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Abstract 

This study examined the patterns of problem posing shown by United States (US) and 

Chinese prospective elementary teachers during problem-posing processes when problem-

solving activities were involved in an alternating manner. It further explored the features of the 

relationship between problem posing and problem solving. Data were collected by asking 32 US 

and 55 Chinese prospective elementary teachers to pose problems for Translating, 

Comprehending, Editing, and Selecting processes (Christou, Mousoulides, Pittalis, Pitta-Pantazi, 

& Sriraman, 2005) before a problem-solving task, and then to pose two more problems after that 

problem-solving task, namely, problem posing after the problem solving process. All participants 

completed the first set of tasks, and 43 of them completed the similarly structured second set of 

tasks.  

Participants’ posed and solved problems were quantitatively analyzed. For problem 

solving, the results showed that (1) 25% of the 32 US participants and 98% of the 55 Chinese 

participants completely solved the given problem during the first task administration, and (2) 19% 

of the 16 US participants and 89% of the 27 Chinese participants correctly solved the given 

problem during the second task administration. In their problem posing, Chinese participants 

posed a much higher percentage of solvable mathematical problems in the Comprehending and 

Selecting processes compared to their US counterparts, while their US counterparts were 

challenged most by these two processes. Additionally, both US and Chinese participants’ best 

performance in problem posing did not occur during problem posing after the problem solving 

process.  

In qualitative analysis, US and Chinese participants’ problem-posing performance shared 

some similar patterns regarding (1) features of posed problems, (2) capability of posing problems 



 
 

with creative ideas, and (3) progression of problem-posing performance throughout all five 

problem-posing processes. The US and Chinese participants also showed some differences 

during the problem-posing process as follows: (1) figure visualization; (2) calculation 

interpretation; (3) habitual preference of posing a sequence of problems; (4) perception of a 

given answer based on previously posed or solved problems; and (5) problem-posing strategy 

selection for integrating given information. This study further examined the features of the 

relationship between problem posing and problem solving. Different types of problem-posing 

tasks needed different amounts of problem-solving effort and they had different impacts on 

problem-solving performance. In addition, problem solving before problem posing had a positive 

influence on participants’ subsequent problem-posing performance.  

This study suggests recommendations for future research to understand other forms of 

interactions between problem posing and problem solving, explore specific impacts of cultural or 

academic background on problem-posing performance, and develop models or frameworks that 

could help problem posers overcome the difficulties involved in posed problems that were ill-

structured, unsolvable, or not mathematical problems. For teacher preparation, this study 

advocates that prospective elementary teachers need more exposure to multiple types of 

problem-posing tasks, practices involving interactions between problem posing and problem 

solving, opportunities to work with ill-structured mathematical problems, as well as 

opportunities to recognize and analyze different types of mathematical problems before posing 

their own problems.     
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Definition of Terms in This Study 

• A mathematical problem is a task that involves mathematical concepts and principles, with 

a solution that is not able to be assessed using immediate knowledge or straightforward 

means at hand. 

• Problem solving is defined as a complex activity that demands cognitive thinking to assess 

a solution rather than just a simple recall of facts and procedures. 

• Problem posing refers to either generate new problems according to a given situation or 

reformulate a given problem. 

• A solvable mathematical problem is a mathematical problem with sufficient or extraneous 

given information that is enough for finding a solution. 

• An unsolvable mathematical problem is a mathematical problem that has insufficient 

information to find a solution, or that is impossible to be solved usually due to infinite 

numbers of answer to that problem. 

• Not a mathematical problem refers to a problem that does not require mathematical 

computational or reasoning steps, or a description or a phrase that is not a problem. 

• A close-ended problem has only one correct answer and only one way to reach that answer. 

• An open-middled problem has multiple paths for solving, but with only one answer. 

• An open-ended problem has multiple paths for solving and more than one correct answer. 

• Mathematical creativity in problem posing is viewed as rare mental feats with respect to 

the core dimensions including (1) fluency, referring to the number of posed problems, (2) 

flexibility, referring to the number of different categories of posed problems, and (3) novelty, 

referring to how rare one posed problem was in the set of all posed problems (Guilford, 

1950).  



xiv 
 

• A creative idea involved in a posed problem refers to a new relationship among 

mathematical concepts or procedures that is implicit in given figures and situation. 

• High-level cognitively demanding tasks involve procedures with connections and doing 

mathematics. In other words, these tasks are challenging, and require problem solvers to 

understand mathematical concepts and look for the underlying mathematical structure. On 

the contrary, low-level cognitively demanding tasks include memorization tasks and tasks 

involving procedures without connections. 

• The Billiard Ball Mathematics Task involves a ball that is shot on a billiard table at a 45-

degree angle from the lower left corner of a rectangular table with whole numbers as its side 

lengths. The ball travels in straight lines. Each time the ball hits a side of the table, it 

bounces off at a 45-degree angle, until it gets to another corner of the table.  
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Chapter 1: Introduction 

Overview 

People ask questions every day. Questions encourage us to think, to explore, and to 

understand the world better. Similarly, mathematical problems involving one or more questions 

play a larger role in mathematics teaching and learning. A mathematical problem is defined as a 

task involving mathematical concepts and principles, with a solution that is not able to be 

assessed using immediate knowledge or straightforward means at hand (Kantowski, 1977; 

Schoenfeld, 1985). A problem that does not involve mathematical concepts or principles is not a 

mathematical problem. Problem solving therefore, is considered a complex activity that demands 

cognitive thinking (e.g., applying prior knowledge, making connections, visualizing, estimating, 

reasoning, self-questioning) rather than a simple recall of facts and procedures. Lesh and 

Zawojewski (2007) developed an even broader definition of problem solving from a models-and-

modeling perspective that emphasized problem solving as “a process of interpreting a situation,” 

during which a problem solver is usually required to refine clusters of mathematical concepts 

from various topics within and beyond mathematics, and is usually engaged in “several iterative 

cycles of expressing, testing, and revising mathematical interpretations” (p. 782). Simply 

speaking, successful problem solving requires deep perception into the structure of a problem. 

Studies have shown that problem perception was one of the major reasons that lead to the 

difference in problem-solving skill and performance between experts and novices while, in turn, 

problem-solving training and experience resulted in improving solvers’ problem perception 

(Schoenfeld & Herrmann, 1982). 

Mathematical problem solving usually focuses on non-routine problems (i.e., problems 

that involve productive thinking and the application of a certain strategy), instead of fixed 
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computations or solution procedures (English, 1996). It requires learners to discover 

mathematical structures, make meaningful conjectures, test possible ideas, and formulate 

reasonable solutions. In other words, “mathematical problem solving cannot be construed merely 

as knowledge to be received and learned” but as a “process of making sense of particular 

phenomena” (O’Shea & Leavy, 2013, p. 297). In the long run, problem solving can gradually 

change learners’ beliefs about mathematics, especially beliefs that can have negative influence 

on student learning (Lesh & Zawojewski, 2007).  

Problem posing is another cognitively demanding activity that asks people to either 

generate new problems according to a given situation or reformulate a given problem (Kilpatrick, 

1987; Silver, 1994). For example, if talking about the relationship between multiplication and 

division with whole numbers, given a situation about groups of flowers, one could ask: How 

many flowers are there for four groups of three flowers? This refers to the generation of a new 

problem from a given situation. After solving this problem with the answer of 12, a following 

problem could be: If 12 flowers were evenly sorted into six groups, how many flowers in each 

group? This problem is reformulated from a given or, more accurately, a solved problem.  

In light of this definition, problem posing contains two forms of activities: (1) Problem 

posing is a comparatively independent learning activity that requires exploration of a given 

situation, which usually is a real-world and/or open-ended situation and involves a cluster of 

mathematical concepts or ideas; and (2) Problem posing is a tool of problem solving or a further 

step after problem solving. In this case, problem posing that occurs before or during problem 

solving helps learners understand the structure of the given problem and solve that problem in 

the first place. This is referred to by Brown and Walter (1990a) as the “prior effect” (p. 114). 

Problem posing that occurs after problem solving demonstrates posers’ initiative and creativity 



                                                                                                                                                     3 
 

 
 

of mathematical thinking, especially in approaches or solutions that they are surprised or 

confused by, where Brown and Walter labeled the “after effect” (p.112). Regardless of the form, 

problem posing requires the exploration of the mathematical problem’s structure and therefore is 

an applicable practice for developing learners’ perception in mathematical problems.  

Existing studies show that problem posing is beneficial for improving learners’ 

conceptual understanding, problem-solving skills, dispositions, and creative thinking in 

mathematics (English, 1997a; Greer & McCann, 1991; Leung & Silver, 1997; Silver & Cai, 1996; 

Silver, Mamona-Downs, Leung, & Kenney, 1996; Siswono, 2014; Singer, Ellerton, & Cai, 2013; 

Tichá & Hošpesová, 2013). Silver (1994) also demonstrated that problem posing could be used 

for assessing student learning and designing inquiry-oriented instruction. These findings 

illustrate that, when learners are engaged in problem posing, they do not only have similar 

learning opportunities created by the problem-solving process, but also gain opportunities, 

particularly brought by problem-posing activities, such as opportunities to improve their 

initiative and creativity. 

Numerous studies have found that learners’ problem-posing performance is closely 

related to their problem-solving performance, and this is true for both students and teachers  (Cai 

et al., 2013; Crespo, 2003; Kar, Özdemir, İpek, & Albayrak, 2010; Silver & Cai, 1996). 

Kilpatrick (1987) argues that the quality of a problem posed by a subject may serve as an index 

of his/her problem-solving performance. There is evidence from existing studies to support this. 

For example, Silver and Cai (1996) found that more able students in mathematical problem 

solving posed more, and more complex problems than the problems posed by the less able 

students. Cai and Hwang (2002) found a much stronger link between Chinese sixth-grade 

students’ variety of posed problems and their problem-solving performance, more specifically, 
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the abstract problem-solving strategy they used, than their US counterparts. These studies 

quantitatively evidenced the relationship between problem posing and problem solving, and 

examined the magnitude of this relationship. However, more exploration about the nature and the 

features of this relationship needs to continue. 

 While some researchers put the issue that formulating a problem is more important than 

solving a problem (Einstein & Infeld, 1938; Lavy & Bershadsky, 2003), other researchers argue 

that problem posing is not independent from problem solving, but rather an important companion 

to it (Cai & Hwang, 2002; Kilpatrick, 1987; Silver & Cai, 1996). Shuk-kwan (2013) suggests 

that the first phase of Polya’s (1945) problem-solving process (i.e., understand the problem, 

make a plan, carry out the plan, and look back) could be considered as a problem-posing phase, 

yet Gonzalez (1998) describes problem posing as the fifth phase of Polya’s problem-solving 

process. Silver (2013) considers looking back at the statement and solution of a problem as 

“posing a simpler problem” (p. 160). Shuk-kwan actually focused on problem posing before 

problem solving while Gonzalez and Silver talked about problem posing after problem solving. 

These perspectives indicate that problem posing can actually occur at any stage (i.e., before, 

during or after) of problem solving. Furthermore, problem posing may take turns appearing in 

Polya’s four problem-solving stages because individuals usually cannot solve a problem by just 

passing through this procedure once, but by going back and forth. 

In the past several decades, great advances have been achieved in research on problem 

solving all over the world. Problem solving is now placed at the heart of school mathematics 

(Ellerton, 2013). Even so, Lesh and Zawojewski (2007) pointed out that the body of knowledge 

of instruction in problem solving was enlarging, and the “approximately 10-year cycles of 

pendulum swings between emphases on basic skills and problem solving” (p. 763) had started to 
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swing toward the problem-solving side, despite the apparent decrease in the amount of research 

on problem solving. This shows that problem solving will continue to play an important role in 

teaching and learning mathematics. This trend of problem solving and the models-and-modeling 

perspective are demonstrated by the Common Core State Standards (National Governors 

Association Center for Best Practices & Council of Chief State School Officers, 2010). More 

specifically, among the Standards for Mathematical Practice, MP1 formulates that mathematical 

proficient students should be able to explain to themselves the meaning of a problem and 

persevere in solving it, while MP4 claims that mathematical proficient students should be able to 

model with the mathematics they know to solve problems arising in everyday life, society, and 

the workplace. 

 On the contrary, although many studies have explored the nature of problem posing such 

as problem-posing strategies and processes, problem posing is rarely seen as part of the school 

mathematics curriculum. In addition, although teachers and students are capable of posing 

mathematical problems, they have many difficulties in problem posing, such as posing open-

ended problems and problems related to specific mathematics concepts, and distinguishing 

different types of posed problems (Chapman, 2012; Shuk-kwan, 2013). Researchers propose that 

both teachers and students should have more exposure to problem-posing practices (Contreras, 

2007; Singer, Ellerton & Cai, 2013). Ellerton (2013) claimed: 

Perhaps the only way that problem posing has a chance of being seriously introduced into 

school mathematics curricula and classroom practices would be for young teachers to 

acquire problem-posing skills and confidence in problem posing themselves to the point 

where they would be capable and willing to help their students to pose problems. The 

simplest way to move towards achieving this would be to focus attention on this issue in 
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early childhood, primary, and secondary mathematics teacher education programs. (p. 

100) 

Considering the appeal of incorporating problem posing into educational programs 

(Ellerton, 2013), especially in mathematics courses (Lavy & Bershadsky, 2003), together with 

the close relationship between problem posing and problem solving, it is reasonable to expect 

that the involvement in both problem posing and problem solving would be more beneficial for 

prospective teachers’ mathematics learning as opposed to only engaging them in one of those 

activities. Siswono (2014) claimed that “problem posing as a stand alone activity makes less 

sense in mathematical activity than a situation when it is combined with problem solving” (p. 22). 

That was because learners who had not experienced problem posing before usually had a hard 

time understanding what they were doing. Therefore, the ways of situating problem posing 

within the large body of problem solving, the ways of interaction between problem posing and 

problem solving, as well as patterns of problem-posing skills and performance while problem 

solving is involved are worthy of further research. 

To better understand these research topics, an international comparison study can make 

unique contributions. A widely acknowledged justification says that a comparison study 

contributes by “making the strange familiar and the familiar strange” (Xenofontos & Andrews, 

2014, p. 280). So, first, an international comparison study allows us to understand the extent to 

which the educational activity is culturally situated. Second, an international comparison study 

warrants challenges to the ways in which a specific system constructs the educational 

opportunities for the students. To summarize, international comparison studies allow for 

exploring the similarities and differences of cultural-based learning environments and the 

outcomes of cross-national students. Further suggestions can be made based on discovered 
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similarities and differences in educational opportunities for students from different countries. 

Therefore, it is worthwhile to conduct international comparison studies for investigating students’ 

problem posing, especially when such investigation is rare.  

Among existing international comparison studies on problem solving and problem posing, 

the majority have helped researchers to understand and differentiate students’ interpretation of 

mathematical problems, problem-solving strategies, conceptual understanding and reasoning, as 

well as some beliefs in mathematical problem solving (Cai, 2004; Ma, 1999; Mayer, Tajika, & 

Stanley, 1991; Xenofontos & Andrews, 2014). A few studies attempt to explore problem-posing 

related topics (Cai, 1998; Cai & Hwang, 2002; Yuan & Sriraman, 2011), but these attempts 

focus mainly on comparing different groups of students’ problem-posing performance and 

mathematical creativity, and exploring the relatedness among problem posing, problem solving, 

and mathematical creativity.  

Taking into account the close relationship between problem posing and problem solving, 

specifically the sequential effects (i.e., prior and after effects) demonstrated by Brown and 

Walter (1990a) between these two activities, it is discouraging to note that the existing literature 

reveals little about specific reasons or patterns of those sequential effects, let alone ways of 

efficiently utilizing those effects on developing learners’ problem-posing and problem-solving 

performance.   

Aims of the Study 

In this study, I recruited prospective United States (US) and Chinese elementary teachers 

and aimed to investigate the patterns of problem-posing performance when they were 

alternatively engaged in problem-posing and problem-solving activities, as well as the features of 

the relationship between problem solving and problem posing under this particular circumstance. 
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I examined the differences in problem-posing and problem-solving performance shown between 

US and Chinese participants. I also investigated problem posing in a cross-cultural context, 

specifically with prospective elementary teachers in this particular circumstance.  

I chose to engage prospective elementary teachers in alternating problem-posing and 

problem-solving activities based on the research literature. I theorized that US and Chinese 

prospective elementary teachers would be able to pose problems, even though they had not had 

formal problem-posing experience before. In order to fulfill the aim of examining their direct 

reaction and performance in problem posing, I engaged them initially in problem posing rather 

than problem solving. I then planned to design a problem-solving task that was closely related to 

previous problem-posing tasks, with regard to continuously analyzing the mathematical structure 

of given real-world situation and figures. This process was beneficial in investigating specific 

prior effects of problem posing on problem-solving activities. Finally, my participants would be 

required to pose problems again. This process allowed me to explore the specific after-effects of 

problem-solving experiences on their problem-posing thinking.   

In addition, since my participants had no prior problem-posing experience, I would not 

utilize a free problem-posing situation (i.e., posing problems without any restriction) developed 

by Stoyanova and Ellerton (1996), in case they had no idea about what they were doing 

(Siswono, 2014). Instead, I chose to utilize a semi-structured situation (i.e., posing problems 

based on an open-ended situation, given pictures, or diagrams) and a structured situation (i.e., 

posing problems by reformulating solved problems) (Stoyanova & Ellerton, 1996). I designed 

these types of problem-posing tasks with specific requirements in order to scaffold them to pose 

problems from different perspectives. These decisions of task design allowed me to look closely 

into the US and Chinese prospective elementary teachers’ performance in specific types of 
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problem-posing tasks. To summarize, this study could be placed in the intersecting part of the 

related topics, including mathematics learning, problem posing, problem solving and 

international comparison studies, as indicated in Figure 1.1.  

 

 

 

 

 

Figure 1.1: All Involved Topics of This Study 

Research Questions 

The following research questions guided this study:  

1. What are the similar patterns of problem posing shown by US and Chinese 

prospective elementary teachers during their problem-posing processes when 

problem solving is involved in an alternating manner? Are there any differences in 

the patterns shown by these two groups of participants? 

2. What are the connections between US and Chinese prospective elementary teachers’ 

problem-posing and problem-solving performance? Are there any differences in the 

connections between these two groups of participants?  

Guiding Frameworks 

To answer the research questions, this study discussed three related bodies of literature 

about problem posing, problem solving and international comparison studies. More specifically, 

the related literature includes (1) the meaning and features of problem posing, (2) ways that 

problem posing is situated in the large body of problem solving, and (3) particular contributions 
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that international comparison studies have made on problem solving and problem posing. These 

bodies of literature illustrated the research gaps regarding of further exploration in cross-cultural 

context, impacts of different problem situations on problem-posing performance, as well as 

nature of the relationship between problem posing and problem solving.  

As a consequence, in this study I aimed to investigate the patterns of problem posing 

shown by US and Chinese prospective elementary teachers when problem solving was involved 

in an alternating manner, as well as the features of the relationship between problem posing and 

problem solving under this particular circumstance. In this study I first utilized a guiding model 

with four specific problem-posing processes proposed by Christou, Mousoulides, Pittalis, Pitta-

Pantazi, and Sriraman (2005). Each process of this model assesses problem posers’ way and 

justification of analyzing quantitative information in a given problem or situation from different 

perspectives. Therefore, it allows investigation of prospective elementary teachers’ performance 

in each process. In this study I also adapted the Active Learning Framework developed by 

Ellerton (2013) for integrating problem-posing and problem-solving activities in a reasonably 

systematic process. The use of this framework enabled the investigation of the features of the 

relationship between problem posing and problem solving. 

Summary 

Both problem solving and problem posing are cognitively demanding activities and core 

elements of mathematical proficiency. Particularly, problem posing is beneficial to improve both 

teachers’ and students’ conceptual understanding, problem-solving skills, creative thinking, and 

dispositions towards mathematics. Research on problem solving has achieved great advances in 

the past several decades and problem solving is now placed at the heart of school mathematics. 

On the contrary, problem posing is rarely seen as part of school mathematics curriculum. At the 
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same time, there are still many unanswered research questions about problem posing. 

Researchers propose that both teachers and students should have more exposure to problem-

posing practices, and they appeal for further investigation about the relatedness between problem 

posing and problem solving. 

In this study, I aimed to investigate the patterns of problem posing shown by US and 

Chinese prospective elementary teachers when problem solving was involved in an alternating 

manner, as well as the features of the relationship between problem posing and problem solving 

under this specific circumstance. This study could contribute to the body of cross-national 

research, as well as the body of research about the relationship between problem posing and 

problem solving, problem-posing task design, and teacher preparation for enhancing their 

problem-posing capability. 

This dissertation is organized into five chapters. Chapter 1 includes an overview of the 

research about problem posing, aims of the study, research questions and theoretical 

considerations. Chapter 2 discusses related literature, and existing guiding frameworks used to (1) 

integrate problem posing and problem solving together, and (2) design specific problem-posing 

tasks. Chapter 3 discusses the research methodology of this study, while Chapter 4 reports the 

results and findings, and answers to the research questions. Finally, Chapter 5 summarizes the 

findings, makes conclusions, and also discusses the contributions, limitations, and implications 

for future research and teacher preparation practice.   
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Chapter 2: A Review of the Literature 

This literature review synthesizes the research on three related topics, including (1) 

meaning and features of mathematical problem posing, (2) ways of situating problem posing in 

the large body of problem-solving activities, and (3) particular contributions that international 

comparison studies have made for exploring the roles of problem posing and problem solving in 

mathematics learning. At the end of each of these bodies of literature, I provide discussions and 

summaries to link to the insights from each body of literature regarding whether they helped 

develop or hinder prospective teachers’ mathematics learning and understanding. In addition, 

these bodies of literature implied available research methods and guidelines that have been 

utilized in problem-posing research area. However, besides numerous empirical results, this area 

“remains ripe for theoretical work that will provide a cohesive framework for understanding 

these empirical results and the overall phenomenon of problem posing,” as Cai (2015, p. 29) 

claimed. As a consequence, I selected two guiding frameworks, instead of theoretical 

frameworks, that were good fits for this study. The use of those two guiding frameworks in 

existing studies and why they were good fits for this study are discussed in the fourth section of 

this chapter.  

Meaning and Features of Problem Posing 

Among existing studies on problem posing, much emphasis has been placed on problem-

posing strategies, processes of posing one or a series of problems, categories of posed problems, 

and task selection for problem posing. For each perspective, the synthesized results focus on 

problem posers’ performance, disposition and understanding of problem posing, cognitive 

reasoning patterns and difficulties, as well as inspirations for future study design or instructional 

design.   
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Problem-posing strategies. Researchers have found many strategies that problem posers 

used for generating new problems. The “what-if-not” strategy developed by Brown and Walter 

(1990b) initially aimed to suggest a way to engage students in problem solving by posing 

problems. It provides a means of posing new problems by manipulating the attributes of a given 

problem in two stages (Lavy & Bershadsky, 2003). In stage I, all attributes of a given problem 

are listed. In stage II, for each listed attribute, alternatives and new questions for the negated 

attributes are developed by asking, “What if not this attribute?” This strategy has been used to 

develop a new framework, or as part of a new framework. For example, Silver, Mamona-Downs, 

Leung and Kenney (1996) summarized the following problem-posing strategies by synthesizing 

their findings: (1) constraint manipulation, where the “what-if-not” strategy is a particular 

example; (2) goal manipulation, where only the goal of given problems is manipulated but the 

conditions are kept the same; (3) symmetry, where the givens and goals of a problem are 

symmetrically exchanged for posing new problems; and (4) chaining, where one is required to 

solve prior problems in order to pose new problems. These strategies are available for both 

posing a single problem and posing a cluster of problems. 

Furthermore, by utilizing the “what-if-not” strategy to solve geometric problems with 

prospective mathematics teachers, Contreras (2007) developed a framework that aimed to 

improve teachers’ abilities to generate problems by systematically modifying attributes of a 

given problem. This model focuses on the ways of posing the following kinds of problems: (a) a 

proof problem; (b) a converse problem (i.e., a new problem created by reversing a known and 

unknown attribute); (c) a special problem (i.e., a new problem created by substituting an attribute 

with a particular example or case, such as adding additional restrictions and making an implicit 

relationship among mathematical concepts explicit); (d) a general problem (i.e., a new problem 
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created by substituting an attribute with another for which the initial one is a specific example or 

case); (e) an extended problem (i.e., a new problem created by substituting an attribute with 

another similar or analogous attribute, where no one attribute is a specific case of another one); 

and (f) a further extended problem (i.e., a new problem extended from a special, general, or 

extended case by modifying other attributes). The fundamental idea involved in these different 

problems is to discover new possibilities, patterns, or relationships among the mathematical 

concepts of the original problem. Contreras concluded that, first, without adequate experiences, 

students rarely used these prototypical strategies to generate problems. Second, all of the 

difficulties the students had, and the errors they made during problem posing, indicated that they 

needed a broad variety of experiences in problem posing. 

Abu-Elwan (1999) used two sources for 60 pre-service middle school teachers to pose 

mathematical problems: textbook problems and semi-structured situations. For the textbook 

problems, a group of pre-service teachers were trained to pose problems by adding more, or new 

conditions to the original problems and removing some initial conditions for four weeks. Abu-

Elwan asked his participants to use the constraint manipulation problem-posing strategy 

according to Silver, Mamona-Downs, Leung, and Kenney (1996). His participants posed special 

problems, general problems, extended, and further extended problems, according to Contreras 

(2007). For the semi-structured situations, the other group of pre-service teachers was also 

trained for four weeks, but to complete a given situation in order to have an integrated 

mathematical structure, and then to pose problems. This way of engaging pre-service teachers in 

problem posing is quite different from previously described ways. It involves both constraint and 

goal manipulation strategies, and participants can pose proof problems, special problems, general 

problems, and extended problems according to Contreras. The same pre- and post-test that 
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included both of the aforementioned problem-posing skills were conducted before and after four 

weeks’ training. By quantitatively comparing participants’ pre- and post-tests in problem-posing 

skills, Abu-Elwan found that both ways had significantly positive impacts on developing pre-

service teachers’ problem-posing skills. It indicates that the source and the characteristics of 

selected tasks/situations could influence people’s problem-posing performance.  

To summarize, researchers have found that using problem-posing strategies is an 

effective way to develop pre-service teachers’ problem-posing skills, especially when they are 

able to systematically pose new problems using different strategies so they can better understand 

mathematical concepts and involved structure. However, without formal training or adequate 

experiences, pre-service teachers will not use these strategies frequently or effectively. This is 

likely because problem posers who lack problem-posing experience may randomly select 

strategies to help them pose new problems. Their use of problem-posing strategies is usually 

haphazard, with no predictable pattern involved. In other words, they lack the experience of 

using different problem-posing strategies systematically or efficiently. Brown and Walter (1990a, 

1990b) called for incorporating types of problem-posing strategies in standard mathematics 

courses (cited from Lavy & Bershadsky, 2003). Twenty years later, this need has still not been 

fulfilled (Lavy & Bershadsky, 2003; Leung & Silver, 1997; Silver, Mamona-Downs, Leung, & 

Kenney, 1996).  

Problem-posing processes. Koichu and Kontorovich (2013) referred to problem posing 

as a student-centered and process-oriented activity. They framed a case study with two pre-

service teachers and their problem-posing experience with the following components: (1) the 

notion of mathematically meaningful problems evaluated by a problem poser involving positive 

characteristics such as simplicity, brevity, and clarity; and (2) a set of attributes characterizing 
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the processes of formulating meaningful problems, such as a mathematical knowledge base, 

problem-posing strategies, and individual considerations of aptness. The researchers developed a 

general process of problem posing: (1) warming-up by associating the given task with particular 

types of problems, (2) searching for interesting mathematical foundations or phenomena, (3) 

hiding the problem-posing process when formulating problems which is not transparent to the 

problem solvers, and (4) reviewing and reshaping posed problems to make them more 

constructive. This framework allowed the researchers to explore problem posers’ skills while 

searching for interesting mathematical phenomenon. 

Olson and Knott (2013) addressed the gap of the somewhat limited literature on problem-

posing episodes in higher education settings. They examined a college instructor’s didactics by 

using specific episodes to develop students’ mathematical conceptual reasoning. These episodes 

included setting up a problem, stating that problem, and preparing follow-up questions as 

scaffoldings. In each episode, the researchers focused on two main observations: (1) the 

teacher’s role in making instructional decisions, and (2) both teachers’ and students’ cognitive 

demands associated with the problem. Olson and Knott found that the teacher’s mindset 

influenced her choice of ways to engage students, questions she posed to students, and the select 

responses students provided. On the other hand, students’ mindsets, guided by these episodes, 

led to their active participation. This include frequently asking questions, doing mathematics, 

and choosing comparatively difficult problems to solve when given multiple choices. These 

results show that clear problem-posing procedures and explicit lesson plans can inspire an 

approachable teaching and learning environment. 

As mentioned before, problem posing can occur before, during, or after problem solving. 

Silver, Mamona-Downs, Leung, and Kenney (1996) found that teachers posed more problems 
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before problem solving than during or after problem solving. In addition to this, there are few 

studies that focused on other features of posed problems at different problem-solving stages. 

Therefore, the effects of clear problem-posing procedures on prospective teachers’ problem-

posing performance and the principles of developing clear problem-posing procedures need 

further examination.  

Categories of posed problems. Classifying the posed problems is an important method 

for researchers to measure problem posers’ problem-posing capability, reasoning patterns, and 

mathematical content knowledge. Stein, Smith, Henningsen, and Silver (2000) classified the 

problems used by in-service teachers, some of which were selected from other sources while 

some were generated by the teachers, during their teaching in two lower level and two higher 

level categories. The lower levels included memorization tasks and tasks involving procedures 

without connections while the higher levels included tasks involving procedures with 

connections and doing mathematics. Olson and Knott (2013) explored the impacts of different 

levels of posed problems on students’ learning. They found that providing multiple levels of 

problems for students strengthened teachers’ belief in students’ growth mindset. In one example, 

after the instructor carefully selected the problems and posed them to the class, students usually 

chose the higher level problems to work on. This indicated the significance of posed problems 

that covered multiple levels of difficulty for the multiple needs of students’ mindsets. 

Some studies have explored the categories of posed problems from other perspectives. 

Silver, Mamona-Downs, Leung, and Kenney (1996) asked 53 in-service and 28 pre-service 

teachers to pose problems for the Billiard Ball Mathematics Task. They classified 334 posed 

problems into the following categories: (1) a goal problem posed by manipulating the problem-

solving goals but fixing the constraints; and (2) two types of constraint-manipulation problems 
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that changed (a) initial conditions (i.e., the explicitly stated conditions), and (b) implicit 

assumptions (i.e., the underlying assumptions). Data analysis also displayed some relationship 

among the posed problems, which included (1) chaining - a series of posed problems that have a 

sequentially linked character, (2) systematic variation - a critical aspect of a problem held 

constant while others are varied systematically, and (3) symmetry – where goals and conditions 

are symmetrically exchanged. This study suggested that, although both in-service and pre-service 

teachers had personal capacity to pose problems of different categories, they had a disappointing 

percentage of inadequate problems because many posed problems were ill-structured or poorly 

stated. 

Shuk-kwan (2013) examined 60 in-service elementary teachers’ techniques, challenges, 

and strategies when implementing child posed problems or any asked questions in the classroom. 

Shuk-kwan classified children’s posed problems into five categories: (1) not a problem (i.e., a 

description or a phrase, but not a problem), (2) a non-math problem (i.e., a problem but not a 

mathematical problem), (3) an impossible problem (i.e., a problem in mathematical form but 

unsolvable), (4) an insufficient problem (i.e., a mathematical problem with insufficient 

information and could not be solved), and (5) a sufficient or extraneous problem (i.e., a solvable 

mathematical problem). Although the in-service teachers were trained in a seminar on 

implementing child posed problems, the coding methods of posed problems, and the use of 

coding results in teaching, they were still confused when distinguishing the following paired 

categories: (1) not a problem and non-math problem and (2) impossible and insufficient 

problems. 

During the second seminar, for collecting teachers’ feedback on implementing problem 

posing in class, 33% of the teachers said that they still needed help from colleagues when 
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classifying students’ responses, and 28% found it hard to use the code categorization scheme, 

while 15% had no opinion. Shuk-kwan (2013) suggested that more examples should be provided 

to those teachers who felt it was difficult to use the coding scheme to get a deeper understanding 

of the categories of non-math and impossible and insufficient problems. The researcher also 

claimed that children’s posed problems helped teachers notice their understanding or 

misunderstanding of mathematics concepts, while the exercise of classifying children’s 

responses enabled the teacher educator to see to what extent the teachers understood the 

categorization scheme. These findings indicate the valuable role of a categorization scheme in 

posed problems in both teaching and learning areas. 

In addition, Shuk-kwan’s (2013) study provides evidence for integrating a categorization 

scheme for posed problems into teacher preparation programs. First, children generated a higher 

percentage of plausible mathematics problems when a teacher educator was working closely with 

teachers and having the teachers practice problem posing before enacting tasks in the class. In 

this case, the teacher educator did not directly work with the children. In contrast, children could 

not pose reasonable mathematics problems when the tasks were directly presented to them by the 

teacher educator. Second, teachers felt challenged because children were capable of posing 

similar problems with the problems posed by themselves, and they sometimes had trouble 

dealing with those problems. These results impart the necessity of collaboration between teacher 

educators and teachers for integrating problem posing in classroom teaching. Finally, Shuk-kwan 

found that about half of the 60 teachers had negative feelings about the implementation of 

mathematical problem posing in class, while only seven teachers reported negative reactions 

from their students about this implementation. This demonstrates that it is also necessary to 

enhance pre-service teachers’ beliefs and confidence in problem posing.  
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Task selection. Two main divisions of task design for problem posing have emerged in 

the research literature. The first division involves specific mathematical, or daily-life situations 

and focuses on answering the “what-to-pose” question. For example, Chen, Van Dooren, Chen, 

and Verschaffel (2011) provided division-with-a-remainder items for 128 pre-service and in-

service elementary teachers from China to pose story problems; Contreras (2007) used a task 

related to the median of an isosceles triangle; and Toluk-Uçar (2009) conducted a study for pre-

service teachers’ in-depth understanding of fractions through problem posing. In addition, the 

Billiard Ball Mathematics Task is a popular task utilized in many studies (e.g., Koichu & 

Kontorovich, 2013; Silver, Mamona-Downs, Leung & Kenney, 1996) because it is rich enough 

for posers to generate interesting problems or conjectures, but it is accessible enough for posers 

with only basic mathematical conceptual knowledge. 

Leung and Silver (1997) conducted a study examining the impacts of different types of 

situations on pre-service teachers’ problem-posing performance. They created the Test of 

Arithmetic Problem Posing by providing real-world situations with and without specific 

numerical information for 63 elementary pre-service teachers. The results demonstrate that the 

pre-service teachers’ mean performance was better on tasks with specific numerical information 

than their performance on tasks without specific numerical information. More specifically, they 

posed more plausible and fewer non-mathematical problems on tasks with specific numerical 

information. Furthermore, the differences were statistically significant for the measures of 

quality and the complexity of posed problems. This study provides evidence for the necessity of 

testing the impacts of task variables on participants’ problem-posing performance.  

Similarly, Isik and Kar (2012) considered pre-service elementary teachers’ problem-

posing performance within formal symbolic contexts related to real world situations that could 
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be solved by using linear equations or a system of linear equations. They found that pre-service 

teachers were challenged by several types of difficulties: (1) a conceptual understanding 

difficulty, such as incorrectly translating the meaning of a mathematical operation in the equation 

into verbal problem statements, or posing separate problems for each equation in a system; (2) 

contextual difficulties, such as assigning unrealistic values to the unknowns; and (3) violations of 

the conventions of word problems, such as using symbolic representations in the posed problems. 

These difficulties may or may not occur in other problem-posing situations, such as posing a 

problem involving division-with-a-remainder consideration (Chen, Van Dooren, Chen, & 

Verschaffel, 2011) and posing a problem according to a daily-life situation without specific 

numerical information (Leung & Silver, 1997). This indicates that problem posers will encounter 

specific difficulties in different problem-posing tasks. 

The second division references specific principles for subjects to follow when posing 

mathematical problems and focusing on answering “how-to-pose” question. A typical example is 

the three problem-posing situations (i.e., a free situation, a semi-structured situation and a 

structured situation) developed by Stoyanova and Ellerton (1996). Another example is the nine 

categories of problem-posing tasks developed by Chapman (2012). Prospective elementary 

teachers are asked to pose a problem “(a) of their own choice, (b) similar to a given problem, (c) 

that is open-ended, (d) with similar solution, (e) related to a specific mathematics concept, (f) by 

modifying a problem, (g) using the given conditions to reformulate the given problems, (h) based 

on an ill-formed problem, and (i) derived from a given picture” (p. 138). Chapman found that the 

participants were challenged most by posing problems that were (1) open-ended, (2) related to 

specific mathematics concepts such as the meanings of multiplication, and (3) derived from a 

given picture of a mathematics concept such as a picture describing comparison subtraction. 
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These findings indicate that different tasks have different difficulty levels and this should be 

considered when designing problem-posing tasks for a specific group of participants.  

Crespo (2003) designed a comparatively different problem-posing task for 34 pre-service 

teachers by asking them to either participate in small group teaching for grade six/seven pupils or 

exchange mathematics letters with one or two fourth graders weekly. She found that the features 

of posed problems at the beginning of the study were (1) easy-to-solve, (2) familiar with given 

story problems or computational exercises, and (3) blind, namely, posing problems without 

solving or deeply understanding, or asking questions that lack awareness of the potential and 

scope of problems. However, the latter posed problems had significantly different characteristics: 

(1) unfamiliar problems were tried; (2) posed problems could challenge pupil’s thinking; and (3) 

posed problems were used to study a pupil’s thinking by pre-service teachers. These results 

showed that the interaction between pre-service teachers and students were beneficial to develop 

pre-service teachers’ problem-posing initiative and performance. In addition, such problem-

posing tasks had positive impacts on pre-service teachers’ academic and professional 

development. Meanwhile, this study showed that the changes in pre-service teachers’ views and 

skills on problem posing did not happen overnight. In short, this study developed a model for 

measuring pre-service teachers’ development of problem-posing ability, and it could be used 

regularly to examine the effectiveness of incorporating problem posing into teacher preparation 

programs.  

In summary, existing studies have evidenced the significance of selecting different types 

of problem-posing tasks for preparing pre-service teachers’ problem-posing abilities. First, the 

listed difficulties indicate that the difficulty level of a problem-posing task is related to the type 

of a mathematical problem, mathematical concepts involved in the task, ways of representation, 
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and other specific characteristics. Second, in order to pose high-quality problems that are based 

on formal symbolic contexts, teachers need to build their conceptual understanding of the 

underlying mathematics and their pedagogical understanding. In addition, the Test of Arithmetic 

Problem Posing, developed by Leung and Silver (1997), can serve as a model for measuring 

subjects’ mathematics content knowledge and exploring the influence of other variables of tasks 

on problem-posing performance.  

Finally, the nine categories of problem-posing tasks developed by Chapman (2012) are 

especially beneficial for new problem posers or problem posers who are challenged. This is 

because these tasks are “ presented one at a time in an intentional sequence to minimize the 

influence of one task on participants’ thinking of another” (p. 138). Therefore, it is a good 

strategy to provide these tasks to pre-service teachers at the beginning of their problem-posing 

practice.  

Discussion and implication for mathematics learning. Generally speaking, pre-service 

teachers are able to pose mathematical problems, and their problem-posing capability can be 

improved by a certain amount of practice and systematic training. According to this review of 

literature, the use of different problem-posing strategies asks posers to manipulate attributes of a 

given problem, givens and goals, as well as both implicit and explicit relationships involved in 

the structure of given problems or situations. Clear problem-posing procedures can lead learners 

to active participation in doing mathematics. It can also be helpful in making connections 

between problem posing and problem solving. The categorization scheme provided in a problem-

posing task can bring different perspectives of interpreting mathematical problems. Different 

types and levels of problems encourage learners’ creativity and meet their different mindsets. 

Finally, problem-posing tasks with distinct variables or features place emphasis on building 
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different mathematics skills and aspects of mathematical knowledge. Therefore, prospective 

teachers’ conceptual knowledge can be developed by properly selecting problem-posing tasks, to 

some extent. In short, all the perspectives of problem posing discussed above can help learners 

discover the patterns and relationships involved in mathematics, make connections among 

different operations or representations, and gradually change their attitude on mathematics 

learning.  

Problem Posing Situated in the Problem-solving Literature 

This section describes how problem posing is situated in the large body of problem-

solving activities or classes, and how engaging students in both problem-posing and problem-

solving activities supports student learning. Approaches can include (1) situating problem posing 

in different stages of the problem-solving process, or in problem-solving classes, (2) situating 

problem posing, together with problem solving, in different contexts, usually involving multiple 

types of artifacts, namely, real or reproduced materials that students typically see in real-life 

situations, and (3) adding technology as scaffolding to problem-posing and problem-solving 

activities. These approaches are categorized into subsections while the theoretical foundations 

and guiding frameworks are discussed within each subsection.  

In different stages of the problem-solving process or problem-solving classes. Silver 

(1994) states that problem posing can occur before, during, and after a problem-solving activity. 

More specifically, he suggested that problem posing could be applied to three different forms of 

mathematical activity: (1) pre-solution posing, in which students are required to generate original 

problems from a given situation; (2) within-solution posing, in which students are required to 

reformulate a problem that is being solved; and (3) post-solution posing, in which students are 

required to generate new problems by modifying the goals or conditions of a solved problem. 
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Silver and Cai (1996) administered a pre-solution problem-posing task with a distance problem 

to 509 sixth and seventh grade students in order to investigate their problem-posing performance 

and its relationship with their problem-solving performance. Silver and Cai did not ask students 

to solve their own posed problems, but focused on measuring students’ original problem-solving 

capability because, their problem-solving capability could possibly be affected by their problem-

posing performance. By doing this, Silver and Cai drew conclusions about the direct relationship 

between students’ problem-posing and problem-solving performance. 

More specifically, Silver and Cai (1996) divided all the participants into three groups and 

required each group of students to complete one problem-posing task and eight problem-solving 

tasks. Three groups of students followed different arrangements of those nine tasks in order to 

level-out the effect of task order on students’ problem-posing performance. One third of the 

students completed the problem-posing task as the second task of nine tasks, another third 

completed it as the fifth task, and the rest of the students completed it as the eighth task. Silver 

and Cai found that middle school students were capable of generating appropriate mathematical 

problems and, more importantly, “a considerable number of students were able to generate 

syntactically and semantically complex mathematical problems” (p. 534). By exploring the 

features of each set of three problems posed by individual student, Silver and Cai found that 

nearly half the students showed either symmetric responses (i.e., responses that reflected 

relationship between or among given information or other imputed mathematical objects), or 

chained responses (i.e., responses that require the use of information provided by the solution of 

earlier posed problems), or both. This indicates that middle school students have the capability to 

use the process of association, which was argued by Kilpatrick (1987) as one of the basic 

cognitive processes when posing problems. 
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Silver and Cai (1996) also found that “good problem solvers generated more 

mathematical problems and their problems were more mathematically complex” (p. 535) than 

the less successful problem solvers. However, they did not discuss whether those three groups of 

students performed differently or similarly in either problem posing or problem solving. But, the 

three groups of students completed the problem-posing task at different stages in eight problem-

solving tasks. Therefore, it is unclear whether the order or amount of problem-posing and 

problem-solving practice affected students’ performance. Among existing studies, only the study 

conducted by Silver, Mamona-Downs, Leung, and Kenney (1996) with in-service and pre-

service teachers concluded that teachers posed more problems before problem solving than 

during or after problem solving. The researchers did not further expound on this finding. 

Therefore, we do not know what variables may have influenced the teachers to pose more 

problems before problem solving. 

Mathematicians, mathematics educators, and educational institutions consider problem 

posing as one of the core elements of mathematical proficiency. The Common Core State 

Standards for Mathematics Practice, MP5: Use appropriate tools strategically, claims that 

mathematically proficient students should be able pose or solve problems by identifying and 

using relevant external mathematical resources (National Governors Association Center for Best 

Practices & Council of Chief State School Officers, 2010). The Principles and Standards for 

School Mathematics (National Council of Teachers of Mathematics, 2000) advocated for 

teachers to regularly provide students problem-posing opportunities according to a wide variety 

of situations. Problem posing has been more or less incorporated in mathematics courses by 

experienced teachers, or by using textbooks with certain problem-posing tasks. However, only a 
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few studies have investigated the effects of problem posing when incorporated in problem-

solving classes, and the studies on long-term effects are even fewer.  

Contreras (2007) implemented his problem-posing framework in a class with prospective 

secondary teachers. His framework consisted of five fundamental mathematical processes 

including proving, reversing, specializing, generalizing, and extending based on a given problem. 

Contreras employed an instructor-centered approach to implement this framework when his 

students had no prior problem-posing experience. He then used a student-centered approach to 

ask the prospective teachers to independently pose problems under the guidance of this 

framework. The problem-posing activity in his study lasted more than two class periods (about 

three hours). Contreras found that each step of the framework helped prospective teachers 

discover mathematical patterns and relationships from different perspectives. The teachers’ 

errors and the difficulty with the material were easily observed.  

Another study that integrated problem posing in a mathematical classroom for a 

comparatively long period of time was conducted by Beal and Cohen (2012). Their study lasted 

for twelve weeks, and was based on a web system in which middle school students posed 

mathematical and scientific problems and then solved problems posed by their peers. Beal and 

Cohen concluded that students were able to create problems and both teachers and students had 

positive responses to such an activity. At the same time, they found that teachers found it 

challenging to review and approve students’ posed or solved problems. However, Beal and 

Cohen’s study did not assess for student learning. Therefore, although the students themselves in 

this study stated that they learned the most from solving their peers’ posed problems, it is 

difficult to determine whether their mathematical understanding was actually improved or 

developed more by posing or solving problems. 
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To summarize, researchers have integrated problem posing in either problem-solving 

activities or mathematics classes in order to further understand the effects of these two activities 

on students’ mathematics learning. However, few studies have explored the different impacts of 

problem posing (problem solving) at different stages of the problem-solving (problem-posing) 

process, let alone the underlying causes of those differences. Only a few studies have 

incorporated problem posing in problem solving, or regular mathematics classes in a 

comparatively long period of time. Therefore, more research is needed to investigate the ways of 

incorporating problem posing for a long time and the methods of assessing students’ academic 

development during a long exposure to problem-posing activities.  

In different contexts that usually involve multiple artifacts. As discussed previously, 

all three problem-posing situations developed by Stoyanova and Ellerton (1996) require problem 

posers to actively explore the structure of given information and connect to the mathematical 

knowledge and problem-solving skills that they have learned prior. Within these situations, 

problem solving is usually used as scaffolding to investigate the relationship between problem-

posing performance and other mathematical performance indicators, such as conceptual 

understanding or creativity.  

Bonotto and her colleagues (Bonotto, 2010a; Bonotto & Dal Santo, 2014) arranged for 

groups of students to visit the Italian amusement park “Mirabilandia” and used a semi-structured 

situation to investigate the following questions in two separate studies: (1) What were the 

impacts of problem posing on student learning when it was implemented by using the 

aforementioned situation which involved both suitable artifacts and mathematics knowledge 

(Bonotto, 2010a)? (2) What was the relationship between students’ creativity and their problem-
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posing and problem-solving performance when engaged in that situation (Bonotto & Dal Santo, 

2014)?  All students were familiar with the park which ensured the attraction of the tasks to them.  

Eighteen fifth-grade students participated in the study. They answered the first question 

and completed an individual problem-posing activity, a problem-solving activity in pairs, and a 

whole group discussion on possible errors and incoherencies of posed problems. Bonotto (2010a) 

found that, “contrary to the practice of traditional word problem solving, children do not ignore 

the relevant and plausible aspects of reality, nor did they exclude real-world knowledge from 

their observation and reasoning (p. 24).” This shows that problem posing based on a familiar 

situation, and supported by problem-solving thinking, provides students opportunities to explore, 

compare, and select meaningful information. 

In addition, this study created an environment for problem critiquing in which students 

were encouraged to analyze the structure of mathematical problems, make corrections for ill-

structured problems, and discover new possibilities. Problem solving alone does not always 

allow students access to these learning opportunities. Bonotto (2013) claimed that “the children 

showed remarkable originality due to their wide variety of experiences outside of school, which 

involved different and complex aspects” (p. 44). This shows that problem posing as a novel 

learning approach, together with suitable artifacts (Bonotto, 2013), is not only able to attract 

students’ attention, but also to facilitate their creativity (i.e., three components including fluency, 

flexibility, and originality) enhanced by their real-life experience.  

Bonotto and Dal Santo (2014) conducted an additional study to further examine the 

relationship between students’ creativity and their problem-posing performance. The same semi-

structured situation was used with 71 fifth grade students from two primary schools in northern 

Italy. They further evidenced that the pupils were able to deal with real-life situations. The 
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results revealed that students who had prior problem-posing experience did not show higher 

levels of creativity within posed problems compared to students who had no prior problem-

posing experience. The researchers claimed that students’ creativity in mathematics might not be 

highly correlated to their prior problem-posing experience, but is related to their academic 

performance in mathematics. 

Bonotto and Dal Santo (2014) further claimed that problem solving after a problem-

posing activity had a series of positive effects on student learning. More specifically, problem 

solving after problem posing allowed students to get a better understanding of the initial situation, 

analyze the structure of different mathematical problems, improve their control of the quality and 

types of posed problems, and therefore explore new possibilities, i.e., pose further problems. In a 

word, engaging students in problem posing and problem solving with rich cultural-based artifacts 

can build a bridge between students’ school mathematics and their out-of-school experiences.  

The two studies above use a theory of situated cognition. As Driscoll (2005) claimed, 

situated cognition demonstrates the adaptability of human thought to the environment, and the 

development of what people perceive, think, and do in a fundamentally social context. More 

specifically, students from the two studies showed their understanding of the amusement park 

“Mirabilandia” in both daily-life experience and mathematics perspectives. They also had 

numerous opportunities to develop their mathematical knowledge and skills, take control of the 

quality of mathematical problems, make connections inside and outside of mathematical classes, 

and improve their creative thinking in mathematics.  

Similar to Bonotto and Dal Santo’s (2014) study, Siswono (2014) also used a semi-

structured situation to investigate students’ creative thinking during problem-posing and 

problem-solving processes. Siswono’s task asked about the area and perimeter of geometric 
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figures rather than a real-world situation. The study aimed to develop and justify a hierarchical 

framework to measure students’ levels of creative thinking instead of only investigating the 

relationship between students’ creativity, problem-posing, and problem-solving performance. 

Siswono defined three components of creative thinking (i.e., fluency, flexibility, and novelty), 

for problem posing and problem solving, and then created five hierarchical levels of creative 

thinking including very creative, creative, quite creative, almost not creative and not creative. 

By conducting task-based interviews with thirteen eighth grade students, Siswono (2014) 

found that the students who tended to say that posing a problem was more difficult than solving 

one usually had higher levels of creative thinking than the students who considered problem 

posing was easier. This reaches common sense validity, because when a student says that 

problem posing is easier, he/she usually poses problems by manipulating given information or 

posing problems in which he/she already knows the solution. The problems usually contain a low 

level of creativity. Siswono claimed that, one possible reason for the relationship between 

students who said problem posing was easier and their lower level of creativity was that those 

students rarely faced problems in the classroom that required them to be creative. These 

problems were common to their level of schooling. Therefore, Siswono therefore suggested that 

teachers should value the opportunity to justify and promote students’ creative thinking using 

indicators such as novelty, fluency, and flexibility via problem-posing and problem-solving tasks.  

In order to provide a coherent picture of students’ problem-posing thinking, Christou, 

Mousoulides, Pittalis, Pitta-Pantazi, and Sriraman (2005) proposed a theoretical model that 

described four processes of young students’ cognitive thinking when dealing with the 

quantitative information, of a given situation, during the problem-posing process. The four 

processes include: (1) editing the information in order to pose problems without any restriction; 



                                                                                                                                                     32 
 

 
 

(2) selecting the information in order to pose problems that are appropriate to specific answers; 

(3) comprehending information in order to pose problems from given equations or calculations; 

and (4) translating information in order to pose problems from given graphs, diagrams or tables. 

Christou et al. designed a quantitative study to validate this model with 143 sixth-grade students. 

Although specific problem-solving activities were not included, students experienced problem 

solving because the majority of the tasks asked students to write problems with specific answers 

or mathematical operations.  

Christou et al. (2005) found that the four processes not only significantly represented four 

distinct functions of student thinking, but also measured students’ problem-posing performance. 

More specifically, they found that “both the editing and selecting process characterized the most 

able students” (p. 156) while students with lower problem-posing performance were usually able 

to respond to only comprehending and translating tasks. They argued that students who tended to 

use the Comprehending process to begin posing a problem may be influenced by their classroom 

experiences or problems from textbooks that emphasized the algorithmic ways of thinking at the 

expense of the other three types of thinking processes. In a word, the model explains how 

problem posing happens and what students think about during problem-posing processes. 

Therefore, this model can help teachers and teacher educators determine what should be 

observed during students’ problem-posing processes. 

To summarize, problem posing, together with problem solving, situated in different 

contexts, including both real-life and mathematical situations, which usually involve multiple 

types of artifacts, is beneficial for sustaining students’ learning interests. This process deepens 

their mathematical knowledge, enhances real-life experiences, and encourages their creativity in 

mathematics. Problem posing can also help teachers and teacher educators justify how student 
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learning happens within specific contexts, and what tasks or learning opportunities are more 

appropriate to provide at certain times.  

In technology-based situations. Leung (1993) adapted Polya’s (1945) four problem-

solving steps to four problem-posing steps: pose problems, plan, solve posed problems, and look 

back. Chang, Wu, Weng, and Sung (2012) developed and implemented Leung’s model (see 

Table 2.1) in a game-based computer system in order to investigate the effects of this system on 

students’ problem-posing and problem-solving performance as well as their flow learning 

experience (i.e., learning engagement with personal satisfaction and/or motivation). The steps of 

the model indicate that problem-posing and problem-solving activities can easily form a cycle to 

continuously foster students’ analyzing and synthesizing abilities in mathematics. 

Table 2.1 

Problem-posing Steps 

Steps 
Problem-
solving phases 
(Polya, 1945) 

Problem-
posing phases 
(Leung, 1993) 

Proposed problem-posing procedures  

1 Understand Pose problem Self-posed problems 

2 Plan Plan 1. Attempt to solve self-posed problem 
2.Obtain feedback from the teacher 
3. Judge whether the solution is reasonable 
4. Refine problems 

3 Carry out Carry out Solve posed problems in the game-based setting 

4 Look back Look back 1. More feedback from the teacher 
2. Get new ideas and be prompted to create new 
problems 

 

In a quasi-experimental study with 92 elementary students with an average age of 11 

years old, Chang, Wu, Weng, and Sung (2012) compared the performance of an  

experimental group that experienced the game-based problem-posing system and a control group 

that experienced the traditional paper-based instruction. They found that problem posing 
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encouraged students to integrate their prior knowledge and become aware of their cognitive 

processes. Problem solving provided further opportunities for them to reflect on, and adjust their 

problem-posing skills.  

In addition, this game-based system brought a statistically significant higher state of flow 

experience for students in the experimental group than students in the control group. More 

specifically, the system helped sustain students’ interests by offering potential challenges in 

problem-posing and problem-solving activities, and immediate feedback from teachers and the 

system. System feedback included the time that individual students spent on activities, scores on 

correctly solved problems, etc. This system allowed students to easily revisit the materials they 

had encountered, which helped them to make connections between givens and goals and among 

different posed problems. The system was even more effective in improving the performance of 

students with low problem-solving scores. 

Abramovich and Cho (2006) developed a spreadsheet-based environment by using 

Microsoft Excel 2004 to help pre-service elementary teachers and their students pose and solve 

open-ended mathematical problems, more specifically, money sharing and changing problems. 

They found that the use of a spreadsheet within the context of problem posing helped to facilitate 

pre-service teachers’ sense-making process, including connecting different layers of the problem 

structure, systematically reasoning about the varying parameters of a situation, and giving 

additional attention to the solvability of posed problems. Abramovich and Cho additionally 

claimed that this technology was commercially available and had almost no financial constraints. 

Therefore, it is potentially easy to adopt in classrooms. 

Elwan (2007) conducted an experimental study to investigate the impacts of using 

WebQuest on pre-service teachers’ problem-posing ability and beliefs. The results showed that 
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pre-service teachers from the experimental group performed significantly better on a problem-

posing achievement test developed by Elwan than pre-service teachers from the control group 

(i.e., the participants in the experimental group got significantly higher mean score, 27.8>16.6, 

out of 36 in total). Additionally, pre-service teachers from the experimental group showed 

significant changes in their beliefs toward the role of problem posing in mathematics education 

after using WebQuest (i.e., the participants in the experimental group showed a significant 

difference in mean scores of beliefs between pre- and post-WebQuest use). 

The studies discussed in this section show that technology-based scaffoldings have 

positive impacts on problem-posing performance and mathematics learning for both students and 

teachers. The uses of those technology scaffolds should be taught to students, especially the 

students with a low level of problem-solving performance, to help them monitor their learning, 

promote their self-perception, and sustain their motivation to learn. Such strategies should also 

be taught to prospective teachers because they will utilize such strategies in classroom teaching 

in the future.  

Discussion and implications for mathematics learning. This body of literature 

exaimined three different approaches that situated problem posing within the large problem-

solving context. The approaches are beneficial for developing students’ problem-posing and 

problem-solving skills, sustaining their learning interests, and improving their academic 

performance in mathematics. More specifically, these approaches can help learners to develop an 

understanding of mathematical problems (e.g., quality and complexity levels of mathematical 

problems, structure and different types of mathematical problems), the capability to use the 

process of association (e.g., posing problems that are related or in a sequence, connecting 

relevant and plausible aspects of reality to mathematical knowledge and problem-solving skills), 
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the capability of mathematical reasoning (e.g., comparing different situations and problems, 

selecting suitable information and discarding irrelevant information), and creativity in 

mathematics (e.g., flexibly manipulating the attributes of a given problem, posing innovative 

problems according to given information). 

Regarding the interaction between problem posing and problem solving, Silver, Mamona-

Downs, Leung and Kenney (1996) found that teachers usually posed more problems before 

problem solving than during or after problem solving. Bonotto and Dal Santo (2014) indicated 

that problem solving after problem posing had a sequence of positive effects on student learning. 

It fostered their capability to synthesize many perspectives of a given problem, including its 

structure, quality, type, and new possibilities (i.e., new problems that can be posed). But beyond 

that, few studies have explored the impacts of different arrangements of problem-posing and 

problem-solving activities on student mathematics learning and understanding, let alone the 

underlying causes of those impacts.   

International Comparison Studies 

The international comparison study in teacher education is a product of the main focus of 

educational reforms for teacher quality improvement during the last 50 years (Akiba, LeTendre, 

& Scribner, 2007). It has provided unique opportunities to better understand teaching and 

learning. Ma (1999) claimed that “comparative research allows us to see different things, and 

sometimes to see things differently” (p. xx). This indicates that the international comparison 

study helps to describe the outcomes of different educational systems and investigate explanatory 

factors that affect the quality of education (Gustafsson, 2008). With this information, a better 

understanding of the issues involved in a functional educational system is captured and evidence 

for decision making is gathered to improve the learning environment for students. These benefits 
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also apply to teacher preparation. By analyzing the 2003 Trends in International Mathematics 

and Science Study (TIMSS) data involving 46 countries around the world, Akiba, LeTendre and 

Scribner (2007) indicated that the international comparison study could reveal the level of 

teacher quality in different countries, deficiencies in teacher knowledge, and gaps in their 

perception of their own needs. All of these were closely related to students’ achievement.  

This section of the literature review focused on international comparison studies with 

prospective teachers. Different approaches in prospective teachers’ preparation in educational 

programs were synthesized as well as their academic performance including their mathematics 

content knowledge (MCK), pedagogical content knowledge (PCK), and general pedagogical 

knowledge (GPK) (Shulman, 1986), their beliefs in mathematics and mathematics teaching, and 

comparison studies particularly related to problem posing. 

Prospective elementary teachers’ preparation. In order to gain a broad view of the 

challenges in teacher preparation across different countries, Comiti and Ball (1996) examined the 

trends of teacher preparation in England, France, Germany, and the United States. After closely 

comparing French and US educational program curriculum, the researchers concluded that four 

crucial issues were central to teacher preparation. The first two issues involved challenges 

teacher educators faced in both countries, including (1) making significant changes in 

perspectives, such as prospective teachers’ views of how mathematics is taught and learned and 

how students think about mathematics, and (2) improving prospective teachers’ pedagogical 

understanding in mathematics with limited hours for pedagogical practice and a poor structure of 

the content addressing their needs. 

The third crucial issue was the challenge of finding proper ways to prepare teachers, 

especially those in the US who could teach but had little teaching experience, and those methods 
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were not widely used in elementary or secondary schools. The last crucial issue concerned the 

connection of the program components across institutions. More specifically, program courses 

and field experiences were usually unbound. French programs did a better job of structuring 

those settings. These four crucial issues illustrate that comparison studies can help illuminate 

both common and specific problems in specific countries.  

While the proposed issues were considered by comparing education programs in different 

countries, some studies have investigated more detailed indicators and educational program 

outcomes. Yuan and Han (2009) used prospective elementary educational programs in Shanghai 

Normal University and City University of New York as examples and compared their 

mathematics content and methods courses. They found that the two programs were different in 

credit requirements, teaching objectives, teaching methods, and course content. Overall, the 

researchers claimed that, although Chinese prospective elementary teachers were taught more 

advanced mathematics knowledge, those knowledge had little relatedness with elementary 

mathematics curriculum; although Chinese prospective elementary teachers learned basic 

teaching theory and methods as well as technology use comprehensively and systematically, they 

lacked field experience for effectively coaching elementary students. The researchers suggested 

Chinese teacher educational programs to provide prospective elementary teachers more 

opportunities to understand children’s thinking and corresponding teaching methods. 

Chen and Mu (2010) compared the mathematics teacher education and curriculum 

structure in China, Singapore and the US. They observed that Chinese prospective elementary 

teachers were usually trained in junior college programs while Singaporean prospective teachers 

were required to obtain a higher-level postgraduate diploma, and US prospective teachers needed 

to attend an education program for a bachelor’s or even master’s degree. In addition, the teacher 
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training in China was usually independent from local schools while both US and Singaporean 

modes showed a closer partnership between universities and school districts. This information 

suggested that the training mode in China was at a comparatively low level. 

Regarding curriculum structure, both Singaporean and US courses “have evolved in the 

last few decades from being rather theoretical and psychology-based to a combination of theory 

and practice” (Chen & Mu, 2010, p. 133). However, the Chinese courses still focused on 

academic learning, but lacked educational studies and practices. Finally, in consideration of 

content selection and teaching method, Chen and Mu found that, in order to combine theory and 

practice instead of over-emphasizing the content knowledge and learning theory, both Singapore 

and the US provided prospective teachers with multiple-dimensional learning opportunities such 

as an education internship in classrooms and elective courses to link to primary and secondary 

school curricula. These approaches were helpful for turning the training mode “from a teaching-

training model to a reflective practice model” (p. 134). All these approaches were deficient in the 

Chinese teacher educational system. 

To summarize, teacher preparation has been investigated from many perspectives via 

comparison studies involving different countries. The findings can be used to make decisions 

about how to improve educational programs’ curriculum structure and content, or gradually 

overcoming the challenges that each educational program faces by learning from other 

institutions around the world. 

Prospective elementary teachers’ academic performance. Shulman (1986) classified 

the knowledge that a teacher needed to know into three categories: (1) mathematics content 

knowledge (MCK), which refers to mathematical concepts, ideas, and facts as well as the 

relationship among them, and the ways of creating and evaluating new knowledge of this 
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discipline; (2) pedagogical content knowledge (PCK), which refers to the understanding and 

knowledge of ways to make mathematics content comprehensible to learners; and (3) general 

pedagogical knowledge (GPK), which refers to the knowledge of teaching and learning theories 

and principles, knowledge of students, and knowledge of classroom behavior management 

principles and techniques. This section synthesized international comparison studies about these 

three categories. 

Comparison studies on MCK. Teachers’ MCK has a significant influence on designing 

and teaching high quality lessons and therefore plays a large role in student achievement (Kahan, 

Cooper & Bethea, 2003). In order to better prepare teachers’ MCK, international comparison 

studies have tried to identify contributing factors that lead to different levels of content 

knowledge for teachers from different countries. Luo, Lo, and Leu (2011) investigated 89 US 

and 85 Taiwanese pre-service elementary teachers’ fundamental fraction knowledge by assessing 

with 15 multiple-choice items that covered the meaning of fractions, equivalent fractions, and the 

meaning of fraction operations. 

Luo, Lo, and Leu (2011) found that Taiwanese pre-service teachers performed much 

better than their US counterparts with a statistically significant difference on 12 out of 15 items 

between the two groups. The US pre-service teachers were more challenged by linear model 

problems, especially when working with a number line. In addition, both US and Taiwanese pre-

service teachers needed more preparation on the meaning of multiplication and division with 

fractions. In light of this information, we now know more about a specific group of pre-service 

teachers’ difficulties and conceptual misunderstanding that may cause issues in their 

understanding of fractions.  
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Comparison studies on PCK. Blömeke, Suhl, Kaiser, and Döhrmann (2012) examined 

the influences of teacher background, opportunity to learn (OTL) in educational programs, and 

teacher intake on their MCK and PCK preparation. About 14,000 prospective primary teachers 

from 527 education programs in 15 countries participated in a 60-minutes paper-and-pencil 

assessment that covered 106 items during the last year of their programs. The researchers found 

that significant differences existed not only between different countries, but also between 

programs within the same country. First, teacher background was shown to partially influence 

the outcomes of teacher education while gender turned out to be the most important indicator 

among all demographic factors in the acquisition of MCK, but not with PCK. Second, 

participants’ prior knowledge and motivation in mathematics had a significant impact on both 

MCK and PCK, while teacher intake and OTL played an even more important role. This study 

indicated the variables that influenced the outcomes of teacher education on different levels. This 

information assists in adapting the beneficial features of a teacher educational program from 

other countries and, probably more easily, from other programs in the same country because of 

the similar cultural background. 

Comparison studies on GPK. Schmidt et al. (2008) also investigated OTL, but focused 

on OTL in MCK and GPK with lower secondary prospective teachers. They asked 1127 

participants from 34 institutions in six countries two types of questions, one about their MCK 

preparation and the other about their GPK preparation. The results illustrate that the prospective 

teachers experienced different opportunities and ways of preparation across the six countries. 

Three components emerged, the coverage of mathematics content, theoretical pedagogy, and 

practical pedagogy. The biggest difference across countries was practical pedagogy. The 
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researchers claimed that the way of structuring these three components was related to teacher 

preparation outcomes. 

Brown and Remesal (2012) investigated 996 prospective teachers’ perceptions of the 

assessment inventory in Spain and New Zealand, focusing on four major intentions: (1) 

assessment improves teaching and learning, (2) assessment is irrelevant to teaching and learning, 

(3) assessment indicates school accountability, and (4) assessment indicates student 

accountability. The participants included prospective elementary and secondary teachers, infant 

school teachers, and other prospective teachers.  

By analyzing participants’ responses to 27 items that covered all four intentions, Brown 

and Remesal (2012) found that there was a big difference between teachers from two countries. 

Prospective teachers from New Zealand were more likely to agree that assessment measured 

school quality and grade students, and therefore improved teaching and learning. On the contrary, 

Spanish prospective teachers were more likely to agree that assessment was irrelevant or bad. 

The researchers claim that such big difference was consistent with each country’s use and 

purpose of assessment. More specifically, the researchers concluded four possible reasons for the 

difference. These included cultural factors, context factors, instructional effect, and demographic 

differences. The findings indicate that prospective teachers’ perceptions towards assessment are 

culturally situated. Although it is possible that there are some other factors that impact 

prospective teachers’ perception on assessment, this study has made one step towards “a better 

understanding of cross-national elements related to the psychology of assessment” (Brown & 

Remesal, 2012, p. 14) of educational programs. 

Prospective elementary teachers’ beliefs. Research studies have shown that “what 

teachers believe is a significant determinant of what gets taught, how it gets taught and what get 
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learnt in the classroom” (Xenofontos & Andrews, 2014, p. 283). What teachers believe includes 

their beliefs in both mathematics and mathematics teaching. This section discusses the 

international comparison studies in regard to these two areas separately. 

Beliefs in mathematics. Cross-national learners’ beliefs in mathematics are culturally 

situated and their conceptual understandings are cross-nationally different. By considering 

mathematical problems and problem solving in particular, Xenofontos and Andrews qualitatively 

compared Cypriot and English prospective primary teachers’ beliefs via semi-structured 

interviews right as they entered the education program (2012) and as they were exiting the 

program (2014). The area of mathematical problem and problem solving was selected because 

“both Cyprus and English present mathematical problem solving as a major curricular goal” (p. 

279). This fact made the two groups more comparable.  

At the point that the prospective primary teachers entered their programs, Xenofontos and 

Andrews (2012) found that both Cypriot (N=13) and English (N=14) participants showed 

consistent beliefs in the nature of mathematical problems and problem solving and the 

characteristics of problem-solving experts. But they focused on different interpretations. More 

specifically, Cypriot participants expected that mathematical problems should be well defined, 

without ambiguity, related to real-world context in some sense, and difficult for problem solvers, 

while English participants did not show such expectations but interpreted a mathematical 

problem as task that required number operations. 

In addition, although both groups of participants described mathematical problem solving 

as a process, Cypriot participants described the problem-solving process as a sequence of actions 

while English participants considered it as a way of reducing the initial task down to small steps. 

Finally, Cypriot participants considered a problem-solving expert as someone who could solve 
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given problems quickly and accurately while English participants described a problem-solving 

expert as someone who could apply his or her prior knowledge effectively. In consideration of 

the fact that these prospective teachers were at the point of entering their education programs, the 

researchers highlighted the possible influence of the prospective teachers’ past learning 

experience on their beliefs. 

At the point that the prospective primary teachers (N=12 for each country, not the same 

groups of teachers from the previous study) were exiting their programs, Xenofontos and 

Andrews (2014) again compared their beliefs about mathematical problems and problem solving. 

More specific themes of similarities and differences in prospective primary teachers’ beliefs 

emerged. First, both cohorts expressed that mathematical problems were related to real-life 

situations. In addition, over half of the Cypriot participants described schema theory (e.g., four 

arithmetic operations) and a need for problems with generic strategy while English participants 

emphasized the feature that a mathematical problem has no direct solution. For mathematical 

problem solving, most Cypriot participants believed that problem solving was a cyclic process 

while their English counterparts emphasized the important role of basic and/or prior knowledge 

in problem solving. In consideration of the features of curricula and textbooks of each 

educational program, researchers concluded that prospective teachers’ beliefs in mathematical 

problem and problem solving were culturally situated and highly related to curricular systems. 

These two international comparison studies have partially demonstrated how the 

curriculum system of an educational program can enhance and/or hinder prospective teachers’ 

understanding of mathematical problem and problem solving. Curriculum designers as well as 

textbook writers therefore could be inspired to clearly clarify the meaning of mathematical terms 

and create rich opportunities to develop prospective teachers’ problem-solving capabilities. In 
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short, comparing cross-national prospective teachers’ beliefs in mathematics offers insights for 

developing curriculum systems. 

Beliefs in mathematics teaching. The ultimate goal of teaching is to make student 

learning possible. Therefore, teachers’ beliefs in mathematics teaching can be evaluated by their 

efficacy belief, which is defined as a teacher’s judgment in his/her capability of engaging 

students in learning and bringing about desired student learning outcomes, even with low-level 

academic performance students or unmotivated students (Tschannen-Moran & Hoy, 2001). 

Existing studies show that teaching efficacy beliefs can impact teachers’ retention in the 

profession, persistence when facing difficulties, openness to new teaching methods, as well as 

students’ motivation and therefore, their learning efficiency (Coladarci, 1992; Ross, 1998; Stein 

& Wang, 1988). 

Cakiroglu (2008) compared 141 Turkish and 104 US pre-service elementary teachers’ 

efficacy belief by using one questionnaire with two subscales, of which one was about pre-

service teachers’ personal teaching efficacy beliefs while the other was about their teaching 

outcome expectancy. Cakiroglu found that the two cohorts both had positive teaching efficacy 

beliefs and high teaching outcome expectancy. However, Turkish pre-service teachers showed a 

statistically higher teaching outcome expectancy than their US counterparts. This showed that 

Turkish pre-service teachers believed more that teaching could influence student learning. 

Although both US and Turkish participants easily agreed that teachers should welcome 

students’ questions and students’ inadequacy of mathematics learning could be overcome by 

good teaching, Cakiroglu (2008) found that the US participants were mostly concerned about 

teaching skills in the future while Turkish participants were mostly concerned about ways of 

effectively teaching concepts of mathematics. The US participants disagreed most that students’ 
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low achievement was due to teachers’ teaching while Turkish participants disagreed most that 

extra attention given to low-achieving students could make progress in their learning. 

All of these similarities and differences inspired the researcher to further compare their 

coursework of each program. Due to the fact that Turkish pre-service teachers had a less intense 

field experience when taking their methods courses than their US counterparts, Cakiroglu (2008) 

claimed that the significantly higher expectancy of Turkish pre-service elementary teachers 

“should not be immediately interpreted as a ‘positive’ aspect” (p. 41) of their program. In light of 

the above discussion, Cakiroglu concludes that new insights for enhancing pre-service teachers’ 

efficacy beliefs could be generated by exposing one educational program to other countries’ 

educational programs and being questioned by those programs. In other words, international 

comparison studies offer opportunities for teacher educators to better understand the different 

levels of pre-service teachers’ efficacy beliefs, factors that enhance or hinder their efficacy belief 

development, as well as the effective approaches to enhance their beliefs. 

Comparison studies particularly related to problem posing. In this section, I 

synthesized international comparison studies that were particularly about students’ problem-

posing performance and the relationship between problem posing and other mathematical 

proficiency indicators, including problem-solving performance and creativity in mathematics. 

Relationship between problem-posing and problem-solving performance. The problem-

posing performance of both teachers and students has been investigated in many countries such 

as the US, China, Japan, Malaysia and Indonesia (Chen, Van Dooren, Chen, & Verschaffel, 2011; 

Kojima & Miwa, 2008; Rosli, Goldsby, & Capraro, 2013; Silver & Cai, 1996; Siswono, 2014). 

However, only a few cross-national comparison studies examined problem posing, and the 

majority of those studies were between the US and China. These studies were conducted mainly 
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by Cai and his colleagues, and none of them were conducted with prospective teachers. In light 

of the cross-national studies on students’ mathematical knowledge and problem-solving skills 

that reported that the finding that Asian students usually outperformed US students was not 

always the case when, for example, the tasks were designed for assessing relatively novel or 

complex problem solving (Cai, 1995; Silver, Leung, & Cai, 1995), Cai started to conduct 

cognitive analysis to explore more profound rationale behind the different performances by using 

both problem-solving and problem-posing tasks. Since then, the area of cross-national studies 

has been expanded because problem-posing activities were involved. 

Cai (1998) conducted a study with 181 US and 223 Chinese sixth-grade students in order 

to investigate the similarities and differences between these two groups of students’ cognitive 

thinking in complex problem-solving activities and student-generated problem-posing process. 

There were four tasks in total. The first problem-solving task was about computational exercises 

and the fourth problem-solving task was a division-with-a-remainder problem. The second one 

was a problem-posing task and the third one was also a problem-solving task. The second and 

third tasks were developed from the same group of figures in a pattern. For problem-solving 

tasks, Cai found that, although a significantly larger proportion of the Chinese than US students 

found a correct answer, they performed similarly “on the sense-making phase” (p. 47). In other 

words, Chinese and US students performed similarly in providing appropriate interpretations to 

their solutions. For the problem-posing task, the US and Chinese students posed almost the same 

proportion of extension problems, namely, problems that questioned the pattern beyond given 

figures. However, the proportion was small. Cai claimed that one possible interpretation of this 

result was that problem-posing activities were rarely incorporated in classrooms and therefore 

students had little experience in problem posing.  
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In the meantime, Cai (1998) found that students from both countries who posed at least 

one extension problem performed better on problem-solving tasks than the students who posed 

only non-extension problems, namely, problems that only questioned the given figures. This 

finding demonstrates that students’ problem-posing performance is related to their problem-

solving performance. Cai further claimed that the types of students’ posed problems were 

seemingly related to their problem-solving strategies, and this was true for both US and Chinese 

students. For example, when given a pattern problem with shapes made of dots, the students who 

solved the initial problem by focusing on the total number of dots, but not the shape of each 

figure posed problems mostly about the total number of dots in different shapes of the given 

pattern. This finding provides one possible way of specifically looking at the connections 

between students’ problem-posing and problem-solving thinking. 

 By further using pattern-based tasks, Cai and Hwang (2002) conducted a study with a 

total of 98 US and 155 Chinese sixth grade students to explore their generalization skills in 

problem solving, generative thinking in problem posing, and the relationship between their 

generative performance in problem-posing and problem-solving activities. Two pattern-based 

tasks with a similar structure asked students to first solve a sequence of problems, of which the 

last one needed generalization skills, and then pose three problems, beginning with an easy 

problem first, then a moderate one, and finally a difficult one. All collected data were students’ 

written responses, there were no verbal protocols. As the authors claimed, collecting only 

participants’ written responses brought some practical advantages for conducting cross-national 

studies. The study was fit for answering their research questions because they focused on 

students’ generative performance in problem solving and problem posing instead of their deeper 

cognitive reasoning behind the problem-solving and problem-posing strategies that they chose. 
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Comparing to Cai’s (1998) findings, Cai and Hwang (2002) further confirmed that the 

US and Chinese students had quite different tendencies in choosing problem-solving strategies. 

More specifically, the US students tended to choose concrete strategies and visual 

representations while Chinese students preferred to use abstract strategies and symbolic 

representations. This tendency was consistent with the findings of previous studies that examined 

US and Asian students’ thinking in problem solving (Becker, Sawada, & Shimizu, 1999; Silver, 

Leung, & Cai, 1995). Cai and Hwang claimed that this difference might be able to explain why 

US students had lower rates of success when solving mathematical problems than Chinese 

students. They argued that concrete strategies “were more prone to errors of execution, and thus 

were less likely to succeed” (p. 418). This argument makes sense because, compared to abstract 

strategy, concrete strategy usually involves more computational steps. For example, in a pattern 

problem, the later an item is in the pattern, the more computational or counting steps it requires, 

and the higher the chance of error. 

For problem-posing performance, Cai and Hwang (2002) found that the types of problem 

posed by US and Chinese students were quite different. More specifically, the US students posed 

a large group of rule-based extension problems (i.e., problems that asked about the pattern 

beyond the given figures or items) while their Chinese counterparts tended to pose more non-

extended problems (i.e., problems that constricted within the first several given figures or items). 

In addition, Chinese students showed a clear trend of posing problems in a sequence. They 

usually started with a problem using the information given in the task, followed by an attempt to 

generate the pattern, and finally tried to integrate further applications of the given pattern. US 

students did not display this trend. In terms of the relationship between problem posing and 

problem solving, Cai and Hwang indicated that Chinese students showed a strong link between 
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their problem-solving and problem-posing performance while US students showed a much 

weaker link. They claimed that this strong link shown by Chinese students might be attributable 

to a possibility that “posing a variety of problem types seems to be strongly associated with 

abstract strategy” (p. 419) used for problem solving, which was almost never used by US 

students. 

Both Cai’s (1998) and Cai and Hwang’s (2002) studies provide evidence about the 

similarities and differences between US and Chinese students’ problem-posing and problem-

solving performance, as well as the possible relationship between problem posing and problem 

solving. More specifically, the relationship between the types of posed problems and the 

problem-solving strategies used by students, from a cross-national perspective. However, these 

two studies only collected students’ written responses in problem-posing and problem-solving 

tasks, while no verbal protocols were considered. Therefore, these two studies did not dig into 

students’ cognitive thinking processes or ways of reasoning during the problem-posing and 

problem-solving processes.  

Relationship between students’ problem-posing performance and creativity in 

mathematics. Yuan and Sriraman (2011) also conducted a cross-national study with US and 

Chinese students, but from a different perspective from Cai and his colleagues’ work. They 

investigated the relationship of students’ creativity and their problem-posing performance using 

a quantitative approach. Three tests were administered to 55 Chinese and 30 US high school 

students measuring their creative thinking, problem-posing ability, and mathematics content 

knowledge, respectively. For students’ creativity in mathematics, Yuan and Sriraman found that 

the US students were more capable of using words to express their ideas than Chinese students, 

while their capability to express ideas by drawing pictures were similar. They also found that 
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Chinese students showed a statistically significant correlation between their creativity and two 

perspectives of problem-posing ability (i.e., fluency and flexibility) while no significant 

correlation was found between the US students’ creativity and any perspective of their problem-

posing ability (i.e., fluency, flexibility, and originality). 

For students’ problem-posing performance, Yuan and Sriraman (2011) found that both 

the mathematics content areas involved in US and Chinese students’ posed problems and the 

types of posed problems were different. Chinese students mainly posed problems about 

combination and permutation while the US students mainly posed problems about Arithmetic. 

Chinese students’ posed problems were categorized into ten different types while US students’ 

posed problems were categorized into eight types, excluding transformation and proof problems. 

By taking students’ performance on the test for measuring their mathematics content knowledge 

into consideration, Yuan and Sriraman claimed that “the superior performances of Chinese 

students in the mathematics content test and the mathematical problem-posing test suggest that 

there might be some correlation between the two” (p. 26). Bonotto and Dal Santo (2014) claim 

that students’ creativity in mathematics might have a correlation with their academic 

performance in mathematics, but not highly correlated to their prior problem-posing experience. 

In consideration of both aforementioned statements, it is possible that students’ creativity, 

problem-posing ability and their content knowledge are correlated, while the content knowledge 

may be the most fundamental reason behind students’ levels of creativity and problem-posing 

capability. 

Some limitations about international comparison study were discussed in Yuan and 

Sriraman’s (2011) study. Those limitations were brought about by the different mathematics 

curriculum in different countries, a non-random sample from either US or Chinese student 
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population, the translation of the instruments between English and Chinese, and the time and 

distance restrictions which made the US and Chinese participants complete all four tests in 

different periods of time. These limitations are seemingly inescapable when conducting a 

comparison study between the US and China. 

In short, the studies discussed above indicate that international comparison studies can 

serve to investigate explanatory factors that cause different outcomes of problem posing with 

students from different countries, instead of just describing the similarities or differences of those 

outcomes. US and Chinese students’ different performance in problem posing are demonstrated 

by the types of their posed problems, mathematical contents involved in their posed problems, 

relationships between their posed problems and problem-solving strategies, and relationships 

between their creativity and their problem-posing capability. Since few international comparison 

studies on problem posing have been done with prospective elementary teachers, such studies 

have a vast potential to be able to provide new insights into ways to prepare prospective teachers 

for problem posing. 

Discussion and implications for mathematics learning. In general, international 

comparison studies contribute by investigating explanatory factors that are able to improve the 

student learning environment, teacher academic and pedagogical preparation, and teacher beliefs 

in both mathematics and mathematics teaching. These factors provide well-grounded evidence 

for making decisions to enhance the quality of education in each country. In particular, 

international comparison studies on problem posing have investigated some explanatory factors 

that cause different outcomes of problem posing and have further confirmed the close 

relationship between students’ problem-posing and problem-solving performance. For example, 

students who were able to pose extension problems usually outperformed on problem-solving 
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tasks compared to students who posed only non-extension problems. In addition, the types of 

students’ posed problems were seemingly related to their problem-solving strategies for both the 

US and Chinese students (Cai, 1998). These findings indicate the particular contribution that 

international comparison studies make to the research area in mathematical problem posing.    

Although international comparison studies can either quantitatively describe the 

outcomes of different educational programs or qualitatively investigate explanatory factors that 

affect the quality of teacher preparation, the majority of the studies discussed above used a 

quantitative approach rather than a qualitative approach. This phenomenon is understandable, 

because it is consistent with the shift of focus in the International Association for the Evaluation 

of Education Achievement (IEA) from phase one between 1950 and 1990, during which the goal 

was “to generate knowledge about determinants and mechanisms behind educational 

achievement”, to phase two since 1990, during which the goal was “to describe the outcomes of 

different education systems, leaving it to the different participating countries to find the 

explanations” (Gustafsson, 2008, p. 2). The consequence of the aforementioned shift is the need 

for more international comparison studies to explain the patterns that have been discovered by 

previous comparison studies.  

Guiding Frameworks 

In consideration of the aims of this study, in this section I discuss the guiding frameworks 

that I used to (1) integrate problem posing and problem solving together in order to enable the 

justification of the features of the relationship between problem posing and problem solving, and 

(2) design specific problem-posing tasks for investigating problem posers’ performance on 

different types of problem-posing tasks. Ellerton (2013) developed the Active Learning 

Framework for locating problem posing after problem-solving practices in mathematics 
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classrooms. This framework was utilized in this study for developing a reasonably systematic 

way of engaging the participants in alternating problem-posing and problem-solving activities. 

Christou, Mousoulides, Pittalis, Pitta-Pantazi and Sriraman (2005) developed a theoretical model 

with four specific problem-posing processes of analyzing quantitative information in a given 

problem or situation. Those four processes were utilized in this study for designing specific 

problem-posing tasks.  

Active learning framework. Ellerton (2013) developed the Active Learning Framework 

(see Figure 2.1) for locating problem posing after certain problem-solving practices in 

mathematics classrooms. This framework places emphasis on the process of engaging learners in 

problem posing, rather than only on the posed problems. In addition, this framework aims to 

move students from being passive receivers to active learners, and offers a promising direction 

for incorporating problem posing into instruction (Silver, 2013). As Ellerton (2015) claimed: 

Figure 2.1: Active Learning Framework (Cited from Ellerton, 2013, p. 99) 

Central to this framework is the active involvement of students in posing problems that 

not only demonstrates their understanding of the structure of the mathematical concepts 
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they have been learning, but also gives students the opportunity to solve and critique the 

problems of others, and to reflect on and improve their own problems. (p. 516)  

Ellerton (2015) utilized this framework with seven preservice middle-school teachers and 

four practicing middle-school teachers who were pursuing their Master degree in Mathematics in 

a modeling course. Ellerton usually provided students a problem-posing project that was related 

to real-world situations, and asked them to individually plan and draft mathematical problems, 

then discuss with peers and revise drafted problems, and finally present final version of problem 

and find a solution. The students were often involved in problem posing and problem solving in 

many cycles. Ellerton found that each student showed attempt to pose his/her unique, interesting 

and solvable problems, and they took through logic thinking and time during the alternating 

problem-posing and problem-solving process. The four practicing teachers also tended to put 

consideration of their particular students when posing problems. Ellerton (2015) claimed that this 

way of integrating problem posing in classroom “represents an untapped opportunity to 

transform routine tasks into exciting and refreshing discoveries and teachers alike” (p. 527). In 

conclusion, the Active Learning Framework enables students to be actively involved in both 

problem posing and problem solving. 

Four cognitive processes. There are a variety of ways to classify problem-posing tasks 

and each way of classification focuses on a different perspective of a problem-posing activity 

(Chapman, 2012; Silver, 1994; Stoyanova & Ellerton, 1996). Stoyanova and Ellerton (1996) 

defined three problem-posing situations: (1) a free situation, in which the subjects are asked to 

pose problems without any restrictions or guidelines; (2) a semi-structured situation, in which the 

subjects are provided open-ended problems or asked to write similar problems with given 

problems or pose problems based on specific pictures or diagrams; and (3) a structured situation, 
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in which the subjects are asked to reformulate solved problems or manipulate conditions and 

goals of given problems. All of these situations provide problem posers the opportunities to 

actively explore the structure of a given situation and connect to their prior knowledge, skills, 

and conceptual understanding. Because of these advantages, Stoyanova and Ellerton’s 

classification has become a popular framework. Many studies use this framework, but mainly 

focus on investigating participants’ problem-posing performance, creativity, and the relatedness 

between problem posing and problem solving in different situations (Bonotto, 2013; Siswono, 

2014; Yuan & Sriraman, 2011).  

Few studies use Stoyanova and Ellerton’s (1996) framework to investigate the coherent 

picture of students’ cognitive thinking while posing problems. This is because their framework 

was not purposefully designed to capture the nature of problem posing. In order to enable young 

students’ cognitive process of problem-posing thinking to be described or measured directly, 

Christou, Mousoulides, Pittalis, Pitta-Pantazi and Sriraman (2005) proposed a model with the 

following processes: (1) editing quantitative information, called Editing process for short, which 

requires students to pose problems according to provided information such as a real-life situation 

or a story but without any other restriction; (2) selecting quantitative information, called 

Selecting process for short, which requires students to pose problems that are appropriate to 

specific given answers; (3) comprehending qualitative information, called Comprehending 

process for short, which requires students to understand the meaning of given operations before 

posing mathematical problems; and (4) translating quantitative information, called Translating 

process for short, which requires students to pose problems based on given graphs, diagrams or 

tables. The researchers claim that this model can be applied to many mathematical areas such as 

algebra and geometry. 
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Although the Editing process asks students to pose problems without any other restriction, 

it is different from a free problem-posing situation because it asks students to pose problems 

according to a given situation. All of the processes in Christou et al.’s (2005) model ask students 

to pose problems in a semi-structured situation. More specifically, those processes ask students 

to pose problems according to given real-world situations, graphs or tables, specific operations 

and answers. Therefore, Christou et al.’s model actually defines specific types of problem-posing 

tasks. In addition, Christou et al. speculated that those four problem-posing processes 

corresponded to specific problem-solving tasks that were presented in iconic, tabular, or 

symbolic form. In other words, different features of problem-solving tasks and potential 

problem-solving strategies are implicitly involved in each process of this model. The four 

problem-posing processes require students to pose problems and justify the solutions at the same 

time. Meanwhile, different problem-posing processes involve different problem-solving 

strategies. 

Christou et al. (2005) claim that this theoretical model is able to help educators 

understand students’ thinking process in posing problems, and each of those processes indicates 

specific and important components of problem-posing abilities. Existing studies have agreed that 

this model helps to investigate specific aspects of problem-posing process, pose subsidiary 

questions in a constant process, and demonstrate the close relationship between problem posing 

and problem solving (Bonotto, 2010b; Kontorovich & Koichu, 2009; Singer, Ellerton, & Cai, 

2013). 

Discussion and implication for mathematics learning. This section first discussed the 

Active Learning Framework developed by Ellerton (2013) that helps involve students in active 

problem-posing and problem-solving activities. However, both problem solving and problem 
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posing are inquiry-based activities. These activities require time for students to understand the 

task, and then establish and revise mental models. More time should be given to problem posing, 

especially when students have not had such experiences before. Since my task administration 

would be conducted outside of classrooms, and the Active Learning Framework implies different 

ways to engage students in alternating problem-posing and problem-solving activities, this 

framework was revised for this study (see Figure 2.2). The revised framework can also 

continuously move students from being passive receivers to active learners. In order to examine 

specific prior and after effects between problem posing and problem solving, my participants 

were engaged in problem posing first as they were familiar with problem solving, and we still 

lacked understanding about their direct reaction and performance on problem-posing tasks. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 2.2: Revised Active Learning Framework 

I then discussed a theoretical model with four specific problem-posing processes, 

proposed by Christou et al. (2005). This model helps investigate specific aspects of problem- 
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posing abilities, and all four problem-posing processes are not too open-ended to be approached. 

From this viewpoint, Christou et al.’s model was a good fit for this study because, on the one 

hand, I could examine the participants’ performance of specific types of problem-posing tasks. 

On the other hand, my participants would not grope aimlessly or had no idea about what to do 

exactly when encountered problem-posing tasks at very beginning. In addition, each process of 

this model corresponds to specific problem-solving tasks, as the researchers speculated. From 

this viewpoint, Christou et al.’s model was an even better fit for this study because it enabled 

further exploration of the relatedness between problem posing and problem solving. 
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Chapter 3: Research Methodology 

The purpose of this study was to understand the patterns of prospective elementary 

teachers’ problem-posing performance, particularly when problem solving was involved in an 

alternating manner. Additionally, in this study I aimed to further investigate the features of the 

relationship between problem posing and problem solving. In order to achieve these goals, in this 

chapter I first discuss methodological considerations from the literature review, then provide a 

description of participants and sample selection, task design considerations and pilot study 

implications, data collection procedures, and data analysis procedures.    

Methodological Considerations from the Literature Review 

The review of the literature suggests further exploration of students’ problem-posing 

performance with particular components of problem-posing activities, such as specific problem-

posing strategies, procedures, and categories of posed problems, as well as particular variables of 

problem-posing tasks, such as involved content topics, the format of representation, and ways of 

engaging problem posers. My study focused on exploring the impacts of specific types of 

problem-posing tasks on problem posers’ performance, while all types of problem-posing tasks 

utilized in this study were closely related because they used the same real-world situation as well 

as its corresponding figures. 

The rationale for using real-world situations is also supported in the review of the 

literature. Existing studies show that real-world situations involving rich mathematical content 

knowledge and multiple artifacts are beneficial to mathematics learning from many perspectives, 

including sustaining learners’ interests, helping connect classroom mathematics content 

knowledge with out-of-school experience, as well as changing their disposition and beliefs in 

mathematics.   
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The review of the literature appeals for further exploration of the relatedness between 

problem posing and problem solving. In consideration of the lack of adequate investigation about 

the impacts of problem posing (problem solving) at different stages of problem-solving 

(problem-posing) processes, participants in this study engaged in alternating problem-posing and 

problem-solving tasks. This strategy ensured certain interactions between participants’ problem-

posing and problem-solving thinking. In addition, all of the tasks were designed according to the 

same situations and figures. This strategy ensured a particular relatedness of the two activities. 

Finally, Ellerton (2013) and other researchers (e.g., Osana & Pelczer, 2015) appeal for 

problem-posing integration into teacher preparation programs. There are still a lot of unanswered 

questions about the methods and principles of doing this. By further considering the benefits of 

an international comparison study, and the lack of international comparison studies, particularly 

related to problem posing with prospective teachers, I chose to conduct an international 

comparison study with prospective elementary teachers. Participants from China and the US 

were recruited in this study. Existing studies evidence a large difference between US and 

Chinese teacher preparation systems. This study therefore was able to provide further insights 

about these two groups of participants’ problem-posing performance as well as the relationships 

between problem posing and problem solving.  

Participants and Sample Selection 

I used a convenience sampling technique (Creswell, 2012) to recruit potential participants 

in selected institutions that had a specialized educational program for preparing prospective 

elementary mathematics teachers in the US and China. I selected six institutions in total. Three 

were from the northeastern part of the US. The first US institution is a private, student-focused 

global research university. This university recruits both undergraduate and graduate students 
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from across the US, and international students from more than 100 countries. The second US 

institution is a four-year, public coeducational college that draw 95% of its students from the 

state. The third is also a public institution, but a two-year community college. These three 

institutions are ranked on different levels according to US News, which is an American media 

company well known for its Best College rankings. 

The other three institutions were from the southeastern, southwestern, and northwestern 

parts of China, respectively. The first Chinese institution is a comprehensive public university 

located in a developed urban area. It recruits both national and international students. The second 

institution is also a public university where the majority of its students are from the southwestern 

part of China. Many of them are minority students, namely, students that are from a group of 

people who differ racially from the largest group of China, which is the Han nationality. The 

third institution is located in a rural area of China with the majority of students coming from the 

same province. The first two Chinese universities are normal universities, which attempt to 

prepare elementary school teachers while the third one is a non-normal four-year college. Similar 

to the three institutions from the US, the three universities from China are also ranked on 

different levels according to the People’s Daily, which is an official newspaper of the Chinese 

Communist Party, published worldwide with high social influence.  

I contacted the prospective elementary teachers’ instructor in each of the selected 

institutions through email and received permission for visiting his/her class for 10 to 15 minutes 

either at the beginning or at the end of the class to recruit participants. I went to the class and 

explained the purpose of my study. In consideration of respect for each prospective teacher, I 

recruited participants according to their willingness. There were a few prospective teachers who 

agreed to participate in my study, but withdrew from the study later. I excluded their data from 

https://en.wikipedia.org/wiki/United_States�
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the data analysis. The data analysis was based on data collected from 87 first- and second-year 

(the majority were first year) prospective elementary teachers enrolled in teacher education 

programs. For a qualitative study, a sample of 87 participants was a large size, and this helped to 

ensure that the sample size was defensible (Mason, 2010). 

I recruited 32 US participants. Eight of them were from the private university and in a 

four-year educational program, 20 were from the public university and also in a four-year 

program, and four were from the community college and either in a two-year degree program or 

a one-year certificate program. These US participants were required to take liberal studies 

courses such as Literature and History, major courses about both advanced and elementary level 

content knowledge in mathematics, as well as education courses related to elementary level 

mathematics. The remaining 55 participants were from Chinese programs and all in four-year 

educational programs, of which 20 were from the comprehensive public normal university, 17 

from the public normal university located in southwestern part of China, and 18 from the non-

normal four-year college. The Chinese prospective elementary teachers mainly took general 

courses such as English, Sports and Computer, and advanced mathematics courses such as 

Calculus, Linear Algebra and Analytic Geometry, but no education or practice courses related to 

elementary level mathematics, during their first- and second-year study in the programs. 

Due to the fact that the US participants were from two different types of universities (i.e., 

private and public) while the Chinese participants were from three quite different areas of China, 

I expected the study findings to be more reliable than if only one university in each country was 

selected. Gender difference was not considered during participants’ recruitment process due to 

the purpose of my study as well as the fact that prospective elementary teachers are 

predominately female, which is true in both the US and China. And according to their short oral 
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responses, no participants had formal experience in problem posing prior to this research study. 

Each participant was assigned a unique serial number consisting of the country initial followed 

by a number. For example, U07 represented the seventh participant and he/she was from the US; 

C55 represented the fifty-fifth participant and he/she was from China. Therefore, no actual 

names of participants were used in this study.  

Task Design 

In this section, I first considered four principles when designing problem-posing and 

problem-solving tasks. I then conducted a pilot study by administrating initially designed tasks to 

a class of 22 US prospective elementary teachers and to three individual Chinese freshmen who 

had just came to the US after graduating from a Chinese high school. I finally revised my tasks 

according to the pilot study results. 

Four considerations. Two sets of tasks with a similar structure were designed according 

to four considerations.  

First consideration. The first consideration was mathematical topics or concepts that 

involve rich mathematical thinking, multiple ways of exploration and, in the meantime, are 

related to real-life situations. Fractions seemed to fit this consideration. According to the 

Common Core State Standards for Mathematics (National Governors Association Center for 

Best Practices & Council of Chief State School Officers, 2010), US students start to learn 

fractions in Grade 3 and operations with fractions in Grade 4. In China, students start to learn 

fractions in Grade 4 and operations with fractions in Grade 5. Fractions are a challenging topic 

for US elementary teachers and students (Ball, 1990; Toluk-Uçar, 2009), and they can be seen 

almost everywhere in our daily life. Problems with fractions usually require multiple ways of 

cognitive thinking, especially problems that are contextualized. Mack (1990) referred to this type 
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of knowledge constructed by individual students from applied, real-life situations as informal 

knowledge. Mack found that students usually possessed a rich store of informal knowledge about 

fractions and that knowledge played a role in developing their understanding of fraction symbols 

and algorithm procedures. 

I selected geometry as the topic for the second set of tasks. According to the Common 

Core State Standards for Mathematics (National Governors Association Center for Best Practices 

& Council of Chief State School Officers, 2010), US students start to learn two-dimensional 

shapes in Grade 1 and will learn the Pythagorean Theorem in Grade 8. In China, the students 

start to learn geometric shapes in Grade 3 and will learn the Pythagorean Theorem either in 

Grade 7 or Grade 8. Jones (2002) claimed that, “Geometry provides a culturally and historically 

rich context within which to do mathematics” (p. 125). More specifically, the study of geometry 

provides students opportunities to visualize, conjecture and reason, argue and justify, solving 

problems, and develop their intuition. Additionally, the study of geometry helps individual 

students for a better understanding of other content areas such as fractions, functions and 

statistics. However, the National Center for Education Statistics (2012) reported that students’ 

mathematical performance was consistently lagging in geometry and measurement. They posed 

that one of the reasons was that teachers had limited knowledge related to these two content 

strands (Steele, 2013; Van der Sandt & Nieuwoudt, 2003).  

Existing international comparison studies have documented that “Chinese students 

consistently outperformed US students across grade levels and mathematical topics” (Cai & Nie, 

2007, p. 460), including numbers and operations, measurement, geometry, and so on (Lapointe, 

Mead, & Askew, 1992; Robitaille et al., 1992). Even so, researchers have found that Chinese 

students showed relatively weak performance on visual representation items or using pictorial 
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representations (Brenner, Herman, Ho, & Zimmer, 1999; Cai, 2000). In addition, Chinese 

students did not shown explicit “higher performance on complex, open-ended tasks measuring 

creativity, problem posing, and non-routine problem solving”  (Cai & Nie, 2007, p. 460). In 

consideration of the challenges for US and Chinese students respectively, as well as potential 

learning opportunities involved in the topics of fraction and geometry, I expected to investigate 

whether problem posing could help or hinder prospective elementary teachers’ learning of these 

topics that they found challenging. I finally selected two prototypical problems (see Table 3.1), 

both of which involved pictorial representations. Additionally, it is worthwhile to point out that it 

was not necessary to use the Pythagorean Theorem to solve the Geometry problem. 

Second consideration. The second consideration concerned the developmentally proper  

Table 3.1 

Prototypes of Fraction and Geometry Problems 

Fraction problem* 
 

Diana bought a piece of cloth 4 feet wide and 5 feet long. It cost $16. 
She cut off a piece that was 1 3

4
 feet wide and 4 feet long to make a 

scarf. Her sister saw Diana’s cloth and really liked the material. She 
asked for a piece that was 1 3

4
 feet wide and 1 2

3
 feet long to also make 

a scarf.    

Geometry problem** 

 
The radius of the smallest circle is one unit. What is the ratio of the 
area of the largest circle to the area of the smallest circle? 
 
 
 
 
 
 
 
 
 
 

 
*   This fraction problem was adapted from Masingila, Lester and Raymond (2011). 
** This geometry problem was adopted from Pershan (2013).  
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way of engaging participants in alternating problem-posing and problem-solving activities. I 

adapted the Active Learning Framework developed by Ellerton (2013). The participants began 

by posing mathematical problems individually according to given figures and a situation, 

followed by solving a mathematical problem related to the same figures and situation. Finally, 

they were asked to pose two more problems that were different from all previously posed or 

solved problems. The purpose of requiring the participants to continue focusing on the same 

figures and situation was to provide them the opportunities to investigate the givens and goals 

from multiple perspectives and extending their understanding about the mathematical patterns 

involved to a large extent, if possible. 

Third consideration. The third consideration of task design concerned the order of 

specific problem-posing and problem-solving tasks so that they would better match with  

prospective elementary teachers’ natural thinking processes when encountering a real-life 

situation. The four problem-posing processes (i.e., Comprehending, Translating, Editing, and 

Selecting) were first ordered according to the levels of cognitive demand and the levels of 

difficulty for six-grade students discussed by Christou et al. (2005). According to Christou et al., 

the Comprehending process requires students’ understanding of the meaning of different 

operations while the Translating process requires more of students’ understanding of different 

mathematical representations. Editing is a higher cognitively demanding process because it 

requires students to extract the information they specifically needed for posing a reasonable 

problem. Selecting is an even higher cognitively demanding process because it requires students 

to focus most on the structure and the relationship amongst provided information while Editing 

has no such requirement. At the same time, Christou et al. found that “both the editing and 

selecting processes characterized the most able students” (p. 156).  
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In consideration of the findings above, I initially ordered the four problem-posing 

processes as Comprehending, Translating, Editing, and Selecting. I did not ask the participants to 

solve the problems they posed. According to Christou et al. (2005), problem solving was actually 

involved in those problem-posing processes. In other words, the participants were required to 

justify their solutions before writing down a specific problem in order to fit a given answer or 

equation. In consideration of the complexity of the given figure in Geometry Problem, I was not 

sure whether the way of the arrangement of those circles and squares would increase the 

difficulty of interpreting the figure or using Pythagorean Theorem. I prepared a second figure 

that would not change the answer to the initial problem by rotating two squares 90 degree 

clockwise (see Figure 3.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Figure of Geometry Problem with Rotated Squares 

Fourth consideration. I finally considered the features and number of problems that the 

participants should pose for each process. Cai and Hwang (2002) asked students to pose three 

problems with three levels of difficulty: easy, moderate, and difficult. However, anticipating that 

1 in 
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students may have different criteria for difficulty levels due to their academic background and 

performance, this guideline might influence their selection of the type, or the nature of each 

problem they were going to pose. Therefore, I decided not to ask my participants to pose 

problems with this restriction. In addition, instead of asking the participants to pose as many 

problems as they could, I chose to ask individual prospective teachers to pose one problem for 

each problem-posing process and two more problems after problem solving. In other words, each 

participant was expected to pose six problems in total for each task administration. In doing this, 

they were able to pay more attention to the quality of each problem that they posed instead of 

rushing to pose many similar problems or problems with a low level of quality. I assumed that 

those problems could provide more information about their problem-posing and problem-solving 

performance, which correspondingly, could serve to better answer the research questions. 

Four problem-posing processes followed a problem-solving task. The task was not too 

easy for the participants since they already had a certain understanding of the given situation and 

figures through the problem-posing exploration. On the other hand, this task was formed so that 

it was not too difficult or completely irrelevant to problem-posing exploration. Otherwise, it 

could have elicited feeling of frustration or participants would have no incentive to make 

connections between problem posing and problem solving. Therefore, I used the Plus One 

strategy suggested by Biggs and Collis (1982) to design my problem-solving tasks. This strategy 

can help students raise their levels of thinking appropriately and does not bring students too far 

away from their zones of proximal development (Vygotsky, 1987).  

For the Fraction problem, the added piece of information for the problem-solving task 

was the cost of a piece of cloth. I selected this information because none of the previous four 

problem-posing processes specifically required the participants to pose a problem involving a 
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cost issue. Even if some participants integrated the cost information into their posed problems 

and considered it, it was possible that solving that kind of problem would be challenging for 

them. For the Geometry problem, the added piece of information for the problem-solving task 

was the concept of ratio. Similar to the first situation, none of the previous four problem-posing 

processes specifically required the participants to pose a problem involving a ratio. In addition, 

research has documented the difficulties that both students and teachers have with this concept 

(Cramer, Post, & Currier, 1993; Fuson & Abrahamson, 2005). Therefore, it was reasonable to 

assume that the problem developed for the problem-solving task had the potential to raise their 

thinking. I finally designed two sets of tasks before conducting the pilot study (see Appendix A). 

A pilot study. In order to examine the feasibility of the initially designed tasks, as well as 

the reasonableness of the assumptions about those tasks, I conducted a pilot study with 11 pairs 

of US prospective elementary teachers. All 11 pairs completed the first set of tasks, while six 

pairs of them worked on the second set of tasks with the initial figure, and the other five pairs 

worked with the figure with rotated squares. I also conducted the pilot study with three 

individual Chinese students who were freshmen and had just come to the US after graduating 

from Chinese high schools. They completed the first set of tasks, and then the second set of tasks 

with initial figure. I finally asked their opinions about the second set of tasks with the figure with 

rotated squares. I recruited those US participants using a convenience sampling method and 

found the three Chinese participants using a snowball sampling method (Creswell, 2012).  

The pilot study first showed that if both figures and situations were given at the very 

beginning, it was hard to justify whether the US and Chinese participants could differentiate the 

expectations of the Translating and Editing processes. In other words, it was not clear whether 

the participant posed a problem for the Translating process by interpreting the given figures, or 
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posed a problem for the Editing process by analyzing the given story. In light of this, I placed the 

Translating process as the first task with designed figures, before showing the corresponding 

situation to the participants. In other words, the participants were allowed to freely create a real-

life situation according to the given figures and pose a story problem for the Translating process. 

In addition, both the US and Chinese participants’ performance indicated that there was no big 

difference between using the initial figure and using the figure with rotated squares in the second 

set of tasks. I decided to use only the initially designed figure.   

Regarding the US participants’ problem-solving performance, I found that 66% (7 out of 

11) pairs of the US participants correctly solved the given problem during the first task 

administration, while only 9% (1 out of 11) pairs correctly solved the given problem during the 

second tasks administration. The three Chinese participants had no difficulty in solving the 

problem given in either the first or second tasks administration. Regarding the participants’ 

problem-posing performance, I found that the US participants were challenged most by the 

Selecting process, and then the Comprehending process. More specifically, only 9% (1 out of 11) 

pairs of them posed a solvable mathematical problem in the Selecting process during the first 

task administration, while 19% (2 out of 11) pairs posed a solvable mathematical problem during 

the second task administration. In the Comprehending process, although 90% (10 out of 11) pairs 

of them posed a solvable mathematical problem during the first task administration, 30% (3 out 

of 10) of those problems did not represent the given calculation. During the second task 

administration, although 67% (7 out of 11) pairs of them posed a solvable mathematical problem, 

86% (6 out of 7) of those problems did not represent the given calculation. The three Chinese 

participants did not show such a difference among those problem-posing processes. Overall, I 

concluded that the second set of tasks was more challenging than the first set of tasks for the US 
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participants. I therefore assumed that it was unnecessary to ask all participants to complete the 

second set of tasks, and selecting the half who performed better on the first set of tasks could 

provide more reliable evidence of effective thinking that supported their problem-posing and 

problem-solving performance and understanding. 

The final version of the designed tasks was in English (see Appendix B). I then translated 

both sets of the tasks into Chinese for the participants from China (see Appendix C). In order to 

verify the translation of the tasks from English to Chinese, I read through the tasks in English 

line by line and carefully compared to the Chinese sentences that I developed. I replaced one 

Chinese word with multiple synonyms in order to select the most suitable one in the given 

context. Chinese is my native language and I am confident in this translation. Additionally, one 

of the members of my dissertation is a native Chinese speaker and he also verified that the 

translation from English to Chinese was accurate. The only difference between the tasks in 

English and the tasks in Chinese was the length measurement and unit. I used the foot and inch 

as the length units of the tasks in English and used the meter and centimeter as the length units of 

the tasks in Chinese. I correspondingly used different length measurements for the tasks in 

English and in Chinese in order to make the given measurements comparable. This consideration 

produced a consequence that, in the first set of tasks, the fractions given in the task in English 

were mixed numbers, while the fractions given in the tasks in Chinese were proper fractions (i.e., 

fractions that were less than one). This difference may introduce a higher level of complexity of 

the tasks for the US participants than their Chinese counterparts. This different may influence the 

US and Chinese participants’ performance in both problem-posing and problem-solving tasks.  

Data Collection Procedures 

Each task administration lasted one hour and twenty minutes. The participants from the 
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same university were encouraged to participate at the same time. However, due to many different 

circumstances, I sometimes administered the tasks with a small group of participants (five or 

fewer), while other times with a large group (more than five). My participants completed each 

set of the tasks individually during administration. I asked participants to use pens instead of 

pencils in order to make sure that their work would not smudge, and to make reading easier. For 

each set of the tasks, I first asked the participants to pose a problem in the Translating process 

according to given figure/figures without real-life situation within 10 minutes on a separate sheet 

of paper. I then handed out the second sheet of paper and asked them to pose problems for the 

other three problem-posing processes, one problem for each process, using a real-life situation 

that corresponded to the previously provided figure/figures within 30 minutes. Next, they tried to 

solve a problem on the third sheet of paper in 20 minutes. Finally, I asked them to pose two more 

problems according to the same figure/figures and situation on a fourth sheet of paper within 

another 20 minutes. 

Each time the participants received a new sheet of paper, they were required not to 

change anything they had completed previously. This was because, if they were allowed to do so, 

many participants were capable of making their previously posed problems better or different 

due to more or deeper understandings they got from the subsequent tasks. It was also plausible 

that some participants would change their previously posed problems to very similar ones after 

they read the problem given in the problem-solving task. Both of these situations could have 

influenced the data analysis and findings about prospective elementary teachers’ performance of 

problem posing and problem solving. 

All 87 participants completed the first set of tasks and I selected 43 of those to complete 

the second set of tasks. The 43 participants comprised about half of the participants from each 
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institution. Shuk-kwan (2013) classified participants’ posed problems into five categories: not a 

problem, non-Math, impossible, insufficient, sufficient or extraneous. In this study, I combined 

these five categories into three categories: (a) a solvable mathematical problem (i.e., a problem 

in mathematical form with sufficient or extraneous given information that is enough for finding a 

solution); (b) an unsolvable mathematical problem, including impossible and insufficient 

problems (i.e., a problem in mathematical form that is impossible to solve or does not have 

sufficient information to find a solution); and (c) not a mathematical problem, including not a 

problem and a non-Math problem (i.e., a problem not in a mathematical form, or a description or 

a phrase, but not a problem). If a participant asked two or more questions for one problem-posing 

process, each question was counted as one posed problem and categorized into one of those three 

categories. 

Therefore, the criteria I used for selecting participants for the second task administration 

was that the majority of one participant’s posed problems (usually more than 50%) during the 

first task administration were solvable mathematical problems. More specifically, in each 

institution, immediately after the first task administration, I analyzed participants’ posed and 

solved problems. I then selected the participants who posed three or more solvable mathematical 

problems during the first task administration for the second task administration. If there were 

more than half of the participants from the same institution who had such a good problem-posing 

performance, I considered their problem-solving performance as well to generate the finalists. If 

there were less than half of the participants from that institution who met this criteria, I 

considered the participants who posed two solvable mathematical problems. 

The 43 selected participants completed the second task administration within one week 

after completing the first one. As discussed before, the second set of tasks was structured 
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similarly to the first set. The difference was that I videotaped the second task administration in 

order to capture the entire process clearly. Before the participants arrived, I set up a tripod with a 

video camera at a corner of the room making sure that the camera could catch all coming 

participants at that time. During the participants’ work, I walked around and asked participants 

questions about their posed problems and/or the ways of their thinking. In doing so, I aimed to be 

clear about their handwriting, use of words that were vague to me, or their specific 

considerations, strategies, difficulties, and misunderstandings of each step in problem posing and 

problem solving, if possible. I carefully selected the prompt questions that I could ask during 

task administration (see Question Examples, Appendix D) in order to prompt their explanations, 

instead of leading them to make any changes to the work they had already done. I did not equally 

ask all the participants all those prompt questions. I asked some of those questions (e.g., What do 

you mean by this word?) to a participant only when I saw something confusing or interesting in 

his/her posed problems. I asked some questions (e.g., How did you come up with this problem?) 

when I saw a participant who had finished posing or solving a problem and sat there doing 

nothing. I asked those questions aiming to make them feel comfortable and not bored.      

During both the first and second task administration processes, I asked the participants to 

write down whatever thoughts or feelings they had about their problem-posing or problem-

solving experience, if they had completed, reread, and were satisfied with either the posed 

problems or problem-solving solutions, while the other participants were still working (see 

Question Examples for Prompting Thinking, Appendix E). I asked the participants who had not 

completed the assigned task to keep focusing on the task until the time was complete. I told my 

participants that even if they did not get a chance to write down their thoughts or feelings 

because of the limited time, their focus was the assigned tasks. This was to avoid causing them to 
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feel disappointed or stressed. 

Data Analysis Procedures 

The collected data of this study included participants posed problems and problem-

solving solutions. I analyzed all collected data quantitatively first. I classified my participants’ 

problem-solving performance into three categories: (1) completely solved, meaning that the 

problem solver implemented correct strategies and methods, and got a correct answer; (2) 

partially solved, meaning that the problem solver implemented correct strategies and methods, 

but got an incorrect answer due to errors made during the problem-solving process; and (3) 

incorrect/no solution, meaning that the problem solver implemented incorrect strategies and 

methods, and got an incorrect answer, or did not get an answer. I then coded these categories as 

“completely solved” = 2, “partially solved” = 1, and “incorrect/no solution” = 0. I then 

developed a table to record the frequency of each category of problem-solving performance for 

the participants from each country. If a participant provided more than one solution to a problem, 

I counted his/her solutions only once according to the best solution. For example, if a participant 

completely solved a problem using more than one method, or he/she provided both correct and 

incorrect solutions, I counted his/her solutions only once as “completely solved”. This table 

describes different groups of participants’ problem-solving performance and, more importantly, 

indicates each group of participants’ problem-solving performance when closely related 

problem-posing activities were alternatively involved. 

I then developed a table for recording both US and Chinese prospective teachers’ 

problem-posing performance. I coded the posed problems as “solvable mathematical problem” = 

2, “unsolvable mathematical problem” = 1, and “not a mathematical problem” = 0. I listed the 

frequency of each category of the posed problems for each problem-posing process (i.e., 
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Translating, Comprehending, Editing, Selecting), as well as the problem posing after problem 

solving process, in this table. This table shows quantitatively the two groups of participants’ 

problem-posing performance for each process. I discuss some illustrations about the differences 

of problem-posing performance between these two groups of participants, as well as the 

differences of participants’ problem-posing performance before and after problem solving. 

For the qualitative data analysis, I used a purely inductive reasoning approach to organize 

the data for analysis, explore and develop the codes and sub-codes, and then synthesized those 

codes to major descriptions and themes to answer the research questions (Creswell, 2012). 

Bogdan and Biklen (2007) asserted that “the first step involves a relatively simple house-

cleaning task: going through all the files and getting them in order” (p. 184). Therefore, I first 

systematically arranged my participants’ paper work into three piles: problem-posing work 

before problem solving; problem-solving work; and problem-posing work after problem solving. 

Each pile was then separated into two smaller piles: the US participants’ work and Chinese 

participants’ work. 

The pile of my participants’ problem-posing work before and after problem solving was 

analyzed one process at a time. More specifically, I started coding the problems posed by US and 

Chinese participants in the Translating process (see examples of codes for Translating process in 

Appendix F). I then compared the codes for US and Chinese participants’ posed problems, 

developed coding categories according to similarities and differences of those problems, justified 

redundant codes that were irrelevant to my research questions, and finally synthesized the rest of 

the codes into major descriptions (see examples of final codes and descriptions for Translating 

process in Appendix G) about the patterns of my participants’ performance. I coded the 

Translating process in the first and second set of tasks, respectively. I followed the same 
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procedures and successively coded the problems posed in the other problem-posing processes 

(i.e., Translating, Comprehending, Editing, Selecting, and problem posing after problem solving 

processes). 

After I finished coding all of the problem-posing processes, I read through the 

descriptions for each process and built more descriptions about the connections between my 

participants’ performance in one problem-posing process and the previous problem-posing 

processes, as well as connections between their problem-posing and problem-solving 

performance (see description examples in Appendix H). I finally used all the descriptions to 

develop major themes (see theme examples in Appendix I) with evidence to answer my research 

questions.  
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Chapter 4: Results and Findings 

In this study, I aimed to (1) explore the patterns of US and Chinese prospective 

elementary teachers’ problem-posing performance when problem solving was involved in an 

alternating manner, as well as the similarities and differences of their performance, and (2) 

further examine the features of the relationship between problem posing and problem solving 

under this specific circumstance. This chapter reports the results and findings, and is structured 

as follows: (1) descriptive statistics and interpretation of US and Chinese participants’ problem-

posing and problem-solving performance, (2) major descriptions built from qualitative analysis 

and interpretation for each problem-posing process, and (3) a summary and interpretation of all 

descriptions, aiming to answer Research Question 1 and Research Question 2, respectively.   

 Descriptive Statistics and Interpretation 

In this section, I first developed and interpreted a table that described the US and Chinese 

participants’ problem-solving performance for both the first and second task administrations. I 

then described their performance for each problem-posing process including Translating (PP1), 

Comprehending (PP2), Editing (PP3), and Selecting (PP4) processes as well as problem posing 

after problem solving process (PP5), using a table and bar graphs.  

Problem-solving performance. I list the frequency of US and Chinese participants’ 

completely solved problems, partially solved problems, and incorrectly solved or no solution 

problems for each task administration in Table 4.1. This table shows that 25% (8 out of 32) of 

the US participants completely solved the problem given in the problem-solving task during the 

first task administration while 98% (54 out of 55) of the Chinese participants completely solved  
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Table 4.1 

Problem-solving Performance 

 

  Freq. of 
completely 

solved 

Freq. of 
partially 
solved 

Freq. of 
incorrect or 
no solution 

Total 

First Task 
Administration 

US Participants 8 15 9 32 
Chinese Participants 54 1 0 55 

Second Task 
Administration 

US Participants 3 5 8 16 
Chinese Participants 24 2 1 27 

 

that problem. About half of the US participants partially solved that problem. They had accurate 

understanding, but either mistakenly dividing total area by total cost (i.e., (4×5)ft2÷$16) to 

represent the unit price of the cloth that Diana bought, or made mistakes while calculating with 

fractions. The remaining 28% (9 out of 32) of the US participants showed an incorrect 

understanding or set up calculations that did not make sense (e.g.,
 
4
5

= 16
100

 , 3
4

+4) in order to 

solve the problem. 

During this task administration, some Chinese participants solved the problem much 

faster than others. When they were waiting for others to finish, I encouraged them to solve the 

same problem using different methods. In this group, 20 of the 55 Chinese participants correctly 

showed two different solutions and three participants showed three different solutions. Those 

solutions included setting up a proportion, multiplying the unit price of the cloth by an area, and 

multiplying the total cost by the fraction of the area of a smaller piece of cloth to the total area. 

For the problem given in the problem-solving task during the second task administration, 

19% (3 out of 16) of the US participants and 89% (24 out of 27) of the Chinese participants 

correctly solved it, while the majority of these Chinese participants used the Pythagorean 

Theorem. Thirty-one percent (5 out of 16) of the US participants either figured out that they 



                                                                                                                                                     81 
 

 
 

could use the Pythagorean Theorem to calculate the radius of each circle one after another, from 

the smallest to the largest, or found that the ratio of the radius of the largest circle to the radius of 

the third largest circle was two, and so was the ratio of the radius of the third largest circle to the 

radius of the smallest circle. However, they either failed in computing or mistakenly thought that 

the ratio of the area of the largest circle to the smallest circle was equivalent to the ratio of their 

radii. The remaining 50% (8 out of 16) of the US participants had significant difficulties in 

solving that problem and the majority of them arbitrarily selected a number, for example, half of 

an inch, as the increase amount of the radii between any two neighboring circles. No US or 

Chinese participant showed more than one solution to the given problem during this task 

administration.  

To summarize, a much higher proportion of Chinese participants compared to their US 

counterparts correctly solved the given problem in both sets of tasks. One possible reason is that 

the Chinese participants took more advanced mathematics courses than their US counterparts. In 

addition, during the first task administration, about half of the US participants (15 out of 32) 

partially solved the given problem; and half of those participants (8 out of 15) had difficulties in 

calculating with mixed fractions. Therefore, the use of mixed fractions contributed to the 

difficulty of  the tasks given to the US participants. 

Problem-posing performance. I coded each posed problem into one of the following 

three categories: (1) a solvable mathematical problem, (2) an unsolvable mathematical problem,  

and (3) not a mathematical problem. For each category, I refined these into more specific 

subcategories. Each solvable mathematical problem was classified into either (1) a solvable 

mathematical problem that was well written and had enough necessary and sufficient conditions, 

or (2) a solvable mathematics problem that had redundant information. An unsolvable 
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mathematical problem could either be a mathematical problem that was (1) impossible to solve, 

meaning that it was unclear what the goal was due to either an ambiguous description or infinite 

choices of the answer, or (2) had insufficient conditions for problem solving, meaning that it did 

not have enough information to find an answer. Finally, the category of not a mathematical 

problem included (1) a problem but not a mathematical problem, meaning no mathematical 

calculation or reasoning steps were required, and (2) not a problem at all, meaning it was just a 

description or a statement. Specific examples from the collected data for each category and 

subcategory are listed in Appendix J. I aimed to make each category of the posed problems 

accurately and clearly defined. 

I then summarized the US and Chinese participants’ problem-posing performance for 

both the first and second task administrations in Table 4.2. The frequency of each category of 

posed problems for each problem-posing process, namely, Comprehending (PP1), Translating 

(PP2), Editing (PP3), and Selecting(PP4) as well as the problem posing after problem solving 

process (PP5) is listed in this table. Figure 4.1 shows bar graphs of each percentage category of 

the problems posed by the US and Chinese participants during the first and second task 

administrations, respectively. I aimed to make the interpretation of the patterns of their problem-

posing performance clearer. 

Table 4.2 shows that, on average, each of the US and Chinese participants posed almost 

the same number of problems for each task administration, as expected. More specifically, each 

participant posed about seven problems during the first task administration, and approximately 

six problems during the second task administration. This may be because the topics involved in 

the first set of tasks were more familiar or easier. In consideration of the average number of 

solvable mathematical problems, Table 4.2 shows that each of the US participants posed fewer  
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Table 4.2 

Problem-posing Performance: Number of Posed Problems for Each Category 
   PP1*  PP2* PP3* PP4* PP5* Total Average 

First 
Task 
Admini-
stration 

US 
Participants 
(N=32) 

Solvable math problem 28 19 28 13 62 150 4.69 
Unsolvable math 
problem 9 8 6 9 19 51 1.59 

Not a math problem 4 6 2 9 1 22 0.69 
Total 41 33 36 31 82 223 6.97 

Chinese 
Participants 
(N=55) 

Solvable math problem 66 54 62 56 104 342 6.22 

Unsolvable math 
problem 17 1 6 1 17 42 0.76 

Not a math problem 8 0 2 0 10 20 0.36 
Total 91 55 70 57 131 404 7.34 

Second 
Task 
Admini-
stration 

US 
Participants 
(N=16) 

Solvable math problem 13 10 14 6 22 65 4.06 
Unsolvable math 
problem 9 3 4 6 10 32 2.00 

Not a math problem 0 5 0 4 1 10 0.63 
Total 22 18 18 16 33 107 6.69 

Chinese 
Participants 
(N=27) 

Solvable math problem 29 27 27 26 55 164 6.07 
Unsolvable math 
problem 2 0 3 1 5 11 0.41 

Not a math problem 1 0 1 0 0 2 0.07 
 Total 32 27 31 27 60 177 6.56 

*   PP1 represents Translating process; PP2 represents Comprehending process; PP3 represents 
Editing process; PP4 represents Selecting process; and PP5 represents problem posing after 
problem solving process. 

 
than five solvable mathematical problems during the first task administration, while each of the 

Chinese participants posed more than six solvable mathematical problems. In the second set of 

tasks, each of the US participants posed about four solvable mathematical problems, while each 

of the Chinese participants posed about six solvable mathematical problems. Accordingly, each 

Chinese participant posed fewer unsolvable mathematical problems and problems that were not 

mathematical problems than their US counterparts. These findings indicate that Chinese 

participants are more capable of posing solvable mathematical problems.  

Table 4.2, together with Figure 4.1, shows that the US participants performance on 

different problem-posing processes can be ordered starting from the best as follows: (1) Editing 

process (PP3), (2) problem posing after problem solving process (PP5), (3) Translating process   
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Figure 4.1: Percentage Bar Graphs of Participants’ Problem-posing Performance 

 

PP1 PP2 PP3 PP4 PP5 
Solvable math problem 0.68 0.58 0.78 0.42 0.76 
Unsolvable math problem 0.22 0.24 0.17 0.29 0.23 
Not a math problem 0.10 0.18 0.06 0.29 0.01 
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US Participants' Performance out of Total Number of Posed Problems - First Task Administration 

PP1 PP2 PP3 PP4 PP5 
Solvable math problem 0.73 0.98 0.89 0.98 0.79 
Unsolvable math problem 0.19 0.02 0.09 0.02 0.13 
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Chinese Participants' Performance out of Total Number of Posed Problems - First Task Administration 

PP1 PP2 PP3 PP4 PP5 
Solvable math problem 0.59 0.56 0.78 0.38 0.67 
Unsolvable math problem 0.41 0.17 0.22 0.38 0.30 
Not a math problem 0.00 0.28 0.00 0.25 0.03 
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US Participants' Performance out of Total Number of Posed Problems - Second Task Administration 

PP1 PP2 PP3 PP4 PP5 
Solvable math problem 0.91 1.00 0.87 0.96 0.92 
Unsolvable math problem 0.06 0.00 0.10 0.04 0.08 
Not a math problem 0.03 0.00 0.03 0.00 0.00 
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Chinese Participants' Performance out of Total Number of Posed Problems - Second Task Administration 
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(PP1), (4) Comprehending process (PP2), and (5) Selecting process (PP4). This order is true for 

both the first and second task administration. More specifically, Figure 4.1 shows that, for the 

first set of tasks, 78% of the posed problems for the Editing process, 76% for problem posing 

after problem solving, and 68% the Translating process are solvable mathematical problems, 

while only 58% of the posed problems for the Comprehending process and 42% of the posed 

problems for the Selecting process were solvable mathematical problems. For the second set of 

tasks, 78% of the posed problems for the Editing process, 67% for problem posing after problem 

solving, and 59% for the Translating process are solvable mathematical problems, while only 56% 

of the posed problems for the Comprehending process and only 38% of the posed problems for 

the Selecting process were solvable mathematical problems.  

In addition, on the first set of tasks, the US participants posed a higher percentage of 

unsolvable mathematical problems and problems that were not mathematical problems in the 

Comprehending and Selecting processes than for other processes. In consideration of the use of 

the mixed fractions for US participants, it is possible that their performance in the 

Comprehending and Selecting processes was partially due to the complexity of the tasks for them. 

In the second set of tasks, the US participants posed a much higher percentage of problems that 

were not mathematical problems for the Comprehending and Selecting processes than for other 

processes. These results show that the US participants were most challenged by the Selecting 

process and then the Comprehending process. 

The Chinese participants showed a quite different performance in problem-posing 

processes compared to their US counterparts. According to Table 4.2, although the Chinese 

participants posed almost the same number of solvable mathematical problems for each problem-

posing process during both the first and second task administrations, they posed fewer 
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unsolvable mathematical problems and problems that were not mathematical problems for the 

Comprehending and Selecting processes than Translating and Editing processes, particularly 

during the first task administration. This difference is evident according to Figure 4.1. More 

specifically, 98% of the problems for the Comprehending and Selecting processes posed by the 

Chinese participants during the first task administration were solvable mathematical problems, 

while only 73% for the Translating process, 89% for the Editing process, and 79% for problem 

posing after problem solving were solvable mathematical problems. During the second task 

administration, 100% of the posed problems for the Comprehending process and 96% for the 

Selecting process were solvable mathematical problems, while 91% for the Translating process, 

87% for the Editing process, and 92% for problem posing after problem solving were solvable 

mathematical problems. These findings indicate that, contrary to their US counterparts’ 

performance, the Chinese participants posed a higher percentage of solvable mathematical 

problems in the Comprehending and Selecting processes than other problem-posing processes.  

It is understandable that both US and Chinese participants posed comparably fewer 

problems for the Comprehending and Selecting processes during both the first and second task 

administrations. The total number of posed problems for each problem-posing process could be 

partially influenced by the feature of each process. More specifically, the Comprehending 

process asked participants to write an appropriate mathematical story problem to represent a 

given calculation, while the Selecting process asked participants to write an appropriate story 

problem so that the answer to that problem was exactly the given number. Due to these specific 

requirements, participants usually chose to pose only one problem for each of those two 

processes. On the contrary, the other three problem-posing processes had fewer of such 

restrictions and therefore many participants posed more than one problem for each of those 
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processes. 

Thinking back to the study conducted by Christou, Mousoulides, Pittalis, Pitta-Pantazi 

and Sriraman (2005) with 143 six-grade students from urban district schools in Cyprus, the 

researchers found that students with a lower problem-posing performance were usually able to 

respond to only Comprehending and Translating tasks while the most able students could also 

respond to Editing and Selecting tasks. In other words, the Editing and Selecting processes were 

more demanding than the Comprehending and Translating processes for six-grade students in 

Cyprus. This conclusion is different from my findings about the US and Chinese participants’ 

problem-posing performance. Although it is possible that the different performance shown by the 

US and Chinese participants was partially due to the use of mixed fractions for US participants in 

the first set of tasks, or the Chinese participants took more advanced mathematics courses than 

their US counterparts, it is still unclear whether these differences were exactly caused by 

different features of administered tasks, academic and cultural backgrounds (all involved 

participants came from three different countries), or professions (elementary students versus 

prospective elementary teachers), or any additional variables. 

Finally, Figure 4.1 shows that both US and Chinese participants’ best performance in 

problem posing did not occur during problem posing after problem solving process. For both the 

first and second sets of tasks, the US participants posed the highest percentage of solvable 

mathematical problems in the Editing process and then the problem posing after problem solving 

process, while the Chinese participants posed a higher percentage of solvable problems in the 

Comprehending and Selecting processes than the problem posing after problem solving process. 

Possible reasons for this finding are discussed later during the qualitative analysis.    

In summary, a much higher proportion of Chinese participants compared to their US 
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counterparts found a correct answer to the given problem during both the first and second task 

administrations. For problem posing, Chinese participants posed a higher percentage of solvable 

problems in the Comprehending and Selecting processes than other three problem-posing 

processes, while their US counterparts posed a higher percentage of solvable problems in the 

Editing and Translating processes as well as the problem posing after problem solving process. 

In other words, the US participants were most challenged by the Comprehending and Selecting 

processes. Such differences shown by the US and Chinese participants are possibly due to the 

use of mixed fractions for US participants in the first set of tasks, or the Chinese participants 

took more advanced mathematics courses than their US counterparts during their first- and 

second-year study in educational programs. Finally, both US and Chinese participants’ best 

performance in problem posing did not occur during the problem posing after problem solving 

process. 

Qualitative Analysis and Interpretation for Problem-posing Processes 

In this section, I presented and interpreted major descriptions that I built for each of the 

Translating, Comprehending, Editing, Selecting, and problem posing after problem solving 

processes, respectively, according to my qualitative analysis. Each description either focuses on 

the patterns of the US and Chinese participants’ performance in a particular problem-posing 

process, or the connections between problem-posing processes, or between problem posing and 

problem solving. A summary paragraph for each process is given at the end of each sub-section.   

 The phrase of a creative idea is often referred to throughout this section. I therefore want 

to define it clearly before moving to the major descriptions. A creative idea in one problem-

posing process might not be a creative idea in next processes. More specifically, I defined a 

creative idea involving in a posed problem in the Translating process as a new relationship 
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amongst mathematical concepts or procedures that was implicit or beyond given figures. For 

example, if a participant posed a problem in the Translating process during the first task 

administration involving only the concept of area or perimeter of rectangles, this problem was 

not a problem with a creative idea because those concepts were explicit in the given figures. If a 

participant posed a problem involving the concepts of ratio or proportion, I justified that problem 

as a problem with a creative idea because these concepts were implicit in the given figures. I 

defined a creative idea involving in a posed problem in the other four problem-posing processes 

(i.e., Comprehending, Editing, Selecting, and problem posing after problem solving processes) as 

a new relationship amongst mathematical concepts or procedures comparing to the entire set of 

posed problems in previous processes. In other words, if an idea or structure of a posed problem 

in one process was rarely occurred in previous processes, I justified this problem as a problem 

with a creative idea.   

Translating process. I built three descriptions about US and Chinese participants’ 

performance on the Translating process by qualitatively analyzing each problem that they posed. 

The first description discusses their direct reaction to the given figures and their preferences to 

select attributes of given figures when they were asked to pose problems based on those figures. 

The second description focuses on creative ideas that occurred in the posed problems and were 

implicit in the given figures. The third description interprets the reasons that led the posed 

problems to be unsolvable and not mathematical problems. The first description is built on 

solvable mathematical problems that involved no creative ideas, the second description is built 

on solvable mathematical problems that incorporated creative ideas, and the last description is 

built on unsolvable problems and those that were not mathematical problems. 

Description 1: The explicit concepts or ideas involved in given figures, such as the area 
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or perimeter of a rectangle for the first set of tasks and the diameter or area of a circle for the 

second set of tasks, were directly used by many prospective elementary teachers. During the 

Translating process in the first task administration, 47% (15 out of 32) of the US participants and 

36% (20 out of 55) of the Chinese participants only used either the area or perimeter of a 

rectangle and posed solvable mathematical problems. For example:  

Carla’s garden is 4 feet by 5 feet. She wants to make her garden larger. If she were to add 

a 1 3
4
 feet by 4 feet area at the bottom of her garden, how big would her garden than [then] 

be? (U09, 1st, PP1) 

This participant only used the concept of the area of a rectangle in his/her problem. Some of 

those solvable mathematical problems involved only one of three given rectangles and therefore 

required only one or two computational steps due to the nature of the area and perimeter 

formulas of a rectangle. More specifically, the area formula (i.e., area=length × width) of a 

rectangle involves only one computational step while the perimeter formula (i.e., 

perimeter=(length + width)×2) of a rectangle involves two computational steps.  

The problems about the area or perimeter of rectangles that involved more than two 

computational steps asked for either the sum or difference of areas or perimeters. A noticeable 

difference was that 33% (5 out of 15) of those US participants and 70% (14 out of 20) of those 

Chinese participants incorporated all three given rectangles. The solvable problems that involve 

all three given rectangles usually require more computational steps. However, regardless of the 

number of rectangles involved, the operations needed to solve all of those problems are addition, 

subtraction, and multiplication, and not division. 

For the given figure in the second set of tasks, the commonly used concepts included 

radius, diameter, circumference, area of a circle, and side length, perimeter, and area of a square. 
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Among a total of 42 solvable mathematical problems posed by US and Chinese participants, 29% 

(12 out of 42) needed fewer than four computational steps and mainly asked for the radius, 

perimeter or area of the smallest circle, or side length or area of the smallest square. For example:  

One cookie was placed in the center of the plate for snack. Given that the cookie’s radius 

is 1 inch, what is the diameter? What is the circumference of the cookie? (U29, 2nd, PP1) 

Among these 12 problems, half were posed by Chinese participants while the other half were 

posed by US participants. In the rest of the solvable mathematical problems, 71% (30 out of 42) 

needed four or more than four computational steps. For example: 

Using the radius given in the center circle. Help Jen to figure out the area of the outer 

most square. Jen knows that the area of the inside square is equal to 4 sq feet. (U26, 2nd, 

PP1) 

Three of those 30 problems were about the area difference between the smallest square and the 

smallest circle, and all posed by Chinese participants. Ten of those 30 problems asked questions 

about the biggest circle, while 17 asked questions about the biggest square. Among the 10 

problems that asked about the biggest circle, nine were posed by Chinese participants and only 

one was posed by a US participant. Among the 17 problems that asked about the biggest square, 

11 were posed by Chinese participants while the other six were posed by US participants. 

To summarize the Translating process in the second set of tasks, fewer than half of the 

US participants posed problems that extended their questions from the smallest circle to the 

biggest circle or square, while more than half of Chinese participants did this. In addition, none 

of the US or Chinese participants asked questions about either the circles or squares between the 

smallest and the biggest ones. 

Description 2: Multiple creative ideas using mathematical concepts and knowledge 
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occurred in prospective elementary teachers’ posed solvable mathematical problems. I defined 

a creative idea involved in a posed problem as a new relationship amongst mathematical 

concepts or procedures that was implicit or beyond given figures and real-life situation.  

Division with fractions and division with a remainder. One creative idea involved in both 

US and Chinese participants’ posed problems during the Translating process in the first set of 

tasks was about the maximum number of times a small rectangle could fit into a big rectangle. 

Here is an example: 

Joe’s backyard is 4[ft] × 5ft. Paul’s pool is 1 3 
4

[ft] × 1 2
3

[ft], how many pools can Paul 

essentially fit in Joe’s backyard? (U10, 1st, PP1) 

Three out of 32 US participants and six out of 55 Chinese participants posed solvable 

mathematical problems with this idea. I justified these problems as creative problems because, 

first, they involved procedures of division with fractions in order to be mathematically solved. 

Second, these problems also involved the idea of division with a remainder in order to be 

realistically answered. Existing studies document that prospective teachers have difficulties with 

the meaning of division with fractions (Ball, 1990), and they were challenged by posing word 

problems representing a division with fractions (Rizvi, 2004; Toluk-Uçar, 2009). These studies 

provided only an expression of division with fractions and asked the participants to pose a story 

problem representing that expression.  

Studies have also explored prospective and in-service teachers’ capabilities of posing 

division-with-a-remainder problems (Chen, Van Dooren, Chen, & Verschaffel, 2011; Silver, & 

Burkett, 1994). However, these studies administered tasks that involved only whole numbers. In 

consideration of the designed tasks and the participants’ problem-posing performance in my 

study, it may be easier for prospective elementary teachers to pose division-with-fractions 
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problems and/or division-with- a-remainder problems starting with a figure instead of only a 

mathematical expression and/or with only whole numbers. It may also be more efficient for 

deepening their understanding of the meaning of division with fractions and division with a 

remainder. 

Interpreting a figure as a dynamic process. For both sets of tasks in my study, the 

majority of US and Chinese participants interpreted the given figures as static objects, such as 

three pieces of paper with different measurements for the given rectangles in the first set of tasks 

and a tablecloth with a decorative pattern for the given figure in the second set of tasks. 

Conversely, some participants treated the given figures as dimension-changing results of a 

dynamic process. More specifically, one out of 32 US participants and three out of 55 Chinese 

participants used two smaller rectangles to continuously change the dimensions of the biggest 

rectangle. Here is an example:  

A given rectangle has a height [width] of 4ft and length of 5ft. The rectangle is altered so 

that the height [width] remains the same, but the length is reduced by 3 1
4
 ft. Next, the 

rectangle is changed again so that the length now stays the same, but the height [width] is 

reduced by 2 1
3
 ft. What is the area of the rectangle in the end? (U07, 1st, PP1) 

For the given figure in the second set of tasks, one out of 16 US participants and 11 out of 

27 Chinese participants thought of it as a dynamic process. And among those 12 problems, 10 

were solvable mathematical problems. For example:  

现有一块正方形纸板，边长不知，有人将此正方形裁剪，取出其内切圆，又从内切

圆中剪出一个最大的正四边形，如此循环4次得到一个正方形，因为需要，他复[又]

从这个正方形中掏出其内切圆，得到一个半径为 3cm 的圆。试算出原正方形的面
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积。(C73, 2nd, PP1) 

[Translation] There was a square paperboard, the side length of which was unknown. 

Someone cut this square paperboard and got its inscribed circle. He then cut out the 

biggest possible square from that circle. He repeated this process four times and finally 

got a square. For some reason, he cut that square again and got its inscribed circle, of 

which the radius was 3cm. Find the area of the original square.  

These type of problems are special because the participants clarified the relationship among the 

three rectangles given in the first set of tasks and the relationship between neighboring circles 

and squares in the second set of tasks during the problem-posing process. Therefore, no figures 

need to be provided for problem solving. In addition, this types of problem has application in our 

daily lives.  

More creative ideas. In the first set of tasks, my participants posed story problems for the 

Translating process that also involved the following creative ideas: (1) setting up a walking 

speed for a specific walking distance – perimeter of rectangle(s) – in an one-dimensional 

situation, or providing a lawn clean-up rate for specific section(s) of lawn – area of rectangle(s) – 

in a two-dimensional situation, or giving a water injection rate for filling a fishpond – volume of 

a cuboid generated by using the measurements of given rectangle(s) – in a three-dimensional 

situation; (2) adding price information for each unit area of given rectangles and asking for total 

cost; (3) ratio idea between areas or volumes, ratio idea presented in a fraction form, and scale 

idea for reading a map; (4) unit conversion idea, for example, between foot and inch; and (5) rate 

of change idea involving in a self-created functional image. 

For the Translating process in the second set of tasks, besides the 10 solvable problems 

that interpreted the given figure as a dynamic process, I found only two solvable mathematical 
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problems posed by two Chinese participants that involved creative ideas. One problem asked for 

the ratio of the area of the biggest circle to the area of the biggest square. The other problem 

utilized the relationship between the circumferences of the smallest and biggest circles:  

小明与小红在玩大转盘的游戏，看到转盘的圆形图案后 [如所给图形]，他们突发奇

想进行一个测试，他们分别拿了两个[一个]棋子，小明在最大的圆圈上移动，小红

在最小的圈上移动，假设他们的移动速度都是 1cm/秒，小明走完1圈时，小红走完

了4圈，问，最大圆的半径与周长，以及转盘盒子的边长。(C41, 2nd, PP1) 

[Translation] Xiaoming and Xiaohong were playing a spinning game. When they saw the 

circular pattern [see the given figure] on the board, they came up with an idea and wanted 

to test it. They each got two chess pieces [one chess piece each]. Xiaoming moved his 

chess piece along the biggest circle while Xiaohong moved her chess piece along the 

smallest circle. Assuming that they moved the chess pieces at the same speed, 1cm per 

second, when Xiaoming finished one round, Xiaohong had just finished four rounds. 

Question: What are the radius and circumference of the biggest circle? What is the side 

length of the box of the game board [the biggest square]? 

This problem involves multiple mathematical relationships including the relationships between 

speed and distance, radius and circumference of a circle, as well as the radius of an inscribed 

circle and the side length of its circumscribed square. In addition, it shows that this participant 

understood the relationship between the smallest circle and the biggest circle before posing this 

problem. He/She correctly assumed that “when Xiaoming finished one round, Xiaohong just 

finished four rounds” according to the given figure.  

Description 3: Both US and Chinese participants posed a number of unsolvable and 

not mathematical problems, which demonstrated similar difficulties that they had. The major 
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reasons that caused US and Chinese prospective elementary teachers’ posed problems to be 

unsolvable included: (1) vague or improper wording in a problem; (2) a lack of sufficient 

conditions in order to solve the posed problems, and (3) a contradiction between the posed 

problem and the given figure particularly in the second set of tasks. The problems that were 

categorized as not mathematical problems were due to no questions asked at all, or no 

mathematical computational or reasoning steps needed. These reasons illustrate the difficulties 

that my participants had when posing a solvable mathematical problem. 

Vague or improper wording. Specific cases of vague or improper wording included: (1) 

an unclear description of a condition or a question, which usually generates confusions, and (2) 

the incorrect use of mathematical vocabularies, which sometimes leads to infinite answers. For 

example:  

A garden is 5ft × 4ft. One section of the garden is filled w/ [with] tulips. This section is 

4ft × 1 3
4

ft. Another section of the garden is filled w/ [with] lilacs. This section is 

1 2
3

ft × 1 3
4

ft. The gardener wants to fill the rest w/ [with] roses and lavender. If she/he 

split up the remaining section evenly b/t [between] these two types of flowers, what 

would be the dimensions of the rose section? (U08, 1st, PP1) 

The Oxford Dictionary defines dimension, usually dimensions, as a measurable extent of some 

kind, such as length, breadth, or height. Therefore, the use of “dimensions” in this problem refers 

to all the side lengths of the “rose section”. However, the dimensions of the rose section depend 

on the arrangement of the “tulip section” and the “lilac section”, as well as the ways that the 

gardener would split up the rest of the garden between the “rose section” and the “lavender 

section”. There are actually an infinite number of answers to this problem; therefore, there is not 

one specific answer.  
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 Lacking sufficient conditions. The second major reason that led posed problems to be 

unsolvable was the lack of sufficient conditions. This mistake was more commonly made by 

participants during the first task administration. Nine US and Chinese participants made this 

mistake during the first task administration while one US participant made this mistake during 

the second task administration. Among those nine participants, eight created a scenario with 

three-dimensional objects, but provided information for only two dimensions. For example:  

Jane’s grandfather is building her a toy box. He wants her to be able to fit all her toys in 

the box. If the toy box has a length of 5 feet and a height of 4 feet, what is the area of the 

toy box Jane’s grandfather is building? (U13, 1st, PP1) 

This problem had two difficulties. First, it was not clear about which face’s area of the toy box 

this participant was asking for. Second, a toy box is a three-dimensional object while only two 

dimensions’ measurements were provided. If this participant meant to ask for the volume of this 

box, there would not be sufficient information to find a solution. Both of these gaps led this 

problem to be classified as an unsolvable mathematical problem.   

Contradiction involved. Some posed problems in the second set of tasks were unsolvable 

because there was a contradiction between the posed problem and the given figure. Here is an 

example:  

The farmer has a plot of land that consists of circles with squares inside of them. As each 

circle gets bigger, the radius of that circle is 1
2
 of the length of one side of the square 

within it. What is the radius of the largest circle of land the farmer has? (U21, 2nd, PP2) 

According to the given figure, the radius of each circle is 1
2
 of the side length of the square 

outside of it, rather than “within it”. It is actually impossible to have a circle with its radius that 

is half of the side length of any square inside of it.  Due to this contradiction, I categorized this 
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problem as an unsolvable mathematical problem. 

Among the 13 posed problems that I categorized as not mathematical problems in the 

Translating process, two asked no question at all. One of these was from the first task 

administration while the other was from the second task administration. The remaining 11 

problems were all from the first task administration. Seven of those 11 problems asked questions 

that had no mathematical concepts or relationships (e.g., “小明可以算出答案吗？[Translation] 

Could Xiaoming find the answer?”, C79, 1st, PP1), while the other four problems asked questions 

about mathematical concepts or relationships, but no computational or reasoning steps were 

necessary in order to solve those problems. Both US and Chinese participants made these 

mistakes in posing problems that were categorized as not mathematical problems. 

Summary. In the Translating process, many US and Chinese participants directly used 

apparent concepts or ideas involved in given figures to pose problems during both the first and 

second task administrations. More than half of the Chinese participants incorporated all three 

given rectangles during the first task administration and they asked questions about the biggest 

circle or square during the second task administration, while fewer than half of the US 

participants did this. In addition, both US and Chinese participants were capable of posing 

problems with creative ideas that were implicit or invisible in given figures, and many of the 

ideas utilized by these two groups of participants were similar. Finally, US and Chinese 

participants made similar mistakes that led the posed problems to be unsolvable or not 

mathematical problems. This indicates the US and Chinese participants had similar difficulties in 

posing solvable mathematical problems. 

Comprehending process. Due to the fact that the Chinese participants performed very 

well in the Comprehending process during both the first and second task administrations, I made 
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two descriptions for this process that mainly discussed the US participants’ performance. The 

first description examines the obstacles that US participants had when posing a problem 

representing a given calculation. The obstacles include knowing the properties of arithmetic, 

recognizing notation, and connecting the given calculation back to the initial figures and story, in 

other words, thinking backwards from solution to givens. The second description further 

discusses the reasons that led US participants’ posed problems to be unsolvable or not 

mathematical problems. 

Description 4: Many US participants experienced obstacles interpreting the given 

calculations according to initial figures and story, while a few of their Chinese counterparts 

experienced such obstacles. Comparing to the Translating process, the prospective elementary 

teachers had less freedom in posing problems for the Comprehending process because this 

process was confined to both the initial story and the given calculation.  

During the first task administration, the given calculation represented the total area of 

Diana and her sister’s scarves. Thirty-two US participants posed 33 problems; one participant 

posed two problems for this process. Fifty-eight percent (19 out of 33) of those problems were 

solvable mathematical problems. Among those 19 solvable problems, 36% (7 out of 19) asked a 

question that was about the initial story and represented the given calculation, as expected. In 32% 

(6 out of 19) of those problems, although the given calculation was correctly represented, 

participants added or generated new scenarios for the initial story. For example, Diana wanted to 

sew her scarf and her sister’s scarf together, or Diana’s sister wanted to make her scarf 4 feet 

longer. This group of participants actually interpreted the given calculation 1 3
4

×(4+1 2
3

) as 

length × width, where 1 3
4
 was the width and (4+1 2

3
) was the length. They did not recognize that 

the given calculation applied the distributive property from the initial story. 
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The remaining 32% (6 out of 19) were solvable mathematical problems, but were not 

about the initial story, or did not represent the given calculation. More specifically, four of those 

six problems started from the initial story but asked questions that did not represent the given 

calculation. For example:  

How many more ft of fabric does Diana’s sister need in order to make the length of her 

scarf as long as Diana’s? (U27, 1st, PP2) 

The other two problems developed brand-new scenarios and asked questions that were irrelevant 

to the given calculation. For example: 

I have a piece of fabric that is 1 2
3
 ft longer than 4 ft, in width. The fabric is 1 3

4
 ft, in 

length. What is the dimension of my piece of fabric. (U05, 1st, PP2) 

For this group of participants, it is possible that, first, they had difficulties in understanding the 

meaning of addition in one-dimensional space (i.e., sum of lengths) and the meaning of 

multiplication in two-dimensional space (i.e., area of a rectangle). It is also possible that they 

were challenged in connecting the given calculation back to the initial figures or story.  

Regardless of the given situation, in total, 39% (13 out of 33) of the posed problems 

correctly represented the given calculation while the remaining 61% of the posed problems did 

not. I kept thinking that, first, to what extent that the use of mixed fractions hindered their 

performance of posing a solvable problem as expected in the Comprehending process. Second, if 

the US participants were asked to solve the corresponding problem to the given calculation as 

usual, the majority of them would be able to do it because it only involved the idea of the area of 

rectangles. In a way, it possibly shows a gap between the US participants’ problem-solving 

capability and their problem-posing capability, specifically for the Comprehending process.  

Compared to their US counterparts, 55 Chinese participants posed 55 problems for the 
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Comprehending process, one for each, during the first task administration. Only one was 

classified as an unsolvable mathematical problem because it had ambiguity in its wording that 

made it hard to understand what exactly it was asking. The remaining 54 problems were solvable 

mathematical problems, among which 80% (43 out of 54) directly represented the given 

calculation from the initial story, 19% (10 out of 54) either added new conditions or created new 

scenarios, but asked a question that correctly represented the given calculation. Only one 

solvable problem did not represent the given calculation. This participant asked for the area of a 

rectangular cloth that was 3
4
 meter wide and 7

4
 meter long, while 7

4
 was the result of 1 + 3

4
 in the 

given calculation for Chinese participants.  

During the second task administration, the given calculation represented the radius of the 

mouth of the second smallest bowl in the set. Sixteen US participants posed 18 problems, of 

which 56% (10 out of 18) were solvable mathematical problems. Among those 10 solvable 

mathematical problems, one problem correctly asked for the radius of the second smallest bowl, 

while another imagined the squares in the figure as boxes and asked for “the distance from the 

center of the smallest bowl to the corner of the smallest box” (U03, 2nd, PP2), which also 

represented the given calculation. The remaining eight solvable mathematical problems did not 

represent the given calculation but asked questions about the diameter of the smallest bowl, the 

radius of the third smallest bowl, or the side length of the smallest square. During the task 

administration process, a few US participants asked what the notation of square root was for. 

Some figured out that √12 + 12 = √2 and then had no idea what √2 represented in the figure or 

the story, and the majority did not recognize that √12 + 12 was in the form of Pythagorean 

Theorem. 

Twenty-seven Chinese participants posed 27 solvable mathematical problems, one each, 
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for Comprehending process during the second task administration. Among those problems, 67% 

(18 out of 27) asked for the radius of the second smallest bowl and 22% (6 out of 27) asked for 

half of the diagonal of the smallest square, both of which correctly represented the given 

calculation. In the remaining 11% (3 out of 27) of the solvable problems, one asked for the 

diameter of the second smallest bowl, another asked for the diagonal of the inscribed square of 

the smallest bowl, and the third added a new condition to the initial story that provided a upper 

boundary for the radius of the second smallest bowl and asked whether the second smallest bowl 

in the given figure met the criteria.     

In consideration of the US and Chinese participants’ performance in the Comprehending 

process of both the first and second sets of tasks, especially the percentage of solvable 

mathematical problems that did not represent the given calculation and the percentage of 

unsolvable mathematical problems and the problems that were not mathematical problems, I 

concluded that, overall, the US participants struggled to interpret the given calculation and/or 

think backwards, in order to connect the calculation back to the given figures and initial story. It 

is possible that the US participants have had fewer opportunities to think backwards when doing 

mathematics. In particular, it is not clear to what extent that the use of mixed fractions for US 

participants during the first task administration hindered their performance in the 

Comprehending process.  

Description 5: The difficulties that the US participants had in posing problems for the 

Comprehending process were similar to the difficulties they had in the Translating process. 

During the first task administration, the US participants posed 24% (8 out of 33) unsolvable 

mathematical problems and 18% (6 out of 33) problems that were not mathematical problems. 

Among the eight unsolvable mathematical problems, five were worded unclearly. Occasionally, 
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it was unclear which piece of cloth a smaller piece was cut from; sometimes it was unclear as to 

which piece of cloth the question was asking about. Here is an example:  

Diana needs at least a four foot long piece of fabric. Diana’s sister needs at least 1 2
3
 foot 

long piece to make her scarf. They both need a 1 3
4
 foot wide piece to complete it. Using 

distribution of 1 3
4
, how would you obtain an answer? (U11, 1st, PP2) 

It is clear that this participant recognized the use of distributive property in the given calculation. 

However, it is not clear what “an answer” was about in his/her question. It is not clear how to use 

the “distribution of 1 3
4
”, either. The other three problems lacked information to find a solution. 

One example follows: 

George is hanging up a new poster and needs giant tape to hold it up. He needs tape that 

is 1 3
4

 ft wide. Carson also got a new poster and needs tape 4ft long plus 1 2
3
 feet wide. 

How much tape all together do George and Carson needs to hang up 2 posters. (U24, 1st, 

PP2) 

 In this problem, the missing information is the length of tape that George needed. 

Among the six problems that were categorized as not mathematical problems, three asked 

no question at all, while the other three asked questions that could be answered without 

computational or reasoning steps. For example: 

Diana’s sister wants to add her piece onto Diana’s piece to make one big scarf for them to 

share. How could she do it? (U22, 1st, PP2) 

No mathematical computation or reasoning is needed in order to answer this question. Therefore, 

it is not a mathematical problem.  

Sixteen US participants posed three unsolvable mathematical problems and five problems 
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that were categorized as not mathematical problems in the Comprehending process during the 

second task administration. Four of those problems only described the computational process of 

the given calculation, for example, “What is the square root of the two radii of the smallest 

bowl?” (U15, 2nd, PP2). These participants used the given information that the radius of the 

smallest bowl was one inch and ignored the “ 12 ” part because 12=1. In this case, no 

mathematical reasoning step is needed. The fifth and sixth problems had the improper use of 

mathematical terms (e.g., “the radius of a square”, U13, 2nd, PP2), while the seventh problem had 

a contradiction with the given figure (i.e., “the outer most box [square] area is equal to √10”, 

U26, 2nd, PP2). The last problem did not ask a question and the participant admitted that he/she 

could not figure out what the given calculation represented. However, this participant discussed 

what the given calculation could not represent: 

My thinking was that this calculation [�12+12] should have something to do with either 

the area of [or] the circumference of the smallest circle/bowl [,] but both the those 

calculations would involved pi(π). And I don’t think it has to do with the area of the 

smallest square because the length is 2, not 1. I do not have any problems for this. Sorry. 

(U28, 2nd, PP2)  

Although this participant did not pose any problems, he/she made an effort to write the 

mathematical reasoning.   

Summary. The US participants were challenged more than their Chinese counterparts in 

posing a problem representing given calculations. This is possibly because they experienced 

difficulties in either interpreting the given calculation, connecting the given calculation back to 

initial figures or story, wording the sentences of a problem clearly, or working with mixed 

fractions. 
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Editing process. This process asked the participants to pose a new problem by editing 

the initial story. Similar to the Translating process, the participants had more freedom to select 

useful information and discard unnecessary information in order to generate new problems than 

in the Comprehending process. Due to this feature of the Editing process, I again explored the 

mathematical concepts and ideas that the participants selected to use (Description 6), as well as 

new creative ideas that occurred in their posed problems compared to the creative ideas that I had 

discussed for the Translating and Comprehending processes (Description 7). In addition, since 

the Editing process was the third problem-posing process during each task administration, I 

examined the influence of participants’ prior experiences on their performance during the Editing 

process (Description 8 and Description 9). 

Description 6: Although a large number of posed problems for the Editing process 

used similar mathematical concepts during the Translating and Comprehending processes, 

many of the problems involved more computational steps and/or a different structure. During 

the first task administration, 53% (17 out of 32) of US participants posed 64% (18 out of 28) 

solvable mathematical problems that also focused on the area of rectangles, including the idea of 

the sum or difference of different area pieces (13 out of 18), and fit-in ideas (i.e., the maximum 

times that a small piece of cloth could fit in a big piece, 5 out of 18). However, no US participant 

posed a problem about the perimeter of given rectangles. Among the five problems that involved 

the fit-in idea, both underestimation and overestimation cases for solving division-with-a-

remainder problems occurred. Underestimation means that, in some cases, the remainder is 

discarded in order to answer a question realistically (see example U04, 1st, PP3), while 

overestimation means that, in other cases, the remainder needs to be taken as one no matter how 

big it is, in order to answer a question realistically (see example U26, 1st, PP3).  
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If Diana’s sister didn’t want a scarf, how many scarves could Diana have made from the 

[initial] piece of cloth, assuming all of her scarves are the same size (1 3
4

feet×4 feet)? 

What if only Diana’s sister had wanted scarves, not Diana. How many scarves of the 

same size (1 2
3

feet×1 3
4

feet) could Diana’s sister have made? Show all of your work. (U04, 

1st, PP3) 

Jeffrey is having a roof leak and needs to get this fixed before the weather gets bad. 

Jeffrey knows that 2 roofing titles equals 1ft by 1ft. Jeffrey must cover a space that is 

1 3
4

feet wide and 4 feet long. How many titles will he need to purchase? (U26, 1st, PP3) 

Thinking back to Translating process in the first set of tasks, the eight solvable 

mathematical problems that involved the fit-in idea were all about underestimation, and no 

overestimation cases occurred. In addition, the group of participants who used the fit-in or 

division-with-a-remainder idea to pose problems during the Translating process were completely 

different from the group of participants who did this during the Editing process. Although, this 

was predictable because all the participants were asked to pose different problems for each 

process from the problems they had posed previously. It shows that this way of engaging 

prospective elementary teachers encourages them to keep applying different mathematical 

concepts and constructing multiple mathematical connections.  

Fifty-one percent (28 out of 55) of Chinese participants posed 48% (30 out of 62) 

solvable mathematical problems that incorporated the ideas of the area sum or difference of 

different pieces of cloth (15 out of 30), area ratio of different pieces (5 out of 30, see example 

C56, 1st, PP3), area fit-in with only underestimation case (2 out of 30), extreme area value of a 

square/rectangular/circular piece of cloth (6 out of 30, see example C36, 1st, PP3), and some 

creative ideas (2 out of 30) related to the minimum side length of a rectangle (see example C67, 
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1st, PP3) and the superficial area of an uncovered box (see example C55, 1st, PP3).  

李娜买了一块布料。她先裁剪了一块长1米宽 3
4
 米的布料做了围巾，此时布料面积

为原来的 5
8
 。后来她的妹妹在余下布料裁剪了一块长宽各 3

4
 米的布料。请问妹妹所

裁布料占在李娜剩下的布料的几分之几？ (C56, 1st, PP3) 

[Translation] Na Li bought a piece of cloth. She first cut off a piece that was 1 meter long 

and 3
4
 meters wide to make a scarf, the area of which was 5

8
 of the initial cloth. Her sister 

then cut off a piece that was 3
4
 meters long and 3

4
 meters wide from the rest of the cloth. 

What is the fraction of Na Li’s sister’s cloth to the rest of the initial cloth after Na Li cut 

off her scarf?   

李娜花12元买了一块长2米宽1米的布料，她先剪了一块长1米宽 3
4
 米的布料做了围

巾，后来又从余下的布料又剪了一块长宽各 3
4
 米的布料给妹妹做了围巾。若李娜还

想做一条长方形围巾，请问该长方形围巾的最大面积是多少？(C36, 1st, PP3) 

[Translation] Na Li spent 12 yuan (RMB) and bought a piece of cloth that was 2 meters 

long and 1 meter wide. She first cut off a piece that was 1 meter long and 3
4
 meters wide 

to make a scarf. She then cut off another piece that was  3
4
 meters long and 3

4
 meters wide 

to make a scarf for her sister. If Na Li wanted to make a third rectangular scarf, what 

would be the maximum area of that scarf?  

已知李娜买了一块布料，她先裁剪了一块长1米宽 3
4
 米的布料做了围巾，然后又从

剩下的布料上剪了一块长宽各 3
4
 米的布料，求李娜买的这块布料的长和宽的最小整

数米。(C67, 1st, PP3) 
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[Translation] Na Li bought a piece of cloth. She first cut off a piece that was 1 meter long 

and 3
4
 meters wide to make a scarf. She then cut off another piece that was  3

4
 meters long 

and 3
4
 meters wide. What are the minimum integral meters of the length and width of the 

initial cloth bought by Na Li?  

小明想做1个长为1m、宽为 3
4
 m、高为 3

4
 m的矩形无盖盒子，但家里只剩下一张长

为2m、宽为1m的卡纸，问：材料够吗？如果不够，至少还要买几张这样的卡纸。

(C55, 1st, PP3) 

[Translation] Xiaoming wanted to make a rectangular uncovered box that was 1 meter 

long, 3
4
 meters wide and 3

4
 meters high. However, there was only one paperboard that was 

2 meters long and 1 meter wide left at home. Question: Was that paperboard enough to 

make the box? If not, at least how many more paperboards with the same size of the 

paperboard that was left at Xiaoming’s home should he buy?  

According to Stein, Smith, Henningsen, and Silver (2000), these four problems are all 

high-level cognitively demanding tasks. In other words, these problems are challenging and 

require problem solvers to understand mathematical concepts and look for the underlying 

mathematical structure. The problems posed by C56 and C67 had an unknown beginning, “Na Li 

bought a piece of cloth”, which increased the difficulty level of problem solving. The problem 

posed by C56 required the problem solvers to understand the meaning of a fraction in order to 

correctly find the answer. The problems posed by C36 and C67 were similar in that both of the 

problems required the problem solvers to try different arrangements of two cut-off pieces of 

cloths in order to answer the questions. Finally, the problem posed by C55 talked about the 

surface area of a rectangular box with one missing face. 
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For the second set of tasks, 75% (12 out of 16) of the US participants  and 74% (20 out of 

27) of the Chinese participants posed solvable mathematical problems that focused on the 

concepts of radius, diameter, area, or circumference of a circle, area or perimeter of a square, and 

area sum or difference between two shapes. For example:  

Using the smallest bowl with the radius of 1 inch, calculate the area of the bowl. The 

[Then] calculate the area of the smallest box [square]. How much area is not taken up by 

the bowl [from the smallest square]? (U03, 2nd, PP3) 

However, compared to their performance in the Translating process that no participant asked 

questions about the circles or the squares between the smallest and the biggest ones, five of those 

12 US participants and eight of those 20 Chinese participants asked questions about the circles or 

squares that were not the smallest or the biggest ones for the Editing process. For example: 

Find the diameter of the bowl labled [labeled] #4 [the second biggest bowl]. (U14, 2nd, 

PP3) 

More creatively, two US participants asked questions about the measurement of an unknown 

circle that was inscribed in a square with either the side length or diagonal length of that square 

given. Another US participant asked for the radius of the tenth circle if the same pattern in the 

initial figure was extended. A Chinese participant provided a radius of an unknown circle and 

asked which circle was in the initial figure. All of these meaningful mathematical ideas and 

problem structures show that it is worthwhile to provide prospective elementary teachers more 

time and to encourage them to pose problems with new ideas. They are able to continuously 

innovate. 

Description 7: Both US and Chinese participants were capable of posing more creative, 

high-level cognitively demanding problems in the Editing process. Some of those problems 
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had similar mathematical ideas and/or structure with the problem given in later problem-

solving process, especially during the first task administration. During the first task 

administration, 25% (8 out of 32) of the US participants and 40% (22 out of 55) of the Chinese 

participants posed solvable mathematical problems for the Editing process that introduced 

money as a new constraint. One of those 22 Chinese participants provided the prices of different 

scarves and asked for the total cost. It was a simple addition problem. One US participant and 

four Chinese participants posed problems that used the relationship among the cost, unit price of 

the cloth and area of that piece of cloth (i.e., cost = unit price × area), as well as all four 

operations. The remaining seven US participants and 17 Chinese participants all posed a higher-

level cognitively demanding problems that involved similar ideas and/or structure with the 

problem given in later problem-solving process. For example:  

Diana bought a piece of cloth that was 4 ft wide and 5 ft long. The total cost of the cloth 

was $16. How much money would a piece of 2 ft wide and 3 ft long cloth cost at the 

same price? (U09, 1st, PP3) 

This problem was worded clearly and this type of problem required a high-level of cognitive 

thinking in order to be solved. This type of problem has multiple ways to be solved, but has only 

one correct answer, namely, open-middled problems according to Johnson and Herr (2001). 

Problem solvers could use the proportion idea, multiply the unit price of the cloth with a specific 

area, or multiply the total cost with the fraction of the specific area to the total amount of the area.  

Among those problems, a particular example involved even more mathematical reasoning: 

李娜花12元买了一块长2米宽1米的布料用来做衣服。后来她发现，做衣服，李娜还

需长
3
4
 m宽 3

4
 m的布料。如果做裤子还需长1m宽1m的布料。而李娜还剩5元。请问

李娜剩下的钱买做衣服的布料够吗？如果做裤子则李娜还需要问妈妈拿多少钱？
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(C44, 1st, PP3) 

[Translation] Na Li spent 12 yuan and bought a piece of cloth that was 2 meters long and 

1 meter wide to make clothes. She then found that, if she wanted to make a coat, she also 

needed a piece of cloth that was 3
4
 meters long and 3

4
 meters wide. If she wanted to make a 

pair of pants, she also needed a piece of cloth that was 1 meter long and 1 meter wide. 

However she only had 5 yuan left. Did she have enough money to buy the needed cloth to 

make a coat? If she wanted to make a pair of pants, how much more money should she 

ask her mom for?  

In consideration of this participant’s selection of “5 yuan” and the questions that he/she asked, it 

was clear that he/she knew that five yuan was enough for the needed piece of cloth to make a 

coat but not enough for the needed piece of cloth to make a pair of pants. He/She had the control 

of the mathematical structure that was involved in this problem.   

Despite these findings, there were some differences in US and Chinese participants’ 

posed problems that had similar ideas and/or structure with the given problem in the problem-

solving process. First, seven out of 17 Chinese participants posed problems that asked for the 

cost of either the sum or difference of more than one piece of cloth, which usually involved more 

computational steps than problems asking about the cost of only one piece of cloth. Only one out 

of seven US participants posed such a problem. Second, eight of those 17 Chinese participants 

asked at least two questions in a sequence, while six of them started with a question about the 

unit price of the cloth and then asked a question for the cost of specific pieces. Here is an 

example: 

李娜花12元买了一块长2米宽1米的布料，她剪裁了一块长为1米宽 3
4
 米的布料做围

巾。①请问1平方米的布料需花费多少元？②在商场里李娜同款的围巾买[卖]6元，
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那么李娜自己买布料做围巾是否划算？若划算，则可以省下多少元钱？(C50, 1st, 

PP3) 

[Translation] Na Li spent 12 yuan and bought a piece of cloth that was 2 meter long and 1 

meter wide. She cut off a piece that was 1 meter long and 3
4
 meter wide to make a scarf. 

① How much was each square meter of this cloth? ② If in the market the price of the 

same scarf with the one that Na Li made was 6 yuan, was that a better deal for Na Li to 

make it by herself? If yes, how much money could she save? 

This group of problems involves the sequence of problem solving. In other words, the answer to 

the first question could serve to help answer the next. No US participants posed problems in this 

format.  

For the second set of tasks, 19% (3 out of 16) of the US participants posed solvable 

mathematical problems about the biggest circle, while one of them asked for the area difference 

between the smallest and the biggest circles. No one asked questions about the concept of ratio. 

Forty-eight percent (13 out of 27) of Chinese participants posed solvable problems about the 

biggest circle, while three of them asked for the ratio between either the radii or the areas of the 

biggest circle and the smallest circle, which had the similar idea and structure with the problem 

given in the problem-solving process.  

Description 8: Despite being asked to pose a problem related to the sum of the areas in 

the Comprehending process, some US participants were not successful. However, they posed 

that expected problem in response to the Editing process. On the other hand, some Chinese 

participants anticipated what the next step would be and posed a problem that was expected in 

the Selecting process. During the first task administration, 13% (4 out of 32) of US participants 

posed a problem in the Editing process that correctly represented the given calculation in the 
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Comprehending process. No Chinese participants did this. One of those four participants posed 

exactly the same problem for both processes. I counted once for those two problems in the total 

number of posed problems by US participants in the Comprehending process, but did not count 

in the Editing process. The other three US participants either asked no questions or posed a 

solvable mathematical problem that was irrelevant to the given calculation in the Comprehending 

process. It is beneficial to consider why these participants could not pose a proper problem for 

the given calculation but could successfully pose a problem representing that calculation when it 

was not given immediately afterwards. In addition, it shows that, although these US participants 

were able to pose solvable mathematical problems, they might not know how to solve those 

problems that they posed.  

In contrast, 5% (3 out of 55) of Chinese participants posed problems in the Editing 

process, during the first task administration, that had exactly the same answer as the given 

number in the subsequent Selecting process. Since they posed those problems without solving 

them, they might not have known the specific answer to those problems. Once they moved to the 

Selecting process, they realized that the number given in the Selecting process was the exact 

answer to the problem that they posed in the Editing process. I counted once for those problems 

to the total number of posed problems by the Chinese participants for Editing and Selecting 

processes respectively. No US participants posed problems during the Editing process that had 

exactly the same answer as the given number in the Selecting process. 

Description 9: Many Chinese participants posed problems for the Editing process that 

could be solved  using the solution of the problem they posed for the Comprehending process, 

and this was true for both the first and second sets of tasks. During the first task administration, 

31% (17 out of 55) of Chinese participants posed a problem in the Editing process that could be 
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solved using the solution to the problem they posed in the Comprehending process. More 

specifically, all 17 Chinese participants posed a problem asking for the total area of two cut-off 

pieces of cloth, which correctly represented the given calculation in the Comprehending process. 

They then posed problems for the Editing process asking for the area of the rest of the cloth, cost 

of two cut-off pieces of cloth, cost of the rest of the cloth, or the ratio of the area of the cut-off 

cloths to the total area of the initial cloth. Here are the posed problems by C60 for 

Comprehending and Editing processes, respectively: 

已知如上，求李娜与妹妹总共裁剪的布料的面积？(C60, 1st, PP2) 

[Translation] Known as above [given story and figures], find the total area of the cut-off 

cloths for making scarves by Diana and her sister. 

已知如上，请求出李娜与妹妹裁剪下来的布料价钱为多少元？(C60, 1st, PP3) 

[Translation] Known as above [given story and figures], find the total cost of the cut-off 

cloths for making scarves by Diana and her sister. 

The relatedness of these two problems are obvious. One out of 32 US participants posed 

problems for Comprehending and Editing processes during the first task administration that had 

such a relationship.   

In the second set of tasks, six Chinese participants asked questions about either the 

circumference or area of the second smallest circle in the Editing process, while all of them 

asked the same question in the Comprehending process about the radius of the second smallest 

circle which correctly represented the given calculation. None of 16 US participants’ posed 

problems in the Comprehending and Editing processes during the second task administration 

showed such a relationship, including two US participants who had posed problems that 

correctly represented the given calculation in the Comprehending process. This indicates that 
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Chinese participants had more of an aptness to pose problems in a sequence or that were 

connected, while their US counterparts did not show such aptness.  

Summary. For the Editing process, although both US and Chinese participants posed 

many problems that involved similar concepts and relationships to the problems they posed for 

the Comprehending process, a number of those problems involved either more computational 

steps or a different mathematical structure. Meanwhile, more creative ideas comparing to prior 

processes occurred in US and Chinese participants’ posed problems. These findings indicate the 

extension of their problem-posing ideas and skills throughout the problem-posing process. The 

problems posed in the Editing process also showed that Chinese participants were more apt at 

posing problems in a sequence, or that were connected, than their US counterparts. This finding 

is consistent with previous studies (e.g., Cai & Hwang, 2002).     

Selecting process. This process asks the participants to pose a problem that has a specific 

answer as given. It is somewhat similar to the Comprehending process. Therefore, the 

participants’ problem-posing performance in the Selecting process was comparable to their 

performance in the Comprehending process. In this section, Description 10 and Description 11 

discuss the US and Chinese participants’ performance in the Selecting process compared to their 

performance in the Comprehending process. Description 12 and Description 13 analyze the 

patterns shown in unsolvable and not mathematical problems, respectively. 

Description 10: The US participants were more challenged in the Selecting process 

than the Comprehending process, while their Chinese counterparts showed few such 

difficulties. Compared to their performance in the Comprehending process during the first task 

administration, 82% (45 out of 55) of the Chinese participants posed a problem purely according 

to the initial story and satisfied with the requirement (i.e., the answer to that problem was 11
16
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square meters) for the Selecting process. Fourteen percent (8 out of 55) of the Chinese 

participants posed problems that had the answer as the given number, but with added information 

to the initial story or they created new scenarios. More specifically, two participants created 

completely different real-life scenarios with a similar mathematical structure to the initial story, 

three participants changed the measurements of two cut-off pieces of cloth in order to get a total 

area as the given number, and the remaining three participants incorporated creative ideas in 

their posed problems (e.g., “请问李娜和李娜妹妹做围巾共用布料的 11
21

 是多少？[Translation] 

What was 11
21

 of the total area of Na Li and her sister’s scarves? (C63, 1st, PP4)”). Apart from 

these, only one Chinese participant posed a solvable mathematical problem for this process that 

had a different answer from the given number and one Chinese participant posed an unsolvable 

mathematical problem due to the ambiguity in the wording of its question.  

During the second task administration, 89% (24 out of 27) of the Chinese participants 

posed solvable mathematical problems purely according to the initial story, to which the answer 

was the given number. Only 7% (2 out of 27) of the Chinese participants posed solvable 

mathematical problems according to the initial story that did not have the answer as the given 

number, and the remaining 4% (1 out of 27) of the Chinese participants posed an unsolvable 

mathematical problem due to the vagueness in the wording of its question. 

On the contrary, during the first task administration, only 9% (3 out of 32) of the US 

participants posed a solvable mathematical problem according to the initial problem that had the 

answer as the given number. Thirty-eight percent (12 out of 32) of the US participants posed 

solvable mathematical problems that had different answers from the given number. Among those 

12 participants, seven created new scenarios and the remaining five used only the initial story. 

Four out of the five participants posed a problem that successfully represented the given 
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calculation in the Comprehending process and two participants posed exactly the same problem 

for both the Selecting and Comprehending processes. Among the remaining 53% (17 out of 32) 

of the US participants, 11 participants posed unsolvable mathematical problems and six posed 

problems that were not mathematical problems. According to Christou et al. (2005), the Editing 

and Selecting processes are more demanding than Comprehending and Translating processes. In 

addition, if the use of mixed fractions for US participants increased the level of complexity of the 

tasks, specifically in the Comprehending process, it is understandable why the US participants 

were challenged more in the Selecting process than in the Comprehending process.  

During the second set of tasks, 19% (3 out of 16) of the US participants posed solvable 

mathematical problems that had the answer as the given number. However, it was not clear 

whether those participants knew which shapes in the given figure they were talking about. One 

of the three participants posed the following problem: 

One of the bowls in the set has a radius of 2 inches. Calculate the distance from the center 

of this bowl to the corner of the box that is packaged in (see graph [picture] below). (U03, 

2nd, PP4) 

 

 

The answer to this problem was the given number 2√2. This participant successfully generated 

this problem because he/she found that �22+22=√4+4=√8=2√2 , where the structure of �22+22 

was exactly the same as �12+12 given in the Comprehending process. Therefore, he/she simply 

manipulated one constraint of the problem that he/she posed in the Comprehending process (see 

the problem below) and posed above problem in the Selecting process.  

Using the given radius of 1 inch, calculate the distance from the center of the smallest 

2 
2 
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bowl to the corner of the smallest box. (U03, 2nd, PP2) 

This participant actually applied the what-if-not problem-posing strategy (Brown & Walter, 

1990b) and asked, what if the radius of the inscribed circle was two inches, instead of one inch. 

Because of the use of this strategy, it was not clear whether he/she knew that the bowl that had a 

radius of 2 inches was the third biggest bowl or if the question he/she asked was about the radius 

of the second biggest bowl. 

The second participant also noticed that �22+22=2√2 but focused on a circumscribed 

circle of a square with a given side length of two inches: 

If the square that goes inside of a circle has side lengths of 2 inches, what is the diameter 

of the circle that houses that square? (U04, 2nd, PP4) 

This participant drew the following picture: 

  

 

 

Although this participant understood the relationship between a square and its circumscribed 

circle, it was not clear whether he/she knew that he/she actually was asking for the diameter of 

the second smallest circle in the initial figure. The third participant posed exactly the same 

problem for both the Comprehending and Selecting processes asking for the diameter of the 

second smallest circle in the initial figure. Again, it was hard to tell whether he/she knew that the 

diameter of the second smallest circle was 2√2, instead of �12+12 .   

Another 19% (3 out of 16) of the US participants also posed solvable mathematical 

problems in the Selecting process, but had answers different from the given number. One of 

them asked for the diameter of the third smallest circle, another asked two questions about the 

2 

2 

D 
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biggest circle, while the third asked for the area of the third smallest square. Among the 

remaining 62% (10 out of 16) of the US participants, half of them posed unsolvable 

mathematical problems and the other half posed problems that were not mathematical problems. 

Description 11: The Chinese participants were more capable of perceiving the 

relationship between the given calculation in the Comprehending process and the given 

number in the Selecting process during both task administrations compared to their US 

counterparts. For both sets of tasks, the calculation given in the Comprehending process was 

closely related to the given number in the Selecting process. For the first set of tasks, the 

Comprehending process expected problem posers to ask a question about the total area of two 

cut-off pieces of cloth while the Selecting process asked for the remaining area after cutting off 

those two pieces. For the second set of tasks, the result of the given calculation in the 

Comprehending process was half of the given number in the Selecting process and the 

participants actually had multiple choices for the Comprehending and Selecting processes. More 

specifically, the calculation given in the Comprehending process represented (1) the radius of the 

second smallest circle, (2) half of the diagonal of the smallest square, or (3) half of the side 

length of the second smallest square, while the number given in the Selecting process could be (1) 

the diameter of the second smallest circle, (2) the diagonal of the smallest square, (3) the side 

length of the second smallest square, (4) the radius of the second biggest circle, (5) half of the 

diagonal of the third biggest square, or even (6) half of the side length of the second biggest 

square. The participants had the chance to flexibly combine those possibilities to pose reasonable 

problems.  

The US participants’ performance in both processes during both task administrations 

indicated that the majority of them had difficulty in perceiving and applying those relationships 
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for problem posing. Conversely, almost all of the Chinese participants posed solvable 

mathematical problems as expected, and many of them utilized those relationships. As evidenced 

in the results, 44% (12 out of 27) of the Chinese participants correctly used the relationship that 

the radius of a circle was half of its diameter (6 out of 12), the radius of a circle was half of the 

diagonal of its inscribed square (4 out of 12), and the radius of a circle was half of the side length 

of its circumscribed square (2 out of 12). There was one US participant who used the relationship 

between the radius and diameter of the same circle in the Comprehending and Selecting 

processes, but mistakenly believed that �12+12 represented the radius of the third biggest circle 

while 2√2 represented the diameter of that circle. 

Description 12: Many participants tried to either construct the number given in the 

Selecting process according to its appearance or directly use the given number as one 

condition of their posed problems rather than considering it as the answer to their posed 

problems. These two circumstances occurred especially in problems posed by US participants. 

Nine US participants posed nine unsolvable mathematical problems in the Selecting process 

during the first task administration. Four of them tried to construct the answer 121
12

 by either 

looking at this fraction as a division (e.g., “break up the material” that was 121 square feet “into 

12 pieces” but asked for the length of each piece which was unsolvable. U21, 1st, PP4), or 

integrating new fractions which had or would make a denominator of 12 (e.g., “She must trim off  

19
12

 of a foot extra fabric that she didn’t need.” This participant meant to use 19
12

 as the area of a 

piece of fabric according to the computations he/she made on the margin of the page, but worded 

ambiguously. U20, 1st, PP4).  Similarly, five out of six US participants who posed unsolvable 

mathematical problems in the Selecting process during the second task administration tried to 

construct 2√2. Four of them treated this number as 2×√2, where the “2” represented the number 



                                                                                                                                                     121 
 

 
 

of circles/bowls and the “√2” represented the diameter or area of a circle/bowl. The fifth 

participant treated this number as 2×√1+1 because the radius of the smallest circle in the initial 

figure was one inch.  

Of the remaining US participants who posed unsolvable mathematical problems in the 

Selecting process, five during the first task administration and one during the second task 

administration, directly used the given number, 121
12

 square feet for the first set and 2√2 for the 

second set, in their posed problems. For example: 

Carl wants to have a piece of material with the area of 10 1
12

ft2 area[,] he has a piece of 

scrap that is 4 × 5ft in length[,] what is the missing side? (U16, 1st, PP4) 

This participant converted 121
12

 to 10 1
12

 and used it as one constraint of the posed problem. 

However, his/her problem was phrased ambiguously. According to this participant’s posed 

problems in the Comprehending and Editing processes, he/she used a × b ft to represent the area 

of a piece of cloth. Therefore, the use of “4×5ft in length” was confusing. The strategy of using 

the given number as a constraint in posed problems was not applied in solvable mathematical 

problems posed by US or Chinese participants during both task administrations.    

The strategy of trying to construct 121
12

 in the Selecting process during the first task 

administration also occurred in solvable mathematical problems posed by 12 US participants. All 

of those problems failed to make 121
12

 the correct answer. Eight of those participants 

misunderstood the operations with fractions such as 2× 60.5
6

= 121
12

, 110
3

+ 11
9

= 121
12

, and 

121
12

=10 1
12

=5 1
6

×2 1
2
. This strategy was not used by US participants who posed solvable 

mathematical problems during the second task administration. 
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As discussed in Description 10, eight of 55 Chinese participants posed solvable 

mathematical problems during the first task administration that had the answer of 11
16

 square meter, 

but created new real-life scenarios or added new condition to the initial story. Five of the eight 

participants tried to construct 11
16

 , but had different pathways from their US counterparts. Three 

of them decomposed 11
16

 into 9
16

+ 2
16

 or 9
16

+ 1
8
 , which was also 3

4
× 3

4
+ 1

4
× 2

4
 or 3

4
× 3

4
+ 1

4
× 1

2
, while the 

other two incorporated new fractions that had denominator of 16. For example: 

小美有一块长1米、宽 3
4
 米的布料。她用这块布料做了一条裙子，裙子做好后，小

美发现还剩了 1
16

 m2 布。请问做这条裙子总共花了多少布？(C58, 1st, PP4) 

[Translation] Xiaomei had a piece of cloth that was 1 meter long and 3
4
 meter wide. She 

used this piece of cloth to make a skirt. After making that skirt, Xiaomei found that there 

was still 1
16

 m2 of cloth left. How much cloth was used for that skirt? 

No Chinese participants used this strategy during the second task administration.  

Description 13: The problems that were categorized as not mathematical problems 

posed by US participants either asked no questions at all or purely described the procedures to 

get the given number. Five out of eight and three out of four US participants who posed not 

mathematical problems did not ask any questions in the Selecting process during the first and 

second task administration, respectively. Some admitted that they could not figure out what the 

given number was for, and some described what they had noticed, for example, “When you 

multiply that [those] fractions together 12 is the common factor [multiple] in all of them. (U25, 

1st, PP4)” and “I think that the square root of 8 is 2√2, so somehow the question must guide the 

students to use √8. (U21, 2nd, PP4)”. The remaining participants, three in the first set of tasks and 
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one in the second, asked procedural questions such as “Show Sam how to turn it [121
12

] into an 

improper fraction. (U11, 1st, PP4)” and “What is the diameter of the smallest bowl multiplied by 

it’s square root? (U15, 2nd, PP4)”. These problems required no mathematical reasoning.  

Summary. The US participants were most challenged in the Selecting process than in 

other processes. One possible reason that influenced the US participants’ performance in this 

process of the first set of tasks is the use of mixed fractions that may have increased the level of 

complexity of the tasks. In spite of this, many of them showed endurance in posing a problem for 

this process. More specifically, many of them tried to construct the given number according to its 

appearance or  directly used the given number as one condition of their posed problems. One 

possible reason that the Chinese participants were much less challenged by the Selecting process 

was that they were more capable of perceiving the relationship between different problem-posing 

processes.  

Problem posing after problem solving process. I discussed the features of posed 

problems after problem solving in this section. I focused on the different features of posed 

problems before and after problem solving (Description 14), the impacts of the problem-solving 

experience on participants’ problem-posing performance (Description 15), and a specific feature 

of problems posed by Chinese participants (Description 16).   

Description 14: The US and Chinese participants posed many creative problems after 

problem solving. More importantly, some of those creative ideas or mathematical structure 

were not shown in problems posed before problem solving. During the stage of problem posing 

before problem solving, the posed problems that involved money information in the first set of 

tasks and ratio relationship in the second set of tasks, and had a similar structure to the problem 

in problem-solving task were classified as creative problems. In this stage, those kinds of posed 
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problems were not classified as creative problems because the problem posers had seen an 

example during the problem-solving process. Even so, the categories of creative problems posed 

after problem solving were expanded compared to the problems posed before problem solving.  

During the first task administration, 44% (14 out of 32) of the US participants posed 31% 

(19 out of 61) solvable mathematical problems and 44% (24 out of 55) of the Chinese 

participants posed 35% (35 out of 100) solvable mathematical problems that were classified as 

creative problems. Four of the 19 problems posed by US participants involved the meaning of a 

fraction (e.g., “If she used 3
5
 of the cloth how much would that cost her to replace?”, U29, 1st, 

PP5) and three of them used the concept of percentage (e.g., “Diana bought a piece of cloth that 

was 4 feet wide and 5 feet long for 16 dollars. The store was selling the cloth at a sale of 20% 

off.”, U06, 1st, PP5). Eleven of the 35 problems posed by Chinese participants involved the 

concepts of fractions (5 out of 11), ratios (2 out of 11) and percentages (4 out of 11).  

Five of those 19 problems posed by US participants focused on the area of a piece of 

cloth, unit price and total cost, but involved more complex reasoning processes. Here is an 

example: 

Suppose Diana wanted to make three blankets, each 20 sq ft, but each of a different 

material. The fabric store has a different price per sq ft for each of the materials she has 

chosen. The first material is 0.8¢ per sq ft. The second is $1.25 per sq ft. If Diana spent a 

total of $60 in the fabric store on materials, what was the cost of the last material per sq ft? 

(U01, 1st, PP5) 

This problem was special in hiding the unit price of the third type of material and having just 

enough conditions to determine the price. This problem also involved unit conversion between 

cents and dollars which made it more challenging, although it could possibly be an unintentional 
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mistake. In order to correctly solve this problem, problem solvers need to be clear about the 

overall mathematical structure and each part of this story. Five out of 35 problems posed by 

Chinese participants involved the relationship of the area of a piece of cloth, unit price and total 

cost. Three of these problems asked questions about profit and loss, and two problems involved 

unit convertion between square centimeters and square meters.  

The remaining seven out of those 19 problems posed by US participants and 13 out of 35 

problems posed by Chinese participants involved the idea of how many times a small number 

would go into a big number. Two of those problems posed by US participants involved a higher 

level of cognitive thinking: 

Diana is starting a scarf making business. She has a budget of $500. If each square foot 

cost $1.25 and her scarves are 1 2
3
 ft by 1 3

4
 ft long, how many scarves can she make, 

assuming she spends all $500 on scarf making? (U08, 1st, PP5) 

[A university] is buying new bricks to fix a roof on the buildings. One side of the roof is 

4 ft wide and 5 ft long. Another side is 1 3
4
 ft wide and 4 ft long. If each brick is 1 dollar, 

how much money will the school have to spend if each brick is 1 ft long and 3
4
 ft wide? 

(U24, 1st, PP5) 

In addition to asking how many times a small number would go into a big number, the first 

problem also involves total cost, unit price, and dimensions of a rectangular piece of cloth. These 

ideas actually provide multiple choices for problem solving. A problem solver could either focus 

on how many times the cost of “one scarf” could go into the total cost (i.e., the “budget”), or 

focus on how many times the area of “one scarf” could go into a maximum area of cloth that the 

“budget” could afford. Regardless of the solution, the problem solver has to underestimate at the 

end to realistically answer the question.  
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The second problem also involved more than one solution. A problem solver could first 

determine the number of bricks the school needed for each side of the roof and then add the 

results together in order to find the total cost. He/she could also calculate the total area of both 

sides of the roof that needed to be fixed and then determine the number of bricks in order to 

finally compute the total cost. In the end, the problem solver needs to overestimate the number of 

bricks. However, if the problem solver choose to use the first method, he/she may overestimate 

twice, one for each side of the roof, which could cause unnecessary waste in reality. Therefore, 

different problem solvers may get different answers to the second problem. According to 

Johnson and Herr (2001), the first problem was an open-middled problem while the second one 

was an open-ended problem.  

A third example was from a Chinese participant who incorporated three-dimensional 

cubes: 

这些[矩形]是由 1
4

× 1
4

× 1
4
，即长宽高都是 1

4
 m 的正方体拼出来的图形的三视图 [俯视

图]，问最少几个正方体能摆出这样的图形。(C68, 1st, PP5) 

[Translation] Suppose these [given rectangles] are top views of three-dimensional 

cuboids formed by cubes of 1
4

× 1
4

× 1
4
 (i.e., cubes with side length of 1

4
). How many cubes 

will be needed in order to form these top views? 

Although this problem talks about three-dimensional cubes and cuboids, only the areas of two-

dimensional rectangles and squares are needed in order to solve it. In addition, the word “最少[at 

least]” in this question ensured the solvability of this problem. It was clear that this participant 

knew what would make his/her problem unsolvable. 
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The remaining three solvable problems posed by US participants involved the 

relationship between the change of dimensions in proportion and the change of area of a 

rectangle. For example: 

Dylan is installing a new door to his garage. Dylan has purchased a piece of the garage 

door at $250.00. His piece was 4 feet by 5 feet. If the total space is 12 feet by 15 feet, 

how much money will Dylan need to spend to finish the garage door? (U26, 1st, PP5) 

A problem solver could use the idea of multiplying the unit price of the door material by the area, 

or set up a proportion to find the total cost of the garage door. It is possible that some problem 

solvers would be able to recognize that the side lengths of the door and the corresponding side 

lengths of the bought piece are in proportionate, and the ratio is three. In this case, they would 

have to multiply nine (i.e., three squared) to $250 in order to get the total cost of the garage door, 

instead of multiplying three to $250. This type of problem helps to challenge thinking and 

deepen learners’ understanding of the relationship between side length and the area of a rectangle, 

or the relationship between one- and two-dimensional measurements. No Chinese participants 

posed this type of problem. 

The remaining three problems posed by Chinese participants during the first task 

administration asked questions about a circular shape that was restricted by a rectangle from two 

different perspectives. No US participants used such an idea. Two of the problems asked for the 

biggest possible circle that could be cut off from a rectangle with a given width and length (see 

example C38, 1st, PP5), while the other problem made the diameter of a circle only restricted by 

the length of the initial rectangle (see example C39, 1st, PP5). 

已知：李娜花 12 块买了一块长 2 米宽 1 米的布料，她先裁剪了一块长 1 米宽 3
4
 米

的布料做了围巾，李娜的妹妹看到后非常喜欢，便从余下布料上裁剪了一块长宽各 
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3
4
 米的布料。问：若李娜妹妹发现圆形围巾更创新，那么她最大能通过裁剪她原先

的围巾得到半径为多少米的圆形围巾？(C38, 1st, PP5) 

[Translation] Given: Na Li spent 12 yuan and bought a piece of cloth that was 2 meters 

long and 1 meter wide. She first cut off a piece that was 1 meter long and 3
4
 meters wide 

to make a scarf. Na Li’s sister saw that cloth and she really loved it. She then cut off a 

piece that was  3
4
 meters long and 3

4
 meters wide from the rest of the cloth. Question: If Na 

Li’s sister found that a circular scarf was more attractive, what would be the radius of the 

biggest possible circular scarf that she could cut off from her initial scarf?  

李娜花 12 块买了一块长 2 米宽 1 米的布料。她先裁剪了一块长 1 米宽 3
4
 米的布料

做了围巾。李娜的妹妹看到李娜买的布料后说她非常喜欢，而且她想做个方形的围

巾。于是她从余下布料上裁剪了一块长宽各 3
4
 米的布料。将李娜裁剪的围巾两端宽

缝上，制成一条围脖。将这条围脖摆成一个圆形，求问这个圆的半径、面积。(C39, 

1st, PP5) 

[Translation] Na Li spent 12 yuan and bought a piece of cloth that was 2 meters long and 

1 meter wide. She first cut off a piece that was 1 meter long and 3
4
 meters wide to make a 

scarf. Na Li’s sister saw the cloth and said that she really loved it. And she wanted to 

make a square scarf. She then cut off a piece that was  3
4
 meters long and 3

4
 meters wide 

from the rest of the cloth. She sewed two width ends of Na Li’s scarf together and made 

into a neck warmer, then arranged into a circular shape. Find the radius and the area of 

this circular shape. 
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These two problems were slightly different. However, both of them provide problem solvers the 

opportunity to think about the concepts and features of a circle and a rectangle.  

For the second set of tasks, 31% (5 out of 16) of the US participants posed 23% (5 out of 

22) solvable mathematical problems and 70% (19 out of 27) of the Chinese participants posed 42% 

(24 out of 57) solvable mathematical problems that were classified as creative problems. Among 

the five problems posed by US participants, one problem generated the smallest square in the 

given figure into a cube and asked for its volume. The second problem provided the price of the 

smallest bowl and asked problem solvers to set up a proportion between the price and area of the 

mouth of a bowl in order to find the price of the second smallest bowl. The third problem asked 

for a general rule about the relationship between the radius of a circle and the area of the next 

circle in the initial figure, of which the answer would be a formula. The remaining two problems 

required an even higher level of cognitive thinking for problem solving:  

A factory that specializes in producing dinnerware decides to produce a set of five bowls 

in different diameter sizes. The sizes are constrained using the following model diagram 

and the radius of the smallest bowl is one inch. The factory wants to know how many of 

the smallest bowls they could place side by side and fit into a box with an area of 1 sq 

foot? (U28, 2nd, PP5) 

How many of the smallest bowls (r = 1) could you fit into the largest bowl? Assume that 

the bowls will not overlap. (hint → use diameter) (U04, 2nd, PP5) 

Strictly speaking, both of the problems are “unrealistic” because no information about the 

body shape of the bowls was provided and the different body shapes of the bowls would cause 

these problems to either solvable or unsolvable. However, this misconception might come from 

the poorly worded initial story. The given figure was actually the top view of the model of the set 
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of five bowls, instead of a “model” of the “sizes” of those five bowls; meanwhile, the given 

number “1 inch/3 centimeters” was the radius of the mouth of the smallest bowl, instead of “the 

radius of the smallest bowl”. In consideration of this limitation in the designed task, the above 

two problems were classified as solvable problems and only the size of the mouth of each bowl 

was taken into consideration for problem solving.  

 It is possible that many problem solvers would divide the big area by the area of the 

smallest bowl to get an answer for solving the above two problems. This method will not work 

because of the inevitable space between bowls when arranging them side-by-side. Furthermore, 

the unit conversion between inch and foot required by the first problem and the circular shape of 

the mouth of the biggest bowl in the second problem increase the difficulty level of the two 

problems. 

Among the 24 creative problems posed by Chinese participants in the second set of tasks, 

five problems generated three-dimensional objects from the circles and squares given in the 

figure and asked for the surface area of the cubic boxes, volume difference between two boxes, 

or whether a bowl or multiple bowls were able to fit into a specific box.  Six problems added 

new information about either the cost of producing/decorating/cleaning a bowl, or the profit in 

selling a bowl, and then asked different questions. Three problems asked for a general rule 

involving the radii of all five circles, and two problems asked for a recurrence formula of the 

sequence consisting of the area of five circles. Another three problems creatively included the 

idea or conceptual understanding of counting skills (e.g., asking for the number of storing ways 

when bowls were paired with one left over and only putting a smaller bowl inside of a bigger one, 

C37, 2nd, PP5), perimeter and area of a sector of the biggest circle, and the mass ratio between 
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the biggest and the smallest bowl given the relationship between their density and the ratio of 

volumes.    

The remaining five solvable problems posed by Chinese participants involved similar 

ideas with the problems posed by U28 and U04 discussed above. In spite of this, three of those 

problems had very unique features. Here is an example: 

一个工厂制造出一套五个大小不一的圆形碗具，按从小到大排列，小碗半径的√2 

倍是比它稍大一点碗的半径，现在工厂要给这一套碗的碗口绕一圈彩带来装饰。现

在已知最小碗的半径是 3 厘米。请问：如果将最大碗碗口的彩带拆下来，可以装饰

在其它大小碗的碗口，有几种装饰方法，各分别可以装饰多少碗？(注：这里所指

装饰在其它碗的碗口，是指恰好用完彩带，没有剩余) (C48, 2nd, PP5) 

[Translation] A factory that specializes in producing dinnerware produced five circular 

bowls in different sizes. If the five bowls were arranged from smallest to biggest, √2 

times of the radius of a smaller bowl is the radius of the next sized bowl. Now this 

factory plans to decorate the mouth of each bowl using ribbon and the radius of the 

smallest bowl is 3 centimeters. Question: If the ribbon on the mouth of the biggest bowl 

was taken off for decorating other bowls, how many ways can this be done? And how 

many bowls could be decorated in each case? (Annotation: In this story, decorating the 

mouth of other bowls requires the use of all the ribbon that removed from the biggest 

bowl, no residue.)  

This problem used all five bowls and asked for the possible combinations of the circumference 

of the biggest circle made from the circumferences of the smaller sized circles. It is an open-

ended problem. Similar to this problem, the other two problems also involved all circles or 
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squares, and were open-ended problems. All of these problems require high-level cognitive 

thinking for problem solving.  

Description 15: Many US and Chinese participants utilized the mathematical ideas and 

structure of the problem given in the problem-solving task in later problem-posing process, 

and the majority of their posed problems were solvable mathematical problems. In the first set 

of tasks, 44% (14 out of 32) of the US participants posed 31% (19 out of 61) solvable 

mathematical problems while 44% (24 out of 55) of the Chinese participants posed 29% (29 out 

of 100) solvable mathematical problems that had similar ideas and structures with the problem 

given in the problem-solving task (i.e., giving the price of a piece of cloth and asking for the cost 

of another piece of cloth that had the same unit price). No such problem posed by US 

participants was unsolvable or not a mathematical problem, and only two such problems posed 

by Chinese participants were unsolvable mathematical problems. One of those two Chinese 

participants posed an unsolvable problem because he/she mistakenly thought that the product of 

1 and 3
4
 was smaller than 11

16
.  

For the second set of tasks, one US participant posed a problem that was exactly the same 

as the problem given in the problem-solving task while all other US participants did not pose any 

problems regarding the concept of ratio between any two shapes. This may have influenced by 

their prior problem-solving performance. On the contrary, 38% (12 out of 32) of the Chinese 

participants posed 28% (15 out of 54) solvable mathematical problems that had similar ideas and 

structures to the problem given in the problem-solving task. More specifically, those 15 

problems asked for the ratio between radii, diameters, circumferences and areas of circles, 

circumferences of two squares, and masses of two bowls. For this set of tasks, no unsolvable or 



                                                                                                                                                     133 
 

 
 

not mathematical problems posed by US or Chinese participants had similar ideas or structure to 

the problem given in the problem-solving task. 

This may indicate that, first, many US and Chinese participants’ problem posing was 

influenced by the mathematical idea and structure of the problem given in the previous problem-

solving task. Second, due to the fact that almost all the posed problems that had the similar idea 

and structure to the problem given in the problem-solving tasks were solvable mathematical 

problems, it is reasonable to claim that the problem-solving experience had positive impacts on 

US and Chinese participants’ problem-posing performance later on. 

Description 16: Many participants started to pose a problem by completely copying the 

initial story, and then chose the option of adding new conditions if needed before posing 

problems. This phenomenon was particularly common in Chinese participants’ posed 

problems. The biggest difference in the problems posed by US and Chinese participants occurred 

during the stage of problem posing after problem solving during the first task administration. 

There were 3% (1 out of 32) of the US participants who posed two solvable mathematical 

problems that completely utilized all the given information from the initial story. In contrast, 64% 

(35 out of 55) of the Chinese participants wrote down all the given information from the initial 

story, then added new conditions if needed, and finally posed 54% (54 out of 100) solvable 

mathematical problems, 53% (9 out of 17) unsolvable mathematical problems, and 70% (7 out of 

10) problems that were not mathematical problems.  

Among those 54 solvable mathematical problems, 18 problems involved redundant 

information. In other words, those 18 problems had information that was unnecessary for 

problem solving. Using the problem posed by C39 (see above example, C39, 1st, PP5) as an 

example, the total cost (i.e., 12 yuan), the measurements of the initial piece of cloth (i.e., 2 
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meters long and 1 meter wide), and the measurements of Na Li’s sister’s piece of cloth (i.e., 3
4
 

meters long and 3
4
 meters wide), was all redundant or unnecessary information for problem 

solvers. It indicates that US participants usually selected only the condition that they would use 

from the initial story or figures to pose new problems, while their Chinese counterparts preferred 

to generate new problems by building on all given information. This difference was not shown 

during the second task administration. Almost all US and Chinese participants posed problems 

starting from the given figure and the condition that the radius of the smallest bowl was one 

inch/three centimeters. This can be explained by recognizing that the given information in the 

second set of tasks was limited, and therefore the participants had little choice but to incorporate 

all the information to generate new problems.   

Summary. Although both US and Chinese participants had posed at least four problems 

and solved one problem before getting to the last problem-posing process, they were still able to 

pose new solvable mathematical problems. And more importantly, they were able to 

continuously pose problems with expanded categories and creative ideas. In addition, many US 

and Chinese participants (e.g., 30% of the US and 30% of the Chinese participants during the 

first task administration) treated the problem given in the problem-solving process as a model 

and utilized the idea or structure of that problem to pose new problems. More importantly, the 

majority of those problems were solvable. This indicates that both US and Chinese participants’ 

problem-posing performance was positively influenced by their previous problem-solving 

experience. Finally, US and Chinese participants showed quite different preferences in selecting 

given information from the initial situation to generate new problems. The Chinese participants 

preferred to completely copy all information from the given situation before asking a question, 
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and therefore they posed a number of solvable mathematical problems that had redundant 

information for problem solving.  

Summary and Interpretation of the Findings 

In order to summarize and synthesize US and Chinese participants’ problem-posing and 

problem-solving performance, I developed a table (see Appendix K) to list the major descriptions 

that I made for each problem-posing process, together with participants’ performance during the 

problem-solving process. This table helped me to justify the similar and different patterns of 

problem posing, as well as the relatedness of problem posing and problem solving, shown by US 

and Chinese participants when they were engaged in alternating problem-posing and problem- 

solving activities. In this section, I answered my research questions according to the results 

shown in that table.  

Answering Research Question 1. Research Question 1 is as follows: What are the 

similar patterns of problem posing shown by US and Chinese prospective elementary teachers 

during their problem-posing processes when problem solving is involved in an alternating 

manner? Are there any differences in the patterns shown by these two groups of participants? 

The answer to the first part of this research question can be found by focusing on similar patterns 

of problem posing shown by US and Chinese participants. To answer the second part of this 

research question, the different patterns of problem posing shown by US and Chinese 

participants are discussed. 

Similar patterns. First, the problems posed by US and Chinese participants shared some 

similar features regarding interpreting given figures and initial stories, and similar reasons that 

led a posed problem to be an unsolvable or classified as not a mathematical problem. Second, the 

US and Chinese participants showed similar progression in their problem-posing performance 
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throughout all five problem-posing processes. 

Similar features of posed problems. Both US and Chinese participants had no formal 

problem-posing practice before participating in this study. Although they came from different 

countries with quite different academic and cultural backgrounds, they showed similar starting 

points and preference or aptness during the first problem-posing process (i.e., the Translating 

process), where they were asked to pose a story problem according to given figures. In the first 

set of tasks, they were initially given three rectangles and many of them posed problems that 

only asked for the area or perimeter of one rectangle. In the second set of tasks, they were 

initially given a pattern with continuously inscribed circles and circumscribed squares, and 

almost all of them asked only for the basic measurements of a circle or a square such as the area 

or circumference/perimeter. More particularly, no participant asked a question about the middle-

sized circles or squares. They only focused on the biggest and smallest.  

In addition, US and Chinese participants had similar creative ideas at the beginning of the 

problem-posing process. For example, both US and Chinese participants posed problems asking 

for the maximum number of times that a small rectangle could fit into a big rectangle during the 

first task administration. This type of problem involves a division with fractions and a division 

with a remainder, and requires higher levels of cognitive thinking as well as more computational 

steps than the problems that only ask for the area or perimeter of a rectangle. Both US and 

Chinese participants also posed problems that interpreted given figures in a dynamic process, 

during both the first and second task administrations. As discussed before, this type of problem is 

special as it clearly describe the mathematical structure and relationship of involved figures and 

therefore no figures are necessary to be given during the problem-solving process. In this case, 

problem solvers are allowed to develop figural representations by themselves, if needed. 
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Finally, US and Chinese participants had similar difficulties that led their posed problems 

to be unsolvable or considered not mathematical problems during the Translating, Editing, and 

problem posing after problem solving processes. These three problem-posing processes are 

different from the other two processes (i.e., the Comprehending and Selecting processes), 

because problem posers usually have more freedom to selecting and/or edit given information in 

the initial figures or situations, while the other two processes were confined to the initial 

situation and a particular calculation/answer. According to the problems posed by US and 

Chinese participants for these three processes, the reasons that led posed problems to be 

unsolvable problems included vague wording in either givens or questions, the improper use of 

mathematical terminology, a lack of sufficient information for problem solving during both task 

administration, and contradiction involvement particularly in the second set of tasks.  

The reasons that led posed problems to be classified as not mathematical problems 

included that no question was asked at all, usually due to difficulties in posing expected 

problems, and no computational or mathematical reasoning steps were needed. This was usually 

due to misconceptions of the definition of a mathematical problem. In other words, they were not 

clear how a mathematical problem was defined. These findings show that both US and Chinese 

prospective elementary teachers find it challenging to clearly word a mathematical problem, 

accurately apply mathematical vocabularies, thoroughly consider the structure of a mathematical 

problem, and completely interpret the definition of a mathematical problem.  

Similar progression in problem-posing performance. Along the five problem-posing 

processes, both US and Chinese participants’ problem-posing performance improved. First, their 

focus on given figures and stories were extended. More specifically, during the first task 

administration, starting from asking questions about only one rectangle, many of my participants 
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smoothly moved to ask questions involving more than one rectangle, which usually required 

more computational steps for problem solving. During the second task administration, starting 

from focusing on only the smallest or biggest circle or square, many of them also asked 

questions about middle-sized shapes during later problem-posing processes. There were also 

some participants who extended the given figure to even smaller or bigger shapes that followed 

the pattern but were not shown in the initial figure.  

Second, more creative ideas continuously occurred in problems posed by both US and 

Chinese participants. The following concepts were used by many participants through all five 

problem-posing processes: fraction, ratio, percentage, proportion, multiple, surface area and 

volume of a three-dimensional object. Many problems with the use of these concepts were 

categorized as creative problems. At the same time, problems with more computational steps 

and/or different mathematical structure also occurred frequently in this process. For example, 

during the first task administration, both overestimation and underestimation cases of division-

with-a-remainder problems occurred in the Editing process while only underestimation case 

occurred in the Translating process. In addition, there were more participants who posed 

problems using money information during the Editing process than during the Translating 

process. For the second set of tasks, both US and Chinese participants posed problems that began 

with an unknown circle in the Editing process, and there were a large number of posed problems 

that were closely tied to real-life situations (e.g., there will be inescapable space between circular 

bowls when they were arranged side by side) in the problem posing after problem solving 

process.  

Finally, more open-middled and open-ended problems occurred during the Editing and 

problem posing after problem solving processes. All these findings show that prospective 
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elementary teachers are capable of posing solvable mathematical problems. In addition, they are 

able to continuously pose problems with more and more creative ideas when given a certain 

amount of time and engaged in different types of problem posing as a systematic process. In a 

word, they are able to continuously innovate.  

Different patterns. Due to the different features of all five problem-posing processes, US 

and Chinese participants also showed quite different performances in each process. More 

specifically, I found the different patterns shown by US and Chinese participants’ posed 

problems from the following perspectives: (1) figure visualization; (2) calculation interpretation; 

(3) habitual preference in posing a sequence of problems; (4) perception of a given answer based 

on previously posed or solved problems; and (5) problem-posing strategy for integrating given 

information. 

Figure visualization. The Translating process is unique as it asks problem posers to 

generate a mathematical problem according to given figures. It is a semi-structured situation of 

problem posing that shows problem posers’ focus, preference, and/or aptness when interpreting 

geometric figures. During the first task administration, fewer than half of US participants posed 

problems that involved all three given rectangles while about 70% of the Chinese participants 

posed problems involving all rectangles. During the second task administration, more than half 

of US participants posed problems focusing on the smallest circle in the given figure while the 

majority of Chinese participants asked questions about the biggest circle or square in that figure. 

These findings show that Chinese participants are more likely to integrate all information 

involved in the given figures into their posed problems, while their US counterparts usually 

chose to integrate only the information involved in the given figures they need for posing new 

problems. 
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Calculation interpretation. The Translating process gives problem posers a calculation 

and asks them to pose a mathematical problem representing that calculation. In other words, this 

process asks problem posers to generate a corresponding problem, while its solution is given. We 

traditionally learn mathematics through finding solutions to a given problem, instead of 

generating a problem for a given solution. Fewer than half of the problems posed by US 

participants during the first task administration and only about ten percent of the problems posed 

by US participants during the second task administration correctly represented the given 

calculations. On the contrary, more than 90% and about 90% of their Chinese counterparts’ 

posed problems correctly represented the given calculations during the first and second task 

administration, respectively. This indicates that Chinese participants are capable of interpreting 

either the structure or properties of given calculations, and then making connections back to the 

initial story. It is possible that US participants were not used to this particular way of 

mathematical reasoning, or they were challenged when they had to interpret the meaning, 

structure, or properties of the given calculations. 

Habitual preference of posing a set of problems. US and Chinese participants showed 

different preferences in posing problems when they got to the Editing process during both task 

administrations. More specifically, Chinese participants showed a preference of posing problems 

in a sequence. For example, a Chinese participant posed a problem asking for the radius of the 

second smallest circle in the figure for the Comprehending process during the second task 

administration. He/she then posed a problem asking for its area in the Editing process. There 

were also some Chinese participants who asked at least two questions in a sequence during the 

Editing process. For example, a Chinese participant first asked a question about the unit price of 

the cloth that Na Li bought and then asked for the cost of Na Li’s scarf in the Editing process of 
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the first task administration. Their US counterparts did not show this preference in problem 

posing. This difference is also shown in that, during the first task administration, there were a 

few Chinese participants who posed problems in the Editing process that were expected next in 

the Selecting process. Instead, some of their US counterparts posed problems in the Editing 

process that exactly presented the calculation given in the previous Comprehending process. 

Perception of a given answer based on previously posed or solved problems. Similar to 

their performance in the Comprehending process, US and Chinese participants performed quite 

differently again in the Editing process. More specifically, less than 10% of the US participants 

posed problems that had the answer as a given during the first task administration, while more 

than ninety-five percent of their Chinese counterparts posed problems that had the answer as a 

given number. During the second task administration, less than 20% of US participants and 

almost 90% of Chinese participants posed problems that had the answer as a given number. One 

possible reason for why Chinese participants performed well in the Selecting process is that they 

were capable of perceiving and applying the relationship between the calculation given in the 

Comprehending process and the answer given in the Selecting process for each set of tasks. 

Meanwhile, the majority of their US counterparts had difficulties of doing this.  

Even so, US participants came up with two ways of using the given number in problem 

posing. First, they broken down the given number into parts, then developed new scenarios 

representing each part and finally posed a problem. Some Chinese participants also used this 

strategy to pose a problem that had the answer as the given number during the first task 

administration. Second, some US participants used the given number as one condition in their 

posed problems, while no Chinese participants used this strategy. These two strategies indicate 

that, even if the participants were challenged at some points, they did not give up but insisted on 
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posing new problems. It indicates that this way of problem-posing practice helps train 

prospective elementary teachers’ resilience in mathematics learning. 

Problem-posing strategy for integrating given information. Another problem-posing 

strategy that was particularly used by Chinese participants occurred in problem posing after 

problem solving process during the first task administration. In order to pose new problems after 

problem solving, the majority of the Chinese participants utilized all given information from the 

initial story and then asked new questions after adding other conditions if needed. Only one US 

participant did this during the problem posing after problem solving process. This becomes an 

issue because many of the Chinese participants’ posed problems had redundant information that 

was unnecessary in problem solving. It again shows that Chinese participants preferred to 

integrate all given information when posing new problems while their US counterparts were 

more likely to select only the information that they needed. In addition, the Chinese participants 

are lacking awareness of checking the structure of their posed problems. More specifically, 

checking for redundant information that is included in their posed problems. In other words, they 

lack an awareness about what makes a mathematical problem concise. 

Answering Research Question 2. Research Question 2 is as follows: What are the 

connections between US and Chinese prospective elementary teachers’ problem-posing and 

problem-solving performance? Are there any differences in the connections between these two 

groups of participants? To answer this research question, I first discussed the general connections 

between problem posing and problem solving among US and Chinese participants. I then 

discussed the differences shown by US and Chinese participants. 

Connections between problem posing and problem solving. The general connections 

between problem posing and problem solving, during the problem posing before problem solving 
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process, the problem-solving process, and the problem posing after problem solving process, are 

discussed respectively below. 

Problem posing before problem solving. Christou et al. (2005) speculated that specific 

problem-solving thinking and ideas presented in iconic or symbolic form should include in 

Translating, Comprehending, Editing, and Selecting processes. Due to the features of each of 

those processes as well as participants’ performance, it can be argued that different types of 

problem-solving thinking are involved in different problem-posing processes and, furthermore, 

different amounts of problem-solving effort are needed in each problem-posing process. More 

specifically, in order to pose an appropriate problem to a given answer according to the initial 

story or figures during the Selecting process, problem posers need to solve a series of problems 

through trial and error. The Comprehending process actually provides problem posers with the 

solution to an expected mathematical problem and asks them to find out that specific problem. It 

requires problem poser to make connections between problem solving and problem posing by 

themselves, and to view a mathematical problem from different perspectives.  

Since Translating and Editing processes do not have specific requirements as 

Comprehending and Selecting processes do, many problem posers only pay a little attention to 

the solvability of their posed problems, especially the ones who had little experience in posing 

problems. In a word, problem posing and problem solving are not always inseparable. Different 

amounts of problem-solving efforts or practices is required depending on the form of the specific 

problem-posing processes. From this perspective, problem posing could be either a 

comparatively independent learning activity or a learning activity that is closely related to 

problem solving, according to the definition of problem posing generated by Kilpatrick (1987) 

and Silver (1994). 
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During the problem-solving process. It is clear that, overall, Chinese participants 

performed very well in the Comprehending and Selecting processes as well as the later problem-

solving process for both sets of tasks. At the same time, their US counterparts had difficulties in 

all of those three processes. Furthermore, during the Editing process of the first set of tasks, more 

than twenty percent of US and Chinese participants posed problems that had similar ideas and 

structures with the problem in the problem-solving task. More than 10% of Chinese participants 

asked at least two questions in a sequence, starting with a question about the unit price of the 

cloth and then asking a question about the cost of specific pieces. Later on, during the problem-

solving process, they all solved the problem following the steps that were exactly consistent with 

the questions they asked during the Editing process. During the second task administration, no 

US participant posed a problem about ratios in the Editing process, while more than 10% of 

Chinese participants posed problems with the concept of ratio that had similar ideas and 

structures to the problem in the problem-solving task. These findings indicate that, first, better 

problem posers in the Comprehending and Selecting processes are usually better problem solvers, 

under the condition that all of these processes are according to the same story and/or figures. 

Second, if a problem poser is able to pose a problem involving specific concepts or structures, or 

pose a problem or a sequence of problems involving problem-solving procedures, he/she is likely 

highly capable of solving similar problems with those concepts, structure, or problem-solving 

procedures. 

The problem posing after problem solving process. After problem solving during the first 

task administration, about 30% of both US and Chinese participants posed problems that had 

similar ideas and structures to the problem given in the problem-solving task. After problem 

solving during the second task administration, there were still about 30% of Chinese participants 
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who posed problems that had similar ideas and structures compared to the problem given in the 

problem-solving task, while only about 5% of US participants did this. It is possible that many 

US participants were challenged by solving the problem given in the problem-solving process 

and, therefore, they may not have been confident in posing similarly structured problems after 

problem solving. Regardless, the majority of those posed problems were solvable mathematical 

problems, and many of them involved even more reasoning and computational steps.  

To summarize, the similar performance of the US and Chinese participants in problem 

posing after problem solving during the first task administration indicates that the problem-

solving experience had a positive impact on the participants’ problem-posing performance later. 

The difference in performances between those two groups of participants in problem posing after 

problem solving during the second task administration further indicates that the problem-solving 

performance may impact decision making in later problem-posing process.  

Different ways of connections shown by US and Chinese participants. The differences 

in the ways of connections between problem posing and problem solving shown by US and 

Chinese participants are stated in the following three perspectives, all of which have been 

discussed previously: (1) Chinese participants performed well in the Comprehending and 

Selecting processes as well as the problem-solving process in both the first and second sets of 

tasks, while their US counterparts had more difficulties in all of those three processes. (2) Many 

Chinese participants showed an aptitude for posing problems in a sequence. More specifically, 

many of the problems they posed in earlier steps could serve in solving later posed problems. 

The US participants did not show such an aptitude for posing a sequence of problems. And (3) 

the order of the sequential problems posed by some Chinese participants were consistent with the 

procedures they used later in the problem-solving process. Their US counterparts did not show 



                                                                                                                                                     146 
 

 
 

this way of thinking when posing and solving problems. Instead, they preferred to pose problems 

from multiple perspectives that were quite different. 

Summary. In conclusion, this chapter first quantitatively described and interpreted the 

US and Chinese participants’ problem-solving and problem-posing performance. The results 

indicate that, overall, a higher proportion of the Chinese participants than their US counterparts 

correctly solved the given problem in both sets of tasks. For problem posing, the Chinese 

participants posed a higher percentage of solvable mathematical problems in the Comprehending 

and Selecting processes than the other three processes. Contrarily, the US participants posed a 

higher percentage of solvable mathematical problems in the other three processes than in the 

Comprehending and Selecting processes. One possible reason that influenced the US participants’ 

performance in the Comprehending and Selecting processes as well as problem-solving process 

during the first task administration is the use of mixed fractions that may have contributed to the 

complexity of the tasks.  

I then qualitatively synthesized the patterns of problem posing shown by my participants 

in each of the Translating, Comprehending, Editing, Selecting, as well as problem posing after 

problem solving processes, as well as the relatedness between problem posing and problem 

solving during these processes. I found that the US and Chinese participants shared some 

patterns of problem posing during the entire process. The similar patterns include (1) similar 

features involved in posed problems, and (2) similar progression in problem-posing performance. 

They also showed some different patterns of problem posing during this process. Those different 

patterns were shown from the following perspectives: (1) figure visualization, (2) calculation 

interpretation, (3) habitual preference of posing a sequence of problems, (4) perception of a 

given answer based on previously posed or solved problems, and (5) problem-posing strategy for 
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integrating given information.   

Finally, my study evidenced some specific ways of relatedness between problem posing 

and problem solving including: (1) depending on the form of specific problem-posing task, it 

requires different amounts of problem-solving efforts or practice; (2) a better problem poser in 

the Comprehending and Selecting processes is usually a better problem solver, under the 

condition that all the Comprehending, Selecting and problem-solving processes are based on the 

same situation (e.g., story or figures); and (3) problem-solving experience has positive impacts 

on subsequent problem-posing process. Regarding of the different ways of connections between 

problem posing and problem solving shown by the US and Chinese participants, I found that (1) 

the US and Chinese participants performed quite differently in the Comprehending and Selecting 

problem-posing processes as well as subsequent problem-solving process; (2) the Chinese 

participants showed an aptitude for posing problems in a sequence, while their US counterparts 

did not show such an aptitude; and (3) the sequential problems posed by some Chinese 

participants were consistent with their procedures for solving the given problem, while their US 

counterparts did not show this way of thinking for posing and solving problems.  
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Chapter 5: Discussion 

In this study, I aimed to investigate the patterns of problem-posing performance and the 

features of the relationship between problem posing and problem solving shown by US and 

Chinese prospective elementary teachers. In order to do so, I designed two sets of tasks in both 

English and Chinese to engage participants in alternating problem-posing and problem-solving 

activities. My participants were 87 prospective elementary teachers from three US and three 

Chinese universities. The participants completed the tasks using paper and pens between October 

2015 and January 2016. The collected data included participants’ posed and solved problems 

based on two real-life situations and corresponding figures. I later answered my research 

questions by analyzing the patterns of my participants’ performance in different types of 

problem-posing tasks, and the interactions between their problem-posing and problem-solving 

activities. This chapter includes the following parts: (1) conclusion of this study; (2) 

contributions and limitations; and (3) implications for future research and teacher preparation 

practice.  

Conclusion 

Generally speaking, both US and Chinese participants were able to pose solvable 

mathematical problems. This is consistent with the findings of many previous studies (e.g., Chen, 

Van Dooren, Chen, & Verschaffel, 2011; Crespo, 2003; Silver, Mamona-Downs, Leung, & 

Kenney, 1996). My study also shows that the US and Chinese prospective elementary teachers 

were able to pose solvable problems that contained creative ideas and quite different 

mathematical structures from previously posed problems. Furthermore, many of those creative 

ideas were real-life related. For example, many participants brought the idea of sales promotion 

during the first task administration and some participants integrated the cost of decorating or 
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producing a certain sized bowl during the second task administration. This evidences that, first, 

prospective elementary teachers possess a rich store of knowledge from applied, real-world 

situations, namely, informal knowledge defined by Mack (1990). Second, this indicates that 

engaging problem posers in real-world situations provides them with opportunities to make 

connections between mathematical knowledge inside and outside the classrooms, flexibly 

explore, compare, and select meaningful information, and facilitate their creativity. These 

benefits have been documented in previous studies (e.g., Bonotto, 2010a; Bonotto & Dal Santo, 

2014).   

My participants did not have formal problem-posing experience before participating in 

this study, and they were initially asked to pose a story problem according to given figures in the 

study. I found that both US and Chinese participants were able to start posing problems with 

basic mathematical concepts and ideas, and they had a similar preference of posing problems 

according to given figures. For example, many of them posed problems that only asked questions 

about one rectangle during the first task administration, and most of them integrated only the 

basic concepts of the smallest or biggest circle or square during the second task administration, 

no question was asked about the middle-sized circles or squares. However, as they had more and 

more problem-posing opportunities, they posed problems containing more and different 

mathematical concepts, creative ideas, and mathematical structures. Also, some problems were 

more complicated than others with more computational and reasoning steps. During both task 

administrations, I provided no scaffoldings and each task administration lasted for about one 

hour and twenty minutes. Because of these reasons, I would argue that prospective elementary 

teachers have the initiatives and capability to pose higher-level cognitively demanding problems 

when given enough time or opportunities. Meanwhile, their problem-posing performance could 
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be developed and they are able to continuously create new ideas, even in a short amount of time, 

when they are engaged in a systematic process of problem posing. 

Similar to the findings of existing studies (e.g., Cai & Hwang, 2002; Crespo, 2003; Silver, 

Mamona-Downs, & Leung, 1996), both the US and Chinese participants in this study posed 

many unsolvable problems and those that were not mathematical problems in nature. The main 

reasons that led posed problems to be unsolvable problems included unclear wording and the 

lack of sufficient information for problem solving. The main reasons that led posed problems to 

be classified as not mathematical problems included problems that had no computational or 

reasoning steps needed, and when no questions were asked. Both US and Chinese participants 

displayed these mistakes and misunderstandings. Additionally, these errors are possibly because 

(1) there was a lack of problem-posing experience, (2) they have difficulties in selecting proper 

mathematical concepts or terminologies, (3) they are not clear on how a mathematical problem is 

defined, (4) they are challenged by the requirements of the task itself, and (5) more likely, they 

have limited conceptual understanding of specific mathematical topics. Therefore, when 

prospective elementary teachers are engaged in problem posing, they should be given space and 

scaffoldings  to pose different problems according to aforementioned perspective. 

There were also some different patterns in the problems posed by US and Chinese 

participants. Among all five problem-posing processes, Chinese participants posed a higher 

percentage of solvable mathematical problems during the Comprehending and Selecting 

processes (i.e., goal-oriented problem-posing tasks) than other three problem-posing processes 

(i.e., Translating, Editing, and problem posing after problem solving processes, which are open-

ended problem-posing tasks). The US participants posed a higher percentage of solvable 

mathematical problems during the Translating, Editing, and problem posing after problem 
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solving processes than the Comprehending and Selecting processes. This indicates that Chinese 

participants were more capable of interpreting the given calculations, perceiving the given 

answers, and making connections between the given calculations or answers back to the initial 

story and figures than their US counterparts. Since the Comprehending and Selecting processes 

provide either a solution or an answer and ask for a corresponding problem, it is also possible 

that the Chinese participants were more capable of thinking in reverse than their US counterparts. 

Neither US nor Chinese participants’ performance in the four cognitive problem-posing 

processes was the same with other groups of participants’ performance documented in the 

literature. For example, the six-grade students in Cyprus were challenged more in the Editing and 

Selecting processes than in the Comprehending and Translating processes (Christou et al., 2005), 

while the prospective primary teachers in Turkey had low success in all problem-posing 

processes and had the highest difficulty in the Comprehending process (Işık, Kar, Yalçın, & 

Zehir, 2011). Such differences among cross-national problem posers indicate the possible impact 

of cultural and academic backgrounds on their problem-posing performance. 

Additionally, my study found that the Chinese participants preferred to pose problems in 

a sequence, while their US counterparts did not show such a preference. More specifically, 

Chinese participants either sequentially posed at least two problems for one problem-posing 

process, or posed problems for different problem-posing processes that the answer to one 

problem could server to solve the other. This habitual preference of posing problems by Chinese 

participants was displayed during both goal-oriented and open-ended problem-posing processes. 

On the one hand, it is a problem-posing strategy that Chinese participants found useful. This 

problem-posing strategy is called chaining in many existing studies (e.g., Koichu, & 

Kontorovich, 2013; Silver, Mamona-Downs, Leung, & Kenney, 1996). Chaining illustrates a 
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problem-posing strategy where an existing problem is expanded in a way that a solution to a new 

problem would require the individual to first solve a previously posed problem. On the other 

hand, for both sets of tasks, the calculation given in the Comprehending process and the answer 

given in the Selecting process were closely related. Therefore, it is possible that the Chinese 

participants were better able to perceive and apply those relationships when posing expected 

problems.  

Regarding problem posing, I also found that the Chinese participants preferred to utilize 

all given information from the initial story and figures, and then ask new questions after adding 

some other conditions if needed. This preference was particularly evident during the first task 

administration and more commonly occurred in the problem posing after problem solving 

process. But, many of those problems that involved all the givens had redundant information for 

problem solving. Alternatively, only a few US participants did this, and the majority of them 

selected only the condition they would use from the initial story or figures to pose new problems. 

This indicates that the Chinese participants lacked an awareness of checking the structure of their 

posed problems, while their US participants were better able to make their posed problems 

concise.   

In investigating the interaction between problem posing and problem solving, my study 

found that these two activities are closely related, which is consistent with the findings from 

existing studies (e.g., Bonotto & Dal Santo, 2014; Silver & Cai, 1996). This conclusion was 

particularly shown in the US and Chinese participants’ performance during the Comprehending 

and Selecting problem-posing processes and problem-solving process. It was true for both sets of 

tasks. More specifically, the majority of Chinese participants posed solvable mathematical 

problems in the Comprehending and Selecting processes as expected, and successfully solved the 
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problem given in the later problem-solving task. Contrarily, more than half of the US participants 

did not pose solvable problems in the Comprehending and Selecting processes as expected. 

Meanwhile, more than half did not completely solve the given problem. For the other three 

problem-posing processes (i.e., Translating and Selecting processes as well as problem posing 

after problem solving process), although quantitatively Chinese participants posed a higher 

percentage of the solvable mathematical problems than their US counterparts, the difference was 

not large. These findings indicate that, within the same context, different types of problem-

posing tasks will have different levels of interaction with problem-solving tasks.  

I finally found that problem solving had positive impacts on later problem-posing 

performance. About 30% percent of both US and Chinese participants posed problems after 

problem solving that had similar ideas and structures to the problem given in the problem-

solving task during the first task administration. About 30% of Chinese participants also did this 

during the second task administration. Only a few US participants did this during the second task 

administration, but this may be because they did not perform very well on the problem-solving 

task. Regardless, the majority of those posed problems were solvable mathematical problems, 

and many of them incorporated even more reasoning and computational steps. Therefore, I 

concluded that, first, a problem given before problem posing played a role as a model, especially 

when problem posers could successfully solve the problem, they may be more confident to 

utilize its ideas and/or structure to pose new problems. Second, a problem given before problem 

posing may provide problem posers a new perspective in applying it to the initial real-life 

situation. If this new perspective was interesting enough to maintain problem posers’ curiosity 

and/or interests, it may be beneficial to enhance both their problem-solving and problem-posing 

performance. From this viewpoint, it is crucial to consider which type or level of problem is 
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more appropriate to give problem posers during the problem-solving processes before problem-

posing tasks.  

Contributions and Limitations 

This study contributes to the problem-posing research area in the following ways. First, 

the majority of existing studies examined the magnitude of the relationship between problem 

solving and problem posing. The researchers usually examined participants’ problem-solving 

and problem-posing performance around the same topic and then predicted the relatedness 

between those two learning activities (e.g., Cai, 1998; Silver & Cai, 1996). They found that 

problem solving and problem posing were closely correlated. Simply speaking, a good problem 

solver was usually a good problem poser, and vise versa. However, my study provides a different 

perspective and expands our understanding of the features of the relationship between problem 

solving and problem posing. More specifically, this study adapted the Active Learning 

Framework developed by Ellerton (2013) and engaged the participants in alternative problem-

posing and problem-solving activities. This way of engaging participants was not exactly the 

same as the procedures designed in the Active Learning Framework. As Ellerton claimed, this 

framework has not been broadly used and further research is needed before it can be extended. It 

indicates that we are still not sure which way of utilizing this framework is more efficient on 

mathematics learning than others. From this perspective, this study is also a contribution of the 

use of Ellerton’s framework.  

Second, this study shows that problem posing has specific impacts on later problem-

solving activities and the problem-solving experience impacts the subsequent problem-posing 

performance. This indicates that the order of engaging students in problem solving and problem 

posing can possibly lead to different learning outcomes. Therefore, my study implies other 
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choices of exploring the relationship between these two activities, for example, beginning with 

problem-solving tasks instead of starting with problem-posing tasks; and alternatively engaging 

students in problem solving and problem posing in a longer period of time, like one academic 

semester, rather than just a few hours. 

This study also contributes to the body of literature because US and Chinese prospective 

elementary teachers’ performance on particular problem-posing processes was explored, 

including the Translating, Comprehending, Editing, and Selecting processes as well as problem 

posing after problem solving processes. There are a few studies that integrate similar problem-

posing processes, but either with elementary school students, or with no problem posing after 

problem solving process, and those participants were from different countries other than the US 

and China (Christou, Mousoulides, Pittalis, Pitta-Pantazi, & Sriraman, 2005; Işık, Kar, Yalçın, & 

Zehir, 2011). And more importantly, all the participants from different countries showed quite 

different performances on the specific problem-posing processes. This indicates that the 

integration of problem posing in classrooms for different grade levels and demographic groups 

of students could be quite complicated and need multiple considerations. 

Third, existing studies focused on investigating problem-posing strategies and 

performances, the magnitude of the relationship between problem posing and problem solving, 

and the role of problem posing in creativity development, mathematics conceptual understanding 

as well as learners’ disposition on mathematics learning. Few of those studies discussed the 

patterns involved in participants’ posed unsolvable and not mathematical problems, let alone the 

reasons behind those problems. However, this study examined the reasons that led posed 

problems to be unsolvable and not mathematical problems. The reasons provide evidence for 

purposefully designing problem-posing tasks in order to overcome certain difficulties in problem 
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posing and to develop students’ problem-posing performance. 

There are three limitations in this study. First, this study lacks advanced statistics. This 

study was designed as a qualitative study and I only provided quantitative descriptive analysis 

for the participants’ problem-posing and problem-solving performance. I did not further justify 

the statistical significance among participants’ performance on different problem-posing 

processes, between problem posing and problem solving, or between US and Chinese 

participants. Therefore, although I drew conclusions about US and Chinese participants’ 

problem-posing and problem-solving performance according to the most obvious descriptive 

data, those conclusions may not fully describe their real capability.   

The second limitation of this study concerns the different languages used by US and 

Chinese participants. The US participants worked on designed tasks in an English version, while 

their Chinese counterparts worked on designed tasks in a Chinese version. I first translated the 

designed tasks in English into Chinese, and analyzed the collected data in English and Chinese at 

the same time. Additionally, I translated some Chinese participants’ posed problems back to 

English if needed. I did not use an external reviewer to check all of these translations. It may be a 

limitation of my findings. It was also noteworthy that the US participants were more familiar 

with the inches and feet as length units while Chinese participants were more familiar with 

centimeters and meters as length units. I therefore used different length units and measurements 

for both sets of tasks in order to make the numbers used comparable. However, this 

consideration produced a consequence that, in the first set of tasks, the fractions given in the 

tasks in English were mixed fractions while the fractions given in the tasks in Chinese were 

proper fractions (i.e., fractions that were less than one). This difference may have contributed to 

the complexity of the tasks for US participants, as well as their performance in problem-posing 
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and problem-solving processes. 

The last limitation concerns participant selection. I approached three universities from 

each country in order to achieve a comparatively representative group of participants for the 

entire population. The three universities from each country were ranked on different levels 

according to famous institutions with high social influence. However, all three US universities 

are from the same state while the three Chinese universities are located in different areas of 

China. This difference may impact the generalization of my findings to a larger population to an 

extent.  

Implications for Future Research and Teacher Preparation Practice 

This section discusses the implications of this study for future research and teacher 

preparation practices. The implications for future research touches on further investigation into 

the relatedness between problem posing and problem solving, problem-posing task design, and 

outcomes of different groups of learners’ problem-posing activities. The implications for teacher 

preparation practice refer to prospective elementary teachers’ needs before being engaged in 

problem posing, matters that need attention when integrating problem posing in problem-solving 

activities or classrooms, and the use of unsolvable and not mathematical problems.   

 Future research. In this study, both US and Chinese participants had no formal 

problem-posing experience before they were asked to pose four problems with four quite 

different requirements before problem solving. It is possible that the first stage of problem 

posing helped them to analyze the initial story and figures from different perspectives, raised 

their curiosity and interests, and prepared them before completing problem-solving activities. It 

is also possible that the participants were frustrated because of this unfamiliar learning activity. 

Since they were not given a follow-up interview, we do not know how they felt during the task 
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administrations. Therefore, the next step of this study could be conducting interviews to look 

closer into prospective elementary teachers’ thinking during this process in order to know more 

about their preferences and difficulties when beginning problem posing. 

This study provides more evidence in support of the positive correlation between problem 

posing and problem solving. More specifically, during both the first and second task 

administration, Chinese prospective elementary teachers posed a higher percentage of solvable 

mathematical problems in the Comprehending and Selecting processes than other problem-

posing processes, while their US counterparts were most challenged by those two processes. In 

the meantime, a much higher proportion of Chinese participants than their US counterparts found 

a correct solution to the given problem during each task administration. The mathematical idea 

and structure involved in the problem-solving task in turn, impacted participants’ problem-

posing thinking after problem solving. Many US and Chinese participants utilized the ideas and 

structure in their own posed problems and, more importantly, the majority of the problems were 

solvable mathematical problems.  

 Even so, it would be different if the participants engaged in problem solving first, then 

problem posing, and finally in problem solving again. Future study can explore the specific 

impacts of the order of engaging participants in problem posing and problem solving, and of 

problem examples given before problem-posing processes on developing problem-posing 

capabilities. By answering these questions, we could argue which way is more beneficial for 

engaging prospective elementary teachers in problem posing, getting used to problem posing, 

and improving in mathematics learning through problem posing. On the other hand, answering 

these questions will help in selecting a better way of integrating problem posing into prospective 

elementary teachers’ problem-solving classes. In other words, it will provide further evidence 
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about the interaction between problem posing and problem solving. 

Different groups of problem posers showed distinct performances on closely related 

problem-posing and problem-solving tasks, and this may be due to cultural and academic 

backgrounds, or other reasons. Christou, Mousoulides, Pittalis, Pitta-Pantazi and Sriraman (2005) 

found that, for six-grade students in Cyprus, “the editing and selecting process characterized the 

most able students” (p. 156) while the students with lower problem-posing performances only 

approached the Comprehending and Translating processes. Christou et al. did not investigate 

Grade six students’ problem-solving performance in their study. Işık, Kar, Yalçın, and Zehir 

(2011) integrated the four problem-posing processes with 80 prospective primary teachers in 

Turkey. They found that, overall, participants had low success in all problem-posing processes 

and had the highest difficulty in the Comprehending process. In contrast, this study worked with 

US and Chinese prospective elementary teachers and found that Chinese prospective elementary 

teachers out-performed in the Translating and Selecting processes, while their US counterparts 

were most challenged by these two processes. This shows that problem posers with different 

cultural or academic backgrounds have different reactions to different types of problem-posing 

tasks. The possible reasons that lead to those differences need further investigation. In other 

words, future studies could explore why a specific group of participants posed more solvable 

mathematical problems for certain types of problem-posing tasks than others. Further study 

should also focus on exploring different considerations when designing problem-posing and 

problem-solving tasks for participants with particular cultural and academic backgrounds. In 

doing this, we are able to design rich tasks and order those tasks in a meaningful way for each 

particular group of problem posers accordingly.  

Some  studies have pointed out that many students and teachers pose ill-formulated and 
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unsolvable mathematical problems (e.g., Crespo, 2003; Silver, Mamona-Downs, & Leung, 1996).  

However, few have investigated the possible reasons that led posed problems to be ill-formulated 

or unsolvable, or the reasons that led posed problems to be classified as not mathematical 

problems. This study showed that the main reasons that led posed problems to be unsolvable 

problems included unclear wording and a lack of sufficient information for problem solving, 

while the main reasons that led posed problems to be classified as not mathematical problems 

included a lack of computational or reasoning steps needed and no questions asked. Further 

study can focus on developing models or frameworks that help problem posers overcome those 

difficulties of posing ill-formulated, unsolvable, or not mathematical problems. Crespo and 

Sinclair (2008) found that providing prospective teachers opportunities to explore mathematical 

situation and aesthetic criteria to judge the quality of mathematical problems before problem 

posing improved their problem-posing performance and their understanding of the quality of 

posed problems. More specifically, problem posers with previous exploration opportunities 

posed more problems involving mathematical reasoning (i.e., answers were not immediately 

obvious, needed cognitive thinking to figure things out and explain why questions) than 

problems that only involved some facts or were too open-ended (i.e., with too many answers to 

promote mathematical reasoning, and therefore either lack of interests or unsolvable). Many of 

the participants posed problems that only contained facts and were too open-ended. Crespo and 

Sinclair’s interventions could serve as a model for improving problem-posing performance in a 

specific way. However, more particular and/or comprehensive models are needed to help 

problem posers overcome the difficulties present in problem posing.   

Teacher preparation practice. Researchers have agreed that problem posing, similar to 

problem solving, is a worthwhile intellectual activity that can serve to promote mathematical 
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understanding. They appeal for integrating problem posing into problem-solving classrooms and 

teacher preparation programs (Crespo, & Sinclair, 2008; Ellerton, 2013). The first question is:, 

What do prospective teachers need to be prepared before engaging in problem posing? In this 

study, there were a number of posed problems that I classified as not mathematical problems 

because they did not involve either questions, or mathematical computational or reasoning steps. 

This result is in consistent with existing findings (e.g., Cai & Hwang, 2002; Crespo, 2003; Silver, 

Mamona-Downs, & Leung, 1996). Cai (2015) therefore asked, “Why do students pose 

nonmathematical, trivial, or otherwise suboptimal problems or statements?” (p. 9). For 

prospective elementary teachers in this study, it was possible that they lacked understanding of 

the definition of a mathematical problem, as well as its features, types, and possible structures. 

For example, during the first task administration, there were participants who asked a question 

about how to sew two pieces of cloth together. This was not a mathematical problem. In addition, 

in the four cognitive problem-posing processes, although it was clearly stated that they were 

required to pose story problems, some of the participants posed pure mathematical problems, 

involving no real-life situations. 

In order to prepare prospective teachers to be better problem posers, we can start by 

developing their understanding of the definition of a mathematical problem. The countless well-

structured mathematical problems in textbooks or online are all learning resources. In the 

meantime, it is important to expose prospective teachers to ill-formulated or unsolvable 

mathematical problems (Crespo, & Sinclair, 2008; Silver, 1994). By continuously comparing 

high-quality (i.e., well-structured and solvable), mathematical problems with ill-structured or 

unsolvable mathematical problems, they will have a better understanding and more experience in 

developing their own aesthetic criteria for judging the quality of mathematical problems. This 
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helps them improve their problem-posing performance correspondingly, as Crespo and Sinclair 

found (2008). 

This study further provided evidence that problem posers coming from a particular 

cultural and academic background performed quite distinctively in different problem-posing 

processes. In addition, prospective elementary teachers’ performance in different problem-posing 

process related differently to their problem-solving performance. These results contribute to 

answer another question developed by Cai (2015) about further exploration of the feature of the 

relationship between problem posing and problem solving, especially in cross-cultural context. 

In spite of this, the way or the order that prospective teachers should be engaged in problem-

posing and problem-solving tasks needs particular consideration. By carefully thinking about 

which types of problem-posing tasks that a particular group of posers are good at, we can 

consider whether we should engage them in easier or more challenging ones first. We should 

also consider whether engaging them in problem posing before problem solving or problem 

solving before problem posing could help deepen their conceptual understanding more 

efficiently. In one word, problem-posing and problem-solving task design and selection depend 

on the particular group of learners’ needs and characteristics. 

When integrating problem posing into problem-solving classrooms and teacher 

preparation programs, it is highly possible that prospective teachers will pose many unsolvable 

and not mathematical problems. They may become confused and frustrated at times. In this case, 

extra patience may be helpful. In other words, they can be given enough time to go through 

productive struggles, especially at the beginning stage when introducing problem posing. This 

study shows that, when prospective elementary teachers were given enough time and engaged in 

well-organized or designed tasks, they were able to pose different problems, many of which were 
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solvable or creative problems. Different types of problem-posing played a role in scaffolding 

problem posers to explore the given situation or figures from multiple perspectives.  

During the data analysis process, I found many entry points for teaching according to my 

participants’ posed problems, including both solvable and unsolvable ones. For example, both 

underestimation and overestimation cases for solving division-with-a-remainder problems were 

posed by my participants, and those problems were with fractions. In teacher preparation 

classrooms, we could expose them to both of those cases and ask them to solve the problems at 

the same time. These problems help maintain their interests and insistence of problem solving, 

because those are their own posed problems. Studies show that students showed more interests in 

solving their own posed problems (Beal, & Cohen, 2012; Silver, 1994). Yet, in comparing the 

two cases, they could better understand the difference of the two cases and pay more attention to 

reality when solving and posing these kinds of mathematical problems. Just as Levin and 

Calcagno (2008) claim, without the opportunity to solve real-world problems which reveal the 

usefulness of the mathematics being taught, students are unable to extend and apply their new 

knowledge outside the context of the mathematics classrooms. 

Another example is as follows. As discussed previously, a number of participants 

misunderstood operations with fractions such as 2× 60.5
6

= 121
12

, 110
3

+ 11
9

= 121
12

, and 

121
12

=10 1
12

=5 1
6

×2 1
2
 during the Selecting process of the first task administration. When this 

happens during classroom teaching, it could be an opportunity to ask students to solve those 

problems. By comparing the correct answers to the given number in the Selecting process, 

problem posers who had those misunderstandings may start questioning themselves and a whole 

class discussion would help them further clarify their misunderstandings. This is an opportunity 

to help prospective teachers make sense of the interaction between problem solving and problem 
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posing. In addition, it is an opportunity to help them see the usefulness of mistakes or 

misunderstandings in developing their mathematics learning. Similarly, in teacher preparation 

classrooms, we can purposefully ask students to solve the ill-structured problems that they have 

posed. Prospective teachers are expected to investigate the mistakes involved in unsolvable or 

not mathematical problems by themselves, such as implicit contradiction, lacking sufficient 

condition, and missed goal of a problem. They could be asked to correct and edit those ill-

structured problems and generate solvable and concise problems. This would help them learn 

from mistakes and, at the same time, start to think like an expert in mathematics.  

Cai (2015) asked, “What are the key features of effective problem posing and problem-

posing instruction in classrooms?” According to above discussion, although this study is not 

about classroom teaching through problem posing, it may provide implications to answer this 

question. More specifically, this study indicates that effective problem posing is able to create 

many entry points for making teaching decisions. Depending on a specific group of students’ 

performance and needs, a teacher could help expand their understanding by utilizing either 

solvable or unsolvable problems posed in the class.   

This study clearly showed that prospective elementary teachers were able to pose 

solvable mathematical problems, many of which were creative. However, it is possible that they 

could not solve all of their posed problems. Evidence suggest that there were a number of 

participants who posed problems with similar ideas and structures to the problem in problem-

solving process and did not solve that problem during problem-solving process. In the case of 

either generating new problems from ill-structured problems or solving their own posed 

problems, peer supports and peer teaching may be helpful for prospective elementary teachers to 

overcome fear and frustration brought about by the unfamiliarity of the way of mathematical 
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learning, namely, problem posing. 

Contreras (2007) concluded that, first, without adequate experiences, students rarely used 

prototypical strategies to generate problems. Second, all the difficulties the students had and the 

errors they made during problem posing indicated that they needed a broad variety of 

experiences in problem posing. I will further claim that prospective elementary teachers need 

more exposure to multiple types of problem-posing tasks, practices involving interactions 

between problem posing and problem solving, chances to deal with ill-structured mathematical 

problems, as well as opportunities to recognize and analyze different types of mathematical 

problems before posing their own problems.  

In conclusion, although it has been repeatedly evidenced that problem posing and 

problem solving are closely related, more descriptive, qualitative research on the nature of their 

relationship is needed. In addition, even though Ellerton (2013) and other researchers (e.g., 

Osana & Pelczer, 2015) appeal for problem-posing integration into teacher preparation programs, 

we rarely see problem posing as part of teacher preparation programs. Although Ellerton (2015) 

further evidenced the benefits of using the Active Learning Framework (Ellerton, 2013) in a 

mathematical class for preservice and practicing teachers, and proposed specific characteristics 

of a pedagogy for problem posing, it is still unknown whether a teacher preparation program that 

engages prospective teachers in problem posing produces stronger teachers. All of these 

unanswered questions indicate that the application of significant research results and findings in 

teacher preparation programs needs to continue. A critical point may be that, as Cai (2015) 

claimed, the research area of problem posing is still atheoretical at this point. It therefore appeals 

for more work in order to build a theory for better understanding all empirical results in the 

literature as well as the overall picture of problem posing.   
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Appendix A: Two Set of Tasks for Pilot Study 

First Set of Tasks 

Diana bought a piece of cloth 4 feet wide and 5 feet long. It cost $16. She cut off a piece that was 

1 3
4
 feet wide and 4 feet long to make a scarf. Her sister saw Diana’s cloth and really liked the 

material. She asked for a piece that was 1 3
4
 feet wide and 1 2

3
 feet long to also make a scarf.    

Here is a real life story:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 3
4
 ft 

1 2
3
 ft 4 ft 

1 3
4
 ft 

4 ft 

5 ft 
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Task I: Problem posing [20 min] 

Comprehending: Write an appropriate mathematical story problem representing the following 

calculation: 1 3
4

× (4 + 1 2
3
), according to the given situation and figures. 

 

Translating: Write a mathematical story problem according to the given figures. 

 

Editing: Write a mathematical story problem according to the given story, which should be 

different from the problems you posed before. 

 

Selecting: Write an appropriate mathematical story problem according to the given story so that 

the answer to your problem is 121
12

 square feet.  

 

Task II: Problem solving [10 min] 

Solve this problem: In this story, if Diana’s sister wanted to pay Diana, how much should Diana 

charge her?  

  

Task III: Further problem posing [10 min] 

Write two more mathematical story problems that are different from all problems you posed or 

solved previously according to the same story. 
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Second Set of Tasks 

A factory that specializes in producing dinnerware decides to produce a set of five bowls in 

different diameter sizes. The sizes are constrained using the following model diagram and the 

radius of the smallest bowl is 1 inch. 

Here is a real life story:  

 

 

  
  

 

1 in 
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Task I: Problem posing [20 min] 

 

Comprehending: Write an appropriate mathematical story problem representing the following 

calculation: √12 + 12, according to the given situation and figure. 

 

Translating: Write a mathematical story problem according to the given figure. 

 

Editing: Write a mathematical story problem according to the given story, which should be 

different from the problems you posed before. 

 

Selecting: Write an appropriate mathematical story problem according to the given story so that 

the answer to your problem is 2√2. 

 

Task II: Problem solving [10 min] 

Solve this problem: Given that the radius of the smallest circle is 1 inch, what is the ratio of the 

area of the largest circle to the area of the smallest circle? 

 

Task III: Further problem posing [10 min] 

Write two more mathematical story problems that are different from all problems you posed or 

solved previously according to the same story. 
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Appendix B: Two Sets of Tasks in English 

The First Set of Tasks 

  

Given the following figures: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Task I: Problem posing [40 min] 

 
Translating: Write a mathematical story problem according to the given figures. 

 

 

 

 

4 feet 

5 feet 

4 feet 

1 3
4
 feet 1 3

4
 feet 

1 2
3
 feet 
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Diana bought a piece of cloth 4 feet wide and 5 feet long. It cost $16. She cut off a piece that was 

1 3
4
 feet wide and 4 feet long to make a scarf. Her sister saw Diana’s cloth and really liked the 

material. She asked for a piece that was 1 3
4
 feet wide and 1 2

3
 feet long to also make a scarf.    

Here is a real life story:  

 

Comprehending: Write an appropriate mathematical story problem representing the following 

calculation: 1 3
4

× (4 + 1 2
3
), according to the given situation and figures. 

 

Editing: Write a mathematical story problem according to the given story, which should be 

different from the problems you posed before. 

 

Selecting: Write an appropriate mathematical story problem according to the given story so that 

the answer to your problem is 121
12

 square feet.  

 

Task II: Problem solving [20 min] 

Solve this problem:  

In this story, if Diana’s sister wanted to pay Diana, how much should Diana charge her?   

 

Task III: Further problem posing [20 min] 

Write two more mathematical story problems that are different from all problems you posed or 

solved previously according to the same story.  
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The Second Sets of Tasks 

 

Given the following figure: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Task I: Problem posing [40 min] 

Translating: Write a mathematical story problem according to the given figure. 

 

 

 

 

1 in 
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A factory that specializes in producing dinnerware decides to produce a set of five bowls in 

different diameter sizes. The sizes are constrained using the following model diagram and the 

radius of the smallest bowl is 1 inch. 

Here is a real life story:  

 

Comprehending: Write an appropriate mathematical story problem representing the following 

calculation: √12 + 12, according to the given situation and figure. 

 

Editing: Write a mathematical story problem according to the given story, which should be 

different from the problems you posed before. 

 

Selecting: Write an appropriate mathematical story problem according to the given story so that 

the answer to your problem is 2√2. 

 

Task II: Problem solving [20 min] 

Solve this problem:  

Given that the radius of the smallest circle is 1 inch, what is the ratio of the area of the largest 

circle to the area of the smallest circle? 

 

Task III: Further problem posing [20 min] 

Write two more mathematical story problems that are different from all problems you posed or 

solved previously based on the same story. 
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Appendix C: Two Sets of Tasks in Chinese 

第一套练习题 

观察下图：

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

任务 I：问题提出 [40 分钟] 

 

转换过程： 请根据所给的图形编写一个数学应用题。  

 

 

 

 

 

1 m 

2 m 

3
4
 m 

1 m 

    3
4
 m 

  3
4
 m 
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生活故事实例： 

李娜花 12 元买了一块长 2 米宽 1 米的布料。她先裁剪了一块长 1 米宽 
3
4
  米的布料做了

围巾。李娜的妹妹看到李娜买的布料后说她非常喜欢，而且她想做个方形的围巾。于是她

从余下的布料上裁剪了一块长宽各 
3
4
  米的布料。    

 

 

理解过程： 请根据所给故事和图形编写一个合适的数学应用题， 要求该应用题能表示

以下的运算过程： 
3
4

× (1 + 3
4
)。 

 

编辑过程：请根据所给的故事实例编写一个数学应用题， 要求该应用题不同于你编写的

前两个问题。 

 

选择过程： 请根据所给的故事实例编写一个数学应用题， 要求该应用题的答案是 
11
16
 平

方米。 

 

 

任务 II：问题解决 [20 分钟] 

 

请解决以下问题： 在这个故事中，如果李娜的妹妹想付钱给李娜，她应该付多少钱？   

 

 

任务 III：提出更多问题 [20 分钟] 

 

请根据所给的故事实例再编写两个数学应用题，要求这两个问题不同于你在前面编写或者

解决的所有问题。 
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第二套练习题 

 

观察下图： 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

任务 I：问题提出 [40 分钟] 

 

转换过程： 请根据所给的图形编写一个数学应用题。  

 

 

 

 

3 cm 
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生活故事实例:  

一个专门制造餐具的工厂计划出产一套有五个大小不一的圆形碗具。上图显示了这套碗具

的模型。最小碗的半径是 3 厘米。 

 

 

理解过程： 请根据所给故事及图形编写一个合适的数学应用题，要求该应用题能表示以

下的运算过程：√32 + 32。 

 

编辑过程：请根据所给的故事实例编写一个数学应用题，要求该应用题不同于你编写的

前两个问题。 

 

选择过程：请根据所给的故事实例编写一个数学应用题，要求该应用题的答案是 6√2 。 

 

 

任务 II：问题解决 [20 分钟] 

 

请解决以下问题： 已知所给故事实例中最小碗的半径是 3 厘米， 那么最大碗和最小碗

的碗口面积之比是多少？ 

 

 

 

任务 III：提出更多问题 [20 分钟] 

 

请根据所给的故事实例再编写两个数学应用题，要求这两个问题不同于你在前面编写的或

者解决的所有问题。 
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Appendix D: Question Examples during the Second Task Administration 

1. What do you mean by ______ (a word, a phrase, a sentence, a question, etc.)? 

2. How did you come up with this problem? 

3. How did you come up with this problem-solving solution? 

4. Why did you draw this picture? 

5. What are you calculating for? 

6. What difficulties do you have for posing a problem for this process? 

7. What difficulties do you have when solving this problem? 

8. How satisfied are you with your posed problem? Are you confident? 

9. How satisfied are you with your problem-solving solution? Are you confident? 
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Appendix E: Question Examples for Prompting Thinking 

1. How do you feel about problem posing in general?  

2. Which one do you think is more difficult, problem posing or problem solving? Why? 

3. Among all four problem-posing processes, which is most difficult to you? Why? 

4. How do you feel about problem posing before and after problem solving? Are there any 

differences? Which process is more difficult to you? Why? 

5. How do you feel about problem solving after problem-posing exploration? 

6. How do you feel about the difference of this experience from your prior mathematics 

learning experience?  
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Appendix F: Codes and Sub-codes for Translating Process 

Major Codes Sub-codes Explanation 

Category of 
posed problem 

SMP Solvable mathematical problem 
UMP Unsolvable mathematical problem 
NMP Not a mathematical problem 

Visualization 
VTE Thinking that extends 
VTC Thinking that creates 
NVT No thinking that extends or creates 

Features of posed 
problem 

FCT Contextualized 
FNC Not contextualized 
FSP Static process 
FDP Dynamic process 
F2D Two-dimensional situation/object  
F3D Three-dimensional situation/object 
FCE Close-ended problem 

FOE Open-ended problem, including open-middled (FOE-
M) and open-ended (FOE-E) 

Complexity of 
solvable problem 

COS 1-2 One or two computational steps needed for problem 
solving 

COS 3-4 Three or four computational steps needed for problem 
solving 

COS >=5 Five or more computational steps needed for problem 
solving 

Mathematical 
terminology use 

TU-E-U Efficiency of terminology use, used mathematical 
terminologies 

TU-E-NU Efficiency of terminology use, did not use 
mathematical terminologies 

TU-A-C Accuracy of terminology use, correctly used 
TU-A-IC Accuracy of terminology use, incorrectly used 
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Appendix G: Final Codes and Descriptions for Translating Process 

Final Codes Sub-codes Explanation 

Category of 
posed problem 

SMP Solvable mathematical problem 
UMP Unsolvable mathematical problem 
NMP Not a mathematical problem 

Visualization 

VTE Thinking that extends 
VTC Thinking that creates 
NVT No thinking that extends or creates 
FSP Static process 
FDP Dynamic process 
F2D Two-dimensional situation/object  
F3D Three-dimensional situation/object 
FCE Close-ended problem 

FOE Open-ended problem, including open-middled (FOE-
M) and open-ended (FOE-E) 

Complexity of 
solvable problem 

COS 1-2 One or two computational steps needed for problem 
solving 

COS 3-4 Three or four computational steps needed for problem 
solving 

COS >=5 Five or more computational steps needed for problem 
solving 

Mathematical 
terminology use 

TU-E-U Efficiency of terminology use, used mathematical 
terminologies 

TU-E-NU Efficiency of terminology use, did not use 
mathematical terminologies 

TU-A-C Accuracy of terminology use, correctly used 
TU-A-IC Accuracy of terminology use, incorrectly used 

 
By analyzing posed problems for the Translating process using above codes, I built the following 

three descriptions only for this particular process: 

Description 1: The apparent concepts or ideas that involved in given figures, such as 
area or perimeter of a rectangle for the first set of tasks and diameter or area of a circle 
for the second set of tasks, were directly used by many prospective elementary teachers. 

Description 2: Multiple creative ideas of using mathematical concepts and knowledge 
occurred in prospective elementary teachers’ posed solvable mathematical problems. 

Description 3: Both US and Chinese participants posed a number of unsolvable and not 
mathematical problems, which demonstrated similar difficulties that they had.   
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Appendix H: Description Examples of Connections between Different Processes 

The Editing process was the third problem-posing process during each of my task administration. 

Because of this, US and Chinese participants had had problem-posing experience before they got 

to Editing process. I therefore examined the influence of their prior experiences on their 

performance during the Editing process and built the following descriptions:  

Description 6: Although a large number of posed problems for the Editing process used 

similar mathematical concepts during the Translating and Comprehending processes, 

many of the problems involved more computational steps and/or a different structure. 

Description 7: Both US and Chinese participants were capable of posing more creative, 

high-level cognitively demanding problems in the Editing process. Some of those 

problems had similar mathematical ideas and/or structure with the problem given in later 

problem-solving process, especially during the first task administration. 

Description 8: Despite being asked to pose a problem related to the sum of the areas in 

the Comprehending process, some US participants were not successful. However, they 

posed that expected problem in response to the Editing process. On the other hand, some 

Chinese participants anticipated what the next step would be and posed a problem that 

was expected in the Selecting process. 

Description 9: Many Chinese participants posed problems for the Editing process that 

could be solved  using the solution of the problem they posed for the Comprehending 

process, and this was true for both the first and second sets of tasks.   
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Appendix I: Examples of Major Themes 

By synthesizing all the descriptions that I built for each problem-posing process, I 

developed major themes for answering my research questions. Below are examples of major 

themes that I developed for answering my Research Question 1: What are the patterns of 

problem posing shown by US and Chinese prospective elementary teachers during their problem-

posing processes when problem solving is involved in an alternating manner? Are there any 

differences in the patterns shown by these two groups of participants? 

Similar patterns  

• similar features of posed problems 

• similar development in problem-posing performance 

Different patterns 

• figure visualization;  

• calculation interpretation;  

• habitual preference of posing a sequence of problems;  

• perception to a given answer based on previously posed or solved problems; 

• problem-posing strategy selection for integrating given information. 
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Appendix J: Specifics Examples of Each Category and Subcategory of Posed Problems 

 
Category  Examples 

Solvable 
mathematical 
problem 

 

A solvable mathematics problem with necessary and sufficient condition: Diana 
paid $16 for a piece of cloth that is 4 feet wide and 5 feet long. Diana cut off a 
piece of cloth that was 1 3

4
 feet wide and 4 feet long. How much money did the 

piece that Diana cut off cost her? (U03, 1st, PP3)* 

A solvable mathematics problem with redundant information: Diana’s sister was 
upset that Diana changed the dimensions of their scarves, so she went to the store 
herself and bought a 6 ft wide by 3 ft long piece of fabric. From that piece of 
fabric, she cut another scarf that was 5 1

6
 ft wide by 2 1

2
 ft long. What was the area 

of Diana’s sister’s new scarf? (U07, 1st, PP4) 

Unsolvable 
mathematical 
problem 

A mathematical problem that is impossible to solve: A garden is  5ft × 4ft . One 
section of the garden is filled w/ [with] tulips. This section is 4ft × 1 3

4
ft. 

Another section of the garden is filled w/ [with] lilacs. This section is 1 2
3

ft ×

1 3
4

ft . The gardener wants to fill the rest w/ [with] roses and lavender. If she/he 
split up the remaining section evenly b/t [between] these two types of flowers, 
what would be the dimensions of the rose section? (U08, 1st, PP1) 

A mathematics problem with insufficient condition: George is hanging up a new 
poster and needs giant tape to hold it up. He needs tape that is 1 3

4
ft wide. Carson 

also got a new poster and needs tape 4ft long plus 1 2
3
 feet wide. How much tape 

all together do George and Carson needs to hang up 2 posters. (U24, 1st, PP2) 

Not a 
mathematical 
problem 

 

A problem but not a mathematical problem: Diana’s sister wants to add her piece 
onto Diana’s piece to make one big scarf for them to share. How would she do 
it? (U22, 1st, PP2) 

Not a problem at all: Diana and her sister laid both of their new scarfs [scarves] 
end to end and sewed them together so that now they had a single scarf that was 
1 3
4
ft wide by 5 2

3
ft long. (U07, 1st, PP2) 

*  U03, 1st, PP3 represents the problem posed by a US participant who was numbered as 
03 for the third problem-posing process, i.e., Editing process, during the first task 
administration. 
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Appendix K: Summary and Synthesis of Participants’  

Problem-posing and Problem-solving Performance 

 General Patterns Different Patterns 
 1st Set of Tasks 2nd Set of Tasks 1st Set of Tasks 2nd Set of Tasks 

PP1 

 About 40% US 
and Chinese 
participants used 
only area or 
perimeter of one 
rectangle 

 Similar creative 
ideas involved in 
solvable problems 

 Similar reasons 
that led problems 
to be unsolvable 
or not math 
problems 

 Almost all posed 
problems used 
only basic 
concepts of a 
circle/square 

 No middle-sized 
circle/square 
was considered  

 A specific 
reason that lead 
problems to be 
unsolvable was 
contradiction 
involvement  

 33% US vs. 70% 
Chinese participants 
involved all three 
rectangles in their 
posed problems 

 More than half of US 
participants focused on 
the smallest circle vs. 
the majority of Chinese 
participants extended 
their consideration to 
the biggest circle or 
square 

 6% US vs. 48% 
Chinese participant 
posed problems with 
creative ideas 

PP2 

 None  None  39% of the posed 
problems by US 
participants vs. 96% of 
the posed problems by 
Chinese participants 
represented the given 
calculation 

 11% posed problems 
by US participants 
vs.89% posed 
problems by Chinese 
participants 
represented the given 
calculation 

PP3 

 More and new 
creative ideas 
occurred 

 Many solvable 
problems 
involved more 
computational 
steps and/or 
different structure 

 Many problems 
had similar idea 
and structure with 
the problem given 
in problem-
solving task 

 Participants 
started to pose 
problems about 
middle-sized 
circles/squares 

 Some posed 
problems 
starting from an 
unknown circle 

 

• No US participant vs. 
15% Chinese 
participants asked at 
least two questions in 
a sequence 

• 3% US participants vs. 
31% Chinese 
participants posed 
problems that could be 
solved using the 
answer to the 
problems they posed 
in PP2 

 No US participant vs. 
11% Chinese 
participants posed 
problems about the 
concept of ratio, 
similar idea and 
structure with problem 
in problem-solving task 

 No US participant vs. 
22% Chinese 
participants posed 
problems that could be 
solved using the 
answer to the problems 
they posed in PP2 

PP4 

 None  None  9% US participants vs. 
96% Chinese 
participants posed 
problems as expected  

 The majority of US 
participants had 
difficulties in vs. many 
Chinese participants 

 19% US participants 
vs. 89% Chinese 
participants posed 
problems as expected 

 The majority of US 
participants had 
difficulties in vs. many 
Chinese participants 
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were able to perceive 
and apply the relation 
between the 
calculation in PP2 and 
the answer in PP4  

 16% US participants 
vs. no Chinese 
participant used the 
given number as a 
condition 

 50% US participants 
vs. 15% Chinese 
participants tried to 
construct the given 
number, the majority 
of those problems 
were solvable 

were able to perceive 
and apply the relation 
between the calculation 
in PP2 and the answer 
in PP4  

 6% US participants vs. 
no Chinese participant 
used the given number 
as a condition 

 16% US participants 
vs. no Chinese 
participant tried to 
construct the given 
number, all those 
problems posed by US 
participants were 
solvable 

PS 

 None  None  25% US participants 
vs. 98% Chinese 
participants correctly 
solved the problem 

 47% US participants 
vs. 2% Chinese 
participants partially 
solved the problem 

 19% US participants 
vs. 89% Chinese 
participants correctly 
solved the problem 

 31% US participants 
vs. 7% Chinese 
participants partially 
solved the problem 

PP5 

 Similar 
percentage of 
posed problem 
with creative 
ideas 

 About 30% 
solvable problems 
had similar idea 
and structure with 
the problem given 
in problem-
solving task  

 No unsolvable 
problem or 
problem that 
was not a math 
problem had 
similar idea or 
structure with 
the problem 
given in 
problem-solving 
task 

 3% US participants vs. 
64 % Chinese 
participants posed two 
solvable problems that 
completely utilized all 
given information 

• 5% solvable problems 
posed by US 
participants vs. 28% 
solvable problems 
posed by Chinese 
participants had similar 
idea and structure with 
problem in problem-
solving task 

*       PP1 represents Translating process; PP2 represents Comprehending process; PP3 represents 
Editing process; PP4 represents Selecting process; PS represents problem-solving process; and 
PP5 represents problem posing after problem solving process 
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