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Abstract 

 

A kinetic investigation of the production of -valerolactone (GVL) via the aqueous phase 

hydrogenation of levulinic acid (LA) over supported Ru catalysts was carried out, in order to 

understand how to better design a hydrogenation catalyst for such biomass catalytic strategies. At 

temperatures representative of biomass processing, the reaction proceeds first through the 

reduction of the LA ketone group to its corresponding alcohol, 4-hydroxypentanoic acid (HPA), 

which subsequently produces GVL via intramolecular esterification in solution. The governing 

kinetics of LA hydrogenation were found to be insensitive to the identity of the support material 

on which Ru catalysts were prepared. Conversely the stability of supported Ru catalysts in the 

aqueous phase were strongly dependent on the choice of support, exhibiting severe sintering of 

Ru nanoparticles, the extent of which appears to be dictated by the bulk electronegative 

properties of the support material.  

The presence of a secondary functional group in LA (i.e., a carboxyl group) does not appear to 

perturb the activity of Ru sites in water, where LA and its mono-functional ketone analog (2-

pentanone) hydrogenate at identical rates. LA hydrogenation thus appears kinetically equivalent 

to that of 2-pentanone. Given the similarity, C3-C5 ketone hydrogenation over Ru/SiO2 in the 

vapor-phase was examined, alleviating the need to consider solution phase complexities. A 

single universal microkinetic model for the hydrogenation of ketones over supported Ru catalysts 

was developed, based on a modified Horiuti-Polanyi-type mechanism involving two distinct 

surface sites. Through the application of surface lateral interactions to the developed ketone 

microkinetic model, solvent effects commonly reported for hydrogenations over Ru catalysts are 

rationalized on the basis of the stabilization of a kinetically relevant transition state. 
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Chapter 1 Introduction 

1.1 The future of oil and its socioeconomic consequences 

The dwindling prospect of economically feasible petroleum feedstocks has been a matter of 

public concern since the early 1970s, when gasoline prices reached record highs due to 

geopolitical factors impacting the supply of crude oil. Since that time, the occurrence of similar 

events coupled with an increased global demand for petroleum based products have resulted in a 

realistic concern for the reliability of such feedstocks. This can be best embodied by the concept 

of peak oil, more famously expressed as “Hubbert’s peak”, which attempts to predict the 

inevitable peak in global oil production. While predictions made by various peak oil hypotheses 

such as Hubbert’s peak have not been always accurate as to when peak global oil production 

would be reached, it stands to reason that peak oil is inevitable. The demand for the end use 

products from crude oil, however, are unlikely to dwindle; rather, demand will continue to grow 

with increased global populations and average human life spans. This places a strain on societies 

given the significant reliance on petroleum derived products. This concern is especially 

exacerbated in countries that are net importers of petroleum such as the United States [1].  

Shown in Figure 1.1 is the average monthly price for a barrel of WTI oil over the past 20 years, 

where from the mid-1980s to the early-2000s, the price did not exhibit much variability. Within 

the last decade, however, the price of oil has seen dramatic shifts from a high of $145 per barrel 

in early 2008 to $29 per barrel in February of 2016. Volatility in the price of oil negatively 

impacts chemical and energy sectors, which rely on petroleum as their primary feedstock. 



2 
 

 

 

 

Figure 1.1 Average WTI monthly price in $/bbl over the past 20 years  

In addition to economic considerations, there is growing concern as to the environmental impact 

of the current level of petroleum based product consumption. Specifically fossil fuel use in 

transportation and energy sectors where combustion technologies are ubiquitous. Despite 

improvements in combustion technologies over the years, the net release of carbon dioxide 

amongst other pollutants is inevitable due to fossil fuel consumption, which diminishes the 

sustainability of such practices.    

Driven by a desire for economic and environmental sustainability, interest in alternative energy 

and hydrocarbon sources has surged in recent years. While entities such as transportation and 

power sectors could one day switch to non-carbon based technologies, a carbon source will 

remain imperative for chemical industries. In addition, finding an alternative carbon source 

would allow for the continued utilization of the extensive hydrocarbon based infrastructure in 

place. So while there has been much effort focused on moving away from a hydrocarbon based 

economy, finding an alternative feedstock that can sustain the current demand for hydrocarbons 
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remains more attractive. It is therefore necessary to identify a potential feedstock that can act as a 

source of hydrocarbons that is sustainable and chemically resembles the hydrocarbons currently 

consumed.  

1.2 Biomass as a sustainable carbon source 

A variety of potentially sustainable carbon sources have been proposed, of which biomass has 

emerged as a promising option. An appealing aspect of utilizing biomass as a carbon source is its 

relative abundance. The United States possesses the capacity to produce 1.3 billion dry tons of 

biomass annually, sufficient to replace one third of the current domestic petroleum consumption 

[2]. A substantial research effort over the last decade has therefore been devoted to converting 

biomass into chemicals. For ethical reasons, the use of food crops as a carbon source is 

undesirable, the current focus is therefore on biomass sources that do not compete with food 

resources. Of the various categories of biomass, lignocellulosic biomass is one such example 

which is not a food crop, and does not compete for arable land better suited for food production. 

Typically, lignocellulosic biomass is obtained from inedible portions of plants, agricultural by-

products and forest residues [3]. The precise chemical composition of lignocellulosic biomass is 

highly complex, it can however be grouped into three fractions of lignin, cellulose and 

hemicellulose. Shown in Figure 1.2 is the average composition of the three fractions by mass for 

varying sources of lignocellulosic biomass [4].  
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Figure 1.2 – Average breakdown of lignocellulosic biomass 

For the purpose of biomass serving as a carbon source, the cellulose and hemicellulose fractions 

(65-85% by mass) are of interest. From the cellulose and hemicellulose fractions a myriad of 

industrially relevant products can be attained, the routes to which have been reviewed elsewhere 

[5]. One particular route of interest is the production levulinic acid (LA). LA is a five-carbon γ-

ketoacid that has been identified as a “top ten” bio-based chemical from biomass in a 2004 report 

by the United States Department of Energy [6]; LA serves as a precursor to various chemical 

compounds with existing large volume commodity markets (Figure 1.3) [7-15]. Unlike many 

lignocellulosic biomass upgrading technologies which have only been demonstrated at the bench 

scale, the production of LA however has been optimized through the Biofine process and has 

surpassed proof of concept with extensive pilot plant testing [16, 17].  



5 
 

 

 

 

 

Figure 1.3 Levulinic acid as a platform chemical 

Of the various chemical pathways illustrated in Figure 1.3, the production of -valerolactone 

(GVL) from LA is especially attractive. GVL is of interest as a lignocellulosic platform chemical 

given the flexibility in downstream applications it offers, providing a pathway to a variety of 

chemicals with reduced oxygen functionality. For example, GVL can serve directly as a gasoline 

blender[18] or be subsequently processed to yield relatively energy dense fuel additives, such as 

methyltetrahydrofuran [19], valeric biodiesel [20], or liquid alkanes [21-27]. GVL is also 

remarkably versatile as a biorefining solvent [28], particularly for expediting the production of 

sugars, furans, levulinic acid, and their numerous derivatives from lignocellulose [29-34]. 
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Recently GVL has also been shown to provide a promotive solvent environment for various acid 

catalyzed reactions related to biomass upgrading technologies [35, 36]. Finally, GVL can be 

converted to chemical intermediates such as 1,4 pentanediol [19], alkyl pentenoates [37], and -

methylene--valerolactone [38], any of which may find application in the production of bio-

based polymers.  

 

Figure 1.4 Landscape of chemical pathways possible from GVL 
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1.3 The production of -valerolactone from lignocellulosic biomass 

The primary route envisioned for the production of lignocellulosic GVL is the hydrogenation of 

LA [39], which may be prepared from both 5- and 6-carbon sugars present in cellulose and 

hemicellulose through hydrolysis of either 5-hydroxymethylfurfural (HMF) or furfuryl alcohol 

(Figure 1.5) [11, 17, 40-47]. First, through a variety of pre-treatment strategies, the lignin 

fraction can be removed leaving behind the cellulose and hemicellulose fractions [48]. 

Considering the cellulose fraction, the polymer be broken down to its glucose monomer units 

through acid catalyzed hydrolysis of the β-1,4 glycosidic linkages. Glucose can then further 

undergo dehydration to yield HMF, a valuable chemical commodity in itself. However 

quantitative yields to HMF are difficult to achieve due to undesired polymerization reactions, in 

addition to hydration reactions leading to the formation of LA and formic acid. In the case of the 

hemicellulose fraction, it can also be broken down into its respective C5 sugar monomer unit 

xylose via acid hydrolysis of its β-1,4 glycosidic linkages. Xylose can then undergo acid 

catalyzed dehydration to form furfural. Furfural can then be hydrogenated to yield furfural 

alcohol, which similar to HMF can be hydrated to form LA. 
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Figure 1.5 - Proposed aqueous phase processing strategy of lignocellulosic biomass  

 

Once LA is formed from either cellulose or hemicellulose a common processing point is reached, 

from which LA can be converted to GVL through hydrogenation strategies typically over 

supported metal catalysts. There are multiple options for the selective hydrogenation of LA, and 

both homogeneous [19] and heterogeneous systems [39] have been employed.  Despite 

burgeoning interest in transfer hydrogenation for GVL production [49-51], the majority of LA 

hydrogenation processes have used molecular H2 as a reducing agent and supported metals, such 

as Cu [52, 53], Ru [38, 54-57], Ir [58], Au [51], or bimetallics, such as RuRe [59, 60] or  RuSn 

[61, 62] as catalysts.  Further, recent studies focusing on the scale up and economic feasibility of 

a GVL-centered biorefinery have favored Ru or Ru-bimetallics, which offer good hydrogenation 

rates, high GVL selectivity, and (particularly in the case of bimetallics) good stability [24, 59, 

60, 63].  
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The fundamentals of LA hydrogenation in the aqueous phase however are relatively unclear, 

both in terms of the mechanistic route by which the hydrogenation proceeds as well as the 

governing kinetics. This hampers the biomass commmunity’s capability to rationally propose 

and design hydrogenation catalysts that could improve the efficiency of GVL production from 

biomass. This deficiency is further exacerbated by the scarcity of studies that consider the 

stability of catalysts tested for LA hydrogenation; a catalyst must be able to retain its activity for 

it to be industrially viable. Thus, detailed consideration of the kinetics and stability of LA 

hydrogenation, specifically over Ru catalysts which display exceptional activity is warranted and 

is the central focus of this thesis.    

1.4 Research overview 

The experimental methods employed in the preparation, characterization and kinetic evaluation 

of catalysts employed in this work are described in Chapter 2. The mechanistic aspects of the 

target reaction, LA to GVL, are explored in an attempt to identify and extract apparent kinetic 

parameters for the reaction pathways involved in Chapter 3. Given the supported nature of the 

Ru catalysts, Chapter 4 explores the effect of support material identity on the activity and 

stability of the overall Ru catalyst. A comparison is also drawn between LA and its mono-

functional analog, 2-pentanone, from which LA and 2-pentanone hydrogenation are found to 

proceed at identical rates. Expanding on this observation of kinetic similarity, a detailed kinetic 

study of ketone hydrogenation in the vapor phase is conducted in Chapter 5. The absence of 

secondary functionalities and the condensed phase, allow for a less complicated kinetic analysis 

from which fundamental kinetic parameters are estimated. Finally in Chapter 6, concluding 

remarks are made along with future recommendations based on preliminary kinetic results which 

directly probe the possible origins of solvent effects observed for ketone hydrogenation.  
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Chapter 2 Experimental methods  

The ultimate goal of this thesis is to develop a fundamental understanding of ketone 

hydrogenation over supported Ru catalysts, which can facilitate the rational design of 

hydrogenation catalysts specifically for catalytic biomass routes. The effect of various catalytic 

properties on both the activity and stability of the Ru catalysts will therefore need to be 

understood. To accomplish this, a variety of characterization techniques are required to 

understand the nature of the catalysts tested. Coupled with reliable information on catalyst 

properties, rigorous methodologies for assessing the kinetics and deactivation of ketone 

hydrogenation over supported Ru catalyst need to be developed.  

2.1 Catalyst preparation 

Supported Ru catalysts of various metal loadings were employed throughout this work, where 

carbon, alumina, silica and titania served as support materials. The support material’s function is 

to provide a high surface area material on which Ru nanoparticles can be grafted, typically in the 

range of 1- 10 nm, increasing the exposed Ru surface area per unit mass. Supported Ru catalysts 

utilized throughout this thesis have been prepared using the method of incipient wetness 

impregnation or dry impregnation as it may commonly be referred to. The preparation method 

relies on bringing a Ru salt solution (RuCl3 in water) in intimate contact with the desired catalyst 

support, where the metal salt then preferentially adsorbs onto the support surface. Here the 

volume of solution added per unit mass of catalyst is fixed at the incipient volume, the volume 

necessary to fill the porous catalyst structure and reach a point where the solid is “just wet”. To 

achieve this the Ru salt solution is added drop wise to the support material until reaching the 

point of incipient wetness. To promote the dispersion of the solution evenly throughout the solid 
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material, the support is placed in a sonicator while the solution is added. Once the incipiently wet 

slurry of support material and Ru salt is prepared, it is left to stand at room temperature for at 

least an hour after which point it is dried overnight in a furnace at 403 K. The unfinished catalyst 

is then reduced in a flow cell under a stream of H2 at elevated temperatures, to remove the 

anionic portion (Cl-1) from the support surface leaving behind only zerovalent Ru nanooparticles. 

Catalyst reduction was performed in a 100 ml min-1 stream of H2 in a downflow quartz U-cell 

under atmospheric pressure. The temperature was linearly ramped to 673 K at a rate of 3 K min-1 

and held for 6 hours, after which point the catalyst was allowed to cool down. The temperature 

was measured using an in-situ thermocouple placed directly above the catalyst bed. Once at 

room temperature the cell was flushed with He, followed by a passivation of the Ru catalyst in a 

1% O2 in He stream for 10 mins.  

 

Figure 2.1 Schematic of catalyst reduction cell 
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2.2 Catalyst characterization 

In order to better understand the nature of the supported Ru catalysts on which catalytic studies 

were performed, multiple characterization techniques were employed to aid in a more 

fundamental view of the catalysis at play. Specifically, it was of importance to understand the 

physical and structural properties of both the Ru nanoparticles grafted and the support material 

itself.   

2.2.1 N2 physical adsorption 

Utilizing the adsorption of gases on solid surfaces, the total surface area of porous solid materials 

such as the support materials used in this work can be determined. One such method commonly 

employed is the Brunauer-Emmett-Teller (BET) method, where N2 phsyisorption isotherms are 

used to determine the surface area of a material. In the case of pore size and it’s distribution, the 

Barrett-Joyner-Halenda (BJH) method is utilized which also relies on the N2 physisorption 

isotherms.    

2.2.2 Metal site titration with CO chemisorption 

To correctly asses the activity of a Ru supported metal catalyst, or any supported metal catalyst, 

the rate of reaction on mass of catalyst basis must be normalized by the number of exposed metal 

surface sites available for catalysis. The number of surface sites is a function of the shape and 

size of the supported Ru nanoparticles; typically the shape of the supported Ru nanoparticles is 

taken to be a hemisphere. Shown below in Figure 2.2 is an illustration of a Ru nanoparticle 

cross-section grafted onto a support surface; only the shaded surface may provide a catalytic 

surface for reactive adsorbates.  
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Figure 2.2 Cross-sectional view of supported Ru nanoparticle on support surface adopting a spherical geometry. Shaded Ru 

atoms indicate exposed Ru surface atoms which may provide a catalytic surface. 

The number of surface sites can be expressed as a density quantifying the moles of Ru per unit 

mass of catalyst (NRu), where the smaller the Ru nanoparticle the larger this surface site density 

will be. Taking the ratio of this value to the theoretical maximum number of moles of exposed 

Ru is known as the dispersion.  

.RuN M
D

W
  (1) 

Here M is the molar mass of Ru and W the weight percent loading of Ru defined as mass of Ru 

per unit of total catalyst mass. The dispersion is a function of the catalyst preparation method, 

precursor salt, support material and reduction treatment employed [1]. Therefore while the mass 

loading of Ru per unit mass of catalyst is a known and controlled variable, the Ru dispersion and 

hence surface site density site is not known a priori. 

 One method commonly employed for measuring the dispersion of supported metal catalyst is 

selective gas adsorption, where a gas probe preferentially adsorbs on exposed Ru atoms on the 

catalyst surface. Carbon monoxide is known to act as a poison for metal catalysts such as Ru, 

∆Hads = -160 kj mol-1 on Ru (0001) [2]. The adsorption of carbon monoxide on the support 

materials used in this work however tends to be physical (physisorption) in nature. Carbon 



18 
 

 

 

monoxide can therefore irreversibly adsorb on Ru while sparsely interacting with the support 

material, serving as a selective titrant for Ru.  

Ru surface sites were therefore quantified by CO adsorption at 308K using a Micromeritics 

ASAP 2020 instrument, which utilizes a static volume adsorption design. A known mass of 

catalyst, ~ 100 mg, is placed in a quartz U-cell where the catalyst is first degassed under vacuum 

at 673 K to remove weakly adsorbed molecules.  Samples are then reduced in flowing H2 (3h, 

673K, 3 K min-1), evacuated at 673K for 1h to remove physisorbed hydrogen, and cooled to 

308K under vacuum. In the first part of the analysis a CO adsorption isotherm is collected at 308 

K; this represents the total adsorption on both Ru and support surfaces. The sample is then 

evacuated for 1 hour to remove physisorbed CO, followed by collecting a second adsorption 

isotherm.  Irreversible CO adsorption can then be determined from the difference in CO 

adsorption between the first and second isotherms. Here, irreversible CO uptake is taken as 

equivalent to the Ru surface site density, which assumes a CO adsorption stoichiometry of 1. 

From the irreversible CO uptake measured and known mass of catalyst analyzed, the moles of 

exposed Ru per mass of catalyst is calculated.  

Finally from the measured surface site density, the average particle size of Ru nanoparticles on 

the surface can be estimated. Surface averaged Ru particle diameters based on irreversible CO 

uptake were calculated according to Eq. (2-3), which assumes a spherical morphology:  

,

6
p CO

Ru

d
S 




 (2) 

Ru m aS N A N  (3) 
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Where S is the surface area of Ru per gram of catalyst calculated from irreversible CO uptake, 

Ru is the density of metallic Ru and Na is Avagadro’s constant. The cross sectional area of a 

single Ru atom was assumed to be 6.14 Å2, and 12.30 g cm-3 was used as the density of Ru [3].  

2.2.3 Transmission electron microscopy 

A mode of deactivation which commonly plagues supported catalysts, is the aggregation or 

sintering of the nanoparticles on the support surface. As the size of the supported Ru 

nanoparticles increases the exposed surface area decreases, leading to decreased catalytic activity 

on a total mass of supported catalyst basis. Therefore to evaluate the extent to which sintering is 

responsible for deactivation in the various hydrogenation reactions considered, it was necessary 

to determine the Ru nanoparticle size before and after reaction. 

Average Ru cluster sizes and particle size distributions were determined using transmission 

electron microscopy (TEM). Catalyst samples were suspended in excess acetone via sonication, 

and suspension aliquots were deposited on 300 mesh carbon film Cu grids (EMS) and dried 

overnight under ambient conditions. Images were taken using a JEOL 2010F equipped with a 

Schottky field emission gun operating at 200 KV and captured with a CCD camera. Particle size 

distributions were extracted from TEM images using image processing software (ImageJ).  X-ray 

diffraction 

2.2.4 X-ray Diffraction 

X-ray diffraction (XRD) was used to determine whether any structural changes occurred in the 

support materials, this was especially significant for the metal oxide supports used in the aqueous 

phase reactor setup. Powder x-ray diffractions (PXRD) were collected using a Bruker D8 
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diffractometer using Cu Kα radiation (40 kV, 40 mA). Scans were performed from 2θ = 10 to 

80o with a step size of 0.1o at a rate of 5 min per degree.   

 

Figure 2.3 Schematic representation of the X-ray diffractometer with a θ:2θ goniometer 

 

2.3 Catalytic reactor setups 

2.3.1 Flow reactor 

In the evaluation of the catalytic activity of Ru catalysts towards hydrogenation chemistry, the 

use of various reaction environments and need to isolate individual chemistries necessitated the 

use of multiple reactor designs. The use of a flow reactor setup was suited for measuring 

hydrogenation kinetics of the various ketones explored in this work, both in the aqueous and 

vapor phase, as it allows for facile estimation of instantaneous rates of hydrogenation. 

Specifically a packed bed reactor design was used, where a known amount of catalyst mass is 

fixed between two plugs of quartz wool to hold it in place. 

Shown below in Figure 2.4 is an illustration of the operation of a packed bed reactor. At the 

entrance of the differential catalyst element (dW), the molar flow rate of the reactant is known 
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(Fa,0). As a result of the reaction across the differential element, the molar flow rate of “a” 

changes by the amount dFa.   

 

Figure 2.4 A differential catalyst element dW across which the molar flow rate of A changes by a differential amount dFa as a 

result of a reaction on the catalyst surface.  

Performing a mass balance across the differential element one can obtain: 

,0 ,00 ( )a a a aF F dF r dW      (4) 

Where ra is the rate of reaction on a molar basis normalized by the mass of catalyst (mol mass-1 

time-1). We can then rearrange Eq. (4): 

a
a

dF
r

dW
    (5) 

To simplify the analysis and estimation of reaction kinetics, the packed bed reactor can be 

operated differentially by maintain reactant conversion below ~5%. With this constraint, the 

differential term in Eq. (5) can be approximated to be an exact one. 

a
a

F
r

W


 


  (6) 

Therefore if the change across the catalyst bed and mass of catalyst bed are known, under 

differential conditions they provide a direct measurement of the rate of reaction.  
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Flow reactors also allow for rigorous estimation of the extent of deactivation, which tends to be 

severe with Ru catalysts, enabling an estimation of the initial rate on fresh catalysts prior to the 

onset of deactivation. Given the objective of also rationally designing catalysts from the 

perspective of stability, the ability to track the extent of deactivation with time on stream 

essential.  

Schematics of the flow reactors applied for vapor and liquid phase experiments conducted 

throughout the thesis are presented in Figure 2.5 and Figure 2.6. The precise method of operation 

for the flow reactors depends upon the reaction chemistry investigated, details are therefore 

given in each relevant chapter.  

 

Figure 2.5 Schematic of catalytic reactor setup employed for aqueous phase hydrogenations 
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Figure 2.6 Schematic of catalytic reactor setup employed for vapor phase hydrogenation 

 

2.3.2 Aqueous phase batch reactor 

Homogeneous chemistries which did not exhibit deactivating behavior were conducted in a batch 

reactor, given its operational simplicity relative to flow reactors. Briefly reactants were placed 

within a glass reactor along with a magnetic stir bar, equipped with a septum that allowed for 

sampling using a syringe. The whole reactor apparatus was placed within a second glass vessel 

filled with silicone oil that acted as a thermal bath, at the bottom of which was a magnetic stir bar 

which aided in maintaining a constant temperature across the bath. A thermocouple was placed 

within the oil bath to monitor the temperature at which the reaction was conducted. The entire 

apparatus was placed upon a heated stir plate which both heated the oil bath and magnetically 

drove both stir bars.  
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Figure 2.7 Batch reactor setup used for measuring the kinetics of the acid catalyzed intramolecular fisher trans-esterification of 

HPA to GVl in solution 

  



25 
 

 

 

2.4 References 

[1] J. Regalbuto, Catalyst preparation: science and engineering, CRC Press, 2016. 

[2] H. Pfnür, D. Menzel, Lateral interactions for CO/Ru(001): Order-disorder transitions of the 3 

structure, Surf. Sci., 148 (1984) 411-438. 

[3] S. Lowell, Characterization of Porous Solids and Powders: Surface Area, Pore Size and 

Density, Springer, 2004. 

 



26 
 

 

 

Chapter 3 Analysis of kinetics and reaction pathways in the aqueous-phase 

hydrogenation of levulinic acid to form -valerolactone over Ru/C 

3.1 Introduction 

Between temperatures of 298 and 473K and over supported Ru catalysts, LA is converted 

selectively to GVL via reduction with molecular H2 (10 – 35 bar) [1, 2].  Producing GVL 

requires both hydrogenation and dehydration of LA, and we may envision two different 

pathways for the transformation, depending on the order in which dehydration and 

hydrogenation occur (Figure 3.1).   

 

Figure 3.1 Pathways leading to -valerolactone during hydrogenation of levulinic acid.  
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Pathway 1 illustrates the sequence initiated by hydrogenation of the ketone group in LA to 

form 4-hydroxypentanoic acid (HPA).  Subsequently, HPA undergoes acid-catalyzed, 

intramolecular esterification (ring closure) to form the thermodynamically preferred lactone, 

GVL.   Alternatively, angelicalactones (AL) can form via endothermic dehydration of LA, and 

they become increasingly prevalent in acidic media and at elevated temperatures (Pathway 2).  In 

the presence of Ru/C and under H2 atmospheres, angelicalactones are anticipated to rapidly 

hydrogenate, forming GVL. To date, the relative contributions of each pathway have not been 

delineated, and it is unclear which reactions in the above network are kinetically significant.  

Further, depending on operating conditions [3, 4], choice of solvent [1, 5-7], presence of metal 

promoters (e.g., Re or Sn) [8, 9], and presence of residual impurities in levulinic acid feeds (e.g., 

H2SO4 or acid-soluble lignin) [9], Ru-based catalysts can display pronounced differences in both 

hydrogenation activity [3, 10] and on-stream stability [9].   

Here, we present an investigation of the reaction pathways and kinetics of aqueous-phase LA 

hydrogenation over supported Ru, which is representative of LA feedstocks obtained via acid 

hydrolysis of lignocellulose.  Kinetic studies have been carried out only for monometallic Ru/C 

having a single metal loading (5 wt%).  Our motivation in doing so is to establish governing 

phenomena on a practically employed catalyst in the absence of confounding effects, thus 

providing a foundation for subsequent studies examining the influence of Ru-promoters and feed 

impurities in greater detail.  In consideration of this model system, we have decoupled HPA- and 

angelicalactone-mediated hydrogenation pathways to illustrate that GVL formation occurs 

primarily through ketone hydrogenation followed by intramolecular esterification (Pathway 1, 

Figure 3.1). Upon identifying acid catalyzed intramolecular esterification of HPA as the kinetic 
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bottleneck in GVL formation at low temperatures, we demonstrate that high yields of GVL can 

be achieved at 323 K using stacked beds of Ru/C followed by Amberlyst 15 (A15).     

3.2 Materials & Methods 

5 wt% Ru/C was purchased from Strem chemicals, and its surface area and average pore 

diameter were determined to be 756 m2/g and 5.04 nm via N2 adsorption at 77K.  Ru dispersion 

was calculated to be 40.4% from irreversible CO uptake at 308K assuming 1:1 adsorption 

stoichiometry.  For 5 wt% Ru/C, this corresponds to a Ru site density of 200 mol g-1.   

Levulinic Acid (LA, 98%, Sigma Aldrich), -valerolactone (GVL, 98%, Sigma Aldrich), Sulfuric 

Acid (95-98wt%, Sigma Aldrich), and acetonitrile (HPLC grade 99.9 % purity, Fisher Scientific) 

were employed as supplied by the manufacturer.  A 4-hydroxypentanoic acid (HPA) calibration 

standard was synthesized by alkaline hydrolysis of GVL in sodium hydroxide (1 M) to produce 

4-hydroxypentanoate, which forms HPA upon protonation.  HPA used in esterification kinetic 

studies was synthesized via partial hydrogenation of aqueous LA (0.5 M) over Ru/C in a packed 

bed reactor (298K, 23 bar H2).  After synthesis, esterification feeds were refrigerated (274K) to 

minimize ring closure during storage (<24 h), but some amount of GVL formation was 

inevitable.  Zero-time concentrations of HPA, LA, and GVL were thus rigorously determined by 

HPLC analysis prior to starting each experiment.  Concentrations of HPA (0.04 – 0.06 M), LA 

(0.15 – 0.45 M), and GVL (5 x 10-4 – 1.5 x 10-3 M) varied depending upon the intended 

experiment.  Water used in preparing reactor feeds, calibration standards, and HPLC mobile 

phases was purified in house by sequential reverse osmosis, UV oxidation, and double ion 

exchange.   H2 (99.999%, Airgas), N2 (99.999%, Airgas), CO (99.99% Praxair) employed in 

flow systems and chemisorption experiments were used without further purification.   
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3.2.1 Analytical Methodology 

High performance liquid chromatography (HPLC) was used for quantification of LA, HPA, and 

GVL, which are the three products observed during LA hydrogenation and HPA ring closure 

experiments.  Resolution of reaction products was achieved by elution through a reverse phase 

column (Agilent, C18 Zorbax) using a mobile phase comprised of 0.5 mM H2SO4 in 90%/10% 

(v/v) H2O/Acetonitrile (1.0 ml min-1).  LA, GVL, and HPA were quantified using a variable 

wavelength detector (195 nm).  Retention times and UV response factors for LA and GVL were 

determined using commercial standards.  Since HPA is not commercially available, we 

employed a two-step approach for calibrating its HPLC response.  The HPA retention time was 

confirmed based on comparisons with 4-hydroxypentanoate, which protonates to form HPA in 

the acidic mobile phase (pH 3).  Since some quantity of ring closure is inevitable in HPA 

samples, it is difficult to prepare HPA quantitatively.  As such, HPA responses were calibrated 

indirectly based on established GVL response factors.  Briefly, HPA standards prepared by 

ambient temperature LA hydrogenation were analyzed at regular intervals during extended 

storage (48 hours) at ambient conditions.  During this time period, HPA peak areas were 

observed to decrease while GVL peak areas increase, and the two quantities displayed a linear 

correlation coefficient of -1.  This result indicates that increases in GVL concentration are 

attributed exclusively to consumption of HPA, permitting changes in HPA concentration—and 

thus a response factor— to be determined by mole balance according to Eq. (1). 

2HPA GVL H O   (1)  

Accounting for HPA, LA, and GVL allowed over 95% closure of carbon balances in all kinetic 

studies.  Though not observed during hydrogenation, - and b-angelicalactones formed during 
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LA dehydration studies were quantified by Gas Chromatography (GC, Agilent) using an 

INNOWAX column and an FID detector.  Both were referenced to commercial standards.  The 

GC injector and FID detector were both held at 523K, Helium was used as a carrier gas (1.5 

sccm), and the column temperature was ramped from 383K to 493K at 10 K min-1. 

3.2.2 Bulk concentrations of dissolved LA and H2 

The aqueous phase concentration of LA in the reactor is assumed to be equal to that of the feed 

solution, and the concentration of dissolved H2 is, at phase equilibrium, governed by system 

temperature and H2 partial pressure. Because H2 has limited solubility in this system, we can 

approximate the equilibrium concentration of dissolved hydrogen at a given temperature and H2 

partial pressure using Henry’s Law (Eq. 2-3).   

2 2 2
( ).H H HC K T P  (2)  

0

2 2

1 1
[ ( )]

0( ) ( ).
C

T T

H HK T K T e


   (3) 

C and KH2 are empirical constants describing the solubility of H2 in water. KH2, in molar units, 

has a value of 11.5 mol L-1 bar-1 at 298 K, and C is 500 K [11]. Strictly speaking, the above 

model applies to binary H2/water systems, and H2 solubility is expected to vary with LA 

concentration; however, this model provides a reasonable approximation for dissolved H2 

concentrations here because our study is limited to relatively dilute LA concentrations (0.025 – 

1.5M, >97 mol % H2O). In this limit, H2 solubility in water is expected to dominate solution 

properties. The use of Henry’s law is predicated on the assumption of gas-liquid equilibrium, 

which is only true for this reacting system if gas-to-liquid transport occurs rapidly relative to the 
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rate of hydrogenation. To probe the validity of this assumption, we measured hydrogenation 

rates as a function of bed position and gas flow rate at the highest temperature considered in this 

study (423 K) since transport limitations are anticipated to be the most demanding at this 

condition. Here, we observed that hydrogenation rates are independent of both bed position and 

gas flow rate, suggesting that gas-to-liquid mass transfer occurs rapidly relative to hydrogenation 

rates, and that vapor and liquid phases are equilibrated throughout the packed bed such that bulk 

H2 concentrations are appropriately modeled using Henry’s Law. 

3.2.3 Kinetic Studies 

Kinetic data were collected for three separate reactions illustrated in Figure 3.1.  First, the rate of 

LA hydrogenation over Ru/C was determined in a packed bed reactor under a H2 atmosphere.  

Second, LA dehydration rates were quantified under typical LA hydrogenation conditions over 

Ru/C in a packed bed reactor under a non-reducing atmosphere.  Finally, HPA esterification to 

form GVL was carried out in a batch reactor.  Details for each experiment are provided in the 

following subsections. 

3.2.1.1 Levulinic Acid Hydrogenation 

Prior to use in kinetic studies, 5 wt% Ru/C was graded through a series of standard mesh sieves.  

Unless otherwise noted, particles in the range of 45 – 90 m were used.  Before loading into 

reactors, the stock catalyst was diluted to 1 gram 5 wt% Ru/C to 99 grams 45 – 90 m quartz 

particles, which were obtained by milling and grading fused quartz granules (4 – 20 mesh SiO2, 

Sigma Aldrich).  1 – 5 mg of undiluted 5 wt% Ru/C were generally required for typical reactor 

operation; as such, we employed a high dilution ratio to improve precision in catalyst mass 
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loading.  Reference experiments confirmed that hydrogenation rates were independent of the 

dilution scheme, suggesting that this protocol does not induce bypassing of the catalyst particles.   

Hydrogenation of LA was carried out using the above described Ru/C dilution in a concurrently 

fed, stainless steel packed bed reactor (¼” x 12”).  The reactor was operated in an upflow 

configuration over a range of temperatures (323K to 423K) and H2 pressures (4.1 bar to 41.5 

bar).   Relatively small amounts of catalyst were required for all of the studies reported here, and 

bed lengths were on the order of 0.5” – 1.0”.  Catalyst beds were positioned at the center of the 

heated section of the reactor and held in place by two quartz wool plugs. The tube upstream of 

the catalyst bed was packed with coarse (850-1200 m) quartz granules to minimize dead 

volume, while the section immediately downstream of the catalyst bed was packed with smaller 

quartz granules (<45 m) to minimize entrainment of carbon fines.  Quartz packing was fixed in 

place with two quartz wool end plugs, and the reactor was placed in line using compression 

fittings.  Aqueous LA feeds (0.025 – 1.5M) were introduced to the system using an HPLC pump 

(Lab Alliance Series 1).  H2 feeds were regulated by mass flow controller (Brooks 5850S) and 

mixed with the aqueous feed prior to introduction into the reactor.  To ensure thermal 

equilibration of the reactor feed, both the H2 and the aqueous LA feeds were circulated through a 

pre-heater section that was maintained at reactor temperature.   Feed temperature was monitored 

by an in-line Type K thermocouple and controlled using a PID controller (Love 16A-3010).  The 

combined feed was then introduced to the packed bed, which was positioned in the center of a 2” 

aluminum rod held within a ceramic furnace (Applied Test Systems).  Reactor temperature was 

monitored at the external wall of the catalyst bed using a Type K thermocouple and controlled 

with a PID controller.  System pressure was controlled using a back pressure regulator (Tescom 

Model 26-1766-24) and monitored both upstream and downstream of the packed bed using 
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analog pressure gauges.  The effluent of the system flowed directly into a vapor-liquid separator.  

Since no volatile products are formed during this reaction, the gas phase was vented 

continuously without analysis.  The aqueous product was collected at regular intervals (15 – 30 

minutes) and analyzed immediately using HPLC (Agilent 1100 Series).  Prior to use, catalyst 

beds were reduced in-situ (673K, 4 hour hold, 1 K min-1) under flowing H2 (100 SCCM, 1 bar).  

Since LA hydrogenation occurs in a three-phase system, we anticipate that interphase, 

interparticle, and intraparticle transport limitations may govern concentrations of LA, dissolved 

H2, and temperature at catalytic centers and thus control the rate of hydrogenation.  A thorough 

consideration of transport and kinetically controlled operating regimes is presented in Section 

3.3.2. For the experiments described here, we observed that interphase H2 transport is rapid such 

that dissolved H2 concentrations are well-approximated by their equilibrium value as determined 

by gas-phase H2 pressures and Henry’s law.  Further, linear fluid velocities at or beyond 

volumetric aqueous feed rates of 0.4 ml min-1 are sufficiently high to eliminate any external 

concentration or temperature gradients. Finally, for 5 wt% Ru/C, intraparticle transport 

limitations were negligible at and below 343K for catalyst particles smaller than 125 m.   

Where higher conversions are not otherwise indicated, reactors operated differentially (< 3% LA 

conversion), and the only reaction products observed were HPA and GVL.  Since conversion 

ranges for differential operation are within the precision expected of mass balance closure and 

HPLC analysis, LA conversion and product selectivity were determined based on product 

formation as defined in Eq. (4) and (5), where nHPA and nGVL are the total molar quantities of 

HPA and GVL recovered in a given reactor sample, and nLA0 is the total molar quantity of LA 

fed into the system.  Yield is calculated as the product of LA conversion, XLA, and selectivity, Si. 
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Site Time Yields (STY) are reported for both HPA and GVL over a range of conversions.  They 

were calculated according to Eq. (6). 
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Where Fi is the effluent molar flow rate of either HPA or GVL, mcat is the mass of catalyst in the 

bed, and NRu is the loading of Ru surface sites per gram of catalyst as determined by CO 

chemisorption.  In all data summarized here, site time yields have units of moles product per 

mole of Ru surface sites per second, which is reported as s-1 for convenience.   

3.2.1.2 LA Dehydration 

To probe the extent to which angelicalactones contribute to GVL formation, the baseline rate of 

LA dehydration was determined in an inert atmosphere over Ru/C.  This experiment was 

motivated by the fact that C=C bond hydrogenation is anticipated to be rapid over Ru/C relative 

to LA dehydration, making it difficult to distinguish between GVL formed via LA dehydration 

and LA hydrogenation in a reducing environment.  To provide an accurate accounting of GVL 

fractions formed by pathways 1 and 2 (Figure 3.1), it is thus necessary to quantify the rate of 

dehydration independent of hydrogenation.  To this end, a reference experiment was carried out 

identically to the protocol described in section 3.2.1.1 (LA Hydrogenation), with the exception 

that the H2 feed was replaced with N2 to suppress both LA and angelicalactone hydrogenation.   
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3.2.1.3 Intramolecular esterification of HPA 

The intramolecular esterification (ring closure) of 4-hydroxypentanoic acid (HPA) to form GVL 

was studied in batch reactors in dilute aqueous solutions of LA.  A feed HPA solution was 

prepared by partial hydrogenation of LA, stored at 275K to inhibit ring closure, divided into 

aliquots, and loaded into magnetically stirred autoclave reactors (10 mL) that were subsequently 

placed in a temperature-controlled oil-bath.  Batch experiments were conducted at ambient 

pressure and temperatures ranging from 300 – 339K.  To determine whether ring closure is 

heterogeneously catalyzed in this system, identical experiments were carried out with the 

addition of both Ru/C and quartz granules (0.05 g/g feed).  Batch vessels were stirred at 700 

RPM to eliminate extraparticle gradients, and solid particles of 45 – 90 um were employed to 

minimize internal diffusion limitations where relevant.  LA, HPA, and GVL concentrations were 

monitored as a function of time by withdrawing 200 L aliquots from the reactor using a syringe.  

Each sample was analyzed by HPLC as described in Section 3.2.1.  Intramolecular esterification 

of HPA was the only reaction observed in these experiments, and LA concentrations remained 

constant throughout.  Solution pH was measured at ambient temperature at the beginning and 

end of every experiment, and we observed a maximum change of 2.3% in dissolved H+ 

concentration over the course of a single experiment, indicating that HPA consumption did not 

have a significant effect on H+ concentration. Based on previously compiled data regarding the 

effect of temperature on the dissociation of LA[12] and related carboxylic acids,[12-14] 

dissolved H+ concentrations were determined to vary minimally (<5%) over the experimental 

temperature range (300 – 339K).  This observation is consistent with prior results,[15] and we 

therefore consider the measured starting pH to be constant throughout each experiment. 
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3.2.1.4 Stacked bed experiments  

Ru/C and Amberlyst-15 were coupled in stacked beds to facilitate both LA hydrogenation and 

HPA ring closure in a single reactor at low temperatures.  To accommodate the relatively low 

thermal stability of A15, Ru/C used in stacked beds was reduced ex situ in H2 at 673K and 

subsequently passivated at 298K in 1% O2/N2.  Passivated Ru/C and unmodified A15 were 

sequentially loaded into a single ¼” stainless steel tube to create two stacked beds separated by a 

quartz wool plug.  The entire bed was then reduced at 373K (3 K min-1) in 100 sccm of H2 for 2 

hours to remove the oxygen monolayer from Ru surface sites.  Blank experiments confirmed that 

Ru/C reduced and passivated ex situ (used in stacked beds) performed identically to Ru/C 

reduced in situ (used in LA hydrogenation kinetic studies).  As such, this experiment reveals 

only the effect of adding secondary acid functionality downstream of the hydrogenation system. 

3.3 Results and Discussion 

3.3.1 Primary analysis of LA hydrogenation products formed over Ru/C 

Table 3.1 summarizes experimental observations during the aqueous-phase hydrogenation of LA 

over Ru/C.  

 

 

Table 3.1 Experimentally observed LA conversions and product selectivities during hydrogenation of LA over Ru/C under inert 

and reducing environments and at temperatures ranging from 323 - 423K. 

Run Gas T (K) WHSV (hr-1) XLA (%) STY (s-1) Selectivity (%) 

     HPA GVL AL HPA GVL AL 

1 H2 323 550 1 0.09 0.004 -- 96 4 0 

2 H2 323 37 20 0.09 0.002 -- 98 2 0 
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3 H2 323 5.0 99 0.06 0.003 -- 95 5 0 

4 N2 323 550 Trace -- -- 5 x 10-7 0 0 100 

5 N2 423 550 Trace -- -- 1 x 10-6 0 0 100 

6 H2 343 730 2 0.17 0.02 -- 89 11 0 

7 H2 363 720 3 0.18 0.04 -- 81 19 0 

8 H2 383 920 3 0.23 0.13 -- 63 36 0 

9 H2 403 790 5 0.25 0.17 -- 59 40 0 

10 H2 423 1500 3 0.12 0.48 -- 19 81 0 

 

 From data in entries 1-3, we observe that hydrogenation of LA over Ru/C at near ambient 

temperatures (323K) yields only two products, HPA and GVL, over LA conversions ranging 

from 1 – 100%.  Over the entire conversion range, we note that GVL selectivity is poor (<5%) at 

323K, and the major LA hydrogenation product is HPA (>95% selectivity).  This suggests that 

the HPA-mediated pathway illustrated in Figure 3.1Figure 3. likely dominates GVL production 

and may indicate that intramolecular esterification of HPA, rather than hydrogenation of LA, 

controls the rate of GVL formation over Ru/C.  To further probe the extent to which 

angelicalactone formation contributes to GVL production, we consider entry 4, which is identical 

to entry 1 except that the reducing gas (H2) has been replaced with an inert (N2).  Under these 

conditions, we observe trace LA conversion with complete selectivity to angelicalactones, 

indicating that in the absence of H2, LA is only consumed by dehydration. However, the site time 

yield to angelicalactones over Ru/C (5 x 10-7 s-1) is several orders of magnitude lower than site 

time yields observed for HPA (0.085 s-1) and GVL (0.005 s-1) in the presence of Hydrogen 

(Entry 1).  Even upon increasing the system temperature to 423K (Entry 5), site time yields for 

dehydration (10-6 s-1) remain well below hydrogenation rates summarized in entries 1 - 3.  Since 

LA dehydration is essentially not observed over Ru/C relative to the scale of HPA and GVL 
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production over the range of temperatures considered here (303 – 423K), we conclude that GVL 

formation over Ru/C occurs exclusively through the HPA-mediated pathway (Pathway 1, Figure 

3.) in this temperature range.  Entries 6 to 10 compare HPA and GVL selectivity and site time 

yields at reaction temperatures from 343K to 423K.  As the reaction temperature increases, LA 

hydrogenation rates increase, and GVL selectivity improves relative to HPA.  This is attributed 

to an increase in the rate of ring closure relative to the rate of hydrogenation.  Intramolecular 

esterification of HPA is reversible such that HPA/GVL distributions in hydrogenation products 

will ultimately be determined by chemical equilibrium.  A concentration based equilibrium 

constant for esterification of HPA in aqueous solution at 298K was experimentally determined 

here to be 14.5, which is in good agreement with the mean value of those previously reported for 

this reaction (13.8).[16] HPA ring closure is estimated to be only slightly exothermic (-3 kJ/mol) 

based on prior accounts of -hydroxybutyric acid esterification;[17] thus, equilibrium GVL 

selectivities are not expected to change drastically with increasing temperature and should 

exceed 90% at each experimental condition described here. This was confirmed by experimental 

observation, where nearly complete GVL selectivity was observed at chemical equilibrium over 

a range of temperatures from 298 – 423K.  We therefore conclude that HPA ring closure is not 

equilibrated in any of the experiments described in Table 3.1 and attribute the improved GVL 

selectivity to an increased rate of HPA esterification relative to the rate of LA hydrogenation.  

This suggests that HPA ring closure proceeds with a higher activation barrier than LA 

hydrogenation and may also reflect increasing mass transfer limitations in LA hydrogenation at 

high temperatures.   

3.3.2 Assessing transport control in liquid phase hydrogenation of LA 
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Mears’ criteria (Eq. 7 - 8) establish a theoretical framework for determining whether external 

heat (CEHT) and mass transport (CEMT) limitations are significant in controlling reaction kinetics 

[18].   
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Here, r  is the rate of reaction per bed volume, rp is the diameter of bed particles, Cb is the bulk 

concentration of reactants in the aqueous phase, kc is a mass transfer coefficient, n is a reaction 

order in a particular reactant, H is the enthalpy change of reaction, h is a heat transfer 

coefficient, Tb is the bulk fluid temperature, R is the universal gas constant, and EA is the 

apparent activation energy for the reaction.  The majority of parameters in the above equations 

were obtained from experimental data; however, heat and mass transfer coefficients were 

estimated using standard correlations for liquid phase flow through packed beds [19, 20]. For the 

purpose of this analysis, n was considered to be one for both LA and H2, since both will 

maximally exhibit first order dependencies if ketone hydrogenation occurs through sequential 

addition of atomic hydrogen to a surface bound ketone [21].  Due to the small particle sizes 

employed in this study (<100 m) and the extensive dilution of the catalyst (1 wt% in quartz), 

external heat transfer criteria (CEHT) are satisfied by at least one order of magnitude under even 

the most demanding conditions (T = 303K) for any reasonable combination of enthalpy of 

reaction (-20 to -250 kJ/mol), activation barrier (20 to 250 kJ/mol), and heat transfer coefficient 

(102 to 106 W m-2 K).  
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A similar analysis of external mass transport using a conservative mass transfer coefficient (1.4 x 

10-4 m sec-1) for representative liquid feed rates (0.4 mL min-1) reveals that external mass transfer 

of LA is sufficiently rapid such that it does not control the rate of hydrogenation; however, 

because of the dilute H2 concentrations in this system, external H2 transport can become rate 

controlling at high temperatures.  Given the uncertainty in estimating mass transfer coefficients, 

experimental quantification of external mass transport limitations was warranted.  LA 

hydrogenation was thus carried out over a range of volumetric liquid feed rates (0.1 – 0.6 ml 

min-1) while maintaining a constant H2 pressure (33 bar), H2 flow rate (35 sccm), and Weight 

Hourly Space Velocity (WHSV, 315 g LA (g Ru/C hr)-1) at 423K. This maintained our residence 

time constant in terms of the catalyst while increasing the linear velocity of the aqueous phase. 

Between flow rates of 0.1 and 0.2 ml min-1, we observed slight fluctuations in hydrogenation 

rate, suggesting external mass transfer may influence kinetics at low feed rates; however, at feed 

rates from 0.4 – 0.6 mL min-1, we observed an invariant rate of hydrogenation.  Since this 

observation was made under the most demanding conditions for mass transfer (i.e., the highest 

rate of reaction), we concluded that a feed rate of 0.4ml min-1 was sufficient in this system to 

eliminate external transport effects such that temperature and concentration at the particle surface 

approach those in the bulk.  

We can similarly examine the influence of internal heat and mass transfer using theoretical 

analysis of diffusion and conduction relative to reaction rates as given by the criteria in Eq. (9) –

(10) [22, 23]. 
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The majority of symbols are defined in the preceding section.  In addition,  is the thermal 

conductivity of the catalyst support, Ts is the temperature at the external particle surface, Cs is 

concentration of a reactant at the external particle surface, and De is the effective diffusivity of 

the same reactant in the catalyst pores.  Rates, activation barriers, heats of reaction, particle radii, 

thermal conductivity, and reactant concentrations were obtained either from established 

databases [11] or experimental data.  Since experimental protocols were established to minimize 

external transport limitations, surface temperature and concentrations of LA and H2 are taken as 

equal to those in the bulk.  Effective diffusivities were estimated based on bulk diffusivities and 

the average pore diameter of the carbon support.  As observed in our analysis of external heat 

transfer limitations, small catalyst particle sizes ensure that internal temperature gradients do not 

exist in this system, and CIHT was observed to be at least 2 orders of magnitude below the 

indicated threshold (0.75) for all reasonable ranges of enthalpy change and activation barriers.  

Intraparticle mass transfer limitations are much more severe in this system, particularly in the 

case of hydrogen.  For first order reactions, which we take to be the limiting case for both LA 

and H2 in the case of a ketone hydrogenation, the Weisz Prater criteria (CWP) established by Eq. 

(10) should be less than 1.  Mindful of this limit, we estimate that intraparticle mass transport 

should be significant at temperatures of 363K and above.  Specifically, at an LA concentration of 

0.5 M and a dissolved H2 concentration of 0.0157 M, we measured turnover frequencies for LA 

hydrogenation to be sufficiently high (>0.2 s-1) at 363K that intraparticle transport is likely to 

control the rate of hydrogenation.  At this temperature and concentration, we calculate CWP 
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values of roughly 0.2 and >1 for LA and H2, respectively.  At temperatures of 343K, we observe 

that CWP is below 1 for both LA (<0.1) and H2 (<0.7), suggesting kinetic control; however, given 

the uncertainty in estimating diffusivities, this result cannot be taken as a conclusive indication 

that intraparticle mass transfer constraints are absent.  To ensure the kinetic relevance of rate data 

reported here, internal diffusion limitations were probed experimentally by examining the effect 

of catalyst particle size on observed hydrogenation rates.  At a temperature of 343K with 

aqueous phase concentrations of 0.5 and 0.0157M in LA and H2 respectively, LA hydrogenation 

TOFs were measured over Ru/C particles of mesh sizes 45-90 um and 90-125 m at a constant 

WHSV of 710 gLA gcat
-1 hr-1.  For these two sieve fractions, initial hydrogenation TOFs were 

0.145 and 0.146 s-1, respectively, suggesting that intraparticle transport effects in this catalyst 

system do not control the observed rate of reaction at temperatures of 343K and below.  At 

temperatures of 363 K and above, we did observe the hydrogenation rate to exhibit 

characteristics of transport control.   

3.3.3 Kinetics of LA Hydrogenation 

Since LA dehydration is demonstrated to have a negligible contribution to GVL production 

below 423K (Section 3.3.1), the sum of production rates for GVL and HPA can be taken as the 

total rate at which the ketone group in LA is hydrogenated.  Because differential conditions were 

maintained in kinetic studies reported hereafter, turnover frequencies for LA (ketone) 

hydrogenation are well-approximated as the sum of site time yields for HPA and GVL.  

LA HPA GVLTOF STY STY            (11) 
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Figure 3.2 plots turnover frequencies of LA hydrogenation over Ru/C as a function of time on 

stream at several representative reaction conditions.  It is evident that LA hydrogenation rates 

decay rapidly in this aqueous-phase system, even at mild temperatures (323 K).  Ultimately, we 

were unable to identify an operating regime where deactivation does not occur; as such, initial 

turnover frequencies at a given experimental condition were estimated by extrapolation of rate 

data to zero time on stream.  Independent of the reaction conditions, the time decay of 

hydrogenation rates at short times on stream (below 8 hours) was well-described by a second 

order model such that declining reaction rates can be linearized by plotting inverse turnover 

frequencies against time on stream as described by Bartholomew [24].  Regression of linearized 

data sets permits quantification of initial hydrogenation turnover frequencies via estimation of a 

y-intercept, and all initial turnover frequencies reported here for LA hydrogenation were 

approximated using this method.  

 

 

Figure 3.2 a) Rates of LA hydrogenation over Ru/C at 323K (◇), 343K (○), and 363K (□) as a function of time on stream. b) 

Linearized rate data illustrating second order deactivation and method employed for estimation of rates at zero time on stream.   

For all experiments summarized here, the aqueous phase concentrations of LA and H2 were 0.50M and 0.016M. 
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Detailed consideration of Ru/C deactivation is outside the focus of this article; however, 

some discussion is warranted because of the ubiquity of noble metal-on-carbon catalysts in 

emerging aqueous phase hydrogenation processes targeting biorenewables.  Figure 3.3 

summarizes on stream performance of Ru/C during LA hydrogenation at 323 K.  Here, we 

observe that TOFs for LA hydrogenation ultimately stabilize at 20 – 30% of their original values 

after 48 – 72 hours on stream.  Regeneration attempts via in situ reduction reveal that this loss of 

activity occurs through a combination of reversible and irreversible phenomena.  After reaching 

steady state, catalysts can be restored to only 50 – 60% of their initial activity, and their renewed 

activity decays quickly (within 5 hours) to the steady state value after being placed on stream 

again.  To date, the mode of reversible deactivation has not been conclusively identified, but it 

may be attributed to either strongly bound hydrocarbon intermediates or surface oxidation of Ru 

nanoparticles.   

 

Figure 3.3 Observed LA hydrogenation rates as a function of time on stream at T = 323K, CH2 = 0.016M, CLA = 0.1M.  (○) Fresh 

catalyst, (∆) first regeneration, (□) second regeneration, (◊) third regeneration.  Regeneration was performed in situ by interrupting 

aqueous feeds and reducing the catalyst under flowing H2 (100 sccm, 4h, 673K, 1K min-1)   
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With respect to irreversible deactivation, we have not observed Ru leaching or attrition of the 

carbon support in this system, nor does the carbon support undergo significant physical changes 

as determined by N2 adsorption.  As such, irreversible deactivation observed here is most likely 

attributed to particle sintering.  Ru dispersion, determined by CO chemisorption, decreases from 

40% to 21% in pre- and post-reaction samples.  Since leaching, attrition, and structural 

degradation have not been observed, this loss of dispersion suggests an increase in Ru cluster 

size from roughly 3.6 nm in fresh samples to 6.8 nm in samples recovered after 65 hours on 

stream.  Sintering is typically considered a high temperature phenomenon; however, water can 

facilitate particle agglomeration close to room temperature [25].  These observations are 

supported by the works of Davis, who reported metal cluster growth during aqueous phase 

hydrogenation of glucose over Ru/SiO2 at 373 K [26] and Marin, who observed particle growth 

from 2.2 to 3.2 nm during the aqueous phase oxidation methyl-α-D-glucoside over Pt/C [27]. 

Sintering is thus a realistic consideration in this system, and future efforts geared toward rational 

design of stable hydrogenation catalysts for biomass processing should consider strategies for 

maintaining high Ru dispersions in the aqueous phase.  In the interest of brevity and maintaining 

a focus on the kinetics of LA hydrogenation, we will defer a more comprehensive 

characterization of spent catalyst samples to subsequent communications.  In the remainder of 

this section, we discuss observed trends in initial LA hydrogenation turnover frequency as a 

function of LA concentration, dissolved H2 concentration, and reaction temperature.  

3.3.2.1 Reaction Orders: Levulinic Acid  

The concentration of LA in the aqueous phase was found to have a minimal and slightly 

inhibitory effect on the initial rate of hydrogenation.  This trend is illustrated in Figure 3.4, and 
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regression of the data there reveals an apparent reaction order of -0.04 +/- 0.04 over a range of 

LA concentrations (0.025 – 1.5M), indicating that the rate of LA hydrogenation is nearly 

independent of bulk LA concentrations over practical values.  This observation is consistent with 

prior studies of both gas and liquid phase reactions where apparent zero order kinetics with 

respect to the hydrocarbon are generally observed for both C=O and C=C hydrogenations over 

group VIII metals.  For example, hydrogenation of d-glucose [28] and arabionic acid [29] are 

both zero order in the oxygenate over Ru/C above concentrations of 0.3 M and 1 M respectively.  

Other supported, noble metals exhibit similar behavior.  For example, Vannice has reported that 

benzene [30] and citral [31] hydrogenation over supported Pt and Pd catalysts, respectively, are 

zero-order in organic concentration. Similarly, for the gas phase hydrogenation of ethylene over 

Pt, Dumesic observed zero order dependence on ethylene at low temperatures and high partial 

pressures of ethylene [32]. Apparent zero order dependencies on organic species during 

hydrogenation is typically attributed to the presence of strongly bound hydrocarbon 

intermediates that saturate available metal surface sites during hydrogenation [33], and a more 

detailed interpretation will be provided in section 3.3.4. 
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Figure 3.4 Correlation between levulinic acid concentration and hydrogenation rate.  Experiments illustrated here were carried 

out at 323K, 0.016M H2 concentration, and varying WHSV to maintain LA conversions below 3%.  Turnover frequencies are 

reported in s-1 and LA concentrations are reported in mol L-1. 

3.3.2.2 Reaction Orders: Hydrogen  

Figure 3.5 illustrates the dependence of hydrogenation turnover frequency on the concentration 

of dissolved hydrogen in the aqueous phase.  Here, a pronounced effect is observed, and 

regression of the rate data reveals a fractional order of 0.6 +/-0.2. This outcome suggests that H2 

adsorption is rapid, such that surface reactions involving the addition of atomic hydrogen to 

adsorbed organic species control the rate of LA hydrogenation.  Similar half-order hydrogen 

dependencies were observed by Vannice during benzene and acetic acid hydrogenation over 

supported Pt [30, 34], Dumesic during ethylene hydrogenation over Pt [32], and Mahajani in the 

hydrogenation of n-valeraldehyde[35] and iso-valeraldehyde[36] over supported Ru.  

Reconciliation between this observation and a proposed reaction pathway will be discussed in 

subsequent analysis (section 3.3.4).  At this stage, our consideration of apparent reaction orders 
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suggests that LA hydrogenation is well-represented under the conditions reported here by the 

empirical rate law given in Eq. (12). 

2

1

' 2
LA Hr k c    (12) 

 

Figure 3.5 Correlation between dissolved aqueous phase hydrogen concentration and hydrogenation rate.  Experiments 

illustrated here were carried out at 323K, 0.5M LA, and varying WHSV to maintain LA conversions below 3%.  Turnover 

frequencies are reported in s-1 and H2 concentrations are reported in mol L-1. 

3.3.2.3 Temperature Effects 

Assuming the empirical rate law derived in the preceding section (Eq. 12) is valid over the range 

of experimental conditions tested, we can estimate apparent rate constants for the hydrogenation 

of LA by normalizing measured turnover frequencies by the square root of the concentration of 

dissolved hydrogen.  Subsequently, we may examine their temperature dependence to extract 

apparent activation energies and pre-exponential factors for this reaction.  Apparent rate 

constants are plotted on a logarithmic scale against inverse temperature in Figure 3.6, which 

reveals two distinct regimes.  At relatively high temperatures (363 – 423K), the data suggest an 
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apparent activation barrier of 20 ± 6 kJ mol-1, which is lower than that anticipated of kinetic rate 

control and likely indicates that internal pore diffusion dominates at higher temperatures.  This 

observation is consistent with our preliminary analysis of the Weisz-Prater criteria (Section 

3.3.2), which suggests that pore diffusion becomes significant at temperatures around 363K.  At 

lower temperatures (303 – 343K), regression of linearized rate data indicate an apparent 

activation energy of 48 ± 5 kJ mol-1 and an apparent pre-exponential factor of roughly 3.1 x 107 

L0.5 mol-0.5 s-1 on a Ru site basis or 6.2 x 103 (L∙mol)0.5 (g∙sec)-1 on a catalyst mass basis.  

Importantly, data in the low temperature region were demonstrated to be free of internal 

diffusion limitations through the observation of invariant hydrogenation turnover frequencies as 

a function of mean particle size at 343K.  In line with our observations, prior studies have 

reported activation barriers ranging from 34 to 64 kJ mol-1 over supported Ru for 

cinnamaldehyde [37], d-lactose [38], d-glucose [28] and  arabinonic acid [29]. Similar activation 

energies of hydrogenation were also reported over supported Pt for benzene [30] and ethylene 

[32]. We therefore consider that an apparent barrier on the order of 48 kJ mol-1 is reasonable for 

levulinic acid hydrogenation over Ru/C.  
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Figure 3.6 Correlation between reaction temperature and levulinic acid hydrogenation rate.  Experiments illustrated here were 

carried out at 0.5M LA, 0.016M H2, and varying WHSV to maintain LA conversions below 3%.  Apparent rate constants here are 

reported in L0.5 mol0.5 g-1 s-1. 

3.3.4 Analysis of Kinetic Data 

The observed reaction orders and apparent activation energy align well with previously 

documented studies considering both C=O and C=C hydrogenation. All observations can be 

reconciled with a conventional Horiuti-Polanyi interpretation [21], which is illustrated in a 

simplified scheme of LA hydrogenation in Eq. (13) – (16).  Briefly, according to this 

mechanism, LA adsorbs molecularly and H2 adsorbs dissociatively at Ru surface sites.  Surface 

bound LA is subsequently reduced in two steps by sequential addition of hydrogen atoms, 

ultimately forming the hydroxyacid (HPA), which we assume desorbs irreversibly from the 

surface.       

1. **LA LA             (13) 

2. 2 *2* 2H H            (14) 
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3. * * * *LA H LAH    
*LA H        (15) 

4. 
* * 2*LAH H HPA            (16) 

Based on prior computational studies [39], the half-hydrogenated intermediate (LAH, formed in 

step 3) is expected to be the dominant hydrocarbon species bound to Ru surface sites, and the 

second addition of atomic hydrogen (step 4) is generally considered to be rate determining.  This 

assumption will yield the overall rate expression for LA hydrogenation given by Eq. (17). 

4 LAH Hr k              (17)  

Half-hydrogenated species are expected to adsorb favorably on Ru surface sites under most 

conditions [33].  If we make the assumption that H2 adsorption and hydrocarbon adsorption are 

fully competitive and that the two species occupy identical surface sites, then we would expect—

in the limit of a surface dominated by bound hydrocarbon intermediates—that the rate of 

hydrogenation would exhibit apparent reaction orders of -1 in LA and 0 in H2, which are 

significantly different from our observed apparent orders of -0.04 and 0.6 for LA and H2, 

respectively.  Alternatively, our preliminary Density Functional Theory results suggest that on 

flat terrace sites of Ru, adsorbed H-atoms are the dominant surface species.  In this case, 

competitive adsorption of H2 and hydrocarbon species would predict apparent reaction orders of 

+1 in LA and 0 in H2, which is again significantly different from our observations.  Data 

collected in the regimes summarized here are thus more easily reconciled with the assumption 

that surface bound hydrocarbons and hydrogen atoms adsorb noncompetitively and can be 

considered in separate site balances.  In the case of non-competitive adsorption, we predict via 
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Langmuir-Hinshelwood analysis that the overall hydrogenation rate should take the form given 

by Eq. (18). 
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  (18) 

Considering that the half-hydrogenated LAH intermediate is likely bound strongly and difficult 

to hydrogenate, we may apply the simplifying assumptions that the coverage of the hydrocarbon 

intermediate approaches saturation on sites available for hydrocarbon adsorption, and the 

coverage of levulinic acid approaches zero. The assumption of a small LA coverage is 

reasonable since close structural analogs, such as 2-butanone, are reported to bind weakly 

relative to hydrogenation intermediates at Ru sites [39].  Since we observe a distinct, positive 

reaction order with respect to hydrogen, we additionally assume that sites accessible to atomic 

hydrogen are far from saturation.  Applying these limiting assumptions, the overall 

hydrogenation rate manifests as in Eq. (19), which reconciles well with our observed reaction 

orders of -0.04 and 0.6 in LA and H2. 

2

1 1

2 2
4 2 Hr k K C    (19) 

3.3.5 Kinetics of the Intramolecular Esterification of HPA 

As demonstrated in Section 3.3.1, intramolecular esterification of HPA is the final step in the 

low-temperature production of GVL.  Examination of selectivity trends suggests that HPA 

esterification is kinetically significant in the production of GVL over Ru/C, and we expect that 

this step is acid catalyzed.  In the system considered here, the primary source of acidity is likely 
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solvated protons dissociated from LA and HPA, both of which are weak organic acids having 

pKa values of 4.59 and 5.69 [16], respectively.  However, because oxidized carbon and Ru may 

also exhibit some acidity, we cannot conclude a priori that ring closure is exclusively a 

homogeneous reaction in this system.  Prior to investigating reaction kinetics, control 

experiments were carried out to determine whether Ru/C and quartz influence the rate of HPA 

ring closure.  At 303 K, we observed no difference in esterification rates observed with and 

without the addition of Ru/C and quartz, indicating that heterogeneous reactions do not 

contribute to HPA ring closure during hydrogenation.  Subsequent sections describe experiments 

designed to capture reaction orders and temperature dependencies in the intramolecular 

esterification of HPA. 

3.3.4.1 Reaction Orders 

Based on the intramolecular esterification mechanism, we expect that the rate of ring closure will 

exhibit some dependence on the concentrations of HPA and dissolved protons as summarized in 

Eq. (20) and (21). 

'

HPAr k C     (20) 

'

H
k k C b

    (21) 

For a set of batch kinetic studies having varied HPA concentrations, LA concentrations, and 

reaction temperatures, Figure 3.7a illustrates HPA concentration normalized by its initial value 

as a function of time on a logarithmic scale.  The demonstration of linearity in each data set 

indicates that HPA ring closure is first order in HPA concentration, and regression of each data 

set yields an apparent rate constant into which the concentration of dissociated protons has been 
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lumped (Eq. 21).  Figure 3.7b plots these apparent rate constants calculated against the measured 

concentration of solvated protons on a logarithmic scale, and examination of the correlation 

between k′ and CH+ again reveals a first order dependence.  First order dependencies on HPA and 

proton concentrations are consistent with prior descriptions of the intramolecular esterification of 

HPA in homogeneous systems.[40, 41] 

 

Figure 3.7 a) Batch kinetic data for intramolecular esterification of HPA at (Δ) 300 K, CH+ = 1.65 mM, CHPA0 = 47.7mM , (∇) 

318K, , CH+ = 1.65 mM, CHPA0 = 47.7mM, (○) 339K, , CH+ = 1.65 mM, CHPA0 = 47.7mM, (□) 339K , CH+ = 2.69 mM, CHPA0 = 

41.2 mM. b) Apparent rate constants for intramolecular esterification of HPA determined at (Δ) 339K and (○) 318K at various 

values of pH.  k′ is reported here in units of min-1. 

3.3.4.2 Temperature Effects 

Having established reaction orders for both HPA and H+, the rate constant, k, can be explicitly 

determined, and batch kinetic studies were carried out at various temperatures to quantify 

Arrhenius parameters.  Rate constants determined at each temperature are plotted on a 

logarithmic scale against inverse temperature in Figure 3.8.  Regression of this data indicates that 

the pre-exponential factor and activation barrier for the intramolecular esterification of HPA are, 

respectively, 2.0 x 1010 L mol-1 s-1 and 70 ± 0.4 kJ mol-1.  We note that this barrier is slightly 
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higher than that observed for LA hydrogenation (48 kJ mol-1, Section 3.3.2.3).  This result is 

consistent with our observations that ring closure appears to control GVL production rates at low 

temperatures and that GVL selectivities improve relative to HPA with increasing reaction 

temperature.   

 

Figure 3.8 Arrhenius plot illustrating the temperature dependence of rate constants for intramolecular esterification of HPA.  

Apparent rate constants are reported here in units of L mol-1 min-1. 

3.3.6 Kinetic model for GVL production via LA hydrogenation 

With reaction orders and temperature dependencies for both heterogeneously catalyzed LA 

hydrogenation and homogeneously catalyzed HPA ring closure established, the two reactions can 

be modeled independently to predict both LA hydrogenation rates and GVL selectivities over 

Ru/C.  The reaction pathway and empirical kinetic parameters derived from experimental 

observations summarized to this point are compiled in Figure 3.9.   
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Figure 3.9 Summary of the empirical kinetic model employed here to predict LA hydrogenation rates and GVL selectivities in a 

differential Packed Bed Reactor operating between T = 303 to 343K, CLA = 0.025 – 1.5M, and CH2 = 0.0028 – 0.028 M. 

Using these parameters and rate equations, packed bed reactors employed for LA hydrogenation 

were modeled to reconcile predicted hydrogenation rates and product selectivities with those 

observed experimentally. The system can be described using the material balances summarized 

in Eq. (22) to (24).   
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The catalyst mass in the system is calculated as a product of the system volume and b, the bulk 

density of the catalyst bed, and the concentration of solvated protons are calculated based on acid 

dissociation constants and concentrations of LA and HPA.  As detailed in the materials and 

methods section, carboxylic acid dissociation is expected to vary minimally over the range of 

temperatures considered here, and its effect was neglected in our calculations.   Modeling this 

system is complicated slightly by the fact that LA hydrogenation is heterogeneously catalyzed on 

Ru sites, while HPA ring closure is homogeneous. Thus, LA hydrogenation only occurs in the 

relatively small Ru/C bed, while HPA ring closure occurs homogeneously throughout both the 

Ru/C bed and in reactor sections filled with inert packing.  To address this issue, reactors were 

simulated as being comprised of separate hydrogenation and inert sections, and the effluent from 

the hydrogenation section was used as the input to the inert section.  As illustrated in Figure 3.10, 

we were able to reconcile, without further adjustment of parameters, predicted LA hydrogenation 

turnover frequencies and GVL production rates in each of the differential kinetic studies, 

indicating that the empirical model developed here is sufficient for predicting both LA 

conversion and GVL selectivity in kinetically controlled regimes.  Since the catalysts employed 

here are deactivating, the steady state balances given by Eq. (22) – (24) apply only for prediction 

of initial LA hydrogenation and GVL production rates, and the data summarized in Figure 3.10 

indicate values estimated at zero time on stream.   Based on replicates of rate data collected at a 

well-defined reference condition (CLA = 0.5 M, CH2 = 0.016 M, T = 323K), rates of LA 

hydrogenation and GVL production measured in this system deviate by roughly 5% from the 

mean, and the error bars in Figure 3.10 reflect this uncertainty.  
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Figure 3.10 Comparison between model predicted trends and experimental observations at various LA and H2 concentrations 

below 363K. (a) Describes the trends observed in GVL production rates, which captures selectivity during LA hydrogenation. (b) 

Describes the trends in TOF of LA hydrogenation. 

3.3.7 Stacked Bed Reactors 

Results from the preceding sections indicate that LA hydrogenation turnover frequencies are 

reasonable at near ambient temperatures (e.g., approximately 0.08 s-1 at 323K, 0.5M LA, 0.016 

M H2), and that transport limitations become significant as temperatures increase substantially 

beyond this point.  At low temperatures, we additionally observe that HPA ring closure appears 

to control the rate of GVL production such that GVL selectivity is less than 5%, independent of 

LA conversion.   Increasing reaction temperature improves GVL selectivity since ring closure 

has a slightly larger activation barrier (70 kJ mol-1) than LA hydrogenation (48 kJ mol-1), and we 

observe nearly 80% selectivity to GVL during differential LA hydrogenation at 423K.  However, 

high temperature operation is perhaps an inefficient choice for increasing productivity over a 5 

wt% Ru/C catalyst.  Pore diffusion quickly becomes rate controlling such that dramatic increases 

in reaction temperature yield only marginal enhancement in hydrogenation rates (e.g., 0.08 s-1 at 

323K compared to 0.6 s-1 at 423K); thus, the additional investment in energy input is not fully 
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recovered as substantially decreased residence times for LA hydrogenation.  Results summarized 

thus far demonstrate that the rate of HPA esterification scales with proton concentration.  

Therefore, an alternate approach to improving GVL selectivity is to introduce a second, acidic 

catalyst to expedite ring closure.  Although many homogeneous and heterogeneous combinations 

of Ru and acidity are likely possible, we have employed a simple, stacked bed of Ru/C followed 

by A15 to facilitate sequential hydrogenation of LA and intramolecular esterification of HPA.  

Though the same outcome could be more elegantly accomplished using a bifunctional catalyst, 

introducing acidity in parallel to hydrogenation may encourage angelicalactone formation and 

thus alter the kinetics of GVL formation according to Figure 3.1.  By separating metal- and acid-

functionalities, we were able to directly probe the hypothesis that expediting HPA ring closure 

improves GVL production rates without altering LA hydrogenation rates.  Observed stacked-bed 

hydrogenation rates and product selectivities are summarized in Table 3.2. 

Control experiments carried out under differential conditions (Entries 1 and 2) illustrate 

that, despite employing different Ru/C pretreatment protocols (i.e., in situ vs. ex situ reduction), 

hydrogenation rates over Ru/C are not altered in the stacked bed reactor.  Entry 2 shows that 

even a small quantity of A15 resin drastically shifts product selectivity toward GVL; however, 

conversions (<2%) and selectivities (<20%) remain below what would be desirable in a practical 

implementation.  Entry 3 demonstrates that complete conversion of LA via hydrogenation over 

Ru/C at 323K is achieved at a weight hourly space velocity of 5 h-1; however, GVL selectivity 

remains poor over the metal catalyst.   By adding a second bed of A15 (Entry 4), product 

selectivity can be shifted almost entirely to GVL at 323K, facilitating nearly 80% yield of GVL 

at practical residence times in a single reactor. 



60 
 

 

 

 Table 3.2 Experimentally observed LA conversions and product selectivities during hydrogenation of LA over Ru/C 

and A15.  T = 323K, CLA = 0.5 M, CH2 = 0.016 M. 

Run WHSV† (h-1) WHSV‡ (h-1) X
LA

 (%) TOF (s-1) STY (s-1) Selectivity (%) 

     HPA GVL HPA GVL 

1 550 0 2 0.107 0.104 0.003 97 3 

2 560 16.8 2 0.093 0.074 0.019 80 20 

3 5 0 99 -- 0.056 0.003 95 5 

4 5 0.15 92 -- 0.007 0.048 12 88 

†LA Weight hourly space velocity based on Ru/C loadings. 
‡LA Weight hourly space velocity based on Amberlyst-15 loadings. 

3.4 Conclusion 

We have shown that LA can be hydrogenated at near ambient temperatures, proceeding primarily 

through an HPA-mediated pathway in which hydrogenation occurs first and is followed by acid-

catalyzed dehydration.  At low temperatures, intramolecular esterification of HPA appears to 

control the rate of GVL formation, while at high temperatures, mass transfer limits the rate of 

hydrogenation.  By recognizing this and developing an understanding of the kinetics of the 

sequential hydrogenation and dehydration steps, we have demonstrated that it is possible to 

leverage a strongly acidic catalyst in conjunction with a hydrogenation metal to significantly 

improve GVL production rates at low temperatures.  With respect to rational design, it appears 

that that LA hydrogenation is best-suited to bifunctional catalysts exhibiting hydrogenation 

functionality alongside acidity. We have additionally observed pronounced deactivation of 

monometallic Ru/C in this model system, even under mild conditions.  Although underlying 

causes have not been conclusively established, sintering appears to cause an irreversible loss of 

activity, suggesting that it is critical to identify strategies for retaining metal dispersion during 

aqueous phase hydrogenation.  
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Chapter 4 Towards rational design of stable, supported metal catalysts for aqueous 

phase processing: insights from the hydrogenation of levulinic acid  

4.1 Introduction  

A number of catalytic technologies have been explored for converting biomass and its derivative 

platforms into energy-dense fuels and value-added chemicals.   Aqueous phase reforming allows 

the production of H2 and/or syngas directly from carbohydrates [1, 2]; decarbonylation and 

decarboxylation of carboxylic acids delivers alkenes and alkanes [3-7]; and hydrodeoxygenation 

facilitates selective cleavage of C-O bonds to form fully reduced alkanes that retain the entire 

carbon content of the parent feedstock (i.e., they occur without C-C cleavage) [8-11].  A 

common characteristic of the above is that each requires metal catalysts in some capacity.  

Aqueous-phase reforming employs metal sites to facilitate dehydrogenation, C-C cleavage, and 

water-gas shift [1, 2, 12-15]; and metal surfaces similarly activate carboxylic acids for 

decarboxylation and decarbonylation [3, 7]. Although HDO strategies leverage acid sites to 

cleave C-O bonds through dehydration, extensive reduction in oxygen content—as required for 

biofuel production—inevitably requires H2 addition and suggests complementary use of metal 

catalysts [8-10]. Similarly, processes such as transfer hydrogenation for carbonyl reduction, 

which can be catalyzed by Lewis acidic solid oxides [16-19], require reduced metal sites in 

ancillary roles [20].  

In light of the above points, it is no surprise that the biomass processing literature is rich with 

examples of processes that employ supported metal catalysts in aqueous media [1, 12-15, 21-31].  

Unfortunately, metal catalysts are relatively expensive, and their price contributes significantly 

to the (present) high cost of bio-based commodities [32].  To minimize catalyst expenses where 

metals are employed, they must provide intrinsically high activity and offer stable on-stream 
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performance. While the former is frequently demonstrated, the latter remains elusive.  Aqueous 

media and high temperatures alone can expedite catalyst deactivation; furthermore, mineral and 

organic acids are commonly encountered in biomass processing, and many applications 

additionally demand that metal catalysts perform stably at low pH [3, 33-37].  The severity of the 

aqueous phase—and its effect on catalyst stability—has been frequently considered, and prior 

discussion has largely centered on support hydrothermal stability [38-42]. Given that carbon is 

relatively impervious to hydrolysis, it has emerged as a favored support for aqueous-phase 

applications. However, while support stability is necessary for catalyst stability, it is not 

sufficient to guarantee catalyst stability.  For example, Ru/C is a popular catalyst choice for 

carbonyl hydrogenation; however, we recently observed that, despite retention of support 

integrity, undergoes pronounced deactivation during aqueous phase hydrogenation of the ketone 

group in bifunctional levulinic acid (LA, 4-oxopentanoic acid), even under relatively mild 

conditions (323K, 0.5M LA, pH = 2.45) [21].  A portion of the observed deactivation was 

irreversible and attributed to particle sintering, while a secondary deactivation mechanism 

appeared largely reversible. These observations are qualitatively consistent with prior accounts 

of Ru deactivation in related systems, and it is broadly acknowledged that improving the stability 

of Ru-based catalysts could improve the economic viability of -valerolactone production from 

biomass resources. From an applied standpoint, bimetallic formulations appear to offer enhanced 

stability during LA hydrogenation[31, 43, 44]; however, the mechanism by which promoter 

metals prevent Ru deactivation is unclear.  Much of this uncertainty—and hence our ability to 

rationally design hydrogenation catalysts that offer stable performance in aquo—stems from a 

poor understanding of the phenomena that govern Ru deactivation in this system.  Accordingly, 

the present study further considers the reversible and irreversible modes of deactivation that 
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affect supported Ru catalysts during aqueous phase ketone hydrogenation and correlates their 

severity with fundamental properties of the catalyst and the media in which it is employed. 

Through consideration of both LA and 2-pentanone hydrogenation over Ru supported on SiO2, -

Al2O3, TiO2, and C, we highlight the influence of support identity and solution pH on the 

intrinsic activity and stability of Ru surface sites during aqueous phase ketone hydrogenation.  

Although the hydrothermal stability of solid oxides is generally poor compared to carbon, they 

provide us with relatively well-defined model surfaces, and their consideration alongside carbon 

should aid in mapping design criteria that allow stabilization of supported metals in aqueous, 

acidic media. 

4.2 Experimental 

 

4.2.1 Materials and methods 

Levulinic acid (LA, 98%, Sigma Aldrich), -valerolactone (GVL, 98%, Sigma Aldrich), 2-

pentanone (99%, Acros Organics), 2-pentanol (DL, 98%, Acros Organics), propanoic acid (99%, 

Acros Organics), sulfuric acid (95-98wt%, Sigma Aldrich), and acetonitrile (HPLC grade 99.9%, 

Fisher Scientific) were used in kinetic studies, standard preparation, and liquid chromatography. 

Catalyst syntheses employed ruthenium (III) chloride hexahydrate (35-40% Ru, Acros Organics), 

amorphous SiO2 (481 m2/g, Sigma Aldrich), -Al2O3 (231 m2/g, Strem Chemicals) and TiO2 

(Aeroxide© P25, 55 m2/g, Acros Organics).  Commercial 0.5 wt% Ru/C and 5 wt% Ru/C 

samples were purchased from Strem Chemicals. H2 (99.999%, Airgas), N2 (99.999%, Airgas), 

and CO (99.99% Praxair) were employed in kinetic studies, catalyst pretreatment, and catalyst 

characterization.  All above reagents were used as supplied by the manufacturer.  Water used in 
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preparation of catalysts, reactor feeds, calibration standards, and HPLC mobile phases was 

purified in house by sequential reverse osmosis, UV oxidation, and double ion exchange.      

4.2.2 Catalyst preparation 

Catalysts comprised of Ru supported on -Al2O3, SiO2, and TiO2 were prepared via incipient 

wetness impregnation of the desired support with aqueous ruthenium (III) chloride hexahydrate. 

Impregnated catalysts were dried in air at 393K and subsequently reduced in flowing H2 (100 ml 

min-1, 673K, 3K min-1). Prior to removal from reduction vessels, samples were passivated at 

298K in a stream of 1% O2 in He.  

4.2.3 Catalyst Characterization 

Catalyst surface area and porosity were probed by N2 physisorption at 77K (Micromeritics 

ASAP 2020).  Before N2 dosing, samples were outgassed under vacuum (6h, 623K).  Total 

surface areas and pore size distributions were obtained through BET and BJH analyses of the N2 

adsorption/desorption isotherm.  Pore volumes were estimated from the total N2 uptake at a 

relative pressure of 0.995.   

Ru surface sites were quantified by adsorption of CO at 308K (Micromeritics ASAP 2020).  

Prior to dosing, samples were reduced in flowing H2 (3h, 673K, 3 K min-1), evacuated at 673K 

for 1h to remove chemisorbed hydrogen, and cooled to 308K under vacuum. Analysis was then 

performed at 308K by collecting an adsorption isotherm, evacuating the sample for 1 h to 

remove physisorbed CO, and collecting a second isotherm.  Irreversible CO adsorption was 

determined from the difference in CO adsorption between the first and second isotherms. Here, 

irreversible CO uptake was taken as equivalent to the Ru surface site density, which assumes a 
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CO adsorption stoichiometry of 1. Surface averaged Ru particle diameters based on irreversible 

CO uptake were calculated according to Eq. (1), which assumes a spherical morphology:  

,

6
p CO

Ru

d
S 




 (1) 

Where S is the surface area of Ru per gram of catalyst calculated from irreversible CO uptake, 

and Ru is the density of metallic Ru.  The cross sectional area of a single Ru atom was assumed 

to be 6.14 Å2, and 12.30 g cm-3 was used as the density of Ru [45]. 

4.2.4 TEM 

Average Ru cluster sizes and particle size distributions were determined using transmission 

electron microscopy (TEM). Catalyst samples were suspended in excess acetone via sonication, 

and suspension aliquots were deposited on 300 mesh carbon film Cu grids (EMS) and dried 

overnight under ambient conditions. Images were taken using a JEOL 2010F equipped with a 

Schottky field emission gun operating at 200 KV and captured with a CCD camera. Particle size 

distributions were extracted from TEM images using image processing software (ImageJ).  

Average particle sizes reported here represent the surface averaged diameter, which is calculated 

according to Eq. (2) [46]: 
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In Eq.(2) di represents the mean of a specified range of particle diameters, ni represents the 

number of particles within that range, and dp,TEM is the average particle size. Standard deviations 

for the surface averaged diameter were calculated according to Eq. (3) [46]:  
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4.2.5 Catalytic Activity Testing 

Aqueous-phase hydrogenations were carried out in an upflow, packed bed reactor that has been 

described elsewhere [21].  Reactor feeds were prepared by dissolving levulinic acid (0.5M) or 2-

pentanone (0.5M) in double deionized water, and catalysts were reduced in situ under flowing H2 

(673K, 4h, 3K min-1) prior to feed introduction.  The liquid effluent was collected in a vapor-

liquid separator and analyzed offline.  LA and its hydrogenation products, 4-hydroxypentanoic 

acid (HPA) and GVL, were quantified using high performance liquid chromatography (HPLC, 

Agilent 1100) by eluting reactor samples through an Agilent Hi-Plex H column with a 5mM 

aqueous H2SO4 mobile phase. Analyte concentrations were determined using a variable 

wavelength detector operating at 195 nm. Cyclization of HPA to form GVL is both 

thermodynamically favorable and relatively facile. A portion of the HPA present in reaction 

products always forms GVL under our analysis conditions, which complicates an explicit 

determination of HPA/GVL selectivity.  We have previously reported upon HPA and GVL 

selectivity[21]; however, our discussion here only requires estimating the total rate of LA 

(ketone) hydrogenation.  This can be reliably obtained from the sum of HPA and GVL 

production rates, which are independent of the precise HPA/GVL distribution.  2-pentanone and 

its hydrogenation product, 2-pentanol, were quantified by GC-FID (Agilent 7890) using an HP-

Innowax column (Agilent).  This analytical approach led to >95% closure of carbon balances.  

For all reported experiments, reactors were operated under conditions that have been previously 
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demonstrated to be free of mass transfer limitations during levulinic acid hydrogenation over 5 

wt% Ru/C [21].  Though we have not exhaustively investigated diffusion limitations in this 

study, all catalysts tested have porosities, areal Ru site densities, and volumetric ketone 

hydrogenation rates that are—with respect to transport limitations—comparable to or more 

favorable than 5 wt% Ru/C. We thus assume that data reported here represent kinetically 

controlled hydrogenation rates.   

This study focuses on the activity and on-stream stability of supported Ru during the aqueous 

phase hydrogenation of LA and 2-pentanone.  The chemistry of interest in each case is 

hydrogenation of a ketone functional group; accordingly, our discussion emphasizes rates of 

ketone hydrogenation.  To allow meaningful comparisons among catalysts having varied 

supports and metal loadings, hydrogenation rates are reported on a per-site basis as the total site 

time yield (STY) of hydrogenation products: 

 

i

j

j

i

R

F

STY
S




 (4) 

In Eq. (4), Fj is the molar flowrate of an individual hydrogenation product, and SR is the total 

molar quantity of Ru surface sites in a given catalyst bed.  For LA, the hydrogenation STY 

reflects the sum of HPA and GVL production per Ru surface site [21].  For 2-pentanone, it is 

based only on the rate of 2-pentanol production.  Catalysts in all experiments deactivate with 

time on stream. To allow meaningful correlation with ex-situ methods of site titration,  

hydrogenation rates are reported as initial rates, which were estimated by extrapolation of 

deactivation profiles to zero time on stream [21].  
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To probe the reversibility of deactivation, aqueous feeds were periodically interrupted, and 

catalysts were reduced in situ under flowing H2 (100 ml min-1, 1 bar).  For most samples, 

reduction was carried out at 673K as discussed in the catalyst preparation section; however, 

regeneration at this temperature induced anomalous, irreversible deactivation in Ru/TiO2.  As 

such, Ru/TiO2 was regenerated at 323K.  Spent catalysts were recovered for characterization 

after drying in situ under N2 (90 ml min-1, 3h, 573 K, 1K min-1).  

 

 

4.3 Results  

 

4.3.1 Catalyst Activity 

Table 4.1 summarizes physical and chemical characteristics of the supported Ru catalysts 

considered in this study.  Our intent was to compare, as closely as possible, catalysts having 

similar Ru dispersions and particle sizes, and most considered here were prepared at comparable 

areal Ru loadings to a previously studied catalyst, Ru/C-A (Entry 1) [21].  0.5 wt% Ru/C and 0.3 

wt% Ru/SiO2 samples were additionally included in an attempt to extend the range of particle 

sizes considered on these supports.  Where possible, particle sizes were determined by both CO 

chemisorption and TEM.  Results of the two methods generally agree, revealing that that initial 

Ru particle sizes are within the range of 1 – 4 nm for all samples.  Based on its CO adsorption 

capacity, the particle diameter for Ru/C-B appears overestimated by TEM, and we consider CO 

uptake to provide the more reliable estimate of initial cluster size for this sample (1.2 nm).  

Particle sizes vary with support and metal loading, which is anticipated according to prior reports 

employing impregnation methods for the preparation of supported Ru catalysts [47-49], and we 
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account for this variation to the extent possible in subsequent analyses.  CO uptakes from Table 

4.1 provide the basis for calculation of site time yields, and other properties are highlighted 

where relevant.   

Table 4.1 Physical and chemical properties of supported Ru catalysts employed in this study. 

Sample 
SA 

(m2/g) 

Vp 

(cm3/g) 

Dp 

 (nm)a 

Ru 

(wt %)b 

Ru 

(µmol/m2

) 

CO uptake 

(μmol/g) 

dp,TEM  

(nm)c 

dp,CO  

(nm)d 

Ru/C-A 756 0.70 5.1 5.0 0.65 220 4.0 ± 0.3 3.2 

Ru/C-B 780 0.66 5.1 0.5 0.07 61 4.0 ± 0.3 1.2 

Ru/SiO2-A 468 0.82 5.5 2.7 0.57 116 2.7 ± 0.1 3.3 

Ru/SiO2-B 468 0.82 5.5 0.3 0.06 18 - 2.2 

Ru/γ-Al2O3 230 0.44 5.7 1.3 0.56 105 1.7 ± 0.1 1.6 

Ru/TiO2 55 0.42  24.1 0.4 0.69 15 3.1 ± 0.3 3.3 

a – Average pore diameter determined by BJH analysis of N2 adsorption/desorption data. 

b – Based upon concentrations of impregnating solutions, incipient volume and support mass 

c – Confidence intervals calculated at 95% 

d – Estimated from CO chemisorption 

 

Table 4.2 summarizes site time yields of ketone hydrogenation products observed during 

hydrogenation of LA (0.5M, aq.) and 2-pentanone (0.5M, aq.) over Ru supported on C, SiO2, 

Al2O3, and TiO2 at 323K.  Importantly, this presentation relies on site-normalized hydrogenation 

rates, which correct for variations in metal dispersion and allow us to rigorously discuss the 

influence of particle size on rates of ketone hydrogenation in the aqueous phase.  Excepting Ru-

SiO2-B, each catalyst was tested at both relatively high and relatively low space velocities.  The 

former allowed estimation of site time yields under conditions of low ketone conversion, and the 

latter ensured sufficient mass loadings to facilitate recovery and characterization of spent 

catalysts.  For any given sample, one observes that hydrogenation STYs over Ru sites are, within 

the precision of our estimates, invariant with space velocity and ketone conversion.  This result is 

consistent with prior observations that both gas- and liquid-phase ketone hydrogenations appear 

zero order in the ketone over the range of concentrations considered [50-52]. Moreover, no 
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significant variation in (initial) site-time yield is observed between any two supports, suggesting 

that intrinsic rates of LA hydrogenation over Ru in water are not strongly affected by metal-

support interactions.  This result agrees with data reported by both Subramaniam and Rooney, 

which indicate comparable turnover frequencies during aqueous-phase hydrogenation of 2-

butanone over Ru supported on C [53] and SiO2 [54].  Finally, entries 12 - 15 indicate that rates 

of 2-pentanone hydrogenation are comparable to those of LA hydrogenation, allowing the 

conclusion that the secondary carboxylic acid functionality in LA and the resultant increase in 

aqueous proton concentrations do not strongly perturb the intrinsic ketone hydrogenation activity 

of Ru sites in water.   

Table 4.2. Summary of initial rates of hydrogenation for both levulinic acid and 2-pentanone in bulk water at 323K, 24 bar H2, 

and 0.5M dissolved organic. Conversions and rates are both reported at zero time on stream.   

Entry Sample Feed WHSV (g ketone g catalyst-1 hr-1) Conversion (%) STY (s-1)a 

1 Ru/C-A LA 520 2 0.09 ± 0.028 

2 Ru/C-A LA 37 20 0.08 ± 0.011 

3 Ru/C-B LA 34 8 0.11 ± 0.009 

4 Ru/C-B LA 12 33 0.15 ± 0.011 

5 Ru/SiO2-A LA 32 16 0.11 ± 0.019  

6 Ru/SiO2-A LA 18 42 0.16 ± 0.007 

7 Ru/SiO2-B LA 22 4 0.10 ± 0.012 

8 Ru/Al2O3 LA 27 14 0.09 ± 0.007 

9 Ru/Al2O3 LA 11 35 0.10 ± 0.005 

10 Ru/TiO2 LA 25 3 0.11 ± 0.015 

11 Ru/TiO2 LA 11 7 0.12 ± 0.014 

12 Ru/SiO2-A 2-pentanone 27 18 0.11 ± 0.021 

13 Ru/SiO2-A 2-pentanone 13 36 0.13 ± 0.004 

14 Ru/Al2O3 2-pentanone 20 29 0.14 ± 0.010 

15 Ru/Al2O3 2-pentanone 12 44 0.14 ± 0.010 

a –Confidence intervals calculated at 95%. 

The initial rates summarized in Table 4.2 were obtained by extrapolation of decaying 

hydrogenation rates to zero-time-on-stream, and some scatter in the data is inevitable. Despite 

this, Figure 4. illustrates that, for all catalysts summarized in Table 4.1, mass-normalized 
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hydrogenation rates during reduction of both 2-pentanone and LA are first order in Ru surface 

site density.  Furthermore, both sets of data are captured by a single, linear correlation.  This 

allows determination of an average STY for ketone hydrogenation via regression of 

hydrogenation rates as a function of site densities, and we estimate it to be 0.11 ± 0.016 s-1 under 

the reported conditions.  It must be acknowledged that many of the hydrogenation rates 

illustrated in Figure 4.1.Figure 4. were not obtained under conditions of differential ketone 

conversion; however, since hydrogenation rates appear zero order with respect to the ketone, site 

time yields of hydrogenation products should be invariant with ketone conversion.  Therefore, 

the average site time yield measured here provides a reasonable estimate for the turnover 

frequency of both 2-pentanone and LA hydrogenation over Ru sites at 323K and 24 bar H2.  A 

final consequence of the data shown in Figure 4. is that, since one clearly observes a linear 

correlation between catalyst productivity and Ru site density, data are consistent with kinetically 

controlled hydrogenation rates for all samples considered [55, 56]. Since initial metal dispersions 

varied in this study, Figure 4. also suggests that Ru cluster sizes do not substantially affect 

turnover frequencies for ketone hydrogenation in the size range considered here (1 – 4 nm).  

Glucose hydrogenation on Ru [26] and acetone hydrogenation on Pt [51, 52] are both reported to 

be structure independent; as such, our observation of structure insensitivity in this system is 

consistent with prior accounts of carbonyl hydrogenation over Group VIII metals.  
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Figure 4.1 Functional relationship between mass-normalized ketone hydrogenation rates and Ru surface site 

densities as determined by CO chemisorption.  Hydrogenation rates were measured at 0.5M ketone concentration at 

323K and 24 bar H2.  (◊) Ru/TiO2, (○) Ru/C, (∆) Ru/SiO2, (□) Ru/-Al2O3. Open symbols represent LA 

hydrogenation rates.  Filled symbols represent 2-pentanone hydrogenation rates.  The slope of the regression line 

indicated in the figure is 1.0 +/- 0.14, which is consistent with criteria given by Koros and Nowak for demonstration 

of kinetically controlled hydrogenation rates at a given temperature. 

4.3.2 Catalyst Stability 

We first consider the stability of Ru supported on SiO2, -Al2O3, TiO2, and C by examining their 

activity (a) with time-on-stream during LA hydrogenation (Figure 4.2).  Activity for each 

catalyst is defined as its measured rate of ketone hydrogenation at a given time on stream 

normalized by its estimated rate of hydrogenation at zero time on stream.  Samples were 

subjected to periodic regeneration to determine the extent to which activity losses were 

reversible, and regeneration attempts are indicated by dashed vertical lines.  Our standard 

regeneration procedure was to reduce catalyst samples in flowing H2 at 673K; however, this 

treatment was observed to substantially and irreversibly diminish hydrogenation rates of 
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Ru/TiO2. This could be possibly due to an induced state of strong metal support interaction, 

where the Ru sorption capacity is decreased[57, 58]. We have observed that reduction at 323K is 

sufficient to restore reversible deactivation of supported Ru catalysts in this system without 

inducing irreversible deactivation in Ru/TiO2.  Accordingly, we have employed this alternative 

protocol for regeneration of Ru/TiO2.  
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Figure 4.2 LA hydrogenation activity as a function of time on stream for Ru supported on (a) 2.7 wt% on SiO2 , (b) 

1.3 wt% on -Al2O3, (c) 0.4 wt% on TiO2 and (d) 0.5 wt% on C.  Observed deactivation profiles for samples 

prepared at different Ru loadings were qualitatively similar to the above trends such that this selection of samples is 

appropriate for the following discussion. 



78 
 

 

 

Measured hydrogenation site time yields in this system are relatively high (≈ 0.01 – 0.1 sec-1), 

and the volumetric residence time in each experiment is relatively small (≈ 10 min), suggesting 

that the system should approach steady state within an hour. Reference experiments carried out 

under steady state conditions confirmed that normally anticipated transient phenomena (e.g., 

those associated with system volume and/or transients in surface coverage) are complete within 

15 – 20 minutes, whereas Figure 4.2 illustrates that catalyst activity decays on the scale of hours.  

This indicates that catalyst deactivation underlies the observed transient phenomena. 

Deactivation profiles in Figure 4.2 reveal that supported Ru catalysts are susceptible to both 

reversible and irreversible activity losses during aqueous phase hydrogenation of LA at 323K; 

however, the extent of each deactivation pathway varies considerably in the catalysts tested.  For 

example, activity lost by Ru/SiO2 is entirely non-recoverable upon in situ reduction (Figure 

4.2a), whereas activity losses observed for Ru/-Al2O3 appear to be primarily reversible in nature 

(Figure 4.2b).  Ru nanoparticles supported on TiO2 and C undergo both types of deactivation to 

varying extents. Based on control experiments performed with Ru/-Al2O3, activity is only 

restored through treatment in H2; catalyst regeneration was not possible in analogous treatments 

in He. 

Before proceeding with further analysis of the two modes of instability, we highlight differences 

observed during aqueous phase hydrogenation of LA and 2-pentanone (Figure 4.3).  For this 

comparison, Ru/SiO2 and Ru/-Al2O3 were selected since these two catalysts displayed extreme 

differences in extents of reversible and irreversible activity losses during LA hydrogenation.  

Over Ru/SiO2 there is no quantifiable difference in catalyst stability during aqueous phase 

hydrogenation of 2-pentanone and LA (Figure 4.3a). In both cases, deactivation is irreversible, 
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and it occurs to comparable extents over 16 hours on stream.  In contrast, Ru/-Al2O3 is 

considerably more stable during 2-pentanone hydrogenation than it is during LA hydrogenation 

(Figure 4.3b).  Based on initial rates measured after each regeneration attempt, Ru/-Al2O3 

appears to exhibit comparable irreversible deactivation in both cases, while the extent of 

reversible deactivation is greater during LA hydrogenation.   

 

Figure 4.3 Comparison of hydrogenation activity of Ru supported on (a) SiO2 and (b)-Al2O3 . Open symbols 

represent LA hydrogenation rates.  Filled symbols represent 2-pentanone hydrogenation rates. 

A number of phenomena can cause deactivation of supported metals, and the severity of any can 

be influenced by several factors including the nature of the metal, its interaction with the support, 

the size of metal clusters, operational parameters, and the environment in which the catalyst is 

employed.  Considering the complexity of catalyst deactivation, direct comparison of the results 

summarized in Figure 4.2 and Figure 4.3 is difficult.  In subsequent sections, we attempt to 

decouple the observed deactivation pathways and arrive at a set of principles that govern the 

stability of supported Ru catalysts during aqueous-phase ketone hydrogenation. 
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4.3.3 Irreversible deactivation 

Table 4.3 summarizes physicochemical properties of spent catalysts, which were recovered from 

LA hydrogenation reactors after the period on stream indicated in Figure 4.2.  To facilitate 

comparison and correlation, analogous data are presented for each catalyst in a pristine state.  

The table further summarizes the percentage of activity irreversibly lost during the on stream 

period.   

Table 4.3 Comparison of physical and chemical characterization of catalyst samples in fresh and spent states.  The table also 

summarizes the percentage of initial activity that was lost irreversibly during the indicated period on stream. 

Sample TOS (h) Irr. loss (%) BET (m2/g) BJH (nm) CO uptake (μmol/g)  dp,TEM (nm)a  

   Pre Post Pre Post Pre Post  Pre Post 

Ru/-Al2O3 17 17 230 295 5.7 6.9 105 85  1.7 ± 0.1 2.1 ± 0.2 

Ru/TiO2 16 33 55 48 24.1 27.4 15 9  3.1 ± 0.3  5.1 ± 1.2 

Ru/SiO2-A 15 47 468 456 5.5 5.5 116 40  2.7 ± 0.1 5.1 ± 0.4 

Ru/C-B 25 87 780 770 5.1 5.0 61 11  4.0 ± 0.3 7.3 ± 0.6 

a –Confidence intervals calculated at 95%. 

 

From the data in Table 4.3, it is evident that physical properties associated with support structure 

do not change significantly between fresh and spent catalysts, and no substantial perturbations in 

surface area and porosity are observed in any system.  Although support hydrothermal stability is 

critical in aqueous-phase catalysis [39, 41], support degradation does not appear to underlie 

irreversible deactivation in this study. 

The absence of any phase change to the support material as a result of the hydrothermal 

conditions employed in the study was confirmed using powder X-ray diffraction (XRD). XRD 

patterns do not show a significant change in support structure between pre-and post-reaction 

samples.  Though not particularly meaningful for amorphous C and SiO2, retention of initial 

diffraction patterns for -Al2O3 and TiO2 indicates that phase changes, which are realistic for 
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these materials in water [59, 60], are sufficiently slow at 323K that they are not observed over 

the reported times on stream. 

 

Figure 4.4 PXRD of a) 0.4% Ru/P25, b) 1.3% Ru/γ-Al2O3, c) 0.5% Ru/C, d) 5% Ru/C. Solid line indicates 

fresh catalyst and dashed indicates spent catalyst 

Given the locality of measuring particle size using a microscopy technique, the diffraction 

patterns were also used to detect the presence of any larger particles that could have been missed. 

With the exception of Ru supported on SiO2, no peaks that could be assigned to Ru were 

detected. In the case of the spent of Ru/SiO2, diffraction peaks that can be assigned to metallic 

Ru (2θ= 38.4o, 42.2 o
, 44.0 o, 58.3 o, 69.4o) [61] were found. Similarly larger particles were 

observed using transmission electron microscopy (TEM) in excess of 10nm, compared to a 
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starting average diameter of 2.7 nm in the fresh catalyst.  This is in line with the Ru particles 

supported on SiO2 experienced the greatest degree of sintering allowing larger particles to be 

detected by XRD.  

 

Figure 4.5 PXRD of 2.7% Ru/SiO2. Solid line indicates fresh catalyst and dashed indicates spent catalyst 

Examining CO uptake in fresh and spent catalysts (Table 4.3), it is apparent that irreversible 

decreases in hydrogenation activity correlate with a decrease in CO uptake, which we take to 

indicate a loss of accessible Ru surface sites with time on stream.  Previously, we analyzed 

reactor effluents from LA hydrogenation over 5 wt% Ru/C via ICP-MS, and we found no 

evidence of metal leaching [21]. This is consistent with multiple prior accounts describing the 

insolubility of zerovalent Ru in water [26, 27, 54, 62].  We thus conclude that Ru leaching does 

not occur in the systems described here—at least not on scales commensurate with the observed 

activity losses.  As such, irreversible activity losses are most likely attributed either to particle 

sintering or to irreversible site poisoning through binding of species that block CO uptake and 
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cannot be removed by a reductive treatment (e.g., hard coke, metal ions). Irreversible poisoning 

is certainly realistic in this system.  Data were obtained in stainless steel reactors under acidic 

conditions where dissolution of metal ions from reactor walls is possible and could contribute to 

catalyst deactivation.  Further, carbon deposition can occur on metal surfaces [63]. Poisoning and 

irreversible coking may occur under our reaction conditions. Although we are not able to 

definitively exclude either as a potential cause of irreversible deactivation, we believe that 

neither contributes significantly to irreversible deactivation in the present study.   Specifically, 

data in Table 4.3 clearly indicate particle growth as the source of reduced CO uptake with time 

on stream.   For all samples exhibiting irreversible deactivation, average Ru particle diameters 

are observed to increase via TEM. Moreover, Figure 4.6 illustrates that normalized decreases in 

CO uptake between fresh and spent samples agree well with dispersion losses calculated based 

on average particle diameters.  We therefore conclude that metal particle growth, as opposed to 

poison or coke deposition, is the primary source of irreversible deactivation in this system. 

Although sintering of noble metal particles under reducing environments is typically considered 

to be a high temperature phenomenon [63], this is generally true only for gas-phase treatments. 

In a bulk condensed phase—especially in water—metal nanoparticles have been demonstrated to 

sinter under mild conditions [26, 30, 40, 46, 64-66]. Thus, despite the low temperature employed 
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in this study, Ru particle growth is a realistic concern.  It occurs rapidly, and it contributes 

substantially to irrecoverable activity losses during aqueous-phase ketone hydrogenation.  

 

Figure 4.6 Loss in irreversible CO uptake in comparison to inverse of particle growth. Line of parity indicated by 

dashed line.  (◊) Ru/TiO2, (○) Ru/C-B, (∆) Ru/SiO2-A, (□) Ru/-Al2O3. Initial particle diameters for Ru/TiO2, 

Ru/SiO2, and Ru/-Al2O3 were determined by TEM, and the initial particle diameter of Ru/C-B was calculated from 

irreversible CO uptake.  All final particle diameters were determined by TEM. 

The extent of sintering in the period on stream varies considerably between supports, and our 

results suggest that particle growth is least severe on -Al2O3 and occurs to larger extents on 

SiO2, TiO2, and C (Table 4.3).  Since initial catalyst preparations differ in particle size, on-stream 

periods vary between samples, and we did not determine equilibrium particle size distributions, it 

is difficult to make a rigorous determination of whether the supports tested offer varying degrees 

of “sinter resistance” in aqueous media.  Nevertheless, over relatively short times on stream, 

rates of irreversible deactivation appear first order for all samples (Figure 4.7), and we can make 

an empirical comparison of sintering kinetics on each support.  Assuming that the rate of 



85 
 

 

 

sintering scales directly with metal dispersion, irreversible deactivation can be modeled using 

Eq. (5). 

 s

irr

da
k D

dt

 
   

 
 (5) 

 

Figure 4.7 Illustration of first order (irreversible) decay in activity with time on stream for Ru supported on (∆) 

Ru/SiO2-A, (○) Ru/C-B, (◊) Ru/TiO2, and (□) Ru/-Al2O3.  Here, irreversible losses are attributed to particle 

sintering.   

Here, a is the catalyst activity defined as its rate of hydrogenation at a given time normalized by 

its rate of hydrogenation at zero time, ks is a rate constant that captures sintering kinetics, and D 

is the metal dispersion at a given time on stream.  Since this analysis considers only irreversible 

activity losses attributed to sintering, and hydrogenation rates should scale linearly with metal 

dispersion, one may assume that the current activity of a catalyst is given by the ratio of D/D0, 

where D0 is the metal dispersion of the pristine catalyst calculated from irreversible CO uptake. 

Solution of the resulting differential equation yields Eq. (6), which captures the observed first 
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order decay in activity.  Importantly, this treatment empirically corrects for differences in initial 

metal dispersion such that sintering kinetics can be quantitatively discussed for all samples 

despite variation in initial Ru particle size.  

 0ln( )irr sa k D t     (6) 

Irreversible activity losses during LA hydrogenation were determined from initial hydrogenation 

rates measured after each catalyst regeneration shown in Figure 4.2.  From these data, sintering 

constants were estimated via least squares regression using the model given by Eq. (6). Model 

fits are illustrated as dashed lines in Figure 4.7, and parameter estimates are given in Table 4.4.  

For comparison, sintering constants estimated from irreversible activity losses during 2-

pentanone hydrogenation over Ru/-Al2O3 and Ru/SiO2-A are additionally included in Table 4.4. 

Table 4.4 Estimated sintering constants for various supported Ru catalysts at 90% confidence level. 

Entry Sample Ketone ks (min-1) 

1 Ru/γ-Al2O3 LA 0.72 ± 0.18 

2 Ru/γ-Al2O3 2-Pentanone 0.74 ± 0.67 

3 Ru/SiO2-A LA 8.09 ± 0.20 

4 Ru/SiO2-A 2-Pentanone 8.47 ± 1.87 

5 Ru/TiO2 LA 3.21 ± 0.40 

6 Ru/C-B LA 4.44 ± 0.15 

 

Considering entries 1, 3, 5, and 6, it is evident that the rate of Ru particle sintering during 

aqueous phase ketone hydrogenation varies with the support, decreasing in the order SiO2 > C ~ 

TiO2 > -Al2O3.  Comparison of sintering constants estimated during LA and 2-pentanone 

hydrogenation over Ru/-Al2O3 (Entries 1 and 2) and Ru/SiO2 (Entries 3 and 4) reveals that, for a 
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given support, sintering rates are nearly identical.  This suggests that particle growth is not 

exacerbated by acidity or interactions with LA (at 0.5M); rather, it appears to be driven by the 

presence of liquid water and governed by the support.  Consistent with observations from high-

temperature treatments in H2, -Al2O3 provides the best retention of initial metal dispersion while 

particles supported on SiO2 appear most sinter-prone [63, 67]. 

4.3.4 Reversible deactivation 

Figure 4.8 illustrates the extent of reversible deactivation in each system as a function of time on 

stream.  Reversible deactivation profiles were generated by correcting activity profiles shown in 

Figure 4.2 and Figure 4.3 for irreversible deactivation using Eq. (7), which is based upon a first 

order sintering model, and kinetic parameters summarized in Table 4.4. 

     0ln ln    rev overall sa a k D t   (7) 
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Figure 4.8 Profiles of reversible activity loss with time on stream observed for (a) Ru/SiO2-A, (b) Ru/-Al2O3, (c) 

Ru/TiO2 and (d) Ru/C-B.  Open symbols represent rates of LA hydrogenation.  Filled symbols represent rates of 2-

pentanone hydrogenation. Reversible deactivation profiles were obtained by correcting activity profiles shown in 

Figures 2 and 3 for irreversible deactivation due to particle sintering. 

As observed for sintering, the extent of reversible deactivation during LA hydrogenation over Ru 

varies with the identity of the support.  At the extremes, Ru/SiO2 displays no quantifiable 
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reversible deactivation (Figure 4.8a), whereas the activity of Ru/-Al2O3 reversibly decays to 

50% of its initial value within 5 hours on stream under identical conditions (Figure 4.8b).  

Interestingly, the extent of reversible deactivation further varies with the nature of the ketone.  

For example, reversible deactivation is not observed during either 2-pentanone hydrogenation or 

LA hydrogenation over Ru/SiO2 (Figure 4.8a).  In contrast, the difference in reversible activity 

loss for the analogous experiments over Ru/-Al2O3 is considerable (Figure 4.8b).  These 

observations suggest that reversible deactivation is tied both to the identity of the support and to 

the presence of the carboxylic acid functionality of LA.   

Reversible deactivation profiles are captured by a first order model (Eq. 8) that allows for 

activity to approach a non-zero steady state value.  

   .(   )rev
rev rev

da
k a a

dt
   (8) 

This model provides two variable parameters that capture the kinetic approach to steady state 

(krev) and the activity remaining at steady state (a∞).  Optimal parameter estimates for Ru/-

Al2O3, Ru/TiO2, and Ru/C are summarized in Table 4.5, and their values were used to generate 

model fits illustrated in Figure 4.8.  Ru/SiO2 displayed no quantifiable reversible deactivation 

during either LA or 2-pentanone hydrogenation, and parameter values were accordingly not 

estimated for these systems. Reversible deactivation occurs quickly relative to sintering, which is 

indicated by first order decay constants that are generally an order of magnitude larger than 

sintering constants given in Table 4.4.  Further, the extent of reversible deactivation during LA 

hydrogenation, indicated by the value of a∞, decreases with support identity in the order Al2O3 > 

TiO2 ~ C > SiO2. 
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Table 4.5 Summary of estimated reversible deactivation parameters during the hydrogenation of LA and 2-pentanone over Ru on 

various supports. 

Sample Ketone  krev(min-1) a∞
a 

Ru/SiO2-A LA  0 1.0 

Ru/-Al2O3 LA  11 0.13 ± 0.35 

Ru/TiO2 LA  86 0.59 ± 0.05 

Ru/C-B LA  74 0.53 ± 0.03 

Ru/SiO2-A 2-pentanone  0 1.0 

Ru/-Al2O3 2-pentanone  6 0.43 ± 0.79 

a- Calculated at 95% confidence level 

Given that Ru/-Al2O3 exhibits more pronounced (reversible) deactivation during LA 

hydrogenation than it does during 2-pentanone hydrogenation, it appears that carboxylic acids 

exacerbate this mode of instability.  To further probe this, the on-stream stability of Ru/-Al2O3 

was monitored during 2-pentanone hydrogenation at 323K and 24 bar H2 in the presence of 

propanoic acid (0.5M, pH=2.59).  The results of this experiment are presented in Figure 4.9. 

Whereas Ru/-Al2O3 is relatively stable during 2-pentanone hydrogenation (Figure 4.3), it 

deactivates rapidly in the presence of 0.5M propanoic acid (Figure 4.9).  During this experiment, 

2-pentanol was the only hydrogenation product observed; no propanoic acid hydrogenation 

products were detected by GC-MS. Upon removal of propanoic acid, the rate of 2-pentanone 

hydrogenation improves, returning to 54% of the original activity within 2 h. The aqueous flow 

was then stopped, and the catalyst was left under H2 (100 ml min-1, 323K, 15h) to evaluate the 

extent of reversibility. Upon re-introducing an aqueous, acid-free 2-pentanone feed, the catalyst 

achieved 88% of its initial activity, with the 12% irrecoverable loss attributed to sintering.  Using 

parameters summarized in Table 4.4, we estimate that, in water, our fresh Ru/-Al2O3 sample 

should lose 5 - 10% of its metal surface area to sintering during its first 7 hours on stream, which 

agrees with the 12% irreversible loss in activity observed here. 
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Figure 4.9 Activity profile of Ru/-Al2O3 during the hydrogenation of 2-pentanone in the presence of propanoic 

acid. 

4.4  Discussion 

Results summarized in the preceding sections demonstrate that Ru nanoparticles supported on 

various carbons and solid oxides display comparable intrinsic activity toward aqueous-phase 

ketone hydrogenation but are susceptible to varying extents of irreversible and reversible 

deactivation.  The former is support-dependent and attributed to particle sintering, which is 

accelerated in bulk water relative to bulk gas phases. The mechanism of the latter is unclear, but 

its severity depends both on the nature of the support and the presence of carboxylic acids.   

With respect to sintering, -Al2O3 appears to stabilize Ru dispersion in water relatively well 

compared to SiO2, TiO2, and C.  Electronegativity has been previously employed to explain 

different sintering extents on various supports [67, 68], and we build on this argument here.  M-

O-Ru bonds, in which M is the support cation (Si4+, Ti4+, or Al3+), change character with the 

nature of M.  Specifically, as support cations become increasingly electronegative (e.g., Si4+), the 

electron density on the oxygen is decreased, and one may expect less favorable M-O-Ru 
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interactions.  In contrast, for support cations with relatively low electronegativities (e.g., Ti4+, 

Al3+), the oxygen of the M-O-Ru bond should have a relatively high electron density, and one 

may expect more favorable Ru-support interactions.  Our data generally agrees with this 

interpretation; however, instead of relating particle sintering to cation electronegativity, we 

observe a stronger correlation with the mean electronegativity of the bulk oxide, which can be 

calculated as the geometric mean of the electronegativity of the metal cation and oxygen in the 

oxide lattice according to Eq. (9) [69]:  

 

1

[ . ]
x y

x y x y

M O M O     (9) 

In Eq. (9), j is the electronegativity of a given species.  As illustrated in Figure 4.10 for -Al2O3, 

TiO2, and SiO2, we observe that sintering constants increase as the mean electronegativity of the 

oxide increases.  Based on this correlation, we interpret sinter resistance in the context of Hard-

Soft Acid-Base theory.  Specifically, solid oxides with low electronegativities (e.g., -Al2O3, 

TiO2) can be considered relatively soft bases whereas those with high electronegativity (e.g., 

SiO2) may be classified as relatively hard bases.  Low-valent Ru is considered a relatively soft 

acid [70], and it stands to reason that its interactions are more favorable with supports that are 

softer bases.  According to this interpretation, the severity of sintering should decrease on oxide 

supports in the order SiO2 > TiO2 > -Al2O3, which is consistent with our observations. Because 

of its surface heterogeneity, it is difficult to include carbon in a discussion based on support 

electronegativity; however, the insight that Ru particle stability correlates with electron density 

of a support surface could aid in developing a sinter-resistant carbon support, provided that the 

surface functionality of carbon can be controlled during catalyst synthesis and retained under 

reaction conditions.  
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Figure 4.10 Correlation between sintering constants and electronegativity of a bulk oxide. (◊) Ru/TiO2, (∆) 

Ru/SiO2-A and (□) Ru/-Al2O3. Open symbols represent sintering rates during LA hydrogenation.  Filled symbols 

represent sintering rates during 2-pentanone hydrogenation 

Based on the experimental evidence presented here, we cannot conclusively define a mechanism 

for reversible deactivation; nonetheless, it is worth examining potential causes.  Because activity 

not lost through sintering can be restored by reductive treatment—although not through thermal 

treatment in an inert atmosphere—it stands to reason that this mode of deactivation is oxidative 

in nature.  Further, as demonstrated in Figure 4.9, carboxylic acids exacerbate reversible 

deactivation, suggesting that system pH or carboxylate adsorption may underlie the phenomena.  

Based on measured turnover frequencies and residence times, we anticipate the reported systems 

should reach steady state on the scale of minutes, yet we observe that hydrogenation activity 

continues to decay (reversibly) on the scale of hours.   

Considering oxidative phenomena in a bulk aqueous phase, it is possible that water dissociation 

could result in the formation of bound hydroxyls on Ru surfaces.  Surface hydroxyls should be 
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removed by reduction in dry H2, restoring Ru sites to their metallic state. However, one would 

typically expect adsorption processes to equilibrate quickly such that competitive binding should 

manifest as a diminished steady state hydrogenation rate rather than a transient decay in 

hydrogenation rate.  Surface science experiments have suggested that dissociative adsorption of 

water on Ru is an activated process [71, 72].  It is thus possible that water dissociation occurs 

slowly relative to the adsorption of reactive species such that hydroxyl coverages equilibrate on 

relatively long time scales, which might explain the gradual decrease in activity with time on 

stream.   

Although surface oxidation via hydroxyl binding is potentially consistent with observed activity 

profiles, prior reports argue against Ru oxidation under our experimental conditions.  Based on a 

redox potential of -0.5 to -0.7 V for H2 saturated water [8], Pourbaix diagrams suggest that bulk 

Ru in aqueous solution is metallic at any pH [73] . Further, Davis has employed in-situ X-Ray 

absorption spectroscopy to conclude that Ru is zerovalent in H2 saturated water at 373K, and that 

it remains fully reduced upon exposure to N2 saturated water at the same temperature [26].  That 

said, the above results are most applicable to bulk Ru metal and perhaps less so to Ru surfaces.  

Without a surface sensitive in situ characterization method (e.g., XPS), it is not possible to either 

confirm or eliminate oxidation of Ru surface sites as a source of reversible deactivation in this 

system. 

Reversible deactivation during LA hydrogenation is most severe on the least electronegative 

oxide (-Al2O3) and not detected on the most electronegative oxide (SiO2).  Thus, in contrast to 

sintering, reversible deactivation appears to correlate inversely with mean oxide 

electronegativity.  Another property of solid oxides that scales in this fashion is their point of 
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zero charge (PZC) in aqueous media, and our observations are interpreted further on this basis.  

Taken relative to solution pH, the PZC of a material is a predictor of its net surface charge [74].  

If a material is suspended in a solution that has a pH above its PZC, that material’s surface 

should be, on average, negatively charged.  In contrast, if a material is employed in a solution 

that has a pH below its PZC, that material’s surface should be positively charged [75]. 

Furthermore, as the magnitude of the gap between PZC and solution pH increases, |PZC-pH|, so 

does the deviation from a net zero surface charge.  PZCs for the supports employed here are 

summarized in Table 4.6.  Values for SiO2, -Al2O3, and TiO2 were taken from reference 

data[76], and the value for C was measured using an equilibrium-based mass titration method 

[38].  

Table 4.6 Summary of PZC values of the various supports employed 

Sample  PZC 

Ru/SiO2-A  1.8 

Ru/-Al2O3  8.8 

Ru/TiO2  6.3 

Ru/C-B  6.6 

 

Under the LA hydrogenation conditions in this study, the initial pH of the aqueous phase was 

measured at 2.45. At this pH, SiO2 should have a net negative surface charge, and all other 

supports should be positively charged.   Interestingly, we observe only irreversible deactivation 

in Ru/SiO2, whereas some portion of the deactivation is always reversible in the remaining three 

catalysts.  These observations suggest that, when supported on positively charged surfaces, Ru 

will exhibit reversible deactivation during ketone hydrogenation in the presence of carboxylic 

acids. Moreover, -Al2O3 should have a high density of positive surface charges relative to, e.g., 

TiO2, indicating that the severity of reversible deactivation scales with increasing positive 
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surface charge.  This correlation, along with its connection to solution pH and a material’s PZC, 

is illustrated in Figure 4.11.     

 

Figure 4.11 Correlation between PZC (and surface charge) with the extent of reversible deactivation on each Ru-

support combination considered during the hydrogenation of levulinic acid and 2-pentanone. (◊) Ru/TiO2, (○) Ru/C-

B, (∆) Ru/SiO2-A, (□) Ru/-Al2O3. Open symbols represent reversible losses during LA hydrogenation. Filled 

symbols represent reversible losses during 2-pentanone hydrogenation.  

A potential explanation is that carboxylate anions present in solution bind favorably to positively 

charged supports and less so to negatively charged supports.  This argument, applied to ionic 

metal complexes, underlies the strong electrostatic adsorption method of catalyst synthesis [77], 

and should extend to carboxylate anions under reaction conditions.  Accordingly, one might 

expect high carboxylate coverage on -Al2O3 while the surface of SiO2 remains relatively 

carboxylate-free under identical conditions. However, it is unlikely that variation in carboxylate 

coverage on the support should impact the carboxylate coverage on Ru particles, which will 

ultimately reflect equilibrium with the bulk.  That said, it may be possible that ketone and/or H2 
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coordination at Ru sites become increasingly hindered on carboxylate covered supports.  If so, 

one might expect that interfacial sites—and thus smaller Ru particles, such as those as observed 

on -Al2O3—would be particularly susceptible to this mode of “site blocking.”   

4.5 Conclusion 

The activity and stability of Ru nanoparticles during the aqueous phase hydrogenation of LA and 

2-pentanone was studied across various supports.  The intrinsic rate of hydrogenation was found 

to be invariant with support identity and particle size, indicating a structure insensitive reaction 

and no strong metal support interactions. Comparable rates of LA and 2-pentanone 

hydrogenation show that the secondary carboxylic functionality of LA does not perturb the 

intrinsic rate of ketone hydrogenation over Ru surfaces in water. Deactivation of Ru 

nanoparticles occurs through reversible and irreversible phenomena, both of which appear to be 

governed by the mean electronegativity of the support. The irreversible loss in activity is 

attributed to the sintering of Ru nanoparticles, and it increases in severity with the 

electronegativity of the support. The source of reversible deactivation could not be conclusively 

identified; however, it is both support- and carboxylic acid-dependent, and its extent appears to 

scale with the prevailing surface charge of the support.  Hydrogenation of carboxylic acids in 

water is unique in that the reaction media comprises an electrolyte solution.  It stands to reason 

that electrostatic interactions between dissociated ions and charged surfaces may influence 

catalyst stability; however, broader consideration of support systems and reaction media is 

necessary to substantiate any such connections.  

The experiments summarized here were carried out under continuous flow conditions, and they 

reveal time- and media-dependent changes in the catalytic activity of Ru sites during aqueous 
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phase hydrogenations.  Aqueous phase reactions in general and biomass upgrading reactions in 

particular are most commonly studied in batch vessels, and conclusions regarding catalytic 

activity are frequently drawn from time-dependent reactor balances and ex-situ characterization 

methods (e.g., chemisorption).  In systems, such as this one, where the catalyst undergoes 

pronounced structure and/or activity changes on time scales that are comparable to the duration 

of a typical experiment, rigorous analysis of batch kinetic data is challenging, and it can be 

difficult to estimate meaningful turnover frequencies from such experiments.  Here, we have 

addressed this issue through estimation of initial rates, but the approach is time consuming and 

imprecise relative to acquisition of steady state rate data.  Reliable, experimental determination 

of site-specific rates in aqueous phase systems would benefit from the development of an 

accessible, operando method for active site titration and/or structural analysis under aqueous-

phase reaction conditions. 

With respect to catalyst design, our observations suggest that multiple aspects of aqueous phase 

stability are influenced by the electronegativity of the support.  Unfortunately, these 

dependencies appear varied in nature, and tension may exist between, e.g., stabilizing against 

sintering and stabilizing against reversible deactivation.  Although we are not presently able to 

envision a single Ru-support combination that might satisfy all stability criteria, insights into 

governing phenomena are useful.  For example, composite materials that have distinct, well-

defined domains of varying electronegativity may be a compelling choice of support for Ru 

when it is employed in aqueous media[78]. Further, we emphasize the significance of efforts to 

stabilize metal dispersion through physical encapsulation of nanoclusters using, for example, 

Atomic Layer Deposition [79-81]. Such approaches may allow one to decouple reversible and 

irreversible modes of deactivation and thus design a truly resilient catalyst for use in harsh 
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media. With respect to support selection, it is important to mention that, although we have used 

solid oxides here to probe fundamental aspects of activity and stability, they are unlikely to be 

suitable supports under all reaction conditions.  For aqueous-phase processes, complexity is 

added by the fact that one must additionally ensure that support integrity is maintained at high 

temperatures and pressures.     
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Chapter 5 Microkinetic analysis of C3 – C5 ketone hydrogenation over supported Ru 

catalysts  

5.1 Introduction 

Despite the recent popularity of LA hydrogenation, the community is lacking a quantitative, 

elementary description of reaction kinetics and catalyst performance in this system, which limits 

our ability to rationally design active and stable materials tailored for the reduction of levulinic 

acid.      

Because of its reactivity and low vapor pressure, LA hydrogenation is generally performed in 

condensed media using Ru-based catalysts [1], which consistently delivers good GVL selectivity 

at high LA conversions [2-6]. Unfortunately, kinetic analysis of this system is challenging.  Liquid-

phase reactions present a number of practical and fundamental difficulties, each of which obscure 

the elementary phenomena that are, as kineticists, our primary interests.  For example, the presence 

of a condensed phase may induce various modes of deactivation [7-12], cause active site 

restructuring [8-11], severely constrain rates of mass diffusion [13, 14], and force one to consider 

the implications of thermodynamic non-idealities [15, 16].  Accordingly, it can be challenging to 

extract high quality kinetics from heterogeneously catalyzed reactions occurring in the liquid 

phase.  

Relative to condensed media, the confounding effects of deactivation, restructuring, mass transfer, 

and solvation can be substantially mitigated in the vapor-phase; therefore, vapor-phase reactions 

are generally a more appropriate choice for framing a fundamental kinetic analysis of a given 

system. Unfortunately, generating sufficient partial pressures of levulinic acid over the full range 

of temperatures appropriate for consideration of hydrogenation kinetics (298 – 456 K) is nontrivial, 
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if not occasionally impossible, which makes this particular system a poor choice for vapor phase 

analysis. As was demonstrated in chapter 4 however, the rate of levulinic acid hydrogenation in 

water is identical to that of 2-pentanone in water.  This suggests that LA hydrogenation can be 

viewed as a specific example of a generic ketone hydrogenation [8], which is a generally feasible 

system for vapor-phase analysis.  Accordingly, a reasonable first step in understanding the kinetics 

of LA hydrogenation is to define expectations for ketone hydrogenation in the vapor phase. Once 

established, one may then view the subtleties of solution-phase ketone hydrogenations as 

perturbations to this idealized framework.  Our effort here is therefore focused on establishing and 

reconciling a universal, microkinetic description of vapor phase C3 – C5 ketone hydrogenation on 

supported Ru catalysts. Ultimately, the hope is that this will both aid in the rational design of 

supported metal hydrogenation catalysts and provide a foundation for subsequent analysis of 

solvent effects in metal-catalyzed hydrogenations. 

5.2 Experimental 

 

4.2.1 Materials and methods 

Acetone (99+%, Acros Organics), 2-butanone (99+%, Acros Organics), 2-pentanone (99%, Acros 

Organics), isopropyl alcohol (reagent grade, Acros Organics), 2-butanol (99%, Alfa Aesar), and 

2-pentanol (98%, Acros Organics) were used as reactor feeds and/or for instrument calibration. 

Catalysts were synthesized using ruthenium (III) chloride hexahydrate (35-40% Ru, Acros 

Organics) and amorphous SiO2 (481 m2/g, Sigma Aldrich)H2 (99.999%, Airgas), He (99.999%, 

Airgas), N2 (99.999%, Airgas) and CO (99.99% Praxair) were employed in kinetic studies, catalyst 

pretreatment, and catalyst characterization. 5% H2 and 5% D2 blends in 1% Ar with a He balance 

(Airgas) were used in isotope switching experiments. Each reagent was used as supplied by the 
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manufacturer. Water used in preparation of catalysts was purified in house by reverse osmosis, 

UV oxidation, and ion exchange to achieve a resistivity equal to at least 18.2 M cm-1.      

4.2.2 Catalyst preparation 

Ru/SiO2 catalysts were prepared by incipient wetness impregnation of amorphous SiO2 with 

aqueous ruthenium (III) chloride hexahydrate. SiO2 was selected because it is devoid of strong 

acid/base functionality, and reference experiments confirmed it to be inert to both feed molecules 

(2-ketones) and products (2-alcohols) under reaction conditions. An incipient volume of 1.6 ml of 

solution per gram of support was used. Impregnated catalysts were dried in air at 393 K overnight 

and subsequently reduced in flowing H2 (100 ml min-1, 673 K, 3 K min-1). Prior to removal from 

reduction vessels, samples were passivated at 298 K in a stream of 1% O2 in He.  

4.2.3 Catalyst Characterization 

Catalyst surface area and porosity were probed by N2 physisorption at 77 K (Micromeritics ASAP 

2020).  Ru surface site densities were quantified by CO adsorption at 308 K (Micromeritics ASAP 

2020).     

4.2.4 Catalytic Activity Testing 

Hydrogenations of acetone, 2-butanone, and 2-pentanone were carried out in a downflow, packed 

bed reactor. Catalyst particle sizes were restricted to the 45-90 m range to minimize length scales 

for intraparticle diffusion. Carbonyl hydrogenation is exothermic (≈ -55 kJ mol-1). As a precaution 

against localized heating, active catalysts (Ru/SiO2) were diluted 10-20:1 (diluent:catalyst) in 

amorphous SiO2 (45 – 90 m). This admixture was loaded into a 6.35 mm OD 316 stainless steel 

tube, and the bed was held in place by quartz wool plugs. The void volume below the catalyst bed 

was packed with 850-2000 µm quartz chips. Prior to kinetic analysis, the catalyst bed was reduced 
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in situ under H2 (100 sccm) at 673 K for 4 h with a ramp rate of 5 K min-1. The bed was then 

cooled to the desired reaction temperature under a continuous H2 purge. Reactor temperature was 

monitored and controlled at the outer wall of the packed bed using a Type K thermocouple and a 

PID temperature controller (LOVE 16A 3010). Kinetic data are reported at the bed temperature, 

which was measured by an auxiliary, in-line K-type thermocouple positioned in the void space just 

above the catalyst bed. 

During kinetic experiments, gaseous reactor feeds (He and H2) were regulated using mass flow 

controllers (Brooks 5850S). Liquid ketones were introduced using a syringe pump (Cole-Parmer 

series 100) and fed through a 130 µm PEEK capillary into a heated vaporization chamber where 

they were contacted with pre-heated gas feeds. Ketone partial pressures were maintained below 

15% of their saturation pressure to ensure complete vaporization of the liquid feed. The combined 

feed was then passed through a temperature-controlled static mixer, where it was pre-heated to 

reaction temperature. During reactor startup, the feed stream was diverted through a bypass and 

monitored using online GC analysis. Upon reaching steady state, the feed stream was introduced 

into the reactor, and the point of valve switching was taken as zero time on stream. Ketone co-

feeding experiments were performed by adding a second vaporization unit.  

Quantitative product analysis was achieved using an on-line Agilent 7890 GC equipped with a 6-

port gas sampling valve, an HP-INNOWAX column, and an FID detector.  This configuration 

permitted resolution and quantification of all ketones and alcohols considered in this study. The 

identities of products and reactants were confirmed using an Agilent 7890 GC-MS equipped with 

an Agilent 5975C MS detector and an HP-INNOWAX column. Carbon balances closed to within 

5%, and residence times were adjusted to maintain ketone conversions below 11%.  The 
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anticipated equilibrium ketone conversion exceeds 96% under all reaction conditions reported 

here. Accordingly, all production rate data were obtained at or below roughly 12% of the 

equilibrium limit, which allows the conclusion that kinetic data reflect differential operation and 

that measured production rates represent the forward rate of ketone hydrogenation under all 

experimental conditions.   

To allow for meaningful comparisons among catalysts having varied metal loadings, 

hydrogenation rates are reported on a per-site basis as the total site time yield (STY) of 

hydrogenation products: 

i

j

j

i

R

F

STY
S




  (1) 

In Eq. (1), Fj is the effluent molar flowrate of an individual hydrogenation product—a C3 to C5 

alcohol—and SR is the total molar quantity of Ru surface sites in a given catalyst bed as estimated 

by CO chemisorption.  Baseline activity was measured over amorphous SiO2; no extent of ketone 

hydrogenation or alcohol dehydrogenation were observed in the absence of Ru. Across all 

catalysts, reaction conditions, and extents of deactivation, 2-ketone hydrogenation was 100% 

selective to the secondary alcohol.    

During vapor-phase ketone hydrogenation, the activity of Ru/SiO2 decays with time-on-stream. 

Importantly, the time scale over which this decay is observed (hours) is substantially longer than 

system transients, which were experimentally determined to last, at most, 10 min at any condition 

reported here. This suggests that the decay in activity does not reflect an approach to steady state; 

rather, it is attributed to catalyst deactivation. Since ex-situ characterization methods were used to 
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titrate surface sites, meaningful STYs and structure-activity relations are generated only by 

estimating the rate of reaction at zero time-on-stream, which can be correlated with CO uptake on 

pristine catalysts. Accordingly, all absolute hydrogenation rates reported in this manuscript were 

corrected to zero time on stream using the approach described in the section 5.3.2.  

5.3 Results 

5.3.1 Catalyst synthesis & characterization 

Ru clusters were supported on amorphous SiO2 at a range of loadings.  Physicochemical properties 

of these catalysts are summarized in Table 5.1. Although CO uptakes change substantially, Ru 

dispersions are uniform, suggesting similar cluster sizes and structures despite variation in metal 

surface area. 

Table 5.1 Physical properties and irreversible CO uptake measurements of various supported Ru/SiO2 catalysts. 

Ru wt%a SA (m2 g-1) Pore Diameter (Å)b Irreversible CO uptake (μmol g-1) COirr/Ru 

0 481 56.5 - - 

0.3 471 49.9 11 0.36 

0.6 514 48.6 15 0.25 

0.84 494 50.1 35 0.42 

1.5 520 49.9 62 0.41 

a- Based upon concentrations of impregnating solutions, incipient volume, and support mass. 

b- Average pore diameter determined by BJH analysis of N2 adsorption/desorption data. 

 

5.3.2 Estimating Initial rates  

As illustrated in Figure 5.1Figure 5.1, all catalysts employed here deactivate substantially with 

time on stream during ketone hydrogenation.  
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Figure 5.1 Observed 2-pentanone hydrogenation activity as a function of time on stream at T = 322 K, PH2 = 910 

Torr, P2-pentanone = 4.8 Torr. (◊) 0.3% Ru/SiO2, (○) 0.6% Ru/SiO2, (Δ) 0.84% Ru/SiO2, (□) 1.5% Ru/SiO2.  

Often, deactivation profiles can be fit to first order deactivation model: 

d

da
k a t

dt
   (2) 

In Eq. (2), kd is a first order deactivation rate constant and a is the activity of the catalyst, which 

we define as the rate of reaction observed as a function of time normalized by the rate of reaction 

at zero time on stream, i.e., a = r/r0.  Unfortunately, as illustrated in Figure 5.2, a simple first 

order model fails to capture the deactivation profile for supported Ru catalysts during ketone 

hydrogenation, suggesting more complex behavior.  We observe that there is an initial period of 

rapid deactivation, which quickly subsides giving way to a period of more gradual deactivation 

at longer times on stream.  This type of profile can be captured empirically by two first order 

deactivation models, one for each regime of deactivation.  
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At short times on stream, deactivation is rapid, but short-lived. This phenomenon can be 

described by Eq. (3), which allows deactivation rates to approach zero at long times on stream 

and thus predicts a non-zero steady state hydrogenation rate. 

( )d

da
k a a t

dt
     (3) 

At longer times on stream, deactivation is slow, but unabating such that catalyst activity, on the 

time scales of our experiments, never reaches a true steady state. This phenomenon is captured by 

a standard first order deactivation model, Eq. (4). 

'
d

da
k a t

dt
    (4) 

To estimate activity at zero time, Eq. (4) is first applied to the second regime of milder 

deactivation, allowing regression of a first order deactivation rate constant (kd′).  Once obtained, 

the decay profile can be corrected for the incessant slow deactivation. The corrected profile 

therefore reaches a steady state, and it is thus well-described by Eq. (3). Applying this model to 

the corrected activity profile permits regression of kd and a∞, which allows estimation of r0—the 

rate of reaction at zero time on stream. While this model is not likely to explain the deactivation 

process on a fundamental level, it accurately captures the deactivation profile as shown in Figure 

5.2.   
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Figure 5.2 Comparison of deactivation models for a 0.6wt% Ru/SiO2 catalyst during 2-pentanone hydrogenation at 

322K, 4.8 Torr 2-pentanone and 910 Torr H2. Dashed line represents single 1st order deactivation model. Solid line 

represents two 1st order deactivation models with a non-zero asymptote.  

5.3.3 Assessing kinetic control 

The extent of kinetic control was examined by applying the Koros-Nowak criterion to 

hydrogenation rates estimated at zero time on stream for acetone and 2-pentanone [17, 18], which 

represent the two systems most likely constrained by mass diffusion. Specifically, acetone 

exhibited the highest rate of hydrogenation per unit mass of catalyst, and 2-pentanone, the largest 

molecule considered, had the smallest diffusivity. Results are summarized in Figure 5., which plots 

initial (zero-time), mass-normalized hydrogenation rates for acetone and 2-pentanone against 

irreversible CO uptake on logarithmic axes at 322 and 341 K. The slope of the regression lines for 

acetone and 2-pentanone are near unity at both temperatures, indicating a system free of both mass 

and heat transfer limitations per Madon and Boudart [18]. Because rates of 2-butanone 

hydrogenation never exceed those of acetone hydrogenation and because 2-butanone diffusion 

should be at least as fast as that of 2-pentanone, we assume that 2-butanone hydrogenation rates 
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are also kinetically controlled. Furthermore, because of the pronounced catalyst deactivation in 

this system, the initial rates illustrated in Figure 5.3 represent the highest measured absolute 

hydrogenation rates per unit mass of catalyst under any experimental condition. Reported rates in 

this manuscript always reflect the initial rate of reaction prior to the onset of deactivation and, in 

many cases, these exceed reaction rates where it would be feasible to maintain kinetic control. 

However, measured rates were collected over substantially deactivated catalyst beds, where 

volumetric reaction rates were always lower than those reported in Figure 5.3, and subsequently 

corrected to zero time on stream.  Thus, initial rates reported here represent hypothetical, 

kinetically-controlled rates at zero time on stream.     

 

Figure 5.3 Functional relationship between mass-normalized ketone hydrogenation rates and Ru surface site densities 

as determined by CO chemisorption. Hydrogenation rates were measured at 4.8 Torr ketone and 910 Torr H2, open 

and closed symbols indicate rates at 322 K and 341 K respectively. For (a) acetone hydrogenation, the slope of the 

regression lines indicated in the figure are 1.04 ± 0.11 (322K) and 1.1 ± 0.9 (341K). For (b) 2-pentanone 

hydrogenation, the slope of the regression lines indicated in the figure are 0.96 ± 0.30 (322K) and 1.1 (341K). This is 

consistent with criteria given by Koros and Nowak for demonstration of kinetically controlled hydrogenation rates at 

the given temperatures. Confidence intervals were calculated at a 95% confidence level.  
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Since the materials tested have uniform Ru dispersion, the Koros-Nowak analysis (Figure 5.3) 

provides an average site-time yield (STY) for this Ru/SiO2 series. These are summarized for both 

acetone (Entry 1) and 2-pentanone (Entry 3) in Table 5.2. For comparison, the hydrogenation rate 

for 2-butanone was also determined at 322 K (Entry 2). Data in Table 5.2 show that ketone 

hydrogenation rates decrease with the length of the carbon chain such that the rate of acetone 

hydrogenation > 2-butanone hydrogenation > 2-pentanone hydrogenation. 

Table 5.2 Initial STY of hydrogenation of various ketones measured at 322 K, 4.8 Torr of ketone and 910 Torr of H2. Confidence 

intervals are calculated at 95%. 

Ketone Average initial STYa (s-1) 

Acetone 0.37 ± 0.04 

2-butanone 0.33 ± 0.02 

2-pentanone 0.14 ± 0.04 

a- Site time yields represent the average over multiple Ru/SiO2 catalysts with varied metal loading.   

 

 

5.3.4 Apparent Kinetics of ketone hydrogenation: low temperatures 

Figure 5.4 illustrates the dependence of hydrogenation rates on ketone partial pressure (Figure 

5.4a) and hydrogen partial pressure (Figure 5.4b) for acetone, 2-butanone, and 2-pentanone at 

322K. Over the partial pressure ranges considered, rates of hydrogenation for each ketone exhibit 

an apparent zero order dependence on the ketone and an apparent half-order dependence on H2.  
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Figure 5.4 Effect of (a) ketone and (b) hydrogen partial pressure on the site time yield of hydrogenation at 322 K for 

(○) 2-pentanone, (□) 2-butanone and (∆) acetone. Ketone partial pressures varied from approximately 0.3 – 30 Torr. 

Hydrogen partial pressures varied from 90-910 Torr. 

As illustrated in Figure 5.5, the apparent barrier for hydrogenation was approximately 50 kJ mol-1 

for all C3-C5 ketones in the range of 303-359 K, which is consistent with previously reported 

apparent barriers for acetone hydrogenation over supported group VIII metals [19-21].  

 

Figure 5.5 Arrhenius plot for ketone hydrogenation from 303 - 359 K at a ketone and hydrogen partial pressure of 4.8 and 910 

Torr respectively for (○) 2-pentanone, (□) 2-butanone and (Δ) acetone. 
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This suggests that differences in rates observed between acetone, 2-butanone, and 2-pentanone 

arise from differences in surface coverages and/or pre-exponential factors (activation entropies); 

however, further interpretation is difficult at this stage, and we defer in depth discussion to 

subsequent microkinetic analysis (Section 5.4.5).  Apparent reaction orders and kinetic parameters 

for the individual ketones are summarized in Table 5.3.  

Table 5.3 Summary of apparent activation barriers and reaction orders based for the various ketones studied over supported 

Ru/SiO2 catalysts. Activation barriers were determined at 4.8 and 910 Torr of ketone and H2 respectively. Reaction orders were 

determined at 322 K. Confidence intervals calculated at 95%. 

Ketone Average STY (s-1)a A (Torr-0.5s-1)b Ea (kJ mol-1) Ketone reaction order H2 reaction order 

2-pentanone 0.14 ± 0.04 2.1 x 107 49.5 ± 5.2 0.01 ± 0.18 0.52 ± 0.14 

2-butanone 0.33 ± 0.02 9.5 x 107 51.8 ± 5.0 -0.01 ± 0.01 0.57 ± 0.12 

Acetone 0.37 ± 0.04 4.8 x 107 50.1 ± 2.3 0.03 ± 0.22 0.48 ± 0.08 

a- Reaction conditions of 322 K, 4.8 Torr ketone, 910 Torr H2. Average across multiple catalysts and Ru loadings 

b- Calculated assuming an apparent power law expression r=Ae-Ea/RTPH2
0.5 

 

5.3.5 Apparent Kinetics of ketone hydrogenation: high temperatures 

A goal of this study is to provide an elementary rationale for differences in observed macroscopic 

rates of hydrogenation for C3 – C5 ketones. To reveal coverage effects that may underlie variations 

in site time yield, it is necessary to experimentally depart from the regime of (ketone) saturation 

kinetics described in the preceding section. To this end, an analogous set of high temperature 

kinetic data were collected. Rates of acetone hydrogenation were measured between 303 and 456 

K at 4.8 Torr acetone and 910 Torr hydrogen. Reaction orders were probed by varying both ketone 

and hydrogen partial pressures at 442 K.   
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Figure 5.6 Arrhenius plot for acetone hydrogenation from 303 - 456 K at ketone and hydrogen partial pressures of 

4.8 and 910 Torr. 

Figure 5.6 illustrates the trend in hydrogenation rates as a function of inverse temperature over this 

larger span. At lower temperatures, an apparent barrier of ≈ 50 kJ mol-1 is again observed. This 

barrier (evidenced by linearity) appears to extend to roughly 418 K (1000/T = 2.4 K-1), at which 

point the apparent barrier begins to decrease, ultimately approaching zero as temperatures near 

456 K (1000/T = 2.2 K-1). Although plausible, we do not believe this observed decrease is 

attributed to the onset of mass transfer limitations. Again, rates in this experiment were measured 

over a deactivated catalyst, and volume-normalized rates were always well below initial rates that 

have been proven to be kinetically controlled (see Section 5.3.3).   
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Figure 5.7 Effect of (a) ketone and (b) hydrogen partial pressure on the site time yield of acetone hydrogenation at 442 

K. Ketone partial pressures varied from 0.5 – 4.8 Torr. Hydrogen partial pressures varied from 250-910 Torr. 

Figure 5.7 illustrates the response in hydrogenation rate to variations in ketone and hydrogen 

partial pressure at 442 K. Relative to trends at 322 K, the apparent reaction orders for acetone and 

hydrogen increase, respectively, to 0.40 ± 0.12 and 0.92 ± 0.09.  This observation is consistent 

with more sparsely covered Ru surfaces at higher temperatures, which may explain the decrease 

in apparent barrier at high temperatures: as the coverage of vacant sites increase, apparent barriers 

become increasingly influenced by exothermic heats of adsorption.  Generally, this will manifest 

as a decrease in apparent barriers compared to those observed in regimes of saturation kinetics.  

5.3.6 Apparent Kinetics of ketone hydrogenation: co-feeding conditions 

To further probe the source of macroscopic differences in site-time yield between acetone, 2-

butanone, and 2-pentanone, a series of experiments were performed wherein 2-pentanone 

hydrogenation rates were measured while co-feeding acetone and 2-butanone at 1:1 and 5:1 molar 

ratios. Perturbations to the hydrogenation rate from experiments with isolated ketone feeds provide 
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insight into competitive adsorption and coverage effects and thus aid in resolving differences in 

adsorption energetics of each ketone.  

Table 5.4 summarizes rates of 2-pentanone hydrogenation at 322 K in the presence of acetone 

(Entries 1 and 2) and 2-butanone (Entries 3 and 4).  Here, hydrogenation rates are normalized to 

those obtained for 2-pentanone in isolation (Section 5.3.3). In all cases, 2-pentanone hydrogenation 

rates decrease upon introducing a second ketone, which is consistent with competitive adsorption 

of ketones and/or their hydrogenated derivatives at metal surface sites. Interestingly, for equivalent 

partial pressures of the co-feed, 2-butanone leads to a larger reduction in 2-pentaone hydrogenation 

rates than acetone, implying a larger decrease in C5 surface coverages with the 2-butanone co-feed. 

Tentatively, this may be attributed either to a more favorable adsorption free energy of 2-butanone 

or to steric factors associated with the longer carbon chain (C4) relative to acetone (C3), which 

could plausibly lead to increased site blocking for 2-pentanone adsorption.   

Table 5.4 Summary of relative 2-pentanone hydrogenation rates at 322 K in the presence of different ketones over supported 

Ru/SiO2 catalysts.  

Ketone co-feed 
P2-pentanone 

(Torr) 

Pco-feed 

(Torr) 

2-pentanone,co-feed

2-pentanone

r

r
  

Acetone 4 4 0.81 

Acetone 4 20 0.47 

2-butanone 4 4 0.66 

2-butanone 4 20 0.28 

 

5.4 Discussion 

 

5.4.1 Elementary surface steps 
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Because of the similarity in overall chemistry, apparent reaction orders, and apparent kinetic 

parameters, it is reasonable to assume that the hydrogenation of each C3-C5 ketone can be described 

by a common set of elementary steps. The kinetics of carbonyl hydrogenation are generally 

interpreted in the context of the Horiuti-Polanyi mechanism, which is predicated on step-wise 

addition of hydrogen adatoms to an unsaturated, surface-bound hydrocarbon [19, 22-24]; however, 

there remains some uncertainty regarding the site requirements for this process on a given metal 

surface. In separate studies, hydrogenation kinetics have been reconciled with schemes in which 

the rate controlling step involves a reaction between a hydrogen atom and a hydrocarbon fragment 

that are both bound at a single type of active site [19] and schemes in which the rate controlling 

step involves a reaction between a hydrogen atom and a hydrocarbon fragment that are bound at 

distinct types of active sites [20, 21].  Because neither model can be excluded a priori, we consider 

both prior to framing a more fundamental analysis. 

5.4.2 Single site model 

The conventional Horiuti-Polanyi scheme, applied to ketone hydrogenation, is presented as the 

series of elementary steps shown in Table 5.5. In this case, we consider that all adsorption and 

reaction steps involve a single class of active site, which is designated here as ‘*’. 

 

Table 5.5 Proposed set of elementary steps to describe ketone hydrogenation over Ru surfaces. Proposed set of elementary steps 

to describe ketone hydrogenation over Ru surfaces. 

Elementary step Surface Reaction 

1. 
1

**
K

K K           

2. 
2

2 *2* 2
K

H H   
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3. 
3

* * * *
K

K H KH    

4. 
4

* * * *
K

KH H A    

5. 
5

**
K

A A   

 

In this sequence, the ketone (K) adsorbs molecularly at a metal site (*), while hydrogen adsorbs 

dissociatively at the same type of site (Steps 1 and 2). In Steps 3 and 4, adsorbed hydrogen atoms 

add sequentially across the carbonyl group. The first hydrogen addition (Step 3) forms a half-

hydrogenated intermediate (KH). In Step 4, the addition of a second hydrogen atom to the half-

hydrogenated intermediate forms the surface-bound alcohol (A), which then desorbs from the 

surface (Step 5). Vannice has employed this model to explain observed trends in vapor-phase 

acetone hydrogenation over Pt [19], and it is worth considering whether this scheme can capture 

analogous trends observed here over Ru.    

Through Langmuir-Hinshelwood analysis, one can develop overall rate laws from the scheme in 

Table 5.5. Based on the above elementary steps, we can derive coverage expressions for each of 

the relevant reactive species on the surface. In the case where hydrogen adsorption, step 2, is 

assumed to be rate determining, the coverage of all other species can be determined from 

equilibrium expressions (Eq. 5-7). From the site balance (Eq. 8), the expression for the coverage 

of vacant sites can be determined.  Finally all the relevant coverage expressions can be 

substituted into Eq. (9), which defines the forward rate of hydrogen adsorption.  

1 **
KK K P   (5) 
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5 *
*

AA K P   (6) 

3
51 3

*
4 4

**

*

K A
KA

KH

K K K K P P

K K

 
    (7) 

** * *
1K KH A        (8) 

2

2

22

2 2
1 2

1 1 3 4 5 5
* (1 )

H

H

K K A A

k P
r k P

K P K K K K P P K P




 


 
  

 (9) 

With the rate of hydrogen adsorption limiting the reaction, Eq. (9), a 1st order dependence in 

hydrogen partial pressure is expected at all reaction conditions with zero order in ketone at most. 

H2 adsorption can therefore be excluded as rate controlling since this scenario fails to capture 

apparent reaction orders over a broad range of experimental conditions.  

To further aid in elucidating rate controlling phenomena, we performed an H2/D2 switching 

experiment, which revealed a primary kinetic isotope effect (KIE) of approximately 3 during 2-

pentanone hydrogenation.  This result indicates that an H-X bond is involved in the rate 

determining step of ketone hydrogenation, which allows us to additionally exclude ketone 

adsorption (Step 1) and alcohol desorption (Step 5) as rate controlling. Surface reactions are 

therefore the only possible rate controlling steps in this scenario. By making the assumption that 

the first hydrogenation step (Step 3) controls the rate of reaction (and that, relative to this step, 

adsorption steps are equilibrated), one predicts observable ketone orders from -1 to 1 and hydrogen 

orders from -0.5 to 1.5, with precise orders depending on the most abundant surface intermediate 

(Eq. 10). 
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 2

* *

2

2

3 1 2

3 3
25

1 2 5

4 2

(1 )

H K

K H
A

K H A

H

k K K P P
r k

K P
K P K P K P

K K P

 


  

   

 (10) 

Analogously, if one assumes that the second hydrogenation step (Step 4) is rate controlling, one 

predicts ketone orders between -1 and 1 and hydrogen orders between 0 and 1 (Eq. 11).   

2

* *

2 2

4 1 2 3

4 4 2

1 2 1 2 3 5(1 )

K H

KH H

K H K H A

k K K K P P
r k

K P K P K K K P P K P
 



  
   

 (11) 

Based on the range of possible reaction orders, one concludes that our observed trends loosely 

agree with a single-site model and that neither surface reaction can be excluded as potentially rate 

controlling. However, it is worth noting that Eq. (10) and Eq. (11) both predict maxima in the 

hydrogenation rate with respect to ketone partial pressure. This indicates that, for a single site 

model, saturation kinetics with respect to the ketone will only be observable over a narrow partial 

pressure range. Since we identify no rate maximum with respect to the ketone and that saturation 

kinetics exist over two orders of magnitude in ketone partial pressure (Figure 5.4), reconciliation 

with a competitive adsorption model is doubtful. Instead, we propose that the only way for ketone 

saturation kinetics to be observable alongside a half-order hydrogen dependence over such a large 

partial pressure range is for the rate controlling surface reaction to involve species adsorbed at two 

non-equivalent surface sites.  

5.4.3 Two site model 

Previous studies of acetone hydrogenation over Pt [20] and Ru [21] have invoked a two-site model 

to explain trends similar to those reported here. As illustrated in Table 5.6, this generally is 
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presented as a scenario in which hydrogen atoms and hydrocarbons adsorb at distinct surface sites, 

both of which are involved in surface hydrogenation steps.  

Table 5.6 Proposed set of elementary steps to describe ketone hydrogenation over Ru surfaces, with the non-

competitive adsorption of hydrogen. 

Elementary step Surface Reaction 

1. 
1

**
K

K K   

2. 
2

2 2 2
K

sH s H   

3. 
3

* *

K

sK H KH s    

4. 
4

* *

K

sKH H A s    

5. 
5

**
K

A A   

 

In this view, hydrogen binds preferentially at an ‘s’ site, whereas the ketone, half hydrogenated 

intermediate and alcohol all adsorb on ‘*’ sites. Following a Langmuir-Hinshelwood analysis, we 

can similar to the previous section develop an overall rate expression for the case where H2 

adsorption is rate determining:  

1 **
KK K P   (12) 

5 *
*

AA K P   (13) 

3
51 3

*
4 4

**

*

K A
KA

KH

K K K K P P

K K

 
    (14) 
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** * *
1K KH A        (15) 

1H ss
    (16) 

2 2

2

2 2 2H Hs
r k P k P     (17) 

Based on Eq. (17) one would expect to observe zero order kinetics with respect to the ketone and 

first order kinetics with respect to hydrogen under all conditions. We can therefore again exclude 

H2 adsorption (Step 2) as rate controlling since it does not match experimentally observed trends. 

Furthermore, as described in the preceding section, our observation of a primary KIE during H2/D2 

switching experiments indicates that ketone adsorption (Step 1) and alcohol desorption (Step 5) 

are not rate controlling. We therefore take adsorption steps to be quasi-equilibrated relative to the 

surface reactions, either of which may be rate determining.  If the first hydrogen addition (Step 3) 

is controlling, Eq. (18) will describe the overall hydrogenation rate.  From this model, one predicts 

that both ketone and hydrogen orders may range from 0 to 1.  

2

*

2

2

3 1 2

3 3
5

1 5 2

4 2

(1 )(1 )
s

H K

K H
A

K A H

H

k K K P P
r k

K P
K P K P K P

K K P

 


  

   

 (18) 

By inspection of Eq. (18), a zero order ketone dependence and a half-order hydrogen dependence 

(observed reaction orders at 322K) could occur either under conditions where ‘*’ sites are saturated 

with the ketone and ‘s’ sites are sparsely covered with hydrogen, or under conditions where ‘*’ 

sites are dominated by the half-hydrogenated intermediate and ‘s’ sites are dominated by hydrogen 

atoms. A 0.9 order hydrogen dependence alongside a 0.4 order ketone dependence (observed 

reaction orders at 422K) can only result if the half-hydrogenated intermediate (
25 4 2A HK P K K P
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) is the dominant species on ‘*’ sites and hydrogen coverage approaches zero on ‘s’ sites.  

Specifically, this is the only scenario in which hydrogen orders can exceed 0.5. Applying these 

limiting assumptions and expressing the ketone and alcohol partial pressures in terms of fractional 

conversion, one generates Eq. (19): 

2

2

1 2 4 1 2 4
3 3 3

5 5

(1 ) (1 )H K K K
H

A K K

P PK K K K K K X X
r k k P k

K P K X X
  

 
    (19) 

In this expression, XK is the fractional conversion of the ketone. Since hydrogen was fed in large 

excess and ketone conversions were maintained at differential levels, hydrogen conversion is 

negligible and its partial pressure can be considered constant at the inlet value and lumped into the 

apparent rate constant, kʹ. From Eq. (19), one predicts that observed site time yields will be a strong 

function of conversion/contact time, increasing linearly from a zero y-intercept when plotted as a 

function of 
(1 )K

K

X

X


.  By inspection of Figure 5.8, this trend is distinctly absent.  Instead, we 

observe that the hydrogenation STY is roughly invariant with conversion.  Therefore, we exclude 

the first hydrogen addition as a likely rate determining step in the two-site model.   
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Figure 5.8 Effect of ketone conversion on the rate of acetone hydrogenation at 442 K, 4.8 Torr acetone and 910 Torr 

H2.  

Analogously, by assuming that the second hydrogen addition controls the reaction rate, one arrives 

at the overall rate expression given in Eq. (20), which again suggests that both ketone and hydrogen 

orders can range from 0 to 1. 

2

*

2 2

4 1 2 3

4 4

1 1 2 3 5 2(1 )(1 )s

K H

KH H

K K H A H

k K K K P P
r k

K P K K K P P K P K P
 



  
   

 (20) 

In this case, the zero (ketone) and half (hydrogen) reaction orders observed at low temperatures 

are anticipated in two scenarios—one in which ‘*’ sites are dominated by the ketone and ‘s’ sites 

are dominated by hydrogen atoms and another in which ‘*’ sites are dominated by the half-

hydrogenated intermediate and ‘s’ sites are sparsely covered. At higher temperatures, either 

scenario can plausibly lead to a ≈ 0.4 order ketone dependence and ≈ 0.9 order hydrogen 

dependence so long as the vacant site coverage becomes comparable to that of adsorbed species. 

(1-x)/x

0 25 50 75 100 125 150 175 200

S
T

Y
 (

s
-1

)

0

5

10

15

20

25

30

35

40

45

50

55

60



129 
 

 

 

Because physically realistic assumptions allow Eq. (20) to be qualitatively consistent with 

observed kinetic trends over a broad range of experimental conditions, we conclude that the second 

hydrogen addition is the most likely rate determining step in this scenario.  

This analysis indicates that a model involving two distinct surface sites that preferentially 

coordinate either hydrogen or oxygenated hydrocarbons can capture experimental trends; however, 

it does not establish the nature of the two sites, nor does it consider whether preferential binding 

of individual species at unique sites is realistic on Ru surfaces. Before proceeding further with 

microkinetic analysis based on the two-site model, we first consider whether there exists a sound 

physical basis for doing so. 

5.4.4 Identifying potential adsorption sites on Ru surfaces 

In this section, we consider the identity of possible adsorption sites and discuss whether it is 

realistic for adsorbates involved in ketone hydrogenation to populate two distinct categories. We 

limit discussion to the most thermodynamically stable Ru facet, Ru (0001) [25], which is illustrated 

as a 3 x 3 unit cell in Figure 5.9.  On this surface, there exist four distinct sites on which adsorbates 

may bind: top, bridge, three-fold hollow (fcc) and three-fold hollow (hcp). Top sites are so-named 

because they are located directly atop a Ru atom, while bridge sites comprise the intersection of 

two neighboring Ru atoms. Three-fold hollow (hcp) sites are found at the intersection of three Ru 

atoms directly above a subsurface Ru atom, whereas three-fold hollow (fcc) sites represent the 

analogous intersection with no Ru atom directly below.  



130 
 

 

 

 

Figure 5.9 Ru (0001) facet with a lattice constant of 2.71 Å with the distinct adsorption sites: 1) top, 2) bridge, 3) 

three-fold fcc and 4) three-fold hcp. Dashed lines indicate atoms in the second layer. 

There is no reason to expect that a single adsorption site is universally preferred: a given species 

will bind preferentially at whichever site provides the greatest degree of energetic stabilization 

upon adsorption, and this will generally differ between adsorbates. For example, on Ru (0001), 

low-energy electron diffraction (LEED) experiments reveal that carbon monoxide adsorbs 

selectively at top sites [26], while oxygen atoms bind most favorably at three-fold hollow (hcp) 

sites [27]. Next, we extend this discussion to surface intermediates involved in ketone 

hydrogenation.  

5.4.4.1 Identifying potential adsorption sites on Ru surfaces: Hydrogen 

The most straightforward case is that of hydrogen, for which surface science provides definitive 

resolution of adsorption phenomena. Scanning tunneling microscopy (STM) [28], high resolution 

electron energy loss spectroscopy (HREELS) [29] and LEED [30-33] indicate that molecular H2 

dissociates on Ru surfaces, and that the resulting hydrogen atoms bind preferentially at three-fold 

hollow (fcc) sites. Stable H-adsorption at top, bridge, or three-fold hollow (hcp) sites is not 

generally observed. Importantly, this appears independent of hydrogen coverage, suggesting that 
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the insight can be extended to Ru surfaces under working H2 pressures [31]. In support of 

experimental results, computational analyses consistently report large hydrogen binding energies 

at three-fold hollow (fcc) sites and conclude that these are the most likely sites for hydrogen 

adsorption [24, 25, 34, 35].   

5.4.4.2 Identifying potential adsorption sites on Ru surfaces: Ketone 

Two ketone adsorption modes have been proposed on Group VIII metals [36, 37]; both are 

illustrated in Figure 5.10. First, carbonyl groups can adsorb end-on through interactions between 

surface metal atoms and an oxygen lone pair.  This binding mode is designated as η1(O). Second, 

the carbonyl can bind side-on through interactions between metal surface sites and both the carbon 

and oxygen of the carbonyl group.  This binding mode is designated as η2(C,O), and it will 

generally require two metal sites [36, 37]. Experimentally, both modes have been identified on Ru 

(0001) through electron energy loss spectroscopy (EELS) [37]. Density Functional Theory (DFT) 

calculations have also shown that η1(O) and η2(C,O) are the preferred modes of acetone adsorption 

on Ru, while 2-butanone preferentially binds in the η1(O) configuration [24]. To define precise site 

requirements, ketones bound as η1(O) species will be located at top sites, while those in the η2(C,O) 

configuration occupy a neighboring pair of top and bridge sites.   



132 
 

 

 

 

Figure 5.10 Spectroscopically observed adsorption modes of acetone on a clean Ru (0001) surface [37]  

5.4.4.3 Identifying potential adsorption sites on Ru surfaces: Half-hydrogenated intermediate 

In order to discuss the adsorption mode of the half-hydrogenated intermediate (KH), it is necessary 

to first establish its chemical identity.  Depending on the sequence of hydrogen addition to the 

surface-bound ketone in the Horiuti-Polanyi scheme, the half-hydrogenated intermediate (product 

of Step 3, Table 5.5) will be either an alkoxide or a hydroxyalkyl. The former will be observed if 

the first hydrogen atom adds to the carbonyl carbon, while the latter will be observed if the first 

hydrogen atom adds to the carbonyl oxygen. As illustrated in Figure 5.11, each species will adopt 

a distinct surface configuration and thus have unique site requirements. Specifically, an alkoxide 

will bind at a single adsorption site through its oxygen atom [36], while a hydroxyalkyl will form 

a di-sigma bond, requiring two neighboring sites [24].  
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Figure 5.11 Expected adsorption modes of alkoxide and hydroxyalkyl intermediates on the surface 

The precise nature of the half-hydrogenated intermediate comprises a long-standing debate, which 

has been examined using both experimental and computational methods; here, we summarize the 

general consensus of the literature. Experimental studies of alcohol dehydrogenation 

overwhelmingly support alkoxide formation [36, 38-43]. To date, there is no spectroscopic 

evidence of hydroxyalkyl species existing as intermediates between the ketone and the alcohol in 

the hydrogenation/dehydrogenation landscape on metal surfaces. Similarly, DFT studies of ketone 

hydrogenation on Ru [5, 24] surfaces consistently report that—relative to the hydroxyalkyl 

species—alkoxide binding energies are large and the kinetic barrier to their formation (from the 

ketone) is small.  In general, they conclude that the half-hydrogenated intermediate (KH) is most 

likely an alkoxide. Given the strong experimental and theoretical evidence, we extend this 

conclusion to the remainder of our analysis and disregard the hydroxyalkyl species as an abundant 

surface intermediate in this system. 

On Ru (0001) surfaces, alkoxide binding has been considered primarily through computational 

and spectroscopic analysis of methoxy species formed during methanol adsorption. Specifically, 

perturbations in the vibrational spectra of adsorbed methoxides are taken to reflect the geometric 

orientation of the methoxide on the surface. From this, one can obtain insight into the binding 
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mode and the likely adsorption site. Computational analysis suggests that alkoxide species 

adsorbed in either type of three-fold hollow site will have an upright geometry, i.e., their C-O bond 

is orthogonal to the Ru surface.  In contrast, if alkoxides bind at top and bridge sites, their C-O 

bond is tilted relative to the Ru surface [44]. DFT results, which are generally reported at low 

coverage, consistently reveal that methoxide species bind most favorably at three-fold hollow 

(hcp) sites [44-46] and possibly both three-fold hollow (hcp) and (fcc) sites [44]. Experimentally, 

methoxides formed at low coverages bind normal to the metal surface, which is indicative of 

adsorption at either type of three-fold hollow site [44, 47] and thus consistent with DFT 

predictions. At higher coverages, methoxides adopt tilted geometries, indicating a shift from three-

fold hollow sites to top or bridging sites [47, 48]. Therefore, it appears that alkoxide species bind 

at multiple adsorption sites, and that their preferred mode is coverage dependent. In particular, 

evidence suggests that alkoxides—at the high coverages expected under working conditions—may 

be bound at top and bridge sites. 

5.4.4.4 Identifying potential adsorption sites on Ru surfaces: Alcohol 

Finally, considering the alcohol product, experimental studies have not identified its preferred 

adsorption mode on Ru surfaces. Computational studies, however, consistently find top sites to be 

the most favorable location for alcohol adsorption on Ru (0001) [5, 24, 45].  

From the above discussion, it is reasonable to conclude that hydrogen atoms bind most favorably 

at three-fold hollow (fcc) sites.  Oxygenate binding, particularly in the case of the alkoxide, is less 

certain; however, it appears that there may be a slight preference toward adsorption at top or bridge 

sites under working conditions. It therefore stands to reason that ketone hydrogenation on Ru can 
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be cast in terms of elementary processes occurring at two distinct surface sites, particularly since 

this scenario reconciles with observed kinetic trends. 

5.4.5 Microkinetic analysis 

The set of elementary steps given in Table 5.6 have a sound physical basis and reconcile with 

experimentally observed hydrogenation rates. Full kinetic parameterization of these elementary 

reactions is powerful in that it allows one to develop a predictive model of surface coverage and 

ketone hydrogenation rates under a wide range of experimental conditions.  Unfortunately, free 

energies of activation are generally not known a priori, nor are they easily estimated.  Furthermore, 

because we have measured here only macroscopic production rates of hydrogenation products, we 

lack the ability to (meaningfully) resolve and/or regress the complete set of kinetic parameters 

from our experimental data. To reduce the size of the necessary parameter set, we invoke a limiting 

assumption: that the second surface hydrogen addition (Step 4, Table 5.6) always controls the rate 

of ketone hydrogenation and that, relative to this step, all other processes are equilibrated. This 

results in the overall rate expression given in Eq. (20), which we have already demonstrated is 

qualitatively consistent with experimental data. In doing so, we reduce the burden of estimating 

activation free energies to a single quantity (k4+). Instead, the majority of parameters in the overall 

rate expression comprise reaction free energies (Ki), many of which can be independently 

estimated from experimental data and published correlations.  

We assume that both activation and reaction free energies may vary with the nature of the ketone 

being hydrogenated, formally requiring that the model be parameterized in triplicate to fully 

capture trends in acetone, 2-butanone, and 2-pentanone hydrogenation. Where possible, we rely 
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on correlations to reduce the need for independent parameter estimation.  Our approach to doing 

so is detailed in sections 5.4.5.1 to 5.4.5.4. 

5.4.5.1 Microkinetic analysis: gas phase thermochemistry 

Enthalpies and entropies for all surface species are necessary for calculating elementary reaction 

free energies for each step in Table 5.6.  Here, we reference each surface species to its gas phase 

analog; accordingly, we begin by introducing Table 5.7, which summarizes tabulated and 

estimated thermodynamic data for stable gas phase species (H2, 2-ketones, 2-alcohols) and gas 

phase analogs of surface intermediates (hydrogen atoms, alkoxies/alkoxides). Standard values of 

gas phase molecules are corrected to reaction temperature using published heat capacities, which 

are linear in temperature over our range of experimental conditions and thus well-described by the 

truncated expression given in Eq. (21). Parameters a and b were obtained in house by regression 

of published heat capacity data. 

pC a bT   (21) 
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Table 5.7 Summary of energetics of stable gas phase species. 

 ΔHf
0

(g) (kJ mol-1) S0
(g) (J mol-1 K-1) a (J mol-1 K-1) b (J mol-1 K-2) 

Acetone -217.4 295.4 26.3 0.16 

2-butanone -238.5 338.2 37.2 0.22 

2-pentanone -259.1 378.2 38.2 0.29 

Isopropanol -272.3 309.8 26.3 0.21 

2-butanol -293.1 355.4 40.0 0.25 

2-pentanol -314.7 397.1 59.5 0.28 

H2 0 130.7 29.0 - 

H 218.0 114.7 20.8 - 

H+ 1534.1 108.8 20.8 - 

Isopropoxy/propoxide -47.3† 293.0† - - 

2-butoxy/butoxide -68.1† 338.6† - - 

2-pentoxy/pentoxide -89.7† 380.3† - - 

†Estimated quantity 

Tabulated gas-phase data are not available for gas-phase analogs of surface alkoxides; however, 

their entropies and enthalpies can be estimated based on the energetics of alcohol dissociation. The 

entropy change of alcohol deprotonation to form an alkoxide anion and a proton in the gas phase 

has been measured at 92 J mol-1 K-1, which is independent of the alcohol’s identity and chain length 

[49]. From this quantity, one can calculate the entropy of the gas-phase alkoxide anion: 

( ) ( ) ( ) ( )alkoxide g alcohol g diss g H g
S S S S     (22) 

Here, SH+(g) is the entropy of a proton in the gas phase, which is estimated to be 108.8 J mol-1 K-1 

at 298 K [50] and ΔSdiss (g) is the entropy of alcohol deprotonation, which we assume to be 
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temperature invariant. In this manner, we estimate the entropy of the alkoxide to be lower than that 

of the alcohol by ≈ 17 J mol-1 K-1 at 298 K. Analogously (Eq. 23), one can calculate the enthalpy 

of the gas-phase alkoxy radical from the homolytic bond dissociation energy (BDE) of the RO-H 

group, which is also not expected to vary with chain length [19, 51, 52]. 

-,  ( ) ,  ( ) ,  ( )RO Hf alkoxy g f alcohol g f H g
H H BDE H     (23) 

Here, we have taken 443 kJ mol-1 as the BDE of any secondary alcohol. This value represents the 

average BDE of isopropanol measured using multiple experimental techniques [51], and we 

explicitly assume that it is temperature-invariant. Estimated gas-phase entropies (Eq. 22) and 

enthalpies (Eq. 23) for linear C3 – C5 alkoxide species are summarized at 298 K alongside stable 

gas phase molecules in Table 5.7. Because alkoxide thermochemistry is always referenced to that 

of the gas-phase alcohol in our calculations, temperature corrections are included in the enthalpy 

and entropy of the alcohol; as such, we have not estimated heat capacities for the alkoxide species. 

5.4.5.2 Microkinetic analysis: adsorption energetics 

Enthalpies and entropies for surface species are calculated by adjusting gas-phase quantities (Table 

5.7) by their enthalpies and entropies of adsorption on Ru surfaces (Eq. 24 and 25), both of which 

must be estimated. 

* ( )  j j g j ads
S S S    (24) 

* , ( )  j f j g j ads
H H H    (25) 

Adsorption entropies 
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Previously reported kinetic studies involving dissociative H2 adsorption on Ru [53, 54], Pt [55, 

56], Fe [57-59] and Cu [60] surfaces report that, on average, molecular H2 loses approximately 

90% of its gas phase entropy upon dissociative adsorption, which suggests a complete loss of 

translational entropy for molecular hydrogen. Accordingly, we estimate the entropy change for 

dissociative hydrogen adsorption (ΔS2) to be -117.5 J mol-1 K-1 at 298 K.  From this value and 

thermodynamic data in Table 5.7, one can calculate the entropy of a surface hydrogen atom (SH,s 

= 6.6 J mol-1 K-1) and the adsorption entropy for a gas-phase hydrogen atom (Sads,H = -108.1 J 

mol-1 K-1) at 298 K.   

For all other species, which are taken to adsorb molecularly, adsorption entropies are calculated 

using the relationship proposed by Campbell for molecules with standard gas phase entropy below 

60R [61]: 

,1(0.3 0.7 )ads gas trans DS S S    (26) 

In this correlation, Sgas is the total entropy of the molecule in the gas phase and Strans,1D is the 

entropy contribution of 1 degree of translational freedom in the gas phase. The latter is calculated 

using the Sackur-Tetrode equation [61]: 

3/2 5/2

1 ,

1
18.6 ln

3 298
D trans

Ar

m T
S R R

m

     
      

      

 (27) 

Here, m and mAr are the molar masses of the species of interest and Argon respectively and R is 

the universal gas constant.  

Adsorption enthalpies 
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Based on experimental (TPD) and computational (DFT) analysis, one can estimate that the binding 

energy of a hydrogen atom on a clean Ru surface is roughly 270 kJ mol-1 [25, 62]. However,  heats 

of dissociative hydrogen adsorption on Ru are a strong function of both coverage [63] and Ru 

particle size [64]; therefore, it is difficult to assign a specific hydrogen binding energy under the 

conditions of our study. Accordingly, we take 270 kJ mol-1 as an initial estimate and aim to regress 

a hydrogen binding energy (BEH) that permits reconciliation with experimental data. To fully 

specify the use of the hydrogen binding energy in our calculations, we take its value to be equal to 

the negative heat of adsorption of a gas-phase hydrogen atom onto a Ru surface. 

H HH BE    (28) 

With respect to ketone binding, Anton reported the desorption energy of acetone from a bare Ru 

(0001) surface to be 54.4 ± 10.5 kJ mol-1 using temperature programmed desorption (TPD) [37].  

Here, we take this value as equal to the negative of the enthalpy of acetone chemisorption assuming 

its adsorption to be non-activated. Analogous data for 2-butanone and 2-pentanone have not been 

reported; therefore, we employ a generalized correlation to estimate their heats of adsorption 

relative to that of acetone.  In developing this model, we assume that the primary interaction 

between the ketone adsorbate and the Ru surface is through the carbonyl oxygen and that the 

strength of this interaction (i.e., the carbonyl binding energy on Ru) is identical for acetone, 2-

butanone, and 2-pentanone. Differences in heats of adsorption are therefore entirely attributed to 

the effect of varying carbon chain length.  

Typically, as the length of the carbon chain increases for a given class of functional molecules, 

adsorption becomes more exothermic. This is attributed to van der Waals interactions between the 

metal surface and methylene groups, which increase with chain length and stabilize adsorption 
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relative to the primary carbonyl-metal interaction [65, 66].  In general, heats of adsorption scale 

linearly with the length of the primary carbon chain. For example, desorption energies for n-

alkanes over Ru [67], Pt [65, 66], Au [68] and Cu [65, 66, 69] surfaces gain 5 – 10 kJ mol-1 for 

each additional carbon atom in the alkyl chain. Similarly, Sexton & Rendulic have reported that 

each additional carbon in the longest alkyl side chain of C1-C4 alcohols and C1-C5 ethers stabilizes 

their adsorption on Pt by 5.4 kJ mol-1 [70]. It therefore stands to reason that enthalpies of ketone 

adsorption can be described here as a linear function of chain length.  Because the enthalpy of 

acetone adsorption on Ru has been experimentally estimated, we reference all ketone heats of 

adsorption to that of acetone in this model.  This provides a reasonable and convenient initial 

parameterization of ketone adsorption enthalpies in this system:  

, , *( 2)ads i ads Acetone K sH H Nb      (29) 

Here, ΔHads,Acetone represents the enthalpy of acetone chemisorption, bK represents the enthalpic 

stabilization conferred by one additional carbon atom in the main alkyl chain, and Ns is the number 

of carbon atoms in the longest alkyl side chain. Using Sexton’s convention [70], the longest alkyl 

side chains in acetone, 2-butanone, and 2-pentanone have, respectively, two, three, and four carbon 

atoms. ΔHads,Acetone is initially set at the experimentally reported value, -54.4 kJ mol-1, and bK is 

taken to be 5.8 kJ mol-1 Carbon-1, which has been previously reported to capture the trend in alkane 

chemisorption on Ru surfaces [65, 67].  At this stage, we view both quantities as potentially 

adjustable parameters. 

To establish heats of alkoxide chemisorption on Ru, we employ an analogous correlation to that 

developed in Eq. (29).  In doing so, it is helpful to define a quantifiable “anchor point” as we have 

done above using the heat of adsorption for acetone. Since the energetics of alkoxide binding have 
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not been experimentally measured on Ru, we estimate their values by extension of reported trends 

in hydroxide/alkoxide binding on both Ru and Pt surfaces. Specifically, Campbell has proposed 

that, on a variety of metal surfaces, there is a constant offset between hydroxide binding energies 

(BEOH) and alkoxide binding energies (BEAlkoxide) [71-73]. Accordingly, for Ru and Pt, one can 

develop Eq. (30): 

   OH Alkoxide OH AlkoxideRu Pt
BE BE BE BE    (30)  

On Pt (111), Campbell estimated that the methoxide binding energy is ≈ 60 kJ mol-1 smaller than 

the analogous hydroxide binding energy [71, 74]. Eq. (30) therefore suggests that, on Ru, the 

methoxide binding energy will also be smaller than the hydroxide binding energy by ≈ 60 kJ mol-

1. Using DFT methods, Heyden estimated a hydroxyl binding energy of 336.8 kJ mol-1 on Ru 

(0001) [45]. Accordingly, we estimate the methoxide binding energy on Ru (0001) to be 276.8 kJ 

mol-1. As described above for ketone adsorption, we take this quantity as equal to the negative 

enthalpy of methoxide chemisorption such that Hads,methoxide = -276.8 kJ mol-1. With this 

established, heats of alkoxide chemisorption are estimated relative to that of methoxide as a 

function of the length of the longest alkyl side chain in the adsorbate (Ns), where methoxide has 

an alkyl chain length of one:   

, , *( 1)ads i ads methoxide KH sH H Nb      (31) 

As in the case of ketone chemisorption, bKH is the parameter describing the amount of enthalpic 

stabilization per additional carbon atom in the longest alkyl side chain.  Since stabilization is again 

expected to come from increasing van der Waals interactions with each methylene group in the 
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longest alkyl side chain, its value is taken as equal to that estimated for chain length stabilization 

in adsorbed ketones, 5.8 kJ mol-1 Carbon-1.    

Alcohol heats of adsorption have not been reported on Ru; therefore, we relate their values to 

ketone adsorption enthalpies (Eq. 29) based on observed trends in experimental literature. 

Specifically, on Cu[66] and Pt[66, 75-77], isopropanol adsorption is roughly 10% more exothermic 

than acetone adsorption. We thus assume the same trend holds for alcohol adsorption on Ru and 

calculate their adsorption enthalpies using Eq. (32): 

, , , ,1.10ads OH i ads K iH H    (32) 

With respect to thermochemistry, we have at this point defined all necessary surface enthalpies 

and entropies using tabulated data and reasonable correlations.  Accordingly, reaction enthalpies, 

reaction entropies, reaction free energies, and equilibrium constants can be computed for each 

elementary step of the scheme in Table 5.6 using Eq. (33) – (36). 

,i i j j

j

H H    (33) 

,i i j j

j

S S    (34)  

i i iG H T S      (35)  

exp i
i

G
K

R T

 
  

 
 (36)  

Built into these reaction thermochemistries and equilibrium constants are five potentially 

adjustable parameters for which we have made reasonable initial guesses:  The hydrogen binding 
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energy on Ru (BEH), the heat of acetone chemisorption on Ru (Hads,acetone), the heat of methoxide 

chemisorption on Ru (Hads,methoxide), and the variation in adsorption enthalpy with the length of 

the alkyl side chain in the ketone (bK) or the alkoxide (bKH).   

5.4.5.3 Microkinetic analysis: kinetics of the rate controlling step 

The remaining undefined parameters are forward pre-exponential factors and energy barriers for 

the rate determining step, which we take to be the addition of a hydrogen atom to a surface alkoxide 

(Step 4, Table 5.6). Per Arrhenius, one may define the forward rate constant in terms of a pre-

exponential factor (A4+) and an activation barrier (Ea,4+).   

,4 /

4 4

aE RT
k A e 

   (37) 

Since this model considers hydrogenation of three separate ketones, it is ostensibly necessary to 

estimate six activation parameters: three barriers and three pre-exponential factors. Fortunately, 

the size of this parameter set can be reduced using Brønsted−Evans−Polanyi (BEP) linear scaling 

relations, which link the activation barrier for a given step to its reaction enthalpy. Of particular 

relevance, Sautet has parameterized a BEP relation governing the barrier of O-H dissociation in 

surface-bound alcohols to form their respective alkoxide [78]. Importantly, this is the reverse of 

the apparent rate controlling step during ketone hydrogenation—addition of a hydrogen atom to 

the oxygen atom of a surface bound alkoxide. Accordingly, we recast his correlation in the 

associative direction (Eq. 38), where the heat of reaction (H4) is defined, per Step 4 of our 

hydrogenation reaction sequence, as proceeding from the surface bound alkoxide to the surface 

bound alcohol. 
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,4 4(1 )aE H b      (38) 

Here, the value of α reflects the earliness of the transition state and β is a reference activation 

barrier. From DFT analysis of alcohol dissociation on multiple metal surfaces, Sautet has estimated 

α and β to be 0.11 and 0.83 eV respectively, and we fix their values here for the remainder of our 

analysis [78]. This correlation allows us to compute ketone-specific barriers from elementary 

reaction enthalpies, which have been defined in the preceding section; therefore, its use eliminates 

the need for independent estimation of activation barriers in this analysis.   

At present, we have no reliable correlation permitting analogous estimation of elementary pre-

exponential factors for each ketone. As such, separate pre-factors are specified for the 

hydrogenation of each ketone, and we aim to regress their values during model reconciliation with 

experimental data. As shown in Eq. (39), pre-exponential factors can be related to the entropy of 

activation (ΔS‡
4+) for a given elementary step [79]. We use this parameterization and work with 

activation entropies for the remainder of our analysis. 

‡
4 /

4

S Rbk T
A e e

h



   (39) 

To provide an order-of-magnitude initial estimate for each pre-factor, we assume activation 

entropies for step 4 (ΔS‡
4+) are near zero regardless of the ketone undergoing hydrogenation, which 

gives a pre-exponential factor of roughly 1013 s-1 for the rate controlling step in acetone, 2- 

butanone, and 2-pentanone hydrogenation. 

Kinetic parameterization of the rate controlling step for each ketone thus adds three potentially 

variable activation entropies to the set of five uncertain quantities described in thermodynamic 
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parameterization of the model. In total, the microkinetic model developed here includes eight 

potentially adjustable parameters.  They are identified along with their initial estimates in Table 

5.8.  

Table 5.8 Summary of potentially adjustable parameters and their initial estimates. 

Adjustable Parameter Initial estimate Units 

BEH 270  kJ mol-1 

ΔHads,acetone -54.4 kJ mol-1 

ΔHads,methoxide -276.8 kJ mol-1 

b 5.8 kJ mol-1 Carbon-1 

bKH 5.8 kJ mol-1 Carbon-1  

ΔS4
‡
,acetone 0 J mol-1 K-1 

ΔS4
‡
,2-butanone 0 J mol-1 K-1 

ΔS4
‡
,2-pentanone 0 J mol-1 K-1 

 

5.4.5.4 Microkinetic analysis: regression results 

Prior to final optimization, the initial set of eight adjustable parameters was reduced to five through 

sensitivity analysis and preliminary regression.  With our initial parameter set, the rate of ketone 

hydrogenation is insensitive to the value of bK, which captures the effect of chain length on 

stabilizing ketone adsorption on Ru (Eq. 29).  Accordingly, its value was fixed at the initial 

estimate of 5.8 kJ mol-1 Carbon-1. Hydrogenation rates were moderately sensitive to the analogous 

quantity governing chain length stabilization of alkoxides, bKH (Eq. 31); however, its regressed 

value (5.5 ± 0.5 kJ mol-1 Carbon-1) was statistically indistinguishable from the initial estimate.  As 

in the case of ketone adsorption, bKH was fixed at 5.8 kJ mol-1 Carbon-1. Whether in describing 

ketone binding or alkoxide binding, bi most likely reflects increasing van der Waals stabilization 

upon increasing the length of the carbon chain. In either case, interactions between methylene 

groups with the Ru surface should be similar, and it is not surprising that we are unable to resolve 
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a difference in the influence of chain length on their adsorption enthalpies from regression of 

kinetic data. Finally, the regressed adsorption enthalpy for the methoxide was found to vary less 

than 1% from the initial estimate. Its adsorption enthalpy was therefore fixed at the initial estimate 

of -276.8 kJ mol-1. The rate of hydrogenation was sensitive to the remaining five parameters, and 

their regressed values varied substantially from initial guesses. These estimates are presented with 

95% confidence intervals in Table 5.9. Thermodynamic consistency of the model with the 

regressed parameter set was confirmed by ensuring that elementary reaction free energies weighted 

by their stoichiometric numbers sum to the overall gas phase free energy for ketone hydrogenation. 

Table 5.9 Summary of optimized parameters found from the regression of experimental data. Uncertainty in optimized 

values was estimated at a 95% confidence level.  

 

Parameter Optimized value Units 

BEH  233.2 ± 2.8  kJ mol-1 

ΔHads,acetone  -80.8 ± 1.4  kJ mol-1 

Hads,methoxide -276.8† kJ mol-1 

bK 5.8† kJ mol-1 Carbon-1 

bKH 5.8† kJ mol-1 Carbon-1 

ΔS4+,acetone  -44.1 ± 3.5  J mol-1 K-1 

ΔS4+,2-butanone -45.9 ± 3.9   J mol-1 K-1 

ΔS4+,2-pentanone  -53.4 ± 3.8   J mol-1 K-1 
†
Parameter not varied during optimization. 

 

With the parameter set summarized in Table 9, the kinetic model captures observed trends in the 

hydrogenation of C3 – C5 ketones over a broad range of temperatures and partial pressures. This is 

illustrated at a high level by the parity plot in Figure 5.12, which includes the entire experimental 

data set collected in this study. Next, we discuss whether optimal model parameters are physically 

realistic and connect them with experimental observations.  
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Figure 5.12 Comparison of predicted to experimentally measured STY of ketone hydrogenation for (○) 2-pentanone, 

(□) 2-butanone and (Δ) acetone. Reaction conditions were varied across temperatures of 303-456 K, 0.3 - 30 Torr of 

ketone and 75 - 910 Torr of H2.   

The binding energy of a hydrogen atom is estimated to be 233.2 ± 2.8 kJ mol-1, which is 

substantially lower than our initial value of 270 kJ mol-1. Based on the regressed binding energy, 

we calculate the enthalpy of dissociative H2 adsorption on Ru (H2, 298K) to be -30.4 kJ mol-1 

under reaction conditions. In contrast, our initially estimated hydrogen binding energy suggests an 

adsorption enthalpy of -100 kJ mol-1, which is generally consistent with microcalorimetry data 

reported at low hydrogen coverages [62]. As hydrogen pressures and coverages increase, H2 

chemisorption becomes less exothermic, reportedly decreasing to anywhere from -50 kJ mol-1 to -

35 kJ mol-1 on Ru (0001) depending on the hydrogen coverage [63, 80]. On supported catalysts, 

King has reported that the enthalpy of H2 chemisorption on a 4% Ru/SiO2 catalyst decreases to -

43 kJ mol-1 at a fractional hydrogen coverage of 0.4 [81] and further to -20 to -30 kJ mol-1 as the 

surface approaches hydrogen saturation [82]. In addition, the presence of co-adsorbates will 

generally decrease hydrogen binding energies. For example, the enthalpy of H2 adsorption on Ru 

(0001) decreases to below -38 kJ mol-1 on an oxygen pre-covered surface [37]. We therefore view 

the relatively small H-binding energy and heat of chemisorption in the optimal parameter set as a 
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reasonable consequence of repulsive lateral interactions due to elevated coverages of H2 and other 

adsorbates under working conditions.  

The regressed enthalpy of acetone adsorption (-80.8 ± 1.4 kJ mol-1) stands to reason given the 

relative oxophilicity and substantial oxygen binding energy of Ru. That stated, this heat of 

adsorption is significantly larger than our initial estimate, which was inferred from TPD 

experiments (-54.4±10.5 kJ mol-1) on a bare Ru (0001) surface. A possible source of the 

discrepancy is the analysis of TPD data, which used a first-order Redhead equation and assumed 

a desorption pre-exponential factor of 1013 s-1. Desorption always occurs with a substantial gain in 

entropy, and its activation entropies are often substantially greater than zero.  This suggests that a 

desorption pre-factors of 1013 s-1 may be a considerable underestimate, leading one to infer an 

artificially low desorption energy through conventional TPD analysis [61, 74, 83].  

With respect to the methoxide binding enthalpy, we observe that kinetic data are well described 

using the initial estimate of -276.8 kJ mol-1, and it was not necessary to further refine this value. 

The value agrees well with multiple DFT estimates for the binding energy of methoxide on Ru 

(0001).  Specifically, Heyden has reported a methoxide adsorption enthalpy of -268 kJ mol-1 [45] 

and Neurock has reported a value of -259 kJ mol-1 [24], both of which are within 10% of our 

estimate. 

Elementary activation barriers for the rate controlling step (EA4+) were computed from reaction 

enthalpies using the BEP relation given in Eq. (38). They are found to be statistically 

indistinguishable at 65.8, 65.3 and 65.8 kJ mol-1 for acetone, 2-butanone, and 2-pentanone, 

respectively. The lack of variation in regressed elementary barriers is not surprising: surface 

species in this system were referenced to gas phase analogs; gas phase alkoxide enthalpies were 
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computed using a single alcohol bond dissociation energy (BDEOH = 443 kJ mol-1); and both 

ketone and alkoxide binding energies were parameterized to vary identically with chain length (bK 

= bKH = 5.8 kJ mol-1 Carbon-1). Accordingly, the elementary reaction enthalpy for the addition of 

a hydrogen atom to a surface-bound alkoxide (Step 4) is nearly identical for every ketone (H4 ≈ 

-16.1 kJ mol-1), with minor variations attributed to differences in gas-phase heat capacities.  

Because we have coupled reaction and activation energies through a BEP relation, this leads to 

nearly identical elementary barriers for the rate controlling step in each ketone hydrogenation. This 

agrees with the observation that computationally-derived barriers for hydrogenation of surface 

alkoxides are invariant with chain length during the reduction of C1-C4 aldehydes and ketones over 

Ru (0001) [24].    

Regressed activation entropies were estimated for each ketone (Table 5.9), all of which are 

substantially negative, indicating a relatively tight transition state. Values cluster around -48 J mol-

1 K-1, which translates to a pre-exponential factor of ~1011 s-1 for each ketone and is reasonable for 

a bimolecular surface reaction. Although there is statistical overlap among our three regressed 

activation entropies, we do notice a slight trend in the magnitude of the pre-factor with the chain 

length of the ketone.  Specifically, the activation entropy becomes more negative with the length 

of the main alkyl chain in the ketone, resulting in a decrease in pre-exponential factors as one goes 

from acetone (1.3x1011 s-1) to 2-butanone (1.2 x 1011 s-1) to 2-pentanone (4.3 x 1010 s-1). The 

relative magnitude of the pre-factors mirrors the trend in observed STYs for the three ketones 

(Table 5.2), indicating that our model has primarily attributed the decrease in STY with chain 

length to increasingly unfavorable activation entropies in the elementary hydrogenation of 

isopropoxide, butoxide, and pentoxide surface species.  While this is a possible explanation, it is 

not immediately apparent why the activation entropy for a class of analogous chemical reactions 
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should necessarily scale with chain length. An alternate possibility is that our model fails to capture 

differences in the number of sites required for adsorption of C3, C4, and C5 hydrocarbons. 

Considering that the atomic and molecular diameter of Ru and acetone are almost identical (~2.7 

Å), one might assume that a single acetone monolayer realistically corresponds to one adsorbed 

acetone molecule per surface Ru atom. However, 2-pentanone is substantially larger (5.1 Å), and 

its adsorption should lead to an inherently more crowded surface and a lower monolayer coverage 

than that of acetone.  Practically speaking, larger molecules may impose additional “site blocking” 

interactions that lead to fewer effective sites for 2-pentanone hydrogenation than there are for 

acetone hydrogenation. Both our experimental STYs and our model assume site accessibility is 

independent of chain length. If accessible sites do vary with the length of the ketone, then they are 

likely over-counted by CO chemisorption, which would lead to lower apparent STYs for the larger 

ketones.  

5.4.5.5 Microkinetic analysis: simulation results and comparison to experimental data 

In addition to the elementary parameter estimates described in the preceding section, a rigorous 

interpretation of our apparent kinetic trends requires quantification of surface coverages under 

reaction conditions.  Accordingly, Figure 5.13 presents anticipated surface coverages obtained 

with the optimized parameter set by assuming that steps 1, 2, 3, and 5 (Table 5.6) are equilibrated 

at a given set of reaction conditions.  Data are presented for acetone (Figure 5.13a), 2-butanone 

(Figure 5.13b), and 2-pentanone (Figure 5.13c). 
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Figure 5.13 Predicted coverages of ketone (Δ), alkoxide (○), hydrogen (◊) and vacant ‘*’ sites (*) from 303-456 K at 

fixed partial pressures of 4.8 Torr ketone and 910 Torr H2 for a) acetone, b) 2-butanone, and c) 2-pentanone 

hydrogenation. Note that hydrocarbon species are assumed to bind at ‘*’ sites and hydrogen atoms bind at ‘s’ sites. 

From simulated coverages, several trends are apparent.  First, independent of the ketone and 

throughout our temperature range, there are generally few vacancies in the ‘*’ site balance; rather, 

these sites are dominated by the alkoxide intermediate.  In the range of 300 – 380 K, KH ranges 

from 0.9 – 1.0, indicating an alkoxide saturated surface.  As temperatures increase beyond 380 K, 

the alkoxide coverage decreases from roughly 90% to roughly 40% as coverages of both the ketone 

and vacant sites increase, relative to the alkoxide, with reaction temperature. Similarly, kinetic 

Monte-Carlo simulations of carbonyl reduction on Ru (0001) have found the alkoxide coverage to 

be dominant, with a decreasing trend as temperature increases [24]. In contrast, hydrogen atoms 

appear to sparsely cover ‘s’ sites.  At low temperatures (300 – 360 K), hydrogen coverages vary 

from 10% to 30%, whereas at high temperatures, ‘s’ sites appear to be predominately vacant. With 

these coverage trends established, interpretation of apparent reaction orders and kinetic barriers is 

straightforward.  Table 5.10 summarizes experimentally observed and model-predicted values. 
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Table 5.10 Comparison of experimentally measured and predicted apparent reaction kinetics for all ketones 

Ketone STY (s-1) a Ea,apparent (kJ mol-1) a Ketone reaction order H2 reaction order 

 Measured Predicted Measured Predicted Measured Predicted Measured Predicted 

322 K 

2-pentanone 0.14  0.16 49.5  51.1 0.01  0 0.52  0.44 

2-butanone 0.33 0.34 51.8  50.8 -0.01  0 0.57  0.46 

Acetone 0.37  0.36 50.1  50.6 0.03  0 0.48 0.46 

442 K 

Acetone 36.7 36.6 17.7 15.2 0.4 0.38 0.92 0.99 

a – reaction conditions 4.8 Torr ketone, 910 Torr H2  

By inspection of the overall rate expression (Eq. 20), one observes that low temperature reaction 

orders (nH2 ≈ 0.5, nK ≈ 0 at 322K) reconcile with the low temperature coverage regime, where 

alkoxides dominate ‘*’ sites and ‘s’ sites are sparsely covered by hydrogen.  At high temperatures, 

the alkoxide coverage decreases substantially, causing the observed increase in apparent reaction 

orders (nH2 ≈ 0.9, nK ≈ 0.4 at 422K). 

In order to interpret trends in apparent activation energies, we derive Eq. (40), which specifies the 

complex functional dependence of the experimentally observable barrier on elementary activation 

energies, elementary reaction enthalpies, and surface coverages on both ‘*’ and ‘s’ sites (Eq. 40). 

2
, ,4 2 3 * 1 , ,* ,* 3( ) ( )

2
a app a H s KH KH

H
E E H H H H   


            (40) 

In low temperature coverage regimes where ‘*’ sites are alkoxide-dominated (KH,* ≈ 1.0, * ≈ 0.0) 

and ‘s’ sites are mostly vacant (H,s ≈ 0, s ≈ 1), the apparent barrier reduces to ≈ EA,4+ + 0.5∆H2, 

where EA,4 is the elementary barrier of step 4 (≈ 66 kJ mol-1) and H2 is the enthalpy of dissociative 

hydrogen chemisorption (≈ -30 kJ mol-1). Thus, the difference between elementary and apparent 
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barriers on alkoxide dominated/hydrogen sparse surfaces (predicted at low temperatures) is 

primarily given by the enthalpy of dissociative hydrogen chemisorption, which is independent of 

the chain length of the ketone.  Accordingly, apparent barriers are identical for C3 – C5 ketones at 

low reaction temperatures (≈ 50 kJ mol-1) despite each species having unique adsorption (H1) 

and reaction enthalpies (H3).  

At elevated temperatures, alkoxide and hydrogen coverages decrease and vacant sites become 

increasingly significant in ‘*’ and ‘s’ site balances.  In these coverage regimes, H1 (≈ -80 kJ 

mol-1), H2 (≈ -30 kJ mol-1), and H3 (≈ -17.5 kJ mol-1) all influence the apparent barrier.  Since 

each step is exothermic, this necessarily leads to a decrease in the apparent barrier relative to the 

elementary barrier of the rate controlling step.  Furthermore, the effects of reaction enthalpies 

become increasingly pronounced as * and s both approach 1.  In this limit, the apparent barrier 

is reduced by the full magnitude of ketone and hydrogen adsorption enthalpies. This most likely 

explains our observation of a significantly diminished apparent barrier (≈ 18 kJ mol-1) at 442 K.  

5.5 Conclusion 

We have considered the hydrogenation of C3-C5 ketones over Ru/SiO2, probing reaction kinetics 

over a range of ketone partial pressures (0.3 – 30 Torr), H2 partial pressures (90 – 900 Torr), and 

reaction temperatures (303 and 456 K). Independent of the ketone, hydrogenations exhibit 

identical trends in apparent kinetics.  Specifically, hydrogenation of acetone, 2-butanone, and 2-

pentanone occur with an apparent barrier of approximately 50 kJ mol-1 between 303 and 363 K.  

In this temperature range, we additionally observe zero and half order dependencies on the ketone 

and molecular hydrogen.  Apparent kinetics are sensitive to the reaction temperature, with reaction 

orders increasing for both the ketone and hydrogen.  This is attributed to reduced coverages of 
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hydrogen and adsorbed hydrocarbons at elevated temperatures, a second consequence of which is 

that the apparent barrier also decreases with reaction temperature:  as surfaces become dominated 

by vacant sites, exothermic heats of adsorption increasingly influence the observed kinetic barrier, 

decreasing it to below 20 kJ mol-1 at temperatures above roughly 420 K.  Measured site time yields 

and apparent kinetic parameters were reconciled with elementary phenomena by developing a 

microkinetic model based on a Horiuti-Polanyi scheme in which hydrogen adatoms sequentially 

saturate surface-adsorbed ketones to form the alcohol.  To explain our observation that saturation 

kinetics persist over several orders of magnitude in ketone partial pressure, we invoke the 

assumption that hydrogen atoms and hydrocarbons adsorb at distinct surface sites, which is 

justifiable based on spectroscopic analysis of adsorbates on Ru(0001) surfaces. Kinetic data are 

well-described by assuming that the addition of a hydrogen atom to the surface bound alkoxide 

controls the overall rate of hydrogenation. Parameter estimation suggests that the kinetics of the 

rate controlling step are, at an elementary level, roughly independent of chain length, proceeding 

with a kinetic barrier of 66 kJ mol-1 and a pre-exponential factor of ≈1011 s-1. Experimentally, we 

do observe that measured STYs decrease with ketone chain length.  In our model, this is captured 

by activation entropies becoming increasingly unfavorable with chain length, which is a possible 

explanation for the observed trend.  Alternatively, the observed trend may reflect a failure to 

properly account for differences in the number of adsorption sites required for acetone, 2-butanone, 

and 2-pentanone binding.  It stands to reason that ketone monolayer coverages will decrease with 

chain length.  This would likely manifest as a decrease in observed site time yields, for which site 

counts were estimated by CO uptake, with the size of the ketone.  
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Chapter 6 Future work 

With a kinetic understanding of ketone hydrogenation in the vapor phase developed in the 

previous chapter, it is of interest to use this kinetic framework as a reference point from which 

various complexities such as the effect of solvent environments can be investigated. This is 

especially relevant to the target reaction of this work, LA hydrogenation, as it is most likely to be 

carried out in the aqueous phase if it is to be commercialized. Therefore understanding the effect 

of the aqueous phase on reactivity of the proposed Ru catalysts, which are frequently reported to 

display solvent effects for the target reaction, is of significant practical importance. To 

accomplish this, the rate of ketone hydrogenation can be perturbed by introducing controlled 

concentrations of various solvent molecules in the vapor phase. With the desired reaction in 

mind, LA to GVL, the mono-functional ketone analog of LA (2-pentanone) is chosen to probe 

the effect of solvent. This will be accomplished by measuring the rate of ketone hydrogenation in 

the presence of various solvent molecules to the rate in their absence.  

To measure the rate of 2-pentanone hydrogenation in the presence of the various solvent molecules 

a bracketing technique was employed. The rate of hydrogenation at a reference condition of known 

STY was allowed to stabilize until no appreciable deactivation was observed, at which point a 

solvent molecule was introduced into the reactor. Once the solvent molecule had been co-fed for 

~ 45 mins it was removed from the feed to the reactor, restoring the system to the original reference 

condition. By comparing the STY of hydrogenation before and after the solvent molecule was 

introduced, the extent of deactivation/regeneration as a result of the solvent molecule could be 

accounted for. Once corrected a relative rate of hydrogenation can be calculated: 

/w solvent
i

nosolvent

STY
RR

STY
  (1)  
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Where RR represent the relative rate in the presence of a given solvent molecule at a set of 

operating conditions. This procedure was repeated for a given solvent molecule at multiple 

temperatures and partial pressures.  

Table 6.1 Measured relative rate of 2-pentanone hydrogenation in the presence of various solvents. 2-pentanone and 

hydrogen partial pressure were maintained at 4 and 910 Torr respectively.  

Solvent Psolvent (Torr) T (K) RR 

Water 4 303 1.06 

Water 10 303 1.35 

Water 39 322 1.84 

Water 4 322 1.06 

Water 10 322 1.21 

Water 20 322 1.37 

Water 38 322 1.85 

Water 89 322 3.09 

Water 89 322 3.25 

Water 39 342 1.65 

Water 4 342 1.04 

Deuterium oxide 4 303 1.24 

Deuterium oxide 10 303 2.13 

Deuterium oxide 39 322 3.1 

Deuterium oxide 20 322 1.97 

Deuterium oxide 10 322 1.5 

Deuterium oxide 4 322 1.26 

Deuterium oxide 4 342 1.18 

Deuterium oxide 39 342 1.81 

Deuterium oxide 10 342 1.3 
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Deuterium oxide 20 342 1.58 

Deuterium oxide 4 342 1.2 

Methanol 38 303 1.33 

Methanol 38 322 1.11 

Methanol 4 322 0.92 

Methanol 38 342 1.21 

Methanol 4 342 0.99 

Methanol 10 342 1.09 

Methanol 38 342 1.14 

Methanol 10 322 0.97 

Methanol 38 322 1.14 

Methanol 4 322 0.91 

Methanol 1 322 0.92 

Methanol 4 322 0.94 

Methanol 38 322 1.23 

Methanol 4 322 0.95 

Methanol 38 322 1.14 

Methanol 39 342 1.18 

1,4 dioxane 4 303 0.54 

1,4 dioxane 10 303 0.42 

1,4 dioxane 4 322 0.55 

1,4 dioxane 10 322 0.41 

1,4 dioxane 38 322 0.22 

1,4 dioxane 10 342 0.48 

1,4 dioxane 4 342 0.60 

1,4 dioxane 38 342 0.21 
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1,4 dioxane 1 322 0.83 

1,4 dioxane 19 322 0.37 

1,4 dioxane 4 322 0.34 

1,4 dioxane 1 322 0.55 

n-heptane 10 303 0.84 

n-heptane 4 303 0.9 

n-heptane 10 322 0.95 

n-heptane 4 322 1 

n-heptane 38 322 0.73 

n-heptane 38 342 0.87 

n-heptane 4 342 1.02 

n-heptane 10 342 0.94 

 

As can be seen from the trends in relative rates measured across various temperatures and partial 

pressures presented in Table 6.1, water promotes the apparent rate of hydrogenation to the 

greatest extent. Methanol appears to show a relatively marginal promotional effect, while the 

presence of n-heptane and THF appear to only decrease the rate of hydrogenation. The observed 

trends are in line with previous studies where the rate of 2-butanone hydrogenation is 

consistently found to be the fastest in a water environment, followed by alcohols as a solvent [1, 

2].  

It is therefore clear that a promotional effect exists in the presence of compounds such as water 

and methanol commonly used as solvents for ketone hydrogenation. However the nature of the 

promotional effect is unclear at this point. One possible explanation is that the solvent molecules 

may act as a more facile hydrogen source, relative to molecular hydrogen, whereby the ketone is 
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hydrogenated through transfer hydrogenation. To evaluate this hypothesis, the hydrogen atoms in 

the solvent molecules can be replaced with deuterium. Should the solvent molecules act as 

hydrogen donors, one would expect to observe deuterium atoms inserted across the carbonyl 

group in the resulting alcohol product to some extent. The same co-feeding experiments 

performed for water (H2O) and methanol (CH3OH) were therefore repeated with their 

perdeuterated analogs (D2O and CD3OD).  

Two different methods were employed to detect any deuterium atoms that had been incorporated 

into the 2-pentanol product. Gas effluent samples from the reactor were analyzed using GC-MS, 

comparing the fragmentation pattern of 2-pentanol produced under co-feeding conditions with 

that of a standard. Effluent streams from the reactor in the presence of a deuterated solvent, were 

also passed through traps which condensed greater than 98% by mass of all non-permanent gases 

(2-pentanone,2-pentanol and solvent molecule). The collected samples were then analyzed using 

H1-NMR which can determine whether any of the protons in the 2-pentanol produced had 

become deuterated. Briefly, in H1-NMR only protons would show up in the spectra and their 

intensity decreases as they become deuterated or disappear upon complete deuteration.  Shown in 

Figure 6.1 is the H1-NMR of the liquid samples collected with D2O and CD3OD fed to the 

reactor at 40 Torr at 322 K. Of particular interest is the sextet peak at a chemical shift of 3.75 

ppm which belongs to proton in the C-H bond of the carbonyl group in 2-pentanol (reference). In 

both co-feeding experiments (D2O and CD3OD) the integral value of the carbonyl proton is equal 

to 1 within error, which indicates the no deuterium is incorporated. Furthermore, no deuterium 

was found to be incorporated into any of the 2-pentanol protons. Additional samples were also 

collected at conversions varying from less than 1% to 99% and the integral of the C-H carbonyl 

peak never changed from a value of 1.  
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Figure 6.1 H1-NMR spectra of condensed reactor effluents under co-feeding conditions of 40 Torr of a) D2O and b) 

CD3OD at 322 K. 

Turning to the results of the GC-MS analysis, shown in Figure 6.2 is the fragmentation pattern of 

a 2-pentanol standard alongside that of the reactor effluent gas sample in the presence of D2O 

collected under identical conditions described for the NMR samples. The fragmentation pattern 

of 2-pentanol obtained under co-feeding conditions with D2O is identical to that of a 2-pentanol 

standard (Figure 6.2), in agreement with the analysis of the H1-NMR spectrum that no deuterium 

had been incorporated. We therefore conclude that the promotional effect is not reactive in 

nature; the solvent molecules do not act as hydrogen donors in any significant capacity.  
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Figure 6.2 Mass spectrum fragmentations of a 2-pentanol standard (blue) and reactor effluent (orange) at 322 K 

with 40 Torr of D2O co-fed with 4 Torr of 2-pentanone and 910 Torr H2. 

Interestingly D2O appears to provide a larger promotional effect as compared to water at 

equivalent partial pressures of each compound, which is contradictory to the observed primary 

kinetic isotope effect (KIE) observed in H2/D2 switching experiments (Chapter 5). This result is 

in agreement with the GC-MS and H1-NMR analysis; since the solvent molecules do not act as 

hydrogen donors there is no reason to expect the same KIE as when hydrogen was replaced for 

deuterium.  

Another possible explanation for the observed promotional effect, is a manifestation of the 

traditional explanation provided for solvent effects in homogeneous chemistry. If a solvent 

environment affects the stability of a kinetically relevant transition state complex of a given 

reaction, the rate of reaction is expected to be a function of the solvent environment employed. 

Similarly one can postulate that if the transition state of the rate determining step, identified in 
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Chapter 5, can be stabilized by the presence of solvent molecules on the catalysts surface one 

would expect a promotional effect in the rate. So as to probe the plausibility of this hypothesis 

one can take a quantitative approach. We start by first defining the barrier of the rate determining 

step (Ea,4) identified in Chapter 5 as the addition of hydrogen to a surface alkoxide: 

*,4 sa TS alkoxide HE E E E    (2)  

Where ETS is the energy of the transition state on the surface, Ealkoxide* and EHs are the energies of 

the surface alkoxide and hydrogen adatom involved in the rate determining step. In Chapter 5 the 

value of Ea,4 was determined to be 65.8 kJ mol-1, which we take as the reference barrier in the 

absence of any solvent molecules on the surface. According to the expression in Eq. (2), if the 

energy of the transition state (ETS) is stabilized relative to that of the reactants (Ealkoxide* and EHs) 

the barrier of the rate determining step would decrease. A lower barrier would result in a larger 

rate of hydrogenation, leading to an observed promotional effect if a solvent was to favorably 

stabilize the transition state. It stands to reason that if a solvent molecule could interact with the 

transition state, it could possibly interact with the surface alkoxide and hydrogen. It is therefore 

necessary to establish a method by which these interactions can be quantified. Following the 

concept of lateral surface interactions as formalized by Norskov [3], one can define the energy of 

the various species in the presence of a solvent molecule as: 

,0 2 ( )i i i solvent CE E       (3)  

Where Ei,0 is the energy of a given adsorbate on the surface in the absence of any solvent 

molecules, which have been determined earlier in Chapter 5. A lateral interaction parameter εi is 

defined quantifying the extent of interaction between the adsorbate and solvent molecule on the 
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surface, a negative value indicates a stabilizing interaction between adsorbate and solvent 

molecule on the surface. θsolvent is the fractional coverage of the adsorbed solvent molecule on the 

surface while θC is the critical fractional coverage below which no lateral interaction is expected 

(Ei=Ei,0 for θsolvent< θC). Applying the lateral interaction definition of Eq. (3) into the formal 

definition of a surface reaction barrier Eq. (2), we can define the barrier in terms of possible 

solvent interactions with surface species. 

*,4 ,4 2*( )*( )
sa i a TS alkoxide H solvent CE E           (4) 

The barrier of rate determining step in the presence of a solvent Ea,4 I is now a function of the 

barrier in the absence of a solvent, fractional coverage of the solvent  and the resultant lateral 

interactions of the species involved. DFT simulations on the possible effect of solvents on ketone 

hydrogenation on Ru (0001) surfaces indicate that the only change observed in surface energies, 

as a result of the solvent molecule’s presence, occur in the transition state. We therefore set the 

lateral interaction of parameters of the alkoxide and hydrogen on the surface to zero, simplifying 

Eq. (4) to  

,4 ,4 ,2* *( )a i a TS i solvent CE E       (5) 

In the above expression the barrier in the presence of a solvent then relies on two unknown 

parameters, the lateral interaction between the transition state and solvent (εTS,i) and the critical 

solvent coverage θC. Unfortunately such values are not available in the existent literature, and are 

therefore estimated through regression of the data presented in Table 6.1.  
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To accomplish this we can return to the formal definition of the relative rates collected as per Eq. 

(1), expressing the relative rate in terms of the rate determining expression developed in chapter 

5 for ketone hydrogenation.  

*

*

,4

4,

,4

4

( )
s

s

Ea i

i alkoxide H solvent

i Ea

alkoxide H

A e
RR

A e

 

 




  (6) 

While it is certainly plausible that the pre-exponential be influenced by the presence of a solvent 

molecule, initial regression indi3cates that the pre-exponential is relatively unperturbed (<1 % 

change). The value of the pre-exponential factor in therefore fixed equal to the value determined 

in Chapter 5 both in the presence and absence of a solvent molecule on the surface. Shown in 

Table 6.2 are the results of the preliminary regression of Eq. (6) to the relative rates presented in 

Table 6.1. Alongside the regression values, hydrogen bond donor (α) and acceptor (β) values for 

each of the solvent molecules are presented since computational studies indicate that hydrogen 

bonding is a likely source of the stabilization effect [1].  
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Table 6.2 Regression results of Eq. (6) and hydrogen bond donor and acceptor capability. Hydrogen bonding 

properties of water and deuterium oxide are taken to be the same.  

Solvent molecule ∆Hads (kJ mol-1) εTS (kJ mol-1) θC HBD (α) HBA (β) 

D2O -81.2 -6.3 0 1.17 0.18 

Water -78.4 -6.1 0 1.17 0.18 

Methanol -81.4 -2.7 0.05 0.98 0.62 

1,4 dioxane -94.9 -3.8 0.56 0 0.37 

n-heptane -98.3 0 0 0 0 

 

From the regression results it appears that water provides the greatest stabilization effect, in line 

with previous observations that hydrogenation is promoted the most in an aqueous environment 

[1, 2, 4]. Interestingly, n-heptane is the only solvent molecule which does not exhibit any 

stabilization through lateral interactions. N-heptane is also the only solvent molecule with no 

capacity for either accepting or donating hydrogen bonds. Further corroborating the hypotheses 

that hydrogen bonds are responsible for the stabilization effect observed, is that water which 

exhibits the greatest degree of hydrogen bonding also provides the largest stabilization effect. It 

is therefore reasonable to assign the stabilization effect to hydrogen bonding between the solvent 

molecules and the kinetically relevant transition state on the Ru surface.  
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