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ARTICLE

Hyperuniformity with no fine tuning in sheared
sedimenting suspensions
Jikai Wang1, J.M. Schwarz1 & Joseph D. Paulsen1

Particle suspensions, present in many natural and industrial settings, typically contain

aggregates or other microstructures that can complicate macroscopic flow behaviors and

damage processing equipment. Recent work found that applying uniform periodic shear near

a critical transition can reduce fluctuations in the particle concentration across all length

scales, leading to a hyperuniform state. However, this strategy for homogenization requires

fine tuning of the strain amplitude. Here we show that in a model of sedimenting particles

under periodic shear, there is a well-defined regime at low sedimentation speed where

hyperuniform scaling automatically occurs. Our simulations and theoretical arguments show

that the homogenization extends up to a finite length scale that diverges as the sedimentation

speed approaches zero.
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Particle suspensions can respond to flow in dramatic ways.
Steady shear can cause their viscosity to jump by orders of
magnitude in some situations, or to plummet in others1–3.

Interparticle or external forces such as gravity can alter suspen-
sion properties over time4. These effects put large demands on
handling and processing. Thus, methods are desired for obtaining
homogeneous particle distributions with predictable mechanical
properties, as a platform for further handling. On small length
scales, one wants to break up aggregates or pockets of high
concentration, since particles moving in close proximity cause
significant dissipation. On large length scales, one wants different
parts of the sample to have similar particle concentrations so that
the rheological response is stable and reliable.

Recent experiments have shown that non-Brownian suspen-
sions can be driven to well-behaved states simply by applying
cyclic, low-Reynolds number shear from the boundaries5–9. For
small strain amplitudes γ, the particles automatically self-organize
into reversible steady states, whereas for amplitudes larger than a
critical value, γc, the particles follow irreversible paths indefi-
nitely. An underlying non-equilibrium phase transition has been
rationalized by simulations with simple particle kinematics6 (see
the phase diagram in Fig. 1a), and the transition has been shown
to directly affect the rheological response in experiments6,7,10.
Further simulations suggest that in such suspensions, the particles
should exhibit extremely uniform spatial distributions when

driven for many cycles at the critical strain amplitude, γc11,12.
These distributions are called “hyperuniform” and are char-
acterized by density fluctuations that decay rapidly as one looks
over larger and larger length scales13–15. Shearing at γc is thus an
attractive method for homogenizing a suspension. Yet, from a
practical standpoint it is hindered by requiring precise tuning of
the strain amplitude11.

Here we present a robust method for obtaining a hyperuniform
state in a viscous suspension. Based on recent work by Corté
et al.16, we introduce a small density mismatch between the
suspending fluid and the particles so that they sediment slowly
under gravity. In this situation, cyclic shear was found to re-
suspend the particles up to a height where they achieve the critical
concentration, ϕc16. Our simulations and theoretical arguments
show that there is a well-defined regime at low sedimentation
speed where this combination of sedimentation and shear serves
to homogenize the system. In this regime, density fluctuations are
significantly suppressed up to a finite length scale. We show that
this length scale is set by small vertical gradients in the particle
concentration, and it can be made arbitrarily large simply by
slowing the sedimentation rate. We thereby construct a phase
diagram for this “self-organized hyperuniformity”, which is in
good agreement with our simulation results.

Results
Simulations. We use a simulation model originally developed by
refs.6,16. This method captures a wide range of behaviors seen in
experiments on sheared non-Brownian suspensions, including
self-organization6 and novel memory effects7,17. We place
N particles of diameter d in a square box of width L with area
fraction ϕ=Nπ(d/2)2/L2. The box is periodic on the left and right
sides, and the top and bottom are hard walls. We use units where
d= 1 so that lengths are in particle diameters, and we measure
time in units of cycles.

Following ref. 16, each cycle consists of particle sedimentation
and shear. First, all particles sediment vertically a distance vs.
Shear is then applied in several steps as illustrated in Fig. 1b. First,
particles are displaced with an affine transformation, (Δx, Δy)=
(γy, 0), where y is the distance from the particle center to the
bottom wall. All particles are then returned to their original
unsheared positions. Particles that overlap during this transfor-
mation are given a kick in a random direction with a magnitude
chosen uniformly between 0 and ϵ, where ϵ= 0.5 except where
otherwise stated. The effect of the shearing is to make particles
collide that are within an interaction region, like the one sketched
in Fig. 1c. (In previous studies, varying the kick size or collision
kinematics did not change the qualitative results18.)

Self-organized criticality. Corté et al.16 recently showed that for
sufficiently slow sedimentation a critical state is automatically
reached, offering a rare example of self-organized criticality seen
in both simulation and experiment19. This behavior occurs when
the steady state concentration of the particles is equal to the
critical concentration, ϕc, and it can be anticipated from simple
arguments. At any vs, the particles settle to a steady state height
where sedimentation and diffusion balance as pictured in Fig. 2a
(see also Supplementary Videos 1 and 2), in a process called
viscous resuspension20. For slower sedimentation, this balance
leads to a higher suspension height, as shown by the vertical
concentration profiles in Fig. 2b. Hence, at lower vs, the average
concentration throughout the suspension in the steady state, ϕ∞,
is also lower (where the subscript indicates this is the steady state
value). Crucially, because the diffusion process is driven by col-
lisions, the particles stop spreading apart when they are just far
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Fig. 1 Sheared non-Brownian suspension model after ref. 6. a Phase diagram
showing reversible steady states at low concentration, ϕ and strain
amplitude, γ. Outside this region, a finite fraction of particles collide during
each cycle in the steady state. Dashed line: Critical phase boundary. Data
show the largest γ where we obtain a reversible state in simulations
with L = 200d. b Simulation algorithm. In each shear cycle, particles are
displaced a horizontal distance Δx= γy and then returned to their initial
positions. Particles that overlap (red) are given random kicks, to simulate
local irreversibility due to collisions. c Interaction region around a particle. A
second particle with its center anywhere inside the dashed circle will
overlap with the particle at the origin (shown as a dark circle); they would
both receive a random kick. Shearing the system expands the interaction
region to the entire shaded area (shown for one value of γ), which contains
the points that are covered by continuously shearing the dashed circle up to
strain amplitude γ and back
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enough away to stop colliding, so the concentration cannot
decrease below ϕc. Thus, ϕ∞→ ϕc as vs→ 0.

Quantitatively, the critical concentration is achieved when a
suitably-chosen sedimentation timescale, τs, is much larger than
a diffusion timescale, τD. Corté et al.16 proposed that τs is set
by the time to sediment a mean particle spacing (a distanceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πd2=4ϕ
p

), and τD is the characteristic time for a particle to
diffuse over the total height of the suspension (i.e., τD= h2/4D
where D is the coefficient of diffusion for a non-sedimenting
system at ϕ= 2ϕc, and h= πd2κ/4ϕ is the suspension height
with κ=N/L being the linear density of particles along the x axis).

In a critical state where ϕ= ϕc, the ratio of these timescales is:
A= τD/τs=(π/ϕc)3/2d3κ2vs/32D.

The inset to Fig. 2c shows our measurements of ϕ∞/ϕc, where
we vary velocity vs, linear density κ, strain amplitude γ, and
system size N over a broad range. The data indeed approach 1 for
small A, but they are clearly not collapsed. (Ref. 16 set their
expression for A to be eight times this value; this merely shifts
all the data along the x axis by a fixed amount.)

We propose that the timescales for diffusion and sedimentation
should instead be considered over the same length scale. Taking
τD and τs as the timescales for particle transport over the
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Fig. 2 Self-organized criticality at low sedimentation speed. a Snapshot of a system in the steady state. Red particles are colliding in the current cycle.
b Particle concentration (plotted on the x axis) versus vertical coordinate, y, at low and high sedimentation velocity vs, with N= 2547, γ= 3.0, κ= 25.5,
and L= 100. Vertical dashed line shows ϕc(γ= 3)= 0.20. c Scaled steady state concentration ϕ∞/ϕc, measured over a wide range of system parameters
(κ, γ, and N as shown in legend) and velocities (10−5 < vs < 10−2). Inset: Measurements versus the parameter A= (π/ϕc)3/2d3κ2vs/32D, proposed by
ref. 16. The data is not collapsed. Main: The data collapses when replotted versus A (Eq. (1)). For A � 1 (low sedimentation speed), the steady state
concentration ϕ∞ is equal to the critical value ϕc. Error bars show the size of fluctuations within the steady state
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because of the anisotropic driving.) b Results for γ= 3. Despite larger anisotropy in the structure, hyperuniformity occurs at low A
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critical height of the bed of particles, hc, we obtain:

A ¼ τD
τs

¼ π

16
d2κvs
ϕcD

; ð1Þ

which serves as a non-dimensional sedimentation speed. This
expression produces an excellent collapse of the data, as shown
in Fig. 2c. (The same expression also collapses the data in a
version of the algorithm where a separate kick is given for
each particle encountered in a cycle; see Supplementary Note 1
and Supplementary Fig. 1.)

Structure factor. At low sedimentation speed, the suspension is
in a critical state characterized by a power-law distribution of
avalanches that are set off by individual collisions16. Although a
suggestive connection has been identified between criticality and
hyperuniformity11, there is presently no deductive link. To see
whether hyperuniformity can survive the dynamics of continual
resuspension, we now look for it in our simulations. Following
previous studies9,11,12,21,22, we consider the structure factor
defined by:

SðkÞ ¼ 1
N

X
j

eik�rj
�����

�����
2

; ð2Þ

where k is a two-dimensional (2D) wavevector and rj is the
location of the jth particle center. Density fluctuations over long
distances in real space affect S(k) near the origin in reciprocal
space; the hallmark of hyperuniformity is that S(k)→ 0 as k→ 0.

Figure 3 shows our measurements of the structure factor for
two values of the strain amplitude, γ, and three values of the non-
dimensional sedimentation speed, A. For large sedimentation
speeds, A>1, the data are featureless and show that density
fluctuations exist on all length scales. (The thin white band is due
to vertical concentration gradients.) At smaller A, the values
decrease near the origin. Hyperuniformity is clearly present at
A= 0.0077. Crucially, each strain amplitude produces a hyper-
uniform state with no fine tuning of the driving.

Density fluctuations in real space. To probe the system further,
we investigate density fluctuations in real space. We consider
the number density of particles, ρ, within circular regions of

diameter ‘, centered at random locations within the bed of par-
ticles, where we avoid the diffuse boundary layer at the top of the
sample by staying in the bottom 99% of the particles. Denoting
the variance of the number density over these samples by σ2ρð‘Þ≡
ρ2ð‘Þh i � ρð‘Þh i2, hyperuniformity is characterized by the rate of
decay of σ2ρð‘Þ with respect to window size:

σ2ρð‘Þ / ‘�λ; ð3Þ

with λ exceeding the spatial dimension of the system.
Figure 4a shows σ2ρð‘Þ for several sedimentation speeds, vs. At

the lowest vs we observe hyperuniform behavior with a scaling
exponent of λ= 2.60 ± 0.04. (The data are also consistent with
σ2ρð‘Þ � ‘�3 logð‘Þ, a scaling that occurs in jammed packings23,24

and in an isotropic version of the sheared-suspension model
in the presence of noise25.) Notably, our measurements at
low velocity show the same scaling as our simulations of non-
sedimenting particles at ϕ= ϕc (bottom data in Fig. 4c with λ=
2.60). At larger velocities the variance σ2ρð‘Þ gradually increases,
which is noticeable first at long length scales and then at smaller
and smaller ‘.

The tails at large ‘ are due to the finite size of the system. In
particular, when the window size ‘ is comparable to the height of
the suspension bed, the sampling windows are forced to overlap.
This reduces the variation in number density as the measure-
ments are not independent. This effect was identified in ref. 21; we
investigate it further in Supplementary Note 2 and Supplemen-
tary Fig. 2. The steady state height of the bed is also shorter at
larger velocities, which limits the data to a smaller range of ‘.

To demonstrate hyperuniform scaling of the variance up to
even larger length scales, we model an analogous system in one
dimension (1D). The system is oriented vertically and sedimenta-
tion is applied as in the 2D case (see Supplementary Video 3).
Following previous work on such 1D models6,26, any particle that
is within an interaction distance γ= 1 of another receives a
random kick with a magnitude between 0 and ϵ, displacing
it either up or down with equal probability. Figure 4b shows σ2ρð‘Þ
measured in the steady state for different sedimentation speeds.
At low vs, hyperuniform scaling occurs over three decades in
length with λ= 1.44 ± 0.02.
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Loss of hyperuniform scaling by concentration gradients. In
both 2D and 1D, the loss of hyperuniform scaling at high
sedimentation speeds is no surprise—these systems show large
vertical concentration gradients at high vs, as shown already in
Fig. 2b and seen in earlier work on this model16. Nevertheless,
one wants to know how small the velocity must be to prepare a
system in a hyperuniform state. In the remainder of this article,
we build up a general quantitative framework that answers this
question. Our approach is to split the total variance of the
number density into two additive terms: one from the statistics
of the particles in a critical state, σ2ρð‘Þc, and the other capturing
the effect of a global concentration gradient. That is,

σ2ρð‘Þtotal ¼ σ2ρð‘Þc þ σ2ρð‘Þgrad: ð4Þ

Our main task is to establish a quantitative description of
σ2ρð‘Þgrad. As a result of this analysis, we establish a finite length
scale ‘H beyond which hyperuniform scaling is lost.

To begin, we study the effect of system-spanning concentration
gradients on number density fluctuations in a well-controlled
setting. First, we generate hyperuniform distributions of particles
by shearing a non-sedimenting system at γ ≈ γc until it reaches a
reversible steady state. We then adjust the y positions of these
particles to create a uniform vertical concentration gradient. (The
y-coordinate map is uniquely determined by requiring that the
particle concentration maps as ϕ0→ ϕ(y)= ϕ0 þ ∂ϕ=∂yj jðh�
2yÞ=2 for a continuum system with initially uniform concentra-
tion ϕ0; see Supplementary Note 3 and Supplementary Fig. 3 for
details.) Figure 4c shows the variance σ2ρð‘Þ of these distorted
systems for different values of the gradient, ∂ϕ=∂yj j. As in the
full sedimentation simulations, the variance is noticeably
affected at large ‘ for small perturbations and then at shorter
and shorter length scales as the perturbation size increases.

We can understand these variance curves from simple
arguments. We calculate the variance of the concentration
for a continuous field ϕ(y) with a uniform vertical gradient
(i.e., ∂ϕ/∂y= const.) in a rectangular domain of height
h and width L. We consider the case with periodic boundary
conditions on the left and right sides to match our simulations.
The concentration at position (x, y) is given by: ϕ(x, y)= ϕ0+
1
2 ϕb � ϕt
� �

1� 2y=hð Þ, where ϕb and ϕt are the concentrations
at the bottom and top of the domain, and ϕ0= (ϕb+ ϕt)/2
is the mean concentration. The variance of the concentration
is given by: σ2ϕð‘Þ ¼

R
ϕðx; yÞ � ϕ0
� �2

f ðx; yÞdxdy, where
f ðx; yÞ ¼ 1=½Lðh� ‘Þ�, reflecting the fact that the sampling
window cannot cross the top or bottom of the domain (i.e.,
‘=2<y<h� ‘=2). Computing this variance and converting from
concentration to number density, we find:

σ2ρð‘Þgrad ¼
4
3π2

∂ϕ

∂y

� 	2

ðh� ‘Þ2; ð5Þ

where ∂ϕ/∂y= (ϕt− ϕb)/h. The total variance in the discrete
particle system is obtained by adding this result to the variance of
the corresponding system with no concentration gradient (i.e.,
∂ϕ/∂y= 0), as anticipated by Eq. (4). Figure 4c shows that this
prediction is in excellent agreement with the data across all length
scales and over a large range of gradients.

The similarity between Fig. 4a, b for sedimentation simulations
and Fig. 4c for the effect of a simple linear distortion is striking.
This result suggests that the density fluctuations in this system
can be largely accounted for by understanding these gradients.
We now move to quantify the strength of the vertical
concentration gradients that arise in the model.

Magnitude of vertical concentration gradient. We measure the
mean steady state concentration gradient, Δϕ=Δyj j, by fitting a
straight line to the concentration profile, where we fit only the
middle 60% of the particles to avoid boundary effects. Figure 5
shows the measurements as a function of A. The data are only
approximately collapsed, suggesting that the vertical concentra-
tion gradient is determined by a different balance than what was
computed in Eq. (1) for the average concentration.

In the simple scenario where particles are constantly diffusing
in a gravitational field, the vertical concentration profile is
exponential27: ϕðyÞ / e�vsy=D. In the present simulation model,
at the height where the concentration reaches ϕc, the particles
undergo few collisions so that diffusion essentially turns off
(see Fig. 2b and ref.16). Thus, we approximate the concentration
profile as an exponential up to a finite height where ϕ= ϕc, with
ϕ= 0 above that level. This constraint plus the conserved
number of particles yields a unique profile ϕ(y), with a vertical
concentration gradient given by:

ϕ′ðyÞ ¼ � πd2κv2s
4D2

e�vsy=D

1� e�vsh1=D
; ð6Þ

where h∞ is the steady state height of the suspended bed of
particles. In a critical state with h∞= hc= πd2κ/4ϕc and at
half the bed height (y= h∞/2), the second term reduces to

e�2A= 1� e�4A

 �

. This expression is order one at A= 1, but it

varies widely as a function of A. Nonetheless, the first factor in
Eq. (6) collapses the data very well, as shown in Fig. 5. Fitting for
the numerical prefactor, we find:

Δϕ

Δy

����
���� � 0:27

d2κv2s
D2

: ð7Þ

Phase diagram. We can now demonstrate how hyperuniform
scaling is achieved for small concentration gradients in the full
simulations. We insert Eq. (7) for the size of the vertical con-
centration gradient into Eq. (5) for its effect on the variance of the
number density. We take ‘ � h (thereby ignoring boundary
effects due to the window encountering the edge of the system),
and we assume a critical state where h∞= hc. Plugging in and
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expressing in terms of A, we get σ2ρð‘Þgrad � 4:1A
4
ϕ2c , which

together with Eq. (4) gives:

σ2ρð‘Þtotal � σ2ρð‘Þc þ 4:1A
4
ϕ2c : ð8Þ

This simple expression says that the total variance is the sum of
a term from the statistics of the critical state, σ2ρð‘Þc, and a term

that depends on sedimentation via the product A
ffiffiffiffiffi
ϕc

p
. To test this

result, Fig. 6a shows the variance σ2ρð‘Þ measured at a length scale

‘ ¼ 10 in our sedimentation simulations, as a function of A
ffiffiffiffiffi
ϕc

p
.

The data are collapsed, and they compare well with Eq. (8) up to
moderate velocities. In Fig. 6b, we plot the magnitude of the
scaling exponent, λ, measured locally at ‘ ¼ 10. The data are
again collapsed at low and moderate velocity, and they show
hyperuniform scaling (i.e., λ > 2) for sufficiently small A

ffiffiffiffiffi
ϕc

p
.

We construct a phase diagram by measuring the local scaling
of σ2ρð‘Þ in the same manner, as a function of ‘ and A

ffiffiffiffiffi
ϕc

p
.

In particular, Fig. 6c shows our measurements of the length
scale ‘H where λ falls below 2, marking a phase boundary
between hyperuniform and non-hyperuniform scaling. This
length scale becomes larger for smaller vs (and hence smaller
A) for the simple reason that hyperuniform scaling is lost when
density fluctuations due to the vertical concentration gradient
(scaling as A

4
ϕ2c independent of ‘) become comparable to the

density fluctuations in the critical state (σ2ρð‘Þc � ‘�2:60),
as anticipated by Eq. (8). Equating these two terms yields the

scaling: ‘H � A
ffiffiffiffiffi
ϕc

p� ��4=2:60� A
ffiffiffiffiffi
ϕc

p� ��1:54
.

Improving on this scaling result, we can predict the precise
location of this phase boundary by solving for the length scale ‘H
where the local scaling exponent of Eq. (8) (i.e., ‘ times the
logarithmic derivative of Eq. (8)) is equal to λ= 2. This
computation yields:

‘H � 0:22 A
ffiffiffiffiffi
ϕc

p� ��1:54
; ð9Þ

which agrees very well with our data, as shown in Fig. 6c. We also
obtain a good description of the 1D simulations by applying the
same arguments in that setting (see Supplementary Note 4 and
Supplementary Fig. 4). Three measured numerical values have
entered into this calculation of the phase boundary: the scaling
exponent and numerical prefactor for σ2ρð‘Þc, and the numerical
prefactor for the size of the vertical concentration gradients in Eq.
(7). The predicted ‘H is otherwise completely constrained by our
physical arguments.

Finally, we note that all the data in Fig. 6a–c across a wide
range of strain amplitude (0 < γ < 10) are in reasonable agree-
ment. Although there are some differences for larger velocities in
Fig. 6c, the data for different γmerge together as A

ffiffiffiffiffi
ϕc

p
decreases.

Hence, for the simulation algorithm and protocol studied here,
there appears to be no practical limit on the value of γ for
preparing a hyperuniform sample. We have even considered the
case where γ= 0, in which particles receive kicks only when they
come in contact with each other. Although this limit is not so
physical, it suggests that all that is needed is for particles that are
within a finite interaction region to displace each other.

Discussion
We have proposed and demonstrated a simple method for
obtaining homogeneous distributions of particles in non-
Brownian suspensions. The ingredients are extremely simple:
we take advantage of a density mismatch between the particles
and the fluid that is common in real settings, plus cyclic shear
flow. This protocol could be used to ease processing demands in
applications. Of course, there are other means for evenly dis-
tributing particles in a fluid; chaotic advection has recently been
proposed as another route for homogenizing a suspension28. The
key advantage of our method is that the driving amplitude does
not have to be set to a specific critical value. More broadly, we
have shown that even in the presence of body forces on the
particles, local collisions are sufficient to reach and maintain a
homogenous state with hyperuniform scaling.

Looking beyond rheological behaviors, hyperuniform dis-
tributions of scattering sites can endow disordered materials with
isotropic photonic band gaps29,30. Our method could potentially
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Fig. 6 Self-organized hyperuniformity. a Variance of the number density, σ2ρð‘Þ, for sampling windows of size ‘ ¼ 10. The data over a wide range of
parameters are collapsed when plotted versus A

ffiffiffiffiffi
ϕc

p
. At low velocity (i.e., low A

ffiffiffiffiffi
ϕc

p
) the data plateau to the value in the critical state. The data at low and

moderate velocities are captured by Eq. (8) for the effect of vertical concentration gradients (dashed line). b Magnitude of the local scaling exponent, λ,
measured at ‘ ¼ 10. At this length scale, hyperuniform scaling (λ > 2) is observed for A

ffiffiffiffiffi
ϕc

p
≲ 0.08. c Phase diagram for hyperuniform density fluctuations.

Hyperuniformity emerges below a finite threshold value of A
ffiffiffiffiffi
ϕc

p
, and it extends to longer length scales as the control parameter A

ffiffiffiffiffi
ϕc

p
decreases.

Symbols: ‘H , defined as the shortest length scale where the local scaling exponent λ of the variance σ2ρð‘Þ becomes shallower than 2. Dashed line:
Phase boundary from our theory with no free parameters, Eq. (9)
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be used to prepare colloidal suspensions with such optical
properties, without the need to fine-tune the driving11. Moreover,
by changing the driving amplitude, the mean particle spacing can
be varied continuously while maintaining a hyperuniform state.

Surprisingly, our work has revealed three distinct combinations
of the parameters κ, vs, ϕc, and D that control self-organization in
this system. The criteria for obtaining the critical concentration is
set by the dimensionless parameter A / κvs=ϕcD, vertical con-
centration gradients scale with κv2s =D

2, and hyperuniformity is
controlled by A

ffiffiffiffiffi
ϕc

p / κvs=
ffiffiffiffiffi
ϕc

p
D. By considering the interplay

between these effects, we have identified an emergent length scale
‘H beyond which hyperuniform scaling breaks down. This length
scale, arising from a competition between local organization and
large-scale gradients, is sufficiently general that it should arise in
other settings.

Methods
Simulations. We simulate the above algorithm in domains of size 50 < L/d < 312.5
in 2D and 750 < L/d < 7500 in 1D. In the simulations with sedimentation, we begin
by applying ~107 shearing cycles in 2D and ~109 cycles in 1D to ensure the system
has reached a steady state. To reduce scatter in the data, we average over multiple
systems. For the variance measurements in 2D, we also average over multiple
configurations within a system by taking samples once every 105 cycles in the
steady state. Our total simulation time is approximately equivalent to 1 month of
1000 single-core CPUs.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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