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Geometry-Driven Folding of a Floating Annular Sheet
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Predicting the large-amplitude deformations of thin elastic sheets is difficult due to the complications of
self contact, geometric nonlinearities, and a multitude of low-lying energy states. We study a simple two-
dimensional setting where an annular polymer sheet floating on an air-water interface is subjected to
different tensions on the inner and outer rims. The sheet folds and wrinkles into many distinct morphologies
that break axisymmetry. These states can be understood within a recent geometric approach for determining
the gross shape of extremely bendable yet inextensible sheets by extremizing an appropriate area
functional. Our analysis explains the remarkable feature that the observed buckling transitions between
wrinkled and folded shapes are insensitive to the bending rigidity of the sheet.

DOI: 10.1103/PhysRevLett.118.048004

The mechanics of thin sheets at fluid interfaces is a
current frontier of elastocapillary phenomena [1]. In con-
trast to thicker films that balance the liquid-vapor surface
tension γ by generating moderate strain [2–5] or curvature
[6–9], very thin sheets strongly resist in-plane stretching
but are readily curled, wrinkled, or folded under capillary
forces [10,11]. In the asymptotic regime

B=R2 ≪ γ ≪ Y; ð1Þ
where B, Y are the bending and stretching moduli and R is a
characteristic length, the liquid surface energy becomes the
only dominant energy, rendering the elastocapillary prob-
lem into a purely geometric area minimization. This non-
trivial class of “asymptotic isometries”was demonstrated in
the partial wrapping of a liquid drop by an ultrathin circular
sheet, where axial symmetry is spontaneously broken [12].
Our understanding of this field is still in its infancy, and

many basic questions remain. What classes of gross shapes
are possible, and what is the nature of the transitions
between them? In general, transitions in microstructure—
such as the wrinkle-fold transition in 1D systems [13–15]—
are driven by competing energies. Are there situations in
which microstructure is dictated by geometrical rather than
mechanical constraints?
Here we study a simple, near-planar system that exhibits

(i) a variety of gross shapes with continuous and discon-
tinuous transitions between them, (ii) coexistence of dis-
tinct microstructural elements, and (iii) a wrinkle-fold
transition governed by geometric constraints. We find that
purely geometric considerations determine the gross shape,
which may dictate a specific microstructure. If more than
one microstructure is possible, then mechanical energies
may select one.

Experiment.—Wework in a geometry first experimentally
investigated by Piñeirua et al. [16], but with much thinner
films (t ∼ 100 nm) in order to probe the asymptotic regime
of Eq. (1). We spin coat polystyrene films (E ¼ 3.4 GPa) on
glass substrates and cut them into an annular shapewith radii
Rin and Rout [Fig. 1(a)], where 1.2 < Rin < 5.7 mm and
6.5 < Rout < 10.5 mm. The film is floated onto water in a
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FIG. 1. Buckling of a floating annular film. (a) A film with radii
Rin, Rout, subjected to tensions γin ≥ γout. (b) Surfactant concen-
tration outside the annulus is controlled by varying the trough
area Atrough. While γout decreases, γin is nearly unaffected, causing
hoop compression and reduction of the enclosed liquid-vapor
area. Experiments are performed with γout > 12.8 mN=m (open
circle), where the surfactant layer is fluid. Surface tension is
measured with a Wilhelmy plate. (c),(d) A t ¼ 394 nm sheet with
Rout ¼ 8.0 mm and ρ ¼ Rout=Rin ¼ 4.3, shown at τ ¼ γin=γout ¼
3.1 and 4.5. As τ increases, the sheet forms wrinkles and then two
folds.
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Langmuir trough, and a surfactant (perfluorododecanoic
acid) is added outside the film. The surfactant concentration
is varied by translating barriers to reduce the available area.
This controls the tension on the outer boundary of the
annulus γout [Fig. 1(b)]. The barrier speed is sufficiently
slow so that the surfactant is in equilibrium, and hydrochloric
acid is added to the water so that the surfactant is insoluble
and cannotmigrate through the bulk to the inner interface.As
we will show, the two dimensionless parameters of interest
are ρ ¼ Rout=Rin and τ ¼ γin=γout. The thickness and
Young’s modulus of the sheet, the density of the liquid,
and gravity only play a minor role.
Experimental studies of this problem [17,18] (known as

the Lamé setup) have typically focused on τ < ρ, where
only part of the sheet is wrinkled [19–21]. For τ ≳ 1, the
sheet is under nearly isotropic tension. As τ increases above
a ρ-dependent threshold [21], hoop compression is devel-
oped near the inner edge, giving rise to radial wrinkles. The
wrinkled zone expands until it reaches the outer edge when
τ → ρ [20,21], as shown in Fig. 1(c).
For τ > ρ, the net radial force ðγoutRout − γinRinÞδθ on an

angular sector δθ is negative, signaling an inward collapse.
However, for a highly bendable film, multiple deformations
are possible. Figure 1(d) shows the deformation for ρ ¼ 4.3,
where the sheet forms two folds [22]. As τ increases further,
these folds accumulate more material (see Video 1 in
Supplemental Material [23]).
Theprogressionfornarrowannuli,showninFigs.2(a)–2(c),

is very different. As we increase τ, the sheet again forms
axisymmetric wrinkles, but then collapses to a closed state
(Video 2 in Supplemental Material [23]), similar to previous
observations on thicker films [16]. This shape, which we call
a “collapsed racetrack,” consists of multiple folds coexisting
with wrinkled zones.

Yet another mode of symmetry breaking is shown in
Figs. 2(d)–2(f). Here, nonuniform wrinkles change the
radius of curvature of the boundary (Video 3 in
Supplemental Material [23]), in a manner that cannot be
accomplished with a finite number of localized folds. This
provides a concrete example where the gross shape can be
generated by only a particular microstructure.
Phase diagram.—The differentmorphologies are shown in

a phase diagram, Fig. 3(a), where the points indicate the
instability of the axisymmetricwrinkled state upon increasing
τ. Noting that the data cluster around the line τ ¼ ρ, we
investigate the dependence on thickness by plotting τ=ρ at the
transitionas a functionof thickness inFig. 3(b).No systematic
trend is observed. Wrinkle-fold transitions in 1D systems
generally exhibit strong dependence on thickness, indicating
an energetic competition between substrate deformation and
bending resistance [13–15,24–31]. By contrast, Fig. 3(b)
signals a totally different mechanism for a wrinkle-fold
transition, governed by geometric constraints.
Geometric model.—The observation in Fig. 3(b) moti-

vates a geometric model for the wrinkle-fold transition,
similar to the one introduced in Ref. [12] for the wrapping
of a droplet with a very thin sheet. This model relies on a
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FIG. 2. Sudden collapse and changes in the boundary curva-
ture. (a) A film with ρ ¼ 1.4 that has collapsed, shown at τ ¼ 1.5.
(b) The gross shape is drawn as a guide to the eye. (c) Collapsed
state for ρ ¼ 2.0, τ ¼ 2.0. (d)–(f) A different mode is observed
for ρ ¼ 2.9, where the inner and outer boundaries become
straighter (τ ¼ 2.5, 3.5, and 5.6, respectively). Sheet thickness
t: (a),(b) 40 nm, (c) 279 nm, (d)–(f) 321 nm. Outer radius,
Rout ¼ 8.0 mm.
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FIG. 3. Phase diagram. (a) Open circles: formation of folds.
Closed circles: buckling into racetrack shape. Bullseyes: hybrid
state with two dominant folds and straightening of boundary.
Gray stripes: experimentally probed region. Solid line at τ ¼ ρ:
theoretical prediction for transition into either a racetrack shape
(ρ < 2) or two dominant folds (ρ > 2). Dotted line: collapsed
racetrack becomes favorable, but with a finite energy barrier. For
2 < ρ < 3.17, the racetrack is energetically favorable for large τ
(dashed line), but the pathway from two folds is unclear. (b) Axial
symmetry is broken at τ ¼ ρ, independent of sheet thickness.
Symbol color indicates ρ, as in (a).
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separation of energy scales, Eq. (1), whereby wrinkles,
crumples, and folds enable compression of the sheet at no
cost, allowing the sheet to become “submetric” to its initial
flat state [32,33], whereas surface energies are not sufficient
to stretch the sheet significantly. Thus, the gross shape
(which ignores small-scale features) is obtained by mini-
mizing the surface energy of the exposed liquid interfaces,
under a constraint of inextensibility of the sheet.
Subtracting a constant term proportional to the area of
the trough, the energy becomes

U ¼ γinAin þ γoutðΔAoutÞ; ð2Þ

where Ain is the liquid surface area enclosed within the
annulus and ΔAout is the change in liquid surface area
outside. We now consider the energies in three distinct
families of gross shapes: axisymmetric contraction, the
two-folds shape, and a racetrack shape.
Axisymmetric gross shape.—For an axisymmetric defor-

mation, all points of the annulus move radially inwards a
distance uaxi by forming wrinkles [Fig. 4(a)]. Hereafter, we
render all quantities dimensionless by rescaling with Rin
and γout, and the energy [Eq. (2)] thus becomes
Uaxi ¼ π½τð1 − uaxiÞ2 − ðρ − uaxiÞ2�. Minimization yields
uaxi ¼ 0 for τ < ρ and uaxi ¼ ðτ − ρÞ=ðτ − 1Þ for τ ≥ ρ,
where Uaxi ¼ −πτðρ − 1Þ2=ðτ − 1Þ. Our experiments do
not find this axisymmetric mode at large τ.
Two folds.—Inspired by Fig. 1(d), we introduce a two-

folds Ansatz where two halves of the sheet translate rigidly
toward each other over a distance u2F, gathering excess
material into two folds, as illustrated in Fig. 4(b). This
Ansatz breaks axial symmetry minimally by stitching
together flat sections of the initial shape. This is similar
to the polygonal shapes obtained upon wrapping a liquid

droplet with a circular sheet, where flat petals curl
around the drop [12]. The energy is U2F ¼ 2½τϕðu2FÞ−
ρ2ϕðu2F=ρÞ�, where ϕðuÞ ¼ cos−1ðuÞ − u

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2
p

. The
predicted displacement for τ > ρ is

u2F ¼
�

τ2 − ρ2

τ2 − 1

�

1=2

: ð3Þ

For any τ > ρ, we find that U2F ≤ Uaxi: the two-folds
Ansatz is energetically favorable, consistent with our
experimental observations.
Following a similar principle to the droplet-wrapping

problem [12], the two-folds Ansatz can be generalized to n
folds, by dividing the initial annulus into n angular sectors.
Here we find that the optimal number of folds is
always n ¼ 2.
Observed gross shapes.—To quantify the shapes

observed in the experiment, we denote by 2xin the widest
distance in the inner boundary of the sheet; the diameter
along the bisector of that line is 2yin [Fig. 4(b)]. Figure 4(c)
shows yin versus xin for sheets with four different values of
ρ > 2; it agrees with the prediction (solid line), and deviates
significantly from its value for an axisymmetric shape. The
progression of yin versus τ is in qualitative agreement with
the prediction for two folds [Fig. 4(e)], although contrac-
tion is observed for τ < ρ, namely, before wrinkles are
predicted to reach the outer edge. This last observation
indicates a shortcoming of our purely geometric model,
which we discuss in the concluding paragraphs.
Racetrack.—Figures 2(a)–2(c) and 4(d) and Ref. [16]

motivate another Ansatz, depicted in Figs. 5(a) and 5(b),
wherein the sheet is divided into four angular sectors. Two
opposite sectors are straightened by wrinkles whose ampli-
tude is tailored to collect an increasing amount of azimuthal
length towards the outer edge, while the inner edge remains
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FIG. 4. Gross shapes of buckled annuli. (a) Radial wrinkles can collect excess azimuthal material, leading to axisymmetric
contraction. The amount of excess material is indicated by the shading. (b) Formation of two folds. Two halves of the sheet translate
towards each other; excess material is gathered in the shaded regions. (c) Aspect ratio of the inner boundary of the film, for wide annuli.
In each curve, data points are obtained by increasing τ. Solid line: prediction for two folds, yin ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2in
p

. The data and prediction
depart significantly from axisymmetric contraction, xin ¼ yin (dashed line), except in a narrow window near τ ¼ ρ for the thickest film,
shown separately in (f). (d) For narrow annuli, the buckled gross shapes are even wider. (e) yin versus τ for a film with ρ ¼ 4.3
(t ¼ 394 nm). Solid line: theory for two folds [Eq. (3)], which predicts a continuous transition at τ ¼ ρ. (f) yin versus xin for the same
film. Filled diamonds denote frames where the folds form. For smaller τ (larger yin), nonuniform wrinkles allow the sheet to approximate
the two-folds shape.
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flat. The other two sectors are bent with an inner radius
yin < 1; there, the inner edge is wrinkled and the outer edge
is flat. The relative amount of material compressed into
wrinkles is schematically represented by the shading in
Figs. 5(a) and 5(b). There is a conceptual difference
between the racetrack and the two-folds states: the latter
is constructed by stitching together pieces of the annulus,
whereas the former requires deformation at all points.
A simple calculation shows that the length of the

straightened parts is given by l ¼ πð1 − yinÞ=ρ. The race-
track energy is URT ¼ πτyinfð2=ρÞ þ ½1 − ð2=ρÞ�ying−
πðyin þ ρ − 1Þfρ − ½1 − ð2=ρÞ�ð1 − yinÞg.
For ρ > 2 (wide annuli), the optimal yin departs con-

tinuously from 1. For any τ ≳ ρ, the energy of the racetrack
Ansatz is higher than in the two-folds Ansatz, consistent
with our experiments. The racetrack can be favorable for
even larger τ [dashed line in Fig. 3(a)], but the pathway
from two folds to a racetrack is not obvious (see Ref. [23]).
For ρ < 2 (narrow annuli), the flat state (yin ¼ 1) is a

local minimum for τ ≲ ρ [Fig. 5(c)]. For τ > ρ, the only
energy minimum is at yin ¼ 0, corresponding to a collapsed
racetrack [Fig. 5(b)]. For these narrow annuli, URT < U2F.
Thus, the model predicts a sudden collapse from the initial
flat state to a closed shape; yin jumps from 1 to 0 as τ
exceeds ρ [Fig. 5(d) and Ref. [23]]. Our measurements are
in qualitative agreement with this prediction. (The surfac-
tant dynamics is much quicker than the motion of the
barrier, but may not equilibrate over the short time scale of
the collapse.)

The predicted values of τ at which the racetrack
appears are shown as a solid line on the phase diagram
[Fig. 3(a)], corresponding to the local minimum of the
energy. If the annulus could activate over the energy
barrier [in Fig. 5(c)] and reach the global minimum, the
racetrack shape would occur for slightly smaller τ [dotted
line in Fig. 3(a), see also Ref. [23]]. We point out that the
collapsed racetrack we observe is often curved, as in
Figs. 2(a)–2(c). A simple calculation shows that the
curving of the midline is a soft mode of the racetrack
state.
Conclusion.—We have shown that an annular sheet

subjected to differential tensile loads displays a rich,
shape-dependent behavior. This behavior is captured by
a geometric model, in which the liquid surface area is
minimized while the sheet is assumed infinitely bendable
and inextensible. The two-folds and racetrack shapes
emerge as qualitatively distinct solutions of the geometric
model—the first one is reminiscent of the flat annulus,
and is constructed by “stitching” together portions of it,
whereas the second type substantially deforms the sheet far
from the axisymmetric state.
We have shown that purely geometric considerations

select gross shapes whenever the interfacial area is the
dominant energy. This occurs in 2D and 3D, under
boundary constraints (such as the partial wrapping of a
liquid drop [12]), or topological constraints (such as
accommodating a hole in the present work). This geometric
approach links these interfacial phenomena to problems
where a nearly inextensible membrane such as a Mylar
balloon or a parachute is inflated [32–35].
The selected gross shape constrains the type of micro-

structure in the sheet, and may even determine it uniquely
(e.g., two large folds for wide annuli). However, a given
gross shape may be compatible with multiple microscopic
configurations (e.g., wrinkles with different wavelengths),
whereby subdominant energies due to bending and sub-
strate deformation can then govern the fine microscopic
features. More dramatically, if several gross shapes are
nearly degenerate in area, these subdominant energies can
select the gross shape. For example, the racetrack Ansatz is
made of wrinkles and completely collapses, whereas the
observed shape, made of many folds, does not [Fig. 2(a)].
Another example arises for the thickest film we studied
(t ¼ 394 nm): Finite contraction is observed in the
axisymmetric wrinkled state [top right-hand corner of
Fig. 4(f)]. Then, for larger τ, a nonuniform distribution
of wrinkles mimics the two-folds Ansatz, before folds have
actually formed [Fig. 4(f)]. This calls for a more complete
understanding of the relationship between gross shapes
and their underlying microstructure.

We thank H. Bermudez for use of a Langmuir trough.
J. D. P. gratefully acknowledges support from the ESPCI
Paris Joliot Chair. This work was supported by the W.M.
Keck Foundation.
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