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The molecular biophysics of extracellular vimentin
and its role in pathogen–host interactions
Sepideh Parvanian1,2,3,a, Leila S. Coelho-Rato1,2,a,
John E. Eriksson1,2,4 and Alison E. Patteson5

Abstract
Vimentin, an intermediate filament protein typically located in
the cytoplasm of mesenchymal cells, can also be secreted as
an extracellular protein. The organization of extracellular
vimentin strongly determines its functions in physiological and
pathological conditions, making it a promising target for future
therapeutic interventions. The extracellular form of vimentin
has been found to play a role in the interaction between host
cells and pathogens. In this review, we first discuss the mo-
lecular biophysics of extracellular vimentin, including its
structure, secretion, and adhesion properties. We then provide
a general overview of the role of extracellular vimentin in
mediating pathogen-host interactions, with a focus on its in-
teractions with viruses and bacteria. We also discuss the im-
plications of these findings for the development of new
therapeutic strategies for combating infectious diseases.
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Introduction
Vimentin is an intermediate filament protein that is
primarily expressed by the cells of mesenchymal origin
such as fibroblasts, endothelial and hematopoietic cells.
However, in certain pathological conditions such as

infection and injury, epithelial cells can also express
vimentin [1e3]. For instance, epithelial cells such as
columnar and basal cells in the lungs, when damaged or
infected, express high levels of vimentin [4,5]. Modu-
lation of vimentin expression impacts pathogen invasion
and pathogen infection that changes the normal func-
tion and organization of intracellular vimentin. During
infection, viruses manipulate the host’s vimentin fila-
ments to facilitate infection [6,7]. In addition to intra-
cellular vimentin, extracellular vimentin including cell
surface and circulating vimentin has been reported to
function as a receptor and co-receptor for pathogens
including viruses and bacteria either to facilitate or to
restrict the cellular invasion [8e10]. Furthermore,
extracellular vimentin secreted by different cells such as
activated macrophages might be a component of the
host defense system that participates in pathogen
trapping and elimination [9e11]. Interestingly, anti-
vimentin antibodies or soluble vimentin have been re-
ported to inhibit the binding of bacterial micro-
aggregates or viral particles [2,12e14].

Molecular biophysics of extracellular
vimentin
Structure
New studies have revealed that extracellular vimentin
appears in predominantly short non-filamentous forms
in contrast to the filamentous cytoskeletal vimentin
networks that are prominently displayed in mesen-
chymal cells. Vimentin is a 54kD type III intermediate
filament comprised of 466 amino acids (UniProtKB-
P08670). The assembly of vimentin molecules into
larger structures is a complex multi-scale process. A
single vimentin polypeptide forms a central alpha-
helical coil flanked by a head (N) and tail (C) chains
[15]. In the cell, vimentin polypeptide coils are woven
together to create elongated dimers of two parallel
polypeptide chains. Next, vimentin dimers combine in
an anti-parallel and staggered manner to form a vimentin
tetramer. The basic building block of vimentin filament
assembly is termed a unit length filament (ULF),
comprised of approximately 8 tetramers and 60 nm in
length (Figure 1) [16]. ULFs undergo longitudinal end-
to-end annealing with one another and with other
growing filaments to form expansive cytoskeletal net-
works. In contrast, immunofluorescence images of
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extracellular vimentin do not show long connected fil-
aments typical of the cytoskeleton but instead appear as
short segments or small agglomerates [8,13,17]. A recent
study by Hoang and Ise characterized the molecular
structure of extracellular vimentin in human glioma
KNS-42 cells. Combining surface protein biotinylation
and gel electrophoresis techniques, the authors found
the structure of extracellular vimentin to be mostly in
the form of oligomers, 4e12-mers of approximately
228e684 kD [18]. These sizes correspond to approxi-
mately 1e3 tetrameres, which is smaller than a ULF (8
tetrameres). Interestingly, the authors also detected
other intermediate filaments of similar size on the
extracellular surface of cells, including GFAP in KNS-
42 cells, desmin in C2C12 mouse myoblasts, and
peripherin in rat pheochromocytoma PC-12 cells [18].

Taken together, these studies suggest vimentin and
other intermediate filament proteins appear in unusu-
ally small structures on the cell surface (see Figure 1).

Secretion
The presence of extracellular vimentin is associated
with inflammatory conditions (Figure 2). For example,
extracellular vimentin [19] can be stimulated in vitro by
exposing cells to inflammatory-related signals, such as
angiogenic growth factors [20] or the spike protein from
the SARS virus [21]. In addition, activated macrophages
secrete vimentin, and neutrophils release vimentin
during NETosis, a process in which neutrophils expel
DNA webs to entrap bacteria [11,13]. Conventionally,
secreted proteins carry a signaling peptide that directs
their insertion into the endoplasmic reticulum where

Figure 1

Structure and secretion of extracellular vimentin. Vimentin is a 54 kDa rod-shaped protein. Single vimentin monometers combine in parallel to form
dimers (shown staggered for visualization), which assemble into tetramers, and eight tetramers form a 60-nm long rod-like structure called a unit-length
filament. The unit-length filament forms the repeating units of a vimentin fiber. Extracellular vimentin is much smaller than the full filaments in the cells and
is typically only 228–684 kD, corresponding to 1–3 tetrameres in size. Secretion of soluble vimentin in human endothelial cells occurs via unconventional
protein secretion (UPS), in particular type III UPS. Unlike classical secretion, type III UPS involves recruitment of cargo proteins into vesicular com-
partments, such as endosomes and autophagosome organelles, that fuse with the plasma membrane to release proteins into the extracellular space.
Extracellular vimentin also appears as a signaling agent on exosomes (“exosomal vimentin”), which are released via the type III UPS pathway and which
can be taken up into other receptor cells.
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they exit via vesicles to reach the Golgi apparatus and
then the plasma membrane to be released into extra-
cellular space [22,23]. Early reports of extracellular
vimentin released by macrophages showed colocaliza-
tion of vimentin with the Golgi and the application of
Golgi blockers eliminated the release of vimentin,
suggesting vimentin was secreted through the Golgi
apparatus [11]. However, unlike traditionally secreted
proteins, intermediate filaments lack signal peptides for
recruitment to the cell membrane [18]. Thus, there is
still open questions about how vimentin is released into
the extracellular space.

In a recent search for possible regulated pathways for
vimentin secretion, a study by Beijnum et al. has revealed
some new clues about possible secretion routes [20]. In
this study, the authors screened for possible vimentin
secretion pathways by testing the effects of 28 known
regulators of various cellular secretion mechanisms on the

presence of extracellular vimentin in human endothelial
cells. Interestingly, inhibitors of classical secretion did
not block vimentin secretion, but vimentin secretion was
blocked by inhibitors of unconventional protein secretion
(UPS) pathways, in particular type III UPS (Figure 1)
(Unconventional Protein Secretion Pathways Box). The
type III UPS pathway involves cargo uptake into endo-
cytic compartments that then fuse with the plasma
membrane and allow release into the extracellular space
[22,23]. This pathway allows for the transport of proteins
without a signal peptide or transmembrane domain for
translocation across the plasma membrane. These results
suggest the involvement of secretory organelles by UPS
pathways to release vimentin. UPS is triggered by cellular
stress and inflammation, consistent with the inflamma-
tory contexts extracellular vimentin is found. Interest-
ingly, vimentin has also been reported in extracellular
vesicles [24,25], which are also released through type III
UPS pathways.

Figure 2

Roles of the extracellular vimentin pool in the immune system. Extracellular vimentin can act as a ligand or as a receptor/co-receptor for different cell
types. Vimentin is released by activated macrophages and participates in pathogen trapping. In response to injury and inflammatory signals, it can also
directly bind and activate cell-surface receptors such as CD44, IGFR, and P-selectin. Due to its affinity to the lipid bilayer and polysaccharides, extra-
cellular vimentin can be found at the cell surface, where it may bind proteins and different pathogens, including various viruses and bacteria, and facilitate
infection. Moreover, natural killer (NK) cells can target infected cells by recognizing extracellular vimentin on the cell surface.
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Adhesion to the cell surface
The mechanisms of adhesion of extracellular vimentin
to the cell surface are not yet fully understood, but new
studies are pointing to at least three main ways in which
vimentin may adhere to the cell surface. First, specific
binding protein receptors for vimentin have been
identified, such as in insulin-like growth factor 1 re-
ceptor (IGF1R) [26]. Second, vimentin and other in-
termediate filaments have an affinity for phospholipids,
such that vimentin may interact directly with the cell’s
outer lipid bilayer [18]. Third, vimentin has an affinity
for polysaccharides, specifically a selective interaction
with N-acetylglucosamine which is a rich component of
hyaluronic acid and heparin, which comprise parts of the
cell’s glycocalyx [27,28]. It is not yet clear to what
extent each of these interactions plays in vimentin’s
binding and adhering to pathogens on the cell surface. It
is tempting to speculate that vimentin in the cell’s thick
outer glycocalyx layer would serve as a useful binding
site for pathogens, trapping pathogens near the cell
surface where it could ultimately be delivered to spe-
cific cell surface receptors and uptake into the host cell.
Interestingly, a recent study also found enrichment of
extracellular vimentin at the site of primary cilia in
A549 cells, where vimentin co-localized with SARS-
CoV-2 spike proteins [8]; yet, it is not yet clear how
vimentin is recruited to and adheres at the sites of pri-
mary cilia.

The molecular biophysics of extracellular vimentin is
crucial in determining its functions in physiological and
pathological conditions. In the next section, we will
discuss the role of extracellular vimentin in pathogen-
host interactions as an example to demonstrate that its

role extends beyond being secreted from cells. This will
highlight the significance of extracellular vimentin as a
potential therapeutic target in infectious diseases.

Extracellular vimentin in host–pathogen
interactions
Bacterial infection
Numerous studies have reported vimentin-dependent
mechanisms involved in host cell invasion of bacteria,
such as E. coli associated with bacterial meningitis. In
human meningitis, E. coli K1 binds to vimentin on the
surface of brain microvascular endothelial cells through
its virulence factor IbeA. Through this interaction,
vimentin mediates signaling pathways that are required
for E. coli K1 invasion. In this respect, vimentin plays an
important role in gastrointestinal E. coli recognition and
subsequent innate immune signaling activation [29,30].
Furthermore, surface vimentin has been reported to act
as a surface receptor to mediate matrix stiffness on the
invasion of human microvascular endothelial cells
(HMEC-1) by Lysteria monocytogenes [31,32]. During the
pathogenesis of meningitis, surface vimentin interacts
with a surface antigen I/II protein BspC of Streptococcus
agalactiae to promote bacterial adherence to the endo-
thelium of the brain and accelerate inflammation [33].
In addition, host cell surface vimentin is involved in
recognizing gastrointestinal E. coli and mediating innate
immune signaling. It does so by acting as a receptor for
adherent-invasive E. coli strains (AIEC) or as an intra-
cellular pattern recognition receptor to recognize bac-
terial peptidoglycan fragments [34e36]. Cell surface
vimentin is also found on the surface of monocytes
infected with Mycobacterium tuberculosis. It serves as a
ligand for the NKp46 receptor, used by natural killer
cells to target the infected monocytes. Treatment with
an antibody against vimentin had a negative impact on
the lysis of monocytes by natural killer cells [37].
Moreover, bacteria such as Salmonella enterica (serovar
Typhimurium) and Chlamydia trachomatis recruit and
remodel intracellular or cell surface vimentin to facili-
tate infection by mediating pathogen binding and
intracellular innate immune signaling [3,10,38,39].

Viral infection
Vimentin also participates in viral invasion by different
types of viruses with DNA, single-stranded RNA, and
double-stranded RNA genomes [9]. Extracellular
vimentin can mediate viral infection by acting as a re-
ceptor, co-receptor, or restriction factor [8,9,40]. Extra-
cellular vimentin is proposed to act as a receptor or co-
receptor for the invasion of severe acute respiratory
syndrome coronavirus (SARS-CoV) and SARS-CoV-2.
The interaction between extracellular vimentin and
SARS-CoV spike protein is thought to support the
docking of the virus at the cell surface and facilitate the
entrance of the virus into the host cell. Vimentin-ACE2
(angiotensin-converting enzyme 2) interaction acts as a

Unconventional
Protein Secretion
Pathways
In recent years, research has shown that besides the conventional
endoplasmic reticulum–Golgi secretory pathway, there are addi-
tional ways through which proteins can be exported. These alter-
native routes are termed unconventional protein secretion (UPS)
pathways, and they are capable of secreting proteins lacking a
signal sequence (leaderless proteins). There are currently four
types of UPS. The release of extracellular vimentin by tumor
endothelial cells has been associated with type III UPS. Type III UPS
proceeds via endosomes and autophagosomes organelles that
become secretory and fuse with the plasma membrane to release
leaderless cargo proteins. With few exceptions, UPS is largely
triggered by cellular stress.
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SARS-CoV-2 docking platform at the cell surface [8],
and the interaction between vimentin and SARS-CoV-2
is made via the SARS-CoV-2 spike-protein receptor
binding domain [14,42]. Antibodies against extracellular
vimentin supported the role of vimentin in mediating
SARS-CoV-2 cell entry by blocking host cell invasion of
SARS-CoV-2 pseudoviruses in vitro [13].

Extracellular vimentin also facilitates the attachment,
entry, and internalization of different types of viruses
into the host cells such as the Chandipura virus [45],
Japanese encephalitis virus [46], porcine reproductive
and respiratory syndrome virus [47], and cowpea mosaic
virus [41]. Surface vimentin is involved in the infection
of vascular endothelial cells by facilitating the adsorp-
tion of dengue virus (DENV). The direct interaction of
the rod domain of superficial vimentin on vascular
endothelial cells with the viral protein DENV-2 enve-
lope protein domain III mediates the infection [43].
Enterovirus 71 interacts with the N-terminus of the
host cell surface vimentin as an attachment site to
proceed with the infection [12], and interestingly,
enterovirus proteins can increases the expression of the
virus receptor vimentin [44].

On the other hand, vimentin can act not only as a re-
ceptor but rather as a restriction factor in mediating the
internalization and infection of human papillomavirus
(HPV). Both soluble and surface extracellular vimentin
have been shown to limit the internalization of the virus
into epithelial cells by either direct contact or steric
hindrance. Downregulation of surface vimentin signifi-
cantly increases the infectious internalization of HPV,
while overexpression of vimentin led to a substantial
increase in viral uptake [48]. Extracellular vimentin in
both cell surface and soluble exogenous forms has been
shown to modulate the infectious potential of HPV
pseudovirus (HPV16-PsVs) by inhibiting virus inter-
nalization [48,49].

While this review here focuses on extracellular vimen-
tin, it is worth noting that once a virus invades a host,
the presence of intracellular vimentin also plays a role in
viral transport. For instance, recent studies have shown
that intracellular vimentin reorganizes upon infection
and serves as a protective scaffold for Zika virus repli-
cation [50], reorganizes and regulates nonstructural
protein expression with human enterovirus [51], in-
creases the release of influenza A virus by supporting
endosome maturation [52], and inhibits fusion and
maturation of human parainfluenza virus type 3 inclu-
sion bodies [53]. Further, new data are showing
vimentin-targeting small molecule compounds can
reduce virus-related endocytosis, endosomal trafficking,
and exosomal release as well as reduce bleomycin-
induced lung injury and fibrosis in SARS-CoV-2 rat
models [54].

Open questions
Many questions remain to be answered, including what
are the benefits of extracellular vimentin? Extracellular
vimentin is often found in the context of inflammation
and disease and can be hijacked by viruses and bacteria
to invade host cells. It is not yet clear what benefits are
gained by the presence of vimentin in the extracellular
space. One intriguing idea is that the main function of
extracellular vimentin may be in serving as a signaling
agent to other receptor cells. Some of the most
compelling evidence for this is the work on exosomal
vimentin, defined here as vimentin released via
exosomes into the extracellular space [25,55]. The
release of exosomal vimentin has been reported for as-
trocytes and adipocyte progenitor cells and the presence
of vimentin on exosomes has been shown to be critical to
elicit and promote wound healing responses, presum-
ably via promoting the signal carrier function of
exosomes to modify the functions of other cell types.

There is strong evidence that vimentin filaments are
actively disassembled prior to being released into the
extracellular space. Vimentin disassembly involves
different post-translational modifications often via
phosphorylation. Certain modified forms of extracellular
vimentin, such as citrullinated vimentin, is being
recognized for its role in pathological conditions, such as
fibrosis and rheumatoid arthritis. Identifying specific
vimentin modifications in the extracellular environment
will help us recognize the regulated pathways that
release extracellular vimentin under different condi-
tions and may help elucidate specific domains of
vimentin to target against different pathogens.

One major challenge to understanding the functional
roles of extracellular vimentin is vimentin’s biochemical
and functional diversity. Cytoskeletal vimentin is
known for playing dual overarching roles as a physical
scaffold that provides mechanical strength and also a
integrator of diverse biochemical signals, recruiting and
localizing proteins to mediate signal transduction.
Thus, vimentin is a great multitasker, positioned as a
crucial player in cell migration, cell adhesion, and
intracellular transport. Vimentin is only found in
multicellular organisms, marking the onset of multi-
cellularity during evolution and its associated structural
and biochemical challenges. Vimentin’s presence in
various cell types and tissues likely evolved to fulfil
these diverse structural requirements. The vimentin
molecule has a complex structure with many binding
sites, allowing it to be involved with many different
types of multiprotein complexes and utilized under
various cellular contexts. Notably, even slight modifi-
cations to vimentin’s amino acids can yield opposite
downstream effects due to altered binding with other
proteins [56]. The structural and chemical diversity of
vimentin adds an additional layer of complexity to the
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problem of understanding extracellular vimentin, as its
presence and its functional role could be regulated by
many different cellular pathways in cell-specific and
tissue-specific manners.

One last question is whether there are any active
clearance mechanisms of extracellular vimentin. Cyto-
skeletal actin, for example, when released into the
extracellular environment is promptly scavenged by
plasma proteins [57]. Are there analogous methods of
clearing up extracellular vimentin, and if so, can we
exploit them as a preventative measure against different
pathogens? One thing is clear. More detailed work is
needed to understand the fundamental roles of extra-
cellular vimentin and its impacts on translational
research and into the clinic.

Concluding remarks
The extracellular form of vimentin has emerged as an
important mediator of hostepathogen interactions. Its
ability to interact with both viruses and bacteria high-
lights its potential as a therapeutic target for the pre-
vention and treatment of infectious diseases.
Investigating the clinical potential of vimentin as a
binding molecule to recognize and facilitate the entry of
pathogens, or as an inhibitory molecule to block path-
ogen internalization, could be a promising avenue for
future research. However, further studies are needed to
understand the involvement of vimentin in the patho-
genesis of viral infections, including its cellular locali-
zation, conformational arrangements, and function-
related post-translational modifications. Overall, a
better understanding of the role of extracellular
vimentin in hostepathogen interactions could lead to
the development of new and effective strategies to
combat infectious diseases.
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