.3 7024.2 7285.6 7498.3 7832.4
10% 4100.4 4468.6 5423.7 5715.1 6123.8 6893.8
20% 472.9 841.7 2598.5 2728.7 3167.3 3728.3

10%

1% 6782.3 7422.1 7843.4 7717.7 8082.4 8312.3
2% 6634.4 7187.9 7711.9 7698.8 7984.2 8234.2
5% 5987.9 6600.2 7430.1 7583.5 7729.8 8092.4
10% 4100.4 4672.2 6046.2 6317.1 6532.1 7373.2
20% 472.9 1034.1 3198.5 3315.3 3782.9 4573.6

Table 4.16: Standard deviation of number of nodes saved after targeted node attacks in the
semi-synthetic model

Random Degree
Centrality

Eigenvector
Centrality

Betweenness
Centrality

Multi-objective
Key players

893.45 478.93 483.25 476.32 321.74

4.6 Concluding Remarks

Previously proposed approaches for key node identification have focused on one objective

of interest. This leads to multiple deficiencies in the sets of key nodes identified. To

alleviate these deficiencies, we proposed the multi-objective optimization approach for key

node identification.

We have also proposed a novel algorithm (Leave-k-out approach) which obtains a small

number of solutions for a multi-objective optimization problem, and reduces the compu-
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tational cost significantly compared to previously proposed algorithms. We evaluate the

Leave-k-out approach against the other methods of selecting solutions from a Pareto set

in terms of the Eventual Information Limitation (EIL) problem (in Section 4.5.1). The ex-

perimental results show that the Leave-k-out approach performs as well as other methods

of selecting solutions from the Pareto optimal set. When the running time is considered,

the Leave-k-out approach outperforms all other approaches significantly. Hence we use the

Leave-k-out approach to identify solutions for multi-objective optimization problems.

We show that key nodes identified using multi-objective optimization approach allevi-

ate the aforementioned deficiencies. We use two well known applications, viz., Eventual

Information Limitation (EIL) problem and improving the fault tolerance of the Smart Grid,

to show that the key nodes identified using the multi-objective optimization approach out-

perform the previous approaches.
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CHAPTER 5

REDUCING THE COMPUTATIONAL

TIME

Many real life networks contain thousands of nodes and edges. As the size and the com-

plexity of the networks increase, so do the running times of the network analysis measures.

The application of the proposed multi-objective approach to key player identification de-

pends on the computational complexity of individual network centrality measures and on

the computational complexity of the optimization algorithm (such as NSGA-II). This chap-

ter focuses on how network sampling can be used to reduce the running times without

compromising much on the quality of key nodes obtained.

This chapter is organized as follows. The first section gives an overview of network

sampling methods. The second section introduces the degree centrality based sampling

approach that we propose to reduce the running time of the key node identification problem.

The last section applies the of multi-objective key player sets obtained on degree centrality

based sampled networks to address two well known problems. The results show that the

multi-objective key player sets identified on sampled networks perform better than single

objective key player sets identified by applying the algorithms on the entire network.

We use several datasets that are commonly used by network science researchers and
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are publicly available. The descriptions of the networks are shown in Table 5.1. Table 5.2

shows the running times of the centrality calculation algorithms for the datasets shown in

Table 5.1.

Table 5.1: Statistics of the largest connected component in the networks and description

Network Nodes Edges Description
ca-GrQc1 4158 13422 Scientific collaborations network between au-

thors submitted to General Relativity and Quan-
tum Cosmology category of e-print arXiv

PGP2 10680 24316 Interaction network of users of the Pretty Good
Privacy (PGP) algorithm

ca-HepPh3 11204 117619 Scientific collaborations network between au-
thors submitted to Astro Physics category of e-
print arXiv

G-plus4 23628 39242 Contains Google+ (user to user) links. A node
represents a user, and an edge denotes that one
user has the other user in his circles.

Table 5.2: Running times for centrality calculations in seconds (Averages over 30 runs)

Network Time for
DC

Time for
EC

Time for
PR

Time for
BC

ca-GrQc 0.008 0.88 0.62 87.49
PGP 0.011 2.15 1.67 707.2
ca-HepPh 0.021 2.16 5.66 1487.58
G-plus 0.038 4.71 4.34 4245.79

Note : DC, EC, PR and BC stand for Degree centrality, Eigenvector centrality, PageRank and Betweenness centrality respectively

5.1 Network Sampling

Network sampling has been used widely in social network literature in order to reduce the

computational space and time cost to manageable limits. Different sampling techniques

have been proposed, in order to obtain samples which are close to the original network

1Source: http://snap.stanford.edu/data/ca-GrQc.html
2Source: http://konect.uni-koblenz.de/networks/arenas-pgp
3Source: http://snap.stanford.edu/data/ca-HepPh.html
4Source: http://konect.uni-koblenz.de/networks/ego-gplus
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in terms of the desired properties [66, 73, 123, 74]. Some of the most popular network

sampling approaches are the following:

1. Random (RN): Nodes are picked uniformly at random from the network, and then

the subgraph induced by the chosen nodes is selected. Such random sampling can

result in disconnected networks.

2. Random walk (RW): This approach starts from a randomly selected node and selects

one neighbor with an equal probability among all the links, and does the same from

the newly reached node. This process continues until the desired number of nodes is

reached.

3. Breadth First Search (BFS) or Snowball sampling: This approach starts with a ran-

domly selected node and selects all the neighbors to the sample, and proceeds with

the same process from the selected neighbors.

4. Forest Fire (FF): This approach is similar to BFS, but each neighbor of a selected

node is only selected to the sample with a pre-defined probability p; a value of p =

0.7 is used in the experiments of this study [74].

A good sampling method for the key node identification problem should retain most of

the key nodes of the original network in the sampled network. In the following section we

propose a new sampling approach that perform better than existing sampling algorithms

when applied to the key node identification problem.

5.2 Degree centrality based sampling

Correlations among the network centrality measures have been studied in [72, 115]. The

results suggest that degree centrality is highly correlated with other centrality measures.

Since degree centrality is the least computationally expensive of the centrality measures to
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calculate, we investigated whether the key players with respect to other centrality measures

also get retained in the sample, if the networks were sampled with degree centrality. To

obtain an α% sample of the network, we calculate the degree centrality of all the nodes

of the original network and extract the network induced by the nodes with top α% degree

centrality.

To evaluate the performance of different sampling methods we compare the number of

key nodes of the original network retained in the sampled network.

The comparisons of retained key nodes between different sampling algorithms for ca-

GrQc and PGP networks are shown in Figures 5.1 and 5.2 respectively.

(a) Degree Centrality (b) Eigenvector Centrality

(c) PageRank (d) Betweenness Centrality

Fig. 5.1: Comparison of sampling algorithms on the ca-GrQC network: performance in
retaining the original network’s top 10 key players using different centrality measures

In Figures 5.1(a)-5.1(d), the Y axis represents the percentage of top 10 key nodes in

the original network that overlap with those obtained using the sampled network, and the
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(a) Degree Centrality (b) Eigenvector Centrality

(c) PageRank (d) Betweenness Centrality

Fig. 5.2: Comparison of sampling algorithms on the PGP network: performance in
retaining the original network’s top 10 key players using different centrality measures
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X axis represents the sampling percentage. In Figure 5.1(a) we compare the fraction of

the top 10 key nodes identified using different sampling algorithms that overlap with the

top 10 key nodes of the original network. Results show that the degree centrality based

sampling method manages to retain most of the original network’s key nodes in the sample

compared to other sampling methods. A similar pattern is seen in Figures 5.1(b)-5.1(d),

when the results of the sampling methods are compared against the number of key players

obtained from Eigenvector centrality, PageRank and Betweenness centrality respectively.

When 10 key nodes are identified on the 50% degree centrality sample, and compared

against the 10 key nodes identified on the original network, we observe that the degree

centrality based sample manages to retain all the DC based key players, all the EC based

key players, 70% of the PR based key players and 80% of the BC based key players. A

similar pattern of results is seen for the PGP network, as shown in Figure 5.2.

Hence, from the results we can conclude that degree centrality based sampling outper-

forms other sampling methods when the key nodes retained in the sampled networks are

compared.

Next, in Tables 5.3-5.5 we compare the running times required for the top 10 key player

identification when degree centrality based sampling is used. Each running time shown

in the table is the average of centrality calculation over 30 trials. The running times of

the centrality calculations in the original networks are shown in Table 5.2. According

to the results, when 50% degree centrality based sampling is used, the running times for

Eigenvector centrality reduce by 78%, 79%, 73% and 83% for ca-GrQc, PGP, ca-HepPh

and G-plus networks respectively. For Betweenness centrality calculation, the running time

reduces by 80%, 84%, 84% and 81% for ca-GrQc, PGP, ca-HepPh and G-plus networks

respectively. Recall (from the results shown in Figure 5.1), that when the 10 key nodes are

identified on the 50% degree centrality sample, and the 10 key nodes are identified on the

original network are compared, the degree centrality based sample manages to retain all

the DC based key players, all the EC based key players, 70% of the PR based key players
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Table 5.3: Time taken to identify EC key players with degree centrality sampling
(seconds)

Network 5% sample 10% sample 30% sample 50% sample 70% sample
ca-GrQc 0.01 0.01 0.04 0.19 0.32
PGP 0.03 0.05 0.10 0.45 0.39
ca-HepPh 0.17 0.45 0.51 0.57 0.76
G-plus 0.23 0.54 0.65 0.77 0.91

Table 5.4: Time taken to identify PR key players with degree centrality sampling (seconds)
Network 5% sample 10% sample 30% sample 50% sample 70% sample
ca-GrQc 0.14 0.17 0.35 0.47 0.55
PGP 0.26 0.38 0.78 0.84 1.31
ca-HepPh 0.59 0.89 1.81 2.85 3.71
G-plus 1.69 2.42 2.96 3.35 3.82

Table 5.5: Time taken to identify BC key players with degree centrality sampling
(seconds)

Network 5% sample 10% sample 30% sample 50% sample 70% sample
ca-GrQc 0.15 0.64 6.62 16.63 33.26
PGP 1.69 6.16 36.67 107.86 215.21
ca-HepPh 9.47 31.78 124.72 230.67 312.43
G-plus 9.05 36.11 211.02 800.91 1344.21

and 80% of the BC based key players.

Hence we conclude that degree centrality based sampling is a successful technique that

can be used to reduce the running times of centrality calculations in large networks. When

the centrality values are calculated on the sampled network, the computational times are

significantly less than the computational times of running the centrality algorithms on the

original networks. In addition, even at 50% sampling level the set of key nodes identified

on the sampled network highly overlaps with those identified on the original network.
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5.2.1 Performance of degree centrality based sampling in key node

identification

To evaluate the performance of sampling algorithms, we compare the Pareto fronts obtained

by the key nodes identified by different sampling methods with the Pareto front obtained

by the key players identified on the original network.

Figure 5.3 and Figure 5.4 show comparisons of the Pareto fronts obtained by the orig-

inal network, sampled networks obtained by different sampling techniques and the cor-

responding points of the key player sets obtained by single objective centrality measures

from the ca-GrQc and PGP networks. The Pareto fronts of the sampled networks have

been obtained from the results of NSGA-II based evolutionary multi-objective optimiza-

tion on 10 sampled networks and then the values for the two objectives obtained by the

non-dominated key player sets on the original network are plotted in Figure 5.3 and 5.4.

Although we considered 5 different types of network sampling methods including random

walk, snowball, degree centrality, k-shell and multi-random walk, the results obtained from

only random walk, snowball and degree centrality based sampling methods are shown in

the figures to improve clarity. Note that the solutions in the Pareto fronts generated from

the networks sampled by different sampling algorithms may not be non-dominated with

respect to each other when the entire network is concerned.

According to the results shown by Figure 5.3 and 5.4 at sampling level of 50%, each

sampling algorithm was able to capture sets of key players which achieve better values for

both the objectives compared to single objective key player identification algorithms in both

ca-GrQc and PGP networks. When different sampling algorithms are compared with each

other, Degree centrality based sampling obtained sets of key players that are closest in the

two objectives to the Pareto front obtained from the original network for both the networks

considered here. It can also be seen that as the number of nodes retained by the sampling

algorithms decreases, the performance of every sampling algorithm drops compared to the

Pareto front of the original network. In particular, this drop is visible for smaller values
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(a) ca-GrQc Network : Comparison of Pareto fronts of the original network, 50% sampled
networks and single objective algorithms

(b) PGP Network : Comparison of Pareto fronts of the original network, 50% sampled
networks and single objective algorithms

Fig. 5.3: Pareto Fronts: Eigenvector centrality of the super node and Average distance
between key players
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(a) ca-GrQc Network : Comparison of Pareto fronts of the original network, 50% sampled networks
and single objective algorithms

(b) PGP Network : Comparison of Pareto fronts of the original network, 50% sampled networks and
single objective algorithms

Fig. 5.4: Pareto Fronts: Degree centrality of the super node and Betweenness centrality of
the super node
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Table 5.6: Improvements of running time using Degree centrality based sampling for
multi-objective key player identification

Network Original
Network
(mm:ss.ms)

30%
Sample
(mm:ss.ms)

50%
Sample
(mm:ss.ms)

70%
Sample
(mm:ss.ms)

ca-GrQc 4:58.8 2:13.8 3:15.2 3:42.0
PGP 8:55.4 4:09.8 6:26.2 7:31.9
ca-HepPh 11:16.0 5:00.8 7:32.7 8:27.5
G-plus 13:45.6 6:14.4 8:21.7 10:11.1

on the x-axis (Eigenvector centralities of the set of key players) and larger values on the

y-axis (average distance between the set of key players). Since, we are only considering

connected networks, as the number of nodes retained by the sampling algorithm decreases,

the nodes of the sampled networks come from small portions of the original network. Thus,

the high distance values between the key players decrease as the sampling become more

aggressive.

Table 5.6 shows the improvement in running time when Degree centrality based sam-

pling is used. Each running time is the average of executing NSGA-II based evolutionary

multi-objective optimization 10 times. According to the results, at 50% Degree centrality

based sampling, the running times reduce by 34%, 30%, 33% and 34% for ca-GrQc , PGP,

ca-HepPh and G-plus networks respectively.

5.3 Applications of multi-objective key players iden-

tified on degree centrality sample

We use two well known problems to compare the performance of multi-objective key player

sets obtained on a Degree centrality based sampled network and the key player sets obtained

by single objective key player identification methods on the entire network. Single objec-

tive key player algorithms; DC (Degree centrality), EC (Eigenvector centrality), BC (Be-

tweenness centrality), CC (Closeness centrality), PR (PageRank), PCC (Principal compo-
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nent centrality), ITP (Information theory based KPP POS), ITN (Information theory based

KPP NEG) and KS (K shell) are compared in Tables 5.7-5.11 against the performance of

the multi-objective approach. For both these problems we assume that the set of qualities

key players should have will be measured by Degree Centrality, Betweenness Centrality,

Closeness Centrality, Eigenvector Centrality and PageRank, and use Leave-k-out approach

with (k = 2).

5.3.1 Performance of multi-objective key players in EIL problem

In this section, we use the EIL problem to compare the performance of multi-objective key

player sets obtained on the 50% Degree centrality sample and the key player sets obtained

by single objective key player identification methods on the entire network.

The effectiveness of the key player identification strategies was evaluated on the average

number of nodes recruited by the Limiting Campaign at the time the model stabilizes.

Table 5.7 shows the results after repeating the experiment for 1000 trials for the ca-GrQc

network. The performance of the key player sets identified on the original network is better

than the performance of the key player sets identified on the sampled network. Hence the

performance of key player sets obtained on the sampled network by single objective key

player identification methods is not shown in Table 5.7.

According to the results, it can be seen that multi objective approach with 50% sampling

performs better than single objective key player approaches applied on the entire network

(p < 0.05). In almost 90% of the cases the multi-objective approach outperforms all other

approaches of key node identification.
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Table 5.7: Average number of nodes recruited by the Limiting Campaign starting at
different delays on ca-GrQc network

Key
Play-
ers

Delay DC EC BC CC PR PCC ITP ITN KS MO

5

4 1483.89 1450.76 1698.87 1621.50 1673.57 1543.28 1489.23 1469.16 1386.71 1710.49
5 1334.76 1242.13 1513.00 1517.26 1469.08 1444.50 1382.37 1288.60 1161.79 1622.33
6 1025.55 987.93 1162.43 1146.25 1061.51 1027.05 1035.76 1043.05 907.83 1276.75
7 604.89 564.87 764.96 723.64 774.02 555.23 625.53 648.22 445.79 877.79
8 314.47 278.11 402.70 373.78 417.79 270.01 311.25 358.31 243.55 449.63
9 150.81 147.56 226.96 173.04 235.32 126.41 129.55 227.21 108.20 286.29
10 98.85 81.39 139.20 146.79 149.22 63.49 94.61 142.07 52.43 177.95

10

4 1551.64 1466.49 1826.44 1641.15 1768.20 1599.99 1535.79 1520.62 1498.09 1796.32
5 1409.33 1348.52 1553.06 1555.91 1544.47 1445.46 1387.98 1427.79 1324.38 1699.12
6 1091.77 954.35 1262.89 1219.85 1255.58 1065.70 1049.47 1168.23 1061.16 1427.21
7 637.80 586.12 823.52 767.87 848.21 613.48 636.47 729.53 624.35 957.88
8 365.97 282.87 533.75 464.74 502.48 340.21 352.21 490.72 333.17 576.06
9 186.56 143.52 348.61 261.09 347.23 190.76 193.29 279.44 155.54 380.88
10 132.93 81.67 226.63 172.26 212.27 94.44 108.37 188.73 92.27 254.66

15

4 1555.39 1529.58 1869.67 1734.47 1838.92 1620.15 1510.02 1636.40 1498.91 1897.47
5 1324.77 1381.32 1717.97 1580.24 1672.11 1335.23 1418.24 1418.80 1332.04 1874.59
6 1098.99 1072.10 1401.54 1301.18 1286.84 1145.59 1069.58 1123.54 1023.53 1511.97
7 672.57 663.68 978.64 816.30 900.46 640.64 771.04 761.78 571.67 1059.43
8 437.80 349.38 571.01 471.25 579.24 344.52 422.47 533.50 308.39 673.29
9 238.13 191.21 388.32 302.49 401.21 189.87 204.05 308.86 176.54 399.93
10 138.81 120.80 281.30 193.56 268.61 125.14 131.88 239.73 95.60 321.17

20

4 1609.41 1560.58 1898.52 1800.86 1926.91 1683.75 1593.27 1675.51 1545.46 2053.94
5 1450.98 1363.96 1741.68 1658.79 1766.00 1377.86 1462.17 1567.86 1351.01 1759.37
6 1157.00 1077.10 1418.74 1304.44 1410.70 1106.98 1103.18 1237.77 1013.17 1645.01
7 702.43 674.63 999.33 898.37 1040.76 720.55 810.62 882.24 631.36 1074.95
8 418.01 431.65 683.73 499.73 699.13 377.28 470.28 575.76 359.49 889.51
9 240.02 205.69 414.40 359.06 458.87 235.64 277.10 357.39 193.67 467.04
10 163.25 139.16 335.88 234.94 309.84 122.91 221.73 268.28 101.77 345.95

5.3.2 Performance of multi-objective key player identification al-

gorithm on the Immunization problem

In a population in which a disease is spreading, finding the best subset of nodes (constrained

by a budget) to immunize is a problem of immense interest. This problem can be modeled

using a network, where the individuals in the population are denoted by nodes and the re-

lationships among the individuals are modeled by the edges. It has been accepted that the

strategies that use key players to immunize are highly efficient for this problem [25]. De-

gree centrality and Betweenness centrality based immunization strategies and their variants

are shown to be very efficient for scale-free network models and some real networks [84].
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In this section, we evaluate the performance of the multi-objective key player identification

technique for this problem.

Multiple computational models have been proposed over the years to explain the pro-

cess of disease spread [89]. For example, in SIR model, a population of N individuals

is divided into three states: susceptible (S), infected (I), and recovered (R). Initially, all

the nodes are in the state S. The disease starts to spread starting from a single infected

node. At each time step, the disease spreads to infected nodes’ neighbors with a probabil-

ity β. Each infected node has a probability of recovering γ at each time step. The model

stabilizes when the number of infected nodes in the network reaches 0. In the immuniza-

tion problem, the goal is to identify the best subset of nodes to be immunized, to control

the disease spread. The immunization process starts after a certain delay from the start of

disease spread. We select nodes to immunize based on different key player identification

algorithms, and compare the effect of each immunization strategy on disease spread. Two

measures are considered in deciding the effectiveness of immunization strategies:

i. The average time to stabilize; and

ii. The average infection probability of all the nodes in the network.

To evaluate these averages we repeat the entire experiment 1000 times and use β = 0.3

and γ = 0.05.

Leave-k-out approach for multi-objective optimization

First, similar to the Section 4.5.1, in Table 5.8 we compare the approaches that have been

proposed to select solutions from the Pareto set (in Section 3.3.1) against the novel ap-

proach we introduced (Leave-k-out approach).

Similar to the results in Section 4.5.1, no method significantly outperforms other meth-

ods. Hence, we conclude that, all the considered methods for selecting best solutions from
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Table 5.8: The comparison of Pareto set pruning approaches on the Immunization problem

Method
Average
time to
stabilize

Average
infection
probability

Running
time (s)

ca-GrQc PGP ca-GrQc PGP ca-GrQc PGP
Leave-k-out (k=1) 137.40 259.43 0.26 0.34 195.17 386.24
Leave-k-out (k=2) 138.65 262.34 0.29 0.36 143.14 295.32
Leave-k-out (k=3) 140.11 276.51 0.32 0.40 107.32 211.41
Weighted sum 137.93 260.32 0.28 0.34 311.58 538.75
Average Ranking 137.99 261.97 0.28 0.35 314.28 540.11
Maximum Rank 139.56 265.21 0.30 0.36 317.24 540.41
Cluster centers 140.04 263.84 0.27 0.36 387.56 574.32
Ideal points 139.43 262.71 0.27 0.35 390.11 577.18
Angle based pruning 138.38 259.84 0.26 0.34 401.46 603.21
Favor Relation 138.35 260.62 0.27 0.35 832.24 984.53
K-optimality 137.27 259.21 0.26 0.33 427.42 611.83

the Pareto set perform equally well, when evaluated based on the performance on the Im-

munization problem,

But the Leave-k-out approach outperforms all other approaches significantly when the

running time to identify the solutions (from the Pareto space) is considered (p < 0.001).

The reduced running time of the Leave-k-out approach occurs due to the reduction of ob-

jectives in the multi-objective optimization. In the above experiment, Leave-k-out (k=1),

Leave-k-out (k=2), and Leave-k-out (k=3) requires 4, 3 and 2 objective optimization in the

first step respectively. All the other approaches require 5 objective optimization.

To evaluate the quality of the solutions obtained by the Leave-k-out approach, we con-

sider the probability that the solutions identified by the Leave-k-out approach are also the

solutions in the Pareto front of the unaltered multi-objective optimization. Table 5.9 shows

the results. All the results shown are averages over 30 trials.

According to the results, the solutions obtained by Leave-k-out (k=1) are always found

in the Pareto front for the 5 objective optimization of the Immunization problem, for all

four networks considered. The solutions obtained by Leave-k-out (k=2), and Leave-k-

out (k=3) have probabilities 0.91 and 0.84 respectively of being in the Pareto front of the
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Table 5.9: Probability of the solutions identified by the Leave-k-out approach also being
solutions in the Pareto front of the original multi-objective optimization (Immunization

problem)

ca-GrQc PGP ca-HepPh Gplus
Leave-k-out (k=1) 1.0 1.0 1.0 1.0
Leave-k-out (k=2) 0.91 0.92 0.90 0.91
Leave-k-out (k=3) 0.84 0.86 0.81 0.83

5 objective optimization for the ca-GrQc network. This indicates that the quality of the

solutions decreases when more objectives are left out from the initial optimization. This is

consistent with the results obtained for the EIL problem in Section 4.5.1. A similar pattern

is observed for the PGP, ca-HepPh and Gplus networks as well.

When Leave-k-out (k=1) and Leave-k-out (k=3) are compared, for a 2% decrease in

performance (average time to stabilize) a 45% reduction in computational time is achieved

when Leave-k-out (k=3) is used for the ca-GrQc network. Hence Leave-k-out (k=3) is

recommended for this application.

Performance comparison of key node identification approaches on the Immuniza-

tion problem

Table 5.10 shows the results for average time to stabilize for the ca-GrQc network, and

Table 5.11 shows the results for average infection probability for the ca-GrQc network.

Similar to the EIL problem we assume that the set of qualities key players should have

are to be measured by Degree Centrality, Betweenness Centrality, Closeness Centrality,

Eigenvector Centrality and PageRank, and use Leave-k-out approach with (k = 2) to select

the best solutions from the Pareto set. The performance of the key player sets identified

on the original network is better than the performance of the key player sets identified on

the sampled network. Hence the performance of key player sets obtained on the sampled

network by single objective key player identification methods is not shown in Tables 5.10

and 5.11.

The best value obtained for each case is highlighted in the tables 5.10 and 5.11. Accord-
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Table 5.10: Average Time to stabilize

Delay Fraction
Immu-
nized

DC EC BC CC PR PCC ITP ITN KS MO

2

0.05 162.42 166.71 156.58 168.32 154.79 165.27 171.56 147.90 171.74 137.67
0.10 154.27 160.54 131.84 148.14 132.92 154.18 166.72 133.38 165.08 119.24
0.15 145.98 154.28 82.31 141.44 82.71 155.50 133.76 121.84 157.80 76.07
0.20 87.46 148.04 82.83 124.54 69.07 155.13 82.89 119.78 158.70 69.76
0.25 70.33 133.75 71.14 101.86 65.60 136.05 77.69 108.38 133.56 51.08

3

0.05 166.01 164.90 155.56 161.71 161.56 163.59 173.47 148.60 167.21 138.71
0.10 159.04 163.56 140.07 159.70 141.35 175.39 160.15 143.26 165.06 127.40
0.15 152.54 163.09 108.67 154.41 104.36 160.75 158.46 135.75 175.63 92.75
0.20 107.77 160.39 96.33 140.67 88.80 157.19 104.95 127.23 148.27 89.09
0.25 92.90 151.26 90.59 121.68 83.23 154.27 85.47 130.63 141.86 75.12

4

0.05 166.09 165.85 164.61 164.61 163.30 168.87 168.40 155.67 168.66 141.41
0.10 164.51 166.12 149.98 163.13 155.90 166.33 161.99 153.33 166.01 137.98
0.15 156.38 159.83 122.42 155.17 126.14 160.25 149.25 142.12 159.76 114.82
0.20 130.41 157.07 115.28 142.71 115.82 159.25 124.14 136.28 154.34 92.67
0.25 113.91 152.06 106.58 136.82 109.28 156.09 109.89 139.88 155.58 86.21

5

0.05 167.28 167.44 161.46 161.36 165.38 168.39 170.58 170.57 167.20 147.28
0.10 164.02 167.89 152.77 160.20 155.43 159.56 173.98 155.82 172.23 131.87
0.15 157.62 167.69 134.33 160.73 136.86 159.94 153.89 143.74 163.04 122.98
0.20 138.82 159.07 132.90 149.67 129.11 160.50 141.88 142.09 161.72 118.65
0.25 133.33 152.65 128.48 148.40 124.38 161.79 138.69 147.80 150.18 100.62

ing to the results, both for average infection probability and average time to stabilize, the

multi-objective key players identified on 50% sample of the original network achieve the

significantly better results (p < 0.05) and the best result among all key player identification

algorithms for 90% of the cases.

More sophisticated approaches have been proposed to address the problem of maxi-

mizing information diffusion in social networks [64, 16] and the problem of immunization

[104, 101]. But these approaches require more information about the network (such as

node, edge attributes) and are proposed to solve these specific problems. Our goal in this

study was to propose a new strategy to identify key players that is general, and can be

applied to multiple applications of interest.
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Table 5.11: Average infection probability

Delay Fraction
Immu-
nized

DC EC BC CC PR PCC ITP ITN KS MO

2

0.05 0.75 0.80 0.57 0.73 0.60 0.80 0.80 0.57 0.85 0.42
0.10 0.57 0.71 0.24 0.51 0.25 0.70 0.59 0.42 0.78 0.17
0.15 0.30 0.61 0.05 0.36 0.05 0.67 0.24 0.29 0.63 0.04
0.20 0.05 0.52 0.04 0.18 0.05 0.56 0.08 0.23 0.49 0.03
0.25 0.03 0.39 0.03 0.08 0.03 0.47 0.03 0.10 0.29 0.02

3

0.05 0.78 0.81 0.62 0.73 0.65 0.81 0.80 0.59 0.84 0.47
0.10 0.63 0.74 0.32 0.59 0.32 0.79 0.60 0.48 0.78 0.26
0.15 0.37 0.67 0.14 0.46 0.12 0.68 0.40 0.34 0.74 0.09
0.20 0.14 0.60 0.11 0.30 0.081 0.60 0.13 0.31 0.51 0.086
0.25 0.09 0.49 0.08 0.19 0.08 0.53 0.08 0.18 0.35 0.06

4

0.05 0.81 0.82 0.69 0.77 0.69 0.83 0.80 0.62 0.83 0.51
0.10 0.70 0.79 0.42 0.66 0.46 0.76 0.67 0.54 0.80 0.45
0.15 0.47 0.71 0.27 0.55 0.26 0.69 0.45 0.41 0.70 0.17
0.20 0.29 0.61 0.21 0.39 0.21 0.65 0.27 0.37 0.58 0.11
0.25 0.21 0.56 0.18 0.33 0.19 0.58 0.22 0.30 0.49 0.07

5

0.05 0.83 0.84 0.72 0.78 0.74 0.84 0.82 0.71 0.86 0.59
0.10 0.73 0.83 0.54 0.70 0.53 0.76 0.78 0.60 0.86 0.46
0.15 0.56 0.77 0.40 0.65 0.411 0.71 0.56 0.47 0.76 0.38
0.20 0.44 0.70 0.36 0.54 0.34 0.68 0.36 0.46 0.69 0.25
0.25 0.38 0.64 0.34 0.49 0.33 0.64 0.37 0.39 0.55 0.18

5.4 Concluding Remarks

As the size and the complexity of the networks increase, so do the running times of the

network analysis measures. The proposed multi-objective approach to key player identifi-

cation depends on the computational complexity of individual network centrality measures

and on the computational complexity of evolutionary optimization algorithm employed.

Hence we investigated how network sampling can be used to reduce the running times of

key player identification without compromising much on the quality of key nodes obtained.

We proposed the idea of degree centrality based sampling to reduce the running time of the

key node identification problem. First, we showed that the degree centrality based sampling

method manages to retain most of the original network’s key nodes in the sample compared

to other sampling methods. Then we used the multi-objective key player sets obtained on

degree centrality based sampled networks to address two well known problems, viz., Even-

tual Information Limitation (EIL) problem and Immunization problem. The results show
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that the multi-objective key player sets identified on sampled networks perform better than

single objective key player sets identified by applying the algorithms on the entire network.
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CHAPTER 6

IMPROVING NETWORK ROBUSTNESS

USING KEY EDGES

Networked infrastructure systems such as the road network, airline network, power grid,

etc. play an important role in our day to day activities. Hence maintaining the function-

ality of these systems during natural damages or attacks on their components is a critical

concern. Quantifying the resilience of the network can be done in multiple ways, depend-

ing on the application and the network properties of interest; hence there exists no unique

definition for network robustness. Thus, multiple network robustness measures have been

introduced to evaluate the capability of a system to withstand such failures or attacks. All

such measures aim to capture features such as: (1) Connectivity - robust networks are ex-

pected to remain connected even when a set of nodes or edges fail during targeted or natural

node/edge failures, (2) Distance - distances between the nodes of robust networks should

remain minimally affected during node/edge failures, and (3) Network properties - the net-

work properties such as degree distribution and distance distribution should change very

little for robust networks.

Improving the robustness of infrastructure systems is an important research problem.

Adding extra edges constraining to a budget and degree-preserving edge rewiring are two
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techniques that have been proposed to address this problem [116, 20, 21, 109, 55, 95].

When edges are added to a network, the properties of the network change. The amount of

change depends on the importance of the set of edges added to the network. In this study,

we assume that upon addition a set of key edges should maximally improve the network

robustness.

In this chapter we address the problem of ‘Given a network and a budget, how should

a set of key edges be selected to be added to the network in order to maximally improve

multiple robustness measures of interest’. In Section 6.1 we discuss the network robust-

ness measures that have been proposed and widely used. Then in Section 6.2 we analyze

the properties of these robustness measures and identify the similarities and dissimilarities

using correlation analysis. In Section 6.3, we introduce our algorithm to optimize mul-

tiple robustness measures of interest to improve the overall robustness of a network. In

Section 6.4, we provide the experimental results which show the improvements in multiple

robustness measures when the new edges are added using our algorithm.

6.1 Robustness measures for networks

We consider three categories of network robustness measures that have been proposed and

are widely used in the literature.

6.1.1 Measures based on the eigenvalues of the adjacency matrix

Let A be the adjacency matrix of the network G = (V,E) with n nodes, and let λ1 ≥ λ2 ≥

λ3 ≥ ... ≥ λn be the set of eigenvalues of A.

1. Spectral radius (SR) : The largest or the principal eigenvalue λ1 is called the spectral

radius. This has been used as a measure of quantifying network robustness in multi-

ple studies [20, 71, 112, 113]. SR is inversely proportional to the epidemic threshold

of a network [19].
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2. Spectral gap (SG) : The difference between the largest and the second largest eigen-

values (λ1 − λ2) is called the spectral gap. This has also been used to measure the

robustness of the graph against attacks [20, 80, 122]. Spectral gap is related to the

expansion properties of the graph; networks with good expansion properties provide

excellent communication platforms due to the absence of bottlenecks [117].

3. Natural connectivity (NC) : Denoted by λ̄, natural connectivity is defined as follows:

λ̄ = ln

 1

n

n∑
j=1

eλj


and is widely used as a measure of robustness in complex networks [20, 63, 21]. Nat-

ural connectivity characterizes the redundancy of alternative paths in the network by

quantifying the weighted number of closed walks of all lengths [21]. Clearly this is

an important measure, because redundancy of routes between the nodes ensures that

communication between nodes remain possible during an attack to the network. A

network created by optimizing the natural connectivity is found to exhibit a roughly

‘eggplant-like’ topology, where there is a cluster of high-degree nodes at the head

and other low-degree nodes scattered across the body of the ‘eggplant’[95].

6.1.2 Measures based on the eigenvalues of the Laplacian matrix

The topology of a network G with n nodes can also be represented by the n× n Laplacian

matrix L = D − A, where D = diag(du) and du is the degree of node u. Let the set of

eigenvalues of L be µ1 = 0 ≤ µ2 ≤ µ3 ≤ ... ≤ µn; these are used to define the following

measures:

1. Algebraic connectivity (AC) : This is the second smallest eigenvalue of the Laplacian

matrix (µ2). The algebraic connectivity is 0 if the network is disconnected and 0 <

µ2 ≤ n when the network is connected [42]. The larger the AC, the more difficult
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it is to cut a graph into disconnected components [2], hence this has been used by

many studies to determine the robustness of networks [62, 109, 20].

2. Normalized Effective resistance (nER): Introduced in [37], nER is defined as,

nER =
n− 1n n∑
i=2

1

µi


The usefulness of this measure can be seen when the network is viewed as an electri-

cal circuit with edges representing a resistor with electrical conductance equal to the

edge weight. The effective resistance (Rvu) between a pair of nodes u and v is small

when there are many paths between nodes u and v with high conductance edges, and

Ruv is large when there are few paths, with lower conductance, between nodes u

and v [47]. Effective resistance is equal to the sum of the (inverse) non-zero Lapla-

cian eigenvalues and has been used in multiple studies to define network robustness

[20, 37].

‘Network criticality’ is a similar robustness metric defined to capture the effect of

environmental changes such as traffic variation and topology changes in networks

[8, 111].

6.1.3 Measures based on other properties

1. Harmonic diameter (HD): This is defined as follows:

HD(G) =
n(n− 1) ∑

u6=v∈V

1

d(u, v)


where n is the number of nodes in the network and d(u, v) is the shortest distance

between the nodes u and v [82]. HD has been used to evaluate network robustness in
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multiple studies [11, 12]. This measure is analogous to the average distance between

all the nodes, but better because this can also be applied to disconnected networks.

For ease of comparison with other measures, we use the reciprocal of the Harmonic

diameter (rHD) in this study, which increases with robustness.

2. Size of the largest connected component (LCC): This measure identifies the size of

the largest component during all possible malicious attacks. LCC is defined as fol-

lows:

R =
1

n+ 1

n∑
Q=0

s(Q)

where n is the number of nodes in the network and s(Q) is the fraction of nodes

in the largest connected cluster after attacking Q nodes. LCC was proposed in [55]

and is widely used [102, 110, 121, 124] as a robustness measure in networks. The

normalization factor 1
n+1

ensures that the robustness of networks with different sizes

can be compared. The attacks often consist of a certain fraction of node attacks, and

after the attack, the measure identifies the number of nodes in the largest connected

component. It has been found that the robust networks that optimize this measure

form a unique ‘onion-like’ structure consisting of a core of highly connected nodes

hierarchically surrounded by rings of nodes with decreasing degree [55].

3. Clustering coefficient (CC): The abundance of triangles in the network is identified by

the clustering coefficient [118]. The clustering coefficient of a network is calculated

based on the local clustering coefficient of each node. The clustering coefficient of

the node u is defined as,

CCu =
number of triangles connected to node u

number of triples centered around node u
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where a triple centered around node u is a set of two edges connected to node u. The

overall clustering coefficient of the network is calculated as the average CCu. A high

clustering coefficient indicates high robustness, because the number of alternative

paths grows with the number of triangles [38].

Other robustness measures have also been proposed in literature, e.g, vertex/edge con-

nectivity, network diameter, average distance between the nodes, vertex/edge betweenness

and number of spanning trees. These measures are excluded in this study due to poor

performance in some trivial cases or high computational cost needed for real world large

networks [38].

In the following section we discuss some of the properties of the aforementioned net-

work robustness measures.

6.2 Properties of network robustness measures

In this section we compare the aforementioned robustness measures using three approaches:

i. Robustness values of a few small networks are calculated and compared.

ii. The change in these robustness measures upon addition of new edges to the network

are calculated and compared.

iii. The similarities and dissimilarities of the robustness measures are compared using the

correlation of these measures for a set of generated networks that follow the power law

degree distribution.

6.2.1 Analysis of trivial networks

The trivial networks that we considered are shown in Figure 6.1. The networks are ordered

by increasing robustness intuitively, i.e., the network 6.1(a) is the least robust, the network
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(a) Empty Network (b) Path Network (c) Star Network

(d) Ring Network (e) Grid Network (f) Fully connected
Network

Fig. 6.1: Six trivial networks considered for robustness calculation; the networks are
arranged in the increasing order of robustness assesed intutively.

6.1(b) is more robust than network 6.1(a), the network 6.1(c) is more robust than 6.1(b),

etc. , and the network 6.1(f) is the most robust.

Table 6.1 shows the robustness values obtained by each robustness measure discussed

in Section 6.1 for each trivial network that we consider. The summary of the results is as

follows:

i. NC and nER orders the networks in the expected order.

ii. rHD and AC also order the networks correctly, but fail to distinguish between some of

the trivial networks.

iii. CC gives a value of 0 to all networks with no triangles, and evaluates the empty net-

work to be as robust as the grid network.

iv. LCC, SR and SG order the networks differently than our intuition.

v. LCC gives the same robustness value to both the ring and grid networks, defying intu-

ition. In addition, the star network gets a low LCC value than the path network.

vi. SR and SG identify the networks which enable fast communication as robust networks,

thus star network gets a high robustness value.



106

vii. All the robustness measures considered identify the empty network as the least robust

network and the fully connected network as the most robust.

Table 6.1: Robustness values of the trivial networks

Network rHD LCC CC SR SG NC AC nER
Empty 0 0 0 0 0 0 0 0
Path 0.58 0.33 0 1.80 0.55 0.71 0.27 0.14
Star 0.66 0.17 0 2.24 2.24 0.81 1.0 0.20
Ring 0.66 0.37 0 2.0 1.0 0.83 1.0 0.28
Grid 0.70 0.37 0 2.41 1.41 1.01 1.0 0.35
Full 1.00 0.50 1.0 5.0 6.0 3.22 6.0 1.0

6.2.2 Behavior of the Robustness measures for a single edge ad-

dition to the network

Multiple studies have used edge addition to improve the network robustness [21, 116].

Intuitively when an edge is added to the network, the overall robustness of the network

should improve. In this section, we examine whether this hypothesis is true for all the

robustness measures when a single edge is added to the network.

Among all the aforementioned robustness measures, rHD, NC, nER and SR monotoni-

cally increase upon an addition of an edge (u, v) regardless of the location of the new edge.

A brief argument is presented below to support the above claim.

• rHD - When a new edge (u, v) is added to a network, the shortest distance between

the two nodes u and v is reduced. Thus rHD will necessarily increase.

• NC - Natural connectivity is proportional to the weighted sum of numbers of closed

walks in the network. When a new edge is added to a connected network, it will

create a new cycle in the network, thus the number of closed walks in the network

will increase. Thus NC will monotonically increase upon edge addition.
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• nER - Suppose nER between the nodes u and v before adding the new edge was Ruv.

After the new edge is added, the nER between u and v becomes
(

1 + 1
Ruv

)−1

. Since,(
1 + 1

Ruv

)−1

< Ruv, nER increases with an edge addition.

• SR - Consider G′ = G − (u, v) and x be the eigenvector of G′ corresponding to the

leading eigenvalue λ1(G′). Then, the following inequality holds, if xuxv > 0:

λ1(G′) = xtA(G′)x < xtA(G)x = λ1(G),

since xtA(G′)x = xtA(G)x− 2xuxv.

The monotonic increase of robustness with edge addition is not a property of other

robustness measures that were mentioned in Section 6.1. CC increases only when the newly

added edge creates a triangle in the network, and the difference between the CC in ring and

grid networks (shown in 6.1) is an example for this. AC also does not necessarily increase

with an edge addition. The difference between the AC values between the ring network and

the grid network in Table 6.1 provides an example for this as well. The difference in SG

between a star network and a network created by adding an edge between two peripheral

nodes gives an example for a case where the SG decreases when an edge is added. LCC

depends on the order in which the attacks occur on the network. Thus an edge addition

does not always guarantee increase in every robustness measure.

6.2.3 Correlation of robustness measures

In this section, we study similarities in the overall behavior of the robustness measures that

were discussed in Section 6.1, using Pearson’s correlation coefficient. A high correlation

between two measures suggests that a network that shows high robustness in terms of one

measure would also show high robustness in terms of the other measure as well.

To evaluate the correlations among the robustness measures, 100 scale free networks

were generated with number of nodes in range [500, 5000] and with power law parameters
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Table 6.2: Correlation of the robustness measures

rHD LCC CC SR SG NC AC nER
rHD 1
LCC -0.41 1
CC 0.90 -0.61 1
SR 0.88 -0.65 0.88 1
SG 0.89 -0.58 0.98 0.87 1
NC 0.90 -0.62 0.99 0.89 0.98 1
AC 0.86 -0.34 0.75 0.86 0.78 0.76 1
nER 0.37 0.32 0.02 0.28 0.09 0.04 0.69 1

in range [2.0, 3.0]. For each of the generated networks, the robustness values were calcu-

lated. Then, the Pearson product-moment correlation coefficient was calculated between

the robustness measures. The correlation coefficients are shown in Table 6.2. 1

According to the results, some of the robustness measures are highly correlated. Some

of these highly correlated pairs include (CC, NC), (SG, NC) and (SG, CC) (p < 0.001).

Also, the three robustness measures that are calculated using the eigenvalues of the adja-

cency matrix (spectral radius, spectral gap and natural connectivity) are highly correlated.

Some robustness measures are highly uncorrelated. For example, the pairs (CC, nER),

(NC, nER) and (SG, nER) show this behavior (p > 0.5). The correlation of some of the

robustness measure pairs are shown in Figures 6.2(d)-6.2(f).

Interestingly, LCC negatively correlates with most other robustness measures (except

for nER). The negative correlation suggests that when the robustness of the network is in-

creased in terms of LCC, the robustness in terms of other measures will not increase. The

observed negative correlation can be explained as follows. Consider improving the LCC

measure. As LCC is focused on keeping most of the nodes in a single connected compo-

nent during node attacks made in the order of degree centrality, new edges (that get added

when optimizing LCC) connect nodes with low degree and in different communities in the

network. However such edge addition decreases, for example CC (and other measures),

1Similar results were obtained when the experiments were carried out for 100 generated scale free net-
works by, (1). fixing the number of nodes and changing power law parameter in the aforementioned range
and, (2). changing the number of nodes in the aforementioned range and fixing the power law parameter.
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(a) CC vs NC (b) SG vs NC (c) SG vs CC

(d) CC vs nER (e) NC vs nER (f) SG vs nER

Fig. 6.2: Correlation plots between the robustness measures

because although the number of edges increase, the number of triangles in the network

mostly remain unchanged. The number of triangles are less likely to increase, because: (1)

the number of edges connecting different communities is small, and (2) the nodes to which

the edges are added have low degrees.

6.3 Multi-objective definition of robustness

Multiple studies have focused on improving the robustness of a network by optimizing

a single robustness measure [116, 117, 47, 109, 21, 112, 20]. But, the low correlation

among some of the robustness measures (shown in Section 6.2.3) suggests that when a

single measure is optimized, it does not guarantee the improvement of robustness in terms

of other measures. We argue that edges should be added to a network in a manner such

that not one, but multiple robustness measures improve. In this section, we propose a

methodology to improve multiple uncorrelated robustness measures by adding new edges
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to the network.

We select three uncorrelated robustness measures (largest connected component (LCC),

spectral gap (SG) and normalized effective resistance (nER)), one each from the three cat-

egories of robustness measures discussed in Section 6.1. Our goal is to improve all three

of these measures in the network by edge addition. We formulate the problem as a multi-

objective maximization problem : Find the set of k edges that can increase all three robust-

ness measures the most.

We represent the network as a bit string, in which each possible edge that can be added

to the network is assigned an index. The number of bits in the bit string is equal to the

number of possible edges (m) that can be added to the network. Initially, before any extra

edge is added to the network, the bit string consists of all 0s. When a certain edge is selected

to be added to the network, the bit value corresponding to the index of the selected edge

will be changed to 1.

The key steps of the NSGA-II algorithm to identify the k edges to add to the network

are as follows:

i. Initial population - In each individual (bit string) in the initial population, k random

bits are assigned the value of 1 to represent that they are selected to be added to the

network, and the remaining (m − k) bits are assigned 0, where m is the total number

of edges that can be added to the network.

ii. Fitness - To calculate the fitness value of each individual, we first add the selected set

of k edges to the initial network. Then, the three robustness measures (LCC, SG and

nER) are calculated for the amended network.

iii. Crossover - One point crossover is applied to a fraction Pc of selected individuals to

generate offspring.

iv. Mutation - Mutation is performed with probability Pm by inverting two bits of different

values.
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The number of solutions obtained depends on the network on which the optimization is

performed and the objectives selected.

6.3.1 Fast calculation of robustness measures

The computation of the three robustness measures that we consider is costly for large net-

works. Thus we use approximation techniques and the results of Matrix Perturbation The-

ory for fast calculation of robustness measures.

1. Size of the largest connected component (LCC):

Computing LCC requires calculation of the fraction of nodes in the largest connected

cluster after attacking nodes in the order of degree centrality. In many real networks,

the degree distribution follows the power law. Hence, the attacks made on the high

degree nodes have the biggest impact on the network. We approximate LCC by at-

tacking only the top l%(<< n) nodes with the highest degree centrality. For 100

generated scale-free networks with number of nodes in range [500, 5000] and scale-

free parameter in range [2.0, 3.0], the LCC calculated by removing all n nodes in

the network has a correlation of 0.87(p < 0.0001) with the LCC approximated by

removing only the top 20% degree centrality nodes. This approximation reduces the

running time of LCC by 79.9% on average. Hence, in our experiments we approxi-

mate the LCC by attacking the top 20% nodes in the network in the order of degree

centrality.

2. Spectral gap (SG)

For a perturbation ∆A in the adjacency matrix A of the original network G, the new

eigenvalues and eigenvectors of the new network G′ can be approximated [107, 20].

The update to the ith eigenvalue can be written as ∆λi ≈ xi
T∆Axi and the ap-

proximated change in the ith eigenvector is ∆xi ≈
n∑

j=1,j 6=i

(
x′
j∆Axi

λi − λj
xj

)
. Thus the
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change in SG when a new edge (u, v) is added can be approximated by the expres-

sion,

xT
1 ∆Ax1 − xT

2 ∆Ax2 = 2(x1ux1v − x2ux2v),

where x1 and x2 are the eigenvectors corresponding to two largest eigenvalues λ1

and λ2, and xij denotes the jth element of the ith eigenvector. Since we avoid calcu-

lating all the eigenvalues of a large adjacency matrix, the running time is substantially

reduced.

3. Normalized Effective Resistance (nER)

Effective resistance is equal to the sum of reciprocals of the non-zero Laplacian

eigenvalues, and can be approximated by the first l − 1 non-zero eigenvalues in-

stead of all n − 1 of them [37]. According to matrix perturbation theory, when an

edge (u, v) is added to a network, the change in its Laplacian eigenvalue µt can be

written as, ∆µt = vT
t ∆Lvt = (vtu − vtv)2, where µt is the tth eigenvalue of the

Laplacian matrix L, vt is the corresponding eigenvector of µt and vti corresponds to

the ith element of the tth eigenvector.

Using this eigenvalue approximation and matrix perturbation theory, the change in

nER when an edge (u, v) is added can be written as,

∆nER ≈ l − 1

n( 1
µ2+∆µ2

+ 1
µ3+∆µ3

+ ...+ 1
µl+∆µl

)
− nER

∆nER ≈ l − 1

n

 l∑
i=2

1

µi + (viu − viv)

−1

6.3.2 Selecting solutions from multi-objective optimization

The Pareto set usually contains a large number of solutions. For example, in identifying 10

new edges to add to the EuroRoad network to maximize all 3 objectives, the Pareto surface
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Table 6.3: Statistics and description of the networks used

Network Nodes Edges Description
Euroroad2 1174 1417 International road network

in Europe. The nodes repre-
sent cities and an edge indi-
cate the cities are connected
by a road.

US air-
ports3

1574 28236 The network of flights be-
tween the US airports in
2010. Each edge represents
a connection from one air-
port to another.

OpenFlights4 2939 30501 The network of flights be-
tween airports in the world.
An edge represents a flight
from one airport to another.

US power
grid5

4941 6594 The power grid of the West-
ern States of the US. A node
is either a generator or a
power station, and an edge
represents a power line.

contained 91 solutions i.e., 91 sets of 10 edges. Since there are too many solutions for

decision making, we use the Leave-one-out approach discussed in Section 4.4.1.

6.4 Experimental Results

We use four commonly used real world network datasets in our experiments. A brief de-

scription of the datasets is provided in Table 6.3.

6.4.1 Improving robustness by edge addition

For each case of robustness optimization, we provide four multi-objective optimization

solutions. The first value corresponds to the average of all solutions in the Pareto surface.
2Source: http://konect.uni-koblenz.de/networks/subelj_euroroad
3Source: http://konect.uni-koblenz.de/networks/opsahl-usairport
4Source: http://konect.uni-koblenz.de/networks/opsahl-openflightsd
5Source: http://konect.uni-koblenz.de/networks/opsahl-powergrid
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The other three values correspond to the solutions obtained by the Leave-k-out approach

(k=1) (Leave-one-out approach).

1. Oave - Represents the average value obtained by all the solutions in the Pareto front

of the 3 objective optimization.

2. (O − 1)nER - In this case we first perform the optimization on SG and LCC. Then

from the non-dominated solutions obtained, the solution that maximizes nER is se-

lected.

3. (O − 1)LCC - The initial optimization is performed on SG and nER. Then from the

non-dominated solutions obtained, the solution that maximizes LCC is selected.

4. (O − 1)SG - First, the optimization on LCC and nER is performed. Then from the

non-dominated solutions obtained, the solution that maximizes SG is selected.

We use the solutions obtained by multiple other edge addition methods to compare the

results. First we consider single objective optimization to improve network robustness. We

obtain sets of edges that optimize SG, LCC and nER respectively.

Then we consider the following heuristic approaches to add edges to the network, which

would also improve network robustness.

i. Rich−Rich: The edges are added among the nodes with high degree.

ii. Poor − Poor: The edges are added among the nodes with lowest degree.

iii. Rich − Poor: The edges are added between the nodes with high degree and nodes

with low degree.

iv. Random: In this case we add edges randomly to the network.

We present the results in Figures 6.3 and 6.4. In Figure 6.3, the robustness improve-

ment obtained by the proposed multi-objective approach is compared with the robustness
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(a) Value of SG after edges added (b) Value of LCC after edges added

(c) Value of nER after edges added

Fig. 6.3: Robustness improvement in OpenFlights network - Comparison between
multi-objective approach and single objective approaches
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improvement obtained by optimizing single robustness measures. In Figure 6.4, we com-

pare the robustness improvement by the multi-objective approach with the heuristic edge

addition methods. In the figures, the Y axis corresponds to the robustness measure achieved

by the network, upon edge addition. Higher values along the Y axis corresponds to more

robust networks. The X axis represents the percentage of new edges added to the network.

In Figure 6.3(a), we show how the robustness value of SG has changed with the use of

different edge addition algorithms. As expected, the solution obtained by optimizing SG

gives the best improvement in SG compared to the other algorithms. What is to be noted

here is the poor improvement of SG given by the solutions that were optimized for LCC and

nER. A similar pattern is seen in Figure 6.3(b) and Figure 6.3(c) as well. In Figure 6.3(b)

where we plot the value of LCC with edge addition, the best performance is shown by the

solution that was obtained by optimizing LCC, whereas the solutions that were obtained

by optimizing SG and nER perform poorly. In Figure 6.3(c) where we plot the value of

nER with edge addition, the best performance is shown by the solution that was obtained

by optimizing nER and the solutions that were obtained by optimizing SG and LCC do not

perform well.

The solutions obtained by multi-objective optimization do not perform the best in every

case, but perform ‘well’ in all the cases. For example, the solution obtained by (O− 1)nER

performs 3rd best in optimizing SG and LCC and performs 4th best in optimizing ER among

all the methods that we considered. But the network created by adding a set of new edges

to optimize a single objective robustness measure (such as SG), will perform well only

when the optimized robustness measure is concerned. For example, the network created by

optimizing SG performs the best when the value of SG is considered (Figure 6.3(a)), but

performs really poorly when the other two robustness measures are considered (Figures

6.3(b) and 6.3(c)).

The solutions obtained by Leave-k-out approach perform slightly better than the aver-

age of solutions of O objective optimization in each case. This is because in O objective
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(a) Value of SG after edges added (b) Value of LCC after edges added

(c) Value of nER after edges added

Fig. 6.4: Robustness improvement in OpenFlights network - Comparison between
multi-objective approach and heuristic approaches
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optimization, when an extra objective is added to the optimization, we get solutions that

perform poorly with regard to the objective of our interest. For example, in 3 objective

optimization, some solutions are in the corners of the Pareto surface that perform well in

two objectives, but poorly in the other. These solutions affect the average performance

that we considered in the comparison. In the case of Leave-one-out approach, although all

three robustness measures are considered, we consider them in two steps. For example, in

the case of (O − 1)nER, some solutions perform quite well in LCC, but not as well in SG

(solutions in one side of the Pareto front). But those solutions are unlikely to be picked by

the second step, when we pick the solution that perform best in nER, because of the low

correlation between LCC and nER. Hence a solution that performs well in SG is picked by

the Leave-one-out approach. A similar pattern is seen in Figures 6.3(b) and 6.3(c) as well.

As shown in Figure 6.4, when heuristic edge addition methods are considered, adding

edges among the nodes with high degrees results in much better performance in terms of

SG. In fact, Rich-Rich performs 2nd best among all the edge addition methods explored

here when SG is considered. But Rich-Rich edge addition performs poorly when LCC and

nER are considered.

In Table 6.4, we show the average rank of each edge addition method. The values in

Table 6.4 are the ranks of all 15 cases (3 robustness measures of interest and 5 percent-

ages of edge addition) for each network. The edge addition methods corresponding to

low ranks perform well on all 3 robustness measures of interest. According to the results,

adding edges based on the Leave-one-out approach yields the best overall robustness in all

networks considered in the study.

6.4.2 Network robustness after node attacks

In this section, we investigate how the networks (with robustness improved by edge addi-

tion) performed during a phase of multiple node attacks. In this study, we consider two

types of node attacks. In targeted node attacks, the nodes with the high degrees (and their
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Table 6.4: Average robustness ranks of edge addition methods; smaller values represent
greater robustness

Method of edge addition Average Rank
EuroRoad OpenFlights US Airports US Powergrid

SG 5.3 6.1 6.2 6.1
LCC 5.9 5.1 4.7 5.2
nER 5.6 5.3 5.5 5.2

(O − 1)nER 3.3 3.4 3.5 3.7
(O − 1)LCC 3.3 3.3 3.5 3.1
(O − 1)SG 3.4 3.4 3.3 3.3
Oave 5.1 5.3 5.5 5.1

Rich-Rich 7.9 7.9 8.0 7.6
Poor-Poor 7.7 8.3 7.5 9.3
Rich-Poor 8.9 8.9 9.3 8.7
Random 9.4 8.9 8.9 8.5

corresponding edges) get removed from the network; and in random node attacks, a set of

nodes selected randomly from the network (and their incident edges) get removed from the

network.

Here, after edge addition to improve the robustness of the network, we attack a set

of selected nodes in the network. After the attack, we recalculate the network robustness

values. In Table 6.5, we show the robustness values of the OpenFlights network during

targeted node attacks and in Table 6.6, we show the robustness values of the same network

during random node failures. Suppose as the initial network we consider the network im-

proved by adding 3.3% edges. In the column corresponding to 0% node attacks, we show

the robustness value after 3.3% edges have been added to the network. Each latter column

refers to robustness values calculated after a certain percentage of nodes are removed from

the network.

Prior to any node attacks, the highest value of SG is given by the network to which

the edges are added by optimizing SG. In the case of targeted attacks (Table 6.5), as the

number of attacked nodes increases, the highest SG values are obtained by the networks to

which the edges were added by the (O − 1)nER approach. For the network to which the
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edges were added by optimizing SG, the SG value reduces sharply as the number of nodes

attacked increases. As expected, this sharp decrease is seen in the network to which the

edges were added by Rich-Rich approach. In the cases of LCC and nER, for all node attack

levels, the highest robustness values are shown by the networks to which the edges were

added to optimize LCC and nER respectively. But, even in those two cases, the networks to

which the edges were added by the Leave-one-out approach show high robustness values

even when subjected to targeted node attacks.

Table 6.6 shows the results for the case of random node attacks. In this case, the net-

work created by adding edges to improve SG shows the best SG values during random node

attacks. But the robustness of this network is poor when LCC and nER are concerned. A

similar behavior is shown by the networks created by adding edges to improve LCC and

nER. The networks created by adding edges using Leave-one-out approach show high over-

all robustness when all three measures of robustness are considered. Hence we conclude

that the networks created by adding edges using Leave-one-out approach retain the high

overall robustness during a phase of multiple random node attacks as well.

6.5 Concluding Remarks

When edges are added to a network, the properties of the network change. The amount of

change depends on the importance of the set of edges added to the network. In this chapter

we addressed the following problem : Given a network and a budget, how should a set

of ‘key’ edges be selected to be added to the network in order to maximally improve the

overall robustness of the network? Towards this goal, first we discuss the network robust-

ness measures that have been proposed and widely used. Then, we analyze the properties

of these robustness measures and identify their similarities and dissimilarities using cor-

relation analysis. Then, we use the leave-k-out approach to optimize multiple robustness

measures of interest to improve the overall robustness of a network. Experimental evi-
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Table 6.5: Robustness values during targeted node attacks - OpenFlights network

Robustness
value

Edge ad-
dition
method

Percentage nodes attacked

0% 2% 5% 7.5% 10% 15%

SG

SG 36.292 27.686 14.966 12.632 8.575 4.477
LCC 21.984 14.811 9.488 7.141 6.314 3.526
ER 20.976 14.132 9.018 6.614 6.002 3.349
(O− 1)nER 30.391 24.289 12.865 11.478 9.466 5.425
(O−1)LCC 28.087 17.300 11.035 8.189 7.365 4.223
(O − 1)SG 27.883 17.200 10.952 8.238 7.317 4.625
Rich-Rich 31.367 23.934 12.757 10.518 7.280 3.727
Poor-Poor 20.630 13.893 8.905 6.737 5.915 3.280
Rich-Poor 22.736 15.339 9.627 7.254 6.403 3.531

LCC

SG 0.095 0.087 0.075 0.072 0.066 0.051
LCC 0.219 0.209 0.200 0.189 0.169 0.148
ER 0.146 0.132 0.112 0.107 0.094 0.064
(O− 1)nER 0.168 0.168 0.159 0.151 0.134 0.115
(O−1)LCC 0.161 0.152 0.137 0.127 0.121 0.094
(O − 1)SG 0.167 0.165 0.153 0.143 0.132 0.099
Rich-Rich 0.092 0.085 0.073 0.071 0.063 0.049
Poor-Poor 0.154 0.147 0.139 0.136 0.120 0.096
Rich-Poor 0.093 0.086 0.076 0.075 0.064 0.048

ER

SG 0.0008 0.0007 0.0004 0.0004 0.0001 7.68E-05
LCC 0.0008 0.0008 0.0005 0.0005 0.0003 0.0002
ER 0.0016 0.0014 0.0011 0.0010 0.0006 0.0004
(O− 1)nER 0.0012 0.0011 0.0008 0.0007 0.0005 0.0004
(O−1)LCC 0.0013 0.0013 0.0008 0.0008 0.0004 0.0003
(O − 1)SG 0.0013 0.0012 0.0007 0.0007 0.0004 0.0003
Rich-Rich 0.0006 0.0005 0.0003 0.0003 2.30E-05 5.78E-06
Poor-Poor 0.0008 0.0008 0.0004 0.0001 4.01E-06 2.27E-07
Rich-Poor 0.0006 0.0006 0.0003 0.0003 3.68E-05 5.56E-06

dence shows the improvement in multiple robustness measures when the new edges are

added using our algorithm. The key edge identification and addition method proposed in

this study improves multiple robustness measures of interest simultaneously, and this can

be extremely important in real world applications. For example, when funds need to be

allocated to add new roads to a road network, the objectives of interest would include re-

ducing the distance between cities, keeping the cities connected even if some central cities
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Table 6.6: Robustness values during random node attacks - OpenFlights network

Robustness
value

Edge ad-
dition
method

Percentage nodes attacked

0% 2% 5% 7.5% 10% 15%

SG

SG 36.292 31.046 28.240 27.938 27.021 25.591
LCC 21.984 20.340 20.131 19.541 17.356 16.931
ER 20.976 19.333 19.077 18.683 16.777 16.206
(O− 1)nER 30.391 27.124 25.985 24.482 24.072 23.276
(O−1)LCC 28.087 25.407 24.307 23.971 23.619 21.921
(O − 1)SG 27.883 24.931 24.521 23.897 23.176 21.782
Rich-Rich 31.367 26.218 24.108 23.361 22.591 21.679
Poor-Poor 20.630 19.232 19.215 17.994 16.418 16.350
Rich-Poor 22.736 21.795 21.516 20.316 19.577 18.875

LCC

SG 0.095 0.088 0.087 0.079 0.078 0.076
LCC 0.219 0.155 0.136 0.131 0.129 0.125
ER 0.146 0.098 0.095 0.095 0.094 0.092
(O− 1)nER 0.168 0.104 0.102 0.102 0.102 0.096
(O−1)LCC 0.161 0.099 0.096 0.095 0.098 0.093
(O − 1)SG 0.167 0.114 0.104 0.105 0.103 0.100
Rich-Rich 0.092 0.090 0.087 0.089 0.086 0.081
Poor-Poor 0.154 0.115 0.111 0.109 0.116 0.109
Rich-Poor 0.093 0.089 0.089 0.088 0.083 0.081

ER

SG 0.0008 0.0007 0.0006 0.0006 0.0006 0.0006
LCC 0.0008 0.0006 0.0006 0.0006 0.0006 0.0005
ER 0.0016 0.0011 0.0011 0.0011 0.0010 0.0010
(O− 1)nER 0.0012 0.0009 0.0009 0.0008 0.0008 0.0007
(O−1)LCC 0.0013 0.0010 0.0009 0.0009 0.0008 0.0008
(O − 1)SG 0.0013 0.0009 0.0009 0.0009 0.0008 0.0008
Rich-Rich 0.0006 0.0005 0.0005 0.0005 0.0004 0.0004
Poor-Poor 0.0008 0.0006 0.0006 0.0005 0.0005 0.0005
Rich-Poor 0.0006 0.0005 0.0004 0.0004 0.0004 0.0004

become inaccessible, etc. For such an application, one can select the objectives accordingly

and use the edge addition algorithm proposed by this study in order to improve the overall

robustness of the underlying system.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

We summarize the obtained results and give the conclusions of this study, in Section 7.1.

Then, in Section 7.2, we present some interesting future research directions.

7.1 Conclusions

Key player identification is an important problem in network science, and earlier studies

have mainly focused on the identification of key nodes. In this dissertation, we have inves-

tigated the effects of identifying key players which optimize multiple properties of interest,

in different well known applications of network science. To identify the sets of key players

which optimize multiple properties of interest, we have used a multi-objective optimization

algorithm. Our algorithm converts the network into a binary string, and then the sets of key

players that optimize multiple objectives are identified by executing a genetic algorithm. In

multi-objective optimization problems, a large number of Pareto-optimal solutions (each of

which is non-dominated by any other solution) is identified. But decision-makers require

one or two ‘good’ solutions to be used in their applications. To accommodate this, we

proposed a two step process for multi-objective optimization, viz., Leave-k-out approach.

Our results show that the Leave-k-out approach is successful in identifying a subset of
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solutions from the original Pareto set, while reducing the computational time significantly

(p < 0.001). Selecting the appropriate k value in the Leave-k-out approach is a trade-off

between the performance and the computational cost. We have also shown that the sets of

key players who possess multiple important characteristics, identified using the proposed

Leave-k-out approach, outperform the sets of key players identified by the previous ap-

proaches in multiple well known applications such as the Eventual Information Limitation

(EIL) problem and improving the fault tolerance of the smart grid.

We also used a multi-objective optimization algorithm to identify key edges in a net-

work. In the context of network robustness, the key edges can be defined as the set of edges

that upon addition would improve the robustness of the network the most. The results show

that the multi-objective key edges identified using the Leave-k-out approach improve the

overall robustness of the network the most, compared to the key edges identified using

previous approaches.

To improve the running time of the key player identification algorithm, we proposed a

sampling algorithm based on the degree centrality of the nodes in the network. We have

shown that when the networks are sampled using the degree centrality based sampling

approach, most of the key nodes in the original network gets preserved in the sampled

network. Our experimental results on the EIL problem and the Immunization problem show

that, in almost 90% of the cases considered, even when the multi-objective key players were

identified on the 50% degree centrality sample, these key players perform better than single

objective key players identified on the entire network. In addition, degree centrality based

sampling reduces the running time of the Leave-k-out approach for key player identification

significantly.

In conclusion, in multiple real-life applications, viz., Eventual Information Limitation,

Immunization, improving the fault tolerance of the Smart Grid, improving network ro-

bustness, the key players obtained by multi-objective approach are preferred compared to

the key players identified by the previous approaches. As discussed earlier, previous ap-
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proaches for key player identification consider a single property of interest, and identifies

the nodes/edges that maximizes that property of interest. The poor performance of such

measures in the aforementioned applications suggest that key players with multiple desir-

able properties are required for high performance in real-life applications. For a simple

example, consider the set of key nodes identified for the Prisoners network by Eigenvec-

tor centrality and multi-objective approach (shown in Figure 4.5). Clearly, the set of key

nodes identified by Eigenvector centrality is located in one part of the network, and the

set of key nodes identified by the multi-objective approach is distributed across the net-

work. If these key nodes were used to initiate the spread of a certain message (similar

to viral marketing application) across the network, using the key nodes identified by the

multi-objective approach is much more advantageous as they can more directly influence

different communities of the network.

7.2 Future Research Directions

Some specific future research directions, which can be explored following the results of

this study, are elaborated below.

1. Identification of multi-objective key players in dynamic social networks:

Dynamicity is an essential characteristic of many real-life networks. For example, as

a social network evolve with time, it is common to find people leaving the network,

new people joining the network, new connections being formed, and existing con-

nections being deleted. As networks change over time, identification of key players

at different points in time is important for some applications.

To reduce the computational effort, it is important to devise algorithms that can up-

date the set of key players identified in the network dynamically. At the initial time

point, the algorithm will identify the set of key players using the current approach

for multi-objective key player identification. Then, at each time step of interest, the
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algorithm will incrementally update the objective values for the already identified

key players depending on the changes that occurred in the network during the last

time-step. Also, the nodes/edges (that were not part of the initially identified set of

key players) that increased their objective values significantly will be considered to

be included in the set of key players for the network. This approach avoids recompu-

tation by exploiting information from earlier computations and tracking the changes

that occur in the network. Also, to improve the execution time of the initial multi-

objective optimization, better binary representations of networks and possibilities of

parallel computations can be considered.

2. Identification of important objectives for different applications:

As discussed earlier in this dissertation, key players identified on networks are used

in multiple important applications. In this dissertation, we used well known centrality

measures as the properties of interest for multiple applications. But, for certain appli-

cations, some properties will be more important than others. In such applications, to

achieve high performance the algorithm should optimize the more important objec-

tives. This has the advantage that the algorithm’s execution time will be shorter. In

addition, as the identified set of key players optimizes the most important properties,

the performance of the key players should also be high.

To identify the most important properties for different problems, more extensive ex-

periments can be conducted. One possible approach to identify the set of most im-

portant properties is as follows.

i. Start with a comprehensive set of properties (objectives), the set of key players

should possess for the application.

ii. Use problem specific knowledge to sort the properties in deceasing order of im-

portance.

iii. Starting with the most important property, add one property at a time to the
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multi-objective optimization algorithm for key player identification and evaluate

the performance of the identified set of key players for the application.

iv. The most important properties (objectives) for the application are the objectives

that upon removal reduce the performance of the key players the most.

v. Use the knee method[6] to identify the set of most important properties for the

application.

3. Edge sampling for key edge identification:

Degree centrality based node sampling was used in this dissertation to reduce the net-

work size by removing the unimportant nodes before key node identification. Simi-

larly, if unimportant edges from the network could be removed before executing the

key edge identification, the execution time could be reduced without compromising

the quality of the identified key edges. Hence, edge sampling methods which can

preserve most of the key edges in the sample will be investigated in the future.

In the big picture, key player identification has considerable potential for cross-domain

collaborations in a variety of fields. It would be interesting to study the different properties

that the key players exhibit in diverse fields. In addition, as the real-world networks such

as social networks continue to grow in size and the technology to collect, represent and

store data continue to advance, the amount of data available for analysis increases with

time. Hence, developing algorithms that can accommodate the volume, variety, velocity

and veracity of data, and interpret large networks present interesting challenges to explore.
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