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Abstract: 

Myxococcus xanthus is a soil bacterium that is a member of a group of 
organisms known as the myxobacteria.  M. xanthus cells live in biofilms and 
feed on other bacteria to obtain nutrients.  During times of inadequate 
nourishment, M. xanthus cells aggregate, build fruiting bodies, and fruiting 
body cells differentiate into spores that are highly resistant.  In order to form 
the fruiting bodies, M. xanthus cells must be able to move across solid 
surfaces.  There are two motility systems, the adventurous system (A-motility) 
and the social system (S-motility), used by M. xanthus cells to navigate across 
surfaces.  The adventurous system controls movement of individual cells, 
while the social system controls the movement of multi-cellular groups.  In 
addition to surface motility, the development of fruiting bodies relies on large-
scale changes in gene expression that are coordinated by the production of 
cell-cell signals.  There are five known signals involved in M. xanthus fruiting 
body formation and the two cell-cell signals that have been characterized in 
the most detail are A-signal and C-signal. A-signal acts very early in 
development and it functions as diffusible cell density signal.  C-signal acts 
after A-signal and it is important for aggregation and sporulation.  C-signal 
controls the positioning of densely packed cells and requires cell-to-cell 
contacts to function properly.  These signals help M. xanthus cells coordinate 
transcription of developmentally regulated genes.  In M. xanthus, expression 
of many developmentally regulated genes is controlled by σ54 promoters and 
NtrC-like activator proteins.  Transcription from σ54-promoter elements is 
dependent upon the transcription factor σ54, which directs RNA polymerase to 
promoter recognition sites.  However, σ54-RNA polymerase is trapped in a 
closed promoter complex and is, therefore, unable to activate transcription.  In 
order to form an open promoter complex and begin transcription, σ54-RNA 
polymerase utilizes enhancer binding proteins as activators.  These enhancer 
binding proteins are called NtrC-like activators.  NtrC-like activators bind 
DNA sequences located upstream of σ54-RNA polymerase binding sites and 
use the energy from ATP hydrolysis to help σ54-RNA polymerase activate 
transcription.  These proteins are important components in the machinery that 
regulates transcription of M. xanthus developmental genes.  Fifty three M. 
xanthus genes code for NtrC-like activator proteins and 16 of these genes are 
known to be important for the developmental process.  Five uncharacterized 
genes have been inactivated to test for defects in motility and development.  
Mutations in three activator genes caused defects in surface motility and 
fruiting body development.  One gene, MXAN 3656, was further 
characterized to determine its role in development and place it on the M. 
xanthus developmental pathway. 
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Introduction 

Myxococcus xanthus is a Gram-negative, rod-shaped soil bacterium and 

member of the myxobacteria, a group of bacteria characterized by their social 

lifestyles and highly coordinated multi-cellular developmental cycle.  M. 

xanthus cells live in vegetative swarms and are able to develop into large, 

highly organized communities known as biofilms.  Biofilms contain structured 

groups of cells attached to a surface that undergo large-scale changes in gene 

expression triggered by environmental signals and coordinated by 

extracellular signals (O’Toole, et al., 2000).  M. xanthus cells obtain nutrients 

by preying on other bacteria, but when amino acid nutrients are scarce, 

coordinated groups of cells move into nodes, or aggregate, and develop into 

fruiting bodies.  Cells within the fruiting body structure differentiate into 

metabolically dormant spores that are resistant to stresses such as heat and UV 

light.  Cells outside fruiting bodies often differentiate into peripheral rods, a 

cell type that distinct from spherical spores the rod-shaped vegetative cells 

(O’Connor and Zusman, 19901a and 1991b).  The development of spore-filled 

fruiting body structures allows M. xanthus cells to endure periods of limited 

nutrients and environmental conditions that are not optimal for normal 

survival. 

The formation of fruiting bodies is dependent on M. xanthus cells’ ability to 

move across solid surfaces.  M. xanthus moves via gliding motility using two 

genetically distinct systems.  The motility systems are the adventurous 

motility (A-motility) system, and the social motility (S-motility) system.  Each 
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system controls movement of the cells in a different manner.  The adventurous 

system coordinates the movement of single cells, while the social system 

controls the movement of multi-cellular swarms of cells (Spormann, 1999).  

Therefore, cells that lack A-motility tend to move in groups, those that lack S-

motility tend to move individually, and those cells that lack both A-motility 

and S-motility are non-motile. 

Cellular motility is not solely responsible for the formation of fruiting bodies.  

The development of fruiting bodies also relies on large-scale changes in gene 

expression that are coordinated by the production of cell-cell signals.  There 

are five known signals involved in M. xanthus fruiting body formation, A 

signal, B signal, C signal, D signal, and E signal (for a review, see Kaiser, 

2004).  The two cell-cell signals that have been characterized in the most 

detail are A-signal and C-signal.  The function of A-signal is to assess the 

state of nutrition and it is a mixture of amino acids and peptides (Kuspa et al., 

1992a and 1992b).  A-signal acts first in development, and it functions as an 

indicator of cell density.  The diffusible A-signal has three loci on the genome 

that are responsible for its production, asgA, asgB, and asgC (Kuspa and 

Kaiser, 1989).  The asg genes encode regulatory proteins thought to be 

important for expression of genes required for A-signal production (Plamann 

et al., 1994; Davis et al., 1995; Plamann et al., 1995).  A-signal is produced as 

a result of starvation and the action of proteases to initiate the development of 

fruiting bodies.  The signal that acts last in development is C-signal.  This 

signal coordinates aggregation and the formation of spores, or sporulation 
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(Kim and Kaiser, 1990a and 1990b; Kim and Kaiser, 1991; Li et al., 1992).  

C-signal controls the positioning of densely packed cells and requires motility 

and cell-to-cell contact to function properly (Dworkin, 1996).  While A-signal 

is a diffusible extracellular signal, C-signal is cell-bound so M. xanthus cells 

must be able to move and come in contact with one another to exchange C-

signal.  The development of fruiting bodies is dependent upon these signals; 

they coordinate the expression of developmentally regulated genes. 

In M. xanthus, expression of many developmentally regulated genes is 

controlled by σ54 promoters (Kroos and Kaiser, 1987; Romeo and Zusman, 

1991; Keseler and Kaiser, 1995; Garza et al., 1998; Garza et al., 2000b; 

Licking et al., 2000; Sun and Shi, 2001a and 2000c).  The σ54 protein is a 

unique σ factor in that it can be activated from a distance and it recognizes 

DNA sequences located 12 and 24 base pairs upstream of the transcription 

start site.  The σ54 protein is responsible for directing RNA polymerase to the -

12 and -24 promoter regions, and once associated with the promoter, σ54-RNA 

polymerase forms a closed, inactive complex.  An NtrC-like protein must 

associate with σ54-RNA polymerase in order to activate it (Kustu et al., 1989 

and Morett and Segovia, 1993).  NtrC-like proteins induce a conformational 

change in σ54–RNA polymerase, which in turn allows it to form an active, 

open promoter complex and begin transcription. 

 In M. xanthus, NtrC-like activator (Nla) proteins are used to control 

expression of developmental genes.  Nla proteins are similar to the Nitrogen 

regulatory protein C (NtrC) found in E. coli.  NtrC proteins control nitrogen 
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assimilation genes that act in response to nitrogen limiting conditions (Ow et 

al, 1983), much like the developmental genes in M. xanthus that are activated 

upon starvation.  When NtrC is phosphorylated by its histidine kinase sensor 

partner, it promotes oligomerization and cooperative binding at the enhancer 

binding sites of the σ54 promoter (Wiess et al, 1992).  NtrCs recognize 

enhancer-binding sequences that are located 70 to 150 base pairs upstream of 

the -12 and -24 regions of σ54 promoter elements.   

Through sequencing the M. xanthus genome, 53 genes were found to code for 

Nla proteins.  Forty eight of the 53 nla genes have been inactivated and 

characterized for their affect on development.  Sixteen of these 48 genes were 

shown to be important for the developmental process (Wu and Kaiser, 1997; 

Gorski and Kaiser, 1998; Guo et al., 2000; Hager et al., 2001; Sun and Shi, 

2001a; Caberoy et al., 2003; Kirby and Zusman, 2003; Jakobsen et al., 2004; 

Jelsbak et al., 2005).  The five uncharacterized nla genes were inactivated via 

a single homologous recombination event (Figure 1), and the resulting mutant 

strains were tested for defects in motility and development.  Mutations in 

three activator genes caused defects in surface motility and fruiting body 

development.  One gene, MXAN 3656, was further characterized to determine 

its role in development and place it on the M. xanthus developmental pathway. 

 

Material and Methods 

Creating Activator Gene Fragment Plasmids: A 500 base pair (bp) segment of 

the central domain of the gene to be studied was amplified via PCR and 
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cloned into the pCR II TOPO Vector (Invitrogen).  The vector was then 

electroporated into electrocompetent E. coli cells, recovered in 250 μl of 

S.O.C. Medium (Invitrogen) and incubated at 37° C with gentle agitation for 1 

hour.  Aliquots were plated on LB agar plates containing kanamycin (40 

μg/ml) and X-Gal (40 μl of 40μg/μl).  The plates were incubated at 37° C over 

night.  The white colonies were selected, inoculated in 4 ml of LB Broth 

containing 40 μg/ml kanamycin, and incubated overnight at 37° C with gentle 

agitation.  The plasmids were recovered following the procedure in the 

QIAGEN Plasmid MiniPrep Kit.  To ensure the presence of the gene 

fragment, an EcoRI digestion was performed.  The plasmid and digestion 

were confirmed using agarose gel electrophoresis. 

 

Creating Activator Mutants:  The plasmids with the desired gene fragments 

was electroporated into the M. xanthus wild-type strain DK1622.  After 

electroporation, the cells were recovered in 3 ml CTTYE broth and incubated 

overnight with gentle agitation at 32° C.  Aliquots in 4 ml of CTT Soft Agar 

were plated on CTTYE plates supplemented with 40 μg/ml of kanamycin 

(CTTYE-Kan) and the plates were incubated at 32° C.  Colonies were selected 

and patched on to CTTYE-Kan plates and incubated at 32° C to confirm that 

electroporants were resistant to kanamycin.  The cells that grew were 

inoculated into 10 ml CTTYE-Kan broth until they reached a density of 100 

Klett (5x108 cells/ml).  This was used to make permanent cultures of 1400 μl 

stock bacteria in 600 μl 50% glycerol. 
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Creating Motility Mutants with Inactivated MXAN 3656: The plasmid with the 

MXAN 3656 gene fragment was electroporated into DK 1253 (A+S-) and DK 

1217 (A-S+), and electroporated cells were allowed to recover in 3 ml of 

CTTYE.  The cells were diluted, plated on CTTYE-Kan agar plates, and the 

plates were incubated at 32° C.  Colonies were patched onto CTTYE-Kan 

agar plates and the plates were incubated at 32° C.  The resulting cells were 

inoculated and grown to 100 Klett and used to make permanent cultures. 

 

Swarm Expansion Assays: M. xanthus wild-type (DK1622) and mutant strains 

were inoculated in CTTYE and CTTYE-Kan broth, respectively, grown to 

100 Klett, and concentrated 10-fold in TPM buffer.  Aliquots of 3 μl were 

spotted onto 1.5% and 0.4% CTTYE (wild-type cells) or CTTYE-Kan 

(activator mutant cells) agar plates and the plates were incubated at 32° C.  

The diameters of the mutant swarms were measured over 4 days and 

compared to DK 1622 swarm diameters 

 

Sporulation Assay: M. xanthus wild-type and activator mutant cells were 

inoculated into CTTYE and CTTYE-Kan broth, respectively, grown to 100 

Klett, and concentrated 10-fold in TPM buffer.  Aliquots of 20 μl were spotted 

onto TPM agar plates and incubated at 32° C for 5 days.  The cells were 

scraped into 500 μl of TPM buffer, sonicated at setting 4 in 10 second bursts, 

and placed in a 50° C heat block for 2 hours.  Dilutions were plated on 

CTTYE or CTTYE-Kan agar plates and the number of spores that yielded 
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colonies were counted.  Mutant spore counts were then compared to wild-type 

spore counts. 

 

Glycerol Sporulation Assay: Wild-type and MXAN 3656 mutant cells were 

inoculated into CTTYE and CTTYE-Kan broth, respectively, and grown to a 

density of 100 Klett.  Glycerol was added to a concentration of 0.5 M to 

induce sporulation and the cultures were incubated at 32° C with gentle 

agitation for 24 hours.  Spore numbers were determined as described above. 

 

Creating a Tetr Plasmid: The Kanr pCR II TOPO vector containing the 

MXAN 3656 gene fragment and the oxytetracycline resistant (Tetr) plasmid 

pSWU22 were subjected to an EcoRI digestion.  The purified MXAN 3656 

gene fragment was ligated to EcoRI digested-pSWU22 plasmid using T4 

DNA Ligase.  One μl of the ligation reaction was electroporated into 

electrocompetent E. coli cells and the cells were allowed to recover in 250 μl 

S.O.C. Medium.  The cells were incubated for 1 hour, aliquots of cells were 

plated on LB agar plates containing oxytetracyline (12 μg/ml), and the plates 

were incubated at 37° C overnight.  To ensure the presence of the MXAN 

3656 gene fragment, colonies were selected for PCR analysis.  Plasmids with 

the appropriate composition were electroporated into Tn5lacZ reporter fusion 

strains as described above. 
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Protein Concentration Assay: Reporter fusion strains with an inactivated 

MXAN 3656 gene were inoculated in CTTYE broth containing oxytetracyline 

(12 μg/ml), and grown to a density of 100 Klett.  Three sets of 1 ml aliquots 

were removed, centrifuged, and placed in a -20° C freezer for the zero time 

point.  The remaining cells were concentrated 10-fold in TPM.  Twenty μl 

aliquots were spotted on TPM agar plates.  At 2, 6, 12, and 24 hours the cells 

were scraped into 500 μl of TPM buffer, quick frozen, and quick-frozen cells 

were transferred to a -20° C freezer.  The cells were thawed, placed on ice, 

and then sonicated at setting 1.5 in three 10-second bursts.  One ml of 

Bradford Protein Reagent (1 part dye, 4 parts water) was added to 20 μl of 

sample.  The optical density of samples at 595 nm was taken using a 

spectrophotometer. 

 

β-Galactosidase Assay: Reporter fusion strains with the inactivated MXAN 

3656 gene were inoculated in CTTYE broth containing oxytetracyline (12 

μg/ml), and grown to a density of 100 Klett.  Three sets of 1 ml aliquots were 

removed, centrifuged, and placed in a -20° C freezer for the zero time point.  

The remaining cells were concentrated 10-fold in TPM.  Twenty μl aliquots 

were spotted on TPM agar plates.  At 2, 6, 12, and 24 hours the cells were 

scraped into 500 μl of TPM buffer, quick frozen, and quick-frozen cells were 

transferred to a -20° C freezer.  The cells were thawed, placed on ice, and 

sonicated at setting 1.5 in 3 10-second bursts.  Four hundred μl of O-

nitrophenyl-β-D-galactoside (ONPG) was added to 100 μl of the samples.  
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The samples were put in a 37° C heat block until the samples were sufficiently 

yellow.  Five hundred μl of Na2CO3 was added to the samples to terminate the 

assays and the time was noted. The optical density of samples at 420 nm was 

taken using a spectrophotometer. 

 

Results 

Five hundred-bp PCR products containing the central regions of activator 

genes were successfully inserted into the pCR II TOPO vector.  The plasmids 

were electroporated into Myxococcus xanthus wild-type strain DK 1622.  The 

gene fragments in the plasmids underwent single homologous recombination 

events with the activator gene loci in the M. xanthus chromosome.  As a result 

of these events, truncated copies of the activator genes with Kan-resistant 

plasmids in between were created (Figure 1).  Five nla mutants containing 

activator gene disruptions were created in this manner.   

The nla mutant strains were tested for defects in gliding motility and 

development.  Since surface-based gliding motility is necessary for 

development to occur, a swarm expansion assay was performed on each of the 

5 activator mutants.  Two types of agar were used because A-motility has 

been found to be favored on firm, dry 1.5% agar surfaces and S-motility 

favored on soft, moist 0.4% agar surfaces (Shi and Zusman, 1993).  The 

diameters of the activator mutant swarms were measured and compared to 

wild-type swarm diameters during a four-day period.  The MXAN 1757 and 

MXAN 4346 mutant strains were found not to be defective for gliding 
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motility, while the MXAN 5565, MXAN 2786, and MXAN 3656 mutants 

were found to be defective for gliding motility on both types of agar (Table 1).  

The MXAN 2756 mutant shows a similar defect on both 1.5% agar and 0.4% 

agar.  The MXAN 5565 and MXAN 3656 mutants have greater defects on 

0.4% agar than they do on 1.5% agar. 

A sporulation assay was next performed to determine whether the activator 

mutants are defective for fruiting body development.  Mutant and wild-type 

cells underwent development for five days and then they were subjected to 

sonication and heat.  The spores formed by the activator mutants were counted 

and compared to wild-type spore counts.  The results in Table 2 show that the 

MXAN 3656, MXAN 5565 and MXAN 2756 mutant strains have severe 

sporulation defects, whereas the MXAN 1757 and MXAN 4346 mutant 

strains have relatively minor sporulation defects.   

Since the MXAN 3656 mutant has strong defects in both motility and 

development, it was characterized in more detail.  To determine if the MXAN 

3656 mutant has a specific defect in the A- or S-motility system, the plasmid 

containing the MXAN 3656 gene fragment was inserted into the chromosome 

of strain DK1217 (A-S+) and strain DK1253 (A+S-).  If the MXAN 3656 

mutation affects the S-motility system and it is inserted into an A-motility 

mutant such as DK1217, it will produce a smooth colony edge.  Conversely, if 

the MXAN 3656 mutation affects the A-motility system and it is introduced 

into strain DK1253, which is a S-motility mutant, it will produce a smooth 

colony edge.  To inspect the colony edges, 3 μl aliquots of cells were spotted 
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on 1.5% CTTYE agar and incubated for 4 days.  The colony edges of strains 

DK 1622, DK1217, DK1253, DK2161, DK1217/3656- and DK1253/3656- 

were examined.  M. xanthus wild-type strain DK1622 had a rough colony 

edge (Figure 2A), while strain DK2161, which is an A- and S-motility mutant, 

had a smooth colony edge (Figure 2.D).  Strain DK1217 (Figure 2 B), an A-

motility mutant, and strain DK1217/3656- (Figure 2E) had rough colony 

edges. This finding indicates that S-motility is not greatly affected by the 

MXAN 3656 mutation.  However, strain DK 1253/3656- produced a smooth 

colony edge (Figure 2F) that resembled the colony edge of strain DK2161, but 

not that of strain DK1253 (Figure 2 C).  Thus, it appears that the MXAN 3656 

mutation affects the A-motility system. 

In addition to examining the colony edges, a swarm diameter assay was 

performed on the DK 1217/3656- and DK 1253/3656- strains.  Also measured 

in the assay were strains DK1622, DK2161 (A-S-), and Ω4521 (Table 3), 

which contains a Kanr marker.  The inclusion of Ω4521 ensured that the 

addition of kanamycin in CTTYE agar plates did not affect motility.  Strains 

DK2161, DK1217 and DK1253 produce swarm diameters that were about 

46%, 67% and 62% of wild type, respectively.  Strains DK 1217/3656- and 

DK 1253/3656- produced swarm diameters that were about 38% and 45% of 

wild type.  Both strains show slower rates of growth than the parent strains 

that do not have the inactivated MXAN 3656 gene.  Strain Ω4521 has a 

diameter that is 124% of wild type, indicating that the kanamycin does not 

affect motility. 
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Since the MXAN 3656 mutant displayed a defect in A-motility, its ability to 

aggregate was tested.  MXAN 3656 and DK1622 cells were plated on TPM 

plates and the development of fruiting bodies was observed with phase 

contrast microscopy throughout the developmental period.  The MXAN 3656 

mutant was found to have a 24-hour aggregation delay (Figure 2).  While 

DK1622 cells began to aggregate at 6 hours and form fruiting bodies at 24 

hours, the MXAN 3656 mutant did not form fruiting bodies until 48 hours.  

The fruiting bodies produced by the MXAN 3656 mutant were smaller and 

less densely packed than those produced by wild-type cells.  The aggregation 

delay displayed by the MXAN 3656 mutant is most likely due its defect in the 

A-motility system, since motility is required to aggregate. 

M. xanthus cells form fruiting bodies before they sporulate.  Therefore, 

mutations that affect aggregation may indirectly affect sporulation.  To 

determine whether the MXAN 3656 mutation has direct effect on sporulation, 

a glycerol spore assay was performed.  Glycerol causes M. xanthus cells to 

bypass the early events that are required for fruiting body development and 

activate their sporulation programs directly (Dworkin and Gibson, 1964).  In 

the glycerol spore assay, the MXAN 3656 mutant and wild-type cells were 

grown to a density of 100 Klett and glycerol was added to the cultures to 0.5 

M.  The cells were incubated for 24 hours, subjected to sonication and heat, 

and plated on CTTYE agar plates.  The MXAN 3656 mutant yielded no viable 

spores in this assay.  However, MXAN 3656 mutant cells that were not 

subjected stress produced a sporulation count of about 42% of wild-type, 
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indicating that the MXAN 3656 mutation only has strong affect on the 

maturation of spores into stress-resistant cells.  The results of assays on 

fruiting body spores are consistent with this result; the MXAN 3656 mutant 

produced a spore count of about 78% of wild type and a viable spore count of 

<0.0002% of wild type (Table 4).  These data suggest that the MXAN 3656 

mutation has a direct effect on the production of stress-resistant M. xanthus 

spores. 

To determine the time at which the MXAN 3656 mutation affects the progress 

of fruiting body development, the MXAN 3656 gene insertion was introduced 

into strains carrying early-acting reporter gene fusions.  M. xanthus 

development is triggered by starvation and the subsequent production of 

(p)ppGpp (Singer and Kaiser, 1995).  After (p)ppGpp levels rise, the early 

developmental pathway splits into two branches, one dependent on A-signal 

and another that is A-signal independent.  spi is a developmentally regulated 

gene on the A-signal dependent pathway (Kuspa et al., 1986) and sdeK has 

been found to act on the A-signal independent pathway (Garza, et al. 1998).  

The promoters of these genes were fused to the lacZ gene to create reporter 

gene fusions (Kroos et al., 1986).   

To make the MXAN 3656 insertion in the sdeK and spi reporter strains, a 

plasmid with a new selectable marker was created.  The pCR II TOPO vector 

with the MXAN 3656 gene fragment was digested with EcoRI, the fragment 

was purified and then ligated to the EcoRI digested pSWU22 vector (Figure 

4).  The resulting plasmid had an oxytetracycline resistance (Tetr) marker and 
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contained the MXAN 3656 gene fragment sandwiched between two EcoRI 

restriction sites.  The new plasmid was then electroporated into the spi and 

sdeK reporter fusion strains.  The plasmid inserted into the reporter fusion 

strains genomes via a single homologous recombination event (Figure 5).  

Once the reporter fusion strains with the inactivated MXAN 3656 gene were 

created, we assayed developmental expression of sdeK and spi and compared 

the results to those found in wild-type cells.  The results of the assays suggest 

that the MXAN 3656 mutation does not affect sdeK expression (Figure 6) but 

does affect spi expression (Figure 7).  As indicated on the graph showing spi 

expression, the MXAN 3656 mutant strain has a specific activity level that is 

20% of that found in the wild-type strain.  These data suggest that the MXAN 

3656 gene product acts on the A-signal dependent pathway (Figure 8). 

Discussion 

After examining 5 M. xanthus activator genes by mutational analysis, I found 

that 2 activator genes do not play significant roles in M. xanthus development 

and that 3 activators are important developmental regulatory genes.  I chose to 

further characterize the MXAN 3656 mutant as it displayed a strong defect in 

motility and spore formation.  I looked at the affect that the MXAN 3656 

mutation has on gliding motility, aggregation, early developmental gene 

expression and sporulation.  I found that the MXAN 3656 mutant displays a 

24-hour aggregation delay that is most likely due to its defect in A-motility.  

The MXAN 3656 mutation also has a direct effect on the production of stress-

resistant spores that is independent of its effect on motility and aggregation.  
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Based on a series of β-galactosidase assays, I discovered that the MXAN 3656 

gene product acts on the A-signal dependent pathway, suggesting that MXAN 

3656 activator is important for early developmental events. 

There are many contributing factors to the regulation of the development of 

fruiting bodies and the study of the MXAN 3656 mutant demonstrates the 

complex nature of M. xanthus development.  This activator mutant displayed a 

defect in motility and a delay in aggregation, yet these two factors do not 

appear to contribute to the lack of spore production as indicated by the 

glycerol-spore assays performed.  Since glycerol causes M. xanthus cells to 

undergo differentiation into spores by bypassing the need for motility and 

aggregation, the MXAN 3656 mutation not only affects motility but directly 

affects the production of spores as well.  This gene that I characterized beyond 

the primary assays most likely produces an activator protein that regulates 

multiple genes that are responsible for different aspects of M. xanthus 

development. 

As the MXAN 3656 mutant has been shown to cause developmental defects 

the mutant needs to be further characterized.  One test that will be performed 

is an assay that will determine the activator mutant’s ability to produce and 

respond to A-signal.  This assay will show if the MXAN 3656 mutant is able 

to produce, respond to, or both produce and respond to A-signal.  This will 

also show how the gene acts in the A-signal dependent pathway.  One of the 

last steps in determining how MXAN 3656 acts in development is to identify 
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target developmental promoters to which MXAN 3656 binds and specific 

binding sites within these promoters. 

The remaining activator mutations that affect development will also be 

characterized further.  The 3 activator mutations that affect development 

affect not only spore production but also motility.  While the motility defect in 

the MXAN 3656 mutant does not affect spore production, it may in the other 

two strains, MXAN 5565- and MXAN 2756-.  By performing the assays to 

which the MXAN 3656 mutant was subjected, the affect that motility has on 

aggregation and spore production can be determined.  These two activator 

genes will also be placed on the M. xanthus developmental pathway.  

Characterization of all the activator genes will provide researchers with a 

better understanding of the mechanics of M. xanthus development and how 

groups of cells communicate with one another to coordinate development. 
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Appendix A 

 
Table 1: Results of the swarm expansion assay.   
 

Strain 1.5% 0.4% 

DK 1622 100 +/-2.0 100 +/-2.5 

MXAN 3656- 64 +/-0.7° 44 +/-0.2 

MXAN 2756- 43 +/-0.6 43 +/-1.6 

MXAN 4346- 100 +/-2.5 119 +/-1.5 

MXAN 1757- 103 +/-0.8 113 +/-4.7 

MXAN 5565- 56 +/- 1.5 36 +/- 1.7 

Mutant swarm diameters were determined on day 4 of the assays and they 
are presented as a percentage of the wild-type swarm diameter. 
°Data is taken from day 2.   

 
 
 

Table 2: Results of the sporulation assay. 
 

Strain Viable Spore Count 

DK 1622 100 +/-2.0 

MXAN 3656- <0.0002 

MXAN 2756- <0.0002 

MXAN 4346- 28 +/-0.1 

MXAN 1757- 40 +/-0.6 

MXAN 5565- <0.0007 

Sporulation efficiencies are presented as a 
percentage of wild type.  
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Table 3: The MXAN 3656- motility phenotype  

Strain % to Wild-Type 

DK 1622 100 +/-2.3 

DK 2161 46 

DK 1217 67 

DK 1217/3656- 38 +/-0.2 

DK 1253 62 

DK 1253/3656- 45 +/-0.1 

Ω 4521 124 

Mutant swarm diameters are presented as a percentage of the wild-type 
swarm diameter. 

 
 
 
 
 
Table 4: The MXAN 3656- glycerol sporulation phenotype  

 
Strain 

Spore 
Count 

Viable Spore 
Count 

Glycerol 
Spore Count 

Viable Spore 
Count 

 
DK 1622 

 
100 +/-9.8 

 
100 +/-9.8 

 
100 +/-5.4 

 
100 +/-11.0 

MXAN 3656- 78 +/-6.2 <0.0002 42.36 +/-10.4 <0.0003 

Sporulation efficiencies are presented as a percentage of wild type.  
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Appendix B 

 
Figure 1. Insertion of the kanamycin resistance plasmids containing activator 
gene fragments occurs via a single homologous recombination event. 
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Figure 2. The edges of M. xanthus colonies.  (A) DK1622 cells are 
shown to move both as multi-cellular groups and individually.  (B) 
DK1217 cells move only as groups and (C) DK1253 cells move as 
individuals.  (D) DK2161 cells show a smooth colony edge.  The 
MXAN 3656- mutation affects the A motility system as the (E) 
DK1217/3656- colony edge is similar to that of DK1217, while the 
(F) DK1253/3656- strain has a smooth colony edge. 
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Figure 3. An overhead view of M. xanthus fruiting bodies.  When 
compared to DK1622 wild-type, MXAN 3656- has a 24 hour 
aggregation delay.  At 12 hours, DK 1622 has begun to form fruiting 
bodies and has complete their formation at 24 hours.  MXAN 3656- 
does not form fruiting bodies until 48 hours and these are smaller 
and more spread out than wild-type fruiting bodies. 

 
 



  28 

 

 
 
 

Figure 4. The kanamycin resistance (Kanr) plasmid containing the MXAN 
3656 gene fragment and the oxytetracycline resistance (Tetr) pSWU22 vector 
were subjected to EcoRI digestions to release the MXAN 3656 gene fragment 
and open the pSWU22 vector.  The MXAN 3656 gene fragment and pSWU22 
vector were ligated together with T4 DNA ligase to create a Tetr plasmid 
containing the MXAN 3656 gene fragment. 
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Figure 5. The insertion of the oxytetracycline resistance plasmid containing 
the MXAN 3656 gene fragment into the chromosome of a Tn5lacz reporter 
fusion strain occurs by a single homologous recombination event. 
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Figure 6. The plasmid containing the MXAN 3656 gene fragment was 
inserted into the chromosome of the sdeK reporter fusion strain and the strain 
was subjected to a β-galactosidase assay. The blue line indicates expression of 
sdeK in a wild-type strain, while the pink line shows sdeK expression in the 
MXAN 3656 mutant strain. 
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Figure 7. The plasmid containing the MXAN 3656 gene fragment was 
inserted into the chromosome of the spi reporter fusion strain and the strain 
was subjected to a β-galactosidase assay. The blue line indicates expression of 
spi in a wild-type strain, while the pink line shows spi expression in the 
MXAN 3656 mutant strain. 
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Figure 8. The M. xanthus early developmental pathway is triggered by 
starvation.  It then branches into an A-signal dependent pathway and an A-
signal independent pathway.  The two branches come together around the time 
of dev expression.  MXAN 3656 has been determined to act on the A-signal  
dependent pathway.
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